jackkuo commited on
Commit
8d5f50f
·
verified ·
1 Parent(s): 3989f83

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -NAzT4oBgHgl3EQfg_yi/vector_store/index.faiss +3 -0
  2. .gitattributes +62 -0
  3. 0dAyT4oBgHgl3EQf1PkS/content/2301.00730v1.pdf +3 -0
  4. 0dAyT4oBgHgl3EQf1PkS/vector_store/index.faiss +3 -0
  5. 0dAyT4oBgHgl3EQf1PkS/vector_store/index.pkl +3 -0
  6. 1NE0T4oBgHgl3EQfuQFR/content/tmp_files/2301.02602v1.pdf.txt +363 -0
  7. 1NE0T4oBgHgl3EQfuQFR/content/tmp_files/load_file.txt +344 -0
  8. 29AyT4oBgHgl3EQf1vl1/content/2301.00740v1.pdf +3 -0
  9. 29AyT4oBgHgl3EQf1vl1/vector_store/index.faiss +3 -0
  10. 29FAT4oBgHgl3EQfDxyZ/content/2301.08418v1.pdf +3 -0
  11. 29FAT4oBgHgl3EQfDxyZ/vector_store/index.pkl +3 -0
  12. 2dE0T4oBgHgl3EQfugHS/vector_store/index.pkl +3 -0
  13. 3dFIT4oBgHgl3EQf5yug/content/tmp_files/2301.11391v1.pdf.txt +1884 -0
  14. 3dFIT4oBgHgl3EQf5yug/content/tmp_files/load_file.txt +0 -0
  15. 3dFKT4oBgHgl3EQf8i5H/content/tmp_files/2301.11949v1.pdf.txt +2162 -0
  16. 3dFKT4oBgHgl3EQf8i5H/content/tmp_files/load_file.txt +0 -0
  17. 59E1T4oBgHgl3EQfBQIH/vector_store/index.faiss +3 -0
  18. 59E5T4oBgHgl3EQfPQ7C/vector_store/index.faiss +3 -0
  19. 59E5T4oBgHgl3EQfPQ7C/vector_store/index.pkl +3 -0
  20. 6NAzT4oBgHgl3EQf9_7h/content/tmp_files/2301.01929v1.pdf.txt +1735 -0
  21. 6NAzT4oBgHgl3EQf9_7h/content/tmp_files/load_file.txt +0 -0
  22. 6dE3T4oBgHgl3EQfpwoB/content/2301.04644v1.pdf +3 -0
  23. 6dE3T4oBgHgl3EQfpwoB/vector_store/index.pkl +3 -0
  24. 7NE4T4oBgHgl3EQf2Q0O/content/tmp_files/2301.05296v1.pdf.txt +990 -0
  25. 7NE4T4oBgHgl3EQf2Q0O/content/tmp_files/load_file.txt +0 -0
  26. 89E0T4oBgHgl3EQffwAL/content/tmp_files/2301.02407v1.pdf.txt +2550 -0
  27. 89E0T4oBgHgl3EQffwAL/content/tmp_files/load_file.txt +0 -0
  28. 8tAzT4oBgHgl3EQfE_rp/content/2301.01005v1.pdf +3 -0
  29. 8tAzT4oBgHgl3EQfE_rp/vector_store/index.faiss +3 -0
  30. 8tE1T4oBgHgl3EQf7wU5/vector_store/index.pkl +3 -0
  31. 8tFLT4oBgHgl3EQfBi4b/content/2301.11970v1.pdf +3 -0
  32. 9dE1T4oBgHgl3EQfCQJ2/content/2301.02862v1.pdf +3 -0
  33. 9dE1T4oBgHgl3EQfCQJ2/vector_store/index.faiss +3 -0
  34. 9dE1T4oBgHgl3EQfCQJ2/vector_store/index.pkl +3 -0
  35. AdE3T4oBgHgl3EQfsgtu/vector_store/index.pkl +3 -0
  36. CNFJT4oBgHgl3EQftC1e/content/2301.11615v1.pdf +3 -0
  37. CNFJT4oBgHgl3EQftC1e/vector_store/index.faiss +3 -0
  38. D9AyT4oBgHgl3EQfSPfV/content/tmp_files/2301.00084v1.pdf.txt +966 -0
  39. D9AyT4oBgHgl3EQfSPfV/content/tmp_files/load_file.txt +0 -0
  40. DNAyT4oBgHgl3EQfefhw/content/tmp_files/2301.00322v1.pdf.txt +871 -0
  41. DNAyT4oBgHgl3EQfefhw/content/tmp_files/load_file.txt +0 -0
  42. E9FQT4oBgHgl3EQfRDbD/content/2301.13285v1.pdf +3 -0
  43. E9FQT4oBgHgl3EQfRDbD/vector_store/index.faiss +3 -0
  44. E9FQT4oBgHgl3EQfRDbD/vector_store/index.pkl +3 -0
  45. F9AzT4oBgHgl3EQfUfyk/content/2301.01268v1.pdf +3 -0
  46. F9AzT4oBgHgl3EQfUfyk/vector_store/index.pkl +3 -0
  47. FdE3T4oBgHgl3EQftAvj/vector_store/index.pkl +3 -0
  48. GdE0T4oBgHgl3EQfhQG7/content/tmp_files/2301.02430v1.pdf.txt +660 -0
  49. GdE0T4oBgHgl3EQfhQG7/content/tmp_files/load_file.txt +474 -0
  50. HNE1T4oBgHgl3EQfXgRU/content/tmp_files/2301.03127v1.pdf.txt +1010 -0
-NAzT4oBgHgl3EQfg_yi/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:26f329aee16cc6b92ca48cd6a0c89c67f9cd8622e9fe223433ddd72a9768c331
3
+ size 7536685
.gitattributes CHANGED
@@ -6702,3 +6702,65 @@ ZdFPT4oBgHgl3EQfujVG/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -tex
6702
  kdE2T4oBgHgl3EQfIgZc/content/2301.03681v1.pdf filter=lfs diff=lfs merge=lfs -text
6703
  edE2T4oBgHgl3EQfGgYZ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6704
  8tFLT4oBgHgl3EQfBi4b/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6702
  kdE2T4oBgHgl3EQfIgZc/content/2301.03681v1.pdf filter=lfs diff=lfs merge=lfs -text
6703
  edE2T4oBgHgl3EQfGgYZ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6704
  8tFLT4oBgHgl3EQfBi4b/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6705
+ SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf filter=lfs diff=lfs merge=lfs -text
6706
+ CNFJT4oBgHgl3EQftC1e/content/2301.11615v1.pdf filter=lfs diff=lfs merge=lfs -text
6707
+ ZNE0T4oBgHgl3EQfnAEV/content/2301.02505v1.pdf filter=lfs diff=lfs merge=lfs -text
6708
+ yNFKT4oBgHgl3EQfLi3P/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6709
+ VtFJT4oBgHgl3EQfOiwF/content/2301.11482v1.pdf filter=lfs diff=lfs merge=lfs -text
6710
+ 8tAzT4oBgHgl3EQfE_rp/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6711
+ NtFRT4oBgHgl3EQf4DgA/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6712
+ 8tAzT4oBgHgl3EQfE_rp/content/2301.01005v1.pdf filter=lfs diff=lfs merge=lfs -text
6713
+ NtFRT4oBgHgl3EQf4DgA/content/2301.13667v1.pdf filter=lfs diff=lfs merge=lfs -text
6714
+ b9FRT4oBgHgl3EQfSTce/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6715
+ 29AyT4oBgHgl3EQf1vl1/content/2301.00740v1.pdf filter=lfs diff=lfs merge=lfs -text
6716
+ VtFJT4oBgHgl3EQfOiwF/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6717
+ d9E3T4oBgHgl3EQfegrm/content/2301.04545v1.pdf filter=lfs diff=lfs merge=lfs -text
6718
+ 0dAyT4oBgHgl3EQf1PkS/content/2301.00730v1.pdf filter=lfs diff=lfs merge=lfs -text
6719
+ jtFIT4oBgHgl3EQfqSv8/content/2301.11327v1.pdf filter=lfs diff=lfs merge=lfs -text
6720
+ 29AyT4oBgHgl3EQf1vl1/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6721
+ 9dE1T4oBgHgl3EQfCQJ2/content/2301.02862v1.pdf filter=lfs diff=lfs merge=lfs -text
6722
+ lNE1T4oBgHgl3EQf0gXc/content/2301.03458v1.pdf filter=lfs diff=lfs merge=lfs -text
6723
+ jtFIT4oBgHgl3EQfqSv8/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6724
+ XdA0T4oBgHgl3EQfFP_h/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6725
+ E9FQT4oBgHgl3EQfRDbD/content/2301.13285v1.pdf filter=lfs diff=lfs merge=lfs -text
6726
+ MdE0T4oBgHgl3EQf0ALT/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6727
+ cdFKT4oBgHgl3EQfpy4G/content/2301.11871v1.pdf filter=lfs diff=lfs merge=lfs -text
6728
+ gNFMT4oBgHgl3EQf2jEq/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6729
+ E9FQT4oBgHgl3EQfRDbD/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6730
+ XNE2T4oBgHgl3EQfugh7/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6731
+ 8tFLT4oBgHgl3EQfBi4b/content/2301.11970v1.pdf filter=lfs diff=lfs merge=lfs -text
6732
+ 29FAT4oBgHgl3EQfDxyZ/content/2301.08418v1.pdf filter=lfs diff=lfs merge=lfs -text
6733
+ eNE0T4oBgHgl3EQfogEC/content/2301.02525v1.pdf filter=lfs diff=lfs merge=lfs -text
6734
+ JNE3T4oBgHgl3EQfuwvk/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6735
+ o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf filter=lfs diff=lfs merge=lfs -text
6736
+ zNE2T4oBgHgl3EQfMgZz/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6737
+ gdE2T4oBgHgl3EQfcAds/content/2301.03891v1.pdf filter=lfs diff=lfs merge=lfs -text
6738
+ PtE3T4oBgHgl3EQfCgmq/content/2301.04277v1.pdf filter=lfs diff=lfs merge=lfs -text
6739
+ CNFJT4oBgHgl3EQftC1e/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6740
+ _tFIT4oBgHgl3EQf-Cuq/content/2301.11409v1.pdf filter=lfs diff=lfs merge=lfs -text
6741
+ 59E1T4oBgHgl3EQfBQIH/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6742
+ odE3T4oBgHgl3EQf7Qv3/content/2301.04798v1.pdf filter=lfs diff=lfs merge=lfs -text
6743
+ jtFRT4oBgHgl3EQfWjfo/content/2301.13544v1.pdf filter=lfs diff=lfs merge=lfs -text
6744
+ 9dE1T4oBgHgl3EQfCQJ2/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6745
+ PdE1T4oBgHgl3EQfaQSn/content/2301.03160v1.pdf filter=lfs diff=lfs merge=lfs -text
6746
+ F9AzT4oBgHgl3EQfUfyk/content/2301.01268v1.pdf filter=lfs diff=lfs merge=lfs -text
6747
+ 0dAyT4oBgHgl3EQf1PkS/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6748
+ qtFAT4oBgHgl3EQffR0e/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6749
+ 59E5T4oBgHgl3EQfPQ7C/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6750
+ V9AyT4oBgHgl3EQfu_l-/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6751
+ etE2T4oBgHgl3EQfbQfw/content/2301.03884v1.pdf filter=lfs diff=lfs merge=lfs -text
6752
+ odE3T4oBgHgl3EQf7Qv3/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6753
+ -NAzT4oBgHgl3EQfg_yi/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6754
+ PtE3T4oBgHgl3EQfCgmq/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6755
+ etE2T4oBgHgl3EQfbQfw/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6756
+ o9FIT4oBgHgl3EQfvium/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6757
+ mdE5T4oBgHgl3EQfHg75/content/2301.05441v1.pdf filter=lfs diff=lfs merge=lfs -text
6758
+ Q9AyT4oBgHgl3EQfU_ew/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6759
+ cdFKT4oBgHgl3EQfpy4G/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6760
+ IdFJT4oBgHgl3EQfvS1K/content/2301.11625v1.pdf filter=lfs diff=lfs merge=lfs -text
6761
+ YNAyT4oBgHgl3EQfWfeb/content/2301.00165v1.pdf filter=lfs diff=lfs merge=lfs -text
6762
+ etE3T4oBgHgl3EQf3Asg/content/2301.04759v1.pdf filter=lfs diff=lfs merge=lfs -text
6763
+ XNE2T4oBgHgl3EQfugh7/content/2301.04081v1.pdf filter=lfs diff=lfs merge=lfs -text
6764
+ YNAyT4oBgHgl3EQfWfeb/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6765
+ 6dE3T4oBgHgl3EQfpwoB/content/2301.04644v1.pdf filter=lfs diff=lfs merge=lfs -text
6766
+ PdE1T4oBgHgl3EQfaQSn/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
0dAyT4oBgHgl3EQf1PkS/content/2301.00730v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a676d4bb8924a490031b96b0deab7932ab94f7d7f57164cd1183cdcd7b9df060
3
+ size 1836099
0dAyT4oBgHgl3EQf1PkS/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4dae3eaf4c646f770899941374483bd9891f7816a67b6d5b317e4ae1b1487de3
3
+ size 3604525
0dAyT4oBgHgl3EQf1PkS/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b1c448e0a9ff5d7d496d59a0f99dcc46c6f51ddb22e49f6cb62d0b8987beef6
3
+ size 144097
1NE0T4oBgHgl3EQfuQFR/content/tmp_files/2301.02602v1.pdf.txt ADDED
@@ -0,0 +1,363 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Optimal search reach for heavy neutral leptons at a muon collider
2
+ Krzysztof Mękała∗
3
+ Deutsches Elektronen-Synchrotron DESY,
4
+ Notkestr.
5
+ 85, 22607 Hamburg, Germany
6
+ and
7
+ Faculty of Physics, University of Warsaw,
8
+ Pasteura 5, 02-093 Warszawa, Poland
9
+ Jürgen Reuter†
10
+ Deutsches Elektronen-Synchrotron DESY,
11
+ Notkestr.
12
+ 85, 22607 Hamburg, Germany
13
+ Aleksander Filip Żarnecki‡
14
+ Faculty of Physics, University of Warsaw,
15
+ Pasteura 5, 02-093 Warszawa, Poland
16
+ (Dated: January 9, 2023)
17
+ Neutrinos are the most elusive particles known. Heavier sterile neutrinos mixing with the standard
18
+ neutrinos might solve the mystery of the baryon asymmetry of the universe. In this letter, we show
19
+ that among all future energy frontier accelerators, muon colliders will provide the farthest search
20
+ reach for such neutrinos for mass ranges above the Z pole into the multi-TeV regime. We compare
21
+ the performance of muon with electron colliders of the same machine energy and briefly discuss the
22
+ complementarity in flavor space between the two types of accelerators.
23
+ PACS numbers: 13.35.Hb, 13.66.Lm. 14.60.Pq, 14.60.St
24
+ Introduction
25
+ Massive neutrinos are considered the first established building blocks of physics beyond the Standard
26
+ Model (SM) of particle physics. Their tiny masses are believed to originate from seesaw-like mixing with heavier
27
+ sterile neutrinos whose masses could be all the way from the electroweak (EW) to the unification scale. While long-
28
+ distance neutrino oscillation experiments like DUNE or Hyper-Kamiokande will shed more light on the mass hierarchy
29
+ and the mixing parameters, heavier neutrinos can be directly searched for at hadron colliders such as the LHC and
30
+ future lepton colliders [1–17]. For collider searches, three different regimes can be considered: light neutrinos which
31
+ are long-lived and result in displaced vertices or decay outside the detectors, intermediate-mass neutrinos that decay
32
+ promptly and are dominantly produced in Z (and W or Higgs) decays, and heavy neutrinos with masses Mν ≳ MH.
33
+ In this paper, building upon an analysis framework similar to earlier studies for searches at linear e+e− machines, we
34
+ focus on the third case and show that the most sensitive searches for direct heavy neutrino production are possible at
35
+ high-energy muon colliders. Lepton colliders are, in general, sensitive to much smaller mixing parameters and hence
36
+ to much higher scales of UV completions. In this paper, we will consider a muon collider setup with energies of 3 and
37
+ 10 TeV, and integrated luminosities of 1 and 10 ab−1, respectively [18–20].
38
+ Model setup and simulation framework
39
+ In this letter, we consider the Phenomenological Type I Seesaw Mech-
40
+ anism [21, 22], implemented within the HeavyN model with Dirac neutrinos [5, 23], i.e.
41
+ we assume it just as a
42
+ representative model candidate without any prejudice (our findings are quite generic, though specific model setups
43
+ like artificial flavor mixings could of course lead to singular cases; Refs. [24, 25] provide an example where such heavy
44
+ neutrinos appear even at a multi-TeV scale UV completion). This effective extension of the SM introduces three
45
+ flavors of right-handed neutrinos (denoted as Nk) that are singlets under the SM gauge groups. The Lagrangian of
46
+ the model reads:
47
+ L = LSM + LN + LW Nℓ + LZNν + LHNν
48
+ (1)
49
+ where LN is a sum of kinetic and mass terms for heavy neutrinos (in 4-spinor notation, which combines terms with
50
+ spinors of dotted and undotted indices):
51
+ LN = ¯Nki/∂Nk − mNk ¯NkNk
52
+ for k = 1, 2, 3,
53
+ (2)
54
+ LW Nℓ yields neutrino interactions with the W boson:
55
+ LW Nℓ = − g
56
+
57
+ 2W +
58
+ µ
59
+ 3
60
+
61
+ k=1
62
+ τ
63
+
64
+ l=e
65
+ ¯NkV ∗
66
+ lkγµPLℓ− + h.c.,
67
+ (3)
68
+ arXiv:2301.02602v1 [hep-ph] 6 Jan 2023
69
+
70
+ 2
71
+ 0
72
+ 2000
73
+ 4000
74
+ 6000
75
+ 8000
76
+ 10000
77
+ [GeV]
78
+ qql
79
+ m
80
+ 1
81
+
82
+ 10
83
+ 1
84
+ 10
85
+ 2
86
+ 10
87
+ 3
88
+ 10
89
+ 4
90
+ 10
91
+ 5
92
+ 10
93
+ 6
94
+ 10
95
+ Events
96
+ ee bg
97
+ sig_3000
98
+ FIG. 1: qqℓ mass distribution for a reference scenario assuming the existence of one Dirac neutrino with a mass of
99
+ 3 TeV, at a 10 TeV muon collider. The black solid line stand for the µ+µ− background and the thick green one for
100
+ the signal scenario.
101
+ LZNν interactions with the Z boson:
102
+ LZNν = −
103
+ g
104
+ 2 cos θW
105
+
106
+ 3
107
+
108
+ k=1
109
+ τ
110
+
111
+ l=e
112
+ ¯NkV ∗
113
+ lkγµPLνl + h.c.,
114
+ (4)
115
+ and LHNν interactions with the Higgs boson:
116
+ LHNν = − gmN
117
+ 2MW
118
+ h
119
+ 3
120
+
121
+ k=1
122
+ τ
123
+
124
+ l=e
125
+ ¯NkV ∗
126
+ lkPLνl + h.c.
127
+ (5)
128
+ The UFO library of the model contains 12 free parameters in addition to the SM parameters, which are three masses
129
+ of the heavy neutrinos: mNk and nine real (no CP violation expected) mixing parameters Vlk, where l = e, µ, τ and
130
+ k = N1, N2, N3. For the purpose of this analysis, we considered a scenario with only one heavy Dirac neutrino N1 ≡ N
131
+ with a mass below O(10 TeV) and equal couplings to all SM leptons (|VeN1|2 = |VµN1|2 = |VτN1|2 ≡ V 2
132
+ lN). For sample
133
+ generation, the mixing parameter V 2
134
+ lN has been set to 0.0003. Other values for the mixing parameters in the analysis
135
+ below were accessed via rescaling with the corresponding cross section. Although there are many different possible
136
+ signatures of such particles at future colliders, for center-of-mass energies above the Z pole, the t-channel W exchange
137
+ resulting in the production of a light-heavy neutrino pair (µ+µ− → N ν) is dominant [11] and the production cross
138
+ section is of the order of 1-10 fb for masses of the neutrinos up to the collision energy. For our choice of the parameter
139
+ space, the heavy neutrino has a microscopic lifetime (cτ ≪ 1 nm) and no displaced vertices are expected. Among
140
+ the possible decay channels of such particles, the signature of two jets and a lepton (N → qqℓ) is the most promising
141
+ because it allows for direct reconstruction of the mass of the heavy state.
142
+ In the first step, we generated event samples with Whizard 3.0.2 [26–28] at leading order (LO) in the SM coupling
143
+ constants (though recently higher-order corrections have become available in an automated manner [29] and simulated
144
+ detector response with Delphes 3.5.0 [30] using built-in Muon Collider detector cards. At the generator level, a
145
+ set of cuts was applied to remove possible singularities.
146
+ They included 10-GeV cuts on the energy of produced
147
+ jets and leptons, the invariant mass of quark and lepton pairs, and the four-momentum transfer from the incoming
148
+ muons. Furthermore, it was required that at least one lepton could be detected in the central detector (we assumed
149
+ 5◦ < θ < 175◦, where θ is the lepton polar angle). For the detector simulation, the VLC clustering algorithm in the
150
+
151
+ 3
152
+ 1
153
+
154
+ 0.5
155
+
156
+ 0
157
+ 0.5
158
+ 1
159
+ BDT response
160
+ 1
161
+ 10
162
+ 2
163
+ 10
164
+ 3
165
+ 10
166
+ 4
167
+ 10
168
+ 5
169
+ 10
170
+ Events
171
+ ee
172
+ sig
173
+ FIG. 2: Distribution of the BDT response for the reference scenario (Dirac neutrino, mN = 3 TeV) with electrons in
174
+ the final state at a 10 TeV muon collider. The red line denotes the background, and the green line the signal.
175
+ exclusive two-jet mode (R = 1.5, β = 1, γ = 1 – see [31]) was applied. Since the considered Delphes model cannot
176
+ generate fake lepton tracks, only 4- and 6-fermion background processes with at least one lepton in the final state
177
+ (qqℓν, qqℓℓ, ℓℓℓℓ, qqqqℓν, qqqqℓℓ, qqℓνℓν, qqℓννν) were generated. The most important channels in terms of cross
178
+ section (O(1 ab) at both energy stages) were qqℓν and ℓℓℓℓ; the latter could be, however, easily reduced by lepton
179
+ identification. Background channels induced by photons from collinear initial-state splittings were neglected, as their
180
+ impact on the final results was found to be marginal.
181
+ Analysis procedure
182
+ In the next step, a set of selection cuts was applied to reject events incompatible with the
183
+ expected topology of two jets and one lepton. To exclude events with significant contributions of forward deposits
184
+ assigned to the beam jets, an upper limit of 20 GeV was applied on the transverse momentum of objects not included
185
+ in the reconstructed final state. In Figure 1, we show a distribution of the invariant mass of two jets and a lepton for
186
+ a reference scenario (a 3 TeV neutrino at a 10 TeV muon collider). A peak corresponding to the mass of the heavy
187
+ neutrino is clearly visible. The left tail is due to events with leptonic τ decays, for which the escaping neutrinos
188
+ reduce the reconstructed invariant mass. On the right-hand side, the tail is an effect of finite detector resolution.
189
+ Subsequently, we applied the Boosted Decision Tree (BDT) method implemented in the TMVA package [32] to
190
+ discriminate between signal and background events. A set of eight variables describing event kinematics was chosen
191
+ to optimize the classification:
192
+ • mqqℓ – invariant mass of the dijet-lepton system,
193
+ • α – angle between the dijet system and the lepton,
194
+ • αqq – angle between the two jets,
195
+ • Eℓ – lepton energy,
196
+ • Eqqℓ – energy of the dijet-lepton system,
197
+ • pT
198
+ ℓ – lepton transverse momentum,
199
+ • pT
200
+ qq – dijet transverse momentum,
201
+ • pT
202
+ qqℓ – transverse momentum of the dijet-lepton system.
203
+ Due to the considerable difference between the numbers of expected background events, the algorithm was implemented
204
+ separately for events with reconstructed electrons and muons in the final state. The BDT response for the reference
205
+ scenario is shown in Figure 2. The two distributions are partially separated and thus, they were used to extract
206
+ expected limits on the coupling parameter V 2
207
+ lN within the CLs method, implemented in the RooStats package [33].
208
+
209
+ 4
210
+ 3
211
+ 10
212
+ 4
213
+ 10
214
+ [GeV]
215
+ N
216
+ m
217
+ 7
218
+
219
+ 10
220
+ 6
221
+
222
+ 10
223
+ 5
224
+
225
+ 10
226
+ 4
227
+
228
+ 10
229
+ 3
230
+
231
+ 10
232
+ 2
233
+
234
+ 10
235
+ 1
236
+
237
+ 10
238
+ 2
239
+ lN
240
+ lim. V
241
+ CMS
242
+ HL-LHC
243
+ HE-LHC
244
+ FCC-hh
245
+ ILC 1 TeV
246
+ CLIC 3 TeV
247
+ Muon Collider 10 TeV
248
+ Muon Collider 3 TeV
249
+ FIG. 3: Limits on the coupling V 2
250
+ ℓN for different Muon Collider setups (solid lines: 3 TeV – turquoise, 10 TeV –
251
+ orange). Dashed lines indicate limits from current and future hadron [1, 5] machines, dashed-dotted for e+e−
252
+ colliders [16]. See text for details.
253
+ This allowed for combining the electron and muon channels. The impact of systematic uncertainties has been neglected
254
+ at this stage, as they are not expected to significantly affect the final conclusions.
255
+ Results
256
+ In Figure 3, limits on the coupling V 2
257
+ lN for the two Muon Collider setups are presented and compared
258
+ with the current limits coming from the CMS experiment (Majorana neutrinos, Fig. 2 in [1]), as well as with the
259
+ results obtained for future hadron colliders (Dirac neutrinos, Fig. 25b in [5]) and e+e− colliders (Dirac neutrinos,
260
+ Fig. 12 in [16]). It should be noted that in the hadron collider analyses, heavy neutrino decays into taus were not
261
+ considered, and thus their sensitivity is enhanced relative to the results presented for the lepton colliders, where the
262
+ tau-channel decays are included. As shown in Figure 3, limits expected from the e+e− colliders, ILC running at 1 TeV
263
+ and CLIC running at 3 TeV, are more stringent for masses of the heavy neutrinos up to about 700 GeV. The fact that
264
+ the results for CLIC and a Muon Collider operating at the same energy of 3 TeV do not coincide may be surprising.
265
+ However, several effects must be taken into account for a proper comparison: the most important factors are different
266
+ integrated luminosities and beam polarizations. In addition, the beam spectra and the beam-induced background
267
+ channels cannot be neglected for e+e− colliders, while their impact is significantly reduced for µ+µ− machines due
268
+ to the larger mass of the muon.
269
+ It was verified that, for the same generation setup (no beam polarization, no
270
+ beam spectrum, no beam-induced background channels, but different initial-state particles and detector designs), the
271
+ expected CLIC limits are consistent with the Muon Collider ones, giving the analysis precision. The discrepancy
272
+ visible in Figure 3 could then be explained as follows: at lower neutrino masses, the expected limits from CLIC are
273
+ more stringent due to the higher integrated luminosity and electron beam polarization, and at higher masses, they
274
+ are worse because of the impact of the luminosity spectra and beam-induced backgrounds.
275
+ In the analysis, we assumed that all the mixing parameters VlN have the same value. It is important to note that
276
+ this approach is not unique. Using data from both electron-positron and muon colliders, one could potentially loosen
277
+ this assumption and constrain the parameters VeN and VµN separately, by either excluding taus from the physical
278
+ model or implementing a proper tau tagging procedure. Such a method would give limits not only on the couplings
279
+ themselves but also on their product in the framework where couplings are treated independently, possibly hinting at
280
+ a flavor-universality violation. The details are, however, beyond the scope of this letter.
281
+ Conclusions
282
+ Extensions of the Standard Model introducing heavy neutrinos offer interesting solutions to several
283
+ of its open questions, e.g. the baryon asymmetry of the universe, dark matter and flavor. If such particles are at mass
284
+ scales well above a GeV, they can be efficiently searched for at future lepton colliders. Due to the highest achievable
285
+ energies and the clean experimental environments, muon colliders would provide the furthest discovery reach for
286
+
287
+ 5
288
+ this kind of particles and models, vastly surpassing high-energy hadron colliders. By employing the synergy of both
289
+ different types of lepton machines, electron-positron and muon colliders, different paths in the flavor parameter space
290
+ of the models could be pursued.
291
+ Acknowledgments
292
+ The work was partially supported by the National Science Centre (Poland) under the OPUS research project no.
293
+ 2021/43/B/ST2/01778. KM and JRR acknowledge the support by the Deutsche Forschungsgemeinschaft (DFG, Ger-
294
+ man Research Association) under Germany’s Excellence Strategy-EXC 2121 "Quantum Universe"-3908333. This work
295
+ has also been funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 491245950.
296
297
298
299
+ [1] A. Sirunyan et al. (CMS), Search for heavy neutral leptons in events with three charged leptons in proton-proton collisions
300
+ at √s = 13 TeV, Phys. Rev. Lett. 120, 221801 (2018), arXiv:1802.02965 [hep-ex].
301
+ [2] G. Aad et al. (ATLAS), Search for heavy neutral leptons in decays of W bosons produced in 13 TeV pp collisions using
302
+ prompt and displaced signatures with the ATLAS detector, JHEP 10, 265, arXiv:1905.09787 [hep-ex].
303
+ [3] R. Aaij et al. (LHCb), Search for heavy neutral leptons in W + → µ+µ±jet decays, Eur. Phys. J. C 81, 248 (2021),
304
+ arXiv:2011.05263 [hep-ex].
305
+ [4] A. Tumasyan et al. (CMS), Search for long-lived heavy neutral leptons with displaced vertices in proton-proton collisions
306
+ at √s =13 TeV (2022), arXiv:2201.05578 [hep-ex].
307
+ [5] S. Pascoli, R. Ruiz, and C. Weiland, Heavy neutrinos with dynamic jet vetoes: multilepton searches at √s = 14 , 27, and
308
+ 100 TeV, JHEP 06, 049, arXiv:1812.08750 [hep-ph].
309
+ [6] F. del Aguila and J. A. Aguilar-Saavedra, l W nu production at CLIC: A Window to TeV scale non-decoupled neutrinos,
310
+ JHEP 05, 026, arXiv:hep-ph/0503026.
311
+ [7] F. del Aguila, J. A. Aguilar-Saavedra, A. Martinez de la Ossa, and D. Meloni, Flavor and polarisation in heavy neutrino
312
+ production at e+ e- colliders, Phys. Lett. B 613, 170 (2005), arXiv:hep-ph/0502189.
313
+ [8] T. Saito, M. Asano, K. Fujii, N. Haba, S. Matsumoto, T. Nabeshima, Y. Takubo, H. Yamamoto, and K. Yoshioka, Extra
314
+ dimensions and Seesaw Neutrinos at the International Linear Collider, Phys. Rev. D 82, 093004 (2010), arXiv:1008.2257
315
+ [hep-ph].
316
+ [9] A. Das and N. Okada, Inverse seesaw neutrino signatures at the LHC and ILC, Phys. Rev. D 88, 113001 (2013),
317
+ arXiv:1207.3734 [hep-ph].
318
+ [10] S. Banerjee et al., Prospects of Heavy Neutrino Searches at Future Lepton Colliders, Phys. Rev. D 92, 075002 (2015),
319
+ arXiv:1503.05491 [hep-ph].
320
+ [11] S. Antusch, E. Cazzato, and O. Fischer, Sterile neutrino searches at future e−e+, pp, and e−p colliders, Int. J. Mod. Phys.
321
+ A 32, 1750078 (2017), arXiv:1612.02728 [hep-ph].
322
+ [12] Y. Cai, T. Han, T. Li, and R. Ruiz, Lepton Number Violation: Seesaw Models and Their Collider Tests, Front. in Phys.
323
+ 6, 40 (2018), arXiv:1711.02180 [hep-ph].
324
+ [13] S. Chakraborty, M. Mitra, and S. Shil, Fat Jet Signature of a Heavy Neutrino at Lepton Collider, Phys. Rev. D 100,
325
+ 015012 (2019), arXiv:1810.08970 [hep-ph].
326
+ [14] A. Das, S. Jana, S. Mandal, and S. Nandi, Probing right handed neutrinos at the LHeC and lepton colliders using fat jet
327
+ signatures, Phys. Rev. D 99, 055030 (2019), arXiv:1811.04291 [hep-ph].
328
+ [15] J.-N. Ding, Q. Qin, and F.-S. Yu, Heavy neutrino searches at future Z-factories, Eur. Phys. J. C 79, 766 (2019),
329
+ arXiv:1903.02570 [hep-ph].
330
+ [16] K. Mękała, J. Reuter, and A. F. Żarnecki, Heavy neutrinos at future linear e+e− colliders, JHEP 06, 010, arXiv:2202.06703
331
+ [hep-ph].
332
+ [17] P.-C. Lu, Z.-G. Si, Z. Wang, X.-H. Yang, and X.-Y. Zhang, Search for heavy Majorana neutrinos at future lepton colliders
333
+ (2022), arXiv:2212.10027 [hep-ph].
334
+ [18] J. P. Delahaye, M. Diemoz, K. Long, B. Mansoulié, N. Pastrone, L. Rivkin, D. Schulte, A. Skrinsky, and A. Wulzer, Muon
335
+ Colliders (2019), arXiv:1901.06150 [physics.acc-ph].
336
+ [19] K. Long, D. Lucchesi, M. Palmer, N. Pastrone, D. Schulte, and V. Shiltsev, Muon colliders to expand frontiers of particle
337
+ physics, Nature Phys. 17, 289 (2021), arXiv:2007.15684 [physics.acc-ph].
338
+ [20] K. M. Black et al., Muon Collider Forum Report (2022), arXiv:2209.01318 [hep-ex].
339
+ [21] F. del Aguila and J. A. Aguilar-Saavedra, Distinguishing seesaw models at LHC with multi-lepton signals, Nucl. Phys. B
340
+ 813, 22 (2009), arXiv:0808.2468 [hep-ph].
341
+ [22] A. Atre, T. Han, S. Pascoli, and B. Zhang, The Search for Heavy Majorana Neutrinos, JHEP 05, 030, arXiv:0901.3589
342
+ [hep-ph].
343
+
344
+ 6
345
+ [23] https://feynrules.irmp.ucl.ac.be/wiki/HeavyN, accessed: 2022-12-08.
346
+ [24] W. Kilian and J. Reuter, The Low-energy structure of little Higgs models, Phys. Rev. D 70, 015004 (2004), arXiv:hep-
347
+ ph/0311095.
348
+ [25] M. Schmaltz, The Simplest little Higgs, JHEP 08, 056, arXiv:hep-ph/0407143.
349
+ [26] M. Moretti, T. Ohl, and J. Reuter, O’Mega: An Optimizing matrix element generator, arXiv:hep-ph/0102195 (2001),
350
+ 1981-2009 pp., arXiv:hep-ph/0102195 [hep-ph].
351
+ [27] W. Kilian, T. Ohl, and J. Reuter, WHIZARD: Simulating Multi-Particle Processes at LHC and ILC, Eur. Phys. J. C71,
352
+ 1742 (2011), arXiv:0708.4233 [hep-ph].
353
+ [28] S. Brass, W. Kilian, and J. Reuter, Parallel Adaptive Monte Carlo Integration with the Event Generator WHIZARD, Eur.
354
+ Phys. J. C 79, 344 (2019), arXiv:1811.09711 [hep-ph].
355
+ [29] P. M. Bredt, W. Kilian, J. Reuter, and P. Stienemeier, NLO electroweak corrections to multi-boson processes at a muon
356
+ collider, JHEP 12, 138, arXiv:2208.09438 [hep-ph].
357
+ [30] J. de Favereau et al. (DELPHES 3), DELPHES 3, A modular framework for fast simulation of a generic collider experiment,
358
+ JHEP 02, 057, arXiv:1307.6346 [hep-ex].
359
+ [31] M. Boronat, J. Fuster, I. Garcia, P. Roloff, R. Simoniello, and M. Vos, Jet reconstruction at high-energy electron–positron
360
+ colliders, Eur. Phys. J. C 78, 144 (2018), arXiv:1607.05039 [hep-ex].
361
+ [32] A. Hocker et al., TMVA - Toolkit for Multivariate Data Analysis, arXiv:physics/0703039 (2007), arXiv:physics/0703039.
362
+ [33] L. Moneta et al., The RooStats Project, PoS ACAT2010, 057 (2010), arXiv:1009.1003 [physics.data-an].
363
+
1NE0T4oBgHgl3EQfuQFR/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,344 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf,len=343
2
+ page_content='Optimal search reach for heavy neutral leptons at a muon collider Krzysztof Mękała∗ Deutsches Elektronen-Synchrotron DESY, Notkestr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
3
+ page_content=' 85, 22607 Hamburg, Germany and Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa, Poland Jürgen Reuter† Deutsches Elektronen-Synchrotron DESY, Notkestr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
4
+ page_content=' 85, 22607 Hamburg, Germany Aleksander Filip Żarnecki‡ Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa, Poland (Dated: January 9, 2023) Neutrinos are the most elusive particles known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
5
+ page_content=' Heavier sterile neutrinos mixing with the standard neutrinos might solve the mystery of the baryon asymmetry of the universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
6
+ page_content=' In this letter, we show that among all future energy frontier accelerators, muon colliders will provide the farthest search reach for such neutrinos for mass ranges above the Z pole into the multi-TeV regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
7
+ page_content=' We compare the performance of muon with electron colliders of the same machine energy and briefly discuss the complementarity in flavor space between the two types of accelerators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
8
+ page_content=' PACS numbers: 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
9
+ page_content='35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
10
+ page_content='Hb, 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
11
+ page_content='66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
12
+ page_content='Lm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
13
+ page_content=' 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
14
+ page_content='60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
15
+ page_content='Pq, 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
16
+ page_content='60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
17
+ page_content='St Introduction Massive neutrinos are considered the first established building blocks of physics beyond the Standard Model (SM) of particle physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
18
+ page_content=' Their tiny masses are believed to originate from seesaw-like mixing with heavier sterile neutrinos whose masses could be all the way from the electroweak (EW) to the unification scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
19
+ page_content=' While long- distance neutrino oscillation experiments like DUNE or Hyper-Kamiokande will shed more light on the mass hierarchy and the mixing parameters, heavier neutrinos can be directly searched for at hadron colliders such as the LHC and future lepton colliders [1–17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
20
+ page_content=' For collider searches, three different regimes can be considered: light neutrinos which are long-lived and result in displaced vertices or decay outside the detectors, intermediate-mass neutrinos that decay promptly and are dominantly produced in Z (and W or Higgs) decays, and heavy neutrinos with masses Mν ≳ MH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
21
+ page_content=' In this paper, building upon an analysis framework similar to earlier studies for searches at linear e+e− machines, we focus on the third case and show that the most sensitive searches for direct heavy neutrino production are possible at high-energy muon colliders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
22
+ page_content=' Lepton colliders are, in general, sensitive to much smaller mixing parameters and hence to much higher scales of UV completions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
23
+ page_content=' In this paper, we will consider a muon collider setup with energies of 3 and 10 TeV, and integrated luminosities of 1 and 10 ab−1, respectively [18–20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
24
+ page_content=' Model setup and simulation framework In this letter, we consider the Phenomenological Type I Seesaw Mech- anism [21, 22], implemented within the HeavyN model with Dirac neutrinos [5, 23], i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
25
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
26
+ page_content=' we assume it just as a representative model candidate without any prejudice (our findings are quite generic, though specific model setups like artificial flavor mixings could of course lead to singular cases;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
27
+ page_content=' Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
28
+ page_content=' [24, 25] provide an example where such heavy neutrinos appear even at a multi-TeV scale UV completion).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
29
+ page_content=' This effective extension of the SM introduces three flavors of right-handed neutrinos (denoted as Nk) that are singlets under the SM gauge groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
30
+ page_content=' The Lagrangian of the model reads: L = LSM + LN + LW Nℓ + LZNν + LHNν (1) where LN is a sum of kinetic and mass terms for heavy neutrinos (in 4-spinor notation, which combines terms with spinors of dotted and undotted indices): LN = ¯Nki/∂Nk − mNk ¯NkNk for k = 1, 2, 3, (2) LW Nℓ yields neutrino interactions with the W boson: LW Nℓ = − g √ 2W + µ 3 � k=1 τ � l=e ¯NkV ∗ lkγµPLℓ− + h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
31
+ page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
32
+ page_content=', (3) arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
33
+ page_content='02602v1 [hep-ph] 6 Jan 2023 2 0 2000 4000 6000 8000 10000 [GeV] qql m 1 − 10 1 10 2 10 3 10 4 10 5 10 6 10 Events ee bg sig_3000 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
34
+ page_content=' 1: qqℓ mass distribution for a reference scenario assuming the existence of one Dirac neutrino with a mass of 3 TeV, at a 10 TeV muon collider.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
35
+ page_content=' The black solid line stand for the µ+µ− background and the thick green one for the signal scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
36
+ page_content=' LZNν interactions with the Z boson: LZNν = − g 2 cos θW Zµ 3 � k=1 τ � l=e ¯NkV ∗ lkγµPLνl + h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
37
+ page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
38
+ page_content=', (4) and LHNν interactions with the Higgs boson: LHNν = − gmN 2MW h 3 � k=1 τ � l=e ¯NkV ∗ lkPLνl + h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
39
+ page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
40
+ page_content=' (5) The UFO library of the model contains 12 free parameters in addition to the SM parameters, which are three masses of the heavy neutrinos: mNk and nine real (no CP violation expected) mixing parameters Vlk, where l = e, µ, τ and k = N1, N2, N3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
41
+ page_content=' For the purpose of this analysis, we considered a scenario with only one heavy Dirac neutrino N1 ≡ N with a mass below O(10 TeV) and equal couplings to all SM leptons (|VeN1|2 = |VµN1|2 = |VτN1|2 ≡ V 2 lN).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
42
+ page_content=' For sample generation, the mixing parameter V 2 lN has been set to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
43
+ page_content='0003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
44
+ page_content=' Other values for the mixing parameters in the analysis below were accessed via rescaling with the corresponding cross section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
45
+ page_content=' Although there are many different possible signatures of such particles at future colliders, for center-of-mass energies above the Z pole, the t-channel W exchange resulting in the production of a light-heavy neutrino pair (µ+µ− → N ν) is dominant [11] and the production cross section is of the order of 1-10 fb for masses of the neutrinos up to the collision energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
46
+ page_content=' For our choice of the parameter space, the heavy neutrino has a microscopic lifetime (cτ ≪ 1 nm) and no displaced vertices are expected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
47
+ page_content=' Among the possible decay channels of such particles, the signature of two jets and a lepton (N → qqℓ) is the most promising because it allows for direct reconstruction of the mass of the heavy state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
48
+ page_content=' In the first step, we generated event samples with Whizard 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
49
+ page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
50
+ page_content='2 [26–28] at leading order (LO) in the SM coupling constants (though recently higher-order corrections have become available in an automated manner [29] and simulated detector response with Delphes 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
51
+ page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
52
+ page_content='0 [30] using built-in Muon Collider detector cards.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
53
+ page_content=' At the generator level, a set of cuts was applied to remove possible singularities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
54
+ page_content=' They included 10-GeV cuts on the energy of produced jets and leptons, the invariant mass of quark and lepton pairs, and the four-momentum transfer from the incoming muons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
55
+ page_content=' Furthermore, it was required that at least one lepton could be detected in the central detector (we assumed 5◦ < θ < 175◦, where θ is the lepton polar angle).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
56
+ page_content=' For the detector simulation, the VLC clustering algorithm in the 3 1 − 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
57
+ page_content='5 − 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
58
+ page_content='5 1 BDT response 1 10 2 10 3 10 4 10 5 10 Events ee sig FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
59
+ page_content=' 2: Distribution of the BDT response for the reference scenario (Dirac neutrino, mN = 3 TeV) with electrons in the final state at a 10 TeV muon collider.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
60
+ page_content=' The red line denotes the background, and the green line the signal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
61
+ page_content=' exclusive two-jet mode (R = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
62
+ page_content='5, β = 1, γ = 1 – see [31]) was applied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
63
+ page_content=' Since the considered Delphes model cannot generate fake lepton tracks, only 4- and 6-fermion background processes with at least one lepton in the final state (qqℓν, qqℓℓ, ℓℓℓℓ, qqqqℓν, qqqqℓℓ, qqℓνℓν, qqℓννν) were generated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
64
+ page_content=' The most important channels in terms of cross section (O(1 ab) at both energy stages) were qqℓν and ℓℓℓℓ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
65
+ page_content=' the latter could be, however, easily reduced by lepton identification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
66
+ page_content=' Background channels induced by photons from collinear initial-state splittings were neglected, as their impact on the final results was found to be marginal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
67
+ page_content=' Analysis procedure In the next step, a set of selection cuts was applied to reject events incompatible with the expected topology of two jets and one lepton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
68
+ page_content=' To exclude events with significant contributions of forward deposits assigned to the beam jets, an upper limit of 20 GeV was applied on the transverse momentum of objects not included in the reconstructed final state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
69
+ page_content=' In Figure 1, we show a distribution of the invariant mass of two jets and a lepton for a reference scenario (a 3 TeV neutrino at a 10 TeV muon collider).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
70
+ page_content=' A peak corresponding to the mass of the heavy neutrino is clearly visible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
71
+ page_content=' The left tail is due to events with leptonic τ decays, for which the escaping neutrinos reduce the reconstructed invariant mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
72
+ page_content=' On the right-hand side, the tail is an effect of finite detector resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
73
+ page_content=' Subsequently, we applied the Boosted Decision Tree (BDT) method implemented in the TMVA package [32] to discriminate between signal and background events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
74
+ page_content=' A set of eight variables describing event kinematics was chosen to optimize the classification: mqqℓ – invariant mass of the dijet-lepton system, α – angle between the dijet system and the lepton, αqq – angle between the two jets, Eℓ – lepton energy, Eqqℓ – energy of the dijet-lepton system, pT ℓ – lepton transverse momentum, pT qq – dijet transverse momentum, pT qqℓ – transverse momentum of the dijet-lepton system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
75
+ page_content=' Due to the considerable difference between the numbers of expected background events, the algorithm was implemented separately for events with reconstructed electrons and muons in the final state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
76
+ page_content=' The BDT response for the reference scenario is shown in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
77
+ page_content=' The two distributions are partially separated and thus, they were used to extract expected limits on the coupling parameter V 2 lN within the CLs method, implemented in the RooStats package [33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
78
+ page_content=' 4 3 10 4 10 [GeV] N m 7 − 10 6 − 10 5 − 10 4 − 10 3 − 10 2 − 10 1 − 10 2 lN lim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
79
+ page_content=' V CMS HL-LHC HE-LHC FCC-hh ILC 1 TeV CLIC 3 TeV Muon Collider 10 TeV Muon Collider 3 TeV FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
80
+ page_content=' 3: Limits on the coupling V 2 ℓN for different Muon Collider setups (solid lines: 3 TeV �� turquoise, 10 TeV – orange).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
81
+ page_content=' Dashed lines indicate limits from current and future hadron [1, 5] machines, dashed-dotted for e+e− colliders [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
82
+ page_content=' See text for details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
83
+ page_content=' This allowed for combining the electron and muon channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
84
+ page_content=' The impact of systematic uncertainties has been neglected at this stage, as they are not expected to significantly affect the final conclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
85
+ page_content=' Results In Figure 3, limits on the coupling V 2 lN for the two Muon Collider setups are presented and compared with the current limits coming from the CMS experiment (Majorana neutrinos, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
86
+ page_content=' 2 in [1]), as well as with the results obtained for future hadron colliders (Dirac neutrinos, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
87
+ page_content=' 25b in [5]) and e+e− colliders (Dirac neutrinos, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
88
+ page_content=' 12 in [16]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
89
+ page_content=' It should be noted that in the hadron collider analyses, heavy neutrino decays into taus were not considered, and thus their sensitivity is enhanced relative to the results presented for the lepton colliders, where the tau-channel decays are included.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
90
+ page_content=' As shown in Figure 3, limits expected from the e+e− colliders, ILC running at 1 TeV and CLIC running at 3 TeV, are more stringent for masses of the heavy neutrinos up to about 700 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
91
+ page_content=' The fact that the results for CLIC and a Muon Collider operating at the same energy of 3 TeV do not coincide may be surprising.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
92
+ page_content=' However, several effects must be taken into account for a proper comparison: the most important factors are different integrated luminosities and beam polarizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
93
+ page_content=' In addition, the beam spectra and the beam-induced background channels cannot be neglected for e+e− colliders, while their impact is significantly reduced for µ+µ− machines due to the larger mass of the muon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
94
+ page_content=' It was verified that, for the same generation setup (no beam polarization, no beam spectrum, no beam-induced background channels, but different initial-state particles and detector designs), the expected CLIC limits are consistent with the Muon Collider ones, giving the analysis precision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
95
+ page_content=' The discrepancy visible in Figure 3 could then be explained as follows: at lower neutrino masses, the expected limits from CLIC are more stringent due to the higher integrated luminosity and electron beam polarization, and at higher masses, they are worse because of the impact of the luminosity spectra and beam-induced backgrounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
96
+ page_content=' In the analysis, we assumed that all the mixing parameters VlN have the same value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
97
+ page_content=' It is important to note that this approach is not unique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
98
+ page_content=' Using data from both electron-positron and muon colliders, one could potentially loosen this assumption and constrain the parameters VeN and VµN separately, by either excluding taus from the physical model or implementing a proper tau tagging procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
99
+ page_content=' Such a method would give limits not only on the couplings themselves but also on their product in the framework where couplings are treated independently, possibly hinting at a flavor-universality violation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
100
+ page_content=' The details are, however, beyond the scope of this letter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
101
+ page_content=' Conclusions Extensions of the Standard Model introducing heavy neutrinos offer interesting solutions to several of its open questions, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
102
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
103
+ page_content=' the baryon asymmetry of the universe, dark matter and flavor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
104
+ page_content=' If such particles are at mass scales well above a GeV, they can be efficiently searched for at future lepton colliders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
105
+ page_content=' Due to the highest achievable energies and the clean experimental environments, muon colliders would provide the furthest discovery reach for 5 this kind of particles and models, vastly surpassing high-energy hadron colliders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
106
+ page_content=' By employing the synergy of both different types of lepton machines, electron-positron and muon colliders, different paths in the flavor parameter space of the models could be pursued.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
107
+ page_content=' Acknowledgments The work was partially supported by the National Science Centre (Poland) under the OPUS research project no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
108
+ page_content=' 2021/43/B/ST2/01778.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
109
+ page_content=' KM and JRR acknowledge the support by the Deutsche Forschungsgemeinschaft (DFG, Ger- man Research Association) under Germany’s Excellence Strategy-EXC 2121 "Quantum Universe"-3908333.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
110
+ page_content=' This work has also been funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 491245950.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
111
+ page_content=' ∗ krzysztof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
112
+ page_content='mekala@desy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
113
+ page_content='de † juergen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
114
+ page_content='reuter@desy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
115
+ page_content='de ‡ filip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
116
+ page_content='zarnecki@fuw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
117
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
118
+ page_content='pl [1] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
119
+ page_content=' Sirunyan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
120
+ page_content=' (CMS), Search for heavy neutral leptons in events with three charged leptons in proton-proton collisions at √s = 13 TeV, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
121
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
122
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
123
+ page_content=' 120, 221801 (2018), arXiv:1802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
124
+ page_content='02965 [hep-ex].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
125
+ page_content=' [2] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
126
+ page_content=' Aad et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
127
+ page_content=' (ATLAS), Search for heavy neutral leptons in decays of W bosons produced in 13 TeV pp collisions using prompt and displaced signatures with the ATLAS detector, JHEP 10, 265, arXiv:1905.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
128
+ page_content='09787 [hep-ex].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
129
+ page_content=' [3] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
130
+ page_content=' Aaij et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
131
+ page_content=' (LHCb), Search for heavy neutral leptons in W + → µ+µ±jet decays, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
132
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
133
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
134
+ page_content=' C 81, 248 (2021), arXiv:2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
135
+ page_content='05263 [hep-ex].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
136
+ page_content=' [4] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
137
+ page_content=' Tumasyan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
138
+ page_content=' (CMS), Search for long-lived heavy neutral leptons with displaced vertices in proton-proton collisions at √s =13 TeV (2022), arXiv:2201.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
139
+ page_content='05578 [hep-ex].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
140
+ page_content=' [5] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
141
+ page_content=' Pascoli, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
142
+ page_content=' Ruiz, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
143
+ page_content=' Weiland, Heavy neutrinos with dynamic jet vetoes: multilepton searches at √s = 14 , 27, and 100 TeV, JHEP 06, 049, arXiv:1812.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
144
+ page_content='08750 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
145
+ page_content=' [6] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
146
+ page_content=' del Aguila and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
147
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
148
+ page_content=' Aguilar-Saavedra, l W nu production at CLIC: A Window to TeV scale non-decoupled neutrinos, JHEP 05, 026, arXiv:hep-ph/0503026.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
149
+ page_content=' [7] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
150
+ page_content=' del Aguila, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
151
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
152
+ page_content=' Aguilar-Saavedra, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
153
+ page_content=' Martinez de la Ossa, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
154
+ page_content=' Meloni, Flavor and polarisation in heavy neutrino production at e+ e- colliders, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
155
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
156
+ page_content=' B 613, 170 (2005), arXiv:hep-ph/0502189.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
157
+ page_content=' [8] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
158
+ page_content=' Saito, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
159
+ page_content=' Asano, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
160
+ page_content=' Fujii, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
161
+ page_content=' Haba, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
162
+ page_content=' Matsumoto, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
163
+ page_content=' Nabeshima, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
164
+ page_content=' Takubo, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
165
+ page_content=' Yamamoto, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
166
+ page_content=' Yoshioka, Extra dimensions and Seesaw Neutrinos at the International Linear Collider, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
167
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
168
+ page_content=' D 82, 093004 (2010), arXiv:1008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
169
+ page_content='2257 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
170
+ page_content=' [9] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
171
+ page_content=' Das and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
172
+ page_content=' Okada, Inverse seesaw neutrino signatures at the LHC and ILC, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
173
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
174
+ page_content=' D 88, 113001 (2013), arXiv:1207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
175
+ page_content='3734 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
176
+ page_content=' [10] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
177
+ page_content=' Banerjee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
178
+ page_content=', Prospects of Heavy Neutrino Searches at Future Lepton Colliders, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
179
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
180
+ page_content=' D 92, 075002 (2015), arXiv:1503.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
181
+ page_content='05491 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
182
+ page_content=' [11] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
183
+ page_content=' Antusch, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
184
+ page_content=' Cazzato, and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
185
+ page_content=' Fischer, Sterile neutrino searches at future e−e+, pp, and e−p colliders, Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
186
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
187
+ page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
188
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
189
+ page_content=' A 32, 1750078 (2017), arXiv:1612.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
190
+ page_content='02728 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
191
+ page_content=' [12] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
192
+ page_content=' Cai, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
193
+ page_content=' Han, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
194
+ page_content=' Li, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
195
+ page_content=' Ruiz, Lepton Number Violation: Seesaw Models and Their Collider Tests, Front.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
196
+ page_content=' in Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
197
+ page_content=' 6, 40 (2018), arXiv:1711.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
198
+ page_content='02180 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
199
+ page_content=' [13] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
200
+ page_content=' Chakraborty, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
201
+ page_content=' Mitra, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
202
+ page_content=' Shil, Fat Jet Signature of a Heavy Neutrino at Lepton Collider, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
203
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
204
+ page_content=' D 100, 015012 (2019), arXiv:1810.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
205
+ page_content='08970 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
206
+ page_content=' [14] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
207
+ page_content=' Das, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
208
+ page_content=' Jana, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
209
+ page_content=' Mandal, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
210
+ page_content=' Nandi, Probing right handed neutrinos at the LHeC and lepton colliders using fat jet signatures, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
211
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
212
+ page_content=' D 99, 055030 (2019), arXiv:1811.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
213
+ page_content='04291 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
214
+ page_content=' [15] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
215
+ page_content='-N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
216
+ page_content=' Ding, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
217
+ page_content=' Qin, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
218
+ page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
219
+ page_content=' Yu, Heavy neutrino searches at future Z-factories, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
220
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
221
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
222
+ page_content=' C 79, 766 (2019), arXiv:1903.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
223
+ page_content='02570 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
224
+ page_content=' [16] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
225
+ page_content=' Mękała, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
226
+ page_content=' Reuter, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
227
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
228
+ page_content=' Żarnecki, Heavy neutrinos at future linear e+e− colliders, JHEP 06, 010, arXiv:2202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
229
+ page_content='06703 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
230
+ page_content=' [17] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
231
+ page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
232
+ page_content=' Lu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
233
+ page_content='-G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
234
+ page_content=' Si, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
235
+ page_content=' Wang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
236
+ page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
237
+ page_content=' Yang, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
238
+ page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
239
+ page_content=' Zhang, Search for heavy Majorana neutrinos at future lepton colliders (2022), arXiv:2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
240
+ page_content='10027 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
241
+ page_content=' [18] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
242
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
243
+ page_content=' Delahaye, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
244
+ page_content=' Diemoz, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
245
+ page_content=' Long, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
246
+ page_content=' Mansoulié, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
247
+ page_content=' Pastrone, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
248
+ page_content=' Rivkin, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
249
+ page_content=' Schulte, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
250
+ page_content=' Skrinsky, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
251
+ page_content=' Wulzer, Muon Colliders (2019), arXiv:1901.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
252
+ page_content='06150 [physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
253
+ page_content='acc-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
254
+ page_content=' [19] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
255
+ page_content=' Long, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
256
+ page_content=' Lucchesi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
257
+ page_content=' Palmer, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
258
+ page_content=' Pastrone, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
259
+ page_content=' Schulte, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
260
+ page_content=' Shiltsev, Muon colliders to expand frontiers of particle physics, Nature Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
261
+ page_content=' 17, 289 (2021), arXiv:2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
262
+ page_content='15684 [physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
263
+ page_content='acc-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
264
+ page_content=' [20] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
265
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
266
+ page_content=' Black et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
267
+ page_content=', Muon Collider Forum Report (2022), arXiv:2209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
268
+ page_content='01318 [hep-ex].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
269
+ page_content=' [21] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
270
+ page_content=' del Aguila and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
271
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
272
+ page_content=' Aguilar-Saavedra, Distinguishing seesaw models at LHC with multi-lepton signals, Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
273
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
274
+ page_content=' B 813, 22 (2009), arXiv:0808.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
275
+ page_content='2468 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
276
+ page_content=' [22] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
277
+ page_content=' Atre, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
278
+ page_content=' Han, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
279
+ page_content=' Pascoli, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
280
+ page_content=' Zhang, The Search for Heavy Majorana Neutrinos, JHEP 05, 030, arXiv:0901.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
281
+ page_content='3589 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
282
+ page_content=' 6 [23] https://feynrules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
283
+ page_content='irmp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
284
+ page_content='ucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
285
+ page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
286
+ page_content='be/wiki/HeavyN, accessed: 2022-12-08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
287
+ page_content=' [24] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
288
+ page_content=' Kilian and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
289
+ page_content=' Reuter, The Low-energy structure of little Higgs models, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
290
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
291
+ page_content=' D 70, 015004 (2004), arXiv:hep- ph/0311095.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
292
+ page_content=' [25] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
293
+ page_content=' Schmaltz, The Simplest little Higgs, JHEP 08, 056, arXiv:hep-ph/0407143.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
294
+ page_content=' [26] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
295
+ page_content=' Moretti, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
296
+ page_content=' Ohl, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
297
+ page_content=' Reuter, O’Mega: An Optimizing matrix element generator, arXiv:hep-ph/0102195 (2001), 1981-2009 pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
298
+ page_content=', arXiv:hep-ph/0102195 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
299
+ page_content=' [27] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
300
+ page_content=' Kilian, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
301
+ page_content=' Ohl, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
302
+ page_content=' Reuter, WHIZARD: Simulating Multi-Particle Processes at LHC and ILC, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
303
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
304
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
305
+ page_content=' C71, 1742 (2011), arXiv:0708.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
306
+ page_content='4233 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
307
+ page_content=' [28] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
308
+ page_content=' Brass, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
309
+ page_content=' Kilian, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
310
+ page_content=' Reuter, Parallel Adaptive Monte Carlo Integration with the Event Generator WHIZARD, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
311
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
312
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
313
+ page_content=' C 79, 344 (2019), arXiv:1811.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
314
+ page_content='09711 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
315
+ page_content=' [29] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
316
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
317
+ page_content=' Bredt, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
318
+ page_content=' Kilian, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
319
+ page_content=' Reuter, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
320
+ page_content=' Stienemeier, NLO electroweak corrections to multi-boson processes at a muon collider, JHEP 12, 138, arXiv:2208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
321
+ page_content='09438 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
322
+ page_content=' [30] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
323
+ page_content=' de Favereau et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
324
+ page_content=' (DELPHES 3), DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02, 057, arXiv:1307.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
325
+ page_content='6346 [hep-ex].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
326
+ page_content=' [31] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
327
+ page_content=' Boronat, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
328
+ page_content=' Fuster, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
329
+ page_content=' Garcia, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
330
+ page_content=' Roloff, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
331
+ page_content=' Simoniello, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
332
+ page_content=' Vos, Jet reconstruction at high-energy electron–positron colliders, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
333
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
334
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
335
+ page_content=' C 78, 144 (2018), arXiv:1607.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
336
+ page_content='05039 [hep-ex].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
337
+ page_content=' [32] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
338
+ page_content=' Hocker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
339
+ page_content=', TMVA - Toolkit for Multivariate Data Analysis, arXiv:physics/0703039 (2007), arXiv:physics/0703039.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
340
+ page_content=' [33] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
341
+ page_content=' Moneta et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
342
+ page_content=', The RooStats Project, PoS ACAT2010, 057 (2010), arXiv:1009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
343
+ page_content='1003 [physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
344
+ page_content='data-an].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE0T4oBgHgl3EQfuQFR/content/2301.02602v1.pdf'}
29AyT4oBgHgl3EQf1vl1/content/2301.00740v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1ac016e1a97e84d0e2532041dd914d95bf083a0091a94ac14117003f9f95648
3
+ size 2235466
29AyT4oBgHgl3EQf1vl1/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa261094fb29519bc76c6337a06cee097d9d26b8f19aa8995a1123d0bd875f5c
3
+ size 5111853
29FAT4oBgHgl3EQfDxyZ/content/2301.08418v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e097f4533acfbe3f4bfc257cc0244fc300d5fcd2fe6e03d072f4710989117a51
3
+ size 274919
29FAT4oBgHgl3EQfDxyZ/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea2c446361ab208d7d744fb60db8e12b87387a8a7b33670a3bd0982782e95834
3
+ size 171240
2dE0T4oBgHgl3EQfugHS/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48f1b6b2e914ed30454e4ffd0461abddb02505b4cef371e1ee6949cecfc1dab6
3
+ size 61230
3dFIT4oBgHgl3EQf5yug/content/tmp_files/2301.11391v1.pdf.txt ADDED
@@ -0,0 +1,1884 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Atomic Transition Probabilities for Transitions of Si I and Si II and the Silicon Abundances of
2
+ Several Very Metal-Poor Stars1
3
+
4
+ E. A. Den Hartog2, J. E. Lawler2, C. Sneden3, I. U. Roederer4,5 & J. J. Cowan6
5
+ 2Department of Physics, University of Wisconsin-Madison, 1150 University Ave, Madison, WI
6
7
+ 3Department of Astronomy and McDonald Observatory, University of Texas, Austin, TX 78712;
8
9
+ 4Department of Astronomy, University of Michigan, 1085 S. University Ave., Ann Arbor, MI
10
11
+ 5Joint Institute for Nuclear Astrophysics – Center for the Evolution of the Elements (JINA-CEE)
12
+ 6Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK
13
14
+
15
+
16
+
17
+ ORCIDS:
18
+ E. A. Den Hartog:
19
+ 0000-0001-8582-0910
20
+
21
+ J. E. Lawler:
22
+ 0000-0001-5579-9233
23
+ C. Sneden:
24
+
25
+ 0000-0002-3456-5929
26
+
27
+
28
+ I. U. Roederer
29
+ 0000-0001-5107-8930
30
+ J. J. Cowan
31
+
32
+ 0000-0002-6779-3813
33
+
34
+                                                             
35
+ 1 Based on observations made with the NASA/ESA Hubble Space Telescope (HST), obtained at the Space Telescope
36
+ Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. under NASA
37
+ contract NAS 5‐26555. Other data have been obtained from the European Southern Observatory (ESO) Science
38
+ Archive Facility; and the Keck Observatory Archive, which is operated by the W. M. Keck Observatory and the NASA
39
+ Exoplanet Science Institute, under contract with NASA. These data are associated with HST programs GO-7402,
40
+ GO-14161, and GO-14232; ESO programs 66.D-0636(A), 073.D-0024(A), and 095.D-0504(A); and Keck program
41
+ H41aH.  
42
+
43
+ Abstract
44
+ We report new measurements of branching fractions for 20 UV and blue lines in the spectrum of
45
+ neutral silicon (Si I) originating in the 3s23p4s 3Po1,2, 1Po1 and 3s3p3 1Do1,2 upper levels.
46
+ Transitions studied include both strong, nearly pure LS multiplets as well as very weak spin-
47
+ forbidden transitions connected to these upper levels. We also report a new branching fraction
48
+ measurement of the 4P1/2 – 2Po1/2,3/2 intercombination lines in the spectrum of singly-ionized
49
+ silicon (Si II). The weak spin-forbidden lines of Si I and Si II provide a stringent test on recent
50
+ theoretical calculations, to which we make comparison. The branching fractions from this study
51
+ are combined with previously reported radiative lifetimes to yield transition probabilities and
52
+ log(gf)s for these lines. We apply these new measurements to abundance determinations in five
53
+ metal-poor stars.
54
+
55
+
56
+
57
+ 1.
58
+ Introduction
59
+ Silicon is one of the most abundant elements in the solar system and plays an important
60
+ role in many astrophysical environments. With its high abundance and relatively low ionization
61
+ potential it is a significant source of electrons in the interior of cool stars and contributes
62
+ significantly to the interior opacity in solar-type stars (Amarsi & Asplund 2017). Because
63
+ silicon is abundant and nonvolatile, it is often used as a reference element to reconcile the
64
+ absolute scales of meteoritic (e.g. Lodders, Palme & Gail 2009) and solar photospheric
65
+ abundances (e.g. Asplund et al. 2009). Emission line ratios of Si II, and in particular the ratio of
66
+ weak resonance lines (3s23p 2Po – 3s3p2 2D) and weak intercombination lines (3s23p 2Po – 3s3p2
67
+ 4P), are potentially useful as a plasma diagnostic because of their sensitivity to temperature and
68
+ density (e.g. Bautista et al. 2009). Silicon-burning, in which 28Si is converted to 56Ni in a series
69
+ of successive alpha captures, is the final phase of fusion reactions in the interior of massive stars.
70
+ Fusion reactions involving elements heavier than 56Ni are endothermic and thus not
71
+ spontaneous. After a brief period (approximately one earth day) of Silicon-burning, the core of a
72
+ massive star collapses and may explode to release more energy as a Type II supernova.
73
+ Motivation for the current study lies in the desire to better understand stellar
74
+ nucleosynthesis. Records of the “means of production” by which the elements came into being
75
+ in the earliest epoch of our Galaxy are written into the abundance patterns of the oldest, metal-
76
+ poor stars in the halo of the Milky Way. Here can be found evidence of the early births, short
77
+ lives and violent deaths of the first massive stars. Before these abundance patterns can be
78
+ decoded to gain deeper understanding of the history of nucleosynthesis, we must first be able to
79
+ determine the abundances of the elements with accuracy and precision. This requires both
80
+ accurate atomic data and realistic stellar models. As an α–capture element7, trends of abundance
81
+ ratios such as [Si/Fe]8 with metallicity yield insight into stellar nucleosynthesis and the chemical
82
+ evolution of the Galaxy. In an earlier study of the heaviest α–element, Ca, we made detailed
83
+ comparison between new and published experimental transition probabilities for Ca I and
84
+ modern theory (Den Hartog et al. 2021). In the present study we make similar comparison with
85
+ improved transition probabilities for lines of Si I and Si II.
86
+ In §2 below, we present a discussion of our measurement method including a description
87
+ of a new radiometric calibration technique for our high-resolution spectrometer. We present our
88
+ transition probabilities for 20 lines of Si I and two Si II intercombination lines in §3 along with
89
+ comparison to the best experimental and theoretical results from the literature. In §4 we apply
90
+ the new data to derive Si abundances in five warm, very metal-poor main-sequence stars.
91
+                                                             
92
+ 7 Formally an α-element is one whose dominant isotope is composed of multiple 4He nuclei. The major natural isotopes
93
+ of Si (Z = 14) are 28Si (92.191% in the solar system), 29Si (4.645%), 30Si (3.037) (Meija et al. 2016). For astrophysical
94
+ purposes, Si is pure 28Si. Since the minor isotopes of Si collectively contribute only 7.6% to the Si elemental
95
+ abundance, they will not contribute significantly in solar and stellar optical spectra.
96
+ 8 We use standard abundance notations. For elements X and Y, the relative abundances are written [X/Y] =
97
+ log10(NX/NY)star − log10(NX/NY)Ÿ. For element X, the “absolute” abundance is written log10 ε(X) = log10(NX/NH) +
98
+ 12. Metallicity is defined as the stellar [Fe/H] value. We adopt the Solar reference abundances from Asplund
99
+ (2009).
100
+
101
+
102
+ 2. Emission Branching Fractions
103
+ The technique of combining radiative lifetimes from laser-induced fluorescence
104
+ measurements with emission branching fractions (BFs) measured using high-resolution
105
+ spectrometers is now the standard method for measuring transition probabilities, or Einstein A-
106
+ values, with efficiency and accuracy (e.g. Lawler et al. 2009). The BF for a transition between
107
+ an upper level u and a lower level l is given by the ratio of its A-value to the sum of the A-values
108
+ for all transitions associated with u, which is the inverse of the radiative lifetime, u. Thus the
109
+ radiative lifetime, u, provides the absolute scale when converting a BF to an A-value. For the
110
+ purposes of measuring BFs, it can also be expressed as the ratio of relative emission intensities I
111
+ (in any units proportional to photons/time) for these transitions:
112
+ 𝐵𝐹�� � 𝐴��
113
+ ∑ 𝐴��
114
+
115
+ � 𝐴��𝜏� � 𝐼��
116
+ ∑ 𝐼��
117
+
118
+ . �1�
119
+ BFs, by definition, sum to unity. In order to assure the correct normalization, it is therefore
120
+ important when measuring BFs to account for all possible decay paths from an upper level. If
121
+ some weak transitions cannot be measured, these “residual” BFs need to be estimated from
122
+ theory and accounted for in the total decay rate. If the sum is over significantly less than the full
123
+ complement of lines, then one has a branching ratio (BR).
124
+ In order to avoid line blends, a high-resolution spectrometer is usually required to
125
+ measure the emission branching fractions unless the spectrum is very sparse. Often a Fourier
126
+ transform spectrometer (FTS) is used as these instruments have many advantages, including
127
+ high-resolution, broad spectral coverage and excellent absolute wavenumber accuracy. FTS
128
+ instruments have one significant disadvantage in that the quantum noise in the spectrum gets
129
+ spread evenly throughout the spectrum. This “multiplex” noise results in weak lines being
130
+ swamped in the noise from the strong lines in the spectrum. To overcome the multiplex noise
131
+ the lamp current is often increased to the point that strong lines in the spectrum are affected by
132
+ optical depth, which in turn results in inaccurate BFs. Corrections for optical depth can be made,
133
+ but if the corrections are large they lead to increased uncertainties.
134
+ In the current study, BFs in Si I and II have been determined from spectra recorded with
135
+ the University of Wisconsin (UW) high-resolution echelle spectrograph. This instrument is
136
+ described in detail in Wood & Lawler (2012). As a dispersive instrument, it does not have
137
+ multiplex noise and is much better-suited than an FTS for measurement of weak lines while
138
+ keeping source currents low and avoiding significant self-absorption on the strong transitions. It
139
+ is a 3-m cross-dispersed echelle spectrograph with broad spectral coverage, resolving power R ¥
140
+ 250,000 and a 4 Mpixel CCD detector. The spectra are two-dimensional CCD images containing
141
+ multiple grating orders, with the high-resolution of each grating order running in one direction
142
+ and the orders arranged side-by-side in the other dimension. The cross-disperser utilizes a prism
143
+
144
+ to separate the orders, so the orders are further apart at lower wavelength and get increasingly
145
+ closer together at higher wavelengths. In the far-ultraviolet (far-UV) one CCD frame covers
146
+ approximately 150 nm in the low resolution direction and three overlapping frames are required
147
+ to capture an entire grating order in the high-resolution direction. The usual mode of operation
148
+ would be to acquire five overlapping frames for each UV spectrum, to provide some redundancy
149
+ and check for source drifts. However, the wavelengths of transitions from the upper levels in the
150
+ current study are such that all transitions from each level can be studied with a single grating
151
+ setting. This serendipitous coincidence of line placement means that there is no need to combine
152
+ frames with different grating settings, eliminating the contribution to the uncertainty that such
153
+ combining generates.
154
+ The optical sources used for generating the Si I, II spectra are commercially manufactured
155
+ Si-Ne and Si-Ar hollow cathode lamps (HCLs). Each CCD frame recorded is accompanied by a
156
+ continuum lamp spectrum recorded after the frame, from which a relative radiometric calibration
157
+ for that frame is determined. In the current study a deuterium (D2) lamp is used as the
158
+ calibration light source. The only change made between these two recordings is the angle of a
159
+ steering mirror on a kinematic mount. Beyond this mirror light from each lamp encounters the
160
+ same optical path. Table 1 lists all spectra recorded for the current study of Si II and Si I BFs.
161
+ The spectra are analyzed by taking a numerical integral of each line across the width of the
162
+ grating order in which it is found and dividing that by an integral of the D2 lamp intensity at the
163
+ same CCD position. The relative irradiance of the D2 lamp can be used to put all lines on the
164
+ same relative scale. These radiometrically calibrated intensities are then converted to BFs using
165
+ Equation 1.
166
+ Multiple spectra are taken of our primary source, the Si-Ne HCL, over a range of currents
167
+ between 3 mA and 32 mA. A range of lamp currents is used to check for evidence of self-
168
+ absorption on the strongest lines of Si I. Self-absorption becomes apparent by studying the BR
169
+ of a weaker line from the same upper level compared to a strong line that connects to the lowest
170
+ term. If self-absorption is present on the strong transition this BR will increase with increasing
171
+ lamp current. We see some evidence of minor self-absorption on three strong Si I lines that
172
+ connect to the ground term. These have small corrections applied based on the extrapolation of
173
+ the BR to zero current. The largest of these extrapolations is only 2% lower than the BR
174
+ measured on the lowest current spectrum.
175
+ 2.1 Detector-based Radiometric Calibration
176
+ A continuum lamp is required for the calibration of the echelle spectrometer in order to
177
+ capture the rapidly changing instrument sensitivity along the grating orders due to the sinc2 blaze
178
+ envelope of the grating. However, the calibration in the low resolution direction, which changes
179
+ slowly as a function of wavelength, can be achieved by some other means and then transferred
180
+ onto the D2 source. For this project we have chosen to use a National Institute of Standards and
181
+ Technology (NIST) calibrated photodiode detector as our standard. Switching to a detector-
182
+
183
+ based standard from a source-based standard has the advantage that the detector will remain
184
+ stable for many years, whereas lamp sources age both with shelf life and with usage. UV
185
+ damage to the window causes changes to the radiant output, particularly in the far-UV. The
186
+ irradiance of the lamp has to be periodically checked against another little-used lamp and then
187
+ corrections applied, or the lamp must be sent out to be recalibrated at considerable expense.
188
+ Another motivation for switching to the detector-based calibration is that D2 lamps are only
189
+ calibrated between 200 nm and 400 nm and the current project required a calibration out to 410
190
+ nm. Even the calibrated irradiance above 370 nm requires careful correction in order to use the
191
+ lamp at high resolution. This is because above 370 nm there are increasing numbers of lines in
192
+ the D2 lamp spectrum in addition to the continuum radiation. The original irradiance calibration
193
+ of our lamp was made with a 4 nm bandpass,9 effectively smoothing over the increasing forest of
194
+ lines. At high resolution these lines are resolved and care must be taken to use only continuum
195
+ radiation when calibrating the metal line intensities. For past studies we have estimated
196
+ corrections such that the corrected irradiance gave the irradiance of the continuum only rather
197
+ than an average of continuum plus lines, but such corrections introduce additional uncertainty in
198
+ the calibration.
199
+ The detector used in this calibration is a Hamamatsu S2281 silicon photodiode calibrated
200
+ at NIST over the wavelength range 200 – 1100 nm. The accuracy of this calibration is 1.2 - 0.34
201
+ % over the 200 – 410 nm range of the present study. A line source is also required and we have
202
+ chosen a Hg pen lamp because it has a spectrum sparse enough that only one to a few lines are
203
+ transmitted through each of the narrowband optical filters employed, as described below. It is
204
+ also necessary that the source has short term stability over the period of several hours which is
205
+ the case for the Hg pen lamp. It does not need to have long term stability. Also required for this
206
+ calibration are several narrowband optical filters which allow a subset of Hg lines through each
207
+ filter. We have used filters centered at wavelengths of 250 nm, 296 nm, 313 nm, 365 nm, 405
208
+ nm and 436 nm. In addition we have used a sharp-cut colored glass filter (Corning 0-56) to
209
+ block the strong 254 nm light from leaking through the 296 and 313 nm filters. The narrowband
210
+ filters are ½ inch diameter, and are mounted in a ten position filter wheel for ease and
211
+ reproducibility of switching from one to the next. One position in the filter wheel is left open
212
+ with no filter installed to allow unfiltered light from the D2 lamp through.
213
+ Figure 1 shows a schematic of the measurement layout. Two lamps are employed, the
214
+ Hg pen lamp and the D2 lamp, each mounted at one of the positions viewed by the steering
215
+ mirror on a kinematic mount. Light from either lamp is imaged on the entrance pinhole of the 3-
216
+ m echelle spectrometer with a focusing mirror. The Hg pen lamp is rotated in its holder such that
217
+ the pair of capillaries are viewed side-on rather than front on, to limit structure in the image.
218
+ Light from the source passes through an iris, which limits the cross section of the beam, and then
219
+                                                             
220
+ 9 private communication from Optronics Laboratories 
221
+
222
+ through the filter wheel before reaching the pinhole. When the filter wheel is set to either the
223
+ 296 nm or 313 nm filter, a two inch square colored glass filter (Corning 0-56 sharp-cut filter) is
224
+ mounted just in front of the iris (not shown in Figure 1). The calibrated photodiode is moved
225
+ into the path between the filter wheel and the entrance pinhole to measure the power of light
226
+ transmitted by each filter. This is done at both the beginning of measurement and then again at
227
+ the end, to make sure the lamp has remained stable. The photodiode is removed for echelle
228
+ measurements. A full UV spectrum (three frames) is recorded for light passing through each
229
+ filter. An unfiltered D2 spectrum is recorded on each frame. Calibrated line intensities are
230
+ determined for all lines getting through each filter by dividing integrated line intensities by the
231
+ D2 continuum intensity, using the same analysis software and method as for the Si I,II BFs, as
232
+ described above. We use the unfiltered D2 spectrum to determine the filtered line intensities so
233
+ that the D2 intensity removes the sinc2 dependence of the grating order envelope from the
234
+ intensities but does not remove the effect of the filter bandpass. The calibration of the
235
+ photodiode is transferred onto the D2 lamp relative irradiance by insisting that the sum of line
236
+ intensities through each filter be proportional to the photodiode measurement for each filter (in
237
+ Amps) divided by the responsivity of the photodiode (in Amp/Watt) and divided by the
238
+ wavenumber of the transition(s) to convert Watts into something proportional to photons/s. The
239
+ level of reproducibility for this calibration can be seen in Figure 2 which shows two such
240
+ measurements of the relative D2 irradiance made approximately one month apart. Since the new
241
+ Figure 1. Schematic of the set up for the Hg pen lamp + NIST calibrated photodiode calibration technique.
242
+
243
+ steering mirror on
244
+ kinematicmount
245
+ focusing
246
+ mirrorpinhole
247
+ for3-m
248
+ echelle
249
+ irisPhotodiode:
250
+ moved outof
251
+ opticalpath
252
+ D2lamp
253
+ filterwheel
254
+ Hgpen lamp
255
+ duringechelle
256
+ measurementscalibration only extends down to 250 nm, we use a calibration from our windowless Ar mini-arc
257
+ lamp (λ < 232nm) and our little-used D2 lamp transferred to our everyday D2 lamp to bridge the
258
+ gap between these two calibrations.
259
+ It should be mentioned that the Hg pen lamp is not a pure line source but also has a weak
260
+ continuum component. The paper by Reader, Sansonetti & Bridges (1996) drew our attention to
261
+ this problem. The weak continuum peaks around 405 nm, but there is also significant continuum
262
+ associated with the self-absorption on the strong 254 nm line. This continuum contributes to the
263
+ power measured with the photodiode, but is not accounted for in the filtered line intensity
264
+ measurements. The problem can be mitigated to some extent by choosing a narrower bandpass
265
+ for the filter. In the current study we have employed mostly 10 nm bandpass filters, but used a 5
266
+ nm bandpass filter at 405 nm where the continuum was strongest. The narrower bandpass
267
+ reduces the contribution of the continuum relative to the lines. The residual continuum was
268
+ accounted for by making a measurement of the ratio of line intensity to line+continuum intensity
269
+ for each filtered spectrum that had some continuum contribution (these were the 250 nm, 365
270
+ nm, 405 nm and 436 nm filters). This ratio was then applied as a correction to the photodiode
271
+ readings in the measurements described above.
272
+ We estimate the uncertainty of the calibration to be ~3 – 5% at each point of the curve
273
+ shown in Figure 2. However, because the D2 irradiance changes smoothly and gradually with
274
+ wavelength, the uncertainty of the relative calibration between two points on the curve will be
275
+ less than this estimate and depends on the spacing of the lines being calibrated. A BR for two
276
+ closely spaced lines, such as the Si II doublet discussed below, will have little contribution to the
277
+ Figure 2. Relative D2 lamp irradiance between 250 nm and 436
278
+ nm as measured on two separate dates using the Hg pen lamp +
279
+ NIST calibrated photodiode calibration method as described in
280
+ the text.
281
+ 0.0
282
+ 0.2
283
+ 0.4
284
+ 0.6
285
+ 0.8
286
+ 1.0
287
+ 1.2
288
+ 250
289
+ 300
290
+ 350
291
+ 400
292
+ 450
293
+ Relative D2 Irraddiance (W)
294
+ Wavelength (nm)
295
+ 19‐Mar‐22
296
+ 16‐Apr‐22
297
+
298
+ uncertainty from the calibration whereas lines that are widely separated in wavelength will have
299
+ a higher contribution to the BR uncertainty. We include a systematic uncertainty of 0.001% per
300
+ cm-1 of wavenumber difference between the line and the dominant line from the upper level as a
301
+ conservative estimate of uncertainty in the radiometric calibration. This is then added in
302
+ quadrature to the statistical uncertainty. We estimate the statistical uncertainty as the larger of
303
+ twice the standard deviation of the weighted mean branching ratio and the inverse of the
304
+ weighted average signal to noise ratio. The uncertainties of the BRs are then combined using an
305
+ appropriate error propagation formula to determine the final BF uncertainties.
306
+
307
+ 3. Results and Discussion
308
+ 3.1
309
+ Si I results
310
+ The experimental work on Si I transition probabilities to date has been limited. Garz et
311
+ al. (1973) determined relative f-values for 51 lines between 250 and 800 nm from emission
312
+ measurements on a wall stabilized arc. They tied these to an absolute scale using radiative
313
+ lifetimes of Marek (1972). These were later renormalized with new radiative lifetime
314
+ measurements by Becker et al (1980). Smith et al. (1987; hereafter Sm87) reported experimental
315
+ BFs or BRs and log(gf)s (the log of the level degeneracy multiplied by the oscillator strength) for
316
+ 108 lines of Si I between 163 and 410 nm. They used a combination of techniques including
317
+ emission and absorption (Hook) measurements that they tied together using the bowtie method to
318
+ produce a set of self-consistent relative f-values. They chose the beam-foil lifetime
319
+ measurements of Bashkin et al. (1980) to establish their absolute scale. O’Brian & Lawler
320
+ (1991, hereafter OL91) measured radiative lifetimes to 5% accuracy for 47 odd-parity levels of
321
+ Si I and then combined their lifetimes with the BFs of Sm87 for 36 lines originating in 13 of the
322
+ lower-lying levels that Sm87 studied. Levels above the 3s23p3d 1Po1 level at 53387 cm-1 were
323
+ deemed by OL91 to have strong infrared branches, and the BFs of Sm87, having only estimated
324
+ the strength of these transitions, were thought to be less reliable.
325
+ There have been a number of theoretical investigations of Si I. Recent studies include the
326
+ work of Froese Fischer (2005) who used the Breit-Pauli approximation for all levels in Si I up to
327
+ 3s23p3d 3Do. Savukov (2016; hereafter Sav16) used the configuration-interaction plus many-
328
+ body-perturbation-theory (CI+MBPT) method to determine transition probabilities, log(gf)s and
329
+ lifetimes for levels of Si I up to the 3s23p5s 1Po1 level. Wu et al. (2016) used the multi-
330
+ configuration Dirac-Hartree-Fock (MCDHF) and active space approach to determine levels,
331
+ hyperfine structure and transition probabilities in Si I up through the 3s23p4d 3Do levels. Finally,
332
+ the thesis work of Pehlivan Rhodin (2018; hereafter PR18) used MCDHF method using the
333
+ GRASP2K package to determine transition probabilities in Si I up through the 3s23p7s and in Si
334
+ II up through the 3s27f configuration.
335
+
336
+ Our measured BFs of Si I are presented in Table 2 organized by upper level.10 Also in
337
+ this table we compare to a subset of the experimental BFs of Sm87. Note that for several of the
338
+ weak, spin-forbidden transitions Sm87 only report an upper bound (although what is meant by
339
+ <0.000 for the 3Do1,2 – 1D2 BFs is unclear). In this study, we report the first measurements of
340
+ these very weak BFs. For lines in common between the two studies, we see an average
341
+ fractional difference (in the sense (Sm87 – UW)/UW) of +6.0% with a standard deviation of
342
+ 10.3%. For lines with BFs > 0.01 the average fractional difference is +1.7% with standard
343
+ deviation of 5.6%.
344
+ As a point of reference, we also compare to BFs calculated from LS coupling (also
345
+ known as Russell-Saunders coupling) theory for the triplet multiplets in Table 2. The upper 3p4s
346
+ 3Po1 and 3Po2 levels at 39760 and 39955 cm-1 are nearly pure, with NIST ASD giving the leading
347
+ percentages as 98 and 99%, respectively. The J=1 level has ~1% mixing with the 3p4s 1Po1 level
348
+ resulting in weak decays to 1D2 and 1S0 lower levels. The upper 3s3p3 3Do1 and 3Do2 levels at
349
+ 45276 and 45294 cm-1 are listed in the NIST ASD as 56% from that configuration and 39% 3pnd
350
+ 3Do, but probably have some mixing with nearby 1Po1 and 1Do2 levels, respectively, since both
351
+ have weak decay to the 3s23p2 1Do2 level at 6299 cm-1. The LS BFs are calculated from relative
352
+ line strengths tabulated in Appendix I of Cowan (1981). Frequency-cubed scaling is included,
353
+ and the LS BFs are renormalized to the total multiplet strength as measured in the current study.
354
+ Our measured BFs are converted to A-values and log(gf)s following the relations in
355
+ Thorne et al. (1988),
356
+ 𝐴�� � 𝐵𝐹��
357
+ 𝜏�
358
+ ; log�𝑔𝑓� � log �1.499𝑔�𝐴��
359
+ 𝜎�
360
+ � , �2�
361
+
362
+ where Aul is the transition probability in s-1, u is the radiative lifetime of the upper level in s, gu
363
+ is the degeneracy of the upper level, and  is the transition wavenumber in cm-1. We use the
364
+ radiative lifetimes measured previously in our group by OL91 to establish the absolute scale for
365
+ our BFs. The uncertainty of the A-value is the uncertainty of the BF and that of the lifetime
366
+ added in quadrature. We present A-values and log(gf)s in Table 3. Also in Table 3 we compare
367
+ to two of the recent theoretical calculations, those by Sav16 and PR18.11
368
+
369
+ Sav16 determined transition probabilities, log(gf)s and lifetimes only for the low-lying
370
+ levels of Si I up to the 3s23p5s 1Po1 levels at ~54870 cm-1. As such, that study is limited in scope,
371
+                                                             
372
+ 10 Throughout this paper and accompanying tables, Ritz wavelengths and energy levels are taken from the National
373
+ Institute of Standards and Technology Atomic Spectra Database (NIST ASD; Kramida, Ralchenko & Reader 2021). 
374
+ 11 We do not make comparison to the best experimental measurements in Table 3. NIST ASD references the results
375
+ of OL91 (for all but the weakest lines) which combine new lifetime measurements with BFs from Sm87. Our results
376
+ are not independent from OL91 as we use their lifetimes. We would like to alert the reader that there appears to be an
377
+ error in the A-values and log(gf)s in the NIST ASD for two of the transitions included in this study: 2443.365 Å and
378
+ 2452.118 Å. NIST ASD log(gf)s are +0.32 and -0.53 dex different, respectively, from those found in OL91. This
379
+ discrepancy is also found in the critical compilation on Silicon by Kelleher & Podobedova (2008). 
380
+
381
+ but achieves relatively high precision on the transitions that it covers by fine-tuning the cavity
382
+ size, which in turn reduced the basis needed for the lowest states. Sav16 makes detailed
383
+ comparison to earlier theory of Froese-Fischer (2005) and the experimental A-values and
384
+ radiative lifetimes reported in OL91. We find that we are in good agreement with Sav16 for the
385
+ 20 transitions studied here even for the weakest transitions down to log(gf) < -4. The average
386
+ fractional difference between our A-values (in the sense (Sav16 – UW)/UW) is +1.7% with a
387
+ standard deviation of 9.7%.
388
+
389
+ We also compare in Table 3 to the MCDHF calculations of PR18 who determined
390
+ transition probabilities for Si I belonging to the even 3s23p2, 3s23pnp (n ≤ 7), and 3s23pnf (n ≤ 6)
391
+ configurations and to the odd 3s3p3, 3s23pns (n ≤ 8), and 3s23pnd (n ≤ 6) configurations. Here
392
+ we find that the agreement with our measured transition probabilities is also very good, with
393
+ average fractional difference (in the sense (PR18 – UW)/UW) of -8.5% with a standard deviation
394
+ of 13.5%. This improves to an average of -3.9% and standard deviation of 10.4% for lines with
395
+ log(gf)>-3. Unlike Sav16, the PR18 study is a comprehensive calculation involving over 100
396
+ levels up to 61936 cm-1 and more than 1300 transitions ranging in wavelength from 6333 nm in
397
+ the infrared to 161 nm in the vacuum-UV. As such, it will prove a very valuable resource for
398
+ astronomers.
399
+
400
+ The comparisons made in Table 2 and Table 3 are visualized in Figure 3, where we
401
+ present logarithmic differences (in the sense log(other) – log(UW) versus log(UW)) of the
402
+ experimental BFs of Sm87 in panel (a) and the log(gf)s of PR18 and Sav16 in panels (b) and (c),
403
+ respectively. In panels (a) and (b) the error bars represent the combined uncertainties added in
404
+ quadrature. (The uncertainties reported in PR18 are the relative difference between the length
405
+ and velocity gauges.) Sav16 did not give uncertainties for their A-values so no error bars are
406
+ plotted in panel (c). In panel (a) the point with an arrow beside it is the upper bound quoted in
407
+ Sm87 for the transition at 4102 Å. The weakest, spin-forbidden transitions in these comparisons
408
+ are very difficult to measure and to calculate. The level of agreement with recent theory, both
409
+ with the limited-in-scope but high precision calculations of Sav16, and with the comprehensive
410
+ calculations of PR18, is very satisfactory.
411
+
412
+
413
+ 3.2
414
+ Si II results
415
+ We have remeasured the BF of the very weak spin-forbidden 4P1/2 - 2Po1/2,3/2 doublet of Si
416
+ II at 2334.407 Å and 2350.172 Å, respectively, using the first eight spectra listed in Table 1.
417
+ Optical depth is not a concern in this measurement because of the weakness of the transitions.
418
+ This BF had previously been measured in our group and reported in Calamai, Smith & Bergeson
419
+ (1993, hereafter CSB93). That paper had reported the measurement of the radiative lifetimes of
420
+ the 4P1/2,3/2,5/2 levels as well as the BFs of the 4P1/2 level. We use the radiative lifetime of CSB93
421
+ to convert our BFs to A-values. These are reported in Table 4 along with comparison to the
422
+ CSB93 measurement. CSB93 report that these lines had signal-to-noise ratios of 10-15 in their
423
+
424
+ ‐1.0
425
+ ‐0.8
426
+ ‐0.6
427
+ ‐0.4
428
+ ‐0.2
429
+ 0.0
430
+ 0.2
431
+ 0.4
432
+ 0.6
433
+ 0.8
434
+ 1.0
435
+ ‐4.5
436
+ ‐4.0
437
+ ‐3.5
438
+ ‐3.0
439
+ ‐2.5
440
+ ‐2.0
441
+ ‐1.5
442
+ ‐1.0
443
+ ‐0.5
444
+ 0.0
445
+ log(BF)Sm87 ‐ log(BF)UW
446
+ log(gf)UW
447
+ ‐1.0
448
+ ‐0.8
449
+ ‐0.6
450
+ ‐0.4
451
+ ‐0.2
452
+ 0.0
453
+ 0.2
454
+ 0.4
455
+ 0.6
456
+ 0.8
457
+ 1.0
458
+ ‐4.5
459
+ ‐4.0
460
+ ‐3.5
461
+ ‐3.0
462
+ ‐2.5
463
+ ‐2.0
464
+ ‐1.5
465
+ ‐1.0
466
+ ‐0.5
467
+ 0.0
468
+ log(gf)PR18 ‐ log(gf)UW
469
+ log(gf)UW
470
+ ‐1.0
471
+ ‐0.8
472
+ ‐0.6
473
+ ‐0.4
474
+ ‐0.2
475
+ 0.0
476
+ 0.2
477
+ 0.4
478
+ 0.6
479
+ 0.8
480
+ 1.0
481
+ ‐4.5
482
+ ‐4.0
483
+ ‐3.5
484
+ ‐3.0
485
+ ‐2.5
486
+ ‐2.0
487
+ ‐1.5
488
+ ‐1.0
489
+ ‐0.5
490
+ 0.0
491
+ log(gf)Sav16 ‐ log(gf)UW
492
+ log(gf)UW
493
+ c
494
+ a
495
+ b
496
+ Figure 3. Comparison of log(BF)s or log(gf)s of Si I in the present
497
+ work to those of a) the experimental results of Sm87, b) theoretical
498
+ MCDHF calculations of PR18, and c) theoretical CI+MBPT
499
+ calculations of Sav16 versus log(gf) from this study. In each figure
500
+ the horizontal line at 0.0 represents perfect agreement. Error bars
501
+ represent combined uncertainties where available. See text for
502
+ further discussion. 
503
+
504
+ spectra whereas we have signal-to-noise ratios ranging from 45 to 200. The radiometric
505
+ calibration does not significantly contribute to the uncertainty of our BF because of the small
506
+ wavelength span between the doublet, resulting in an uncertainty that is primarily statistical. The
507
+ superior signal-to-noise in our spectra explains why our uncertainties are lower than those of
508
+ CSB93. We also compare to recent theoretical results of PR18 and Wu et al. 2020 in Table 4.
509
+ CSB93 appear to have used the theoretical BF of Nussbaumer (1977) to convert their
510
+ lifetime for the 4P3/2 level to A-values for the 4P3/2 - 2Po1/2,3/2 doublet at 2328.517 Å and 2344.202
511
+ Å. This is not stated clearly in their paper, and in fact they state “Thirty-four measurements of
512
+ the 4P3/2 branching fraction were made. The total uncertainty (systematic and statistical) was
513
+ about 10% at the 90% level of confidence.” This appears to be a typo, and refers to the
514
+ measurement and uncertainty of the 4P1/2 BF. It is stated clearly elsewhere in the paper that a BF
515
+ was measured for only one level, the 4P1/2 level, and the 10% uncertainty mentioned in the quote
516
+ is not consistent with the 50% uncertainty on the weak branch of the 4P3/2 level. We attempted a
517
+ BF measurement of the 4P3/2 - 2Po1/2,3/2 doublet at 2328.517 Å and 2344.202 Å, but were
518
+ unsuccessful. The weaker 2328 Å line of this pair is estimated by the theory of Nussbaumer
519
+ (1977) and that of Dufton et al. (1991) to be a ~1% branch. Although we saw a weak feature at
520
+ this wavelength in our higher current Si-Ne spectra, we decided that this feature was a blend with
521
+ a very weak neon line. There is no observed transition listed at this wavelength in the NIST
522
+ ASD neon spectrum, but there is a possible Ne II electric dipole transition nearby that obeys
523
+ parity and J selection rules. Our analysis software looks for these possibilities based on known
524
+ energy levels of both the metal and buffer gas first and second spectra. We investigated this
525
+ further by looking at this wavelength in high current Hf-Ne and Hf-Ar spectra taken for a
526
+ different study. In these spectra we also saw a very weak feature in the Hf-Ne spectra but not in
527
+ the Hf-Ar spectra, suggesting a neon blend. Unfortunately, switching to a Si-Ar lamp does not
528
+ help in this case because the other line in the doublet pair, 2344.202 Å, has a known argon blend.
529
+ We attempted to procure a third commercial HCL with krypton buffer gas which has no potential
530
+ blends on either line, but were unsuccessful. The most we can say regarding the weak line at
531
+ 2328.517 Å is that it is less than a 4.5% branch with an upper bound of log(gf) < -6.7.
532
+ The 4P - 2Po intercombination lines have been part of numerous theoretical investigations
533
+ of Si II. These lines are allowed E1 transitions due to the mixing of the 3s3p2 4P levels with
534
+ doublets from the same configuration. The accuracy of calculated radiative rates depend on the
535
+ accuracy to which the mixing coefficients and the multiplet energy splittings are calculated.
536
+ Nussbaumer (1977) used the SUPERSTRUCTURE code to calculate radiative parameters from
537
+ sophisticated configuration interaction wavefunctions. Dufton et al. (1991) significantly
538
+ improved on those results by including a more extensive set of configurations. These lines were
539
+ included in the calculations of Froese Fischer (2006) and Tayal (2007) using the MCHF method.
540
+ Bautista (2009) calculated radiative rates between many configurations using several different
541
+ approximations and generated a list of recommended log(gf)s for transitions among the 15 lowest
542
+ levels in Si II. Aggarwal & Keenan (2014) used the General-purpose Relativistic Atomic
543
+
544
+ Structure Package (GRASP()) and the Flexible Atomic Code (FAC) to calculate a large number
545
+ of radiative parameters and collision strengths in Si II, but estimate ~20% uncertainty on the
546
+ strong transitions with weak transitions such as these intercombination lines being much more
547
+ uncertain. PR18 calculate A-values for these intercombination lines using the MCDHF method
548
+ and GRASP2K package with uncertainties based on the relative difference between the length
549
+ and velocity gauges of ~19% and 12% for the 2334.407 Å and 2350.172 Å lines, respectively.
550
+ Finally Wu et al. (2020) also used the MCDHF method and the GRASP2K package in their
551
+ study of Si II. In Figure 4 we make comparison to the experimental results for the BR (4P1/2 -
552
+ 2Po3/2)/(4P1/2 - 2Po1/2) of CSB93 and to the above-mentioned theoretical studies, with the exception
553
+ of the Aggarwal & Keenan (2014) study. The BR from that study lies significantly off-scale on
554
+ Figure 4 at 1.37. In this figure the horizontal line is simply a guide to the eye, and lies at the
555
+ experimental value determined in this study. It can be seen from this figure that the general level
556
+ of agreement between experiment and theory has improved dramatically over recent decades,
557
+ undoubtedly owing, at least in part, to rapid increase in computing power. We see particularly
558
+ excellent agreement between our study and the recent theoretical results of Wu et al. (2020) and
559
+ PR18 as well as that of Froese Fischer et al. (2006).
560
+ 4. Silicon Abundances in Very Metal-Poor Stars
561
+ All but two of the transitions studied here lie in the ultraviolet (UV) spectral domain
562
+ below the atmospheric absorption cutoff, i.e. 𝜆 < 3000 Å. This limits high-resolution stellar
563
+ spectroscopy to the Space Telescope Imaging Spectrograph (STIS; Kimble et al. 1998;
564
+ Figure 4.  Experimental and theoretical values determined for the BR of the
565
+ (4P1/2 - 2Po3/2)/(4P1/2 - 2Po1/2) doublet of Si II. The two experimental
566
+ measurements are leftmost followed by the theoretical values in reverse
567
+ chronological order left to right. The horizontal line lies at the BR as
568
+ measured in this work as a guide for the eye.
569
+ 0.0
570
+ 0.2
571
+ 0.4
572
+ 0.6
573
+ 0.8
574
+ 1.0
575
+ BR (4P1/2 ‐ 2P3/2)/(4P1/2 ‐ 2P1/2)
576
+ This Expt.
577
+  CSB93 
578
+ Wu et al. 2020 
579
+ PR18 
580
+ Tayal 2007 
581
+ Froese Fischer 2006 
582
+ Dufton et al. 1991 
583
+ Nussbaumer 1977 
584
+ Bautista 2009
585
+ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ Theory ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
586
+ ‐‐‐ Expt. ‐‐‐
587
+
588
+ Woodgate et al. 1998), on board the Hubble Space Telescope (HST). Additionally, the UV
589
+ spectrum is crowded with strong absorption lines of light and Fe-group elements, making reliable
590
+ abundance analyses difficult to execute. The UV spectral region of cool stars features complex
591
+ blends of transitions with various pedigrees, ranging from prominent well-known lines that have
592
+ well-documented laboratory histories to many moderate and weak lines with poor or completely
593
+ unknown atomic parameters.
594
+ The UV lines of neutral Si studied here are almost all very strong, having low excitation
595
+ energies (𝜒 < 6299 cm-1 or < 0.8 eV) and relatively large transition probabilities (17 out of 20
596
+ lines in Table 3 have log(gf) > –3). The problem here is not in identifying Si I lines; it is in
597
+ finding stars with lines that are weak enough for abundance analysis. With this unusual
598
+ constraint we concentrated on metal-poor (Fe/H] < –2) halo stars that have been observed by
599
+ HST/STIS. The list is small: 7 stars are considered in the metallicity study of Roederer et al.
600
+ (2018); the bright main sequence star HD 84937 ([Fe/H] � –2.2) has been featured in previous
601
+ papers in this series (Den Hartog et al. 2021, and references therein); the famous warm low
602
+ metallicity stars HD 19445 and HD 140283 (Chamberlain & Aller 1951) have been featured in
603
+ several UV line identification contributions (e.g., Peterson et al. 2020 and references therein); the
604
+ mildly metal-poor warm giant HD 222925 ([Fe/H] = -1.5) has been recently studied by Roederer
605
+ et al. (2022) to produce a nearly complete abundance set for 63 elements. A few other such stars
606
+ can be found but do not change the basic results which we will discuss here.
607
+ We employed HST/STIS spectra of seven of the stars included in the papers cited above
608
+ in order to explore if Si abundances derived from UV spectra could be more trustworthy than the
609
+ few optical-wavelength lines treated in the literature. We supplemented our HST/STIS spectra
610
+ with blue spectra collected using the High Resolution Echelle Spectrometer (Vogt et al. 1994) at
611
+ the Keck I telescope, and the Ultraviolet and Visual Echelle Spectrograph (Dekker et al. 2000) at
612
+ the Very Large Telescope. We accessed these data through the Keck Observatory Archives and
613
+ European Southern Observatory Archives, respectively, and Table 1 of Roederer et al. (2018)
614
+ presents a description of these data.
615
+ We derived Si abundances using synthetic/observed spectrum matches. The synthetic
616
+ spectra were computed with the plane-parallel LTE (local thermodynamic equilibrium) line
617
+ analysis code MOOG (Sneden 1973)12. Atomic line lists for these syntheses were generated with
618
+ the linemake facility (Placco et al. 2021)13, which emphasizes laboratory transition data on Fe-
619
+ group and neutron-capture neutral and singly-ionized species from the Wisconsin atomic physics
620
+ group and on molecular species from the Old Dominion University group (e.g., Brooke et al.
621
+ 2016, and references therein). We adopted the atmosphere parameters of Roederer et al. 2018,
622
+ 2022) to produce model atmospheres interpolated from the ATLAS grid (Kurucz 2011, 2018)14.
623
+                                                             
624
+ 12 Available at https://www.as.utexas.edu/~chris/moog.html
625
+ 13 https://github.com/vmplacco/linemake
626
+ 14 http://kurucz.harvard.edu/grids.html 
627
+
628
+ For almost all stars the lower wavelength boundary of our HST/STIS spectra was 𝜆 � 2300 Å,
629
+ thus ruling out work on the five lowest-wavelength Si I transitions.
630
+ Our initial synthetic spectrum tests yielded results that further narrowed the range of
631
+ stellar parameters that are useful for this abundance exercise. For stars that have [Fe/H] > –2.5
632
+ and effective temperatures Teff < 6000 K, many of the promising Si I lines simply are too strong
633
+ and/or too blended with other strong neutral and ionized species features to yield reliable
634
+ abundances. In particular, we discarded the giant star HD 222925 (Teff/log(g)/[M/H]/vt =
635
+ 5636K/2.54/–1.5/2.20km s-1; Roederer et al. 2022) and the subgiant HD 140283 (5600K/3.66/-
636
+ 2.6/1.15km s-1; Roederer et al. 2018). We report here on five very metal-poor main sequence
637
+ turnoff stars that have Teff � 6050 K.
638
+ In Table 5 we list the model parameters, individual line abundances, and final species
639
+ abundances for both Si I and Si II transitions in the program stars. The mean abundances are
640
+ based on 10-11 Si I lines and 2 Si II lines, all in the vacuum UV spectral domain, whereas in
641
+ previous studies the Si abundances of these kinds of stars have come almost exclusively from the
642
+ optical Si I transitions at 3905.5 and 4102.9 Å. We derive <[Si/Fe]I> = 0.43 (𝜎 = 0.11). The
643
+ inclusion of the ionized species in Si abundance studies is a rarity, and for our program stars the
644
+ abundance agreement between neutral and ion is excellent. From Table 5 we find <[Si/Fe]II –
645
+ [Si/Fe]I> = +0.03 (𝜎 = 0.05). In Figure 5 we show small spectral regions around both Si II lines
646
+ and around six representative Si I lines in the program star BD+03º 740. For this star and the
647
+ other two lowest metallicity stars BD-13º 3442 and CD-33º 1173 the Si II lines are essentially on
648
+ the weak-line linear part of the curve of growth. They are easy to detect, and to employ in
649
+ abundance analyses. Many Si I lines are also reliable abundance indicators. However, the 2516,
650
+ 2519, and 2881 Å transitions are clearly saturated and thus less sensitive to abundance changes.
651
+ In cooler, higher metallicity stars such as HD 19445 and HD 84937 these and other lines become
652
+ so strong that they are untrustworthy for abundance determinations. Some caution should be
653
+ used in interpreting the Si abundances of those stars.
654
+ We also derived abundances for the Si I 3905 Å line and list them in Table 5. The 4102.9
655
+ Å Si I line was too weak and too blended with the strong H𝛿 4101.75 Å feature in our stars.
656
+ However we did not include the 3905 Å line in the mean abundance calculations because this
657
+ transition is known to yield temperature-dependent abundances in LTE calculations. Si in metal-
658
+ poor giants from the 𝜆3905 line is almost uniformly overabundant, <[Si/Fe]> ~ +0.4 ± 0.1 (e.g,
659
+ Cayrel et al. 2004), but is much less abundant in main sequence stars near the turnoff region,
660
+ <[Si/Fe]> ~ +0.1 ± 0.1 (e.g, Cohen et al. 2004). The sample of horizontal-branch stars
661
+ investigated by Preston et al. (2006) covers a large temperature range and shows this effect
662
+ clearly in their Figure 8. A summary of the observational issues in LTE abundances was
663
+ discussed by Sneden & Lawler (2008). From Table 5 we compute <[Si/Fe]> = +0.28 (𝜎 = 0.11)
664
+ from the 3905 Å line, clearly lower than the mean from the UV Si I lines discussed above.
665
+ Amarsi & Asplund (2017) computed NLTE corrections for optical-wavelength Si I transitions in
666
+
667
+
668
+ Figure 5: Observed and synthesized spectra for both Si II lines (the 2 bottom panels)
669
+ and for representative lines of Si I (the 6 upper panels) in the star BD+03º 740. In each
670
+ panel, the filled circles are the observations. The red line is a synthesis without any
671
+ contribution from Si. The best fit to a line is given by the black line, and the blue and
672
+ green lines show the synthetic spectra for Si abundances 0.4 dex lesser and greater than
673
+ the best match. 
674
+
675
+ the solar photosphere, and have published on-line tables of NLTE corrections for many
676
+ (Teff/log(g)/[Fe/H]/vt) combinations.15 Their suggested correction for the 3905 Å line in stars with
677
+ parameters (6000 K/4.0/-3.0/1-2 km s-1) is D[Si/Fe] @ +0.1 dex. Applying this adjustment to the
678
+ abundances from this line for our stars would bring the 3905 Å line into better agreement with
679
+ our abundances derived from the UV Si I transitions. Abundances from the UV lines should be
680
+ preferred.
681
+ 5. Discussion
682
+ In Figure 6 we illustrate the Galactic Chemical Evolution (GCE) trends of [Si/Fe] as a
683
+ function of metallicity ([Fe/H]). Silicon is synthesized in explosive oxygen burning, and thus is
684
+ formed in core-collapse supernovae early in the history of the Galaxy and then ejected into the
685
+ gas that eventually forms the halo stars. (Curtis et al. 2019) We show a compilation of
686
+                                                             
687
+ 15 Anish Amarsi - Theoretical Astrophysics, Department of Physics and Astronomy, Uppsala University - Astronomy
688
+ and Space Physics Theoretical astrophysics Department of Physics and Astronomy Uppsala University Box 516,
689
+ 75120 Uppsala Sweden; Email: [email protected] ; www.astro.uu.se 
690
+ Figure 6. The [Si/Fe] abundance ratios as a function of metallicity ([Fe/H])
691
+ for metal-poor stars from Roederer et al. (2014) (blue open squares) and this
692
+ paper (red filled circles).
693
+
694
+
695
+
696
+ 0.5
697
+ 口口口
698
+ I/Fe]
699
+
700
+ 0
701
+
702
+ S口
703
+ Roederer et al. (2014)
704
+ Thispaper
705
+ 3
706
+ 2
707
+ [Fe I /H]abundance data, [Si/Fe], from an earlier survey of low-metallicity Galactic stars (Roederer et al.
708
+ 2014; shown as open squares). The values of [Si/Fe] exhibit significant scatter over the observed
709
+ metallicity range. This could be the result of comparing different types of stars (i.e., dwarfs with
710
+ giants) or due to the choice of the atomic lines used for the abundance determinations and/or the
711
+ source of the log(gf)s employed. Employing our new experimental silicon data (discussed
712
+ above, see Tables 3 and 4) leads to a more consistent pattern with less scatter. For the five stars
713
+ in this study (shown as filled red circles in Figure 6) the average value of [Si/Fe] = 0.44,
714
+ significantly higher than the solar value of 0. This value can serve as a constraint on GCE
715
+ models and, in particular, on supernovae nucleosynthesis model predictions for early Galactic
716
+ times.
717
+ It would be expected that the [Si/Fe] values illustrated in Figure 6 would begin to exhibit
718
+ a downward pattern at metallicities closer to [Fe/H] = -1 with the onset of Type Ia supernovae
719
+ (the main producer of iron) throughout the Galaxy. The abundance data from Roederer et al.
720
+ (2014) does hint at such a downward trend, but clearly more studies employing the new precise
721
+ atomic data in somewhat more metal-rich stars will be needed to confirm such a trend.
722
+
723
+ 6. Conclusions
724
+ We have made new BF measurements for 20 UV and blue lines of Si I as well as the
725
+ 4P1/2 intercombination lines of Si II. Comparisons are made to earlier experiment as well as
726
+ theory. These BF have been combined with radiative lifetimes measured previously to determine
727
+ A-values and log(gf)s for these transitions. The current study represents a significant
728
+ improvement in measurement of the very weak spin-forbidden lines of both Si I and Si II. These
729
+ new data have been applied to abundance determinations in five metal-poor main sequence
730
+ turnoff stars. We find that many of the Si I UV transitions can be used as reliable abundance
731
+ indicators in very metal-poor stars and we obtain excellent agreement between abundances
732
+ determined using Si I transitions and the Si II intercombination lines.
733
+
734
+ ACKNOWLEDGEMENTS
735
+ This work is supported by NSF grant AST-1814512 and AST-2206050 (E.D.H. and J.E.L).
736
+ I.U.R. acknowledges support from NSF grants AST 2205847 and PHY 14-30152 (Physics
737
+ Frontier Center/JINA-CEE), and NASA grants GO-14232, GO-15657 and AR-16630 from the
738
+ Space Telescope Science Institute, which is operated by the Association of Universities for
739
+ Research in Astronomy, Incorporated, under NASA contract NAS5-26555. We are grateful to
740
+ Hampus Nilsson for sharing the Si I, II data from the Pehlivan Rhodin (2018) thesis prior to its
741
+ publication, and to Karen Lind for helpful discussions.
742
+ Facilities: HST (STIS), Keck I (HIRES), VLT (UVES).
743
+ Software: LINEMAKE (Placco et al. 2021), MOOG (Sneden 1973).
744
+
745
+
746
+ REFERENCES
747
+ Aggarwal, K. M. & Keenan, F. P. 2014, MNRAS, 442, 388
748
+ Amarsi, A. M. & Asplund, M. 2017, MNRAS, 464, 264
749
+ Asplund M., Grevesse N., Sauval A. J., Scott P., 2009, ARA&A, 47, 481
750
+ Bashkin, S., Astner, G., Mannervik, S., et al. 1980, PhyS, 21, 820
751
+ Bautista, M. A., Quinet, P., Palmeri, P., et al. 2009, A&A, 508, 1527
752
+ Becker, U., Zimmermann, P., & Holweger, H. 1980, GeCoA, 44, 2145
753
+ Brooke, J. S. A., Bernath, P. F., Western, C. M. et al. 2016, JQSRT, 168, 142
754
+ Calamai, A. G., Smith, P. & Bergeson, S. D. 1993, ApJ, 415, L59
755
+ Cayrel, R., Depagne, E., Spite, M. et al. 2004, A&A, 416, 1117
756
+ Chamberlain, J. W., & Aller, L. H. 1951, ApJ, 114, 52
757
+ Cohen, J. G., Christlieb, N., McWilliam, A. et al. 2004, ApJ, 612, 1107
758
+ Cowan, J. J., Sneden, C., Roederer, I. U. et al. 2020, ApJ, 890, 119
759
+ Cowan, R. D. 1981, The Theory of Atomic Structure and Spectra (Berkeley, CA: University of
760
+ California Press), 694
761
+ Curtis, S., Ebinger, K., Frohlich, C., et al. 2019, ApJ, 870, 1.
762
+ Den Hartog, E. A., Lawler, J. E., Sneden, C. et al. 2021, ApJS, 255:27
763
+ Dekker, H., D'Odorico, S., Kaufer, A., Delabre, B., & Kotzlowski, H. 2000, Proc. SPIE, 4008, 534
764
+ Dufton, P. L., Keenan, F. P., Hibbert, A. et al. 1991, MNRAS, 253, 474
765
+ Fischer, C. F. 2005, PhRvA, 71, 042506
766
+ Froese Fischer, C., Tachiev, G. & Irimia, A. 2006, ADNDT, 92, 607–812
767
+ Garz, T. 1973, A&A, 26, 471
768
+ Kimble, R. A., Woodgate, B. E., Bowers, C. W., et al. 1998, ApJL, 492, L83
769
+ Kelleher, D. E. & Podobedova, L. I. 2008, JPCRD, 37, 1285
770
+ Kramida, A., Ralchenko, Yu., Reader, J., and NIST ASD Team (2021). NIST Atomic Spectra
771
+ Database (ver. 5.9), [Online]. Available: https://physics.nist.gov/asd . National Institute of
772
+ Standards and Technology, Gaithersburg, MD. DOI: https://doi.org/10.18434/T4W30F
773
+ Kurucz, R. L. 2011, CaJPh, 89, 417
774
+ Kurucz, R. L. 2018, ASP Conf. Ser., 515, 47
775
+ Lawler, J. E., Sneden, C., Cowan J. J. et al., 2009, ApJS, 182, 51
776
+ Lodders, K., Palme H., & Gail, H.P. 2009, Abundances of the elements in the solar system. In
777
+ Landolt-Bornstein, New Series, Vol. VI/4B, Chap. 4.4, J.E. Trumper (ed.), Berlin,
778
+ Heidelberg, New York: Springer-Verlag, p. 560-630.
779
+ Marek, J. 1972, A&A, 17, 83.
780
+ Meija, J., Coplen, T. B., Berglund, M. et al. 2016, Pure Appl. Chem, 88: 293
781
+ Nussbaumer, H. 1977 A&A, 58, 291
782
+ O’Brian, T. R. & Lawler, J. E. 1991, PhysRevA, 44, 7134
783
+ Pehlivan Rhodin, A. 2018, “Experimental and Computational Atomic Spectroscopy for
784
+ Astrophysics: Oscillator strengths and lifetimes for Mg I, Si I, Si II, Sc I, and Sc II,” PhD
785
+ thesis, Lund University, Lund, Sweden.
786
+
787
+ Peterson, R. C., Barbuy, B., & Spite, M. 2020, A&A, 638, A64
788
+ Placco, V. M., Sneden, C., Roederer, I. U. et al. 2021, RNAAS, 5, 4
789
+ Preston, G. W., Sneden, C., Thompson, I. B. et al. 2006, AJ, 132, 85
790
+ Reader, J., Sansonetti, C. & Bridges, M. 1996, ApOpt, 35, 78
791
+ Roederer, I. U., Lawler, J. E., Den Hartog, E. A., et al. 2022, ApJS, 260, 27
792
+ Roederer, I. U., Preston, G. W., Thompson, I. B. et al. 2014, AJ, 147, 136
793
+ Roederer, I. U., Sneden, C., Lawler, J. E. et al. 2018, ApJ, 860, 125
794
+ Savukov, I. M. PhysRevA, 2016, 93,022511
795
+ Smith, P., Huber, M. C. E., Tozzi, G. P., et al. 1987, ApJ, 322, 573
796
+ Sneden, C. 1973, ApJ, 184, 839
797
+ Sneden, C., & Lawler, J. E. 2008, in First Stars III, AIP Conf Ser. 990, ed B. W. O'Shea & A.
798
+ Heger, (AIP, Melville, NY), p. 90
799
+ Tayal, S. S. 2007 JPhysB, 40, 2551
800
+ Thorne, A. P. 1988, Spectrophysics (2nd ed.; New York, NY: Chapman and Hall Ltd.)
801
+ Vogt, S. S., Allen, S. L., Bigelow, B. C., et al. 1994, Proc. SPIE, 2198, 362
802
+ Wood, M. P., & Lawler, J. E. 2012, ApOpt, 51, 8407
803
+ Woodgate, B. E., Kimble, R. A., Bowers, C. W., et al. 1998, PASP, 110, 1183
804
+ Wu, M., Bian, G., Li, X., et al. 2016, CaJPh, 94, 359
805
+ Wu, M., He, Z., Hu, F. & Li, X. 2020, InJPh, 95, 807
806
+
807
+ Table 1. Echelle spectra of commercial HCLs used in the study of Si II and Si I BFs.a
808
+ Indexb
809
+ Date
810
+ Serial
811
+ Number
812
+ Buffer
813
+ Gas
814
+ Lamp
815
+ Current
816
+ (mA)
817
+ Spectral Coverage
818
+ (Å)
819
+ Coadds
820
+ Total
821
+ Exposure
822
+ (min)
823
+ 11
824
+ 2021 Jul 31
825
+ 2
826
+ Neon
827
+ 12
828
+ 2090 - 2955
829
+ 120
830
+ 360
831
+ 12
832
+ 2021 Aug 03
833
+ 2
834
+ Neon
835
+ 12
836
+ 2090 - 2955
837
+ 5
838
+ 150
839
+ 13
840
+ 2021 Aug 12
841
+ 1
842
+ Neon
843
+ 12
844
+ 2090 - 2955
845
+ 6
846
+ 180
847
+ 14
848
+ 2021 Aug 27
849
+ 1
850
+ Neon
851
+ 20
852
+ 2090 - 2955
853
+ 15
854
+ 150
855
+ 15
856
+ 2021 Aug 29
857
+ 1
858
+ Neon
859
+ 22
860
+ 2040 - 2790
861
+ 18
862
+ 180
863
+ 16
864
+ 2021 Sept 04
865
+ 1
866
+ Neon
867
+ 15
868
+ 2040 - 2790
869
+ 3
870
+ 180
871
+ 17
872
+ 2022 Apr 02
873
+ 1
874
+ Neon
875
+ 25
876
+ 2040 - 2790
877
+ 4
878
+ 120
879
+ 18
880
+ 2022 Apr 05
881
+ 1
882
+ Neon
883
+ 25
884
+ 2040 - 2790
885
+ 16
886
+ 160
887
+ 31
888
+ 2021 Dec 17
889
+ 1
890
+ Neon
891
+ 12
892
+ 2150 - 3245
893
+ 80
894
+ 120
895
+ 32
896
+ 2021 Dec 17
897
+ 3
898
+ Neon
899
+ 12
900
+ 2350 - 4300
901
+ 144
902
+ 120
903
+ 33
904
+ 2022 Jan 06
905
+ 3
906
+ Neon
907
+ 18
908
+ 2150 - 3245
909
+ 90
910
+ 60
911
+ 34
912
+ 2022 Jan 06
913
+ 1
914
+ Neon
915
+ 18
916
+ 2350 - 4300
917
+ 120
918
+ 60
919
+ 35
920
+ 2022 Jan 06
921
+ 5
922
+ Neon
923
+ 6
924
+ 2150 - 3245
925
+ 15
926
+ 75
927
+ 36
928
+ 2022 Jan 06
929
+ 7
930
+ Neon
931
+ 6
932
+ 2350 - 4300
933
+ 37
934
+ 74
935
+ 37
936
+ 2022 Jan 08
937
+ 1
938
+ Neon
939
+ 12
940
+ 2350 - 4300
941
+ 720
942
+ 120
943
+ 38
944
+ 2022 Jan 08
945
+ 3
946
+ Neon
947
+ 18
948
+ 2350 - 4300
949
+ 90
950
+ 90
951
+ 39
952
+ 2022 Jan 08
953
+ 5
954
+ Neon
955
+ 6
956
+ 2350 - 4300
957
+ 60
958
+ 60
959
+ 40
960
+ 2022 Jan 13
961
+ 1
962
+ Neon
963
+ 24
964
+ 2350 - 4300
965
+ 120
966
+ 60
967
+ 41
968
+ 2022 Jan 13
969
+ 3
970
+ Neon
971
+ 29
972
+ 2350 - 4300
973
+ 120
974
+ 60
975
+ 42
976
+ 2022 Mar 29
977
+ 1
978
+ Neon
979
+ 24
980
+ 2350 - 4300
981
+ 240
982
+ 60
983
+ 43
984
+ 2022 Mar 29
985
+ 3
986
+ Neon
987
+ 28
988
+ 2350 - 4300
989
+ 240
990
+ 60
991
+ 44
992
+ 2022 Apr 05
993
+ 3
994
+ Neon
995
+ 25
996
+ 2350 - 4300
997
+ 180
998
+ 60
999
+ 45
1000
+ 2022 Apr 07
1001
+ 1
1002
+ Neon
1003
+ 12
1004
+ 2280 – 4200
1005
+ 60
1006
+ 60
1007
+ 46
1008
+ 2022 Apr 07
1009
+ 3
1010
+ Neon
1011
+ 18
1012
+ 2280 - 4200
1013
+ 90
1014
+ 60
1015
+ 47
1016
+ 2022 Apr 07
1017
+ 5
1018
+ Neon
1019
+ 25
1020
+ 2150 – 3245
1021
+ 103
1022
+ 60
1023
+ 48
1024
+ 2022 May 14
1025
+ 1
1026
+ Argon
1027
+ 18
1028
+ 2050 – 2800
1029
+ 100
1030
+ 100
1031
+ 49
1032
+ 2022 May 19
1033
+ 1
1034
+ Argon
1035
+ 20
1036
+ 2050 – 2800
1037
+ 60
1038
+ 60
1039
+ 50
1040
+ 2022 May 19
1041
+ 3
1042
+ Argon
1043
+ 20
1044
+ 2150 – 3245
1045
+ 60
1046
+ 60
1047
+ 51
1048
+ 2022 May 19
1049
+ 5
1050
+ Neon
1051
+ 28
1052
+ 2150 – 3245
1053
+ 144
1054
+ 60
1055
+ 52
1056
+ 2022 May 21
1057
+ 1
1058
+ Neon
1059
+ 30
1060
+ 2150 - 3245
1061
+ 240
1062
+ 60
1063
+ 53
1064
+ 2022 May 21
1065
+ 3
1066
+ Argon
1067
+ 19
1068
+ 2350 - 4300
1069
+ 240
1070
+ 60
1071
+ 54
1072
+ 2022 May 22
1073
+ 1
1074
+ Neon
1075
+ 21
1076
+ 2350 -4300
1077
+ 120
1078
+ 120
1079
+ 55
1080
+ 2022 May 30
1081
+ 1
1082
+ Neon
1083
+ 3
1084
+ 2350 - 4300
1085
+ 24
1086
+ 120
1087
+ 56
1088
+ 2022 May 30
1089
+ 3
1090
+ Neon
1091
+ 3
1092
+ 2280 - 4200
1093
+ 24
1094
+ 120
1095
+ Note:
1096
+ aAll echelle spectra were taken from commercially manufactured Si-Ne or Si-Ar HCLs, and have a spectral
1097
+ resolving power of ~250,000 although the effective resolving power is somewhat lower due to line broadening.
1098
+ Each of the spectra were calibrated with a D2 lamp spectrum, which was recorded immediately following the
1099
+ completion of each HCL spectrum. Each spectrum listed is a single CCD frame, and does not cover an entire
1100
+ echelle grating order, but is sufficient coverage to determine branching fractions of all transitions from one or more
1101
+ upper levels studied.
1102
+ bThe first eight spectra list (indices 11 – 18) were used to study the BF of the Si II intercombination lines. The
1103
+ remaining spectra (indices 31 – 56) were used in the Si I BF study.
1104
+
1105
+ Table 2.
1106
+ Branching Fractions of Si I
1107
+ Upper levela
1108
+
1109
+ Lower levela
1110
+ lair
1111
+ svac
1112
+ This Expt.
1113
+
1114
+ Other Expt.b
1115
+ LSc
1116
+ Configuration
1117
+ and Term
1118
+ Ek (cm-1)
1119
+ Termd
1120
+ Ei (cm-1)
1121
+ (Å)
1122
+ (cm-1)
1123
+ BF
1124
+ (±%)
1125
+ BF
1126
+ (±%)
1127
+ BF
1128
+ 3s23p4s 3Po1
1129
+ 39760.285
1130
+ 3P0
1131
+ 0.000
1132
+ 2514.316
1133
+ 39760.20
1134
+ 0.337
1135
+ (1)
1136
+ 0.333
1137
+ (0.9)
1138
+ 0.333
1139
+
1140
+
1141
+ 3P1
1142
+ 77.115
1143
+ 2519.202
1144
+ 39683.17
1145
+ 0.244
1146
+ (1)
1147
+ 0.247
1148
+ (1.6)
1149
+ 0.248
1150
+
1151
+
1152
+ 3P2
1153
+ 223.157
1154
+ 2528.508
1155
+ 39537.11
1156
+ 0.409
1157
+ (1)
1158
+ 0.407
1159
+ (1.0)
1160
+ 0.409
1161
+
1162
+
1163
+ 1D2
1164
+ 6298.850
1165
+ 2987.643
1166
+ 33461.42
1167
+ 0.0103
1168
+ (6)
1169
+ 0.012
1170
+ (8)
1171
+
1172
+
1173
+
1174
+ 1S0
1175
+ 15394.370
1176
+ 4102.936
1177
+ 24365.91
1178
+ 0.00056
1179
+ (17)
1180
+ <0.0020
1181
+ (30)
1182
+
1183
+ 3s23p4s 3Po2
1184
+ 39955.053
1185
+ 3P1
1186
+ 77.115
1187
+ 2506.897
1188
+ 39877.90
1189
+ 0.243
1190
+ (1)
1191
+ 0.246
1192
+ (1.2)
1193
+ 0.252
1194
+
1195
+
1196
+ 3P2
1197
+ 223.157
1198
+ 2516.112
1199
+ 39731.88
1200
+ 0.757
1201
+ (1)
1202
+ 0.754
1203
+ (0.4)
1204
+ 0.748
1205
+
1206
+
1207
+ 1D2
1208
+ 6298.850
1209
+ 2970.353
1210
+ 33656.18
1211
+ 0.00020
1212
+ (10)
1213
+ 0.00027
1214
+ (13)
1215
+
1216
+ 3s23p4s 1Po1
1217
+ 40991.884
1218
+ 3P0
1219
+ 0.000
1220
+ 2438.768
1221
+ 40991.80
1222
+ 0.0030
1223
+ (7)
1224
+ 0.0034
1225
+ (5.9)
1226
+
1227
+
1228
+
1229
+ 3P1
1230
+ 77.115
1231
+ 2443.365
1232
+ 40914.80
1233
+ 0.0024
1234
+ (7)
1235
+ 0.0027
1236
+ (7.4)
1237
+
1238
+
1239
+
1240
+ 3P2
1241
+ 223.157
1242
+ 2452.118
1243
+ 40768.70
1244
+ 0.0022
1245
+ (7)
1246
+ 0.0025
1247
+ (8.7)
1248
+
1249
+
1250
+
1251
+ 1D2
1252
+ 6298.850
1253
+ 2881.578
1254
+ 34693.02
1255
+ 0.940
1256
+ (0.5)
1257
+ 0.934
1258
+ (0.2)
1259
+
1260
+
1261
+
1262
+ 1S0
1263
+ 15394.370
1264
+ 3905.523
1265
+ 25597.51
1266
+ 0.052
1267
+ (9)
1268
+ 0.057
1269
+ (2.2)
1270
+
1271
+ 3s3p3 3Do1
1272
+ 45276.188
1273
+ 3P0
1274
+ 0.000
1275
+ 2207.978
1276
+ 45276.10
1277
+ 0.566
1278
+ (1)
1279
+ 0.577
1280
+ (1.4)
1281
+ 0.557
1282
+
1283
+
1284
+ 3P1
1285
+ 77.115
1286
+ 2211.745
1287
+ 45199.20
1288
+ 0.409
1289
+ (1)
1290
+ 0.398
1291
+ (2.3)
1292
+ 0.415
1293
+
1294
+
1295
+ 3P2
1296
+ 223.157
1297
+ 2218.916
1298
+ 45053.10
1299
+ 0.025
1300
+ (4)
1301
+ 0.023
1302
+ (13)
1303
+ 0.027
1304
+
1305
+
1306
+ 1D2
1307
+ 6298.850
1308
+ 2564.825
1309
+ 38977.34
1310
+ 0.00044
1311
+ (26)
1312
+ <0.000
1313
+ (15)
1314
+
1315
+ 3s3p3 3Do2
1316
+ 45293.629
1317
+ 3P1
1318
+ 77.115
1319
+ 2210.892
1320
+ 45216.60
1321
+ 0.763
1322
+ (0.5)
1323
+ 0.760
1324
+ (0.4)
1325
+ 0.751
1326
+
1327
+
1328
+ 3P2
1329
+ 223.157
1330
+ 2218.057
1331
+ 45070.40
1332
+ 0.236
1333
+ (1)
1334
+ 0.240
1335
+ (1.3)
1336
+ 0.248
1337
+
1338
+
1339
+ 1D2
1340
+ 6298.850
1341
+ 2563.679
1342
+ 38994.78
1343
+ 0.00053
1344
+ (19)
1345
+ <0.000
1346
+ (5)
1347
+
1348
+ Notes:
1349
+ a Upper and lower levels are taken from NIST ASD and are ordered by term.
1350
+ b Sm87: Smith et al. 1987, ApJ 322, 573. The BFs of weak lines at 2438.768 Å and 2443.365 Å have only one significant digit listed in
1351
+ Sm87 Table 1. We have calculated to two significant digits from their log(gf)s.
1352
+ c LS BFs within the triplet multiplets calculated from the relative line strengths in Appendix I of Cowan (1981) and with frequency-cubed
1353
+ scaling. They are renormalized to the total multiplet strength from the current measurements.
1354
+ d The configuration of all lower levels is 3s23p2
1355
+
1356
+ Table 3.
1357
+ A-values and log(gf)s for 20 transitions of Si I
1358
+ lair
1359
+ Eupper
1360
+ Jupper
1361
+ Elower
1362
+ Jlower
1363
+ This Expt.
1364
+ Sav16a
1365
+
1366
+ PR18
1367
+ (Å)
1368
+ (cm-1)
1369
+
1370
+ (cm-1)
1371
+
1372
+ Aki (s-1)
1373
+ (±%)
1374
+ log(gf)
1375
+ log(gf)
1376
+ log(gf)
1377
+ (±%)
1378
+ 2207.978
1379
+ 45276.188
1380
+ 1
1381
+ 0.000
1382
+ 0
1383
+ 2.57E+07
1384
+ (5)
1385
+ -1.248
1386
+ -1.229
1387
+ -1.318
1388
+ (6.5)
1389
+ 2210.892
1390
+ 45293.629
1391
+ 2
1392
+ 77.115
1393
+ 1
1394
+ 3.47E+07
1395
+ (5)
1396
+ -0.895
1397
+ -0.876
1398
+ -0.965
1399
+ (7.5)
1400
+ 2211.745
1401
+ 45276.188
1402
+ 1
1403
+ 77.115
1404
+ 1
1405
+ 1.86E+07
1406
+ (5)
1407
+ -1.388
1408
+ -1.372
1409
+ -1.459
1410
+ (5.8)
1411
+ 2218.057
1412
+ 45293.629
1413
+ 2
1414
+ 223.157
1415
+ 2
1416
+ 1.07E+07
1417
+ (5)
1418
+ -1.402
1419
+ -1.392
1420
+ -1.477
1421
+ (6)
1422
+ 2218.916
1423
+ 45276.188
1424
+ 1
1425
+ 223.157
1426
+ 2
1427
+ 1.13E+06
1428
+ (6)
1429
+ -2.603
1430
+ -2.586
1431
+ -2.670
1432
+ (4.4)
1433
+ 2438.768
1434
+ 40991.884
1435
+ 1
1436
+ 0.000
1437
+ 0
1438
+ 7.06E+05
1439
+ (9)
1440
+ -2.723
1441
+ -2.684
1442
+ -2.705
1443
+ (5.6)
1444
+ 2443.365
1445
+ 40991.884
1446
+ 1
1447
+ 77.115
1448
+ 1
1449
+ 5.52E+05
1450
+ (9)
1451
+ -2.828
1452
+ -2.788
1453
+ -2.805
1454
+ (0.7)
1455
+ 2452.118
1456
+ 40991.884
1457
+ 1
1458
+ 223.157
1459
+ 2
1460
+ 5.01E+05
1461
+ (9)
1462
+ -2.868
1463
+ -2.829
1464
+ -2.850
1465
+ (3.4)
1466
+ 2506.897
1467
+ 39955.053
1468
+ 2
1469
+ 77.115
1470
+ 1
1471
+ 5.39E+07
1472
+ (5)
1473
+ -0.595
1474
+ -0.566
1475
+ -0.578
1476
+ (0.9)
1477
+ 2514.316
1478
+ 39760.285
1479
+ 1
1480
+ 0.000
1481
+ 0
1482
+ 7.48E+07
1483
+ (5)
1484
+ -0.672
1485
+ -0.667
1486
+ -0.679
1487
+ (0.8)
1488
+ 2516.112
1489
+ 39955.053
1490
+ 2
1491
+ 223.157
1492
+ 2
1493
+ 1.68E+08
1494
+ (5)
1495
+ -0.098
1496
+ -0.088
1497
+ -0.101
1498
+ (0.9)
1499
+ 2519.202
1500
+ 39760.285
1501
+ 1
1502
+ 77.115
1503
+ 1
1504
+ 5.42E+07
1505
+ (5)
1506
+ -0.810
1507
+ -0.793
1508
+ -0.805
1509
+ (0.9)
1510
+ 2528.508
1511
+ 39760.285
1512
+ 1
1513
+ 223.157
1514
+ 2
1515
+ 9.08E+07
1516
+ (5)
1517
+ -0.583
1518
+ -0.567
1519
+ -0.579
1520
+ (0.8)
1521
+ 2563.679
1522
+ 45293.629
1523
+ 2
1524
+ 6298.850
1525
+ 2
1526
+ 2.43E+04
1527
+ (20)
1528
+ -3.922
1529
+ -3.953
1530
+ -4.078
1531
+ (25.2)
1532
+ 2564.825
1533
+ 45276.188
1534
+ 1
1535
+ 6298.850
1536
+ 2
1537
+ 2.00E+04
1538
+ (26)
1539
+ -4.228
1540
+ -4.298
1541
+ -4.389
1542
+ (28.7)
1543
+ 2881.578
1544
+ 40991.884
1545
+ 1
1546
+ 6298.850
1547
+ 2
1548
+ 2.19E+08
1549
+ (5)
1550
+ -0.088
1551
+ -0.044
1552
+ -0.061
1553
+ (1.4)
1554
+ 2970.353
1555
+ 39955.053
1556
+ 2
1557
+ 6298.850
1558
+ 2
1559
+ 4.44E+04
1560
+ (11)
1561
+ -3.531
1562
+ -3.577
1563
+ -3.613
1564
+ (6.4)
1565
+ 2987.643
1566
+ 39760.285
1567
+ 1
1568
+ 6298.850
1569
+ 2
1570
+ 2.30E+06
1571
+ (8)
1572
+ -2.035
1573
+ -2.082
1574
+ -2.113
1575
+ (3)
1576
+ 3905.523
1577
+ 40991.884
1578
+ 1
1579
+ 15394.370
1580
+ 0
1581
+ 1.22E+07
1582
+ (10)
1583
+ -1.077
1584
+ -0.999
1585
+ -1.018
1586
+ (3.5)
1587
+ 4102.936
1588
+ 39760.285
1589
+ 1
1590
+ 15394.370
1591
+ 0
1592
+ 1.24E+05
1593
+ (18)
1594
+ -3.026
1595
+ -3.126
1596
+ -3.154
1597
+ (3)
1598
+ Notes
1599
+ a log(gf)s calculated from A-values presented in Sav16 using equation 2.
1600
+
1601
+ Table 4.
1602
+ Branching Fractions, A-values and log(gf)s for the 4P1/2 - 2P1/2,3/2 doublet of Si II from experiment and recent theory.
1603
+
1604
+ 3s3p2 4P1/2 – 3s23p 2Po1/2 ;
1605
+ lair = 2334.407 Å
1606
+ 3s3p2 4P1/2 – 3s23p 2Po3/2 ;
1607
+ lair = 2350.172 Å
1608
+
1609
+ BF
1610
+ A (s-1)
1611
+ log(gf)
1612
+ BF
1613
+ A (s-1)
1614
+ log(gf)
1615
+ This Expt:a
1616
+ 0.519 ≤ 1%
1617
+ 4990 ± 16%
1618
+ -5.088
1619
+ 0.481 ≤ 1%
1620
+ 4630 ± 16%
1621
+ -5.116
1622
+ Other Expt: CSB93
1623
+ 0.541 ≤ 10%
1624
+ 5200 ± 19%
1625
+ -5.070
1626
+ 0.459 ≤ 10%
1627
+ 4410 ± 21%
1628
+ -5.136
1629
+ Theory: PR18b
1630
+ 0.520
1631
+ 5280 ± 18.9%
1632
+ -5.064
1633
+ 0.480
1634
+ 4882 ± 11.7%
1635
+ -5.092
1636
+ Theory: Wu20b
1637
+ 0.514
1638
+ 5230
1639
+ -5.068
1640
+ 0.486
1641
+ 4940
1642
+ -5.087
1643
+ Notes:
1644
+ a our BFs are combined with the lifetime of CSB93 (104 ± 16 μs) to determine our A-value and log(gf)
1645
+ b PR18 and Wu20 do not report BFs. We calculate BFs from their A-values to show the excellent agreement with the BFs measured in this study.
1646
+
1647
+
1648
+
1649
+
1650
+
1651
+ Table 5.
1652
+ Line-by-line abundances from Si I and Si II lines for the five metal-poor stars investigated.
1653
+ Stellar Parameters
1654
+
1655
+
1656
+ star
1657
+ BD+03º 740
1658
+ BD-13º 3442
1659
+ CD-33º 1173
1660
+ HD 19445
1661
+ HD 84937
1662
+
1663
+
1664
+ Teff
1665
+ 6351
1666
+ 6405
1667
+ 6625
1668
+ 6055
1669
+ 6300
1670
+
1671
+
1672
+ log(g)
1673
+ 3.97
1674
+ 4.04
1675
+ 4.29
1676
+ 4.49
1677
+ 4.00
1678
+
1679
+
1680
+ vt
1681
+ 1.7
1682
+ 1.6
1683
+ 1.6
1684
+ 1.2
1685
+ 1.5
1686
+
1687
+
1688
+ [Fe I/H]
1689
+ -2.89
1690
+ -2.84
1691
+ -2.98
1692
+ -2.14
1693
+ -2.24
1694
+
1695
+
1696
+ [Fe II/H]
1697
+ -2.78
1698
+ -2.73
1699
+ -2.90
1700
+ -2.17
1701
+ -2.26
1702
+
1703
+
1704
+ source
1705
+ Cowan20
1706
+ Cowan20
1707
+ Cowan20
1708
+ Roederer18
1709
+ Sneden16
1710
+ Line-by-Line Abundances – Si I
1711
+ λ (Å)
1712
+ χ (eV)
1713
+ log(gf)
1714
+ [Si I/Fe]
1715
+ [Si I/Fe]
1716
+ [Si I/Fe]
1717
+ [Si I/Fe]
1718
+ [Si I/Fe]
1719
+ 2438.768
1720
+ 0.000
1721
+ -2.723
1722
+ 0.34
1723
+ 0.29
1724
+ 0.48
1725
+ 0.64
1726
+ 0.57
1727
+ 2443.365
1728
+ 0.010
1729
+ -2.828
1730
+ 0.37
1731
+ 0.34
1732
+ 0.48
1733
+ 0.59
1734
+ 0.47
1735
+ 2452.118
1736
+ 0.028
1737
+ -2.868
1738
+ 0.41
1739
+ 0.34
1740
+ 0.43
1741
+
1742
+ 0.42
1743
+ 2506.897
1744
+ 0.010
1745
+ -0.595
1746
+ 0.44
1747
+ 0.46
1748
+ 0.58
1749
+ 0.64
1750
+ 0.52
1751
+ 2514.316
1752
+ 0.000
1753
+ -0.672
1754
+ 0.49
1755
+ 0.46
1756
+ 0.58
1757
+ 0.59
1758
+ 0.52
1759
+ 2516.112
1760
+ 0.028
1761
+ -0.098
1762
+ 0.49
1763
+ 0.49
1764
+ 0.63
1765
+ 0.49
1766
+ 0.52
1767
+ 2519.202
1768
+ 0.010
1769
+ -0.810
1770
+ 0.34
1771
+
1772
+ 0.58
1773
+
1774
+ 0.57
1775
+ 2528.508
1776
+ 0.028
1777
+ -0.583
1778
+ 0.34
1779
+ 0.49
1780
+ 0.58
1781
+
1782
+ 0.57
1783
+ 2564.825
1784
+ 0.780
1785
+ -3.922
1786
+
1787
+
1788
+
1789
+ 0.39
1790
+
1791
+ 2881.578
1792
+ 0.780
1793
+ -0.088
1794
+ 0.24
1795
+ 0.29
1796
+ 0.33
1797
+ 0.39
1798
+ 0.32
1799
+ 2970.353
1800
+ 0.780
1801
+ -3.531
1802
+ 0.41
1803
+ 0.24
1804
+
1805
+ 0.29
1806
+ 0.37
1807
+ 2987.643
1808
+ 0.780
1809
+ -2.035
1810
+ 0.19
1811
+ 0.24
1812
+ 0.38
1813
+ 0.29
1814
+ 0.17
1815
+ 3905.523a
1816
+ 1.907
1817
+ -3.026
1818
+ 0.14
1819
+ 0.24
1820
+ 0.28
1821
+ 0.44
1822
+ 0.32
1823
+
1824
+
1825
+ meana
1826
+ 0.37
1827
+ 0.36
1828
+ 0.51
1829
+ 0.48
1830
+ 0.46
1831
+
1832
+
1833
+
1834
+ 0.09
1835
+ 0.10
1836
+ 0.10
1837
+ 0.14
1838
+ 0.13
1839
+ Line-by-Line Abundances – Si II
1840
+ λ (Å)
1841
+ χ (eV)
1842
+ log(gf)
1843
+ [Si II/Fe]
1844
+ [Si II/Fe]
1845
+ [Si II/Fe]
1846
+ [Si II/Fe]
1847
+ [Si II/Fe]
1848
+ 2334.407
1849
+ 0.036
1850
+ -5.088
1851
+ 0.43
1852
+ 0.48
1853
+ 0.50
1854
+ 0.57
1855
+ 0.52
1856
+ 2350.172
1857
+ 0.036
1858
+ -5.116
1859
+ 0.36
1860
+ 0.43
1861
+ 0.65
1862
+ 0.32
1863
+ 0.37
1864
+
1865
+
1866
+ mean
1867
+ 0.40
1868
+ 0.46
1869
+ 0.58
1870
+ 0.45
1871
+ 0.45
1872
+
1873
+
1874
+
1875
+ 0.05
1876
+ 0.04
1877
+ 0.11
1878
+ 0.18
1879
+ 0.11
1880
+ Note
1881
+ aThe mean and standard deviation of [Si I/Fe] are calculated without the λ3905 line data as this this transition is known to yield
1882
+ temperature-dependent abundances in LTE calculations. See text for further discussion.
1883
+
1884
+
3dFIT4oBgHgl3EQf5yug/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
3dFKT4oBgHgl3EQf8i5H/content/tmp_files/2301.11949v1.pdf.txt ADDED
@@ -0,0 +1,2162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ 1
3
+ Magnetic Amplification at Yb3+ "Designer Defects"
4
+ in the van der Waals Ferromagnet, CrI3
5
+
6
+ Kimo Pressler, Thom J. Snoeren, Kelly M. Walsh, Daniel R. Gamelin*
7
+ Department of Chemistry, University of Washington, Seattle, WA 98195, United States
8
9
+
10
+
11
+ Abstract. The two-dimensional (2D) van der Waals ferromagnet CrI3 has been doped with the
12
+ magnetic optical impurity Yb3+ to yield materials that display sharp multi-line Yb3+
13
+ photoluminescence (PL) controlled by the magnetism of CrI3. Magneto-PL shows that Yb3+
14
+ magnetization is pinned to the magnetization of CrI3. An effective internal field of ~10 T at Yb3+
15
+ is estimated, attributed to strong in-plane Yb3+-Cr3+ superexchange coupling. The anomalously
16
+ low energy of Yb3+ PL in CrI3 reflects relatively high Yb3+-I- covalency, contributing to Yb3+-
17
+ Cr3+ superexchange coupling. The Yb3+ PL energy and linewidth both reveal the effects of
18
+ spontaneous zero-field CrI3 magnetic ordering within 2D layers below TC, despite the absence of
19
+ net magnetization in multilayer samples. These results illustrate the use of optical impurities as
20
+ "designer defects" to introduce unique functionality to 2D magnets.
21
+ Keywords: 2D Ferromagnet, Lanthanide Doping, Molecular Field, Chromium Triiodide,
22
+ Photoluminescence
23
+
24
+
25
+ Defects have the power to transform the physical properties of crystals, imparting new and
26
+ potentially useful functionalities from conductivity to quantum photon emission.1-6 In magnetic
27
+ materials, defects can strongly affect spin-wave propagation, magnetic domain-wall propagation,
28
+ skyrmion dynamics, and magnetic vortex pinning.7-9 Recently, the layered van der Waals
29
+ ferromagnet CrI3 has emerged as a promising platform for exploring strongly correlated spin
30
+ physics, magnetic proximity effects, and next-generation spin-based device architectures in the
31
+
32
+
33
+ 2
34
+ two-dimensional (2D) limit,10-14 but the potential to expand CrI3 functionality through
35
+ introduction of defects remains untapped. Here, we report that doping CrI3 with Yb3+ as a
36
+ "designer point defect" transforms its normally broad and featureless d-d photoluminescence
37
+ (PL) into narrow-line sensitized f-f emission, without compromising its attractive magnetic
38
+ properties. We further show that Yb3+ in CrI3 experiences a large internal effective field that
39
+ makes it extremely sensitive to small external magnetic fields. Using this property, we
40
+ demonstrate magnetically saturated circular polarization of Yb3+ emission at anomalously small
41
+ applied fields. Strikingly, the internal effective field also transmits magnetic information to Yb3+
42
+ even in the absence of any applied field, making Yb3+ a unique embedded luminescent probe of
43
+ spontaneous zero-field magnetic ordering within the 2D monolayers of bulk CrI3. These
44
+ discoveries establish optical impurity doping as an effective strategy for expanding the
45
+ functionality of 2D magnets, with potential ramifications for both basic science and future spin-
46
+ photonic technologies.
47
+ CrI3 has become a model system for exploring magnetic exchange in 2D van der Waals
48
+ structures,10-14 stimulated by recent discoveries of Ising-like hard ferromagnetism in exfoliated
49
+ monolayer CrI3 and layer- and stacking-dependent magnetism in multi-layer CrI3.15,16 Layering
50
+ CrI3 with non-magnetic 2D materials introduces magnetic functionality to the non-magnetic
51
+ material via inter-layer exchange coupling, allowing magnetic manipulation of properties such as
52
+ WSe2 valley polarization and valley Zeeman splittings.17 Extension from few to many (bulk)
53
+ layers preserves the strong Ising-like intralayer ferromagnetic ordering, but facile motion of
54
+ domain walls unblocks demagnetization.18 Despite its rich magnetic properties, CrI3 itself has not
55
+ garnered much attention as an optical material. Bulk CrI3 has been investigated for its very large
56
+ Kerr and Faraday rotation strengths in relation to optical isolators and associated
57
+
58
+
59
+ 3
60
+ technologies.19,20 PL of bulk CrI3 has apparently not been reported, and few-layer CrI3 shows17
61
+ only the very broad d-d PL characteristic of weak-field pseudo-octahedral Cr3+.21 Circular
62
+ polarization of this d-d PL was used to probe the magnetism of few-layer CrI3,17 but the
63
+ emission's breadth limits its further utility for fundamental studies or in spin-photonics,
64
+ stimulating efforts to narrow the band via cavity coupling.22 Doping CrI3 with optically active
65
+ impurities has also not been reported, either in bulk or exfoliated samples.
66
+ To investigate intralayer "proximity" effects resulting from magnetic exchange coupling, we
67
+ have prepared CrI3 doped with luminescent and spin-bearing Yb3+ ions. Large-diameter single-
68
+ crystal flakes of CrI3 were prepared by chemical vapor transport. Yb3+ was introduced by adding
69
+ Yb(0) to the precursor mix. The Yb3+ concentration in the resulting Yb3+:CrI3 crystals is
70
+ controllable, and samples with up to ~5% Yb3+ (cation mole fraction, [Yb3+]/([Cr3+]+[Yb3+])) are
71
+ described here. Further experimental details are provided in the Supporting Information (SI).
72
+ Figure 1a shows a photograph of representative Yb3+:CrI3 flakes in their growth tube. The flakes
73
+ are between 5 and 10 mm across, with typical thicknesses of 5-20 µm (see SI). Figure 1b plots
74
+ XRD data collected on undoped and 4.9% Yb3+-doped CrI3 single-crystal flakes using a powder
75
+ diffractometer. Only (00l) peaks are observed, corresponding to the interlayer lattice spacing and
76
+ reflecting the flake's alignment. Figure 1c highlights the shift to smaller angle of the 001 peak
77
+ upon doping. From fitting the XRD peak positions of undoped and 4.9% Yb3+-doped CrI3
78
+ samples, the interlayer lattice parameter was found to increase 0.24% from 6.996 ± 0.002 to
79
+ 7.013 ± 0.002 Å, attributed to the larger ionic radius of Yb3+ than Cr3+ (87 vs 62 pm,
80
+ respectively) (see SI). These data suggest that the local strain of doping is relieved by distorting
81
+ the lattice along its softest dimension, as expected. Substitutional incorporation of Yb3+ at the
82
+ Cr3+ site is verified by single-crystal XRD measurements (see SI), which also show the increased
83
+
84
+
85
+ 4
86
+ interlayer spacing. The single-crystal data show no detectable electron density between layers,
87
+ ruling out Yb3+ intercalation.
88
+
89
+
90
+ Figure 1. (a) Photograph of 4.9% Yb3+:CrI3 crystals prepared by chemical vapor
91
+ transport. The scale bar shows 5 mm. All experiments were performed on
92
+ individual single-crystal flakes from such a reaction tube. (b) XRD data collected
93
+ on undoped and Yb3+-doped CrI3 single crystals using a powder diffractometer.
94
+ Only (00l) peaks are observed, indicating an oriented sample. Reference peaks for
95
+ c-oriented CrI3 diffraction are included (black, ICSD Coll. Code 251654). (c)
96
+ Magnified view of the 001 reflection for the same samples, displaying an increase
97
+ in the interlayer lattice spacing upon Yb3+ doping. The x axis in (c) was
98
+ determined as described in the SI.
99
+
100
+
101
+ Figure 2a plots the PL spectra of CrI3 and Yb3+:CrI3 single flakes measured at several
102
+ temperatures between 4 and 200 K. The CrI3 spectrum broadens and decreases in intensity with
103
+ increasing temperature, eventually reaching only 7.5% of its 4 K intensity at 200 K (see SI).
104
+ Although the broadening to higher energies is expected from thermal hot bands, the broadening
105
+ to lower energies is abnormal and suggests an additional feature. Upon introduction of Yb3+, the
106
+ broad featureless d-d emission of Cr3+ disappears and is replaced by a series of sharp f-f
107
+ transitions of Yb3+ around 1.15 eV. Assignment of the PL fine structure is discussed later. In
108
+ some samples, Yb3+ doping also reveals another broad emission band centered at ~0.95 eV,
109
+ which is responsible for the red tail of the CrI3 PL here and in some literature spectra. This
110
+
111
+ a
112
+ b
113
+ C
114
+ Yb3+: Crl3
115
+ Intensity (rel.)
116
+ Intensity (rel.)
117
+ Crl3
118
+ 001
119
+ 002
120
+ ref.
121
+ 001
122
+ 003
123
+ 004
124
+ 005
125
+ 006
126
+ I x10
127
+ [x10
128
+ 20
129
+ 40
130
+ 60
131
+ 80
132
+ 13.0
133
+ 14.0
134
+ 2θ (deg.)
135
+ 20 (deg.)
136
+ 5
137
+ feature has been traced to Ni2+ impurities (<0.4%) found in some Cr(0) precursors, and it can be
138
+ mostly eliminated by using 5N Cr(0) precursors (Fig. 2a, bottom). The Yb3+ PL is not influenced
139
+ by this Ni2+ impurity (see SI).
140
+
141
+
142
+ Figure 2. (a) Variable-temperature PL spectra of CrI3 (top) and 4.9% Yb3+:CrI3
143
+ (bottom), measured from 4 to 200 K under 1.88 eV CW excitation at 4 mW/cm2.
144
+ (b) Single-configurational-coordinate diagram (A1g coordinate) describing
145
+ vibronic broadening of the absorption and luminescence bands associated with
146
+ transitions between the 4A2g and 4T2g ligand-field states of pseudo-octahedral
147
+ Cr3+. In Yb3+-doped CrI3, energy transfer from the Cr3+ 4T2g excited state to Yb3+
148
+ yields sensitized 2F5/2 ! 2F7/2 f-f luminescence.
149
+
150
+
151
+ Figure 2b illustrates the photophysics of Yb3+:CrI3 schematically. The lowest-energy excited
152
+ state of CrI3 is the Cr3+ 4T2g ligand-field state, involving excitation of a t2g electron into a σ-
153
+ antibonding eg orbital (in idealized Oh symmetry). The resulting change in equilibrium geometry
154
+ is described by the single-configurational-coordinate (SCC) diagram of Fig. 2b, which illustrates
155
+ the totally symmetric distortion coordinate. This 4T2g excited state also distorts along a
156
+ symmetry-breaking Jahn-Teller coordinate (not illustrated).21 These distortions lead to extensive
157
+
158
+ b
159
+ a
160
+ 1.0
161
+ Crls Undoped
162
+ , Intensity (norm.)
163
+ 4 - 200 K
164
+ 0.8
165
+ Cr3+
166
+ g
167
+ 0.6
168
+ ET
169
+ 0.4-
170
+ 0.2
171
+ Cr3+
172
+ Cr3+
173
+ 1.0
174
+ Yb3+:Crl3
175
+ Abs
176
+ PL
177
+ Intensity (norm.)
178
+ 0.8
179
+ 4 - 200 K
180
+ Yb3+
181
+ 0.6.
182
+ A
183
+ 12g
184
+ PL
185
+ 0.4-
186
+ 0.2
187
+ 2
188
+ 7/2
189
+ 0.0
190
+ 1.2
191
+ 1.1
192
+ 1.0
193
+ 0.9
194
+ Energy (eV)
195
+ 6
196
+ vibronic progressions in the absorption and PL spectra associated with this transition, and cause
197
+ a large PL Stokes shift. Doping CrI3 with Yb3+ introduces a set of 2F5/2 states just below the Cr3+
198
+ 4T2g excited state, favorably positioned for efficient Cr3+ ! Yb3+ energy transfer. At 4.9% Yb3+
199
+ doping, the Cr3+ 4T2g PL is entirely quenched and strong Yb3+ 2F5/2 emission is observed in its
200
+ place (Fig. 2a). Because both Cr3+ and Yb3+ states are localized at single ions, energy migration
201
+ within the CrI3 lattice is required for this complete quenching. In undoped CrI3, energy migration
202
+ among equivalent Cr3+ sites may occur but is not readily apparent. In Yb3+:CrI3, this energy
203
+ migration is interrupted when energy is captured by Yb3+ dopants. In 4.9% Yb3+:CrI3, the
204
+ average Cr3+ ion has only ~14% probability of having a neighboring Yb3+, and ~50% probability
205
+ of having at least one Yb3+ within its first two cation shells. Energy must therefore migrate over
206
+ at least a few lattice sites within the 4T2g lifetime to fully quench the Cr3+ emission as observed in
207
+ Fig. 2a.
208
+ Figure 3a shows the anticipated electronic structure of Yb3+ in CrI3. In the free ion, spin-orbit
209
+ coupling splits the 2F term into 2F5/2 (excited) and 2F7/2 (ground) states by an amount ΔE = 7/2ζ,
210
+ where ζ = 361.8 meV is the free-ion spin-orbit coupling constant.23 In crystals, each of these
211
+ states is further split by the crystal field. Figure 3b shows circularly polarized PL spectra of 4.9%
212
+ Yb3+:CrI3 measured in a 0.5 T field applied parallel to the crystal's c axis (vide infra). Three
213
+ zero-phonon electronic origins are observed and assigned to the Γ8 ! Γ6, Γ8, and Γ7 transitions
214
+ anticipated from Fig. 3a using idealized Oh notation. The actual cation site symmetry in CrI3 is
215
+ lower (Fig. 3a, right),24 but the expected low-symmetry splitting of the Γ8 origin is not clearly
216
+ identifiable. The Γ6 peak is broad with observable structure on its high-energy shoulder, thus
217
+ making the precise energy of this origin unclear within ~20 cm-1 (~2.5 meV). Analysis of these
218
+ PL energies within the Angular Overlap Model (AOM)25 reproduces the 2F7/2 splittings well,
219
+
220
+
221
+ 7
222
+ predicting a 2F5/2 splitting of ~34 meV and splittings of the two Γ8 levels by <0.5 meV each (see
223
+ SI). Additional satellite features are observed ~127 cm-1 (15.7 meV) below the Γ8 and Γ7
224
+ electronic origins and assigned as phonon sidebands. Raman spectra show a totally symmetric
225
+ lattice breathing mode of CrI3 at this energy (ν = 127 cm-1).26
226
+ A striking aspect of this Yb3+:CrI3 PL is its very low energy relative to other Yb3+ PL. This
227
+ energy is primarily determined by spin-orbit coupling (Fig. 3a). Yb3+ spin-orbit coupling can be
228
+ reduced from that in the free ion by covalent expansion of the f-electron wavefunctions
229
+ (nephelauxetic effect),27,28 but f-orbital covalency in trivalent lanthanides is typically very small
230
+ and this effect is usually considered negligible at ambient pressure. A survey of Yb3+-doped
231
+ crystals shows that the energy gap between Yb3+ 2F5/2 and 2F7/2 barycenters remains very near the
232
+ free-ion value of ΔE ~ 1.266 eV across doped oxide, fluoride, chloride, bromide, sulfide, and
233
+ phosphide lattices (see SI).29-33 We note that we have been unable to find any reports of PL from
234
+ other Yb3+-doped iodide crystals, perhaps because Yb3+ is easily reduced to Yb2+ under common
235
+ iodide crystal-growth conditions. Yb3+:CrI3 deviates from this typical behavior substantially: ΔE
236
+ is only ~1.163 eV, or ~9% smaller than in the free ion, representing the smallest spin-orbit
237
+ coupling yet reported for Yb3+. Covalency in Yb3+:CrI3 is certainly enhanced by the large ionic
238
+ radius and polarizability of the iodides, but this consideration alone likely cannot explain the
239
+ anomaly. The atomic spin-orbit coupling of I is also much greater than those of other common
240
+ ligands for Yb3+, and should contribute to the spectroscopic spin-orbit splitting via covalency.
241
+ Furthermore, the large ionic radius of Yb3+ compared to Cr3+ means that Yb3+ experiences an
242
+ internal pressure imposed by the surrounding lattice, which may also increase covalency.
243
+ Importantly, Yb3+-I- covalency is essential for strong Yb3+-Cr3+ superexchange coupling.
244
+
245
+
246
+
247
+ 8
248
+
249
+
250
+
251
+
252
+
253
+ Figure 3. (a) Splitting of the Yb3+ free-ion 2F term due to spin-orbit (ζ) and
254
+ crystal-field (Oh, <D3d) interactions. The colored down arrows indicate the three
255
+ crystal-field transitions anticipated in the low-temperature PL spectrum in the
256
+ idealized Oh site symmetry. The actual site symmetry is reduced to <D3d, e.g., to
257
+ C2, splitting each Γ8 level into two Kramers doublets. (b) Magnetic circularly
258
+ polarized luminescence (MCPL) spectra of 4.9% Yb3+:CrI3 measured at 5 K with
259
+ an applied magnetic field of 0.5 T. The σ- (red) and σ+ (black) spectra were
260
+ collected using unpolarized 1.88 eV CW excitation at 40 mW/cm2 and have
261
+ different amplitudes. The three electronic origins in idealized Oh symmetry are
262
+ indicated below the spectra, assigned to the Γ8 ! Γ6, Γ8, and Γ7 transitions
263
+ illustrated in panel (a). The dashed black lines indicate vibronic sidebands with a
264
+ characteristic energy spacing of ~127 cm-1 (15.7 meV), consistent with the A1g
265
+ lattice mode of CrI3. (c) False-color plot of the MCPL polarization ratio, ρ = (σ- –
266
+ σ+)/(σ- + σ+), for the full Yb3+ PL spectrum, measured from -2 to +2 T at 5 K. (d)
267
+ ρ of the Γ8 ! Γ7 electronic origin (1.117 eV) plotted as a function of magnetic
268
+ field from -6 to 6 T. The black (red) trace corresponds to the positive (negative)
269
+ field sweep direction. Inset: Expanded plot of ρ between -0.4 and +0.4 T, showing
270
+ a coercive field of ~55 mT. For both field-sweep measurements, the sample was
271
+ excited with linearly polarized 1.96 eV excitation, but with different powers (see
272
+ Methods). (e) False-color plot of the polarization ratio vs temperature, measured
273
+ at 0.5 T. The dashed black line indicates the Curie temperature of bulk CrI3 (TC =
274
+ 61 K). (f) Plot of the Γ8 ! Γ7 polarization ratio at the peak maximum measured at
275
+ 0.5 T as a function of temperature. The red curve is a guide to the eye. Inset:
276
+
277
+ a
278
+ c
279
+ d
280
+ 2
281
+ Oh
282
+ <D3d
283
+ 5 K
284
+ 1.0-
285
+ 5 K
286
+ 0.2
287
+ Iz
288
+ (wou)
289
+ 1
290
+ 0.5-
291
+ 0.1
292
+ I:
293
+ E
294
+ E
295
+ 7/2
296
+ 0.0 Φ
297
+ 0.0
298
+ Iz
299
+ -0.1
300
+ -0.5 -
301
+ -1-
302
+ -0.4
303
+ 0.0
304
+ 0.4
305
+ Fieid (T)
306
+ F12
307
+ -0.2
308
+ -1.0
309
+ Free Ion + Spin-Orbit
310
+ +
311
+ Crystal Field
312
+ -2 -
313
+ 1.18
314
+ 1.16
315
+ 1.14
316
+ 1.12
317
+ 1.10
318
+ 1.08
319
+ -6
320
+ -4
321
+ -2
322
+ 0
323
+ 2
324
+ 4
325
+ 6
326
+ Energy (eV)
327
+ Energy (eV)
328
+ Field (T)
329
+ b
330
+ e
331
+ f
332
+ 1.16
333
+ 1.14
334
+ 1.12
335
+ 1.10
336
+ 1.08
337
+ 125
338
+ 0.20
339
+ 0.5 T
340
+ g-
341
+ 0.5 T
342
+ 0.5 T
343
+ 5 K
344
+ 0.2
345
+ 0.15-
346
+ +0
347
+ 0.1
348
+ Ip/dp
349
+ 75
350
+
351
+ Tc
352
+ 0.0 Φ
353
+ 0.10-
354
+ I Tc = 61 K
355
+ 50 -
356
+ -0.1
357
+ 0
358
+ 50
359
+ 100
360
+ 150
361
+ [7
362
+ 0.05 -
363
+ T(K)
364
+ -
365
+ 25-
366
+ +-0.2
367
+ A1g vibration
368
+ 9264 cm
369
+ 9010 cm
370
+ Tci
371
+ 9410cm
372
+ ~127cm
373
+ 0.00 -
374
+ 5-
375
+ 9400
376
+ 9200
377
+ 9000
378
+ 8800
379
+ 8600
380
+ 1.18
381
+ 1.16
382
+ 1.14
383
+ 1.12
384
+ 1.10
385
+ 1.08
386
+ 0
387
+ 20
388
+ 40
389
+ 60
390
+ 80
391
+ 100
392
+ 120
393
+ Wavenumber (cm")
394
+ Energy (eV)
395
+ Temperature (K)
396
+ 9
397
+ Derivative of ρ as a function of temperature. The extracted Curie temperature is
398
+ 61 K, indistinguishable from that of the undoped crystal.
399
+
400
+
401
+ From Fig. 3a, all features show circularly polarized PL, with the Γ8 ! Γ7 origin showing the
402
+ greatest polarization ratio (ρ = (σ- – σ+)/(σ- + σ+) = 19%). ρ is independent of excitation power
403
+ but its maximum value varies somewhat between samples (see SI). Figure 3c plots ρ across the
404
+ entire PL spectrum as a function of magnetic field. All Yb3+ transitions are influenced by the
405
+ applied field in the same way, consistent with all PL arising from the same excited state (Γ8).
406
+ Figure 3d plots ρ for the Γ8 ! Γ7 peak as a function of applied field. ρ increases rapidly at very
407
+ low fields and saturates at only ~0.2 T. Increasing the field from 0.2 to 6.0 T does not change ρ
408
+ further, consistent with complete magnetization of Yb3+ by 0.2 T. On an expanded scale, these
409
+ data show a hysteresis with coercivity of ~55 mT, comparable to that found in magnetic
410
+ measurements of bulk CrI3.18,34 We note that these ρ values are generally small compared to
411
+ those in cubic Yb3+:InP (~70% at 10 T, 4.2 K),33 possibly suggesting an in-plane or canted Yb3+
412
+ anisotropy. Figure 3e summarizes the temperature dependence of ρ, measured at 0.5 T, and Fig.
413
+ 3f highlights the temperature dependence for Γ8 ! Γ7 individually. All spectral features behave
414
+ similarly, showing a pronounced drop in polarization at the Curie temperature of bulk CrI3 (~61
415
+ K, see Fig. 3f, inset). These magneto-optical data agree well with magnetic susceptibility data
416
+ (see SI), and both indicate that Yb3+ doping causes no significant change in the magnetic
417
+ characteristics of CrI3 in these samples. This MCPL field and temperature dependence is highly
418
+ unusual for Yb3+, which generally shows simple paramagnetism of a pseudo-spin 1/2. For
419
+ example, our AOM crystal-field analysis (see SI) predicts gavg ~ 2.7 for the lowest 2F7/2 Kramers
420
+ doublet. Overall, the anomalous magnetism seen in the Yb3+ MCPL reflects magnetic integration
421
+ of Yb3+ with ferromagnetic CrI3.
422
+
423
+
424
+ 10
425
+ Magnetic ordering was originally explained by Weiss in terms of a huge internal "molecular
426
+ field"35 exerted upon individual ions by their surrounding magnetic matrix, and this model
427
+ provides a useful heuristic for estimating the effective field experienced by Yb3+ within CrI3. In
428
+ this model, the effective field is given by the sum of external and molecular fields, as in eq 1.
429
+
430
+
431
+ Heff = Hext + Hmol
432
+
433
+
434
+
435
+
436
+ (1)
437
+ In Fig. 3c,d, CrI3 reaches magnetic saturation at very small Hext (<0.2 T). At such low fields, Hext
438
+ << Hmol, and hence Heff ~ Hmol. In the molecular-field model, Hmol in CrI3 is given by eq 2,
439
+ !!"# =
440
+ !!" !
441
+ !!!
442
+
443
+
444
+
445
+
446
+
447
+ (2)
448
+ where, J is the nearest-neighbor exchange coupling constant, z = 3 in CrI3, g is the Landé g factor
449
+ (2.00 for Cr3+ in CrI3), µB is the Bohr magneton, and ! is the spin expectation value for Cr3+ in
450
+ CrI3, whose absolute value equals 3/2 at saturation. TC in this model is determined by J according
451
+ to eq 3,
452
+ !! =
453
+ !!"#(!!!)
454
+ !!!
455
+
456
+
457
+
458
+
459
+
460
+
461
+ (3)
462
+ where S = 3/2 for Cr3+, and kB is the Boltzmann constant. From TC = 61 K, eq
463
+ 3 yields a value of J = 0.70 meV in CrI3. Entering this J value into eq 2 yields Hmol = ~54 T in
464
+ CrI3. Hmol is dominated by superexchange coupling, since dipolar contributions cannot account
465
+ for the high TC of CrI3.36 For Yb3+ in CrI3, J is reduced by the shielding of the 4f orbitals.
466
+ Cr3+(d)-Yb3+(f) superexchange coupling has received relatively little experimental or theoretical
467
+ attention,37-39 but relevant experimental data are found in inelastic neutron scattering analyses of
468
+ Cs3Yb1.8Cr0.2Br9, where Yb3+-Cr3+ exchange splittings are ~1/4 those for Cr3+-Cr3+.37 This
469
+ scaling factor is approximate because of the different lattice structure, but Cs3Yb1.8Cr0.2Br9 is the
470
+ most similar halide-bridged Yb3+-Cr3+ system for which reliable exchange-coupling strengths
471
+ could be found. This rough scaling reduces Hmol to ~14 T. Accounting for the larger g value of
472
+
473
+
474
+ 11
475
+ Yb3+ (~2.7, see SI), our best estimate is Hmol ~ 10 T for Yb3+ ions within CrI3. Future
476
+ spectroscopic measurements (e.g., inelastic neutron scattering, Mössbauer, etc.) and calculations
477
+ will be needed to refine this estimate, but the central conclusion drawn from both the
478
+ experimental data and this analysis is clear: Yb3+ magnetization in Yb3+:CrI3 is effectively
479
+ pinned to the magnetic ordering of the CrI3 lattice through strong Yb3+-Cr3+ superexchange
480
+ coupling. The large Hmol in Yb3+:CrI3 is attributable in large part to the Yb3+-I- covalency
481
+ discussed above. For comparison, exchange fields of 1.7 and ~1.1 T are reported for Yb3+ in
482
+ ferrimagnetic hexagonal YbFeO3
483
+ 40 and distorted orthorhombic YbCrO3.41 At these values, Yb3+
484
+ magnetization is not pinned to the ordered TM3+ spin sublattices.
485
+ A further remarkable aspect of Yb3+:CrI3 is that the effects of Hmol are evident even at zero
486
+ magnetic field (Hext = 0). Figure 4a plots zero-field Yb3+ PL spectra as a function of temperature
487
+ from 4 to 200 K. Viewing the data starting from high temperature, the peak positions appear
488
+ nearly constant until roughly TC. Below TC, the peaks all shift to lower energy together. This
489
+ redshift is also evident in Fig. 3e. Figure 4b highlights the temperature dependence of the Γ8 !
490
+ Γ7 transition energy. From 120 K to ~TC, the transition energy increases gradually by only ~2
491
+ meV. Such temperature dependence has been variously modeled in terms of Raman scattering of
492
+ non-resonant phonons or direct absorption/emission of phonons resonant with a crystal-field
493
+ splitting.42,43 For example, both models reproduce the 2F7/2 ! 2F5/2 transition energies of
494
+ Yb3+:YAG well, whereas the resonant phonon model reproduces absorption linewidths
495
+ marginally better.43 As such, we apply the resonant phonon model here. The PL energies above
496
+ TC are thus described by eq 4,42,43
497
+
498
+
499
+
500
+ !(!) = !! +
501
+ !!
502
+ !! !!!!!
503
+
504
+
505
+ T > TC
506
+ (4)
507
+
508
+
509
+ 12
510
+ where E0 is the energy at 0 K, αs describes the electron-phonon interaction strength, and Δ is the
511
+ energy of the activating phonon mode, fixed at Δ = 127 cm-1 (15.7 meV, Fig. 3b).
512
+ The solid curve in the high-temperature portion of Fig. 4b (>TC) shows a fit to the high-
513
+ temperature data using eq 4, floating E0 and αs and yielding best-fit values of 1.1242 eV and -6.3
514
+ meV, respectively. Eq 4 plateaus at E0 in the limit of 0 K (dashed line < TC in Fig. 4b), but the
515
+ experimental peak energy shows a discontinuity at TC, dropping sharply and decreasing with
516
+ decreasing temperature until reaching ~7 meV below E0 in the low-temperature limit. With its
517
+ link to TC and its characteristic curvature, this trend in Yb3+ PL energy is associated with the
518
+ spontaneous magnetization of individual CrI3 monolayers, even though there is no net
519
+ magnetization in these samples.
520
+ Spontaneous ferromagnetic ordering is classified as a second-order phase transition and,
521
+ within the theory of universal scaling laws, is characterized by the order parameter β shown in eq
522
+ 5 describing the magnetization temperature dependence.44
523
+ !(!) = !! −
524
+ !!!!
525
+ !!
526
+ !
527
+
528
+
529
+
530
+
531
+
532
+ (5)
533
+ M0 is the saturation moment per magnetic ion and equals 3.1 µB for CrI3.18 The precise value of β
534
+ depends on the underlying spin physics, but it is commonly around 1/3.12 Previous examination
535
+ of bulk CrI3 found a critical exponent of β = 0.284, between that expected from the 3D Ising
536
+ model (β = 0.325) and that of the tri-critical mean-field model (β = 0.250).34 Accordingly, the
537
+ data in Fig. 4b below TC were simulated using eq 6 (sum of eq 4 and eq 5, with eq 4 parameters
538
+ fixed by the high-temperature data). The scaling parameter (γ) in eq 6 relates magnetization to
539
+ PL energy shift. The data are reproduced well using fixed values of β = 1/3, TC = 60 K, and Δ =
540
+ 127 cm-1 (15.7 meV), with γ as the only adjustable parameter. Relating eqs 5 and 6, these results
541
+ indicate an Yb3+ PL energy shift of -2.2 meV/µB during spontaneous CrI3 intralayer
542
+
543
+
544
+ 13
545
+ magnetization. We stress that the zero-field PL data in Fig. 4 are not magnetic data, but highlight
546
+ the strong influence of CrI3 spontaneous magnetization on the Yb3+ PL. Because TC in these
547
+ samples is indistinguishable from that of bulk CrI3 (Figs. 3f, S15), we tentatively attribute the
548
+ small apparent broadening of the PL energy discontinuity around TC in Fig. 4b to additional PL
549
+ hot bands that are not spectrally resolved.
550
+ !(!) = !! +
551
+ !!
552
+ !! !!!!! + ! −
553
+ !!!!
554
+ !!
555
+ !
556
+
557
+
558
+ T < TC
559
+ (6)
560
+
561
+
562
+ Figure 4. (a) False-color plot of the Yb3+ PL intensities vs temperature measured
563
+ for 4.9% Yb3+:CrI3 from 4 to 150 K at zero external magnetic field. The
564
+ horizontal dashed line indicates TC = 61 K. (b) Peak position of the Γ8 ! Γ7
565
+ transition plotted vs temperature. The solid red curve shows the behavior
566
+ predicted from the combination of resonant phonon interactions (eq 4) and
567
+ spontaneous magnetization (below TC, eq 6). The dashed red curve shows the
568
+ behavior predicted from eq 4 alone below TC. The solid curve was obtained using
569
+ eqs 4 and 6 with fixed parameters of Δ = 127 cm-1 (15.7 meV), TC = 60 K, and β =
570
+ 1/3, adjusting only the amplitude scaling. (c) Plot of the Γ8 ! Γ7 PL linewidth vs
571
+ temperature, from the same VTPL measurements.
572
+
573
+
574
+
575
+ a
576
+ b
577
+ 150
578
+ 1124
579
+ (meV)
580
+ 6
581
+ Peak
582
+ 1.0
583
+ 125-
584
+ 1122
585
+ Position
586
+ Position
587
+ 4
588
+ Peak Position
589
+ 1120.
590
+ 0.8
591
+ 2
592
+ 100.
593
+ Temperature (K)
594
+ Peak
595
+ PL
596
+ (meV)
597
+ 1118
598
+ . Intensity (
599
+ 0.6
600
+ 0
601
+ 1116
602
+ 75
603
+ C
604
+ 9.
605
+ FWHM (meV)
606
+ 8
607
+ 50.
608
+ 0.2
609
+ Peak FWHM
610
+ 7
611
+ 6.
612
+ 25.
613
+ -0.0
614
+ 5.
615
+ 5 .
616
+ 4
617
+ 1.181.161.141.121.101.08
618
+ 0
619
+ 20
620
+ 40
621
+ 60
622
+ 80
623
+ 100
624
+ 120
625
+ Energy (ev)
626
+ Temperature (K)
627
+ 14
628
+ Figure 4c plots the temperature dependence of the Γ8 ! Γ7 linewidth (full-width-at-half-
629
+ maximum, FWHM). These data show similar trends as observed in the peak energies of Fig. 4b.
630
+ Below TC, the FWHM decreases from ~9 meV to ~4.5 meV in the low-temperature limit,
631
+ attributed to the reduction in spin disorder around Yb3+. These data thus also reflect spontaneous
632
+ magnetic ordering in monolayers of CrI3. Although distinct low-energy shoulders are not
633
+ resolved in these data, we hypothesize that the energy and linewidth changes below TC both
634
+ ultimately stem from loss of hot-magnon sideband intensity as CrI3 monolayers order
635
+ magnetically.45 It will be an interesting future direction to explore magnon coupling to f-f
636
+ transitions in these and related doped 2D magnetic materials.
637
+ In summary, doping Yb3+ into the 2D van der Waals ferromagnet CrI3 transforms this
638
+ material's PL from broad-band to sharp multi-line, while retaining its key magnetic functionality.
639
+ The f-f PL of Yb3+:CrI3 is anomalously low in energy, reflecting relatively covalent Yb3+-I-
640
+ bonding. Yb3+ magnetization is pinned to CrI3 by strong superexchange interactions, which
641
+ contribute an effective internal field of ~10 T that is greater than the field required for magnetic
642
+ saturation of paramagnetic Yb3+ and much greater than the field required for full CrI3
643
+ magnetization at low temperature (~0.2 T). Flipping the magnetization of CrI3 with a small
644
+ external field thus also flips the Yb3+ magnetization and inverts its PL circular polarization.
645
+ Magnetic pinning is maintained up to the TC of CrI3, but is rapidly lost above TC. We further
646
+ showed that the Yb3+ PL energy and linewidth both sense this internal field even at zero applied
647
+ field, mapping spontaneous intralayer magnetic ordering below TC despite the absence of net
648
+ magnetization. Because each Yb3+ ion is a local lattice defect within an individual CrI3
649
+ monolayer, we expect these induced functionalities to persist down to the monolayer, prompting
650
+ future studies on exfoliated Yb3+:CrI3 and associated stacked van der Waals heterostructures and
651
+
652
+
653
+ 15
654
+ layered devices. These results demonstrate the power of designer defects to add functionality to
655
+ 2D magnetic materials, enrich their fundamental physics, and create new materials of potential
656
+ utility for future spin-photonics applications.
657
+
658
+ Acknowledgments. Support of this project by the US NSF (DMR-1807394) is gratefully
659
+ acknowledged. Initial stages of this work were performed as part of Programmable Quantum
660
+ Materials, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE),
661
+ Office of Science, Basic Energy Sciences (BES), under award DESC0019443. Additional
662
+ support was received from the UW Clean Energy Institute (graduate fellowships to T.J.S. and
663
+ K.M.W.). Part of this work was conducted at the Molecular Analysis Facility, a National
664
+ Nanotechnology Coordinated Infrastructure (NNCI) site at the University of Washington that is
665
+ supported in part by the National Science Foundation (NNCI-1542101 and NNCI-2025489), the
666
+ University of Washington, the Molecular Engineering & Sciences Institute, the Clean Energy
667
+ Institute, and the National Institutes of Health. The authors thank Dr. Werner Kaminsky and
668
+ Paige M. Gannon for single-crystal XRD measurements, Dr. Xi Wang for assistance with optical
669
+ microscope measurements, Prof. Jiun-Haw Chu and Dr. Zhaoyu Liu for VSM measurements,
670
+ and Prof. Robert Glaum, Maximilian Jähnig, and Julia Spitz for provision of and assistance with
671
+ the BonnMag code.
672
+
673
+
674
+ Author Information
675
+
676
+ Corresponding Author
677
+ Daniel R. Gamelin - Department of Chemistry, University of Washington,
678
+ Seattle, Washington 98195-1700, United States; orcid.org/0000-0003-2888-9916;
679
680
+
681
+
682
+ Authors
683
+ Kimo Pressler - Department of Chemistry, University of Washington, Seattle,
684
+ Washington 98195-1700, United States; orcid.org/0000-0003-2788-1592
685
+ Thom J. Snoeren - Department of Chemistry, University of Washington, Seattle,
686
+ Washington 98195-1700, United States; orcid.org/0000-0001-8055-3710
687
+ Kelly M. Walsh - Department of Chemistry, University of Washington, Seattle,
688
+ Washington 98195-1700, United States; orcid.org/0000-0001-5349-8816
689
+
690
+
691
+
692
+ Supporting Information
693
+
694
+
695
+ 16
696
+ The Supporting Information is available free of charge at https://pubs.acs.org/doi/XXXX
697
+ Additional experimental details, including about sample preparation and characterization.
698
+ Additional variable-temperature PL data, PL polarization vs magnetic field data,
699
+ excitation-power-dependence data, results from Yb3+ crystal-field calculations, and
700
+ comparison of Yb3+ crystal-field barycenter energies in various lattices (PDF).
701
+
702
+
703
+ References
704
+ (1) Cox, P. A., Electronic Structure and Chemistry of Solids. Oxford University Press: Oxford,
705
+ 1987.
706
+ (2) Henderson, B.; Imbusch, G. F., Optical Spectroscopy of Inorganic Solids. Oxford University
707
+ Press: Oxford, 1989.
708
+ (3) Kittel, C., Introduction to Solid State Physics. 8 ed.; Wiley: New York, 2004.
709
+ (4) Bassett, L. C.; Alkauskas, A.; Exarhos, A. L.; Fu, K.-M. C., Quantum defects by design.
710
+ Nanophotonics 2019, 8, 1867-1888.
711
+ (5) Tran, T. T.; Elbadawi, C.; Totonjian, D.; Lobo, C. J.; Grosso, G.; Moon, H.; Englund, D. R.;
712
+ Ford, M. J.; Aharonovich, I.; Toth, M., Robust Multicolor Single Photon Emission from
713
+ Point Defects in Hexagonal Boron Nitride. ACS Nano 2016, 10, 7331-7338.
714
+ (6) Hong, J.; Jin, C.; Yuan, J.; Zhang, Z., Atomic Defects in Two-Dimensional Materials: From
715
+ Single-Atom Spectroscopy to Functionalities in Opto-/Electronics, Nanomagnetism, and
716
+ Catalysis. Adv. Mater. 2017, 29, 1606434.
717
+ (7) Cowley, R. A.; Buyers, W. J. L., The Properties of Defects in Magnetic Insulators. Rev.
718
+ Mod. Phys. 1972, 44, 406-450.
719
+ (8) Wiesendanger, R., Nanoscale Magnetic Skyrmions in Metallic Films and Multilayers: A
720
+ New Twist for Spintronics. Nat. Rev. Mater. 2016, 1, 16044.
721
+ (9) Lima Fernandes, I.; Bouaziz, J.; Blügel, S.; Lounis, S., Universality of Defect-Skyrmion
722
+ Interaction Profiles. Nat. Commun. 2018, 9, 4395.
723
+ (10) Song, T.; Cai, X.; Tu, M. W.-Y.; Zhang, X.; Huang, B.; Wilson, N. P.; Seyler, K. L.; Zhu,
724
+ L.; Taniguchi, T.; Watanabe, K.; McGuire, M. A.; Cobden, D. H.; Xiao, D.; Yao, W.; Xu,
725
+ X., Giant Tunneling Magnetoresistance in Spin-Filter van der Waals Heterostructures.
726
+ Science 2018, 360, 1214-1218.
727
+ (11) Huang, B.; McGuire, M. A.; May, A. F.; Xiao, D.; Jarillo-Herrero, P.; Xu, X., Emergent
728
+ Phenomena and Proximity Effects in Two-Dimensional Magnets and Heterostructures. Nat.
729
+ Mater. 2020, 19, 1276-1289.
730
+ (12) Gibertini, M.; Koperski, M.; Morpurgo, A. F.; Novoselov, K. S., Magnetic 2D materials
731
+ and heterostructures. Nat. Nanotech. 2019, 14, 408-419.
732
+ (13) Gong, C.; Zhang, X., Two-dimensional magnetic crystals and emergent heterostructure
733
+ devices. Science 2019, 363, eaav4450.
734
+ (14) Wang, Q. H.; Bedoya-Pinto, A.; Blei, M.; Dismukes, A. H.; Hamo, A.; Jenkins, S.;
735
+ Koperski, M.; Liu, Y.; Sun, Q.-C.; Telford, E. J.; Kim, H. H.; Augustin, M.; Vool, U.; Yin,
736
+ J.-X.; Li, L. H.; Falin, A.; Dean, C. R.; Casanova, F.; Evans, R. F. L.; Chshiev, M.;
737
+ Mishchenko, A.; Petrovic, C.; He, R.; Zhao, L.; Tsen, A. W.; Gerardot, B. D.; Brotons-
738
+ Gisbert, M.; Guguchia, Z.; Roy, X.; Tongay, S.; Wang, Z.; Hasan, M. Z.; Wrachtrup, J.;
739
+ Yacoby, A.; Fert, A.; Parkin, S.; Novoselov, K. S.; Dai, P.; Balicas, L.; Santos, E. J. G., The
740
+ Magnetic Genome of Two-Dimensional van der Waals Materials. ACS Nano 2022, 16,
741
+ 6960-7079.
742
+
743
+
744
+ 17
745
+ (15) Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong,
746
+ D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H.; Yao, W.; Xiao, D.; Jarillo-Herrero, P.;
747
+ Xu, X., Layer-Dependent Ferromagnetism in a van der Waals Crystal Down to the
748
+ Monolayer Limit. Nature 2017, 546, 270-273.
749
+ (16) Sivadas, N.; Okamoto, S.; Xu, X.; Fennie, C. J.; Xiao, D., Stacking-Dependent Magnetism
750
+ in Bilayer CrI3. Nano Lett. 2018, 18, 7658-7664.
751
+ (17) Seyler, K. L.; Zhong, D.; Huang, B.; Linpeng, X.; Wilson, N. P.; Taniguchi, T.; Watanabe,
752
+ K.; Yao, W.; Xiao, D.; McGuire, M. A.; Fu, K.-M. C.; Xu, X., Valley Manipulation by
753
+ Optically Tuning the Magnetic Proximity Effect in WSe2/CrI3 Heterostructures. Nano Lett.
754
+ 2018, 18, 3823-3828.
755
+ (18) McGuire, M. A.; Dixit, H.; Cooper, V. R.; Sales, B. C., Coupling of Crystal Structure and
756
+ Magnetism in the Layered, Ferromagnetic Insulator CrI3. Chem. Mater. 2015, 27, 612-620.
757
+ (19) Dillon, J. F.; Kamimura, H.; Remeika, J. P., Magneto-Optical Properties of Ferromagnetic
758
+ Chromium Trihalides. J. Phys. Chem. Solids 1966, 27, 1531-1549.
759
+ (20) Suits, J., Faraday and Kerr Effects in Magnetic Compounds. IEEE Trans. Mag. 1972, 8, 95-
760
+ 105.
761
+ (21) Güdel, H. U.; Snellgrove, T. R., Jahn-Teller Effect in the 4T2g State of Chromium(III) in
762
+ Dicesium Sodium Indium(III) Hexachloride. Inorg. Chem. 1978, 17, 1617-1620.
763
+ (22) Peng, B.; Chen, Z.; Li, Y.; Liu, Z.; Liang, D.; Deng, L., Multiwavelength Magnetic Coding
764
+ of Helical Luminescence in Ferromagnetic 2D Layered CrI3. iScience 2022, 25, 103623.
765
+ (23) Wyart, J.-F.; Tchang-Brillet, W.-Ü. L.; Spector, N.; Palmeri, P.; Quinet, P.; Biémont, E.,
766
+ Extended Analysis of the Spectrum of Triply-ionized Ytterbium (Yb IV) and Transition
767
+ Probabilities. Phys. Scripta 2001, 63, 113-121.
768
+ (24) Georgescu, A. B.; Millis, A. J.; Rondinelli, J. M., Trigonal Symmetry Breaking and Its
769
+ Electronic Effects in the Two-Dimensional Dihalides MX2 and Trihalides MX3. Phys. Rev.
770
+ B 2022, 105, 245153.
771
+ (25) Bronova, A.; Bredow, T.; Glaum, R.; Riley, M. J.; Urland, W., BonnMag: Computer
772
+ Program for Ligand-Field Analysis of f n Systems Within the Angular Overlap Model. J.
773
+ Comp. Chem. 2018, 39, 176-186.
774
+ (26) Zhang, Y.; Wu, X.; Lyu, B.; Wu, M.; Zhao, S.; Chen, J.; Jia, M.; Zhang, C.; Wang, L.;
775
+ Wang, X.; Chen, Y.; Mei, J.; Taniguchi, T.; Watanabe, K.; Yan, H.; Liu, Q.; Huang, L.;
776
+ Zhao, Y.; Huang, M., Magnetic Order-Induced Polarization Anomaly of Raman Scattering
777
+ in 2D Magnet CrI3. Nano Lett. 2020, 20, 729-734.
778
+ (27) Al-Mobarak, R.; Warren, K. D., The Effect of Covalency on the Spin—Orbit Coupling
779
+ Constant. Chem. Phys. Lett. 1973, 21, 513-516.
780
+ (28) Bungenstock, C.; Tröster, T.; Holzapfel, W. B., Effect of Pressure on Free-Ion and Crystal-
781
+ Field Parameters of Pr3+ in LOCl (L = La, Pr, Gd). Phys. Rev. B 2000, 62, 7945-7955.
782
+ (29) Schwartz, R. W., Electronic Structure of the Octahedral Hexachloroytterbate Ion. Inorg.
783
+ Chem. 1977, 16, 1694-1698.
784
+ (30) Kanellakopulos, B.; Amberger, H. D.; Rosenbauer, G. G.; Fischer, R. D., Zur
785
+ Elektronenstruktur hochsymmetrischer Verbindungen der Lanthanoiden und Actinoiden—
786
+ V:
787
+ Paramagnetische
788
+ Suszeptibilität
789
+ und
790
+ elektronisches
791
+ Raman-Spektrum
792
+ von
793
+ Cs2NaYb(III)Cl6. J. Inorg. Nuc. Chem. 1977, 39, 607-611.
794
+ (31) Tsujii, N.; Imanaka, Y.; Takamasu, T.; Kitazawa, H.; Kido, G., Photoluminescence of
795
+ Yb3+-Doped CuInS2 Crystals in Magnetic Fields. J. Appl. Phys. 2001, 89, 2706-2710.
796
+
797
+
798
+ 18
799
+ (32) Haumesser, P.-H.; Gaumé, R.; Viana, B.; Antic-Fidancev, E.; Vivien, D., Spectroscopic
800
+ and Crystal-Field Analysis of New Yb-doped Laser Materials. J. Phys.: Cond. Mat. 2001,
801
+ 13, 5427-5447.
802
+ (33) de Maat-Gersdorf, I. Spectroscopic Analysis of Erbium-Doped Silicon and Ytterbium
803
+ Doped Indium Phosphide. University of Amsterdam, 2001.
804
+ (34) Liu, Y.; Petrovic, C., Three-Dimensional Magnetic Critical Behavior in CrI3. Phys. Rev. B
805
+ 2018, 97, 014420.
806
+ (35) Coey, J. M. D., Magnetism and Magnetic Materials. Cambridge University Press 2010.
807
+ (36) Lado, J. L.; Fernández-Rossier, J., On the Origin of Magnetic Anisotropy in Two
808
+ Dimensional CrI3. 2D Mater. 2017, 4, 035002.
809
+ (37) Aebersold, M. A.; Güdel, H. U.; Hauser, A.; Furrer, A.; Blank, H.; Kahn, R., Exchange
810
+ Interactions in Mixed Yb3+-Cr3+ and Yb3+-Ho3+ Dimers: An Inelastic-Neutron-Scattering
811
+ Investigation of Cs3Yb1.8Cr0.2Br9 and Cs3Yb1.8Ho0.2Br9. Phys. Rev. B 1993, 48, 12723-
812
+ 12731.
813
+ (38) Mironov, V. S.; Chibotaru, L. F.; Ceulemans, A., Exchange Interaction in the YbCrBr9
814
+ 3-
815
+ Mixed Dimer: The Origin of a Strong Yb3+-Cr3+ Exchange Anisotropy. Phys. Rev. B 2003,
816
+ 67, 014424.
817
+ (39) Atanasov, M.; Daul, C.; Güdel, H. U., Modelling of Anisotropic Exchange Coupling in
818
+ Rare-Earth -Transition-Metal Pairs: Applications to Yb3+-Mn2+ and Yb3+-Cr3+ Halide
819
+ Clusters and Implications to the Light Up-Conversion. In Comp. Chem.: Rev. Current
820
+ Trends, World Scientific: 2005; Vol. 9, pp 153-194.
821
+ (40) Cao, S.; Sinha, K.; Zhang, X.; Zhang, X.; Wang, X.; Yin, Y.; N'Diaye, A. T.; Wang, J.;
822
+ Keavney, D. J.; Paudel, T. R.; Liu, Y.; Cheng, X.; Tsymbal, E. Y.; Dowben, P. A.; Xu, X.,
823
+ Electronic Structure and Direct Observation of Ferrimagnetism in Multiferroic Hexagonal
824
+ YbFeO3. Phys. Rev. B 2017, 95, 224428.
825
+ (41) Dalal, B.; Sarkar, B.; Dev Ashok, V.; De, S. K., Evolution of Magnetic Properties and
826
+ Exchange Interactions in Ru Doped YbCrO3. J. Phys.: Cond. Mat. 2016, 28, 426001.
827
+ (42) Imbusch, G. F.; Yen, W. M.; Schawlow, A. L.; McCumber, D. E.; Sturge, M. D.,
828
+ Temperature Dependence of the Width and Position of the 2E → 4A2 Fluorescence Lines of
829
+ Cr3+ and V2+ in MgO. Phys. Rev. 1964, 133, A1029-A1034.
830
+ (43) Böttger, T.; Thiel, C. W.; Cone, R. L.; Sun, Y.; Faraon, A., Optical Spectroscopy and
831
+ Decoherence Studies of Yb3+:YAG at 968 nm. Phys. Rev. B 2016, 94, 045134.
832
+ (44) Fisher, M. E., The Theory of Equilibrium Critical Phenomena. Rep. Prog. Phys. 1967, 30,
833
+ 615-730.
834
+ (45) Bermudez, V. M.; McClure, D. S., Spectroscopic studies of the two-dimensional magnetic
835
+ insulators chromium trichloride and chromium tribromide—II. J. Phys. Chem. Solids 1979,
836
+ 40, 149-173.
837
+
838
+
839
+
840
+
841
+
842
+
843
+
844
+
845
+
846
+
847
+
848
+ 19
849
+ Table of Contents Graphic
850
+
851
+
852
+
853
+
854
+
855
+
856
+ q+
857
+ q
858
+ g+
859
+ ++++个
860
+ +++++
861
+ Yb3+:Crl3
862
+ Supporting Information for
863
+
864
+
865
+ Magnetic Amplification at Yb3+ "Designer Defects"
866
+ in the van der Waals Ferromagnet, CrI3
867
+
868
+ Kimo Pressler, Thom J. Snoeren, Kelly M. Walsh, Daniel R. Gamelin*
869
+ Department of Chemistry, University of Washington, Seattle, WA 98195, United States
870
871
+
872
+ Experimental Methods
873
+ General Considerations. All sample preparation and manipulation was performed in a
874
+ glovebox under an atmosphere of purified dinitrogen.
875
+ Chemicals. Chromium metal powder (200 mesh, 99.94%, lot X15E028) was purchased from
876
+ Alfa Aesar. According to the manufacturer's certificate of analysis, the majority of the impurity
877
+ in this sample lot was Ni at 343 ppm. A chromium chip (99.995%, lot MKCH4484) was also
878
+ purchased from Sigma Aldrich as a higher-purity Cr source. The Cr chip was ground to a powder
879
+ using a mortar and pestle and used in an analogous manner as the powder precursor. I2
880
+ (≥99.99%) was purchased from Sigma Aldrich. Ytterbium metal powder 40 mesh (99.9%) was
881
+ purchased from BeanTown chemical. All chemicals were used as received without further
882
+ purification.
883
+ Synthesis of CrI3 and Yb3+-Doped CrI3 Single Crystals. Single crystals of the doped and
884
+ undoped CrI3 were grown by chemical vapor transport in a manner similar to that described in
885
+ previous literature reports.1 For undoped CrI3, Cr(0) metal and I2 were loaded as a 1:3
886
+ stochiometric ratio into a quartz tube and sealed under an evacuated atmosphere. For Yb3+-doped
887
+ CrI3, additional Yb(0) metal was loaded along with the other starting materials. The quartz tubes
888
+ were 15 cm long with inner and outer diameters of 14 and 16 mm, respectively. Sealed tubes
889
+ were placed in an open-ended horizontal tube furnace with the starting materials in the hot zone
890
+ set at 650 ˚C and the other end at a temperature of ca. 500 ˚C. Samples were heated for 5 days
891
+ and then allowed to slowly cool to room temperature. Once cooled, the tubes were brought into a
892
+ glove box and cracked open to yield shiny dark plate-like crystals that had formed at the cold end
893
+ of the quartz tube. Elemental analysis of the Yb3+-doped samples was performed by inductively
894
+ coupled plasma mass spectrometry (ICP-MS) using a PerkinElmer NexION 2000B. Samples
895
+ were prepared by digesting single crystals in concentrated nitric acid with sonication and then
896
+ further diluted in ultrapure H2O. Yb3+ doping levels are reported as cation mole fraction,
897
+ [Yb3+]/([Cr3+]+[Yb3+]), in percentage, with an estimated uncertainty of ±0.1%. Crystal thickness
898
+ was measured by mounting a representative flake to a glass slide using double-sided tape and
899
+ imaging the flake with an optical microscope in a glovebox at various magnifications. The edge
900
+ length was calculated in ImageJ2 using known pixel resolutions.
901
+ X-ray Diffraction (XRD) Characterization. Samples were prepared for XRD on the
902
+ powder diffractometer by placing single crystals onto silicon substrates and sealing under Kapton
903
+ films to reduce exposure to air. Data were collected using a Bruker D8 Discover powder
904
+ diffractometer with a high-efficiency IµS microfocus x-ray source for Cu Kα radiation (50 kV, 1
905
+ mA). For single-crystal XRD, a crystal measuring 0.10 x 0.05 x 0.01 mm3 was mounted on a
906
+ loop with oil. Data were collected at 263 K on a Bruker APEX II single-crystal X-ray
907
+ diffractometer using Mo-radiation, equipped with a Miracol X-ray optical collimator. The data
908
+ were integrated and scaled using SAINT, SADABS within the APEX2 software package by
909
+
910
+
911
+ S-2
912
+ Bruker.3 Solution by direct methods (SHELXT4, 5 or SIR976, 7) produced a complete heavy-atom
913
+ phasing model consistent with the proposed structure. The structure was completed by difference
914
+ Fourier synthesis with SHELXL.8, 9 Scattering factors are from Waasmair and Kirfel.10 All atoms
915
+ were refined anisotropically by full-matrix least-squares.
916
+ Including intrinsic disorder, a least squares refinement optimization of the data yields the
917
+ lattice structure that we report. From the 983 reflections collected covering the indices, -8 ≤ h ≤
918
+ 8, -14 ≤ k ≤ 14, -8 ≤ l ≤ 8, 518 reflections were found that were symmetry independent and an R1
919
+ value of 0.0521 was obtained, indicating a good fit. R1 is calculated as:
920
+ !! =
921
+ !!"# − !!"#!
922
+ !!"#
923
+
924
+ There is no detectable electron density between layers, indicating that Yb3+ does not intercalate
925
+ between layers in CrI3.
926
+ Variable-Temperature Photoluminescence (VTPL). Samples for VTPL measurements
927
+ were prepared by placing a single crystal between two quartz disks and loading into a closed-
928
+ cycle helium cryostat. PL spectra were collected by exciting the sample with a continuous-wave
929
+ 660 nm (1.88 eV) diode at 4 mW/cm2. Emission was collected and focused into a
930
+ monochromator with a spectral bandwidth of 0.627 nm and detected by a Hamamatsu
931
+ InGaAs/InP NIR photomultiplier tube, with signal recorded using a photon counter. Temperature
932
+ was varied from 4 to 300 K, starting at low temperature. All spectra were corrected for
933
+ instrument response.
934
+ Magnetic Circularly Polarized Luminescence (MCPL). Samples for MCPL measurements
935
+ were prepared as single crystals placed between two quartz disks and loaded into a
936
+ superconducting magneto-optical cryostat (Cryo-Industries SMC-1659 OVT) oriented in the
937
+ Faraday configuration. For full-spectrum measurements at static fields, samples were excited
938
+ with a 660 nm (1.88 eV) diode at approximately 40 mW/cm2. For field-sweep measurements,
939
+ samples were excited with a linearly polarized HeNe laser (632.8 nm/1.96 eV, 27 mW/cm2 for -6
940
+ to +6 T scans, 55 mW/cm2 for -0.4 to +0.4 T scans). No distinguishable difference was found in
941
+ the either the PL spectra or variable-field data between the two excitation sources. For field-
942
+ sweep measurements, the monochromator was centered at 1.117 eV with a 6 nm spectral
943
+ bandwidth, and the signal was continuously monitored as the field was swept at a rate of 0.10
944
+ T/min and 0.45 T/min for the 0.4 T and 6 T scans, respectively. PL was collected along the
945
+ magnetic-field axis and passed through a liquid-crystal variable retardation plate set at λ/4,
946
+ followed by a linear polarizer to separate the left- and right-circularly polarized components. The
947
+ PL was then focused into a fiber-optic cable and fed into a monochromator with a spectral
948
+ bandwidth of 0.627 nm and detected by a Hamamatsu InGaAs/InP NIR photomultiplier, with
949
+ signals recorded using a photon counter. Polarization ratios are defined as ρ = (σ- – σ+)/(σ- + σ+)
950
+ = (IL – IR)/(IL + IR) = ΔI/I, following the sign conventions outlined in Piepho and Schatz.11
951
+ Magnetic Measurements. Magnetic data on individual single-crystal flakes (Fig. 1) were
952
+ collected using a Quantum Design PPMS DynaCool vibrating sample magnetometer (VSM). A
953
+ flake was affixed to the end of a quartz paddle with varnish (VGE 7031). The paddle was then
954
+ snapped into the VSM brass sample holder with another quartz paddle placed symmetrically
955
+ above the sample. The weak background signal from the sample holder was removed in the data
956
+ analysis. The sample was probed with the external field aligned perpendicular to the face of the
957
+ crystal, and magnetization data were collected as a function of applied field and temperature. The
958
+ masses of individual flakes are below 0.1 mg and could not be accurately measured, so the
959
+ magnetic data are reported in units of emu.
960
+
961
+
962
+ S-3
963
+ Ligand-field calculations within the Angular Overlap Model (AOM). Yb3+
964
+ ligand(crystal)-field energies and g factors were calculated using the BonnMag package.12
965
+ Crystallographic data13 on CrI3 were used to create an [YbI6]3- unit with reduced symmetry
966
+ (point group C2). Crystallographic parameters were not adjusted for size differences between
967
+ Cr3+ and Yb3+. The electronic structure of Yb3+ was calculated using the spin-orbit coupling
968
+ parameter ζ as well as AOM parameters eσ and eπ to describe σ and π interactions with the I-
969
+ ligands, respectively. The value for eπ was taken to be isotropic. The Slater-Condon-Shortley
970
+ (SCS) parameters F2, F4, and F6 were taken to be 0, as is typically the case for Yb3+ (4f13
971
+ configuration). The Stevens orbital reduction factor k was taken to be equal to 1.0. Increasing
972
+ (decreasing) ζ while keeping all other parameters constant results in an increase (decrease) in all
973
+ transition energies while retaining peak splitting energies. Adjusting eσ or eπ alters the relative
974
+ energies of the peaks but maintains the barycenters.
975
+
976
+
977
+
978
+
979
+
980
+ Figure S1. Images of an individual Yb3+:CrI3 single-crystal flake under an optical microscope at
981
+ various magnification levels, viewing the flake's (a,b) edge, and (c) face. The flake thickness is
982
+ estimated to be 5.1 ± 0.3 µm.
983
+
984
+ Side
985
+ View!
986
+ Yb3+:CrI3!
987
+ Tape!
988
+ Side
989
+ View!
990
+ Top
991
+ View!
992
+ a!
993
+ b!
994
+ c!
995
+
996
+ 100μm10 μm100 μm
997
+ S-4
998
+
999
+ Figure S2. Analysis of XRD reflections collected using a powder diffractometer for 4.9% Yb3+-
1000
+ doped and undoped CrI3 single-crystal flakes (same data as shown in Fig. 1bc). Using the
1001
+ method described by Jesche,14 the lattice parameter c for oriented single crystals with a
1002
+ monoclinic space group can be extracted from XRD data from a powder diffractometer using the
1003
+ following equation:
1004
+ 2c ∙ sinβ ∙ sin θ − S cosθ
1005
+ 2
1006
+ = λℓ
1007
+ Here, β is the obtuse angle in the monoclinic unit cell (108.507° for CrI3), λ is the x-ray
1008
+ wavelength (Cu, 1.5406 Å), ℓ is the Miller index of each reflection in the XRD spectrum and
1009
+ S
1010
+ !"#!
1011
+ ! is a correction factor related to the displacement of the x-ray focal plane relative to the
1012
+ sample surface. Plotting 2θ values of the peak maxima vs λℓ, the data can be fit using the
1013
+ equation above. For fitting, β and θ were taken in radians. By this method, the c lattice
1014
+ parameters were found to be 6.996 ± 0.002 and 7.013 ± 0.002 Å for the undoped and doped
1015
+ samples, respectively. From the lattice parameter c, the position of the (00ℓ) powder
1016
+ diffractometer XRD peaks for a monoclinic single crystal can be calculated using the following
1017
+ equation:
1018
+ 2θ = 2sin!!
1019
+ λ
1020
+ 2sinβ
1021
+
1022
+ c
1023
+ The zero-shift in 2θ was determined by adding an offset to the experimental 2θ values and
1024
+ adjusting the offset to minimize the difference between experimental and calculated peak
1025
+ positions across all peaks in the XRD spectrum. This offset accounts for the measurement
1026
+ discrepancy due to the thickness of the single crystals displacing the x-ray focal plane. For CrI3,
1027
+ a zero-shift of -0.015° was found, contrasted to a zero-shift of +0.164° for Yb3+-doped CrI3. The
1028
+ displacement-corrected XRD spectra are shown in Fig. 1c in the main text.
1029
+
1030
+
1031
+
1032
+
1033
+ 10
1034
+ 8
1035
+ 6
1036
+ 4
1037
+ 2
1038
+ 0
1039
+ λℓ (Å)
1040
+ 90
1041
+ 80
1042
+ 70
1043
+ 60
1044
+ 50
1045
+ 40
1046
+ 30
1047
+ 20
1048
+ 10
1049
+ 2θ (deg.)
1050
+ CrI3
1051
+ Yb
1052
+ 3+:CrI3
1053
+
1054
+
1055
+ S-5
1056
+
1057
+ Table S1. Single-crystal X-ray diffraction data for 2.5% Yb3+:CrI3 measured at 263 K,
1058
+ compared to literature data for CrI3.
1059
+
1060
+
1061
+ Yb3+:CrI3
1062
+ CrI3 (250 K, ref. 13)
1063
+ Space group
1064
+ C2/m
1065
+ C2/m
1066
+
1067
+
1068
+
1069
+ a
1070
+ 6.86 Å
1071
+ 6.87 Å
1072
+ b
1073
+ 11.89 Å
1074
+ 11.89 Å
1075
+ c
1076
+ 6.99 Å
1077
+ 6.98 Å
1078
+ α
1079
+ 90.0°
1080
+ 90.0°
1081
+ β
1082
+ 108.7°
1083
+ 108.5°
1084
+ γ
1085
+ 90.0°
1086
+ 90.0°
1087
+
1088
+
1089
+
1090
+ [(Yb/Cr) – Cr]avg
1091
+ 3.96 Å
1092
+ 3.96 Å
1093
+ [(Yb/Cr) – I]avg
1094
+ 2.72 Å
1095
+ 2.72 Å
1096
+ [(Yb/Cr) – I – (Yb/Cr)]avg
1097
+ 93.3°
1098
+ 93.6°
1099
+ [I – (Yb/Cr) – I]avg
1100
+ 86.8°
1101
+ 86.9°
1102
+
1103
+
1104
+
1105
+
1106
+ Figure S3. Visualization of the experimental room-temperature single-crystal XRD structure as
1107
+ viewed along the a, b, and c principal axes (left to right). Yb3+ (cyan) is found to substitute for
1108
+ Cr3+ (blue) in the edge-sharing octahedra formed by I- (purple) anions. No excess electron
1109
+ density is observed between layers. Intralayer disorder is observed. The structure refines to the
1110
+ expected high-temperature C2/m monoclinic symmetry. Some intralayer disorder was observed
1111
+ (not shown).
1112
+
1113
+ aa
1114
+ S-6
1115
+ Figure S4. (a) Variable-temperature PL spectra of CrI3 measured from 4 to 200 K under 1.88 eV
1116
+ CW excitation (from Fig. 2 of the main text). (b) Scatter plot depicting total integrated area of
1117
+ the CrI3 PL from panel (a). The 200 K intensity is 7.5% that of the 4 K value. (c) Variable-
1118
+ temperature PL spectra of 4.9% Yb3+:CrI3 measured from 4 to 200 K under 1.88 eV CW
1119
+ excitation (from Fig. 2 of the main text). (d) Scatter plot depicting total integrated area of the
1120
+ Yb3+ PL from panel (c). The 200 K intensity is 0.8% that of the 4 K value. (e) Variable-
1121
+ temperature PL spectra of 5.0% Yb3+:CrI3 measured from 4 to 200 K under 1.88 eV CW
1122
+ excitation (from Fig. 2 of the main text). (f) Scatter plot depicting total integrated area of the
1123
+ Yb3+ PL from panel (e). The 200 K intensity is 7.5% that of the 4 K value. Note that a second,
1124
+ broad "trap" PL band is observed at ~0.98 eV in samples made from Cr metal powder precursor
1125
+ (99.94%, panel (c)) but not in samples made from Cr chip precursor (99.995%, panel (e)). Ni is
1126
+ the primary impurity in the powder precursor (see Methods), and Ni is detected in this CrI3
1127
+ sample at 0.4% cation mole fraction. Ni2+ 3A2g ! 3T2g absorption in NiI2 and Ni2+:CdI2 is
1128
+ centered around 0.93 eV,15 and the broad "trap" PL band in panel (c) is thus tentatively attributed
1129
+ to Ni2+ impurities in CrI3.
1130
+
1131
+ a
1132
+ b
1133
+ 1.0
1134
+ Crl3 Undoped
1135
+ Integrated Area (norm.)
1136
+ 1.0
1137
+ Crl3
1138
+ PL Intensity (norm.)
1139
+ 4 - 200 K
1140
+ 0.89 - 1.24 eV
1141
+ 0.8
1142
+ Cr3+
1143
+ 0.8
1144
+ 0.6
1145
+ 0.6
1146
+ 0.4
1147
+ 0.4
1148
+ 0.2
1149
+ 0.2
1150
+ 0.0
1151
+ 0.0-
1152
+ 1.2
1153
+ 1.1
1154
+ 1.0
1155
+ 0.9
1156
+ 0
1157
+ 50
1158
+ 100
1159
+ 150
1160
+ 200
1161
+ Energy (eV)
1162
+ Temperature (K)
1163
+ c
1164
+ d
1165
+ 1.0
1166
+ Crl3
1167
+ Integrated Area (norm.)
1168
+ 1.0
1169
+ (wuou) /
1170
+ 0.8
1171
+ Yb 3+
1172
+ 4 - 200 K
1173
+ 1.07 - 1.2 eV
1174
+ 0.8
1175
+ _ Intensity
1176
+ 0.6.
1177
+ 0.6-
1178
+ Trap
1179
+ 0.4 -
1180
+ 0.4
1181
+ 0.2
1182
+ 0.2-
1183
+ 0.0
1184
+ 0.0-
1185
+ 1.2
1186
+ 1.1
1187
+ 1.0
1188
+ 0.9
1189
+ T
1190
+ 0
1191
+ 50
1192
+ 100
1193
+ 150
1194
+ 200
1195
+ Energy (eV)
1196
+ h
1197
+ e
1198
+ Temperature (K)
1199
+ 1.0
1200
+ 1.0
1201
+ Yb°
1202
+ + :Crl3
1203
+ Integrated Area (norm.)
1204
+ Intensity (norm.)
1205
+ 0.8
1206
+ 4 - 200 K
1207
+ 0.8
1208
+ 1.07 - 1.2 eV
1209
+ 3+
1210
+ h
1211
+ 0.6
1212
+ 0.6
1213
+ 0.4.
1214
+ 0.4
1215
+ 0.2
1216
+ 0.2
1217
+ 0.0
1218
+ 0.0.
1219
+ 1.0
1220
+ 0
1221
+ 50
1222
+ 100
1223
+ 1.2
1224
+ 1.1
1225
+ 0.9
1226
+ 150
1227
+ 200
1228
+ Energy (eV)
1229
+ Temperature (K)
1230
+ S-7
1231
+
1232
+ Figure S5. Comparison of the 5 K experimental data and calculated (AOM) f-f PL transition
1233
+ energies for 4.9% Yb3+:CrI3. A best fit to the experimental PL data resulted in the following
1234
+ values: ζ = 2665 cm-1 (330.4 meV), eσ = 176.5 cm-1 (21.9 meV), eπ = 122.5 cm-1 (15.2 meV). The
1235
+ calculated transition energies using these parameters are shown as the vertical red lines in both
1236
+ panels. (a) Comparison of calculated transition energies obtained by changing from ζ = 2665 cm-
1237
+ 1 (red) to ζ = 2675 cm-1 (blue), with all other parameters constant to the best-fit (red). (b)
1238
+ Comparison of calculated transition energies obtained by individually changing the values of eσ
1239
+ and eπ. The gray traces show the effect of changing from eσ = 176.5 cm-1 (red) to eσ = 206.5 cm-1
1240
+ with all other parameters constant to the best fit (red). The green traces show the effect of
1241
+ changing from eπ = 122.5 cm-1 (red) to eπ = 152.5 cm-1 with all other parameters constant to the
1242
+ best fit (red). From the best-fit parameters, g is anisotropic (g1 = 2.672, g2 = 2.686, g3 = 2.642)
1243
+ and an average ground-state g value of ~2.7 is predicted.
1244
+
1245
+
1246
+
1247
+
1248
+
1249
+
1250
+ a
1251
+ b
1252
+ 1.0
1253
+ 1.0
1254
+ { = 2665 cm
1255
+ = 2665 cm
1256
+ Intensity (norm.)
1257
+ . Intensity (norm.)
1258
+ 0.8
1259
+ 0.8 -
1260
+ e。 = 176.5 cm
1261
+ e = 122.5 cm
1262
+ e = 122.5 cm
1263
+ -1
1264
+ = 2665 cm
1265
+ 0.6
1266
+ 0.6 -
1267
+ -
1268
+ e. = 206.5 cm
1269
+ e= 122.5 cm
1270
+ = 2675 cm
1271
+ 0.4
1272
+ 0.4 -
1273
+ { = 2665 cm
1274
+ e。 = 176.5 cm
1275
+ -1
1276
+ PL
1277
+ 0.2
1278
+ e = 122.5 cm
1279
+ P
1280
+ 0.2
1281
+ =152.5cm
1282
+ 0.0
1283
+ 0.0
1284
+ 9400
1285
+ 9200
1286
+ 9000
1287
+ 8800
1288
+ 9400
1289
+ 9200
1290
+ 9000
1291
+ 8800
1292
+ Wavenumber (cm-")
1293
+ Wavenumber (cm"")
1294
+ S-8
1295
+
1296
+
1297
+ Figure S6. The Yb3+ valence energy level diagram described by the best-fit parameters of Fig.
1298
+ S5. The energies of the crystal field states in eV are: 0.0000, (0.0179, 0.0182), 0.0496, (1.1667,
1299
+ 1.1668), 1.2013 eV.
1300
+
1301
+
1302
+
1303
+
1304
+
1305
+ Energy (cm"1)
1306
+ 10000
1307
+ 9689
1308
+ (9410, 9411)
1309
+ 8000
1310
+ Energy (cm
1311
+ 6000
1312
+ 4000
1313
+ 2000
1314
+ 400
1315
+ -0
1316
+ (144, 147)
1317
+ 0
1318
+ Free lon +
1319
+ Spin Orbit Coupling + Crystal Field
1320
+ S-9
1321
+ Table S2. Energies (cm-1) of the valence electronic states, 2F5/2 and 2F7/2 barycenter
1322
+ energies,a and ΔE(Barycenter) for Yb3+ ions in several host crystals, and for the free ion.
1323
+ These data were used to generate Fig. S7 (after converting to eV). Many of these entries are
1324
+ compiled in ref. 16.
1325
+ Host Lattice
1326
+ 0
1327
+ 1
1328
+ 2
1329
+ 3
1330
+ 2F7/2
1331
+ Barycenter
1332
+ 0'
1333
+ 1'
1334
+ 2'
1335
+ 2F5/2
1336
+ Barycenter
1337
+
1338
+ ΔE(Bary)
1339
+ ref.
1340
+ Ca2Ga2SiO7 (CGS)
1341
+ 0.0
1342
+ 300
1343
+ 490
1344
+ 970
1345
+ 440
1346
+ 10250
1347
+ 10570
1348
+ 11010
1349
+ 10610
1350
+ 10170
1351
+ 17
1352
+ SrLaGa3O7 (SLG)
1353
+ 0.0
1354
+ 220
1355
+ 386
1356
+ 910
1357
+ 379
1358
+ 10190
1359
+ 10450
1360
+ 11025
1361
+ 10555
1362
+ 10176
1363
+ 17
1364
+ Ca4GdO(BO3)3
1365
+ (GdCOB) (site I, Gd)
1366
+ 0.0
1367
+ 423
1368
+ 668
1369
+ 1003
1370
+ 524
1371
+ 10246
1372
+ 10706
1373
+ 11089
1374
+ 10680
1375
+ 10157
1376
+ 18
1377
+ GdCOB (site II, Ca)
1378
+ 0.0
1379
+ 437
1380
+ 694
1381
+ 1003
1382
+ 534
1383
+ 10261
1384
+ 10737
1385
+ 11150
1386
+ 10716
1387
+ 10183
1388
+ 18
1389
+ GdCOB (site III, Ca)
1390
+ 0.0
1391
+ 417
1392
+ 688
1393
+ 1003
1394
+ 527
1395
+ 10240
1396
+ 10682
1397
+ 11026
1398
+ 10649
1399
+ 10122
1400
+ 18
1401
+ Ca4YO(BO3)3 (YCOB)
1402
+ 0.0
1403
+ 427
1404
+ 556
1405
+ 1023
1406
+ 502
1407
+ 10242
1408
+ 10537
1409
+ 11109
1410
+ 10629
1411
+ 10128
1412
+ 19
1413
+ Sc2O3
1414
+ 0.0
1415
+ 474
1416
+ 634
1417
+ 1076
1418
+ 546
1419
+ 10250
1420
+ 10640
1421
+ 11198
1422
+ 10696
1423
+ 10150
1424
+ 20
1425
+ Ca5(PO4)3F (CFAP)
1426
+ 0.0
1427
+ 409
1428
+ 597
1429
+ 1099
1430
+ 526
1431
+ 10178
1432
+ 10496
1433
+ 11069
1434
+ 10581
1435
+ 10055
1436
+ 21
1437
+ Sr5(PO4)3F (SFAP)
1438
+ 0.0
1439
+ 362
1440
+ 618
1441
+ 1190
1442
+ 543
1443
+ 10150
1444
+ 10512
1445
+ 11108
1446
+ 10590
1447
+ 10048
1448
+ 22
1449
+ Sr5(VO4)3F (SVAP)
1450
+ 0.0
1451
+ 321
1452
+ 562
1453
+ 1078
1454
+ 490
1455
+ 10141
1456
+ 10740
1457
+ 11050
1458
+ 10644
1459
+ 10153
1460
+ 23
1461
+ Y3Al5O12 (YAG)
1462
+ 0.0
1463
+ 584
1464
+ 635
1465
+ 783
1466
+ 501
1467
+ 10328
1468
+ 10752
1469
+ 10917
1470
+ 10666
1471
+ 10165
1472
+ 24
1473
+ BaCaBO3F (BCBF)
1474
+ 0.0
1475
+ 303
1476
+ 533
1477
+ 902
1478
+ 435
1479
+ 10204
1480
+ 10570
1481
+ 11000
1482
+ 10591
1483
+ 10157
1484
+ 25
1485
+ LiNbO3
1486
+ 0.0
1487
+ 352
1488
+ 448
1489
+ 788
1490
+ 397
1491
+ 10204
1492
+ 10471
1493
+ 11090
1494
+ 10588
1495
+ 10191
1496
+ 26
1497
+ KGd(WO4)2 (KGW)
1498
+ 0.0
1499
+ 163
1500
+ 385
1501
+ 535
1502
+ 271
1503
+ 10188
1504
+ 10471
1505
+ 10682
1506
+ 10447
1507
+ 10176
1508
+ 27
1509
+ KY(WO4)2 (KYW)
1510
+ 0.0
1511
+ 169
1512
+ 407
1513
+ 568
1514
+ 286
1515
+ 10187
1516
+ 10476
1517
+ 10695
1518
+ 10453
1519
+ 10167
1520
+ 27
1521
+ CaWO4
1522
+ 0.0
1523
+ 220
1524
+ 366
1525
+ 492
1526
+ 270
1527
+ 10278
1528
+ 10366
1529
+ 10665
1530
+ 10436
1531
+ 10167
1532
+ 28
1533
+ YAlO3
1534
+ 0.0
1535
+ 209
1536
+ 341
1537
+ 590
1538
+ 285
1539
+ 10220
1540
+ 10410
1541
+ 10730
1542
+ 10453
1543
+ 10168
1544
+ 28
1545
+ LiYF4
1546
+ 0.0
1547
+ 216
1548
+ 371
1549
+ 479
1550
+ 267
1551
+ 10288
1552
+ 10409
1553
+ 10547
1554
+ 10415
1555
+ 10148
1556
+ 28
1557
+ YAl3(BO3)4 (YAB)
1558
+ 0.0
1559
+ 94
1560
+ 185
1561
+ 581
1562
+ 215
1563
+ 10194
1564
+ 10277
1565
+ 10672
1566
+ 10381
1567
+ 10166
1568
+ 29
1569
+ Cs2NaYbCl6
1570
+ 0
1571
+ 225
1572
+ 225
1573
+ 573
1574
+ 256
1575
+ 10243
1576
+ 10243
1577
+ 10708
1578
+ 10398
1579
+ 10142
1580
+ 30, 31
1581
+ Cs3Yb2Br9
1582
+ 0.0
1583
+ 144
1584
+ 201
1585
+ 421
1586
+ 192
1587
+ 10277
1588
+ 10301
1589
+ 10578
1590
+ 10385
1591
+ 10194
1592
+ 32
1593
+ CsCdBr3
1594
+ 0.0
1595
+ 114
1596
+ 140
1597
+ 441
1598
+ 174
1599
+ 10119
1600
+ 10146
1601
+ 10590
1602
+ 10285
1603
+ 10111
1604
+ 32
1605
+ CuInS2
1606
+ 0.0
1607
+ 32
1608
+ 87
1609
+ 182
1610
+ 75
1611
+ 10033
1612
+ 10060
1613
+ ---
1614
+ 10095a
1615
+ 10020
1616
+ 33
1617
+ InP
1618
+ 0
1619
+ 35.5
1620
+ 35.5
1621
+ 97.5
1622
+ 42
1623
+ 10018
1624
+ 10064
1625
+ 10064
1626
+ 10049
1627
+ 10007
1628
+ 34
1629
+ Free ion
1630
+ ---
1631
+ ---
1632
+ ---
1633
+ ---
1634
+ 0.0
1635
+ ---
1636
+ ---
1637
+ ---
1638
+ 10213
1639
+ 10213
1640
+ 35
1641
+ CrI3
1642
+ 0.0
1643
+ 146
1644
+ 146
1645
+ 400
1646
+ 173
1647
+ 9410
1648
+
1649
+ ---
1650
+ 9551a
1651
+ 9379
1652
+ this
1653
+ work
1654
+ aFor the entire data set of complete entries, the ratio of 2F5/2:2F7/2 CF splitting energies, (E(2F5/2 Barycenter) -
1655
+ E0')/(E(2F7/2 Barycenter)) is 0.82 ± 0.14. The 2F5/2 barycenter energies for Yb3+:CrI3 and Yb3+:CuInS2 were thus set
1656
+ equal to the 2F7/2 barycenter energies for the same compounds. The resulting uncertainties in ΔE(Bary) are estimated
1657
+ to be < ~1%, close to or smaller than the data points in Fig. S7. For comparison, the Yb3+:CrI3 AOM calculations
1658
+ above yield: 2F7/2 barycenter = 173 cm-1 (21 meV), 2F5/2 barycenter = 9503 cm-1 (1.178 eV), ΔΕ(Bary) = 9330 cm-1
1659
+ (1.157 eV), within this uncertainty range.
1660
+
1661
+
1662
+
1663
+
1664
+
1665
+
1666
+
1667
+
1668
+
1669
+ S-10
1670
+
1671
+ Figure S7. Plot of the difference between experimental Yb3+ 2F5/2 and 2F7/2 barycenter energies
1672
+ (ΔE(Bary)) for the compounds listed in Table S2, and for the free ion, vs the barycenter energy
1673
+ for the 2F7/2 ground multiplet. The compounds associated with select data points are labeled. The
1674
+ dashed blue line shows the value of the free ion.
1675
+
1676
+
1677
+ Figure S8. (a) Power dependence of !- (red) and !+ (black) PL peak intensities and circular
1678
+ polarization (ρ, blue) of the Γ8 ! Γ7 transition. The data were collected at 0.5 T and 5 K and the
1679
+ sample was excited with linearly polarized light at 1.96 eV. The PL intensities show a linear
1680
+ increase with power, resulting in a constant polarization ratio. The error bars represent
1681
+ uncertainty estimated from the linear fit of the polarization intensities. (b) The !- (red) and !+
1682
+ (black) component of the Γ8 ! Γ7 transition normalized across all powers. The traces overlay
1683
+ each other well, showing no detectable power dependence.
1684
+
1685
+
1686
+ b
1687
+ a
1688
+ 0.20
1689
+ , Signal Intensity (norm.)
1690
+ 1.0
1691
+ 1.0
1692
+ a-
1693
+ Polarization Ratio (
1694
+ Intensity (norm.)
1695
+ 0.8
1696
+ 0.8
1697
+ a+
1698
+ 0.15
1699
+ a+
1700
+ 0.6
1701
+ 0.6
1702
+ .0.10
1703
+ 0.4.
1704
+ 0.4
1705
+ 0.05
1706
+ 0.2
1707
+ 0.2
1708
+ 0.0-
1709
+ -0.00
1710
+ 0.0 -
1711
+ 0
1712
+ 100
1713
+ 200
1714
+ 300
1715
+ 400
1716
+ 1.120
1717
+ 1.116
1718
+ 1.112
1719
+ Energy (eV)
1720
+ Power Density (mW/cm3)KGW
1721
+ 1.28
1722
+ CaWO4
1723
+ Free lon
1724
+ Cs3Yb2Brg
1725
+ LiYF4_ KYW
1726
+ 1.26-
1727
+ QOYAIO3
1728
+ YAB
1729
+ CsCdBr3
1730
+ Cs2NaYbCl6
1731
+ Oxides
1732
+ 00
1733
+ △E(Bary) (eV)
1734
+ 1.24-
1735
+ CulnS2
1736
+ InP
1737
+ 1.22-
1738
+ 1.20 -
1739
+ 1.18-
1740
+ 1.16-
1741
+ 0
1742
+ 10
1743
+ 20
1744
+ 30
1745
+ 40
1746
+ 50
1747
+ 60
1748
+ 70
1749
+ 2F7/2 Barycenter (meV)
1750
+ S-11
1751
+
1752
+ Figure S9. Comparison of full MCPL spectra across two different samples, measured at 0.5 T, 5
1753
+ K. (a) The sample used in Fig. 3b,c,e,f of the main text. (b) The sample used in Fig. 3d of the
1754
+ main text. The two samples show very similar spectra, with slight differences in polarization
1755
+ magnitude.
1756
+
1757
+ Figure S10. Magnetic data for a single-crystal flake of 5% Yb3+:CrI3, measured by VSM. The
1758
+ sample was probed with the external field aligned perpendicular to the face of the crystal. (a)
1759
+ Plots of magnetization vs external field measured at various temperatures. The data are similar to
1760
+ those collected on undoped CrI3 bulk crystals (e.g., Fig S11). At 2 K, a coercive field of ~44 mT
1761
+ was found. (b) Plot of magnetization vs temperature measured in the field-cooled and field-
1762
+ warmed directions. The inset shows the derivative of the field-cooled data as a function of
1763
+ temperature, where the Curie temperature is found to be 60.4 K. These data show that Yb3+
1764
+ doping has no significant effect on the magnetism of CrI3 in these samples.
1765
+
1766
+
1767
+ a
1768
+ b
1769
+ 1.0
1770
+ 1.0.
1771
+ 0.5 T
1772
+ 0.5 T
1773
+ Intensity (norm.)
1774
+ 5 K
1775
+ Intensity (norm.)
1776
+ 5 K
1777
+ 0.8
1778
+ 0.8 -
1779
+ a+
1780
+ a+
1781
+ 0.6 -
1782
+ 0.6 -
1783
+ 0.4 -
1784
+ 0.4 -
1785
+ 0.2
1786
+ 0.2 -
1787
+ P
1788
+ 0.0 -
1789
+ 0.0 -
1790
+ 1.18
1791
+ 1.16
1792
+ 1.14
1793
+ 1.12
1794
+ 1.10
1795
+ 1.08
1796
+ 1.18
1797
+ 1.16
1798
+ 1.14
1799
+ 1.12
1800
+ 1.10
1801
+ 1.08
1802
+ Energy (eV)
1803
+ Energy (eV)a
1804
+ b
1805
+ (emu)
1806
+ 0.008
1807
+ Magnetic Moment (emu)
1808
+ 0.02 T
1809
+ 0.0008
1810
+ Magnetic Moment
1811
+ 0.004
1812
+ 0.0006
1813
+ dM/dT
1814
+ 0.000
1815
+ Field Warmed
1816
+ 2 K
1817
+ 0.0004
1818
+ Tc = 60.4 K
1819
+ Field Cooled
1820
+ 20 K
1821
+ 0.004
1822
+ 40 K
1823
+ 60 K
1824
+ 0.0002
1825
+ 0
1826
+ 50
1827
+ 100
1828
+ 80 K
1829
+ T(K)
1830
+ 0.008
1831
+ 100 K
1832
+ -3
1833
+ -2
1834
+ -1
1835
+ 0
1836
+ 1
1837
+ 2
1838
+ 3
1839
+ 20
1840
+ 40
1841
+ 60
1842
+ 80
1843
+ 100
1844
+ Field (T)
1845
+ Temperature(K)
1846
+ S-12
1847
+
1848
+ Figure S11. The same polarization data as featured in Fig. 3d of the main text, overlayed with
1849
+ CrI3 magnetization data measured from -3 to +3 T with the field oriented parallel to the
1850
+ crystallographic c axis (blue) by single-crystal vibrating sample magnetometry (VSM).36 For
1851
+ comparison, the magnetization perpendicular to c (green) is also shown. The Yb3+ MCPL
1852
+ polarization ρ is superimposable with the CrI3 magnetization measured in the same
1853
+ configuration.
1854
+
1855
+
1856
+
1857
+ Figure S12. (a) Individual circularly polarized MCPL components measured during continuous
1858
+ field sweeps from -6 to +6 T and back at 5 K. (b) The same data, displayed as the polarization
1859
+ ratio (ρ, normalized). Panel (b) is shown as Fig. 3d of the main text. Data measured using 14
1860
+ mW/cm2 excitation.
1861
+
1862
+
1863
+
1864
+ b
1865
+ a
1866
+ 9000
1867
+ 1.0 -
1868
+ 5 K
1869
+ Intensity (counts)
1870
+ 8000
1871
+ (norm.)
1872
+ 0.5
1873
+ g+
1874
+ 7000
1875
+ 0.0
1876
+ 2
1877
+ 6000-
1878
+ 6
1879
+ -0.5
1880
+ p
1881
+ P
1882
+ 5000
1883
+ -1.0
1884
+ T
1885
+ 9-
1886
+ -4
1887
+ -2
1888
+ 0
1889
+ 2
1890
+ 4
1891
+ 6
1892
+ -6
1893
+ -4
1894
+ -2
1895
+ 0
1896
+ 2
1897
+ 4
1898
+ 6
1899
+ Field (T)
1900
+ Field (T)1
1901
+ Crls Single
1902
+ 1.0-
1903
+ 1.0
1904
+ Magnetization (norm.)
1905
+ Crystal VSM
1906
+ p 1.117 ev (norm.)
1907
+ 0.5-
1908
+ 0.5
1909
+ BIl c BIla,b
1910
+ 0.0.
1911
+ 0.0
1912
+ -0.5-
1913
+ -0.5
1914
+ -1.0-
1915
+ -1.0
1916
+ 9-
1917
+ -2
1918
+ 0
1919
+ 2
1920
+ 4
1921
+ 6
1922
+ Field (T)
1923
+ S-13
1924
+
1925
+
1926
+ Figure S13. Comparison of field-dependent polarization ratios (ρ, normalized) measured with
1927
+ (a) linearly polarized and (b) unpolarized excitation at 5 K. In panel (b), no data were collected
1928
+ above 2 T. Panel (a) is shown as Fig. 3d of the main text.
1929
+
1930
+
1931
+
1932
+ Figure S14. (a,b) Effect of excitation power on the polarization ratio (ρ, normalized). Magnetic
1933
+ hystereses measured under (a) low- and (b) higher-power excitation (14 vs 55 mW/cm2, 5 K)
1934
+ show no difference. The black (red) trace corresponds to the sweep from negative (positive) to
1935
+ positive (negative) fields. (c, d) The separate circularly polarized PL components from the same
1936
+ (c) low- and (d) high-power measurements.
1937
+
1938
+
1939
+ a
1940
+ b
1941
+ 1.0
1942
+ 5 K
1943
+ 1.0
1944
+ 5 K
1945
+ (wou)
1946
+ ('wuou)
1947
+ 0.5
1948
+ 0.5
1949
+ 1.117 ev
1950
+ 0.0
1951
+ 1.117 eV
1952
+ 0.0
1953
+ -0.5
1954
+ -0.5
1955
+ p
1956
+ p
1957
+ -1.0
1958
+ -1.0-
1959
+ -6
1960
+ -4
1961
+ -2
1962
+ 0
1963
+ 2
1964
+ 4
1965
+ 6
1966
+ -2
1967
+ -1
1968
+ 0
1969
+ 1
1970
+ 2
1971
+ Field (T)
1972
+ Field (T)a
1973
+ b
1974
+ 1.0 -
1975
+ 1.0 -
1976
+ 55 mW/cm
1977
+ 2
1978
+ 14 mW/cm
1979
+ 0.5
1980
+ 0.5 -
1981
+ 0.0
1982
+ 0.0
1983
+ -0.5 -
1984
+ -0.5-
1985
+ Q
1986
+ -1.0-
1987
+ --
1988
+ -1.0
1989
+ -0.4
1990
+ -0.2
1991
+ 0.0
1992
+ 0.2
1993
+ 0.4
1994
+ -0.4
1995
+ -0.2
1996
+ 0.0
1997
+ 0.2
1998
+ 0.4
1999
+ Field (T)
2000
+ Field (T)
2001
+ c
2002
+ d
2003
+ PL Intensity (counts)
2004
+ PL Intensity (counts)
2005
+ 120 x10
2006
+ 30 x10
2007
+ 115-
2008
+ g+
2009
+ 28
2010
+ 9+
2011
+ 55 mW/cm
2012
+ 14 mW/cm
2013
+ 110-
2014
+ 105-
2015
+ 26
2016
+ 100 -
2017
+ 24 -
2018
+ 95
2019
+ -0.4
2020
+ -0.2
2021
+ 0.0
2022
+ 0.2
2023
+ 0.4
2024
+ -0.4
2025
+ -0.2
2026
+ 0.0
2027
+ 0.2
2028
+ 0.4
2029
+ Field (T)
2030
+ Field (T)
2031
+ S-14
2032
+
2033
+ Figure S15. Temperature dependence of the Γ8 ! Γ7 PL feature of 4.9% Yb3+:CrI3 measured
2034
+ from 4 to 200 K under no external magnetic field (from Fig. 4 of the main text, T = 4, 15, 30, 40,
2035
+ 50, 55, 58, 60, 62, 65, 70, 85, 100, 125, 150 K). A linear baseline was subtracted from each
2036
+ spectrum here to facilitate viewing and determination of the peak's FWHM.
2037
+
2038
+
2039
+ 1.0-
2040
+ Baseline Subtracted
2041
+ PL Intensity (norm.)
2042
+ 0.8 -
2043
+ 0.6-
2044
+ 0.4 -
2045
+ 0.2
2046
+ 0.0
2047
+ 1.135
2048
+ 1.130
2049
+ 1.125
2050
+ 1.120
2051
+ 1.115
2052
+ 1.110
2053
+ Energy (eV)
2054
+ S-15
2055
+
2056
+
2057
+ Figure S16. (a,b) False-color plots of the Yb3+ PL intensities vs temperature measured for the
2058
+ two samples shown in Fig. S4c,e, respectively, from 4 to 150 K at zero external magnetic field.
2059
+ The horizontal dashed line indicates TC = 61 K. The two samples show the same temperature
2060
+ dependence, but the features are slightly better resolved in panel (a). Panel (a) is shown as Fig.
2061
+ 4a of the main text.
2062
+
2063
+
2064
+
2065
+ References
2066
+ (1) Seyler, K. L.; Zhong, D.; Klein, D. R.; Gao, S.; Zhang, X.; Huang, B.; Navarro-Moratalla,
2067
+ E.; Yang, L.; Cobden, D. H.; McGuire, M. A.; Yao, W.; Xiao, D.; Jarillo-Herrero, P.; Xu, X.
2068
+ Ligand-field helical luminescence in a 2D ferromagnetic insulator. Nat. Physics 2018, 14
2069
+ (3), 277-281.
2070
+ (2) Abramoff, M. D.; Magalhaes, P. J.; Ram, S. J. Image Processing with ImageJ. Biophot. Int.
2071
+ 2004, 11 (7), 35-42.
2072
+ (3) Bruker. APEX2 (Version 2.1-4), SAINT (version 7.34A), SADABS (version 2007/4),. 2007,
2073
+ (4) Sheldrick, G. M. A short history of SHELX. Acta Cryst. 2007, A64, 112-122.
2074
+ (5) Sheldrick, G. M. SHELXT - Integrated space-group and crystal-structure determination.
2075
+ Acta Cryst. 2015, A71, 3-8.
2076
+ (6) Altomare, A.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A. Completion and refinement
2077
+ of crystal structures with SIR92. J. Appl. Cryst. 1993, 26, 343-350.
2078
+ (7) Altomare, A.; Burla, C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A.;
2079
+ Moliterni, A. G. G.; Polidori, G.; Spagna, R.; Burla, C.; Camalli, M.; Cascarano, G. L.;
2080
+ Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R. SIR97: a new
2081
+ tool for crystal structure determination and refinement. J. Appl. Crystallogr. 1999, (32),
2082
+ 115-119.
2083
+ (8) Sheldrick, G. M. SHELXL-97, Program for the Refinement of Crystal Structures. 1997,
2084
+ (9) Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3-8.
2085
+
2086
+ TcTc
2087
+ S-16
2088
+ (10) Waasmaier, D.; Kirfel, A. New Analytical Scattering Factor Functions for Free Atoms and
2089
+ Ions. Acta Crysta. 1995, A51 (416-430),
2090
+ (11) Piepho, S. B.; Schatz, P. N. Group theory in spectroscopy with applications to magnetic
2091
+ circular dichroism; John Wiley & Sons, 1983.
2092
+ (12) Bronova, A.; Bredow, T.; Glaum, R.; Riley, M. J.; Urland, W. BonnMag: Computer
2093
+ program for ligand-field analysis of f n systems within the angular overlap model. J. Comp.
2094
+ Chem. 2018, 39 (3), 176-186.
2095
+ (13) McGuire, M. A.; Dixit, H.; Cooper, V. R.; Sales, B. C. Coupling of Crystal Structure and
2096
+ Magnetism in the Layered, Ferromagnetic Insulator CrI3. Chem. Mater. 2015, 27 (2), 612-
2097
+ 620.
2098
+ (14) Jesche, A. F., M.; Kreyssig, A.; Meier, W. R.; Canfield, P. C. X-Ray Diffraction on large
2099
+ single crystals using a powder diffractometer. Philos, Mag. (Abingdon) 2016, 96 (20), 2115-
2100
+ 2124.
2101
+ (15) Kuindersma, S. R.; Boudewijn, P. R.; Haas, C. Near-Infrared d–d Transitions of NiI2,
2102
+ CdI2:Ni2+, and CoI2. Phys. stat. sol. (b) 1981, 108 (1), 187-194.
2103
+ (16) Haumesser, P.-H.; Gaumé, R.; Viana, B.; Antic-Fidancev, E.; Vivien, D. Spectroscopic and
2104
+ crystal-field analysis of new Yb-doped laser materials. J. Phys.: Cond. Mat. 2001, 13 (23),
2105
+ 5427-5447.
2106
+ (17) Simondi-Teisseire, B. PhD Thesis. Paris VI University, 1996.
2107
+ (18) Mougel, F.; Dardenne, K.; Aka, G.; Kahn-Harari, A.; Vivien, D. Ytterbium-doped
2108
+ Ca4GdO(BO3)3: an efficient infrared laser and self-frequency doubling crystal. J. Opt. Soc.
2109
+ Am. B 1999, 16 (1), 164-172.
2110
+ (19) Mougel, F. PhD Thesis. Paris VI University, 1999
2111
+ (20) Mix, E. PhD Thesis. Hamburg University, 1999.
2112
+ (21) DeLoach, L. D.; Payne, S. A.; Chase, L. L.; Smith, L. K.; Kway, W. L.; Krupke, W. F.
2113
+ Evaluation of absorption and emission properties of Yb3+ doped crystals for laser
2114
+ applications. IEEE J. Quant. Elect. 1993, 29 (4), 1179-1191.
2115
+ (22) Gruber, J. B.; Zandi, B.; Merkle, L. Crystal-field splitting of energy levels of rare-earth ions
2116
+ Dy3+(4f9) and Yb3+(4f13) in M (II) sites in the fluorapatite crystal Sr5(PO4)3F. J. Appl. Phys.
2117
+ 1998, 83 (2), 1009-1017.
2118
+ (23) Payne, S. A.; DeLoach, L. D.; Smith, L. K.; Kway, W. L.; Tassano, J. B.; Krupke, W. F.;
2119
+ Chai, B. H. T.; Loutts, G. Ytterbium�doped apatite�structure crystals: A new class of laser
2120
+ materials. J. Appl. Phys. 1994, 76 (1), 497-503.
2121
+ (24) Bogomolova, G. A.; Bumagina, L. A.; Kaminskii, A. A.; Malkin, B. Z. Crystal field in laser
2122
+ garnets with TR3+ ions in the exchange charge model. Sov. Phys. Solid State 1977, 19 (8),
2123
+ 1428-1435.
2124
+ (25) Schaffers, K. I.; DeLoach, L. D.; Payne, S. A. Crystal growth, frequency doubling, and
2125
+ infrared laser performance of Yb3+: BaCaBO3F. IEEE J. Quant. Elect. 1996, 32 (5), 741-
2126
+ 748.
2127
+ (26) Montoya, E.; Sanz-Garcıa, J.; Capmany, J.; Bausá, L.; Diening, A.; Kellner, T.; Huber, G.
2128
+ Continuous wave infrared laser action, self-frequency doubling, and tunability of Yb3+:
2129
+ MgO: LiNbO3. J. Appl. Phys. 2000, 87 (9), 4056-4062.
2130
+ (27) Kuleshov, N. V.; Lagatsky, A. A.; Podlipensky, A. V.; Mikhailov, V. P.; Huber, G. Pulsed
2131
+ laser operation of Yb-doped KY(WO4)2 and KGd(WO4)2. Optics lett. 1997, 22 (17), 1317-
2132
+ 1319.
2133
+
2134
+
2135
+ S-17
2136
+ (28) Morrison, C. A.; Leavitt, P. Handbook on the physics and chemistry of rare earths, ch 46.
2137
+ Amsterdam: Elsevier: 1982.
2138
+ (29) Wang, P.; Dawes, J. M.; Dekker, P.; Knowles, D. S.; Piper, J. A.; Lu, B. Growth and
2139
+ evaluation of ytterbium-doped yttrium aluminum borate as a potential self-doubling laser
2140
+ crystal. J. Opt. Soc. Am. B 1999, 16 (1), 63-69.
2141
+ (30) Schwartz, R. W. Electronic structure of the octahedral hexachloroytterbate ion. Inorg.
2142
+ Chem. 1977, 16 (7), 1694-1698.
2143
+ (31) Kanellakopulos, B.; Amberger, H. D.; Rosenbauer, G. G.; Fischer, R. D. Zur
2144
+ Elektronenstruktur hochsymmetrischer Verbindungen der Lanthanoiden und Actinoiden—
2145
+ V: Paramagnetische Suszeptibilität und elektronisches Raman-Spektrum von
2146
+ Cs2NaYb(III)Cl6. J. Inorg. Nuc. Chem. 1977, 39 (4), 607-611.
2147
+ (32) Malkin, B. Z.; Leushin, A. M.; Iskhakova, A. I.; Heber, J.; Altwein, M.; Moller, K.;
2148
+ Fazlizhanov, I. I.; Ulanov, V. A. EPR and optical spectra of Yb3+ in CsCdBr3: Charge-
2149
+ transfer effects on the energy-level structure of Yb3+ in the symmetrical pair centers. Phys.
2150
+ Rev. B 2000, 62 (11), 7063.
2151
+ (33) Tsujii, N.; Imanaka, Y.; Takamasu, T.; Kitazawa, H.; Kido, G. Photoluminescence of Yb3+-
2152
+ doped CuInS2 crystals in magnetic fields. J. Appl. Phys. 2001, 89 (5), 2706-2710.
2153
+ (34) de Maat-Gersdorf, I. Spectroscopic analysis of erbium-doped silicon and ytterbium doped
2154
+ indium phosphide. University of Amsterdam, 2001.
2155
+ (35) Wyart, J.-F.; Tchang-Brillet, W.-Ü. L.; Spector, N.; Palmeri, P.; Quinet, P.; Biémont, E.
2156
+ Extended Analysis of the Spectrum of Triply-ionized Ytterbium (Yb IV) and Transition
2157
+ Probabilities. Phys. Scripta 2001, 63 (2), 113-121.
2158
+ (36) De Siena, M. C.; Creutz, S. E.; Regan, A.; Malinowski, P.; Jiang, Q.; Kluherz, K. T.; Zhu,
2159
+ G.; Lin, Z.; De Yoreo, J. J.; Xu, X.; Chu, J.-H.; Gamelin, D. R. Two-Dimensional van der
2160
+ Waals Nanoplatelets with Robust Ferromagnetism. Nano Lett. 2020, 20 (3), 2100-2106.
2161
+
2162
+
3dFKT4oBgHgl3EQf8i5H/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
59E1T4oBgHgl3EQfBQIH/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dbc885bb978e19d93004e2d428c4508785d95a12e4868094dd07512ba9256c51
3
+ size 8585261
59E5T4oBgHgl3EQfPQ7C/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5745ef57a5b71d882a89eab4db04fbb8f5f3aba8cc613cd88e2afb0b4f2b60a0
3
+ size 5308461
59E5T4oBgHgl3EQfPQ7C/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:94bc7ed9987c178f47d7cffa6b87020299c9c8f22271ebfd6e31b55e189fd33c
3
+ size 216631
6NAzT4oBgHgl3EQf9_7h/content/tmp_files/2301.01929v1.pdf.txt ADDED
@@ -0,0 +1,1735 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Two-dimensional tile displacement
2
+ can simulate cellular automata
3
+ Erik Winfree1,2,3⋆ and Lulu Qian1,2,3⋆
4
+ 1Bioengineering, 2Computer Science, 3Computation and Neural Systems
5
+ California Institute of Technology, Pasadena, CA 91125, USA
6
7
+ Tile displacement is a newly-recognized mechanism in DNA nanotechnology that exploits principles anal-
8
+ ogous to toehold-mediated strand displacement but within the context of self-assembled DNA origami tile
9
+ arrays. Here, we formulate an abstract model of tile displacement for the simplest case: individual assemblies
10
+ interacting with monomer tiles in solution. We give several constructions for programmable computation
11
+ by tile displacement, from circuits to cellular automata, that vary in how they use energy (or not) to drive
12
+ the system forward (or not), how much space and how many tile types they require, and whether their com-
13
+ putational power is limited to PTIME or PSPACE with respect to the size of the system. In particular, we
14
+ show that tile displacement systems are Turing universal and can simulate arbitrary two-dimensional syn-
15
+ chronous block cellular automata, where each transition rule for updating the state of a 2× 2 neighborhood
16
+ is implemented by just a single tile.
17
+ Keywords: DNA origami, tile displacement, cellular automata, reversible computation
18
+ 1. INTRODUCTION
19
+ A guiding principle in theoretical computer science has
20
+ been “mechanism-to-model” exploration of connections
21
+ between physical implementation and computational ca-
22
+ pabilities. For example, what can be computed by sys-
23
+ tems of AND gates and OR gates is strictly less than what
24
+ can be computed by systems of NOR gates, which in turn
25
+ is less than what can be computed by finite state machines
26
+ coupled with an unbounded memory tape [1]. Likewise,
27
+ molecular programming theory aims to understand how
28
+ fundamental molecular mechanism can be used to build
29
+ systems, and how the choice of mechanism determines
30
+ the range of what can be built. An example would be the
31
+ self-assembly of molecular structures by programmable
32
+ cooperative binding, which can reliably grow structures
33
+ that cannot grow reliably via non-cooperative binding [2].
34
+ When a new molecular mechanism is discovered, it is of
35
+ interest to understand the nature – the limitations and
36
+ capabilities – of systems that exploit that mechanism.
37
+ Doing so entails formulation of an abstract model that
38
+ captures the essential features of the mechanism, which
39
+ can then be rigorously analyzed.
40
+ Since its invention two decades ago [4],
41
+ toehold-
42
+ mediated DNA strand displacement has been a central
43
+ mechanism for programming dynamical function in DNA
44
+ nanotechnology [5, 6]. As shown in figure 1A, a stable
45
+ complex of two strands can be reconfigured such that an
46
+ invading strand replaces the original partner via a branch
47
+ migration process.
48
+ The single-stranded portion of the
49
+ original complex – known as the toehold because that
50
+ is where the invading strand initiates contact – is critical
51
+ for the displacement: an invader that does not match and
52
+ bind to the toehold may be a million-fold slower to per-
53
+ form the displacement, and thus neglected as “leak”. In
54
+ abstract models that consider networks of more complex
55
+ (but still non-pseudoknotted) DNA molecules that inter-
56
+ act in solution using toehold-mediated strand displace-
57
+ ment reactions – including both the irreversible mecha-
58
+ nism shown here and a reversible variant known as “toe-
59
+ hold exchange” – have been shown capable of simulating
60
+ arbitrary formal chemical reaction network dynamics and
61
+ even Turing-universal computation [7, 8, 9, 10, 11, 12, 13].
62
+ However, a limitation of these results is that they are in-
63
+ trinsically distributed computations, where state is en-
64
+ coded within a collection of molecules in solution, and
65
+ therefore a single test tube can perform only one com-
66
+ putation at a time.
67
+ More complex molecular mecha-
68
+ nisms, such as the hypothetical polymer-modifying en-
69
+ zymes envisioned by Bennett [14], are in principle capable
70
+ of performing independent Turing-universal computation
71
+ in parallel in the same test tube.
72
+ The mechanism of “tile displacement”, shown in fig-
73
+ ure 1B, was recently discovered during investigations into
74
+ why the self-assembly of DNA origami tiles [15, 16, 17]
75
+ failed to become kinetically trapped in undesired inter-
76
+ mediates that the naive theory predicted [3]. There is a
77
+ strong analogy to toehold-mediated strand displacement.
78
+ Beyond using components that are two orders of magni-
79
+ tude larger than the individual strands involved in strand
80
+ displacement, the tile displacement mechanism has sev-
81
+ eral distinct features. (1) Nucleotides are on multiple he-
82
+ lices that are oriented orthogonally to the axis of branch
83
+ 1
84
+ arXiv:2301.01929v1 [cs.ET] 5 Jan 2023
85
+
86
+ A
87
+ B
88
+ C
89
+ invader tile
90
+ released tile
91
+ branch migration
92
+ game board
93
+ player 1
94
+ player 2
95
+
96
+
97
+
98
+
99
+
100
+
101
+
102
+
103
+
104
+
105
+
106
+
107
+
108
+
109
+
110
+
111
+
112
+ ꓳ ꓳ
113
+
114
+
115
+
116
+
117
+ ꓳ ��
118
+   
119
+
120
+ (1,3)
121
+
122
+ (1,1)
123
+
124
+ (3,1)
125
+
126
+ (2,2)
127
+
128
+ (3,3)
129
+
130
+ (2,3)
131
+
132
+ (3,2)
133
+ day 0
134
+ day 1
135
+ day 2
136
+ day 3
137
+ day 4
138
+ day 5
139
+ day 6
140
+ day 7
141
+ invader strand
142
+ released strand
143
+ branch migration
144
+ Figure 1:
145
+ (A) Strand displacement mechanism. For scale, the DNA molecules are roughly 2 nm in diameter and 7 nm long.
146
+ (B) Tile displacement mechanism. These hypothetical 10-helix DNA origami tiles are smaller than the 22-helix square tiles
147
+ from [3]. (C) A tic-tac-toe game implemented using tile displacement (adapted from reference [3]). Scale bar for atomic force
148
+ microscopy (AFM) images is 100 nm.
149
+ migration, rather than being on a single helix that is par-
150
+ allel to (identical to) the axis of branch migration. (2)
151
+ Tile-tile binding may be due to multiple helix-end stack-
152
+ ing bonds [18] in addition to (or instead of) being due to
153
+ base-pair formation. (3) Toehold and branch migration
154
+ domain specificity can be encoded both by tile geometry
155
+ and by the sequences in multiple very short (1 or 2 nt)
156
+ sticky ends, rather than being exclusively encoded by nu-
157
+ cleotide sequences within a single helix. (4) The released
158
+ tile will be less flexible than a single-stranded oligonu-
159
+ cleotide. (5) Rather than having just one “side” and ini-
160
+ tiating displacement via a single toehold, tiles may have
161
+ many (e.g. four) sides and may initiate displacement via
162
+ cooperative action of multiple toeholds, as highlighted by
163
+ the replacement of the central tile of a 3 × 3 tic-tac-toe
164
+ game board [3] shown in figure 1C. Despite these dif-
165
+ ferences, it remains that tile displacement is highly sen-
166
+ sitive to toehold and branch migration sequences, such
167
+ that the kinetics of tile displacement without a matching
168
+ toehold may be orders of magnitude slower and similarly
169
+ negligible as “leak”. Indeed, systems of interacting tile
170
+ monomers and tile assemblies were shown to be reconfig-
171
+ urable by toehold-mediated tile displacement [3], and the
172
+ same or similar constructs ought to be sufficient to im-
173
+ plement more complex information-processing networks
174
+ following, for example, the seesaw motif for circuits [19]
175
+ or the two-domain scheme for formal chemical reaction
176
+ network dynamics [10].
177
+ Here we are interested in whether the tile displacement
178
+ mechanism enabled new ways of programming dynamical
179
+ behaviors, beyond simply replicating strand displacement
180
+ on a larger scale. The ability to perform displacement
181
+ within a two-dimensional array being an especially novel
182
+ feature of tile displacement, we ask whether – unlike ex-
183
+ isting strand displacement constructions – reconfiguration
184
+ of a single tile assembly in a constant soup of monomer
185
+ tiles might be sufficient for substantial computation, in
186
+ which case parallel computation could be achieved with
187
+ each tile assembly performing an independent computa-
188
+ tion. We present three results. First, with a feedforward
189
+ Boolean circuit laid out on the initial array, there is a tile
190
+ set that, via displacement, propagates signals along wires
191
+ and executes the specified logic. This system is powered
192
+ by the energy of toehold formation; the final state is in an
193
+ energy minimum and cannot be reused. Second, as a sim-
194
+ plification and generalization of the first construction, any
195
+ one-dimensional cellular automaton can be directly trans-
196
+ lated into a set of tiles such that a wave of tile displace-
197
+ ment converts an assembly, initially empty but for the
198
+ input, into the space-time history of the cellular automa-
199
+ ton. This system is powered by a concentration difference
200
+ between the monomer tiles that are invading over those
201
+ that are displaced. The above two constructions displace
202
+ each tile in the original array at most once, using energy
203
+ that is linear in the area used. The third construction ad-
204
+ dresses whether iterated computation can be performed
205
+ in-place, which requires replacing the tile at a given loca-
206
+ tion an unbounded number of times. Remarkably, using
207
+ locally reversible asynchronous tile displacement, we can
208
+ simulate arbitrary synchronous block cellular automata
209
+ that use the 2 × 2 Margolus neighborhood, including his
210
+ globally reversible Billiard Ball Model that is known to
211
+ be Turing universal by simulation of infinite or finite re-
212
+ current Boolean circuits [20, 21, 22]. A key issue is how to
213
+ bias the computation forward; we show that it is enough
214
+ to include a large empty part of the array into which en-
215
+ tropy is injected.
216
+ This paper does not aim for novel advances in molecu-
217
+ 2
218
+
219
+ 全全lar programming that make technical applications closer
220
+ to reality. We are sharing these observations mainly be-
221
+ cause we find them to be beautiful and surprising. Tile
222
+ displacement may indeed be useful for reconfiguration of
223
+ adaptive molecular systems, but for most implementation
224
+ goals that are merely computational, there are more di-
225
+ rect and more reliable ways to achieve them using other
226
+ mechanisms in DNA nanotechnology. However, it is re-
227
+ markable that a molecular mechanism accidentally dis-
228
+ covered in the laboratory gives rise to a theoretical model
229
+ with such natural and direct connections to an esoteric
230
+ but well-studied model of computation that arose in the
231
+ study of the fundamental physics and ballistic motion.
232
+ We hope you will see through our imperfect figures and
233
+ clumsy explanations to see the poetry within the con-
234
+ cepts [23].
235
+ 2. TILE DISPLACEMENT MODEL
236
+ The abstract model developed in this work, which we call
237
+ the Single-Assembly Tile Displacement (SATiDi) model,
238
+ defines the behavior of a single tile assembly within a
239
+ sea of monomer tiles. There are a number of assumptions
240
+ that must hold in order for the model to be experimentally
241
+ plausible, while also allowing its definition to be fairly
242
+ clean.
243
+ Singularity. The concentration of multi-tile assemblies
244
+ is sufficiently low (e.g. there is exactly one) that they
245
+ do not interact with each other.
246
+ Monomers. Binding between two monomer tiles is suf-
247
+ ficiently weak (at the given temperature and con-
248
+ centrations) that any dimers are fleeting and their
249
+ presence can be neglected.
250
+ Stability. Tiles within an assembly (e.g.
251
+ with four
252
+ neighbors) are sufficiently strongly attached that
253
+ they will not dissociate; tiles on the boundaries and
254
+ corners, with only two or three neighbors, may have
255
+ special binding interactions that make them as stable
256
+ as the internal tiles.
257
+ No growth. With a single-side attachment being unsta-
258
+ ble for dimers, similarly new tiles may not attach by a
259
+ single side to a facet of a multi-tile assembly. When
260
+ the assembly is rectangular, as will be exclusively
261
+ considered here, that means the number of tiles in
262
+ an assembly will never change.
263
+ Full toeholds. For consistent tile displacement kinetics,
264
+ we require that the displacement process on each
265
+ side has its own mediating toehold, so a tile that
266
+ is bound to four neighbors will be displaced by a tile
267
+ that forms a toehold on each of the four sides. While
268
+ fewer toeholds may be sufficient for displacement, it
269
+ is all too plausible that their kinetics would be ir-
270
+ regular; our simulator will issue a warning whenever
271
+ such a displacement possibility is encountered.
272
+ Energetics. Tile displacement reactions must be either
273
+ energetically neutral or energetically downhill, i.e.
274
+ the number of toeholds formed is either the same
275
+ as or more than the number of toeholds broken.
276
+ Uniform design. Each side of every tile will consist
277
+ of a first toehold domain, a branch migration do-
278
+ main, and a second toehold domain.
279
+ We will as-
280
+ sume that the branch migration domains are distinct
281
+ on the north, east, west, and south such that they
282
+ force tile to maintain a specific orientation (although
283
+ non-oriented versions of the model could be formu-
284
+ lated when non-oriented tiles are desirable). Because
285
+ branch migration domains cannot be changed by tile
286
+ displacement, they will not be formally represented
287
+ or accounted for in the model.
288
+ The model is illustrated in figure 2A, where both a
289
+ valid neutral tile displacement and a valid downhill tile
290
+ displacement are shown.
291
+ Neutral displacement can be
292
+ though of as generalizing the “toehold exchange” mech-
293
+ anism from strand displacement [24]: formation of me-
294
+ diating toehold ensures fast kinetics, while dissociation
295
+ of prior toeholds both ensures that the reaction is en-
296
+ ergetically neutral and opens up those toeholds for use
297
+ in subsequent steps, as shown in figure 2B. Toehold ex-
298
+ change in tile displacement was demonstrated experimen-
299
+ tally [3], although not in the exact geometric configura-
300
+ tion required here; tuning of toehold strength (e.g. via
301
+ temperature) would be required to ensure that the dis-
302
+ sociation step (which may involve breaking four toeholds
303
+ simultaneously) is sufficiently fast while still being effec-
304
+ tive for mediating the reaction.
305
+ Formally, a SATiDi system is defined by (1) a finite
306
+ set of square tile types S, each of which specifies an or-
307
+ dered pair of bond types (toeholds) for each of the four
308
+ sides, (2) a bond strength function for each bond type b,
309
+ Eb > 0, (3) a concentration for each tile type i, ci, and
310
+ (4) a standard tile displacement rate constant k. The as-
311
+ sociated set of assemblies A consists of finite arrays of tile
312
+ types (or empty). Given a specific assembly, we say that
313
+ a specific toehold on a specific tile is closed if the cor-
314
+ responding toehold on the neighboring tile has the same
315
+ (i.e. matching) bond type (i.e. they form a bond), while
316
+ we say that it is open otherwise. The bond energy E(A)
317
+ of an assembly A is the sum � −Eb over all closed toe-
318
+ holds in the assembly, while the free energy G(A) of the
319
+ assembly is its bond energy plus the sum � ln ci/c0 over
320
+ all tiles in the assembly, where c0 is the reference con-
321
+ centration (e.g. 1 M). Given these, we associate a formal
322
+ chemical reaction network (CRN) with reactions
323
+ A + ti
324
+ k
325
+ −→ A′ + tj
326
+ where A is an assembly with tile tj at some position x, A′
327
+ is the same assembly but with ti instead at that same po-
328
+ sition x, and ti is a valid displacement: on all sides where
329
+ tj has a neighbor, ti forms a matching bond with (at
330
+ 3
331
+
332
+ A
333
+ tiles that can displace the center tile:
334
+ tiles that cannot displace the center tile:
335
+ neutral
336
+ downhill
337
+ neutral
338
+ but no west toehold
339
+ uphill
340
+ downhill
341
+ but no north toehold
342
+ warning
343
+ a
344
+ b
345
+ c
346
+ d
347
+ x
348
+ w
349
+ y
350
+ z
351
+ a
352
+ b
353
+ c
354
+ d
355
+ x
356
+ w
357
+ y
358
+ z
359
+ a
360
+ b
361
+ c
362
+ d
363
+ C
364
+ D
365
+ B
366
+ irreversible
367
+ strand displacement
368
+ reversible
369
+ strand displacement
370
+ Figure 2:
371
+ (A) Abstract tile displacement model. (B) Irreversible and reversible strand displacement. (C) DNA origami
372
+ tile implementation. (D) Single-stranded tile implementation.
373
+ least one) open toehold, and the total number of match-
374
+ ing bonds increases or stays the same (i.e. the assembly’s
375
+ bond energy decreases or stays the same). When all reac-
376
+ tions are reversible, which implies that the bond energy
377
+ of the assembly never changes, the CRN satisfies detailed
378
+ balance with respect to the assembly bond energy, with
379
+ monomer tiles having zero energy.
380
+ We consider standard stochastic kinetics according
381
+ to
382
+ Gillespie
383
+ simulation
384
+ with
385
+ chemostatted
386
+ constant
387
+ monomer tile concentration [25, 26]. For an initial state
388
+ containing a single assembly, this results in a finite
389
+ continuous-time Markov chain (CTMC) where the set of
390
+ states are all assemblies reachable via tile displacement
391
+ reactions, and the transition A → A′ involving invading
392
+ tile ti, as above, will have rate k × ci. If all reactions
393
+ are reversible, this CTMC will satisfy detailed balance
394
+ with respect to the assembly free energy, such that the
395
+ equilibrium probability of assembly A is
396
+ p(A) = 1
397
+ Z e−G(A)
398
+ with
399
+ Z =
400
+
401
+ A′
402
+ e−G(A′)
403
+ where the partition function sum Z is taken with respect
404
+ to all assemblies reachable by tile displacement.
405
+ A tile displacement system simulation is considered un-
406
+ reliable if at any time there is an energetically neutral or
407
+ downhill tile replacement that does not form at least one
408
+ new toehold with each neighboring tile. In this case, the
409
+ simulation issues a warning, as illustrated in figure 2A.
410
+ We briefly consider possible experimental implementa-
411
+ tions of single-assembly tile displacement systems. Fig-
412
+ ure 2C shows the motivating DNA origami tile scheme,
413
+ using a geometrically-symmetrical tile design modeled af-
414
+ ter those used in several prior experimental works [27, 17,
415
+ 3, 28, 29]. More speculatively, in figure 2D we envision
416
+ an implementation that makes use of topologically two-
417
+ dimensional arrays of single-stranded tiles [30, 31], which
418
+ have been shown to tolerate a wide variety of structural
419
+ variations (including single-stranded regions as we would
420
+ require for toeholds) and permitting strand displacement
421
+ reactions that remove tiles from the array [32, 33]. How-
422
+ ever, single-strand tile reactions analogous to the four-
423
+ toehold reversible tile displacement reactions required
424
+ here have not been experimentally demonstrated.
425
+ Re-
426
+ gardless of whether considering DNA origami tiles or
427
+ single-stranded tiles – or something else – a major ob-
428
+ stacle to any experimental implementation would be the
429
+ creation of the initial array with a desired initial pattern.
430
+ One possible avenue – still difficult – would be to initially
431
+ assemble a uniquely-addressed DNA origami array [17]
432
+ or single-stranded tile array [31], use that array to geo-
433
+ metrically organize the desired pattern of non-uniquely-
434
+ addressed tiles needed for tile displacement behaviors,
435
+ and then via photocleavable bonds or other mechanisms,
436
+ remove and dispose of the uniquely-addressed array. But
437
+ for now, we will assume that arbitrary initial assemblies
438
+ can be synthesized.
439
+ 3. WIRES, GATES, AND CIRCUITS
440
+ To get a feel for how tile displacement systems can be
441
+ programmed, we begin with the most basic task: signal
442
+ transmission. As shown in figure 3A, this can be accom-
443
+ plished using a single tile type (“wire”) that is used in
444
+ the initial assembly to indicate where the wire is, plus a
445
+ single tile type (“signal”) that carries the signal x. Two
446
+ additional tile types (“top” and “bottom”) are used to
447
+ provide neighboring tiles for the wire, as in general the
448
+ 4
449
+
450
+ A
451
+ B
452
+ C
453
+ signal
454
+ wire
455
+ bottom
456
+ top
457
+ reversible transmission of signal x ⇌ x:
458
+ neutral
459
+ irreversible transmission of signal x → x:
460
+ downhill
461
+ signal
462
+ wire
463
+ bottom
464
+ top
465
+ neutral
466
+ reversible transmission of signals w + x ⇌ y + z:
467
+ signal w
468
+ wire (S-N)
469
+ wire (W-E)
470
+ signal x
471
+ wire cross
472
+ signal y
473
+ signal z
474
+ gate
475
+ downhill
476
+ neutral
477
+ but no south toehold
478
+ warning
479
+ irreversible transmission of signals w + x → y + z:
480
+ D
481
+ warning
482
+ neutral
483
+ but no south toehold
484
+ ❷ position (3,3)
485
+ ❸ position (4,3)
486
+ ❶ position (4,3)
487
+ signal w
488
+ signal x
489
+ wire cross
490
+ signal y
491
+ signal z
492
+ gate
493
+ wire (S-N)
494
+ wire (W-E)
495
+ Figure 3:
496
+ (A) Reversible wire. All toeholds are strength 1 except for toehold “−”, which is inert, i.e. strength 0. The
497
+ top and bottom tiles have toeholds that are not shown, such that in the assembly the unlabeled sides are bound to each
498
+ other via matching closed toeholds. In assemblies, closed toeholds are shown with light grey labels and a solid dark grey bar
499
+ indicates their bond. For open toeholds, black or light grey is used to highlight relevant locations for the tile displacement
500
+ reaction of interest, but have no formal meaning. In the monomer tile that is a reactant of the indicated reaction, solid dark
501
+ grey bars indicate where new toehold bonds will be formed. Here and in later figures, only the forward reaction is shown
502
+ for any reversible reactions (i.e. the assembly and monomer tile that are the products of the indicated reaction do not have
503
+ their relevant toeholds highlighted for the backward reaction). (B) Irreversible wire. (C) Reversible wire cross. The initial
504
+ assembly shown here illustrates the moment when both reversible signals arrive at the wire cross location. At this time, a
505
+ reversible bond-energy neutral reaction can occur that inserts the gate tile in the central location, enabling reversible signals
506
+ y and z to propagate on the output wires. (D) An unreliable irreversible wire cross that has two possible types of warnings.
507
+ 5
508
+
509
+ wire will be embedded within a larger assembly. Each
510
+ tile displacement reaction is neutral with respect to the
511
+ bond energy, so when both the wire and signal tiles are
512
+ at the same concentration, every tile displacement occurs
513
+ at the same rate, and the signal transmission performs an
514
+ unbiased random walk. Thus the expected time for signal
515
+ transmission along a wire of length N is O(N 2).
516
+ Faster signal transmission is possible if each tile dis-
517
+ placement step is irreversible, which can be accomplished
518
+ if new toehold bonds are formed such that the bond en-
519
+ ergy change is downhill. Shown in figure 3B, the wire is
520
+ as before, but now the signal tile has an additional toe-
521
+ hold. Thus, tile displacement reactions are energetically
522
+ downhill, forming one net additional bond with each re-
523
+ action step, and the expected time for signal transmission
524
+ is now O(N).
525
+ When a horizontal and a vertical wire meet, we can
526
+ perform a computational step. Figure 3C shows two re-
527
+ versible wires, one carrying signal x and the other carry-
528
+ ing signal w, meeting at a “wire cross” tile in the center.
529
+ At this location, reversible tile displacement by a “gate
530
+ tile” can effect the w + x ⇀
531
+ ↽ y + z reaction.
532
+ Because
533
+ the initial wire cross tile has four closed toeholds, tile dis-
534
+ placement by the gate tile must form all four new toehold
535
+ bonds, and thus tile displacement here prior to arrival of
536
+ both the x and w signals would be energetically unfa-
537
+ vorable and would not occur. This gate design is robust
538
+ and flexible: it is straightforward to design more powerful
539
+ variants. For example, the horizontal wire can carry one
540
+ of two signals, 0 or 1, the vertical wire also can carry 0
541
+ or 1, and there are now four gate tiles, one for each input
542
+ combination, with output signals that effectively compute
543
+ the logic function of interest.
544
+ Specifically, to compute
545
+ NAND and output using the same signal varieties, we
546
+ would use four gate tiles that replace (w, x, y, z) respec-
547
+ tively by (0, 0, 1, 1), (0, 1, 1, 1), (1, 0, 1, 1), and (1, 1, 0, 0).
548
+ Can we similarly perform logic gate operations using
549
+ irreversible wires, thus making computation faster? Un-
550
+ fortunately, the above schemes no longer work in this case,
551
+ as illustrated in figure 3D. The problem is that now, prior
552
+ to arrival of the second signal, an energetically neutral tile
553
+ displacement is possible at the gate position that simply
554
+ ignores the missing input wire.
555
+ Indeed, if the vertical
556
+ wire is meant to be capable of carrying two signals (here
557
+ w or y), then an energetically neutral tile displacement
558
+ could analogously flip the signal content. Thus, this tile
559
+ set and gate design is deemed unreliable and would issue
560
+ warnings in our simulator. The lesson is that irreversible
561
+ reactions will form an additional toehold when operating
562
+ as intended, and this presents the possibility that a sim-
563
+ ilar context that differs by just one open toehold, where
564
+ the reaction is not intended to occur, will be energetically
565
+ neutral and lead to an error.
566
+ So does this mean that linear-time binary signal trans-
567
+ mission and circuit computation is impossible with tile
568
+ displacement systems? Thankfully, no. The trick is that
569
+ while the leading wavefront of signal propagation and
570
+ computation still must be reversible, in order to reliably
571
+ discriminate single-toehold differences, it can be safe to
572
+ irreversibly latch a decision in a context where all neigh-
573
+ boring tile contain the same information, so differences
574
+ between a 0 signal and a 1 signal by necessity involve
575
+ two toeholds. Now, if the irreversible tile displacement
576
+ involves the formation of one extra toehold in the correct
577
+ context, in the incorrect context it would have to ignore
578
+ two toeholds and thus would be uphill.
579
+ This principle
580
+ is illustrated in the design shown in figure 4A, where the
581
+ latch tile can irreversibly insert itself into a three-tile-long
582
+ segment of signal-carrying wire. Exactly where the latch
583
+ tile inserts does not matter; the signal ratchets forward
584
+ either way.
585
+ We are now ready to take these designs for wires and
586
+ gates, and combine them to construct feedforward logic
587
+ circuits that compute in time linear with the depth of the
588
+ circuit (as laid out in an array). There is, however, one
589
+ more problem to solve if we want to build circuits that
590
+ utilize multiple types of logic gates (e.g.
591
+ XOR, AND,
592
+ OR, NAND, NOR, WIRECROSS, and others). When an
593
+ invading gate tile (e.g. “XOR 10” shown in figure 4B)
594
+ displaces the initial gate tile (e.g.
595
+ “XOR”), it makes
596
+ bonds with toeholds on the neighboring four tiles but
597
+ not with the displaced tile itself – therefore, information
598
+ about which function should be computed must be con-
599
+ tained in the neighboring tiles, and not just the gate tiles.
600
+ We achieve this goal by using a gate-specific toehold in
601
+ the initial gate tile, which directs the incorporation of a
602
+ translator tile in the final position of each wire, as shown
603
+ in figure 4B. Now the translator tile contains information
604
+ about which logic function should be computed. Thus, an
605
+ arbitrary number of gate types may coexist in the same
606
+ system.
607
+ Simulations of two feedforward circuit computations
608
+ are shown in figure 5. Using just a systolic array of XOR
609
+ gates, a collection of parity outputs (involving different
610
+ subsets of the inputs) are produced, incidentally creating
611
+ a Sierpinski triangle pattern within the completed wires
612
+ and gates.
613
+ The second circuit makes use of four gate
614
+ types: a NOR gate that produces the same signal on both
615
+ output wires, a NAND/XOR gate that produces NAND
616
+ to the north and XOR to the east, a WIRECROSS that
617
+ sends it south input to the north and its west input to the
618
+ east, and a WIREPASS that sends its south input to the
619
+ east and its west input to the north. The positions and
620
+ identities of the gates are laid out in the initial tile array.
621
+ Computation of an N ×N circuit will take expected time
622
+ O(N).
623
+ The tile system with eastward and northward latching
624
+ binary wires and the five types of gate functions discussed
625
+ above consists of 66 tile types altogether. For a circuit
626
+ that can be laid out effectively in this format, an area of
627
+ O(N 2) tiles can support N 2 gates. Arbitrary feedforward
628
+ circuits with N gates can be implemented in O(N 2) area
629
+ using a standard crossbar array architecture (for exam-
630
+ ple see [34]) and a new FANOUT gate that copies one
631
+ 6
632
+
633
+ A
634
+ B
635
+ wire
636
+ bottom
637
+ top
638
+ signal 0
639
+ latch 0
640
+ signal 1
641
+ latch 1
642
+ irreversible transmission of signals 0 and 1:
643
+ translator
644
+ 0 ⇌ 0⊕ (W-E)
645
+ translator
646
+ 1 ⇌ 1⊕ (W-E)
647
+ translator
648
+ 0 ⇌ 0⊕ (S-N)
649
+ translator
650
+ 1 ⇌ 1⊕ (S-N)
651
+ XOR
652
+ XOR 00
653
+ XOR 01
654
+ XOR 10
655
+ XOR 11
656
+
657
+
658
+
659
+
660
+ Figure 4:
661
+ (A) Irreversible wire with no warnings. The next effect of two separate, independent tile displacement steps is
662
+ shown for each wire. Importantly, no unreliable tile displacement reactions are possible. (B) An XOR gate. The gate itself
663
+ is entirely reversible; latch steps in the input and output wires are sufficient for ensuring net progress within a circuit.
664
+ input and ignores the other (using 75 tiles types if the
665
+ new gate is just added, or 57 tile types if the redundant
666
+ NAND/XOR and XOR gates are removed).
667
+ Can we do better than just feedforward circuits? It is
668
+ clear from inspection that our latching binary-signal wires
669
+ can transmit information in either direction, depending
670
+ on where the signal first arrives, and it is straightforward
671
+ to implement gates that receive inputs from any two sides
672
+ and produce outputs on the two other sides, so we can ar-
673
+ range for signals to go around in cycles. Furthermore, the
674
+ 7
675
+
676
+ A
677
+ B
678
+ T = 0
679
+ T = 1000
680
+ T = 2000
681
+ T = 3000
682
+ T = 0
683
+ T = 1000
684
+ T = 2000
685
+ T = 3000
686
+ Figure 5:
687
+ (A) A 9 by 9 array of XOR gates. Black tiles are “caps” that terminate the output wires. (B) A 18-input 18-output
688
+ logic circuit composed of XOR, NAND, and NOR gates. Two types of wire routing are implemented with a WIRECROSS
689
+ tile that sends it south input to the north and its west input to the east, and a WIREPASS tile that sends its south input to
690
+ the east and its west input to the north. The simulation time T measures the number of tile displacement reactions that have
691
+ occurred, rather than the real time in the Gillespie simulation.
692
+ tile displacement model in principle allows displacement
693
+ to occur an arbitrary number of times in a given location.
694
+ As a trivial example, the reversible wire of figure 3A can
695
+ endlessly perform a random walk, back and forth forever.
696
+ This raises the prospect of a tile displacement system of
697
+ size N simulating a recurrent (iterated, feedback) circuit
698
+ of size O(N), which can perform computations of length
699
+ 2O(N) – exponentially more than what a feedforward cir-
700
+ cuit of the same size can do. This is to say, with respect
701
+ to the size of the initial array and tile set, our existing
702
+ construction can solve PTIME problems, while a reach
703
+ goal would be to solve PSPACE problems like recur-
704
+ rent circuits can. Unfortunately, this is not compatible
705
+ with the use of latching wires to ensure linear-time signal
706
+ propagation: an area-N tile array initially has at most
707
+ O(N) open toeholds, and thus at most O(N) irreversible
708
+ 8
709
+
710
+ tile displacement steps can take place before the system
711
+ comes to a standstill – or more precisely, until it must
712
+ henceforth rely exclusively on reversible steps.
713
+ 4. 1D CA SPACE-TIME HISTORIES
714
+ Boiling down what we learned about circuits to its re-
715
+ versible essence, we can re-implement the above compu-
716
+ tations using fewer tile types, more compact layouts with
717
+ just one tile per logic gate, and power for driving the com-
718
+ putation forward coming from concentration differences
719
+ rather than from irreversible toehold formation.
720
+ We start by providing generalized construction for sim-
721
+ ulating the space-time history of one-dimensional block
722
+ cellular automata (1D BCA) that is very similar to
723
+ their simulation by algorithmic self-assembly of DNA
724
+ tiles [35, 2]. The instantaneous state of a 1D BCA is just
725
+ a one-dimensional array of symbols from a given alphabet
726
+ A, and in each time step the entire array is synchronously
727
+ updated by applying a rule (x, y) → (f(x, y), g(x, y)) to
728
+ a partitioning of the array into pairs, where f and g are
729
+ functions that define the BCA and the parity of the par-
730
+ tition alternates on each time step. The size of the ar-
731
+ ray may be infinite, finite, or expanding, with given ini-
732
+ tial state and boundary conditions (typically a finite core
733
+ then periodic). Our tile displacement system construc-
734
+ tion, shown in figure 6A, makes use of 2 + 2N + N 2 tile
735
+ types for a 1D BCA with an alphabet of size N. The
736
+ initial array uses 1 tile in the lower-left corner, N tiles to
737
+ define input boundary conditions to be fed in at each time
738
+ step from the left, N tiles to define the input boundary
739
+ conditions to be fed in at each time step from the bottom,
740
+ and 1 tile type filling in the remaining “blank” uncom-
741
+ puted region of the array. The remaining N 2 tile types
742
+ encode every input/output case for the update rule. For
743
+ example, a binary alphabet (N = 2) will result in 10 tile
744
+ types (figure 6B). The nth synchronous update of the 1D
745
+ BCA will be encoded in the nth diagonal of the tile ar-
746
+ ray. Similar to the gate tiles in the circuit construction,
747
+ displacement must match all four open toehold positions,
748
+ else it will be energetically unfavorable. This can only
749
+ happen when both the tile to the left and the tile below
750
+ have already updated, thus ensuring that the computed
751
+ information is based on the correct information from the
752
+ preceding diagonal.
753
+ Because our model insists that any tile that can be
754
+ displaced in a simulation must have a non-zero concen-
755
+ tration as a monomer in solution, every reaction will
756
+ be reversible. However, by chemostatting the blank tile
757
+ at a lower concentration than the rule tiles, each dis-
758
+ placement reaction can be biased forward by some factor
759
+ r = crule/cblank. From detailed balance of the CRN and
760
+ CTMC, this ensures that the equilibrium probability of
761
+ the rule-tile containing assembly is r times higher than
762
+ that of the blank-tile containing assembly. Although the
763
+ system will never get irreversibly locked into a final out-
764
+ put assembly state, the complete assembly with all rule
765
+ tiles in place will be rm times more likely than an assem-
766
+ bly with m blank tiles still present, which we consider
767
+ “good enough”. Note that if a final irreversible step is
768
+ desired to lock in place the completed computation, this
769
+ is also possible by adapting the techniques used in the
770
+ circuit construction, just at the upper right corner.
771
+ Comparing the circuit construction of figure 5A to the
772
+ cellular automaton space-time history construction in fig-
773
+ ure 6BC, both of which compute parallel systolic arrays
774
+ of XOR gates, we see that for the same size array, the
775
+ cellular automaton approach computes roughly 9 times
776
+ more gates. It also uses just 10 tile types, compared to
777
+ 30 for the circuit construction (if the tiles used for logic
778
+ gates other than XOR are omitted).
779
+ However, our cellular automaton construction, by its
780
+ very nature as a cellular automaton, receives information
781
+ only in the initial 1D boundary conditions, and thus an
782
+ assembly cannot specify a two-dimensional layout for the
783
+ circuit that will be computed by tile displacement. A sim-
784
+ ple modification of the ideas resolves this apparent limita-
785
+ tion: we generalize the construction to cellular automaton
786
+ transformers whose cell update now depends both on the
787
+ current state (x, y) ∈ A1 and a time-and-space-dependent
788
+ input pattern (p, q) ∈ A0, as shown in figure 6D. Instead
789
+ of an initial array containing uniform blank tiles, the ini-
790
+ tial array will contain a layout of “pattern” tiles that each
791
+ encode the information p that the gate below it will need
792
+ to read, as well as the information q that the tile to its
793
+ left will need to read.
794
+ If A1 is size N and A0 is size
795
+ M, then there are 2N input tiles, M 2 pattern tiles, and
796
+ N 2M 2 rule tiles. Each reversible tile displacement reac-
797
+ tion now must match four variable pieces of information,
798
+ in two pattern toeholds and two state toeholds. As shown
799
+ in figure 6EF, laying out exactly the same circuit as in
800
+ figure 5B now requires 9 times less space, uses just 39 tile
801
+ types (N = 2 state bit values plus a terminator, M = 5
802
+ logic functions, but not all combinations are needed) in-
803
+ stead of 57, and, with concentration bias again, computes
804
+ significantly faster.
805
+ Both these constructions exhibit strong similarities to
806
+ computation via algorithmic growth during self-assembly
807
+ of tiles – in the first case, 2D tiles growing a 2D structure
808
+ from a 1D boundary [35, 2], and in the second case, 3D
809
+ tiles growing an additional layer on top of a patterned
810
+ 2D initial assembly [36]. A significant difference is that
811
+ rather than growing in size, the tile displacement system
812
+ always remains the same size; rather than each tile attach-
813
+ ment requiring new bond energy to counteract the lost en-
814
+ tropy due to localization of the tile, the tile displacement
815
+ system remains neutral with respect to bond energy be-
816
+ cause each incoming tile is balanced by an outgoing tile.
817
+ Thus, rather than finding suitable operating conditions
818
+ by balancing temperature (controlling the bond energies)
819
+ against tile concentrations (which simultaneously affect
820
+ the kinetics), in tile displacement we balance concentra-
821
+ tion against concentration (which permits similar bias
822
+ at different speeds and temperatures).
823
+ These benefits
824
+ reflect similar observations about the increased robust-
825
+ 9
826
+
827
+ B
828
+ C
829
+ input 0 (N)
830
+ input 1 (N)
831
+ input 0 (E)
832
+ input 1 (E)
833
+ blank
834
+ XOR00
835
+ XOR10
836
+ XOR01
837
+ XOR11
838
+ E
839
+ T = 0
840
+ T = 1000
841
+ T = 2000
842
+ T = 3000
843
+ NOR00
844
+ NOR10
845
+ NOR01
846
+ NOR11
847
+ XOR-NAND00
848
+ XOR-NAND10
849
+ XOR-NAND01
850
+ XOR-NAND11
851
+ XOR01
852
+ XOR01
853
+ XOR10
854
+ diagonal-wire01
855
+ XOR-NAND11
856
+ XOR-NAND10
857
+ A
858
+ 1D block cellular automaton update rule:
859
+ (������������, ������������) → (������������ ������������, ������������ , ������������(������������, ������������))
860
+ corner
861
+ input (N)
862
+ input (E)
863
+ blank
864
+ rule
865
+ 1D block cellular automaton transformer update rule:
866
+ state (������������, ������������) pattern (������������, ������������) → state (������������, ������������)
867
+ corner
868
+ input (N)
869
+ input (E)
870
+ pattern
871
+ rule
872
+ D
873
+ F
874
+ T = 0
875
+ T = 30
876
+ T = 60
877
+ T = 90
878
+ corner
879
+ Figure 6:
880
+ (A) General case implementation of 1D block cellular automaton. Here a and b, written in roman font, denote
881
+ specific toeholds. In contrast, x, y, f and g are variables and thus shown in italics. There will be a separate rule tile for each
882
+ possible pair x, y ∈ A, with f and g being dependent on x and y, and similarly for the input tiles. (B) An example 1D block
883
+ cellular automaton that computes the same function as the circuit shown in Fig. 5A. (C) Simulation snapshots. (D) General
884
+ case implementation of 1D block cellular automaton transformer. (E) An example 1D block cellular automaton transformer
885
+ that computes the same function as the circuit shown in Fig. 5B. (F) Simulation snapshots.
886
+ 10
887
+
888
+ ness of strand displacement and toehold exchange com-
889
+ pared to direct hybridization of complementary oligonu-
890
+ cleotides [37, 38]. Seen more generally, tile displacement
891
+ systems involve reconfiguration of a constant-sized assem-
892
+ bly via local propagation of information, which is remi-
893
+ niscent of the distinction between crystal growth from
894
+ monomers in dilute solution (the case generally assumed
895
+ in algorithmic self-assembly of DNA tiles) versus crys-
896
+ tallization from the melt (wherein the initial state is a
897
+ disorganized constant-density liquid of monomers, within
898
+ which crystalline order locally propagates during crystal
899
+ growth).
900
+ Have we identified new concepts for tile displacement
901
+ systems that allow us to perform more computation in a
902
+ limited space? Powering computation forward via con-
903
+ centration bias in reversible reactions has given rise to
904
+ compact constructions that naturally avoid the unrelia-
905
+ bility warnings that plagued our initial wire and circuit
906
+ constructions, but the computational power still remains
907
+ PTIME. One way of looking at this is that the free en-
908
+ ergy of the assembly, G(A) decreases every time a higher-
909
+ concentration tile replaces a lower-concentration tile, yet
910
+ the minimum (most favorable) free energy occurs if all
911
+ tiles in the array are highest-concentration tiles. That is
912
+ to say, the free energy is bounded below, and if each for-
913
+ ward computational step is biased by a minimum amount,
914
+ there are a bounded number of such steps that can occur
915
+ before the computation is done. The situation is not so
916
+ different from the limitation we encountered when power-
917
+ ing computation by new toehold formation in irreversible
918
+ displacement steps. Is this limitation to PTIME a feature
919
+ of tile displacement systems in general, or is it particular
920
+ to the lack of imagination in the constructions we have
921
+ presented so far?
922
+ 5. 2D CA IN-PLACE EXECUTION
923
+ We can get some ideas from the notion of a cellular au-
924
+ tomaton transformer, which reads a 2D pattern as a wave
925
+ of activity passes over it, leaving a new pattern in its
926
+ wake. Suppose that the new pattern can be read by a sec-
927
+ ond wave, corresponding to a second cellular automaton
928
+ transformer using a new set of rule tiles. For example,
929
+ the initial pattern might use toehold alphabet A0, the
930
+ first cellular automaton transformer uses states in alpha-
931
+ bet A1 and writes a new pattern using alphabet A2 by
932
+ utilizing the two locations that, in figure 6D, have useless
933
+ inert “−” toeholds. Then, the second cellular automaton
934
+ transformer can read A2, store its transient state in A3,
935
+ and write a third pattern using A4. To drive the com-
936
+ putation forward, the first transformer’s rule tiles should
937
+ have a higher concentration than the pattern tiles, and
938
+ the second transformer’s rule tiles should have a higher
939
+ concentration than the first transformer’s rule tiles. This
940
+ idea could be extended to K waves, each with its own
941
+ set of rule tiles. This would improve upon the previous
942
+ constructions, in which each location in the array expe-
943
+ riences just net one forward tile displacement step – at
944
+ that location, either one has the initial tile, or the final
945
+ tile. Whereas, in an implementation of a multiple-wave
946
+ cellular automaton transformer, each location would go
947
+ through a sequence of changes, one for each wave.
948
+ In
949
+ a sense, we achieve K-fold more computation within the
950
+ same assembly area. This is somewhat analogous to freez-
951
+ ing cellular automata, which are restricted to change a
952
+ cell’s state a limited number of times [39].
953
+ There are two problems here, as you have probably
954
+ already noticed.
955
+ First, if the concentration ratio from
956
+ wave to wave is r, then a K-wave computation requires
957
+ a ratio of rK between the lowest-concentration tiles and
958
+ the highest-concentration tiles. That quickly becomes im-
959
+ practical, and theoretically unappealing.
960
+ Second, each
961
+ wave requires a new set of tiles – yet for PSPACE com-
962
+ putations we would require an exponential number of tile
963
+ updates and thus a comparable number of waves. So this
964
+ idea doesn’t get us where we want to go.
965
+ To keep a constant number of tile types while allowing
966
+ an unbounded number of tile displacement steps per site,
967
+ perhaps we could have a small number K of waves, but
968
+ have wave K output its new pattern using alphabet A0 so
969
+ that the tiles of wave 1 can read it – thus allowing iterated
970
+ computation, such as binary counters and perhaps univer-
971
+ sal space-bounded algorithms. This is indeed the essence
972
+ of the construction we’ll arrive at, but it comes at a cost:
973
+ for wave 1 tiles to displace wave K tiles, they cannot be
974
+ at a lower concentration, which basically implies that all
975
+ rules tiles must be at the same concentration, and we have
976
+ no concentration bias pushing the computation forward.
977
+ (This conclusion is not specific to periodic waves of cel-
978
+ lular automata transformers; it follows in general that if
979
+ we want to implement a computation that may update a
980
+ given site an unknown and unbounded number of times,
981
+ then every tile type may at some point be an incoming
982
+ tile and at other times be the outgoing tile, so the con-
983
+ centrations of all rule tiles must be equal.) If we have
984
+ already accepted that our designs should exclusively use
985
+ bond-energy neutral tile displacement, then in fact the
986
+ bond energy and free energy of our assembly will remain
987
+ constant over time – we are truly dealing with reversible
988
+ computation.
989
+ Thankfully, reversible computation is by
990
+ no means impossible [14, 40].
991
+ Our approach will be to exhibit a surprisingly natural
992
+ correspondence between certain tile displacement systems
993
+ and the well-studied class of two-dimensional block cel-
994
+ lular automata (2D BCA) that arose in the study of re-
995
+ versible computation by discrete models of ballistic phys-
996
+ ical dynamics [20, 21, 22]. The 2D BCA model is a natu-
997
+ ral generalization of the 1D BCA discussed above: rather
998
+ than partitioning a 1D array into pairs of cells that get
999
+ synchronously rewritten with alternating partition par-
1000
+ ity on alternate time steps, we now partition a 2D array
1001
+ into 2 × 2 blocks of cells that get synchronously rewrit-
1002
+ ten with alternating partition parity on alternating time
1003
+ steps (compare figure 7A with figure 7E). The formalism
1004
+ 11
1005
+
1006
+ A
1007
+ ( ⃗������������, ⃖������������) → (������������ ⊕ ������������, ������������ ⊕ ������������)
1008
+ ������������ = 4
1009
+ 0
1010
+ 0
1011
+ ������������ = 3
1012
+ 1
1013
+ 1
1014
+ 1
1015
+ 1
1016
+ ������������ = 2
1017
+ 1
1018
+ 1
1019
+ 0
1020
+ 0
1021
+ 1
1022
+ 1
1023
+ ������������ = 1
1024
+ 0
1025
+ 0
1026
+ 1
1027
+ 1
1028
+ 1
1029
+ 1
1030
+ 0
1031
+ 0
1032
+ ������������ = 0
1033
+ 0
1034
+ 0
1035
+ 0
1036
+ 1
1037
+ 1
1038
+ 0
1039
+ 0
1040
+ 0
1041
+ B
1042
+ (������������, ������������) → (������������ ⊕ ������������, ������������ ⊕ ������������)
1043
+ 10 steps
1044
+ 0
1045
+ 1
1046
+ 1
1047
+ 0
1048
+ 0
1049
+ 1
1050
+ 1
1051
+ 0
1052
+ 9 steps
1053
+ 0
1054
+ 1
1055
+ 1
1056
+ 1
1057
+ 1
1058
+ 1
1059
+ 1
1060
+ 0
1061
+ 8 steps
1062
+ 0
1063
+ 1
1064
+ 1
1065
+ 0
1066
+ 1
1067
+ 1
1068
+ 1
1069
+ 0
1070
+
1071
+ 2 steps
1072
+ 0
1073
+ 0
1074
+ 1
1075
+ 1
1076
+ 1
1077
+ 0
1078
+ 0
1079
+ 0
1080
+ 1 steps
1081
+ 0
1082
+ 0
1083
+ 0
1084
+ 1
1085
+ 1
1086
+ 0
1087
+ 0
1088
+ 0
1089
+ 0 steps
1090
+ 0
1091
+ 0
1092
+ 0
1093
+ 1
1094
+ 1
1095
+ 0
1096
+ 0
1097
+ 0
1098
+ time sheet 0
1099
+ time sheet 8
1100
+ C
1101
+ ������������ = 25
1102
+ ������������ = 0
1103
+ ������������ = 500
1104
+ ������������ = 0
1105
+ D
1106
+ E
1107
+
1108
+ F
1109
+ ������������
1110
+ ������������
1111
+ ↘ ↙
1112
+ ↗ ↖
1113
+ ������������
1114
+ ������������
1115
+
1116
+
1117
+ ������������ ������������
1118
+ ������������ ������������
1119
+
1120
+
1121
+ bottom
1122
+ view
1123
+ top
1124
+ view
1125
+ side
1126
+ view
1127
+ =
1128
+ 21 tile attachment steps
1129
+ time sheet 21
1130
+ ������������ = 0
1131
+ ������������ = 1
1132
+ ������������ = 1
1133
+ ������������ = 2
1134
+ Figure 7:
1135
+ (A) Execution of a synchronous 1D block cellular automaton. (B) Asynchronous 2D tile self-assembly that
1136
+ simulates the computation in (A). (C) and (D) Simulations of two example 2D block cellular automata: Billiard Ball Model (C)
1137
+ and Critters (D). (E) Execution of a synchronous 2D block cellular automaton. (F) Asynchronous 3D tile self-assembly that
1138
+ simulates the computation in (E).
1139
+ allows the rewrite rules to be arbitrary functions
1140
+ f
1141
+ ��
1142
+ a
1143
+ b
1144
+ d
1145
+ c
1146
+ ��
1147
+ =
1148
+
1149
+ w
1150
+ x
1151
+ z
1152
+ y
1153
+
1154
+ but if the rewrite function is a bijection, then the 2D BCA
1155
+ is logically reversible in the sense that iterating with f −1
1156
+ instead of with f will bring the simulation backwards in
1157
+ time. The most famous 2D BCA rule, the Billiard Ball
1158
+ Model (BBM), is logically reversible, rotationally and
1159
+ mirror symmetric, conserves the total number of 1s, can
1160
+ directly simulate reversible circuits, and with an infinite
1161
+ periodic initial state can simulate universal Turing ma-
1162
+ chines [20]. Example simulations of two binary-state 2D
1163
+ BCA, the BBM and “Critters”, are shown in figure 7CD.
1164
+ With larger alphabets, 2D BCA can simulate arbitrary
1165
+ classical cellular automata and Turing machines, either
1166
+ of the irreversible or reversible variety. (Generalizations
1167
+ to using blocks larger than 2 × 2 is also natural, but will
1168
+ not be considered here.)
1169
+ There are three obstacles to implementing arbitrary 2D
1170
+ BCA as tile displacement systems, and we will solve them
1171
+ all. The first is that tile displacement reactions are asyn-
1172
+ chronous (occurring at random locations and in random
1173
+ orders) while 2D BCA require synchronous updates of the
1174
+ entire array (and fail utterly if the same update function
1175
+ is applied asynchronously with no other modifications).
1176
+ The second is that the mechanics of tile displacement
1177
+ must be designed to avoid irreversible steps that close
1178
+ too many toeholds at once.
1179
+ And the third obstacle is
1180
+ that with exclusively reversible reactions and no concen-
1181
+ tration bias, there must be some other way to drive the
1182
+ system forward if we don’t want to wait forever.
1183
+ For the first challenge, we adapt prior methods for im-
1184
+ buing asynchronous cellular automata with locally syn-
1185
+ chronizing mechanisms [41, 42, 43]. The specific approach
1186
+ used here generalizes the approach used for simulation of
1187
+ 1D cellular block automata space-time histories in the
1188
+ previous section.
1189
+ Figure 7A gives an example of a 1D
1190
+ BCA, with boxes highlighting the partitioning into pairs
1191
+ with alternate parity on each synchronous time step. Fig-
1192
+ ure 7B shows the same computation interpreted as 2D
1193
+ tile self-assembly where, starting from the 5 tiles at the
1194
+ bottom that encode the 8 input bits as well as their par-
1195
+ titioning, rule tiles attach whenever they can match two
1196
+ sides of existing tiles in the assembly, thus asynchronously
1197
+ growing the space-time history. We have augmented the
1198
+ tiles with arrows that point to where incoming tiles could
1199
+ attach; thus, in the initial assembly of 5 tiles, the sites
1200
+ 12
1201
+
1202
+ where tile can attach are exactly those locations where ar-
1203
+ rows are pointing inward toward the incoming tile. A cut
1204
+ through the assembly’s space-time diagram corresponds a
1205
+ particular moment during the asynchronous self-assembly
1206
+ process – we show a cut after 0 tile additions (yellow)
1207
+ and another after 8 tile additions (orange). We call these
1208
+ “time sheets” because at different horizontal (x) posi-
1209
+ tions, they are at different heights (t), and thus reading
1210
+ out the binary (black/white) states along a time sheet
1211
+ path correspond to states at different time steps of the
1212
+ underlying synchronous cellular automaton. Nonetheless,
1213
+ the time-sheet state information, augmented with the rel-
1214
+ evant arrows, is all that is needed to correctly complete
1215
+ the computation using an asynchronous update rule that
1216
+ executes only when arrows point toward each other, oth-
1217
+ erwise leaving the cells untouched. This process exactly
1218
+ mimics the self-assembly of the deterministic space-time
1219
+ history, despite its non-deterministic order of execution.
1220
+ There is an exactly analogous arrow-augmented asyn-
1221
+ chronous update rule for 2D BCA. Rather than square
1222
+ tiles, we now have truncated octahedra as “tiles”, but
1223
+ the self-assembling structure is again a space-time history
1224
+ of the correct synchronous cellular automaton computa-
1225
+ tion. Tiles may attach when they match four hexagonal
1226
+ faces of existing tiles in the assembly. (The small square
1227
+ faces are inert.) Again, if we imagine arrows orthogonal
1228
+ to the hexagonal faces of tiles, pointing out of the tile,
1229
+ then valid sites for attachment of a new tile correspond
1230
+ exactly to situations where all four arrows on the match-
1231
+ ing faces are pointing toward each other.
1232
+ The growth
1233
+ front for a give stage of assembly again corresponds to
1234
+ a (now two dimensional) time sheet, and we can write
1235
+ out the states of each exposed hexagonal face in a two
1236
+ dimensional array along with the orientation of its corre-
1237
+ sponding arrow. It is now a simple observation that the
1238
+ asynchronous addition of a tile corresponds exactly to an
1239
+ asynchronous update of a 2 × 2 block with four inward-
1240
+ pointing arrows, resulting in updates of the four cells and
1241
+ reversing all four arrows. Another way of thinking of it
1242
+ is that after a block asynchronously updates, it will not
1243
+ be able to update again until all four overlapping 2 × 2
1244
+ blocks have first updated and flipped the arrows back.
1245
+ Thus, the arrow-augmented asynchronous updating cor-
1246
+ responds exactly to synchronous parallel updating with
1247
+ alternating-parity partitioning into blocks.
1248
+ The second challenge is to implement this type of asyn-
1249
+ chronous block cellular automaton updating rule using
1250
+ tile displacement. Our construction, shown in figure 8,
1251
+ introduces additional complexities due to the fact that
1252
+ all tile displacement reactions are physically reversible,
1253
+ even if the 2D BCA logic update rules are irreversible,
1254
+ combined with the need to ensure that when one toe-
1255
+ hold is closed, the neighboring toehold must be opened –
1256
+ thus we must be able to guarantee a mismatch. Tripling
1257
+ the cell state alphabet by adding α, β, γ markers solves
1258
+ both problems. For each 2D BCA update case, we make
1259
+ three tiles, one inputting α-symbols and outputting β-
1260
+ symbols, another inputting β-symbols and outputting
1261
+ γ-symbols, and the third inputting γ-symbols and out-
1262
+ putting α-symbols. When an α → β tile inserts into the
1263
+ array, that simulates a forward-time asynchronous up-
1264
+ date. The swapping of which toehold is open and which
1265
+ is closed reflects the flipping orientation of arrows in the
1266
+ asynchronous cellular automaton; we can read the arrows
1267
+ from a tile array by looking at the open toeholds and
1268
+ drawing the arrow from α to β, from β to γ, or from γ
1269
+ to α. Boundary conditions for finite arrays must also be
1270
+ handled, using the same principles.
1271
+ Each side of a tile encodes the state of a specific cell
1272
+ in the 2D BCA (at a particular time mod 3, as per α-
1273
+ β-γ of the open toehold), and thus the grid of simulated
1274
+ BCA cells is oriented at a 45◦ angle relative to the array
1275
+ of tiles.
1276
+ State being encoded on the sides of tiles also
1277
+ facilitates that each tile displacement step corresponds to
1278
+ an update of a whole 2 × 2 block, and the fact that two
1279
+ tiles share the same side location reflects that each cell in
1280
+ a 2D BCA can be updated either by an odd-parity block
1281
+ or an even-parity block.
1282
+ The final challenge concerns how to drive the compu-
1283
+ tation forward. Let us first consider reversible 2D BCA
1284
+ rules. In this case, after any forward tile displacement
1285
+ step, there is exactly one monomer tile type that can re-
1286
+ verse the reaction: the tile that was just displaced. What
1287
+ this means is that the full state space of the tile displace-
1288
+ ment system’s CTMC is essentially linear; though fat and
1289
+ fuzzy, it has the same thickness both arbitrarily far into
1290
+ the future and arbitrarily far into the past. The thickness
1291
+ has to do with all the possible contours of the time sheet
1292
+ for a given average time. Thus we can say that the state
1293
+ space of the tile displacement system consists exclusively
1294
+ of correct reachable states of the computation; for a re-
1295
+ versible 2D BCA simulating a compact recurrent circuit
1296
+ for solving a PSPACE problem, the tile displacement sys-
1297
+ tems’s state space will also be exponentially long and will
1298
+ reach the same correct conclusion. Stochastic Gillespie
1299
+ simulation of the tile displacement CRN will result in an
1300
+ unbiased random walk back and forth along this fuzzy-
1301
+ linear state space. (Every assembly in this reachable state
1302
+ space has the same energy.) However, unlike a standard
1303
+ reversible Turing machine with Brownian dynamics [14],
1304
+ whose state spaces is strictly a linear graph so the ex-
1305
+ pected random walk hitting time for reaching the end of
1306
+ an T step computation is O(T 2), the time sheet diffuses
1307
+ much more slowly. As a rough estimate for an N × N
1308
+ tile array that requires N 2 forward updates to move the
1309
+ time sheet 1 net synchronous update step into the future
1310
+ under ideal circumstances, the same N 2 updates if half
1311
+ forward and half backward will be expected to net move
1312
+ the time sheet N steps either forward or backward, which
1313
+ corresponds to just 1/N equivalent synchronous update
1314
+ steps. This being just a polynomial inefficiency, perhaps
1315
+ we should not be too concerned.
1316
+ More interesting is what happens if the 2D BCA rules
1317
+ are irreversible. This means there are multiple cases for
1318
+ 13
1319
+
1320
+ A
1321
+ B
1322
+
1323
+
1324
+
1325
+
1326
+ 2D block cellular automaton update rule:
1327
+ (������������, ������������, ������������, ������������) → (������������, ������������, ������������, ������������)
1328
+ rule (time sheet γ → α)
1329
+ rule (time sheet β → γ)
1330
+ rule (time sheet α → β)
1331
+ Figure 8:
1332
+ (A) General case implementation of 2D block cellular automaton. (B) Example updates in the Billiard Ball
1333
+ Model.
1334
+ the 2×2 block input that map to the same output. There-
1335
+ fore the state space for the tile displacement system will
1336
+ be exponentially branched in the backwards-in-time di-
1337
+ rection (as pictured by Bennett in figure 10 of his re-
1338
+ view paper [14], but thicker and fuzzier). Consequently
1339
+ Brownian dynamics will tend to be entropically biased
1340
+ toward where there are more states, and the system will
1341
+ run backwards. Can this entropic driving force be used to
1342
+ encourage a system to perform a desired computation by
1343
+ designing a system whose reverse dynamics are what we
1344
+ want? Attempting to do so would be risky, and probably
1345
+ futile, because the 2D block update rule being irreversible
1346
+ means that there are some states that have no local pre-
1347
+ decessor, and backward progress will get stuck as such
1348
+ 14
1349
+
1350
+ local configurations are encountered.
1351
+ A better way to exploit an entropic driving force is to
1352
+ have nondeterministic, stochastic forward update rules
1353
+ added to an otherwise-reversible system.
1354
+ For exam-
1355
+ ple, consider a tile displacement simulation of the BBM
1356
+ model, with boundary tiles designed to implement a re-
1357
+ flecting boundary (as they must for the system to remain
1358
+ reversible). If we design a special boundary tile that can
1359
+ either reflect a ball or (in the forward direction) produce
1360
+ a new ball out of nothing, then we obtain a new system
1361
+ that is still entirely reversible in the sense that there ex-
1362
+ ists (at least one) possible applicable block update in all
1363
+ circumstances, so the system cannot get stuck either in
1364
+ the forward direction or the reverse direction. With uni-
1365
+ form tile concentrations, all assembly states will still be
1366
+ isoenergetic. But started with an empty N ×N array, for-
1367
+ ward updates of the special tile will about half the time
1368
+ produce a new ball, which will entropically drive the sys-
1369
+ tem to a density such that forward production of balls is
1370
+ balanced by the reverse reaction, the absorption of balls
1371
+ into the special tile. At this point, which will be O(N 2)
1372
+ synchronous time steps in the future, the time sheet will
1373
+ stop advancing on average. Another way of looking at
1374
+ it is that with all reactions being neutral, equilibrium
1375
+ will reflect equipartition among all reachable states, and
1376
+ the combinatorially greatest number of states will have a
1377
+ number of ball near the optimal density – so, that’s what
1378
+ we are likely to observe. And the only way to get there is
1379
+ to run the time sheet forward enough to emit that number
1380
+ of balls.
1381
+ A gas-filled BBM simulation is not of great use by itself,
1382
+ but we can make use of it by also placing a circuit in the
1383
+ array, and drawing a 2-cell-thick wall around it. In the
1384
+ BBM model, balls bounce off walls, and walls are stable.
1385
+ Thus, despite random stochastic gas entering the areas of
1386
+ the array outside the box, the circuit will remain perfectly
1387
+ isolated from the gas. But due to the time-sheet coupling
1388
+ enforced by the asynchronous arrow rules, the time sheet
1389
+ that is being driven forward by the expansion of the gas
1390
+ will simultaneously drive the circuit forward.
1391
+ Unfortunately, for an array of area N 2, we will only
1392
+ drive the computation forward by O(N 2) steps – this is
1393
+ no better than the PTIME computational power of the
1394
+ original circuit construction. Essentially, in a small con-
1395
+ fined space, our circuit “heats up” and stops working.
1396
+ To run it for a long time, we need a larger space into
1397
+ which we can release the simulated heat. For example,
1398
+ if we are willing to entertain a half-infinite-plane array
1399
+ for tile displacement, we can draw a BBM wall down the
1400
+ middle, release gas on one side, and let the other side
1401
+ simulate an interesting recurrent circuit. Now, although
1402
+ the array is infinite (or very large) in direct proportion
1403
+ to how much computation we want to do, we can say
1404
+ that we have confined the interesting part of the compu-
1405
+ tation – the circuit itself – to a very small area relative
1406
+ to the potentially exponentially long computation. This
1407
+ isn’t PSPACE computation in terms of the size of the
1408
+ array, but rather in terms of the size of the part of the
1409
+ array that we care about. Similar constructions can be
1410
+ used to drive forward computation not just for other re-
1411
+ versible 2D BCA rules, but even for irreversible rules: the
1412
+ cellular automaton alphabet can be expanded to encode
1413
+ an inert “wall”, time sheets within the walled region and
1414
+ outside of it remain coupled, and sufficient entropy must
1415
+ be generated by stochastic rules outside the wall, to be
1416
+ dissipated into a sufficiently larger area.
1417
+ 6. DISCUSSION
1418
+ Tile displacement within arrays of square DNA origami
1419
+ tiles was discovered accidentally [3]. While some aspects
1420
+ of the formal model, such as the four-sided generaliza-
1421
+ tion of toehold exchange, were invented for mathemat-
1422
+ ical elegance rather than detailed realism, they are not
1423
+ too far flung from what has been experimentally demon-
1424
+ strated and characterized. So it is quite delightful that
1425
+ within the design space for tile displacement systems, we
1426
+ find natural implementations for feedforward circuits and
1427
+ one-dimensional cellular automata that compute in lin-
1428
+ ear time, powered by irreversible toehold formation or
1429
+ by concentration gradients. Even more delightful is that
1430
+ attempts to squeeze out more computational power per
1431
+ area seemed almost inevitably to lead us consider physical
1432
+ constraints such as energy, reversibility, and asynchrony
1433
+ – which in turn lead to classical two-dimensional cellular
1434
+ automata models that arose in early studies of the physics
1435
+ of computation [14, 20].
1436
+ Our strongest result (despite
1437
+ weak time efficiency) is that a tile displacement array of
1438
+ size N can reversibly simulate a recurrent reversible cir-
1439
+ cuit (via the Billiard Ball Model cellular automaton) for
1440
+ an arbitrary number of steps. In other words, the reach-
1441
+ ability question for tile displacement is PSPACE com-
1442
+ plete – a result strongly reminiscent of Thachuk & Con-
1443
+ don’s beautiful PSPACE-hardness result for CRNs and
1444
+ DSDs [44].
1445
+ We believe that there remains a lot undiscovered within
1446
+ the tile displacement design space. For example, while
1447
+ our constructions showed that the asynchronous tile dis-
1448
+ placement model can simulate synchronous cellular au-
1449
+ tomata, the needed flipping-arrow mechanism for local
1450
+ synchronization seems almost built-in to the tile displace-
1451
+ ment model in the form of open and closed toeholds for
1452
+ toehold exchange, and it’s not obvious how to directly
1453
+ simulate asynchronous cellular automaton models such as
1454
+ reversible surface CRNs [45, 34, 43]. We might also ask
1455
+ whether using information within the branch migration
1456
+ domains rather than just in toeholds – or whether having
1457
+ even more toeholds and branch migration domains on a
1458
+ tile’s sides – could have advantages either theoretically
1459
+ or experimentally. Further, the most interesting systems
1460
+ demonstrated experimentally in the initial work on tile
1461
+ displacement [3] involved systems of interacting multi-tile
1462
+ arrays, rather than a single array and a monomer. How do
1463
+ our single-assembly results fit into that larger picture? Fi-
1464
+ nally, might tile displacement systems be combined with
1465
+ 15
1466
+
1467
+ other molecular mechanisms to solve our problems driving
1468
+ the computation forward – for example, an oscillator [46]
1469
+ that periodically activates and deactivates the α, β, and
1470
+ γ monomer tiles in sequence.
1471
+ When first discovered, the tile displacement mecha-
1472
+ nism seemed most closely related to strand displace-
1473
+ ment mechanisms, only two dimensional. However, as we
1474
+ investigated the capabilities of single-assembly tile dis-
1475
+ placement, many parallels to passive tile assembly [2]
1476
+ became prominent.
1477
+ Tile displacement systems appear
1478
+ to combine the principles of DNA strand displacement
1479
+ and self-assembly in different ways than hairpin-based
1480
+ programmable self-assembly [47], signal-passing tile self-
1481
+ assembly [48, 49], CRN-controlled tile assembly [50, 51],
1482
+ and other models we are aware of. Comparing the ben-
1483
+ efits, drawbacks, and relationships between these models
1484
+ may help uncover a more unified way of thinking about
1485
+ programmable molecular systems.
1486
+ And even if tile displacement systems, as explored the-
1487
+ oretically here, never become useful experimentally, we
1488
+ hope that it was interesting and perhaps inspiring to look
1489
+ long and deep at a simple mechanism until intricate pat-
1490
+ terns emerge.
1491
+ ACKNOWLEDGEMENTS
1492
+ The authors thank William Poole and Ho-Lin Chen for
1493
+ useful discussions. This work was partially supported by
1494
+ NSF awards 2008589 and 1813550.
1495
+ [1] John E Savage. Models of computation, volume 136. Addison-
1496
+ Wesley Reading, MA, 1998.
1497
+ [2] David Doty. Theory of algorithmic self-assembly. Communi-
1498
+ cations of the ACM, 55(12):78–88, 2012.
1499
+ [3] Philip
1500
+ Petersen,
1501
+ Grigory
1502
+ Tikhomirov,
1503
+ and
1504
+ Lulu
1505
+ Qian.
1506
+ Information-based autonomous reconfiguration in systems of
1507
+ interacting DNA nanostructures.
1508
+ Nature Communications,
1509
+ 9(1):1–10, 2018.
1510
+ [4] Bernard
1511
+ Yurke,
1512
+ Andrew
1513
+ J
1514
+ Turberfield,
1515
+ Allen
1516
+ P
1517
+ Mills,
1518
+ Friedrich C Simmel, and Jennifer L Neumann. A DNA-fuelled
1519
+ molecular machine made of DNA. Nature, 406(6796):605–608,
1520
+ 2000.
1521
+ [5] Nadrian C Seeman. Structural DNA nanotechnology. Cam-
1522
+ bridge University Press, 2015.
1523
+ [6] David Yu Zhang and Georg Seelig. Dynamic DNA nanotech-
1524
+ nology using strand-displacement reactions.
1525
+ Nature Chem-
1526
+ istry, 3(2):103–113, 2011.
1527
+ [7] Andrew Phillips and Luca Cardelli. A programming language
1528
+ for composable DNA circuits.
1529
+ Journal of the Royal Society
1530
+ Interface, 6(suppl 4):S419–S436, 2009.
1531
+ [8] Stefan Badelt, Casey Grun, Karthik V Sarma, Brian Wolfe,
1532
+ Seung Woo Shin, and Erik Winfree.
1533
+ A domain-level DNA
1534
+ strand displacement reaction enumerator allowing arbitrary
1535
+ non-pseudoknotted secondary structures. Journal of the Royal
1536
+ Society Interface, 17(167):20190866, 2020.
1537
+ [9] David Soloveichik, Georg Seelig, and Erik Winfree. DNA as
1538
+ a universal substrate for chemical kinetics. Proceedings of the
1539
+ National Academy of Sciences, 107(12):5393–5398, 2010.
1540
+ [10] Luca Cardelli. Two-domain DNA strand displacement. Mathe-
1541
+ matical Structures in Computer Science, 23(2):247–271, 2013.
1542
+ [11] Lulu Qian,
1543
+ David Soloveichik,
1544
+ and Erik Winfree.
1545
+ Effi-
1546
+ cient Turing-universal computation with DNA polymers.
1547
+ In
1548
+ DNA Computing and Molecular Programming (LNCS volume
1549
+ 6518), pages 123–140. Springer, 2010.
1550
+ [12] Matthew R Lakin and Andrew Phillips. Modelling, simulating
1551
+ and verifying Turing-powerful strand displacement systems. In
1552
+ DNA Computing and Molecular Programming (LNCS volume
1553
+ 6937), pages 130–144. Springer, 2011.
1554
+ [13] Wataru Yahiro and Masami Hagiya. Implementation of Tur-
1555
+ ing machine using DNA strand displacement. In Theory and
1556
+ Practice of Natural Computing (LNCS volume 10071), pages
1557
+ 161–172. Springer, 2016.
1558
+ [14] Charles H Bennett.
1559
+ The thermodynamics of computa-
1560
+ tion—a review. International Journal of Theoretical Physics,
1561
+ 21(12):905–940, 1982.
1562
+ [15] Paul WK Rothemund. Folding DNA to create nanoscale shapes
1563
+ and patterns. Nature, 440(7082):297–302, 2006.
1564
+ [16] Wenyan Liu, Hong Zhong, Risheng Wang, and Nadrian C See-
1565
+ man. Crystalline two-dimensional DNA-origami arrays. Ange-
1566
+ wandte Chemie International Edition, 50(1):264–267, 2011.
1567
+ [17] Grigory Tikhomirov, Philip Petersen, and Lulu Qian. Fractal
1568
+ assembly of micrometre-scale DNA origami arrays with arbi-
1569
+ trary patterns. Nature, 552(7683):67–71, 2017.
1570
+ [18] Sungwook Woo and Paul WK Rothemund.
1571
+ Programmable
1572
+ molecular recognition based on the geometry of DNA nanos-
1573
+ tructures. Nature Chemistry, 3(8):620–627, 2011.
1574
+ [19] Lulu Qian and Erik Winfree. A simple DNA gate motif for
1575
+ synthesizing large-scale circuits. Journal of the Royal Society
1576
+ Interface, 8(62):1281–1297, 2011.
1577
+ [20] Norman Margolus. Physics-like models of computation. Phys-
1578
+ ica D: Nonlinear Phenomena, 10(1-2):81–95, 1984.
1579
+ [21] Tommaso Toffoli and Norman Margolus.
1580
+ Cellular automata
1581
+ machines: a new environment for modeling. MIT press, 1987.
1582
+ [22] Norman H Margolus. Crystalline computation. In Feynman
1583
+ and computation:
1584
+ exploring the limits of computers, pages
1585
+ 267–305. Perseus Books, 1999.
1586
+ [23] Arthur Taylor Winfree. The scientist as poet.
1587
+ The Cornell
1588
+ Engineer, 1964.
1589
+ [24] David Yu Zhang and Erik Winfree. Control of DNA strand
1590
+ displacement kinetics using toehold exchange. Journal of the
1591
+ American Chemical Society, 131(47):17303–17314, 2009.
1592
+ [25] Daniel T Gillespie et al.
1593
+ Stochastic simulation of chemical
1594
+ kinetics. Annual Review of Physical Chemistry, 58(1):35–55,
1595
+ 2007.
1596
+ [26] Tim Schmiedl and Udo Seifert. Stochastic thermodynamics of
1597
+ chemical reaction networks. The Journal of Chemical Physics,
1598
+ 126(4):044101, 2007.
1599
+ [27] Grigory Tikhomirov, Philip Petersen, and Lulu Qian.
1600
+ Pro-
1601
+ grammable disorder in random DNA tilings. Nature Nanotech-
1602
+ nology, 12(3):251–259, 2017.
1603
+ [28] Ali Aghebat Rafat, Sandra Sagredo, Melissa Thalhammer,
1604
+ and Friedrich C Simmel. Barcoded DNA origami structures
1605
+ for multiplexed optimization and enrichment of DNA-based
1606
+ protein-binding cavities.
1607
+ Nature Chemistry, 12(9):852–859,
1608
+ 2020.
1609
+ [29] Shubham Mishra, Soyoung Park, Tomoko Emura, Hidaka
1610
+ Kumi, Hiroshi Sugiyama, and Masayuki Endo.
1611
+ Photocon-
1612
+ trolled DNA origami assembly by using two photoswitches.
1613
+ Chemistry–A European Journal, 27(2):778–784, 2021.
1614
+ [30] Peng Yin, Rizal F Hariadi, Sudheer Sahu, Harry MT Choi,
1615
+ Sung Ha Park, Thomas H LaBean, and John H Reif. Program-
1616
+ ming DNA tube circumferences. Science, 321(5890):824–826,
1617
+ 2008.
1618
+ 16
1619
+
1620
+ [31] Bryan Wei, Mingjie Dai, and Peng Yin.
1621
+ Complex shapes
1622
+ self-assembled
1623
+ from
1624
+ single-stranded
1625
+ DNA
1626
+ tiles.
1627
+ Nature,
1628
+ 485(7400):623–626, 2012.
1629
+ [32] Bryan Wei, Mingjie Dai, Cameron Myhrvold, Yonggang Ke,
1630
+ Ralf Jungmann, and Peng Yin.
1631
+ Design space for complex
1632
+ DNA structures. Journal of the American Chemical Society,
1633
+ 135(48):18080–18088, 2013.
1634
+ [33] Bryan Wei,
1635
+ Luvena L Ong,
1636
+ Jeffrey Chen,
1637
+ Alexander S
1638
+ Jaffe,
1639
+ and Peng Yin.
1640
+ Complex reconfiguration of DNA
1641
+ nanostructures.
1642
+ Angewandte Chemie International Edition,
1643
+ 53(29):7475–7479, 2014.
1644
+ [34] Tatiana Brailovskaya, Gokul Gowri, Sean Yu, and Erik Win-
1645
+ free. Reversible computation using swap reactions on a surface.
1646
+ In DNA Computing and Molecular Programming (LNCS vol-
1647
+ ume 11648), pages 174–196. Springer, 2019.
1648
+ [35] Erik Winfree. On the computational power of DNA annealing
1649
+ and ligation. In DNA-Based Computers (DIMACS volume 27,
1650
+ pages 199–221. American Mathematical Society, 1996.
1651
+ [36] Minqi Lin, Jin Xu, Dafang Zhang, Zhihua Chen, Xuncai
1652
+ Zhang, Zhen Cheng, Yufang Huang, and Yanbiao Li. 3D DNA
1653
+ self-assembly model for graph vertex coloring. Journal of Com-
1654
+ putational and Theoretical Nanoscience, 7(1):246–253, 2010.
1655
+ [37] David Yu Zhang, Sherry Xi Chen, and Peng Yin. Optimizing
1656
+ the specificity of nucleic acid hybridization. Nature Chemistry,
1657
+ 4(3):208–214, 2012.
1658
+ [38] Weiyang Tang, Weiye Zhong, Yun Tan, Guan A Wang, Feng
1659
+ Li, and Yizhen Liu. DNA strand displacement reaction: a pow-
1660
+ erful tool for discriminating single nucleotide variants. DNA
1661
+ Nanotechnology, pages 377–406, 2020.
1662
+ [39] Cameron Chalk, Austin Luchsinger, Eric Martinez, Robert
1663
+ Schweller, Andrew Winslow, and Tim Wylie.
1664
+ Freezing sim-
1665
+ ulates non-freezing tile automata.
1666
+ In DNA Computing and
1667
+ Molecular Programming (LNCS volume 11145, pages 155–172.
1668
+ Springer, 2018.
1669
+ [40] Kenichi Morita.
1670
+ Theory of reversible computing.
1671
+ Springer,
1672
+ 2017.
1673
+ [41] Jia Lee, Ferdinand Peper, Susumu Adachi, Kenichi Morita,
1674
+ and Shinro Mashiko. Reversible computation in asynchronous
1675
+ cellular automata. In Unconventional Models of Computation
1676
+ (LNCS 2509), pages 220–229. Springer, 2002.
1677
+ [42] Jia Lee, Ferdinand Peper, Kenji Leibnitz, and Ping Gu. Char-
1678
+ acterization of random fluctuation-based computation in cel-
1679
+ lular automata. Information Sciences, 352:150–166, 2016.
1680
+ [43] Samuel Clamons, Lulu Qian, and Erik Winfree. Programming
1681
+ and simulating chemical reaction networks on a surface. Jour-
1682
+ nal of the Royal Society Interface, 17(166):20190790, 2020.
1683
+ [44] Chris Thachuk and Anne Condon.
1684
+ Space and energy effi-
1685
+ cient computation with DNA strand displacement systems. In
1686
+ DNA Computing and Molecular Programming (LNCS volume
1687
+ 7433), pages 135–149. Springer, 2012.
1688
+ [45] Lulu Qian and Erik Winfree. Parallel and scalable computa-
1689
+ tion and spatial dynamics with DNA-based chemical reaction
1690
+ networks on a surface.
1691
+ In DNA Computing and Molecular
1692
+ Programming (LNCS volume 8727), pages 114–131. Springer,
1693
+ 2014.
1694
+ [46] Niranjan Srinivas, James Parkin, Georg Seelig, Erik Winfree,
1695
+ and David Soloveichik.
1696
+ Enzyme-free nucleic acid dynamical
1697
+ systems. Science, 358(6369):eaal2052, 2017.
1698
+ [47] Peng Yin, Harry MT Choi, Colby R Calvert, and Niles A
1699
+ Pierce.
1700
+ Programming biomolecular self-assembly pathways.
1701
+ Nature, 451(7176):318–322, 2008.
1702
+ [48] Jennifer E Padilla, Matthew J Patitz, Robert T Schweller,
1703
+ Nadrian C Seeman, Scott M Summers, and Xingsi Zhong.
1704
+ Asynchronous signal passing for tile self-assembly:
1705
+ Fuel ef-
1706
+ ficient computation and efficient assembly of shapes.
1707
+ In-
1708
+ ternational Journal of Foundations of Computer Science,
1709
+ 25(04):459–488, 2014.
1710
+ [49] Jennifer E Padilla, Ruojie Sha, Martin Kristiansen, Junghuei
1711
+ Chen, Natasha Jonoska, and Nadrian C Seeman.
1712
+ A signal-
1713
+ passing
1714
+ DNA-strand-exchange
1715
+ mechanism
1716
+ for
1717
+ active
1718
+ self-
1719
+ assembly of DNA nanostructures.
1720
+ Angewandte Chemie In-
1721
+ ternational Edition, 54(20):5939–5942, 2015.
1722
+ [50] David Yu Zhang, Rizal F Hariadi, Harry MT Choi, and Erik
1723
+ Winfree. Integrating DNA strand-displacement circuitry with
1724
+ DNA tile self-assembly.
1725
+ Nature Communications, 4(1):1–10,
1726
+ 2013.
1727
+ [51] Nicholas Schiefer and Erik Winfree.
1728
+ Universal computation
1729
+ and optimal construction in the chemical reaction network-
1730
+ controlled tile assembly model.
1731
+ In DNA Computing and
1732
+ Molecular Programming (LNCS volume 9211), pages 34–54.
1733
+ Springer, 2015.
1734
+ 17
1735
+
6NAzT4oBgHgl3EQf9_7h/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
6dE3T4oBgHgl3EQfpwoB/content/2301.04644v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59c8679e202f56735f6b9f6477fafec47a1f18ca5affe23ca960b58223e6bdff
3
+ size 5974703
6dE3T4oBgHgl3EQfpwoB/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c09e2545a2f73dc3937beb15c99c5f9d50d8c8e63077c5c1ca5710c50488a591
3
+ size 265483
7NE4T4oBgHgl3EQf2Q0O/content/tmp_files/2301.05296v1.pdf.txt ADDED
@@ -0,0 +1,990 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Issa, A., Ali, Y., & Rashid , T. (2022). An Efficient Hybrid Classification Approach for COVID-19 Based on
2
+ Harris Hawks Optimization and Salp Swarm Optimization. International Journal of Online and Biomedi-
3
+ cal Engineering (iJOE), 18(13), pp. 113–130. https://doi.org/10.3991/ijoe.v18i13.33195
4
+
5
+ 1
6
+
7
+ An efficient hybrid classification approach for
8
+ COVID-19 based on Harris Hawks Optimiza-
9
+ tion and Salp Swarm Optimization
10
+
11
+ Abubakr Issa, University of Technology, Baghdad, iraq
12
+ Yossra Ali, University of Technology, Baghdad, Iraq
13
+ Tarik Rashid, University of Kurdistan Hewler, KRG, Iraq
14
+
15
+ Abstract— Feature selection can be defined as one of the pre-processing
16
+ steps that decrease the dimensionality of a dataset by identifying the most signif-
17
+ icant attributes while also boosting the accuracy of classification. For solv-
18
+ ing feature selection problems, this study presents a hybrid binary version of the
19
+ Harris Hawks Optimization algorithm (HHO) and Salp Swarm Optimization
20
+ (SSA) (HHOSSA) for Covid-19 classification. The proposed (HHOSSA) pre-
21
+ sents a strategy for improving the basic HHO's performance using the Salp algo-
22
+ rithm's power to select the best fitness values. The HHOSSA was tested against
23
+ two well-known optimization algorithms, the Whale Optimization Algorithm
24
+ (WOA) and the Grey wolf optimizer (GWO), utilizing a total of 800 chest X-ray
25
+ images. A total of four performance metrics (Accuracy, Recall, Precision,
26
+ F1) were employed in the studies using three classifiers (Support vector machines
27
+ (SVMs), k-Nearest Neighbor (KNN), and Extreme Gradient Boosting
28
+ (XGBoost)). The proposed algorithm (HHOSSA) achieved 96% accuracy with
29
+ the SVM classifier, and 98% accuracy with two classifiers, XGboost and KNN.
30
+
31
+
32
+ Keywords—— Feature selection, Hybrid Swarm intelligence, classification,
33
+ Covid-19, medical image
34
+ 1
35
+ Introduction
36
+
37
+ Medical image processing can be defined as one of the most significant areas in
38
+ medical science, and it has a substantial effect on visualization applications. Also, med-
39
+ ical image processing has a broad range of applications in medical diagnoses (treating
40
+ and investigating diseases) and medical sciences (such as physiological and anatomi-
41
+ cal studies). Medical physics, medical engineering, biology, and optics are some of the
42
+
43
+ Issa, A., Ali, Y., & Rashid , T. (2022). An Efficient Hybrid Classification Approach for COVID-19 Based on
44
+ Harris Hawks Optimization and Salp Swarm Optimization. International Journal of Online and Biomedi-
45
+ cal Engineering (iJOE), 18(13), pp. 113–130. https://doi.org/10.3991/ijoe.v18i13.33195
46
+
47
+ 2
48
+
49
+ fields of science that make up this medical science. With the discovery of X-rays, Wil-
50
+ liam Roentgen initiated the first efforts at contemporary medical imaging. Coronavirus
51
+ (COVID-19), also known as SARS-Corona Virus-2, is a virus that results in causing
52
+ severe acute respiratory syndrome (SARS-CoV2), is a viral infection that first occurred
53
+ in Wuhan at the end of 2019. Due to such an outbreak, COVID-19 became a pandemic,
54
+ threatening human lives and wreaking havoc on the economy. Therefore, many stud-
55
+ ies have been launched in an attempt to identify a way to restrict mortality and spread.
56
+ Those researches include the suggested treatment strategy, the screening method for
57
+ early-stage patients, and the evaluation of different phases and recovery of treated pa-
58
+ tients. In hospitals, imaging techniques like chest X-rays are commonly utilized for
59
+ detecting the severity and existence of COVID-19 pneumonia [1][2]. For improving
60
+ the suggested system's training, X-ray images are often maintained in a medical data-
61
+ base for subsequent investigation by multiple research organizations. Low contrast,
62
+ noise, blurs, and faded colors are frequent problems, and images should be pre-pro-
63
+ cessed to enhance quality by reducing noise.
64
+ The second stage is image segmentation, which depends on some attributes includ-
65
+ ing color, texture, and depth measurements. The type of image and characteristics of
66
+ the problem (disease) are chosen to determine which segmentation technique is used.
67
+ The identification and extraction of features is the third stage. As the number of features
68
+ that have been extracted from the image grows, the accuracy of classification decreases.
69
+ In the classification vision, we can call it the curse of dimensionality. Feature optimi-
70
+ zation is a viable option for dealing with this issue.[3]
71
+ The 4th stage is the feature selection that has been obtained from the known proper-
72
+ ties using robust Optimization algorithms for better disease identifications from the
73
+ medical images. The image was classified using one of the classifiers. Feature selection
74
+ is a step in the preprocessing process that tries to increase the relevancy of obtained
75
+ data by deleting irrelevant characteristics and choosing just relevant or useful variables
76
+ [5]. Feature selection comprises reviewing feature subsets, employing certain search
77
+ approaches to locate the best feature subset, assessing the chosen features, stopping cri-
78
+ teria, and subset validation in general.[6]
79
+ There are three types of feature selection classifiers: wrapper schemes, filer
80
+ schemes, and embedding schemes. The filter method, in contrast to the wrapper
81
+ scheme, which is characterized by good classification accuracy and low speed, is rapid
82
+ but inaccurate. The embedded system is preferred in the case when handling a certain
83
+ model [7]. Filter techniques use the qualities of training data to assess the quality of
84
+ features. Those approaches do not employ machine learning algorithms. Before choos-
85
+ ing features with the highest score, filter methods usually take into account the score of
86
+ all features. At the same time, other filtering approaches favor features with the greatest
87
+ score per iteration [8]. Other well-known methods, like the correlation-based feature
88
+ selection approach in [9] as well as dimensionality reduction methods and NNs in [10],
89
+ can greatly decrease computational load and system complexity. Filter approaches
90
+ overlook the performance regarding the chosen characteristics despite their speed and
91
+ low computational cost [11].
92
+
93
+ Issa, A., Ali, Y., & Rashid , T. (2022). An Efficient Hybrid Classification Approach for COVID-19 Based on
94
+ Harris Hawks Optimization and Salp Swarm Optimization. International Journal of Online and Biomedi-
95
+ cal Engineering (iJOE), 18(13), pp. 113–130. https://doi.org/10.3991/ijoe.v18i13.33195
96
+
97
+ 3
98
+
99
+ Wrapper approaches utilize an evaluation algorithm to assess the specified features’
100
+ quality. SVMs, Decision trees (DTs), KNN, Naïve Bayesian (NB), linear discriminant
101
+ analysis (LDA), local neighborhood structure preserving embedding (LNSPE), artifi-
102
+ cial neural networks (ANNs), and local geometrical structure Fisher analysis
103
+ (LGSFA) are some of the major wrapper’s methods utilized for feature selection. In
104
+ almost all cases, wrapper approaches outperform filter ones. Meta-heuristic algorithms
105
+ are more advanced search algorithms that result from the evolution and expansion of
106
+ feature selection. For instance, ongoing research to increase the performance regard-
107
+ ing evolutionary algorithms (EA) like Genetic Algorithms (GAs) and Swarm Intelli-
108
+ gence (SI) like Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), and
109
+ Ant Colony Optimization (ACO) are underway. Grasshopper Optimization Algorithm
110
+ (GOA), Grey Wolf Optimizer (GWO), Butterfly Optimization Algorithm (BOA), Har-
111
+ ris Hawks Optimization (HHO) Whale Optimization Algorithm (WOA), and Ant Lion
112
+ Optimization (ALO) are examples of recent algorithms. Metaheuristic algorithms are
113
+ classified according to their exploration and exploitation phases into single solution
114
+ based (i.e., Tabu Search (TS) and Simulated annealing (SA)) or population size based
115
+ (in other words, GA, ACO, and PSO). The key contributions of this research are listed
116
+ below:
117
+
118
+ • Suggest an effective hybrid classification method for COVID-19 with the use of
119
+ the hybrid swarm algorithms (HHO, SSA).
120
+ This novel hybrid algorithm must improve resource consumption and performance,
121
+ as well as storage capacity, reducing processing time.
122
+ • With the use of multiple classifiers (KNN, SVM, XGboost), test the sug-
123
+ gested (HHOSSA) algorithm on datasets containing some positive negative COVID-19
124
+ chest X-ray scan images.
125
+ • Individual, hybridized predictor models and state-of-the-art techniques (WOA,
126
+ GWO) are compared in terms of performance.
127
+
128
+ The sections of this paper are organized as follows: Section 2 provides a concise
129
+ summary of some of the most related works. Section 3 discusses methodology. In sec-
130
+ tion 4 we described in detail our proposed approach. Tools are illustrated in section 5.
131
+ Performance evaluation is described in section 6. Results and discussion are included
132
+ in section 7. Finally, the conclusions and future works are stated in section 8.
133
+ 2
134
+ Related Works
135
+ Many studies have employed hybrid algorithms to handle a range of challenges re-
136
+ cently. Hybrid algorithms have received a lot of attention lately, notably in feature se-
137
+ lection optimization. Low-level hybrid algorithms and high-level hybrid algorithms are
138
+ the 2 forms of hybrid algorithms. There are 2 types of hybridization schemes in high-
139
+ level hybrid algorithms: high-level teamwork hybridization (HTH) and high-level rely-
140
+ on hybridization (HRH). The self-contained meta-heuristics have been carried out in
141
+
142
+ Issa, A., Ali, Y., & Rashid , T. (2022). An Efficient Hybrid Classification Approach for COVID-19 Based on
143
+ Harris Hawks Optimization and Salp Swarm Optimization. International Journal of Online and Biomedi-
144
+ cal Engineering (iJOE), 18(13), pp. 113–130. https://doi.org/10.3991/ijoe.v18i13.33195
145
+
146
+ 4
147
+
148
+ order in HRH, whereas in the HTH, one algorithm assists the other by supplying infor-
149
+ mation via cooperative search. Low-level hybridization has been separated into two
150
+ types: low-level teamwork hybrid (LTH) and low-level rely-on hybrid (LRH), both of
151
+ which contain one meta-heuristic algorithm [12]. In the feature selection field, it has
152
+ been observed that hybrid algorithms surpass native algorithms concerning perfor-
153
+ mance. In the year 2004, the search process has been controlled by merging local search
154
+ approaches with a GA algorithm, which was the first time a hybrid metaheuristics ap-
155
+ proach was utilized in feature selection. A combination with the EGA filter has
156
+ been provided in a wrapper technique for text categorization [13]. A hybrid ap-
157
+ proach for feature selection has lately been created in various metaheuristic algorithms.
158
+ In [13], the Binary Grey Wolf algorithm was combined with the Harris Hawks algo-
159
+ rithm to create an excellent balance between exploitation and exploration to prevent
160
+ local optimum solutions and increase solution precision. Harris Hawks was hybridized
161
+ in [14] using Bitwise operations and Simulated Annealing for supporting the HHO al-
162
+ gorithm's exploitation capacity and getting out of local optima. In [15], the Salp swarm
163
+ algorithm was used to modify teaching–learning based optimization. This integration
164
+ gives TLBO more flexibility in the exploration of population and achieving variety
165
+ while also allowing it to swiftly attain the optimal value. They combined the Salp
166
+ swarm algorithm with the Particle swarm algorithm in [16], in which the SSA was uti-
167
+ lized for updating the salps positions and the PSO was utilized otherwise. This hybrid-
168
+ ization was utilized for the improvement of the exploration and exploitation of the Salp
169
+ swarm algorithm.
170
+ 3
171
+ Methodology
172
+ 3.1 Harris Hawks optimization algorithm
173
+ HHO can be defined as one of the swarm metaheuristic algorithms inspired by Har-
174
+ ris Hawks' hunting behavior of "seven kills" or "surprise pounce." Based on the prey's
175
+ fleeing behavior nature, hunting duration can range from some seconds to many hours.
176
+ The modeling algorithm of HHO is split into 2 parts (exploitation and exploration).
177
+ Harris' hawks have been employed as candidate solutions in the HHO algorithm, with
178
+ the best candidate solution reflecting the desired or optimum prey in each stage [17].
179
+ The first phase pertains to the process of perching and detection of the prey. The algo-
180
+ rithm simulates Harris' hawks' perching methods in 2 separate scenarios. Harris' hawks
181
+ are assumed to perch in various locations during their group home range in the first
182
+ scenario. In Eq (1), q=0.50 models that condition.
183
+
184
+ X1
185
+ ⃗⃗⃗⃗ (t+1)= {
186
+ 𝑋𝑟𝑎𝑛𝑑(𝑡) − 𝑟1|𝑋𝑟𝑎𝑛𝑑(𝑡) − 2𝑟2𝑋(𝑡)|, 𝑞 ≥ 0.50
187
+ (𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑋𝑚(𝑡)) − 𝑟3(𝐿𝐵 + 𝑟4(𝑈𝐵 − 𝐿𝐵)), 𝑞 < 0.50( 1 )
188
+
189
+ While the other likelihood is that Harris' hawks would perch on positions near other
190
+ swarm members and prey. This condition has been introduced in Eq1 for q < 0.50:
191
+
192
+ Issa, A., Ali, Y., & Rashid , T. (2022). An Efficient Hybrid Classification Approach for COVID-19 Based on
193
+ Harris Hawks Optimization and Salp Swarm Optimization. International Journal of Online and Biomedi-
194
+ cal Engineering (iJOE), 18(13), pp. 113–130. https://doi.org/10.3991/ijoe.v18i13.33195
195
+
196
+ 5
197
+
198
+ where X1
199
+ ⃗⃗⃗⃗ (t+1) is Hawks' position vector, t represents the following iteration,
200
+ 𝑋𝑟𝑎𝑛𝑑(𝑡) is a hawk that has been chosen at random from the current population,
201
+ 𝑋(𝑡) represents the position vector of hawks, r1, r2, r3, r4, and q represent random
202
+ numbers in the range of (0,1), Xrabbit(t) represents rabbit position, Xm denotes the aver-
203
+ age position of the current population of the hawks, lower and upper bounds for gener-
204
+ ating random locations inside the Hawks' stadium are Lb and Ub, respectively.
205
+
206
+ While in the phase of exploitation, the Harris' hawks attack prey which has been
207
+ identified in the preceding step. The algorithm has 4 different possibilities for modeling
208
+ various attacking styles that have been utilized by Harris' hawks.
209
+ While r denotes the probability of prey escaping, successful escape has been donated
210
+ by r < 0.50, whereas r ≥ 0.50 denotes failure to escape. Depending upon the prey's
211
+ chances of escaping (r), hawks will use either soft or hard besieges to catch prey. The
212
+ algorithm's parameter E has been utilized for the determination of the type of attacking
213
+ besieges. If the prey is unable to escape when r ≥ 0.50 hard besiege happens when |E|
214
+ < 0.50 and soft besiege takes the place in the case where |E|≥ 0.50 The mathematical
215
+ Modelling of soft besiege has been represented by Eqs (2) through (3), and hard besiege
216
+ has been shown by Eq (4):
217
+
218
+ 𝑿(𝒕 + 𝟏)=∆X(t) –E|JxXrabbit (t) –X(t)| ( 2 )
219
+ ∆(t) =Xrabbit (t) –X(t) ( 3 )
220
+ X( t+1) =Xrabbit(t) –E|∆X(t)| ( 4 )
221
+
222
+ In the case of successful escaping of the prey (r<0.50), soft besiege with a progres-
223
+ sive rapid dive take is applied in the case where |E|≥ 0.50 as shown in Eq (5), Eq (7),
224
+ Eq(8) while Hard besiege with the progressive fast dive occurs in a case where |E|≥
225
+ 0.50 as shown in Eqs (6), (7), and (8):
226
+
227
+ 𝒀 = 𝑿𝒓𝒂𝒃𝒃𝒊𝒕(𝒕) − 𝑬|𝑱 ∗ 𝑿𝒓𝒂𝒃𝒃𝒊𝒕(𝒕) − 𝑿(𝒕)| ( 5 )
228
+ 𝒀 = 𝑿𝒓𝒂𝒃𝒃𝒊𝒕(𝒕) − 𝑬|𝑱 ∗ 𝑿𝒓𝒂𝒃𝒃𝒊𝒕(𝒕) − 𝑿𝒎(𝒕)| , 𝑿𝒎(𝒕) =
229
+ 𝟏
230
+ 𝑵 ∗ ∑
231
+ 𝑿𝒊
232
+ 𝑵
233
+ 𝒊=𝟏
234
+ (𝒕) ( 6 )
235
+ 𝒁 = 𝒀 + 𝑺 × 𝑳𝑭(𝑫) ( 7 )
236
+
237
+ 𝑿(𝒕 + 𝟏) = {𝒀, 𝒊𝒇 𝒇(𝒀) < 𝑭(𝑿(𝒕))
238
+ 𝒁, 𝒊𝒇 𝒇(𝒁) < 𝑭(𝑿(𝒕)) ( 8 )
239
+
240
+ D represents the problem dimension and S represents the random vector by 1xD size
241
+ and LF represents the function of levy flight, estimated with the use of Eq. (9):
242
+
243
+ 𝑳𝑭(𝒙) = 𝟎. 𝟎𝟏 ×
244
+ 𝒖 ×𝛔
245
+ |𝒗|
246
+ 𝟏
247
+ 𝜷
248
+ , 𝛔 = (
249
+ (𝜞(𝟏+𝜷) ×𝒔𝒊𝒏 (𝝅𝜷/𝟐)
250
+ 𝜞(𝟏+𝜷
251
+ 𝟐 )×𝜷×𝟐(𝜷−𝟏
252
+ 𝟐 ) ) ( 9 )
253
+
254
+ The energy of a rabbit is modeled as 𝑬 = 𝟐𝑬𝟎 (𝟏 −
255
+ 𝒕
256
+ 𝑻) ( 10 )
257
+ Where E represents the prey’s escaping energy, T represents the maximal number of
258
+ iterations, and Eo represents its initial energy state.
259
+
260
+ Issa, A., Ali, Y., & Rashid , T. (2022). An Efficient Hybrid Classification Approach for COVID-19 Based on
261
+ Harris Hawks Optimization and Salp Swarm Optimization. International Journal of Online and Biomedi-
262
+ cal Engineering (iJOE), 18(13), pp. 113–130. https://doi.org/10.3991/ijoe.v18i13.33195
263
+
264
+ 6
265
+
266
+
267
+ 3.2 Salp swarm optimization algorithm
268
+
269
+ SSA can be defined as a swarm metaheuristic algorithm [18] that was created for
270
+ solving various optimization problems. It was inspired by the activity of Salps in na-
271
+ ture; salps are a type of jellyfish with tissues comparable to jellyfish and a high water
272
+ percentage in their moving behavior and weights [19]. They move by contracting their
273
+ bodies and shifting positions by pumping water through them. The salp chain describes
274
+ the swarming behavior of salps in the ocean. By allowing for faster and more harmonic
275
+ changes, this behavior could benefit salps in foraging and better movement. [18] Salp
276
+ chains were theoretically modeled and after that tested in optimization problems as a
277
+ result of this characteristic [16]. The algorithm starts its work by dividing the generated
278
+ population into 2 parts (which are: leader and followers ( where the leader leads the salp
279
+ chain and the remaining salps play the role of followers. A salp uses the food source as
280
+ a target in an n-dimensional search space. The following equation has been used to
281
+ update the leader's position:
282
+
283
+ 𝑿𝒋
284
+ 𝟏 = {
285
+ 𝑭𝒋 + 𝒓𝟏 ((𝑽𝒎𝒂𝒙𝒋 − 𝑽𝒎𝒊𝒏𝒋)𝒓𝟐 + 𝑽𝒎𝒊𝒏𝒊) , 𝒓𝟑 ≥ 𝟎
286
+ 𝑭𝒋 − 𝒓𝟏 ((𝑽𝒎𝒂𝒙𝒋 − 𝑽𝒎𝒊𝒏𝒋)𝒓𝟐 + 𝑽𝒎𝒊𝒏𝒊) , 𝒓𝟑 < 𝟎
287
+ } ( 11 )
288
+
289
+ Where 𝑋𝑗
290
+ 1 represent the position of leader in the jth dimension and Fj is food's loca-
291
+ tion. The upper is represented by 𝑉𝑚𝑎𝑥𝑗 and the lower bounds that have been denoted
292
+ by 𝑉𝑚𝑖𝑛𝑗. The search space is maintained using the 2 random variables 𝑟2 & 𝑟3 in the
293
+ range [0, 1].
294
+
295
+ The parameter 𝑟1 is also an important control parameter in the process of exploration
296
+ and exploitation and it is calculated by using Eq (12).
297
+
298
+ 𝒓𝟏 = 𝟐𝒆(−𝟒𝒕
299
+ 𝑵 )𝟐 ( 12 )
300
+
301
+ Where t represents the current iteration and N denotes the maximum amount of iter-
302
+ ations. In a case where the position of the leader has been changed, Eq (13) is used to
303
+ change the followers' position:
304
+
305
+ 𝑿𝒋
306
+ 𝒊 =
307
+ 𝟏
308
+ 𝟐 (𝑿𝒋
309
+ 𝟏 − 𝑿𝒋
310
+ 𝒊−𝟏) ( 13 )
311
+
312
+ Where 𝐗𝐣
313
+ 𝐢 denotes the ith follower's position in the jth dimension, and the value
314
+ of I must be > 1.
315
+
316
+
317
+ Issa, A., Ali, Y., & Rashid , T. (2022). An Efficient Hybrid Classification Approach for COVID-19 Based on
318
+ Harris Hawks Optimization and Salp Swarm Optimization. International Journal of Online and Biomedi-
319
+ cal Engineering (iJOE), 18(13), pp. 113–130. https://doi.org/10.3991/ijoe.v18i13.33195
320
+
321
+ 7
322
+
323
+ 4
324
+ The proposed approach
325
+ Despite its simple structure and fast convergence rate, the HHO algorithm is not
326
+ without flaws. However, in the domain of feature selection optimization, the algorithm
327
+ may encounter a balancing problem between the exploration and exploitation phases,
328
+ resulting in a local optimum. Problems can arise during the feature selection process
329
+ when dealing with the high-dimensional feature set. In general, the HHO algorithm
330
+ optimization power depends on the best optimal solution selected based on the best
331
+ fitness value. In this paper, we present a strategy for improving the basic HHO's per-
332
+ formance using the Salp algorithm's power to select the best solution.
333
+ 4.1 The structure of HHOSSA
334
+ The proposed hybrid algorithm HHOSSA contains many stages: Initialization and
335
+ binarization function, Best fitness selection, and Evaluation.
336
+ 4.2 Initialization and binarization function
337
+ In this phase, the HHO algorithm generates a random initial population X that con-
338
+ tains k Hawks which is every k represents a new solution this vector of d dimension of
339
+ features and using binary representations of (0 and 1) to represent the selected features
340
+ where every feature that selected will represent by 1 and every refused feature will
341
+ represent by 0 by using of the following binarization function:
342
+
343
+ 𝑿
344
+ 𝒃𝒊𝒏𝒂𝒓𝒚={𝟏 𝒊𝒇 𝒙>𝒕𝒉𝒓𝒆_𝒗𝒂𝒍
345
+ 𝟎 𝒊𝒇 𝒙<𝒕𝒉𝒓𝒆_𝒗𝒂𝒍 𝒘𝒉𝒆𝒓𝒆 𝒕𝒉𝒓𝒆_𝒗𝒂𝒍=𝟎.𝟓 ( 14 )
346
+ 4.3 Best fitness selection
347
+ In basic HHO the position vectors Xrand and Xrabbit are responsible for the explo-
348
+ ration step that has been characterized by Eq1, which is critical for balancing the ex-
349
+ ploitation and exploration phases. Position vectors with higher significance speed up
350
+ global exploration, while those with lower significance speed up exploitation. As a re-
351
+ sult, an appropriate Xrand and Xrabbit selection should be made to achieve a stable
352
+ balance between local exploitation and global exploration [20]. In this phase, the SSA
353
+ algorithm will be used to find a better solution where the SSA algorithm finds the new
354
+ fitness and if the new one is better than the one that has been found by the HHO algo-
355
+ rithm so the new one will be replaced and the Xrabbit will be changed also otherwise,
356
+ the HHO solution remains unchanged.
357
+ The goal of feature selection is to reduce the number of features and classification
358
+ error rate, i.e., through the removal of the redundant and irrelevant features and keeping
359
+ the relevant ones only, classification accuracy is improved. The KNN classifier was
360
+ used in this study because it is simple to evaluate the fitness function Eq (15), which
361
+ was used, expresses the fitness function that was used.
362
+
363
+ Issa, A., Ali, Y., & Rashid , T. (2022). An Efficient Hybrid Classification Approach for COVID-19 Based on
364
+ Harris Hawks Optimization and Salp Swarm Optimization. International Journal of Online and Biomedi-
365
+ cal Engineering (iJOE), 18(13), pp. 113–130. https://doi.org/10.3991/ijoe.v18i13.33195
366
+
367
+ 8
368
+
369
+ 𝑭𝒊𝒕𝒏𝒆𝒔𝒔 = 𝒂 ∗ 𝒄𝒍𝒂𝒔𝒔𝒆𝒓𝒓 + 𝒃 ∗ (
370
+ 𝒇𝒔𝒆𝒍
371
+ 𝒇𝒎𝒂𝒙) (15)
372
+ Where a =0.9 is constant for controlling the accuracy, b=[0.1, a] random number
373
+ enhances the accuracy,classerr is the rate of classification error and 𝒇𝒔𝒆𝒍 represents the
374
+ number of the selected feature and 𝒇𝒎𝒂𝒙 represents the total amount of features.
375
+
376
+ Algorithm1 Pseudo-Code of HHOSSA Algorithm
377
+ Input: H population size, T iteration number, ub=1, lb=0, thre_val=0.5,
378
+ levy_beta=1.5
379
+ Output: Best selected features vector
380
+
381
+ Randomly initialize of population H random hawks xi (i=1,2,3,….., H)
382
+ Compute the fitness value of every one of the hawks Fhho
383
+ Xrabbit = best solution found
384
+
385
+ While (the stop condition isn’t met) do
386
+ Compute the fitness values of the hawks
387
+ Set Xrabbit as rabbit location (i.e. optimal location)
388
+ For (each hawk (Xi)) do
389
+ Update (Eo , J)
390
+ if (|E| ≥ 1) then
391
+ Update location vector according to Eq1
392
+ if (|E| < 1) then
393
+ if (r ≥0.50 & |E| ≥ 0.50 ) then
394
+ Update location vector through utilizing Eq. (2)
395
+ else if (r ≥0.50 & |E| < 0.50 ) then
396
+ Update location vector through utilizing Eq. (4)
397
+ else if (r <0.50 & |E| < 0.50 ) then
398
+ Update location vector through utilizing Eq. (8)
399
+ else if (r <0.50 & |E| < 0.50 ) then
400
+ Update location vector through utilizing Eq. (8)
401
+ Apply the SSA algorithm to find the best fitness Fssa using Eq. (15)
402
+ If (Fssa < Fhho )
403
+ Update (Xrabbit, Xrand )
404
+ End if
405
+
406
+ End While
407
+
408
+
409
+
410
+
411
+
412
+
413
+ Issa, A., Ali, Y., & Rashid , T. (2022). An Efficient Hybrid Classification Approach for COVID-19 Based on
414
+ Harris Hawks Optimization and Salp Swarm Optimization. International Journal of Online and Biomedi-
415
+ cal Engineering (iJOE), 18(13), pp. 113–130. https://doi.org/10.3991/ijoe.v18i13.33195
416
+
417
+ 9
418
+
419
+
420
+
421
+ Figure 1: Structure of the proposed HHOSSA algorithm
422
+ Start
423
+ Randomly initialize of
424
+ population H
425
+ Calculate Fhho and Xrabbit
426
+ Initialize of E0 and
427
+ update E1
428
+ Stopping_condition
429
+ met ?
430
+ Yes
431
+ No
432
+ Apply SSA algorithm
433
+ to found Fssa
434
+ Fssa< Fhho
435
+ Update Xrabbit and
436
+ Xrand
437
+ Keep Xrabbit and
438
+ Xrand
439
+ Evalute the selected feature with
440
+ FS wrapper method by using
441
+ KNN classifier
442
+ Yes
443
+ No
444
+ Features Extraction
445
+ Split the dataset into
446
+ training and testing
447
+ Preprocessing
448
+ Stop
449
+
450
+ Issa, A., Ali, Y., & Rashid , T. (2022). An Efficient Hybrid Classification Approach for COVID-19 Based on
451
+ Harris Hawks Optimization and Salp Swarm Optimization. International Journal of Online and Biomedi-
452
+ cal Engineering (iJOE), 18(13), pp. 113–130. https://doi.org/10.3991/ijoe.v18i13.33195
453
+
454
+ 10
455
+
456
+ 5
457
+ Tools
458
+ 5.1 Dataset
459
+ We are working with a dataset of 800 chest X-ray images obtained from [21-25].
460
+ This dataset consists of 400 chest X-ray images with confirmed COVID-19 infection,
461
+ and 400 chest X-ray images of normal condition. This dataset images come with PNG
462
+ file format and grey level scale and all images are resized to 200 �� 200 pixels.
463
+ 5.2 Classifiers
464
+ The main goal of classification is to categorize new samples that haven't been labeled
465
+ for a particular class. However, we must first train the classifier for it to recognize the
466
+ characteristics of the data, as well as the relationship between attribute values and the
467
+ class label. Three classifiers are used in the methodology presented in this paper. The
468
+ first one K‑nearest neighbor classifier and it’s used for the reasons of its straightforward
469
+ implementation, with only one parameter K denoting the number of neighbors, which
470
+ makes it more useful for identifying the best subset of attributes [26]. The second one
471
+ is the SVM classifier which is a well-known constructive learning technique that is
472
+ formalized by a separating hyperplane. Making a nonlinear transformation of the orig-
473
+ inal input set to the high-dimensional set of features, where the optimum separating
474
+ hyperplane may be found, can lead to a solution [27]. The third classifier is Extreme
475
+ Gradient Boosting (XGBoost) which is a machine learning method that has been used
476
+ for solving supervised learning problems. It has excellent scalability and a fast running
477
+ speed, making it a popular machine-learning method [28].
478
+
479
+ 6
480
+ Performance evaluation
481
+ The metrics of evaluation that are used to measure classification performance in this
482
+ study are accuracy, precision, recall, and F1 as defined below:
483
+
484
+ 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
485
+ 𝑻𝑷+𝑻𝑵
486
+ 𝑻𝑷+𝑻𝑵+𝑭𝑷+𝑭𝑵 ( 16 )
487
+
488
+ 𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
489
+ 𝑻𝑷
490
+ 𝑻𝑷+𝑭𝑷 ( 17 )
491
+
492
+ 𝒓𝒆𝒄𝒂𝒍𝒍 =
493
+ 𝑻𝑷
494
+ 𝑻𝑷+𝑭𝑵 ( 18 )
495
+
496
+ 𝑭𝟏 = 𝟐 ×
497
+ 𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚 × 𝑹𝒆𝒄𝒂𝒍𝒍
498
+ 𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚+ 𝑹𝒆𝒄𝒂𝒍𝒍 (19), 𝒔𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚 =
499
+ 𝑻𝑵
500
+ 𝑻𝑵+𝑭𝑷 (20)
501
+
502
+
503
+ Issa, A., Ali, Y., & Rashid , T. (2022). An Efficient Hybrid Classification Approach for COVID-19 Based on
504
+ Harris Hawks Optimization and Salp Swarm Optimization. International Journal of Online and Biomedi-
505
+ cal Engineering (iJOE), 18(13), pp. 113–130. https://doi.org/10.3991/ijoe.v18i13.33195
506
+
507
+ 11
508
+
509
+ In which "TP" (true positives) denotes positive COVID-19 images which the classi-
510
+ fier accurately labeled, and "TN" (i.e. true negatives) corresponds to the nega-
511
+ tives COVID-19 images that have been successfully labeled by the classifier. False
512
+ positives (FP) are positive COVID-19 images mislabeled as negative, whereas false
513
+ negatives (FN) are negative COVID-19 images that have been incorrectly identified as
514
+ positive COVID-19 images [29].
515
+ 7
516
+ Results and discussion
517
+ A total of 800 X-ray images (400 covid-19 and 400 normal) have been collected
518
+ from the digital database and utilized for testing the efficacy of the suggested hybrid
519
+ approach, which utilized two state-of-art algorithms (SSA, HHO) for feature selection
520
+ to improve the classification of the covid-19 infection with the use of automatic AI
521
+ techniques and showed a high level of classification accuracy following testing and
522
+ training. The dataset was divided into two sections: 20% for validation and testing and
523
+ 80% for training. Table 2 demonstrates that the suggested hybrid method has a high
524
+ accuracy percentage based on the classifiers utilized. The parameter setting for the sug-
525
+ gested methodology has been listed in Table 1.
526
+
527
+ Table1: Parameter values for used methods
528
+ Methods
529
+ Parameter values
530
+
531
+ HHOSSA algorithm
532
+
533
+ Feature size: 126
534
+ Population size: 30
535
+ Number of iterations for HHO:100
536
+ Number of iterations for SSA:20
537
+ Ub:1
538
+ Lb:0
539
+ Thre_val:0.5
540
+ Beta:1.5
541
+ Random variables a and b: 0.9, [0.1, a ]
542
+
543
+ KNN classifier
544
+
545
+ K=5
546
+ Classes count:2
547
+ No.of training set:224
548
+
549
+ SVM classifier
550
+
551
+ Classes count:2
552
+ No.of training set:224
553
+
554
+ XGboost classifier
555
+
556
+ Classes count:2
557
+ No.of training set:224
558
+
559
+ Table 2: Performance of HHOSSA over three classifiers KNN, SVM, and XGboost.
560
+ Classifier
561
+ Accuracy
562
+ Precision
563
+ Recall
564
+ F1
565
+ KNN
566
+ 98.21428571428571
567
+ 0.97
568
+ 0.99
569
+ 0.98
570
+
571
+ Issa, A., Ali, Y., & Rashid , T. (2022). An Efficient Hybrid Classification Approach for COVID-19 Based on
572
+ Harris Hawks Optimization and Salp Swarm Optimization. International Journal of Online and Biomedi-
573
+ cal Engineering (iJOE), 18(13), pp. 113–130. https://doi.org/10.3991/ijoe.v18i13.33195
574
+
575
+ 12
576
+
577
+ SVM
578
+ 96.42857142857143
579
+ 0.96
580
+ 0.96
581
+ 0.96
582
+ XGboost
583
+ 98.21428571428571
584
+ 0.99
585
+ 0.96
586
+ 0.98
587
+
588
+ 7.1 Comparative study
589
+ The suggested system's performance was assessed utilizing a variety of modern op-
590
+ timization methods (GWO, WOA). Table (3) shows the performance of the HHO algo-
591
+ rithm used for feature selection and gets 94%,89%, and 94% over three classifiers
592
+ KNN, SVM, and XGboost, while Table(4) shows the performance of the SSA algo-
593
+ rithm used for feature selection and gets 96%,80%,94% over three classifiers KNN,
594
+ SVM, XGboost, Table (5) shows the performance of GWO algorithm used for feature
595
+ selection and gets 96%,82%,92% over three classifiers KNN, SVM, XGboost, While
596
+ Table (6) shows the performance of WOA algorithm used for feature selection and gets
597
+ 96%,86%,96% over three classifiers KNN, SVM, XGboost.
598
+
599
+ Table 3: Performance of HHO over three classifiers KNN, SVM, and XGboost.
600
+ Classifier
601
+ Accuracy
602
+ Precision
603
+ Recall
604
+ F1
605
+ KNN
606
+ 94.64285714285714
607
+ 0.90
608
+ 0.99
609
+ 0.95
610
+ SVM
611
+ 89.28571428571429
612
+ 0.87
613
+ 0.93
614
+ 0.90
615
+ XGboost
616
+ 94.64285714285714
617
+ 0.93
618
+ 0.96
619
+ 0.95
620
+
621
+ Table 4: Performance of SSA over three classifiers KNN, SVM, and
622
+ XGboost.
623
+ Classifier
624
+ Accuracy
625
+ Precision
626
+ Recall
627
+ F1
628
+ KNN
629
+ 96.64285714285714
630
+ 0.93
631
+ 0.96
632
+ 0.95
633
+ SVM
634
+ 80.35714285714286
635
+ 0.81
636
+ 0.79
637
+ 0.80
638
+ XGboost
639
+ 94.64285714285714
640
+ 0.96
641
+ 0.93
642
+ 0.95
643
+
644
+ Table 5: Performance of GWO over three classifiers KNN, SVM, and XGboost.
645
+ Classifier
646
+ Accuracy
647
+ Precision
648
+ Recall
649
+ F1
650
+ KNN
651
+ 96.42857142857143
652
+ 0.93
653
+ 0.99
654
+ 0.97
655
+ SVM
656
+ 82.14285714285714
657
+ 0.74
658
+ 0.99
659
+ 0.85
660
+ XGboost
661
+ 92.85714285714286
662
+ 0.90
663
+ 0.96
664
+ 0.93
665
+
666
+
667
+ Issa, A., Ali, Y., & Rashid , T. (2022). An Efficient Hybrid Classification Approach for COVID-19 Based on
668
+ Harris Hawks Optimization and Salp Swarm Optimization. International Journal of Online and Biomedi-
669
+ cal Engineering (iJOE), 18(13), pp. 113–130. https://doi.org/10.3991/ijoe.v18i13.33195
670
+
671
+ 13
672
+
673
+ Table 6: Performance of WOA over three classifier KNN, SVM, and XGboost.
674
+ Classifier
675
+ Accuracy
676
+ Precision
677
+ Recall
678
+ F1
679
+ KNN
680
+ 94.64285714285714
681
+ 0.90
682
+ 0.99
683
+ 0.95
684
+ SVM
685
+ 89.28571428571429
686
+ 0.87
687
+ 0.93
688
+ 0.90
689
+ XGboost
690
+ 96.42857142857143
691
+ 0.99
692
+ 0.93
693
+ 0.96
694
+
695
+
696
+ Figure 2: The accuracy, precision, recall, and the F1 values for all algorithms over the KNN
697
+ classifier
698
+
699
+ 0.84
700
+ 0.86
701
+ 0.88
702
+ 0.9
703
+ 0.92
704
+ 0.94
705
+ 0.96
706
+ 0.98
707
+ 1
708
+ HHOSSA
709
+ HHO
710
+ SSA
711
+ WOA
712
+ GWO
713
+ Accuracy
714
+ Precision
715
+ Recall
716
+ F1
717
+
718
+ Issa, A., Ali, Y., & Rashid , T. (2022). An Efficient Hybrid Classification Approach for COVID-19 Based on
719
+ Harris Hawks Optimization and Salp Swarm Optimization. International Journal of Online and Biomedi-
720
+ cal Engineering (iJOE), 18(13), pp. 113–130. https://doi.org/10.3991/ijoe.v18i13.33195
721
+
722
+ 14
723
+
724
+
725
+ Figure 3: The accuracy, precision, recall, and the F1 values for all algorithms over the SVM
726
+ classifier
727
+
728
+ Figure 4: The accuracy, precision, recall, and the F1 values for all algorithms over the
729
+ XGboost classifier
730
+
731
+ 0
732
+ 0.2
733
+ 0.4
734
+ 0.6
735
+ 0.8
736
+ 1
737
+ 1.2
738
+ HHOSSA
739
+ HHO
740
+ SSA
741
+ WOA
742
+ GWO
743
+ Accuracy
744
+ Precision
745
+ Recall
746
+ F1
747
+ 0.84
748
+ 0.86
749
+ 0.88
750
+ 0.9
751
+ 0.92
752
+ 0.94
753
+ 0.96
754
+ 0.98
755
+ 1
756
+ HHOSSA
757
+ HHO
758
+ SSA
759
+ WOA
760
+ GWO
761
+ Accuracy
762
+ Precision
763
+ Recall
764
+ F1
765
+
766
+ Issa, A., Ali, Y., & Rashid , T. (2022). An Efficient Hybrid Classification Approach for COVID-19 Based on
767
+ Harris Hawks Optimization and Salp Swarm Optimization. International Journal of Online and Biomedi-
768
+ cal Engineering (iJOE), 18(13), pp. 113–130. https://doi.org/10.3991/ijoe.v18i13.33195
769
+
770
+ 15
771
+
772
+ 7.2 Software and Hardware Requirements
773
+ The proposed system operates by using a personal computer Lenovo that has speci-
774
+ fications such as Intel(R) Intel(R) Core(TM) i7-6500U @ 2.59 GHz for CPU, 8 GB
775
+ windows10 of RAM, and 64-bit Operating System. The proposed system is operated
776
+ by using python 10 languages with (Pycharm) IDE. Table (7) shows the processing
777
+ time of the proposed algorithm and stand-alone algorithms depending on the classifi-
778
+ cation processing time of the testing dataset.
779
+ Table 7: Processing time of proposed (HHOSSA), HHO, SSA.
780
+ Algorithm
781
+ Total processing time (seconds)
782
+ HHOSSA
783
+ 1.0661
784
+ HHO
785
+ 0.9906
786
+ SSA
787
+ 1.1425
788
+
789
+ It should be noted that the hybrid algorithm's processing time for completing the clas-
790
+ sification process is less than the sum of the processing times for the Harris hawk and
791
+ Salp algorithms because the Salp algorithm's iterations are fewer than those of the
792
+ Harris hawk algorithm within the hybrid algorithm. However, this improved the clas-
793
+ sification process and accelerated performance without degrading the hybrid algo-
794
+ rithm's quality.
795
+
796
+ 8
797
+ Conclusion and future works
798
+ The presented work presents a new hybrid swarm algorithm (referred to
799
+ as HHOSSA) that combines the SSA and HHO for selecting the best features subset to
800
+ improve the detection and classification of the COVID-19 virus with the use of chest
801
+ X-ray images. The novel method provided to improve the process of the feature section
802
+ and also for achieving the balance between exploitation and exploration of the HHO
803
+ algorithm with the use of the capability of SSA for finding the best features subset It is
804
+ noted that the processing time required to complete the classification process using the
805
+ hybrid algorithm is less than the sum of the processing time of the Harris hawk and
806
+ Salp algorithms because the number of iterations of the Salp algorithm is less than the
807
+ iterations of Harris hawk algorithm inside hybrid algorithm, However, this did not af-
808
+ fect the quality of the hybrid algorithm, but rather it increased the speed of performance
809
+ and improved the classification process. A total of 800 (400 covid-19 and 400 normal)
810
+ X-ray images are taken from the digital database to assess the HHOSSA's performance.
811
+ XGboost and KNN classifiers get 98% accuracy, whereas SVM classifiers score 96%.
812
+ We want to adapt the suggested technique to more applications in the future, including
813
+
814
+ Issa, A., Ali, Y., & Rashid , T. (2022). An Efficient Hybrid Classification Approach for COVID-19 Based on
815
+ Harris Hawks Optimization and Salp Swarm Optimization. International Journal of Online and Biomedi-
816
+ cal Engineering (iJOE), 18(13), pp. 113–130. https://doi.org/10.3991/ijoe.v18i13.33195
817
+
818
+ 16
819
+
820
+ signal processing and cloud computing task scheduling. Furthermore, the HHO algo-
821
+ rithm's searching power was used to construct a novel suggested algorithm in several
822
+ aspects.
823
+ 9 Acknowledgment
824
+ The authors would like to thank the University of Technology, Baghdad, Iraq for their
825
+ continuous support for this research work.
826
+ 10
827
+ References
828
+ [1] Lakshmanarao, A., Raja Babu, M., & Srinivasa Ravi Kiran, T. (2021). An Efficient
829
+ Covid19 Epidemic Analysis and Prediction Model Using Machine Learning Algorithms. Inter-
830
+ national Journal of Online and Biomedical Engineering (iJOE), 17(11), pp. 176–184.
831
+ https://doi.org/10.3991/ijoe.v17i11.25209
832
+
833
+ [2] S. Cho, S. Lim, C. Kim, S.Wi, T. Kwon,W. S. Youn, S. H. Lee, B. S. Kang, and S. Cho,
834
+ ``Enhancement of soft-tissue contrast in cone-beam CT using an anti-scatter grid with a sparse
835
+ sampling approach,'' Phys. Medica, vol. 70, pp. 1_9, Feb. 2020
836
+
837
+ [3] Allam, Mohan, and M. Nandhini. "A study on optimization techniques in feature selection
838
+ for medical image analysis." International Journal on Computer Science and Engineering
839
+ (IJCSE) 9, no. 3 (2017).
840
+
841
+ [4] Deepa, S. N., and B. Aruna Devi. "A survey on artificial intelligence approaches for med-
842
+ ical image classification." Indian Journal of Science and Technology 4, no. 11 (2011).
843
+
844
+ [5] Al-Wajih, Ranya, Said Jadid Abdulkadir, Norshakirah Aziz, Qasem Al-Tashi, and
845
+ Noureen Talpur. "Hybrid binary grey wolf with Harris hawks optimizer for feature selection."
846
+ IEEE Access 9 (2021).
847
+
848
+ [6] Salama, M. A., & Hassan, G. (2019). A Novel Feature Selection Measure Partnership-
849
+ Gain. International Journal of Online and Biomedical Engineering (iJOE), 15(04), pp. 4–19.
850
+ https://doi.org/10.3991/ijoe.v15i04.9831
851
+
852
+ [7] Abdel-Basset, Mohamed, Weiping Ding, and Doaa El-Shahat. "A hybrid Harris Hawks
853
+ optimization algorithm with simulated annealing for feature selection." Artificial Intelligence Re-
854
+ view54, no. 1 (2021): 593-637.
855
+
856
+ [8] K. Ren,W. Fang, J. Qu, X. Zhang, and X. Shi, ``Comparison of eight filter-based feature
857
+ selection methods for monthly streamflow forecasting_Three case studies on CAMELS data
858
+ sets,'' J. Hydrol., vol. 586, Jul. 2020,Art. no. 124897.
859
+
860
+ [9] M. T. Sadiq, X. Yu, Z. Yuan, F. Zeming, A. U. Rehman, I. Ullah, G. Li, and G. Xiao,
861
+ ``Motor imagery EEG signals decoding by multivariate empirical wavelet transform-based
862
+ framework for robust brain computer interfaces,'' IEEE Access, vol. 7, pp. 171431_171451, 2019.
863
+
864
+ Issa, A., Ali, Y., & Rashid , T. (2022). An Efficient Hybrid Classification Approach for COVID-19 Based on
865
+ Harris Hawks Optimization and Salp Swarm Optimization. International Journal of Online and Biomedi-
866
+ cal Engineering (iJOE), 18(13), pp. 113–130. https://doi.org/10.3991/ijoe.v18i13.33195
867
+
868
+ 17
869
+
870
+
871
+ [10] M. T. Sadiq, X. Yu, and Z. Yuan, ``Exploiting dimensionality reduction and neural net-
872
+ work techniques for the development of expert brain_computer interfaces,'' Expert Syst. Appl.,
873
+ vol. 164, Feb. 2021.
874
+
875
+ [11] B. Xue, M. Zhang, W. N. Browne, and X. Yao, ``A survey on evolutionary computation
876
+ approaches to feature selection,'' IEEE Trans. Evol. Comput.,vol. 20, no. 4, pp. 606_626, Aug.
877
+ 2016.
878
+
879
+ [12] E.-G. Talbi, Metaheuristics: From Design to Implementation. Hoboken, NJ, USA: Wiley,
880
+ 2009.
881
+
882
+ [13] Al-Wajih, Ranya, Said Jadid Abdulkadir, Norshakirah Aziz, Qasem Al-Tashi, and
883
+ Noureen Talpur. "Hybrid binary grey wolf with Harris hawks optimizer for feature selec-
884
+ tion." IEEE Access 9 (2021): 31662-31677.
885
+
886
+ [14] Abdel-Basset, Mohamed, Weiping Ding, and Doaa El-Shahat. "A hybrid Harris Hawks
887
+ optimization algorithm with simulated annealing for feature selection." Artificial Intelligence Re-
888
+ view54, no. 1 (2021): 593-637.
889
+
890
+ [15] Thawkar, Shankar. "A hybrid model using teaching–learning-based optimization and
891
+ Salp swarm algorithm for feature selection and classification in digital mammography." Journal
892
+ of Ambient Intelligence and Humanized Computing 12, no. 9 (2021): 8793-8808.
893
+
894
+ [16] Ibrahim, Rehab Ali, Ahmed A. Ewees, Diego Oliva, Mohamed Abd Elaziz, and Songfeng
895
+ Lu. "Improved salp swarm algorithm based on particle swarm optimization for feature selection."
896
+ Journal of Ambient Intelligence and Humanized Computing 10, no. 8 (2019): 3155-3169.
897
+
898
+ [17] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and H. Chen, ``Harris hawks
899
+ optimization: Algorithm and applications,''Future Gener. Comput. Syst., vol. 97, pp. 849872,
900
+ Aug. 2019
901
+
902
+ [18] Mirjalili, Seyedali, Amir H. Gandomi, Seyedeh Zahra Mirjalili, Shahrzad Saremi, Hos-
903
+ sam Faris, and Seyed Mohammad Mirjalili. "Salp Swarm Algorithm: A bio-inspired optimizer
904
+ for engineering design problems." Advances in Engineering Software 114 (2017): 163-191.
905
+
906
+ [19] Henschke, Natasha, Jason D. Everett, Anthony J. Richardson, and Iain M. Suthers. "Re-
907
+ thinking the role of salps in the ocean." Trends in Ecology & Evolution 31, no. 9 (2016): 720-
908
+ 733.
909
+
910
+ [20] Gupta, Shubham, Kusum Deep, Ali Asghar Heidari, Hossein Moayedi, and Mingjing
911
+ Wang. "Opposition-based learning Harris hawks optimization with advanced transition rules:
912
+ Principles and analysis." Expert Systems with Applications158 (2020): 113510.
913
+
914
+ [21] Radiological Society of North America (RSNA), “Radiological Society of North America (RSNA),”
915
+ Radiological Society of North America (RSNA), 2020. https://www.rsna.org/
916
+
917
+ [22] R. Dataset, “Radiopaedia dataset,” 2020. https://radiopaedia.org/articles/imaging-data-sets-artificial-in-
918
+ telligence
919
+
920
+ Issa, A., Ali, Y., & Rashid , T. (2022). An Efficient Hybrid Classification Approach for COVID-19 Based on
921
+ Harris Hawks Optimization and Salp Swarm Optimization. International Journal of Online and Biomedi-
922
+ cal Engineering (iJOE), 18(13), pp. 113–130. https://doi.org/10.3991/ijoe.v18i13.33195
923
+
924
+ 18
925
+
926
+
927
+ [23] C.
928
+ G. Repository,
929
+ “Cohen’s
930
+ GitHub
931
+ repository,”
932
+ Cohen’s
933
+ GitHub
934
+ repository,
935
+ 2021.
936
+ https://github.com/ieee8023
937
+
938
+ [24] Italian Society of Medical and Interventional Radiology (SIRM), “Italian Society of Medical and Inter-
939
+ ventional Radiology (SIRM),” Italian Society of Medical and Interventional Radiology (SIRM), 2020.
940
+ https://sirm.org/la-radiologia-medica/
941
+
942
+ [25] Kaggle, “Kaggle’s chest X-ray images (Pneumonia) dataset,” Kaggle’s chest X-ray images (Pneumonia)
943
+ dataset, 2020. https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia
944
+
945
+ [26] Abdel-Basset, Mohamed, Weiping Ding, and Doaa El-Shahat. "A hybrid Harris Hawks optimization
946
+ algorithm with simulated annealing for feature selection." Artificial Intelligence Review54, no. 1 (2021):
947
+ 593-637.
948
+
949
+ [27] Fusilier, Donato Hernández, Manuel Montes-y-Gómez, Paolo Rosso, and Rafael Guzmán Cabrera.
950
+ "Detecting positive and negative deceptive opinions using PU-learning." Information processing & manage-
951
+ ment 51, no. 4 (2015): 433-443.
952
+
953
+ [28] Chen, Tianqi, and Carlos Guestrin. "Xgboost: A scalable tree boosting system." In Proceedings of the
954
+ 22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785-794. 2016.
955
+
956
+ [29] Yasir, M. A., & Ali, Y. H. (2021). Review on Real Time Background Extraction: Models, Applications,
957
+ Environments, Challenges, and Evaluation Approaches. International Journal of Online and Biomedical En-
958
+ gineering (iJOE), 17(02), pp. 37–68. https://doi.org/10.3991/ijoe.v17i02.18013
959
+
960
+ 11 Authors
961
+ Abubakr S. Issa received his bachelor’s degree in computer science department –
962
+ Artificial intelligence branch from the University of Technology (UOT) – Iraq 2014.
963
+ Since 2014, he is working as a programmer at the Information Technology Center, at
964
+ the University of Technology up till now. Meanwhile, he is an M.Sc candidate at the
965
+ University of Technology (UOT) – Iraq.
966
+ Assistant Professor Dr. Yossra Hussain Ali. She received her B.Sc, M.Sc, and Ph.D.
967
+ degrees in 1996, 2002, and 2006 respectively from Iraq, the University of Technology,
968
+ Department of Computer Sciences. She joined the University of Technology, Iraq in
969
+ 1997. During her postgraduate studies, she worked on Computer Networks, Infor-
970
+ mation systems, Agent Programming and Image Processing as well as some experience
971
+ in Artificial Intelligent and Computer Data Security. She is a reviewer at many confer-
972
+ ences and journals and she supervised several undergraduate and postgraduate (PhD.
973
+ and MSc.) dissertations in Computer sciences. Yossra has many professional certifi-
974
+ cates and she has published in well-regarded journals (e-mail: yossra.h.ali@uotechnol-
975
+ ogy.edu.iq).
976
+ Tarik A. Rashid received his Ph.D. in Computer Science and Informatics degree from
977
+ the College of Engineering, Mathematical and Physical Sciences, University College
978
+ Dublin (UCD) in 2001–2006. He pursued his Post-Doctoral Fellow at the Computer
979
+ Science and Informatics School, College of Engineering, Mathematical and Physical
980
+ Sciences, University College Dublin (UCD) from 2006–2007. He joined the University
981
+
982
+ Issa, A., Ali, Y., & Rashid , T. (2022). An Efficient Hybrid Classification Approach for COVID-19 Based on
983
+ Harris Hawks Optimization and Salp Swarm Optimization. International Journal of Online and Biomedi-
984
+ cal Engineering (iJOE), 18(13), pp. 113–130. https://doi.org/10.3991/ijoe.v18i13.33195
985
+
986
+ 19
987
+
988
+ of Kurdistan Hewlêr (UKH) in 2017. He has also been included in the prestigious Stan-
989
+ ford University list of 2.% of the best world researchers for the years 2020 and 2022.
990
+
7NE4T4oBgHgl3EQf2Q0O/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
89E0T4oBgHgl3EQffwAL/content/tmp_files/2301.02407v1.pdf.txt ADDED
@@ -0,0 +1,2550 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ The detection of an extraordinarily-luminous
2
+ high-redshift optical/ultraviolet flare by Swift/UVOT
3
+ Zhi-Ping Jin1,2,3†, Hao Zhou1,2,3†, Yun Wang1,3, Jin-Jun Geng1,
4
+ Stefano Covino4, Xue-Feng Wu1,3, Xiang Li1,
5
+ Yi-Zhong Fan1,2,3∗, Da-Ming Wei1,2,3, and Jian-Yan Wei5
6
+ 1Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210023, China
7
+ 2Key Laboratory of Dark Matter and Space Astronomy of Chinese Academy of Sciences,
8
+ Nanjing 210023, China
9
+ 3School of Astronomy and Space Science, University of Science and Technology of China,
10
+ Hefei 230026, China
11
+ 4INAF/Brera Astronomical Observatory, via Bianchi 46, I-23807 Merate (LC), Italy
12
+ 5National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100049, China
13
+ ∗To whom correspondence should be addressed; E-mail: [email protected].
14
+ †These authors contributed equally to this work.
15
+ Hyper-luminous optical/ultraviolet flares have been detected in Gamma-ray
16
+ Bursts and the record was held by naked eye event GRB 080319B. Such flares
17
+ are widely attributed to internal shock or external reverse shock radiation.
18
+ With a new dedicated method developed to derive reliable photometry from
19
+ saturated images of Swift/UVOT, here we carry out time-resolved analysis of
20
+ the initial White band 150 s exposure of GRB 220101A, a burst at the red-
21
+ shift of 4.618, and report a rapidly-evolving optical/ultraviolet flare with an
22
+ unprecedented-high absolute AB magnitude ∼ −39.4. At variance with GRB
23
+ 080319B, the temporal behavior of this new flare does not trace the gamma-
24
+ ray activities. Rather than either internal shocks or reverse shock, this opti-
25
+ 1
26
+ arXiv:2301.02407v1 [astro-ph.HE] 6 Jan 2023
27
+
28
+ cal/ultraviolet monster is most likely from the refreshed shocks induced by the
29
+ catching-up of the late-ejected extremely-energetic material with the earlier-
30
+ launched decelerating outflow. We detect the first ultraviolet/optical flare with
31
+ an absolute AB magnitude brighter than −39 and reveal the efficient process
32
+ to power such transients.
33
+ Gamma-ray bursts are widely believed to originate from the internal energy dissipation of
34
+ a highly relativistic and narrowly collimated outflow that was launched by a nascent stellar
35
+ mass black hole or magnetized neutron star. Shortly after the onset of prompt emission of
36
+ GRBs, there could come very bright optical/ultraviolet flashes arising from either the internal
37
+ shocks in specific conditions or the external reverse shock radiation (1). An apparent ∼ 9th
38
+ mag optical radiation was detected in GRB 990123 at a redshift of z = 1.62 (2, 3). Its rapid
39
+ rise and the quick decline are consistent with the reverse shock radiation model (4–6), and
40
+ the late more-detailed afterglow modeling revealed that the reverse shock region should be
41
+ significantly more magnetized than the forward shock region (7,8). A long-holding record was
42
+ set by GRB 080319B, a burst at a redshift of z = 0.937. Its peak visual magnitude reaches 5.3
43
+ (corresponding to an absolute AB magnitude of −38.7), which is so bright that an observer in
44
+ a dark location could have seen it with the naked eyes (9)! The correlated temporal behaviors
45
+ of the prompt gamma-ray emission and the optical radiation are in favor of the internal shock
46
+ process (10,11). In the past decade, no similar or even comparable events have been reported.
47
+ GRB 220101A was discovered simultaneously by Swift Burst Alert Telescope (BAT) (12),
48
+ the Fermi satellite (13) and the AGILE satellite (14). Before the so-called finding chart exposure
49
+ ranging from 90 to 240 seconds with the White filter (12), UVOT observed the target in V band
50
+ for 9 seconds. The estimated average magnitude in the White band for an exposure of ∼ 150 s
51
+ is ∼ 14.7th Vega mag (12,15). The redshift was measured to be z = 4.618 and in the spectrum
52
+ a broad absorption feature, which results from the Lyman alpha absorption (16, 17), is evident
53
+ 2
54
+
55
+ centered at ∼ 6820 ˚A. The corresponding isotropic equivalent gamma-ray energy is ∼ 4 × 1054
56
+ erg and the peak luminosity is ∼ 9 × 1053 erg s−1, both are in the rank of the brightest ones
57
+ among current GRBs (18,19). After the redshift correction, the observed optical photons were
58
+ intrinsically in the ultraviolet bands. Therefore, all the emission detected by Swift suffered from
59
+ serious absorption (in the observer’s frame, the V band absorption is about 2 mag stronger than
60
+ that in the I-band (16)) and thus the intrinsic emission would be much brighter. This is in
61
+ particular the case for the White filter because of its large effective area in the blue part (i.e.,
62
+ U, UVW1, UVM2 and UVW2) and the Lyman alpha/intergalactic medium (IGM) absorption
63
+ would be very strong. We concentrate on the first ∼ 150 s exposure with White filter in the
64
+ event mode (i.e. photon counting mode) that can be efficiently divided into short bins according
65
+ to the signal-to-noise ratio (SNR). Our time-resolved analysis reveals that the measurements
66
+ in the time range of ∼ 106 − 150 s after the BAT trigger suffered from strong saturation, as
67
+ shown in Fig. 1, Table S5 and Fig. S1. The absence of clear signal of the read-out streaks in the
68
+ raw data, indicating a moderate saturation, however hampers a correction following procedures
69
+ proposed in the literature (20,21). Therefore we propose a new method to correct the saturation
70
+ effect. The basic idea is that though the pile up at the source site is so serious that can not be
71
+ reliably corrected, the surrounding but relatively “separated” pixels are possibly unaffected by
72
+ saturation and therefore the enhancement of the counts should be correlated with the intrinsic
73
+ count rate of the source. To clarify whether it is the case, we need some data with known
74
+ magnitudes as well as the count rates in external annuli. For the unsaturated data with relatively
75
+ low ring count rate, we simply take UVOT/White measurements of GRB 220101A at 150−240
76
+ seconds after the burst trigger. For the moderate saturation that is of our great interest, we
77
+ take the UVOT measurements of GRB 130427A in the time interval of 500 − 2000 seconds.
78
+ Though the moderately saturated White band emission of GRB 130427A can not be directly
79
+ measured, we infer them with the UVOT emission in other bands since the spectrum can be
80
+ 3
81
+
82
+ well fitted by a single power-law, see Fig. S2. With these two sets of data, we do find a tight
83
+ correlation between photon count rate in 5′′ aperture ( ˙Naper, directly measured if unsaturated,
84
+ or inferred from the “intrinsic” count rate ˙Nint measured in other ways) and in the 15′′ − 25′′
85
+ ring ( ˙Nring, directly measured in UVOT images), which reads ˙Naper = (22.22 ± 0.84) ˙Nring
86
+ for ˙Nring ≤ 80 s−1 (see Fig. S3). The correlation efficient for such an empirical relation is
87
+ 0.99 (22). The other essential correction is on the absorption of the ultraviolet photons at high
88
+ redshift. In the analysis we correct such a factor, i.e., 4.78 ± 0.10 mag in the White band, with
89
+ the wide band energy spectrum and further check it with the other two GRBs at rather similar
90
+ redshifts (see Fig. S5).
91
+ In Fig. 1 we show the lightcurves of the prompt gamma-ray emission and the very early
92
+ optical emission. The first White exposure with a duration of 150 s was in the events mode.
93
+ In our approach, a bin size of 4s is adopted. In principle, a narrower bin size is helpful in
94
+ revealing the peak or structure of the flash, but a reasonably wide bin is necessary for a high
95
+ SNR. The optical/ultraviolet flash lightcurve is relatively smooth and there is no evidence for
96
+ tracing the temporal behavior of prompt gamma-rays. This is very different from the case of
97
+ GRB 080319B, where the naked-eye optical flash shows strong variabilities and the optical
98
+ lightcurve resembles that of the gamma-rays (see the insert of Fig. 1), indicating a new origin.
99
+ We have also constructed the “prompt” optical, X-ray and gamma-ray SED. In Fig. 2 we show
100
+ three representative time intervals of the first UVOT White band exposure, including the very
101
+ beginning, the peak, and the final shallow decline phase. In the rise and the quick decline
102
+ phases, the extrapolation of the high energy radiation spectrum into the optical is well below
103
+ the White band measurements, which again points towards different physical origins of the
104
+ optical and high energy radiation. While in the t−2.3±0.3 shallow decline phase, the optical
105
+ to X-ray emission are consistent with being a single power-law, which may be dominated by
106
+ the external reverse shock radiation. In Fig. 3 we present the absolute AB magnitudes of the
107
+ 4
108
+
109
+ very early optical emission of GRB 220101A and the other three remarkable events, including
110
+ GRB 990123 (3), GRB 050904 (23) and GRB 080319B (9), distinguished by the extremely
111
+ bright optical emission. After the proper saturation, absorption and cosmological corrections, it
112
+ turns out that GRB 220101A sets a new record. The prompt ultraviolet to X-ray spectrum at the
113
+ optical/ultraviolet emission peak time is softer than ν−1.3 (see Fig.2). If this soft spectrum could
114
+ extend to the optical band in the frame of the burst, GRB 220101A would be so far the unique
115
+ source with an absolute AB magnitude brighter than −40 in the visible band (22). Note that the
116
+ peak optical emission of GRB 220101A could be even stronger than presented here since our
117
+ current fluxes are the average of the radiation in each 4s bin.
118
+ As already mentioned before, for GRB 080319B, the internal shock model is favored by
119
+ the similar temporal behaviors of the prompt gamma-ray and optical radiation. While for GRB
120
+ 990123, the external reverse shock model has been widely accepted to account for the optical
121
+ flash. The optical/ultraviolet flare detected in GRB 220101A, however, should have a differ-
122
+ ent physical origin for the following facts: (i) In contrast to GRB 080319B, the optical flash
123
+ lightcurve of GRB 220101A does not trace the variability of the prompt gamma-rays (see Fig.
124
+ 1), requiring different radiation processes/sites of these two components; (ii) The t−2.3-like de-
125
+ cline of the optical/ultraviolet flare of GRB 220101A may be due to the reverse shock emission,
126
+ but the ∼ t20 increase is much quicker than that of GRB 990123 and hence strongly in tension
127
+ with the standard external reverse/forward shock emission model (5, 6). Here we present a re-
128
+ freshed shock model for the brightest optical/ultraviolet spike of GRB 220101A. Looking at the
129
+ gamma-ray lightcurve, the main burst phase consisting of two giant gamma-ray spikes appears
130
+ at ∼ 90 s after the BAT trigger, and the earlier emission was much weaker (i.e., the time-
131
+ averaged luminosity is ∼ 1052 erg s−1). As indicated by the bulk Lorentz factor−luminosity
132
+ correlation (24,25) of Γ ∝ L0.3
133
+ γ , the weak/slow GRB outflow component launched at the early
134
+ times is expected to have a Γ ∼ 102 and the surrounding interstellar medium further decelerates
135
+ 5
136
+
137
+ the outflow to a Lorentz factor of ΓW, while the outflow component yielding the most luminous
138
+ part of GRB 220101A likely has a Lorentz factor of ΓM ∼ 103. The first giant spike comes
139
+ from the energy release of the main outflow, either through the internal shocks or the magnetic
140
+ re-connection within it. Soon the main outflow would catch up with the decelerating weak part
141
+ at a time of ∼ Γ2
142
+ WδtWM/Γ2
143
+ M ∼ O(10) s, which explains the second gamma-ray spike and the
144
+ delayed onset of the optical/ultraviolet flare, where δtWM ∼ 100 s is the delay of the onset of the
145
+ main part with respect to that of the weak part (started at ∼ 60 s before the trigger, see Fig. 1).
146
+ The collision of the late/fast material shell(s) with the early/decelerating material will generate
147
+ strong refreshed shocks and then produce energetic emissions. Following the treatments pre-
148
+ sented in Sec. 2.1 of the Ref. (26), it is straightforward to show that for the internal shocks taking
149
+ place at ∼ 2Γ2
150
+ WcδtWM/(1 + z) ∼ 1016 cm (ΓW/102)2(δtWM/102 s), the typical synchrotron
151
+ radiation frequency is indeed within the optical/ultraviolet bands. The bulk Lorentz factor of
152
+ the merged shells can be approximated to be ¯Γ ≈
153
+
154
+ [MWΓW + MMΓM]/[MW/ΓW + MM/ΓM]
155
+ and the Lorentz factor of the internal shocks can be estimated as Γsh ≈ ΓM/¯Γ + ¯Γ/ΓM, where
156
+ MW and MM are the rest masses of the ejecta powering earlier weak gamma-ray emission and
157
+ the main outburst, respectively (27). Indeed, for GRB 220101A-like burst, we have the outflow
158
+ luminosity of Lm ∼ 1053 − 1054 erg s−1, with the fractions of the shock energy given to the
159
+ magnetic fields (electrons) ϵB ∼ 0.1 (ϵe ∼ 0.3), ¯Γ ∼ several × 100 and Γsh ∼ a few, it is natural
160
+ to have an optical/ultraviolet flux (26) of ∼ 1 Jy even for a redshift as high as ∼ 5 (a numerical
161
+ example is presented in (22) and Fig.S6).
162
+ Note that the very energetic prompt emission appearing at ∼ T0 +90 s, which partly overlap
163
+ with the optical/ultraviolet flash, after the BAT trigger should also effectively cool the electrons
164
+ accelerated in the collision discussed above. Such a process would produce GeV emission,
165
+ which is expected to last longer than the overlapping phase of the prompt MeV emission and
166
+ ultraviolet/optical flare. Indeed, at t ∼ 100 − 150 s after the BAT trigger, GeV emission was
167
+ 6
168
+
169
+ detected from GRB 220101A (28).
170
+ Though the hyper-luminous very early optical/ultraviolet emission are not common, we
171
+ suggest that the bursts with prompt emission resembling GRB 220101A (i.e., the much more
172
+ energetic outflow is well separated from the early ejecta) are good candidates for hosting the
173
+ extraordinarily bright flares. The problem is how to catch such signals promptly. Small tele-
174
+ scopes with a large field of view should be very helpful and the I/R-band observation of these
175
+ telescopes can catch the monsters in a wide range of redshifts. Anyhow, such observations are
176
+ limited by the weather, the time (day or night) and the burst site. The space telescopes like
177
+ Swift/UVOT and SVOM/VT (29) may play an important role for the high redshift events. Since
178
+ the optical/ultraviolet flash of GRB 220101A was observed by Swift/UVOT, below we focus on
179
+ the upcoming 0.4m SVOM/VT with two channels, including the blue (400 − 650 nm) and the
180
+ red (650 − 1000 nm) bands. For the shortest exposure time of 1s, the saturation limit is about
181
+ 9th magnitude. Given its higher sensitivity in comparison to Swift/UVOT V filter, the seriously
182
+ absorbed “ultraviolet” emission of GRB 220101A/GRB 080319B-like extra-luminous events,
183
+ even taking place at the even higher redshift (say, z ∼ 6), can still be caught by the blue channel
184
+ of SVOM/VT though the red channel might be saturated (22). Dedicated observation strategies
185
+ are needed to optimize the potential of the discoveries.
186
+ 7
187
+
188
+ 0
189
+ 0.1
190
+ 0.2
191
+ 0.3
192
+ 0.4
193
+ 0.5
194
+ 0.6
195
+ 0.7
196
+ 0.8
197
+ 0.9
198
+ -50
199
+ 0
200
+ 50
201
+ 100
202
+ 150
203
+ 200
204
+ 250
205
+ 0
206
+ 200
207
+ 400
208
+ 600
209
+ 800
210
+ 1000
211
+ 1200
212
+ BAT count rate (count/s/det)
213
+ UVOT count rate (count/s)
214
+ Time since trigger (s)
215
+ BAT
216
+ V
217
+ White
218
+
219
+ 0
220
+ 1
221
+ 2
222
+ 3
223
+ 4
224
+ 0
225
+ 20
226
+ 40
227
+ 60
228
+ 800.0E0
229
+ 5.0E4
230
+ 1.0E5
231
+ 1.5E5
232
+ GRB 080319B V
233
+ Figure 1:
234
+ Photon count rates of the prompt gamma-ray (Swift/BAT) and optical
235
+ (Swift/UVOT V and White band) emission of GRB 220101A. The prompt gamma-ray
236
+ lightcurve is highly variable, while the prompt optical emission lightcurve is relatively smooth
237
+ and does not trace that of gamma-rays. The red filled circles are from the aperture measurement
238
+ while the open circles are obtained with the new method developed in this work. The energetic
239
+ optical/ultraviolet flash just overlaps with the late part of the giant outburst phase of the prompt
240
+ gamma-rays. The prompt gamma-ray and optical lightcurves of GRB 080319 are inserted for
241
+ comparison.
242
+ 8
243
+
244
+ 10
245
+ 3
246
+ 10
247
+ 2
248
+ 10
249
+ 1
250
+ 100
251
+ 101
252
+ 102
253
+ 103
254
+ Energy (keV)
255
+ 10
256
+ 2
257
+ 10
258
+ 1
259
+ 100
260
+ 101
261
+ 102
262
+ 103
263
+ 104
264
+ Flux density (keV/cm2/s/keV)
265
+ Unabsorbed CPL model (91.96 - 93.62 s)
266
+ Unabsorbed CPL model (113.64 - 117.62 s)
267
+ Unabsorbed PL model (173.63 - 239.56 s)
268
+ Mape AB = 17.75 ± 0.24 (91.96 - 93.62 s)
269
+ Mring AB = 13.56 ± 0.19 (113.64 - 117.62 s)
270
+ Mape AB = 15.42 ± 0.04 (173.63 - 239.56 s)
271
+ Figure 2: The “prompt” optical to γ-ray SEDs of GRB 220101A. The data in blue (red)
272
+ are collected in the very beginning (peak) of the UVOT/White band emission. The optical
273
+ emission in both cases are well above the extrapolation of the high energy spectrum, suggesting
274
+ an origin different from the prompt X-rays and gamma-rays. While in the time interval of
275
+ t ∼ 173.6 − 239.6 seconds, the extrapolation of the X-ray and gamma-ray spectrum into the
276
+ optical is in agreement with the UVOT data.
277
+ 9
278
+
279
+ -40
280
+ -39
281
+ -38
282
+ -37
283
+ -36
284
+ -35
285
+ -34
286
+ -33
287
+ -32
288
+ -31
289
+ -30
290
+ -29
291
+ -28
292
+ 101
293
+ 102
294
+ 103
295
+ Absolute Magnitude (AB)
296
+ t′ (second)
297
+ GRB 220101A
298
+ GRB 080319B
299
+ GRB 050904
300
+ GRB 990123
301
+ -39
302
+ -38
303
+ -37
304
+ -36
305
+ 1015 1016
306
+
307
+ ν′ (Hz)
308
+ Figure 3: The ultraviolet/optical flare of GRB 220101A (red) in comparison to that of
309
+ GRB 990123 (green) (3), GRB 050904 (pink) (23) and GRB 080319B (blue) (9) in rest
310
+ frame. The White band emission of GRB 220101A has been corrected for total extinction
311
+ of Aλ = 4.78 ± 0.1 mag, including the tiny softening of E(B − V ) = 0.0483 mag in the
312
+ Milky Way. The absolute AB magnitude of GRB 220101A exceeds that of GRB 080319B, the
313
+ so-called naked burst, rendering it the most energetic optical/ultraviolet flare recorded so far.
314
+ References
315
+ 1. P. M´esz´aros, M. J. Rees, Astrophys. J. 476, 232 (1997).
316
+ 2. M. I. Andersen, et al., Science 283, 2075 (1999).
317
+ 3. C. Akerlof, et al., Nature 398, 400 (1999).
318
+ 10
319
+
320
+ 4. A. J. Castro-Tirado, et al., Science 283, 2069 (1999).
321
+ 5. R. Sari, T. Piran, Astrophys. J. 520, 641 (1999).
322
+ 6. P. M´esz´aros, M. J. Rees, Mon. Not. Roy. Astron. Soc. 306, L39 (1999).
323
+ 7. Y.-Z. Fan, Z.-G. Dai, Y.-F. Huang, T. Lu, Chin. J. Astron. Astrophys. 2, 449 (2002).
324
+ 8. B. Zhang, S. Kobayashi, P. M´esz´aros, Astrophys. J. 595, 950 (2003).
325
+ 9. J. L. Racusin, et al., Nature 455, 183 (2008).
326
+ 10. Y.-Z. Fan, B. Zhang, D.-M. Wei, Phys. Rev. D 79, 021301 (2009).
327
+ 11. Z. Li, E. Waxman, Astrophys. J. Lett. 674, L65 (2008).
328
+ 12. A. Tohuvavohu, et al., GRB Coordinates Network 31347, 1 (2022).
329
+ 13. S. Lesage, C. Meegan, Fermi Gamma-ray Burst Monitor Team, GRB Coordinates Network
330
+ 31360, 1 (2022).
331
+ 14. A. Ursi, et al., GRB Coordinates Network 31354, 1 (2022).
332
+ 15. N. P. M. Kuin, A. Tohuvavohu, Swift/UVOT Team, GRB Coordinates Network 31351, 1
333
+ (2022).
334
+ 16. S. Y. Fu, Z. P. Zhu, D. Xu, X. Liu, S. Q. Jiang, GRB Coordinates Network 31353, 1 (2022).
335
+ 17. J. P. U. Fynbo, et al., GRB Coordinates Network 31359, 1 (2022).
336
+ 18. J. L. Atteia, GRB Coordinates Network 31365, 1 (2022).
337
+ 19. A. Tsvetkova, et al., GRB Coordinates Network 31433, 1 (2022).
338
+ 20. M. J. Page, et al., Mon. Not. Roy. Astron. Soc. 436, 1684 (2013).
339
+ 11
340
+
341
+ 21. P. W. A. Roming, et al., Astrophys. J. Supp. 228, 13 (2017).
342
+ 22. Materials and methods are available as supplementary materials.
343
+ 23. M. Bo¨er, et al., Astrophys. J. Lett. 638, L71 (2006).
344
+ 24. J. L¨u, et al., Astrophys. J. 751, 49 (2012).
345
+ 25. Y.-Z. Fan, D.-M. Wei, F.-W. Zhang, B.-B. Zhang, Astrophys. J. Lett. 755, L6 (2012).
346
+ 26. D. M. Wei, T. Yan, Y. Z. Fan, Astrophys. J. Lett. 636, L69 (2006).
347
+ 27. T. Piran, Phys. Rept. 314, 575 (1999).
348
+ 28. M. Arimoto, L. Scotton, F. Longo, Fermi-LAT Collaboration, GRB Coordinates Network
349
+ 31350, 1 (2022).
350
+ 29. S.-J. Yu, F. Gonzalez, J.-Y. Wei, S.-N. Zhang, B. Cordier, Chin. Astron. Astrophys. 44, 269
351
+ (2020).
352
+ Acknowledgments
353
+ Funding:
354
+ This work was supported in part by NSFC under grants of No. 12225305, 11921003
355
+ and 11933010, the China Manned Space Project (NO.CMS-CSST-2021-A13), Major Science
356
+ and Technology Project of Qinghai Province (2019-ZJ-A10), Key Research Program of Frontier
357
+ Sciences (No. QYZDJ-SSW-SYS024). SC has been supported by ASI grant I/004/11/0.
358
+ Author Contributions:
359
+ Y.Z.F and Z.P.J launched the project. Z.P.J, H.Z., Y.W, X.L, S.C and
360
+ J.Y.W carried out the data analysis. Y.Z.F, J.J.G., X.F.W, D.M.W and Z.P.J interpreted the data.
361
+ Z.P.J, H.Z. and Y.Z.F prepared the paper and all authors joined the discussion. Z.P.J and H.Z
362
+ contributed equally.
363
+ 12
364
+
365
+ Competing Interests:
366
+ The authors declare that they have no competing financial interests.
367
+ Author Information:
368
+ Correspondence and requests for materials should be addressed to Y.Z.F
369
370
+ Code availability:
371
+ The codes used in this analysis are standard in the community, as intro-
372
+ duced in the supplementary materials.
373
+ Data availability:
374
+ The Swift observation data analysed/used in this work are all publicly avail-
375
+ able.
376
+ 13
377
+
378
+ Supplementary materials
379
+ Materials and Methods
380
+ Tables S1 to S6
381
+ Figs. S1 to S7
382
+ References (30-52)
383
+ Materials and Methods
384
+ 1
385
+ A new method to measure the saturated sources in Swift
386
+ UVOT images
387
+ UVOT is a photon counting detector and typical read-out rate is once every ∼ 11 ms. If the
388
+ source is bright enough (> 10 counts s−1), coincidence losses start to be significant and a
389
+ correction is necessary. When the incident photon counts rate beyond the read-out rate ∼ 86 s−1,
390
+ the source is fully saturated and proper coincidence loss correction is impractical (30). However
391
+ for extremely saturated sources with read-out streaks, a calibration method has been developed
392
+ based on the measurement of read-out streak line strength (20). Anyhow, the read-out streak
393
+ lines are only present in the extremely saturated sources or those with very long time exposure.
394
+ For the moderate saturation with relatively short exposure, it cannot be applied and our main
395
+ goal is to provide a new way. Below we focus on the White band, but our method can be applied
396
+ to other UVOT filters as well (indeed, as a validation, we also show in the end of this subsection
397
+ that a rather similar empirical correction function holds for the V band).
398
+ The saturated pattern of an UVOT image can be divided into three parts. The first is a
399
+ point source like structure at the center of saturated pattern, which represents the location of the
400
+ saturated source. The second part is a dark square structure caused by coincidence loss and the
401
+ half length of its diagonal line is about 14 arcsec. A more detailed explanation is that UVOT has
402
+ 14
403
+
404
+ actually a 256×256 CCD which records the flash pattern produced by the incident photon after
405
+ several amplifiers and there is a centroid algorithm to calculate positions of incident photons
406
+ whose accuracy could reach 0.125 pixel. As a result, each physical pixel could be subsampled
407
+ to 8×8 virtual pixels with a resolution of 0.5 arcsec/pixel. The side length of the dark square is
408
+ about 20 arcsec, that is 40 virtual pixels, corresponding to an area of 5×5 pixels region on real
409
+ physical CCD which is the affected region of coincidence loss. The third part is the halo ring,
410
+ which is distinct for saturated sources and some unsaturated sources but with low background.
411
+ Fig. S1 shows such a saturated pattern. We attribute the halo rings to the wing of the Point
412
+ Spread Function (PSF) of UVOT detector. To test this conjecture, we will examine whether
413
+ the “intrinsic” photon counts rates of saturated sources is proportional to photon counts rates of
414
+ halo rings.
415
+ To avoid the influence of the coincidence loss, the best measurement region to get the highest
416
+ S/N ratio is the area between a circle with a radius of 25 arcsec and a square, with the same
417
+ center and with a side length of 20 arcsec, like a Chinese copper cash. However, if Swift rotated
418
+ during observations, the dark region of final stacked science image are not necessarily a square
419
+ due to that the coincidence loss square is aligned to the edge of CCD. Hence, we used an
420
+ annulus of an inner radius of 15 arcsec and an outer radius of 25 arcsec (i.e., the outer edge
421
+ of halo rings) to measure photon count rate in the ring ( ˙Nring), where the background should
422
+ be removed and the coincidence loss has been corrected. The crucial step is to reliably derive
423
+ the corresponding photon count rate of the saturated source within the standard aperture with
424
+ a radius of 5 arcsec( ˙Naper). As mentioned above, if the incident photon counts rate is beyond
425
+ the CCD readout rate, the source is saturated. Fortunately, the UVOT White band is much
426
+ wider than other 6 bands (hence, we will call them the narrow bands), which means although
427
+ a source is saturated in White band, it could be unsaturated in narrow bands. It is therefore
428
+ plausible to measure the spectrum with other filters of UVOT and then convolve it with the
429
+ 15
430
+
431
+ White filter to get the corresponding “intrinsic” emission. This can be done for the power-law
432
+ like afterglow spectrum of GRBs and the very early time optical flash of GRB 130427A is a
433
+ nice sample. The earliest UVOT measurements of this burst were highly saturated and some of
434
+ them can be analyzed with the readout streak method (20). Moreover, as shown in Maselli et
435
+ al. (31) and the left panel of Fig. S2, when the White filter was still saturated, there were usable
436
+ measurements in other bands. In the right panel of Fig. S2, we show the ultraviolet/optical
437
+ SED of GRB 130427A with the UVOT observations. Note that these data were re-measured
438
+ in this work and they are consistent with that reported in the literature (31). We performed
439
+ the early time photometry of GRB 130424A with HEASoft and the results are summarized in
440
+ Table S1. The first exposure in B band and the first 2 exposures in U band were saturated,
441
+ hence we took the values from Maselli et al (31). Light curves of 6 narrow bands were fitted
442
+ to found their magnitudes simultaneous with White band exposures, the results are listed in
443
+ Table S2. We then carry out the power-law spectral fit to the SED and estimate the White band
444
+ magnitudes, as summarized in the last column of Table S2, which are further used in Table S3
445
+ to yield the ˙Nint (in another word, the inferred ˙Naper). It is worth noting that in epoch 1 there
446
+ was an optical/ultraviolet flare and hence it is not suitable to evaluate the White band emission
447
+ with this method. Moreover, the White band measurement in the first, second and third epochs
448
+ were significantly saturated with readout streaks, for which the fluxes were reported before.
449
+ As show in Fig. S3, in epoch 2 our calculated flux is consistent with that reported in Maselli
450
+ et al. (31), validating the method proposed in this work. Our downloaded image of the epoch
451
+ 3 mentioned in Maselli et al. (31) is distorted and we have hence focused on the subsequent
452
+ observation data with an exposure of 20 s. Our estimated flux is still well consistent with that
453
+ reported in Maselli et al. (31), which is expected because these two measurements were almost
454
+ simultaneous. Anyhow, in the plot the data point reported in Maselli et al. (31) is not shown
455
+ because we can not measure its ring count rate because of distortion. For epoch 4 to epoch
456
+ 16
457
+
458
+ 8, there were no readout streaks and the method developed by Page et al. (20) does not work
459
+ any longer. Our method mentioned above applies to these data and yield reasonable results.
460
+ As for GRB 220101A, shortly after its peak, the ultraviolet/optical flash is not saturated any
461
+ more. For these observations we can reasonably measure its White band emission. HEASoft
462
+ UVOT pipeline was used to make photometry of barely saturated images of GRB 220101A with
463
+ a circle aperture with a radius of 5 arcsec. However, a reliable measurement of the ring count
464
+ rate requires a somewhat long exposure. Therefore, we just divide the “tail” part of the flash
465
+ into two time intervals. We also notice 3 bright stars in the field and then measure them for
466
+ independent check. These five data points are summarized in Table S3. The White band fluxes
467
+ measured (indirectly and directly, respectively) in the above events and field stars are used to
468
+ clarify whether there is a tight correlation between the ring counts and the intrinsic source
469
+ emission. For such a purpose, these three data sets have been fitted with a linear function of a
470
+ model of y = ax and a least square cost function was applied, χ2 = �
471
+ i
472
+ (yi−axi)2
473
+ y2
474
+ err,i+(axerr,i)2, where
475
+ yi and xi represent extracted White-band photon counts rates and halo ring photon counts rates,
476
+ respectively, and yerr,i and xerr,i are the corresponding uncertainties. The Pearson correlation
477
+ coefficient is 0.99, which reveals a very strong linear correlation, and the χ2/d.o.f value is
478
+ ∼ 0.90, which implies a reasonable fit, where d.o.f denotes the degree of the freedom. Hence,
479
+ we conclude that ˙Naper = 22.22 ± 0.84 ˙Nring can yield a reasonable estimation of “true” photon
480
+ counts rates of saturated sources in White band. Fig. S3 presents our best fitting result which
481
+ confirms our early speculation and suggests that the outer part of the PSFs of such sources are
482
+ nearly unmodified.
483
+ The ground-based telescopes can well measure the V-band emission of the sources, which
484
+ can thus provide an economical way to calibrate the saturated V-band observations of Swift/UVOT.
485
+ Interestingly, GRB 080319B is a nice example. For the UVOT V-band observations, in total we
486
+ have 22 sub event files, which were later converted to images with HEASoft for measurements.
487
+ 17
488
+
489
+ The first 4 exposure duration are 30s, 40s, 50s and 55s, which are same as the time bins in Page
490
+ et al. (20). These exposures display readout streaks and have been analyzed with the method
491
+ of Page et al. (20), which are shown in the right panel of Fig. S3 (see the light green empty
492
+ squares). We measured the counts rate in the halo rings, which is defined above, with HEASoft,
493
+ but made coincidence loss correction manually. Another 18 images are unsaturated, the intrin-
494
+ sic emission were directly measured, and they are marked with dark green empty triangles in
495
+ the right panel of Fig. S3. These measurements are summarized in Table S4. In addition, the
496
+ optical emission of GRB 080319B was well measured by the ground based telescopes (32), and
497
+ the accurately measured V-band emission from RAPTOR-T can be taken as the intrinsic ones
498
+ (i.e., we have the ˙Nint, in another word, ˙Naper defined in this paper). The difference between the
499
+ V filter of UVOT and that of RAPTOR-T is small and the magnitude difference can be ignored,
500
+ as demonstrated by the overlapping data points in the left lower corner of the right panel of Fig.
501
+ S3. Since the very early UVOT/V band observations were in event mode, we can re-bin them
502
+ into the time intervals the same as that of RAPTOR-T and then get the ˙Nring. Time bins of our
503
+ measurements are listed in Table S4. Therefore, we apply the linear fit to the data sets and find
504
+ an empirical function of ˙Naper = 20.6 ± 0.4 ˙Nring with a high correlation coefficient of 0.998.
505
+ Such a correlation is nicely consistent with that for the UVOT/White band. It is worth noting
506
+ that for GRB 220101A, the photons collected in the White band are dominated by those passing
507
+ the V filter because of the serious absorption in the bluer region. Indeed we find rather sim-
508
+ ilar count rates for the (almost) simultaneous White and V-band measurements (see Fig. S4).
509
+ Therefore, the rather similar correction function for UVOT/V filter strongly suggests that our
510
+ White band analysis of GRB 220101A is robust.
511
+ 18
512
+
513
+ 2
514
+ Data analysis
515
+ 2.1
516
+ Swift UVOT data analysis
517
+ Swift/UVOT observed GRB 220101A in V, B, U, W1, M2, W2 and White bands for several
518
+ epochs. For data in image mode, we started from the level 2 UVOT products and used standard
519
+ aperture photometry, background was measured in a nearby region without sources in stacked
520
+ images. Reliable detections were only obtained in V and White bands, and the photon count
521
+ rates were measured in 3 or 5 arcsec apertures, depending on SNR. Coincidences loss correction
522
+ and aperture correction were applied. For images without detection, upper limits were assuming
523
+ count rates would have reached the SNR of S/N = 3. Finally zeropoints including long-term
524
+ sensitivity correction were used for absolute calibrations. The results are shown in Table S5.
525
+ The first white-band exposure under event mode (incident positions and time of every pho-
526
+ ton are recorded) began at about 90 seconds after the trigger time, which lasted about 150
527
+ seconds. Due to the fact that the luminosity of GRB 220101A changed rapidly at early epochs,
528
+ although the transient seems to be unsaturated on the image for the total 150s exposure, it could
529
+ be saturated in its peak phase. Hence, we screened the calibrated event data into slices whose
530
+ exposure time is ∼4s to check whether the situation mentioned above had happened. Follow-
531
+ ing the guidance of UVOT data process, event slices were transformed into images and image
532
+ calibrations (flat field and mod 8 corrections) were applied. Since the transient is bright and iso-
533
+ lated on reduced images, standard aperture photometry method was applied. From 90s to 100s,
534
+ the transient was brightening rapidly and then became saturated for about 50 seconds. After ∼
535
+ 150s since the trigger time, it became unsaturated, again. We found that there are halo rings
536
+ around the transient on barely saturated and saturated images, which we think are the ’wings’
537
+ of point spread functions, hence, we analyzed the data with our calibration method described
538
+ before. The results are summarized in Table S5.
539
+ 19
540
+
541
+ 2.2
542
+ Swift-BAT/XRT and Fermi-GBM data analysis
543
+ We processed Swift-BAT data according to standard procedures, using the software HEASoft
544
+ (ver. 6.29) and calibration database (CALDB), which are available at
545
+ https://www.swift.ac.uk/analysis/bat/setup.php. The mask weighting file used in extracting the
546
+ light curve is generated by batgrbproduct (a complete GRB processing script in HEASoft). We
547
+ extract event data at time intervals between -60 to 340 seconds related to the trigger time, the
548
+ energy range is 15-350 keV, and the time bin size is 1 second. Our BAT analysis results are
549
+ plotted with our Swift UVOT analysis results in Fig. 1.
550
+ We also present a spectral analysis in a broad gamma-ray band (0.3 - 40000 keV) from Swift-
551
+ BAT/XRT and Fermi-GBM data. The files used include the source and background spectrum
552
+ files, as well as the corresponding response functions. For BAT file extraction and correction,
553
+ we used standard procedures as in the manual (33). XRT files were created by online analysis
554
+ tools provided by Swift official website (34, 35). The Fermi-GBM data have been processed
555
+ with GBM Data Tools (36). There are different statistics used for each dataset (cstat for Swift-
556
+ XRT, χ2 for Swift-BAT and pgstat for Fermi-GBM data). We use Bilby (37) in the framework
557
+ of PyXspec for model parameter estimation. The results are shown in Fig. 2.
558
+ 3
559
+ Intrinsic optical/ultraviolet emission of GRB 220101A
560
+ To estimate a reliable un-absorbed optical/ultraviolet emission, we need an intrinsic spectrum
561
+ to evaluate the absorption in different observation bands. For such a purpose, in addition to the
562
+ UVOT V and White band observations, we adopt the g, r, i, z-band data from Liverpool tele-
563
+ scope measured at t ∼ 0.625 day after the burst (38) and the simultaneous XRT data. Such
564
+ a set of ground-based telescope observation data are chosen because they are almost simulta-
565
+ neous with one UVOT White measurement and at late times the White band emission was not
566
+ 20
567
+
568
+ detectable any longer (see Table S5 and Fig. S4). The SED from i to g declines very rapidly,
569
+ requires a spectral index β ∼ 8 (see Fig. S5). Similar rapid declines, due to the serious Lyman
570
+ forest absorption, have been observed in GRB 000131 (39) and 100219A (40) at redshifts of
571
+ z = 4.500 and 4.667, respectively. Since the i and z observations do not suffer from strong
572
+ absorption and there is no evidence for the presence of a flare at that time, we adopt them to
573
+ construct the intrinsic optical (z band) to X-ray SED to be fν ∝ ν−0.70±0.05, with which we can
574
+ obtain the absorption correction in r, g as well as UVOT White and V bands. In the direction
575
+ of GRB 220101A, the Galactic extinction is E(B − V ) = 0.0483 (41). Basing on the intrinsic
576
+ spectrum of and assuming no extinction from the GRB host galaxy, we find an absorption in
577
+ White band as high as Aλ = 4.78 ± 0.10 mag, including Lyman absorption and the Galactic
578
+ extinction, see the right panel of Fig. S5. Note that here the central frequency of the White band
579
+ observation has been taken as the same as that of the V band because of the serious absorption
580
+ of the bluer photons, as demonstrated in Fig. S4.
581
+ In this work we adopt a cosmology with with H0 = 67.4 km s−1 Mpc −1, ΩM = 0.315 and
582
+ ΩΛ = 0.685 (42), a redshift z =4.618 leads to a distance modules DM= 48.19. The absolute
583
+ peak magnitude is calculated via Mpeak,abs = Mpeak −DM−Aλ +2.5(1−βi) log(1+z), where
584
+ the last term is the k-correction and βi is the intrinsic spectral slope. The pity is that none of the
585
+ extremely luminous flashes in GRB 990123, GRB 050904, GRB 080319B and GRB 220101A
586
+ have a measured optical/ultraviolet spectrum. For GRB 220101A, the UVOT and XRT data
587
+ suggest an “overall” optical to soft X-ray spectrum softer than ν−1.3. If this holds in the optical
588
+ band (i.e., βi ≥ 1.3) in the rest frame, then we would have Mpeak,abs ≤ −40 mag in the visible
589
+ band. It is so far the unique event to be brighter than the absolute AB magnitude of −39 mag,
590
+ see Table S6 for a comparison of the brightest flare in history. If there are spectral information
591
+ of optical flares in the future, these bursts would be able to directly compared in the same band.
592
+ 21
593
+
594
+ 4
595
+ The numerical interpretation of the optical emission as well
596
+ as the X-ray afterglow emission
597
+ Here we call the X-ray emission after ∼ 170 s after the Swift trigger as the afterglow since the
598
+ earlier emission are most likely the low energy part of the prompt radiation arising from the
599
+ internal energy dissipation.
600
+ 4.1
601
+ Refreshed shock emission for the peak of the optical/ultraviolet flare
602
+ In the prompt γ−ray emission lightcurve, there are several weak gamma-ray spikes from earlier
603
+ outflow before the main pulse starting at ∼ T0 +65 s. The front half part (between ∼ T0 +65 to
604
+ 102 s) of the giant gamma-ray pulse should come from the energy release of the main outflow,
605
+ either dissipated through internal shocks or magnetic re-connections within it. For the later part
606
+ (> T0 + 102 s) of the giant pulse, it overlaps with an energetic optical/ultraviolet flash, which
607
+ indicates the rise of an additional dissipation process. As the preceding weak outflow gets
608
+ decelerated to a bulk Lorentz factor of Γ1, a later launched but faster shell (with a bulk Lorentz
609
+ factor of Γ4) will catch up with it at a radius of R0, so that a collision between two shells would
610
+ occur. Note that Γ1 and Γ4 correspond to ΓW and ΓM mentioned in the main text, which is used
611
+ here for the convenience of the discussion below. If the fast shell is not extremely magnetized,
612
+ the collision would produce a refreshed forward shock (FS) propagating into materials of the
613
+ preceding shell, and a refreshed reverse shock (RS) propagating into the fast shell. As a result,
614
+ an optical/ultraviolet flash is expected from the radiation in the downstream of the refreshed
615
+ RS, which has been initially proposed and works well for optical flash in the early afterglow
616
+ stage (5). Here we show that this scenario could account for the prompt optical emission of
617
+ GRB 220101A with a detailed numerical approach.
618
+ Two refreshed shocks separate the system into four regions: (1) the unshocked slow shell,
619
+ (2) the shocked slow shell, (3) the shocked fast shell, and (4) the unshocked fast shell. Here-
620
+ 22
621
+
622
+ after, Xi denotes the value of the quantity X in Region “i” in its own rest frame. Unlike the
623
+ preceding shell that exhausts the magnetic energy in the early stage (σ1 = 0), the later fast shell
624
+ may keep the magnetic fields advected from the central engine, which could be parameterized
625
+ by the magnetization of σ4 = B2
626
+ 4/4πn4mpc2, where n4 is the particle density in the comoving
627
+ frame of Region 4 and mp is the proton mass. Let’s introduce an equivalent “luminosity” of
628
+ the kinetic, internal and the magnetic energy for the two shells measured in the lab frame, Li,
629
+ the corresponding particle density is then ni = Li/4πR2βiΓ2
630
+ i mpc3(1 + σi), where i = 1, 4,
631
+ βi = 1/
632
+
633
+ (1 − 1/Γ2
634
+ i ) and R is the radius from the central engine. Due to the highly vari-
635
+ able nature of the outflow from the central engine, the luminosity of the later fast ejecta could
636
+ be further described by L4 = Lf(R/Rpeak)qr for R ≤ Rpeak and L4 = Lf(R/Rpeak)qd for
637
+ R > Rpeak, where Rpeak is the radius that the RS reaches its peak luminosity, and qr (qd) is
638
+ the rising (decaying) index of the luminosity before(after) Rpeak. We assume that Region 2 and
639
+ Region 3 share a common bulk Lorentz factor (Γ2 = Γ3). After applying the hydrodynami-
640
+ cal/magnetohydrodynamical jump conditions (43,44) to the FS/RS respectively and the energy
641
+ conservation law to the FS-RS system (45), the evolution of Γ2 and relevant quantities within
642
+ these regions could be solved numerically given the total isotropic energy of each shell (Ef and
643
+ Es).
644
+ The kinetic particle-in-cell simulations reveal that particle acceleration is less efficient in
645
+ strongly magnetized shock than that of weakly magnetized shock (46). The shock is considered
646
+ to be moderately magnetized, and it is reasonable to assume that the distribution of electrons in-
647
+ jected downstream is Maxwellian both for the FS/RS (47), i.e., Qi(γe, t) = Ci (γe/γc,i)2 exp−γe/γc,i,
648
+ where γc,i = 1
649
+ 3ϵe,i
650
+ ei
651
+ ρic2
652
+ mp
653
+ me is the typical Lorentz factor of the thermal distribution, ϵe,i is the frac-
654
+ tion of post-shock energy that goes into electrons for each region, ei and ρi is the energy and den-
655
+ sity of protons. The normalization constant Ci is obtained from the relevant mass conservation.
656
+ The instantaneous electron spectrum can be obtained by solving the continuity equation of elec-
657
+ 23
658
+
659
+ trons in energy space (48). Integrating the synchrotron radiation power from the electron spec-
660
+ trum in Regions 2 and 3 and considering the effect of synchrotron self-absorption and the equal-
661
+ arrival-time surface, the radiation spectra and the light curves are then derived. With a starting
662
+ radius of R0 = 1015 cm for the collision and a set of parameters of L1 = 5.6 × 1052 erg s−1,
663
+ Lf = 4.5 × 1053 erg s−1, Γ1 = 100, Γ4 = 1000, qr = 1.3, qd = −0.5, σ4 = 0.1, ϵB,3 = 0.08,
664
+ ϵe,2 = 0.1, ϵe,3 = 0.07, Es = 5.8 × 1053 erg, Ef = 6.0 × 1054 erg. We get numerical optical
665
+ lightcurves in good agreement with the observed data.
666
+ 4.2
667
+ The external forward and reverse shock afterglow emission
668
+ In our modeling, it turns out that the shallow-declining part of the optical flare is hard to be
669
+ accounted for (see Fig. S6). A possibility is the emergence of the reverse shock, as observed in
670
+ for instance GRB 990123 (3, 5). Indeed, a reverse and forward shock scenario can reasonably
671
+ reproduce the optical and X-ray data. The magnetic field in the reverse shock region should
672
+ be stronger than that in the forward shock region by a factor of quite a few ×10 otherwise the
673
+ induced optical flash can not be brighter than the forward shock peak optical emission by a
674
+ factor of ∼ 1000 (7, 8). The following physical parameters are found to be able to reasonably
675
+ reproduce the afterglow data: the isotropic energy is Eiso = 1.0 × 1055 erg with a half open
676
+ jet angle θj = 0.025, the initial Lorentz factor is Γ = 800, the fraction of forward and reverse
677
+ shock energy given to the electrons is ϵe = 0.4, the fraction of the forward (reverse) shock
678
+ energy given to the magnetic field is ϵb,fs = 2.5 × 10−5 (ϵb,rs = 0.3), the number density of the
679
+ interstellar medium is n = 0.05 cm−3 and the power-law index for shock-accelerated electrons
680
+ is p = 2.26. Such a p is well consistent with that needed in reproducing the optical to X-ray
681
+ spectrum and lightcurves shown in Fig. S5 and Fig. S6, including Swift data analyzed in this
682
+ work and Liverpool telescope data from GCN (38,49).
683
+ 24
684
+
685
+ 5
686
+ The prospect of detecting ultra-luminous optical/ultraviolet
687
+ flares at high redshifts with SVOM/VT
688
+ Optical/ultraviolet flares at high redshift will surfer from serious absorption. Following Moller
689
+ & Jakobsen (50), we estimate the absorption correction to be AB ∼ 5 mag (the received photons
690
+ are mainly caused by red leak of blue filter) and AR ∼ 1 mag for the sources at z ∼ 6, based
691
+ on the responses of SVOM/VT blue and red channels (i.e., B and R). For flares as luminous as
692
+ GRB 080319B or GRB 220101A, if taken place at z ∼ 6, then we would have MR ∼ 10.5 mag
693
+ and MB ∼ 15 mag. With the shortest exposure of 1s, SVOM/VT has a dynamic range of 9 − 18
694
+ mag, which is sufficiently sensitive to catch the signals mentioned above. However, usually the
695
+ exposure time of SVOM/VT should be 10-100 seconds, for which the R filter may get saturated
696
+ but the B filter is not. We therefore conclude that SVOM/VT is a suitable equipment to detect
697
+ the extremely bright optical flares of GRBs at z ∼ 6.
698
+ Supplementary References
699
+ 30. Poole, T. S. et al. Photometric calibration of the Swift ultraviolet/optical telescope. Mon.
700
+ Not. Roy. Astron. Soc. 383, 627–645 (2008). 0708.2259.
701
+ 31. Maselli, A. et al. GRB 130427A: A Nearby Ordinary Monster. Science 343, 48–51 (2014).
702
+ 1311.5254.
703
+ 32. Wo´zniak, P. R. et al. Gamma-Ray Burst at the Extreme: “The Naked-Eye Burst” GRB
704
+ 080319B. Astrophys. J. 691, 495–502 (2009). 0810.2481.
705
+ 33. Markwardt, C. et al. The swift bat software guide. NASA/GSFC, Greenbelt, MD 6 (2007).
706
+ 34. Evans, P. A. et al. An online repository of Swift/XRT light curves of γ-ray bursts. Astron.
707
+ Astrophys. 469, 379–385 (2007). 0704.0128.
708
+ 25
709
+
710
+ 35. Evans, P. et al. Methods and results of an automatic analysis of a complete sample of
711
+ swift-xrt observations of grbs. Monthly Notices of the Royal Astronomical Society 397,
712
+ 1177–1201 (2009).
713
+ 36. Goldstein, A., Cleveland, W. H. & Kocevski, D. Fermi gbm data tools: v1.1.0 (2021). URL
714
+ https://fermi.gsfc.nasa.gov/ssc/data/analysis/gbm.
715
+ 37. Ashton, G. et al. Bilby: a user-friendly bayesian inference library for gravitational-wave
716
+ astronomy. The Astrophysical Journal Supplement Series 241, 27 (2019).
717
+ 38. Perley, D. A. GRB 220101A: Liverpool telescope imaging of a high-redshift afterglow.
718
+ GRB Coordinates Network 31357, 1 (2022).
719
+ 39. Andersen, M. I. et al. VLT identification of the optical afterglow of the gamma-ray burst
720
+ GRB 000131 at z=4.50. Astron. Astrophys. 364, L54–L61 (2000). astro-ph/0010322.
721
+ 40. Th¨one, C. C. et al. GRB 100219A with X-shooter - abundances in a galaxy at z =4.7. Mon.
722
+ Not. Roy. Astron. Soc. 428, 3590–3606 (2013). 1206.2337.
723
+ 41. Schlafly, E. F. & Finkbeiner, D. P. Measuring Reddening with Sloan Digital Sky Survey
724
+ Stellar Spectra and Recalibrating SFD. Astrophys. J. 737, 103 (2011). 1012.4804.
725
+ 42. Planck Collaboration et al. Planck 2018 results. VI. Cosmological parameters. Astron.
726
+ Astrophys. 641, A6 (2020). 1807.06209.
727
+ 43. Fan, Y. Z., Wei, D. M. & Wang, C. F. The very early afterglow powered by ultra-relativistic
728
+ mildly magnetized outflows.
729
+ Astron. Astrophys.
730
+ 424, 477–484 (2004).
731
+ astro-ph/
732
+ 0405392.
733
+ 26
734
+
735
+ 44. Zhang, B. & Kobayashi, S. Gamma-Ray Burst Early Afterglows: Reverse Shock Emission
736
+ from an Arbitrarily Magnetized Ejecta. Astrophys. J. 628, 315–334 (2005). astro-ph/
737
+ 0404140.
738
+ 45. Geng, J. J., Wu, X. F., Huang, Y. F., Li, L. & Dai, Z. G. Imprints of Electron-Positron
739
+ Winds on the Multiwavelength Afterglows of Gamma-ray Bursts. Astrophys. J. 825, 107
740
+ (2016). 1605.01334.
741
+ 46. Sironi, L., Keshet, U. & Lemoine, M. Relativistic Shocks: Particle Acceleration and Mag-
742
+ netization. Space Sci. Rev. 191, 519–544 (2015). 1506.02034.
743
+ 47. Giannios, D. & Spitkovsky, A. Signatures of a Maxwellian component in shock-accelerated
744
+ electrons in GRBs. Mon. Not. Roy. Astron. Soc. 400, 330–336 (2009). 0905.1970.
745
+ 48. Geng, J.-J., Huang, Y.-F., Wu, X.-F., Zhang, B. & Zong, H.-S. Low-energy Spectra of
746
+ Gamma-Ray Bursts from Cooling Electrons. Astrophys. J. Supp. 234, 3 (2018). 1709.
747
+ 05899.
748
+ 49. Perley, D. A. GRB 220101A: Additional Liverpool telescope photometry. GRB Coordi-
749
+ nates Network 31425, 1 (2022).
750
+ 50. Møller, P. & Jakobsen, P. The Lyman continuum opacity at high redshifts - Through the
751
+ Lyman forest and beyond the Lyman valley. Astron. Astrophys. 228, 299–309 (1990).
752
+ 51. Li, W. et al.
753
+ The Calibration of the Swift UVOT Optical Observations: A Recipe for
754
+ Photometry. Publ. Astron. Soc. Pac. 118, 37–61 (2006). astro-ph/0505504.
755
+ 52. Kuin, N. P. M. & Rosen, S. R. The measurement errors in the Swift-UVOT and XMM-OM.
756
+ Mon. Not. Roy. Astron. Soc. 383, 383–386 (2008). 0709.1208.
757
+ 27
758
+
759
+ Supplementary Tables
760
+ T-T0
761
+ Exp
762
+ V
763
+ B
764
+ U
765
+ W1
766
+ M2
767
+ W2
768
+ (s)
769
+ (s)
770
+ (AB)
771
+ (AB)
772
+ (AB)
773
+ (AB)
774
+ (AB)
775
+ (AB)
776
+ 367.38
777
+ 19.46
778
+ ...
779
+ ...
780
+ ...
781
+ ...
782
+ ...
783
+ 12.67±0.04
784
+ 391.76
785
+ 19.45
786
+ 12.01±0.04
787
+ ...
788
+ ...
789
+ ...
790
+ ...
791
+ ...
792
+ 416.18
793
+ 19.45
794
+ ...
795
+ ...
796
+ ...
797
+ ...
798
+ 12.65±0.04
799
+ ...
800
+ 440.84
801
+ 19.44
802
+ ...
803
+ ...
804
+ ...
805
+ 12.60±0.04
806
+ ...
807
+ ...
808
+ 465.10
809
+ 19.44
810
+ ...
811
+ ...
812
+ 12.09±0.38a
813
+ ...
814
+ ...
815
+ ...
816
+ 490.09
817
+ 19.45
818
+ ...
819
+ 11.28±0.40a
820
+ ...
821
+ ...
822
+ ...
823
+ ...
824
+ 540.86
825
+ 19.44
826
+ ...
827
+ ...
828
+ ...
829
+ ...
830
+ ...
831
+ 13.12±0.04
832
+ 565.28
833
+ 19.40
834
+ 12.41±0.04
835
+ ...
836
+ ...
837
+ ...
838
+ ...
839
+ ...
840
+ 589.61
841
+ 19.46
842
+ ...
843
+ ...
844
+ ...
845
+ ...
846
+ 13.04±0.04
847
+ ...
848
+ 614.82
849
+ 19.44
850
+ ...
851
+ ...
852
+ ...
853
+ 13.06±0.04
854
+ ...
855
+ ...
856
+ 639.13
857
+ 19.46
858
+ ...
859
+ ...
860
+ 12.90±0.07a
861
+ ...
862
+ ...
863
+ ...
864
+ 663.96
865
+ 19.46
866
+ ...
867
+ 12.69±0.04
868
+ ...
869
+ ...
870
+ ...
871
+ ...
872
+ 713.68
873
+ 19.45
874
+ ...
875
+ ...
876
+ ...
877
+ ...
878
+ ...
879
+ 13.50±0.04
880
+ 737.97
881
+ 19.44
882
+ 12.65±0.04
883
+ ...
884
+ ...
885
+ ...
886
+ ...
887
+ ...
888
+ 762.19
889
+ 19.44
890
+ ...
891
+ ...
892
+ ...
893
+ ...
894
+ 13.30±0.04
895
+ ...
896
+ 786.88
897
+ 19.44
898
+ ...
899
+ ...
900
+ ...
901
+ 13.31±0.04
902
+ ...
903
+ ...
904
+ 811.16
905
+ 19.44
906
+ ...
907
+ ...
908
+ 13.06±0.04
909
+ ...
910
+ ...
911
+ ...
912
+ 835.91
913
+ 19.45
914
+ ...
915
+ 12.98±0.04
916
+ ...
917
+ ...
918
+ ...
919
+ ...
920
+ 1136.89
921
+ 19.45
922
+ ...
923
+ ...
924
+ 13.50±0.04
925
+ ...
926
+ ...
927
+ ...
928
+ 1161.73
929
+ 19.46
930
+ ...
931
+ 13.39±0.04
932
+ ...
933
+ ...
934
+ ...
935
+ ...
936
+ 1213.17
937
+ 19.44
938
+ ...
939
+ ...
940
+ ...
941
+ ...
942
+ ...
943
+ 14.10±0.04
944
+ 1237.51
945
+ 19.44
946
+ 13.34±0.05
947
+ ...
948
+ ...
949
+ ...
950
+ ...
951
+ ...
952
+ 1261.91
953
+ 19.43
954
+ ...
955
+ ...
956
+ ...
957
+ ...
958
+ 13.92±0.05
959
+ ...
960
+ 1286.75
961
+ 19.44
962
+ ...
963
+ ...
964
+ ...
965
+ 13.90±0.04
966
+ ...
967
+ ...
968
+ 1311.01
969
+ 19.45
970
+ ...
971
+ ...
972
+ 13.73±0.04
973
+ ...
974
+ ...
975
+ ...
976
+ 1335.68
977
+ 19.44
978
+ ...
979
+ 13.60±0.04
980
+ ...
981
+ ...
982
+ ...
983
+ ...
984
+ 1385.28
985
+ 19.40
986
+ ...
987
+ ...
988
+ ...
989
+ ...
990
+ ...
991
+ 14.20±0.04
992
+ 1409.66
993
+ 19.43
994
+ 13.53±0.05
995
+ ...
996
+ ...
997
+ ...
998
+ ...
999
+ ...
1000
+ 1433.98
1001
+ 19.45
1002
+ ...
1003
+ ...
1004
+ ...
1005
+ ...
1006
+ 14.09±0.05
1007
+ ...
1008
+ 1458.64
1009
+ 19.44
1010
+ ...
1011
+ ...
1012
+ ...
1013
+ 14.08±0.04
1014
+ ...
1015
+ ...
1016
+ 1482.87
1017
+ 19.44
1018
+ ...
1019
+ ...
1020
+ 13.82±0.04
1021
+ ...
1022
+ ...
1023
+ ...
1024
+ 1508.07
1025
+ 19.45
1026
+ ...
1027
+ 13.77±0.04
1028
+ ...
1029
+ ...
1030
+ ...
1031
+ ...
1032
+ 1557.68
1033
+ 19.44
1034
+ ...
1035
+ ...
1036
+ ...
1037
+ ...
1038
+ ...
1039
+ 14.39±0.04
1040
+ 1581.95
1041
+ 19.45
1042
+ 13.69±0.05
1043
+ ...
1044
+ ...
1045
+ ...
1046
+ ...
1047
+ ...
1048
+ 1606.20
1049
+ 19.44
1050
+ ...
1051
+ ...
1052
+ ...
1053
+ ...
1054
+ 14.25±0.05
1055
+ ...
1056
+ 1630.88
1057
+ 19.45
1058
+ ...
1059
+ ...
1060
+ ...
1061
+ 14.24±0.04
1062
+ ...
1063
+ ...
1064
+ 1655.08
1065
+ 19.41
1066
+ ...
1067
+ ...
1068
+ 13.98±0.04
1069
+ ...
1070
+ ...
1071
+ ...
1072
+ 1679.93
1073
+ 19.44
1074
+ ...
1075
+ 13.87±0.04
1076
+ ...
1077
+ ...
1078
+ ...
1079
+ ...
1080
+ 1729.85
1081
+ 19.44
1082
+ ...
1083
+ ...
1084
+ ...
1085
+ ...
1086
+ ...
1087
+ 14.42±0.04
1088
+ 1754.32
1089
+ 19.46
1090
+ 13.76±0.05
1091
+ ...
1092
+ ...
1093
+ ...
1094
+ ...
1095
+ ...
1096
+ 1779.91
1097
+ 19.55
1098
+ ...
1099
+ ...
1100
+ ...
1101
+ ...
1102
+ 14.28±0.05
1103
+ ...
1104
+ 1804.55
1105
+ 19.45
1106
+ ...
1107
+ ...
1108
+ ...
1109
+ 14.30±0.04
1110
+ ...
1111
+ ...
1112
+ 1828.75
1113
+ 19.45
1114
+ ...
1115
+ ...
1116
+ 14.08±0.04
1117
+ ...
1118
+ ...
1119
+ ...
1120
+ 1853.48
1121
+ 19.45
1122
+ ...
1123
+ 13.90±0.04
1124
+ ...
1125
+ ...
1126
+ ...
1127
+ ...
1128
+ 1903.00
1129
+ 19.44
1130
+ ...
1131
+ ...
1132
+ ...
1133
+ ...
1134
+ ...
1135
+ 14.52±0.05
1136
+ 1927.21
1137
+ 19.45
1138
+ 13.81±0.05
1139
+ ...
1140
+ ...
1141
+ ...
1142
+ ...
1143
+ ...
1144
+ 1951.62
1145
+ 19.45
1146
+ ...
1147
+ ...
1148
+ ...
1149
+ ...
1150
+ 14.38±0.05
1151
+ ...
1152
+ a. Taken from Maselli et al. (31).
1153
+ Table S1: Early observations of GRB 130427A by Swift-UVOT. Galactic extinction AV =
1154
+ 0.055, AB = 0.071, AU = 0.087, AW1 = 0.118, AM2 = 0.163 and AW2 = 0.156 have been
1155
+ applied. These data points have been plotted in the left panel of Fig. S2.
1156
+ 28
1157
+
1158
+ Epoch
1159
+ T-T0
1160
+ Exp
1161
+ V
1162
+ B
1163
+ U
1164
+ W1
1165
+ M2
1166
+ W2
1167
+ Whitea
1168
+ (s)
1169
+ (s)
1170
+ (AB)
1171
+ (AB)
1172
+ (AB)
1173
+ (AB)
1174
+ (AB)
1175
+ (AB)
1176
+ (AB)
1177
+ 1
1178
+ 515.57
1179
+ 19.44
1180
+ 12.32±0.04
1181
+ 11.51±0.35b
1182
+ 12.31±0.30b
1183
+ 12.82±0.04
1184
+ 12.89±0.04
1185
+ 13.05±0.04
1186
+ 12.62±0.44
1187
+ 2
1188
+ 688.49
1189
+ 19.45
1190
+ 12.59±0.04
1191
+ 12.79±0.04
1192
+ 12.93±0.06
1193
+ 13.18±0.04
1194
+ 13.20±0.04
1195
+ 13.45±0.04
1196
+ 12.95±0.06
1197
+ 3
1198
+ 860.19
1199
+ 19.45
1200
+ 12.82±0.04
1201
+ 13.00±0.04
1202
+ 13.11±0.04
1203
+ 13.41±0.04
1204
+ 13.44±0.04
1205
+ 13.75±0.04
1206
+ 13.19±0.09
1207
+ 4
1208
+ 1187.86
1209
+ 19.44
1210
+ 13.28±0.05
1211
+ 13.42±0.04
1212
+ 13.58±0.04
1213
+ 13.80±0.04
1214
+ 13.85±0.04
1215
+ 14.08±0.04
1216
+ 13.60±0.06
1217
+ 5
1218
+ 1359.98
1219
+ 19.45
1220
+ 13.48±0.05
1221
+ 13.63±0.04
1222
+ 13.77±0.04
1223
+ 13.98±0.04
1224
+ 14.02±0.05
1225
+ 14.18±0.04
1226
+ 13.77±0.05
1227
+ 6
1228
+ 1532.32
1229
+ 19.44
1230
+ 13.65±0.05
1231
+ 13.78±0.04
1232
+ 13.86±0.04
1233
+ 14.15±0.04
1234
+ 14.19±0.05
1235
+ 14.37±0.04
1236
+ 13.93±0.05
1237
+ 7
1238
+ 1704.19
1239
+ 19.44
1240
+ 13.75±0.05
1241
+ 13.88±0.04
1242
+ 14.02±0.04
1243
+ 14.28±0.04
1244
+ 14.27±0.05
1245
+ 14.41±0.04
1246
+ 14.03±0.05
1247
+ 8
1248
+ 1877.72
1249
+ 19.44
1250
+ 13.80±0.05
1251
+ 13.90±0.04c
1252
+ 14.08±0.04c
1253
+ 14.29±0.04c
1254
+ 14.32±0.05
1255
+ 14.50±0.05
1256
+ 14.07±0.05
1257
+ a. Interpolated White band AB magnitude of GRB 130427A. To derive the intrinsic count rate in a 5 arcsec aperture, galactic extinction
1258
+ AWH = 0.0875 have been accounted. Fitting uncertainties and standard deviation of fitting residuals contribute to uncertainties have been
1259
+ considered.
1260
+ b. At early phase, there is an additional radiation component, hence these 2 data points are excluded from SED fitting algorithm.
1261
+ c. These data points are results of extrapolation, hence they are excluded from SED fitting algorithm as well.
1262
+ Table S2: White band emission interpolated by Swift-UVOT narrow bands. These data
1263
+ (except for the last column) have been plotted in the right panel of Fig. S2.
1264
+
1265
+ T-T0
1266
+ Exposure
1267
+ ˙Ntot,raw
1268
+ ring
1269
+ ˙Nbkg,raw
1270
+ ring
1271
+ COItot(bkg)
1272
+ LSS
1273
+ ˙Nring
1274
+ ˙Naper
1275
+ (s)
1276
+ (s)
1277
+ (count/s)
1278
+ (count/s)
1279
+ (count/s)
1280
+ (count/s)
1281
+ GRB 220101A
1282
+ 165.95
1283
+ 27.56
1284
+ 83.08±1.86
1285
+ 74.07±1.18
1286
+ 1.033(1.029)
1287
+ 0.998
1288
+ 11.23±2.75
1289
+ 257.17±22.69
1290
+ 209.76
1291
+ 58.67
1292
+ 79.73±1.25
1293
+ 73.84±0.81
1294
+ 1.031(1.029)
1295
+ 0.998
1296
+ 7.28±1.85
1297
+ 150.41±5.44
1298
+ GRB 130427Aa
1299
+ 515.57
1300
+ 19.44
1301
+ 139.77±3.05
1302
+ 72.21±1.21
1303
+ 1.056(1.028)
1304
+ 0.997
1305
+ 80.66±4.00
1306
+ 2030.98±831.79b
1307
+ 688.49
1308
+ 19.45
1309
+ 133.49±2.98
1310
+ 72.09±1.21
1311
+ 1.054(1.028)
1312
+ 0.996
1313
+ 73.20±3.90
1314
+ 1493.50±86.74
1315
+ 860.19
1316
+ 19.45
1317
+ 120.21±2.83
1318
+ 70.98±1.21
1319
+ 1.048(1.028)
1320
+ 0.996
1321
+ 58.19±3.69
1322
+ 1204.35±101.10
1323
+ 1187.86
1324
+ 19.44
1325
+ 102.65±2.30
1326
+ 71.17±1.06
1327
+ 1.041(1.028)
1328
+ 0.996
1329
+ 36.99±3.00
1330
+ 826.44±43.24
1331
+ 1359.98
1332
+ 19.45
1333
+ 92.88±2.19
1334
+ 71.45±1.06
1335
+ 1.037(1.028)
1336
+ 0.996
1337
+ 25.09±2.86
1338
+ 703.53±29.41
1339
+ 1532.32
1340
+ 19.44
1341
+ 96.50±2.23
1342
+ 71.19±1.04
1343
+ 1.038(1.028)
1344
+ 0.997
1345
+ 29.68±2.90
1346
+ 608.85±30.53
1347
+ 1704.19
1348
+ 19.44
1349
+ 92.26±2.18
1350
+ 71.03±1.05
1351
+ 1.037(1.028)
1352
+ 0.997
1353
+ 24.86±2.84
1354
+ 553.88±26.34
1355
+ 1877.72
1356
+ 19.44
1357
+ 89.60±2.15
1358
+ 71.26±1.05
1359
+ 1.036(1.028)
1360
+ 0.998
1361
+ 21.47±2.81
1362
+ 531.31±26.60
1363
+ RA
1364
+ DEC
1365
+ ˙Ntot,raw
1366
+ ring
1367
+ ˙Nbkg,raw
1368
+ ring
1369
+ COItot(bkg)
1370
+ LSS
1371
+ ˙Nring
1372
+ ˙Naper
1373
+ (J2000)
1374
+ (J2000)
1375
+ (count/s)
1376
+ (count/s)
1377
+ (count/s)
1378
+ (count/s)
1379
+ stars in GRB 220101A fieldc.
1380
+ 00:05:43.983
1381
+ +31:47:20.11
1382
+ 80.83±0.76
1383
+ 74.00±0.49
1384
+ 1.032(1.029)
1385
+ 1.006
1386
+ 8.58±1.14
1387
+ 168.01±4.10
1388
+ 00:05:33.844
1389
+ +31:42:10.45
1390
+ 81.85±0.75
1391
+ 74.00±0.48
1392
+ 1.032(1.029)
1393
+ 1.014
1394
+ 9.94±1.12
1395
+ 208.39±6.07
1396
+ 00:05:26.211
1397
+ +31:48:43.76
1398
+ 83.42±1.06
1399
+ 73.99±0.67
1400
+ 1.033(1.029)
1401
+ 0.996
1402
+ 11.73±1.56
1403
+ 230.06±7.61
1404
+ a. ˙Naper is derived from SED.
1405
+ b. This data is not fitted since U-band exposures were saturated around this exposure, hence it could be unreliable(see Fig. S2).
1406
+ c. These data are measured with the first 150 second White band exposure in window timing mode.
1407
+ Table S3: Photon count rates measured in aperture and halo ring methods in White band.
1408
+ Sensitivity correction factors are 1.175 and 1.102 for GRB 220101A field and GRB 130427A
1409
+ field, respectively. The factor from count rate to flux is 0.01327 mJy/(count/s) for white band.
1410
+ These data points have been plotted in the left panel of Fig. S3.
1411
+
1412
+ T-T0
1413
+ Exp
1414
+ ˙Ntot,raw
1415
+ ring
1416
+ ˙Nbkg,raw
1417
+ ring
1418
+ COItot(bkg)
1419
+ ˙Nring
1420
+ Magaper
1421
+ a
1422
+ ˙Nb
1423
+ aper
1424
+ (s)
1425
+ (s)
1426
+ (count/s)
1427
+ (count/s)
1428
+ (count/s)
1429
+ (AB)
1430
+ (count/s)
1431
+ 080319B V band measurements with Wo´znika et al. as reference
1432
+ 180.60
1433
+ 9.84
1434
+ 74.86±1.19
1435
+ 15.11±0.20
1436
+ 1.030(1.006)
1437
+ 65.43±1.35
1438
+ 10.06±0.02
1439
+ 1349.02±24.85
1440
+ 193.52
1441
+ 9.84
1442
+ 65.04±1.39
1443
+ 14.95±0.20
1444
+ 1.026(1.006)
1445
+ 54.63±1.56
1446
+ 10.23±0.02
1447
+ 1152.44±21.23
1448
+ 206.25
1449
+ 9.85
1450
+ 54.36±1.50
1451
+ 14.77±0.19
1452
+ 1.021(1.006)
1453
+ 43.01±1.67
1454
+ 10.44±0.02
1455
+ 952.40±17.54
1456
+ 218.97
1457
+ 9.85
1458
+ 52.19±1.52
1459
+ 14.94±0.20
1460
+ 1.020(1.006)
1461
+ 40.43±1.68
1462
+ 10.55±0.02
1463
+ 861.43±15.87
1464
+ 231.70
1465
+ 9.84
1466
+ 47.80±1.53
1467
+ 14.35±0.19
1468
+ 1.019(1.006)
1469
+ 36.23±1.69
1470
+ 10.72±0.02
1471
+ 731.85±13.48
1472
+ 244.43
1473
+ 9.84
1474
+ 42.70±1.53
1475
+ 14.32±0.19
1476
+ 1.017(1.006)
1477
+ 30.68±1.68
1478
+ 10.88±0.02
1479
+ 635.65±11.71
1480
+ 257.45
1481
+ 9.84
1482
+ 39.72±1.52
1483
+ 14.38±0.19
1484
+ 1.015(1.006)
1485
+ 27.36±1.67
1486
+ 11.00±0.02
1487
+ 567.05±10.45
1488
+ 270.38
1489
+ 9.84
1490
+ 38.63±1.51
1491
+ 14.77±0.19
1492
+ 1.015(1.006)
1493
+ 25.75±1.66
1494
+ 11.12±0.02
1495
+ 509.59±9.39
1496
+ 283.30
1497
+ 9.84
1498
+ 36.73±1.50
1499
+ 14.34±0.19
1500
+ 1.014(1.006)
1501
+ 24.15±1.64
1502
+ 11.23±0.02
1503
+ 457.95±8.44
1504
+ 296.23
1505
+ 9.84
1506
+ 35.39±1.49
1507
+ 14.10±0.19
1508
+ 1.014(1.005)
1509
+ 22.94±1.63
1510
+ 11.36±0.02
1511
+ 408.53±7.53
1512
+ 309.15
1513
+ 9.84
1514
+ 31.18±1.45
1515
+ 14.37±0.19
1516
+ 1.012(1.006)
1517
+ 18.09±1.58
1518
+ 11.52±0.02
1519
+ 351.58±6.48
1520
+ 322.08
1521
+ 9.84
1522
+ 28.19±1.41
1523
+ 14.05±0.19
1524
+ 1.011(1.005)
1525
+ 15.20±1.54
1526
+ 11.61±0.02
1527
+ 323.91±5.97
1528
+ 334.80
1529
+ 9.84
1530
+ 28.53±1.41
1531
+ 14.00±0.19
1532
+ 1.011(1.005)
1533
+ 15.62±1.54
1534
+ 11.72±0.02
1535
+ 291.08±5.36
1536
+ 360.05
1537
+ 29.52
1538
+ 24.58±0.78
1539
+ 14.14±0.11
1540
+ 1.010(1.005)
1541
+ 11.21±0.85
1542
+ 11.91±0.02
1543
+ 244.35±4.50
1544
+ 395.50
1545
+ 29.52
1546
+ 23.49±0.77
1547
+ 13.98±0.11
1548
+ 1.009(1.005)
1549
+ 10.21±0.84
1550
+ 12.20±0.02
1551
+ 187.25±3.45
1552
+ 431.04
1553
+ 29.53
1554
+ 22.41±0.76
1555
+ 14.19±0.11
1556
+ 1.009(1.005)
1557
+ 8.82±0.82
1558
+ 12.40±0.02
1559
+ 156.18±2.88
1560
+ 466.29
1561
+ 29.52
1562
+ 21.29±0.74
1563
+ 14.14±0.11
1564
+ 1.008(1.005)
1565
+ 7.67±0.81
1566
+ 12.54±0.02
1567
+ 137.03±2.52
1568
+ 502.44
1569
+ 29.52
1570
+ 20.02±0.73
1571
+ 13.90±0.11
1572
+ 1.008(1.005)
1573
+ 6.55±0.79
1574
+ 12.74±0.02
1575
+ 137.03±2.52
1576
+ 537.68
1577
+ 29.52
1578
+ 19.13±0.72
1579
+ 13.96±0.11
1580
+ 1.007(1.005)
1581
+ 5.53±0.78
1582
+ 12.80±0.02
1583
+ 114.29±2.11
1584
+ 080319B V band measurements with Page et al. as reference
1585
+ 189.92
1586
+ 29.49
1587
+ 67.15±0.79
1588
+ 14.97±0.11
1589
+ 1.026(1.006)
1590
+ 56.97±0.88
1591
+ 10.07±0.26
1592
+ 1335.42±319.79
1593
+ 224.89
1594
+ 39.36
1595
+ 49.06±0.76
1596
+ 14.58±0.10
1597
+ 1.019(1.006)
1598
+ 37.38±0.84
1599
+ 10.44±0.29
1600
+ 949.77±253.68
1601
+ 269.89
1602
+ 49.21
1603
+ 38.26±0.67
1604
+ 14.48±0.09
1605
+ 1.015(1.006)
1606
+ 25.67±0.74
1607
+ 10.89±0.38
1608
+ 627.51±219.62
1609
+ 322.39
1610
+ 54.13
1611
+ 29.98±0.61
1612
+ 14.06±0.08
1613
+ 1.012(1.005)
1614
+ 17.13±0.67
1615
+ 11.60±0.74
1616
+ 326.30±222.40
1617
+ 080319B V band measurements with HEASoft
1618
+ 322.39
1619
+ 54.13
1620
+ 29.98±0.61
1621
+ 14.06±0.08
1622
+ 1.012(1.005)
1623
+ 17.13±0.67
1624
+ 11.75±0.02
1625
+ 284.20±5.24c
1626
+ 357.39
1627
+ 14.77
1628
+ 23.47±1.09
1629
+ 14.15±0.16
1630
+ 1.009(1.005)
1631
+ 10.00±1.18
1632
+ 11.91±0.04
1633
+ 245.26±9.04
1634
+ 372.39
1635
+ 14.76
1636
+ 24.23±1.10
1637
+ 14.37±0.16
1638
+ 1.009(1.006)
1639
+ 10.58±1.20
1640
+ 12.10±0.04
1641
+ 205.88±7.58
1642
+ 387.39
1643
+ 14.77
1644
+ 24.79±1.11
1645
+ 14.16±0.16
1646
+ 1.010(1.005)
1647
+ 11.40±1.21
1648
+ 12.14±0.04
1649
+ 198.44±7.31
1650
+ 402.40
1651
+ 14.77
1652
+ 22.70±1.08
1653
+ 13.84±0.15
1654
+ 1.009(1.005)
1655
+ 9.51±1.17
1656
+ 12.21±0.04
1657
+ 186.05±6.85
1658
+ 417.40
1659
+ 14.76
1660
+ 22.44±1.07
1661
+ 14.46±0.16
1662
+ 1.009(1.006)
1663
+ 8.56±1.17
1664
+ 12.35±0.04
1665
+ 163.54±6.02
1666
+ 432.40
1667
+ 14.77
1668
+ 22.51±1.07
1669
+ 14.14±0.16
1670
+ 1.009(1.005)
1671
+ 8.97±1.17
1672
+ 12.44±0.04
1673
+ 150.53±5.55
1674
+ 447.40
1675
+ 14.76
1676
+ 20.96±1.05
1677
+ 13.89±0.15
1678
+ 1.008(1.005)
1679
+ 7.58±1.14
1680
+ 12.49±0.04
1681
+ 143.75±5.30
1682
+ 462.40
1683
+ 14.77
1684
+ 21.64±1.06
1685
+ 14.21±0.16
1686
+ 1.008(1.005)
1687
+ 7.96±1.15
1688
+ 12.51±0.04
1689
+ 141.13±5.20
1690
+ 477.40
1691
+ 14.76
1692
+ 21.09±1.05
1693
+ 14.22±0.16
1694
+ 1.008(1.005)
1695
+ 7.36±1.14
1696
+ 12.60±0.04
1697
+ 129.90±4.79
1698
+ 492.39
1699
+ 14.77
1700
+ 21.44±1.06
1701
+ 13.95±0.15
1702
+ 1.008(1.005)
1703
+ 8.03±1.15
1704
+ 12.62±0.04
1705
+ 127.53±4.70
1706
+ 507.39
1707
+ 14.76
1708
+ 19.91±1.03
1709
+ 13.98±0.15
1710
+ 1.008(1.005)
1711
+ 6.35±1.12
1712
+ 12.77±0.04
1713
+ 111.08±4.09
1714
+ 522.39
1715
+ 14.77
1716
+ 19.06±1.01
1717
+ 13.82±0.15
1718
+ 1.007(1.005)
1719
+ 5.60±1.10
1720
+ 12.79±0.04
1721
+ 109.05±4.02
1722
+ 537.40
1723
+ 14.77
1724
+ 19.94±1.03
1725
+ 13.76±0.15
1726
+ 1.008(1.005)
1727
+ 6.62±1.12
1728
+ 12.88±0.04
1729
+ 100.37±3.70
1730
+ 552.40
1731
+ 14.76
1732
+ 19.08±1.01
1733
+ 14.00±0.16
1734
+ 1.007(1.005)
1735
+ 5.43±1.10
1736
+ 12.89±0.04
1737
+ 99.45±3.66
1738
+ 567.30
1739
+ 14.57
1740
+ 18.62±1.01
1741
+ 14.19±0.16
1742
+ 1.007(1.005)
1743
+ 4.75±1.10
1744
+ 12.94±0.04
1745
+ 94.98±3.50d
1746
+ 719.60
1747
+ 19.47
1748
+ 16.60±0.84
1749
+ 13.88±0.13
1750
+ 1.006(1.005)
1751
+ 2.90±0.91
1752
+ 13.35±0.04
1753
+ 65.11±2.40d
1754
+ 1073.88
1755
+ 196.67
1756
+ 15.55±0.26
1757
+ 14.04±0.04
1758
+ 1.006(1.005)
1759
+ 1.61±0.28
1760
+ 14.13±0.02
1761
+ 31.74±0.58d
1762
+ 1273.77
1763
+ 196.77
1764
+ 15.34±0.25
1765
+ 14.16±0.04
1766
+ 1.006(1.005)
1767
+ 1.26±0.28
1768
+ 14.52±0.02
1769
+ 22.16±0.41d
1770
+ a. Magnitudes are taken from Wo´znika et al. (32) and Page et al. (20). It is not necessary to take account for the very small(∼ 0.01) difference
1771
+ between Vega magnitude and AB magnitude in V band.
1772
+ b. Only values in the last sub table 080319B V band measurements with HEASoft are directly measured, others are all inferred values(i.e.
1773
+ ˙Nint).
1774
+ c. This exposure is close to saturation, and Page et al. (20) derived a photometry result with readout streak method, which is consistent with
1775
+ the aperture photometry result given by HEASoft.
1776
+ d. These points are not plotted in Fig 3 and not used in fitting algorithm as well.
1777
+ Table S4: Photon count rates measured in aperture and halo ring methods in v band. The
1778
+ large scale structure correction factor and the sensitivity correction factor are 1.001 and 1.056,
1779
+ respectively. The factor from count rate to flux is 0.25491 mJy/(count/s) for V band. These data
1780
+ points used have been plotted in the right panel of Fig. 3.
1781
+
1782
+ Filter
1783
+ Tstart
1784
+ Tend
1785
+ Texp
1786
+ Signala
1787
+ Sky
1788
+ Magb
1789
+ second
1790
+ second
1791
+ second
1792
+ count/s
1793
+ count/s/pixel
1794
+ (AB)
1795
+ v
1796
+ 70.94
1797
+ 80.61
1798
+ 9.52
1799
+ 6.137 ± 1.074
1800
+ 0.0313
1801
+ 16.12 ± 0.19
1802
+ white
1803
+ 91.96
1804
+ 93.62
1805
+ 1.64
1806
+ 21.74 ± 4.74
1807
+ 0.0145
1808
+ 17.75 ± 0.24
1809
+ white
1810
+ 93.64
1811
+ 97.62
1812
+ 3.93
1813
+ 50.37 ± 4.79
1814
+ 0.0148
1815
+ 16.83 ± 0.10
1816
+ white
1817
+ 97.63
1818
+ 101.62
1819
+ 3.94
1820
+ 123.7 ± 8.9
1821
+ 0.0150
1822
+ 15.86 ± 0.08
1823
+ white
1824
+ 101.63
1825
+ 105.63
1826
+ 3.94
1827
+ 360.4 ± 30.3
1828
+ 0.0147
1829
+ 14.70 ± 0.09
1830
+ white
1831
+ 105.64
1832
+ 109.62
1833
+ 3.93
1834
+ (634.4 ± 171.8)c
1835
+ 0.0146
1836
+ (14.08 ± 0.29)
1837
+ white
1838
+ 109.63
1839
+ 113.63
1840
+ 3.94
1841
+ (765.0 ± 175.6)c
1842
+ 0.0147
1843
+ (13.88 ± 0.25)
1844
+ white
1845
+ 113.64
1846
+ 117.62
1847
+ 3.93
1848
+ (1033 ± 184.4)c
1849
+ 0.0150
1850
+ (13.56 ± 0.19)
1851
+ white
1852
+ 117.63
1853
+ 121.63
1854
+ 3.94
1855
+ (544.8 ± 168.7)c
1856
+ 0.0146
1857
+ (14.25 ± 0.34)
1858
+ white
1859
+ 121.64
1860
+ 125.62
1861
+ 3.93
1862
+ (570.2 ± 170.7)c
1863
+ 0.0147
1864
+ (14.20 ± 0.33)
1865
+ white
1866
+ 125.63
1867
+ 129.62
1868
+ 3.94
1869
+ (374.0 ± 165.0)c
1870
+ 0.0148
1871
+ (14.66 ± 0.48)
1872
+ white
1873
+ 129.64
1874
+ 133.62
1875
+ 3.93
1876
+ (411.7 ± 167.3)c
1877
+ 0.0149
1878
+ (14.55 ± 0.44)
1879
+ white
1880
+ 133.63
1881
+ 137.62
1882
+ 3.94
1883
+ (383.1 ± 165.9)c
1884
+ 0.0149
1885
+ (14.63 ± 0.47)
1886
+ white
1887
+ 137.63
1888
+ 141.62
1889
+ 3.93
1890
+ (333.5 ± 163.1)c
1891
+ 0.0146
1892
+ (14.78 ± 0.53)
1893
+ white
1894
+ 141.63
1895
+ 145.62
1896
+ 3.94
1897
+ (381.1 ± 163.3)c
1898
+ 0.0145
1899
+ (14.64 ± 0.47)
1900
+ white
1901
+ 145.63
1902
+ 149.63
1903
+ 3.94
1904
+ (346.4 ± 163.6)c
1905
+ 0.0147
1906
+ (14.74 ± 0.51)
1907
+ white
1908
+ 149.64
1909
+ 153.62
1910
+ 3.93
1911
+ 330.2 ± 26.4
1912
+ 0.0148
1913
+ 14.79 ± 0.09
1914
+ white
1915
+ 153.63
1916
+ 157.63
1917
+ 3.94
1918
+ 328.3 ± 26.1
1919
+ 0.0147
1920
+ 14.80 ± 0.09
1921
+ white
1922
+ 157.64
1923
+ 161.62
1924
+ 3.93
1925
+ 303.1 ± 23.3
1926
+ 0.0149
1927
+ 14.89 ± 0.08
1928
+ white
1929
+ 161.63
1930
+ 165.63
1931
+ 3.94
1932
+ 291.6 ± 22.0
1933
+ 0.0145
1934
+ 14.93 ± 0.08
1935
+ white
1936
+ 165.64
1937
+ 169.62
1938
+ 3.93
1939
+ 257.8 ± 18.7
1940
+ 0.0147
1941
+ 15.06 ± 0.08
1942
+ white
1943
+ 169.63
1944
+ 173.62
1945
+ 3.94
1946
+ 224.0 ± 15.8
1947
+ 0.0149
1948
+ 15.21 ± 0.08
1949
+ white
1950
+ 173.63
1951
+ 177.62
1952
+ 3.93
1953
+ 215.8 ± 15.2
1954
+ 0.0146
1955
+ 15.26 ± 0.08
1956
+ white
1957
+ 177.63
1958
+ 181.62
1959
+ 3.94
1960
+ 202.9 ± 14.2
1961
+ 0.0148
1962
+ 15.32 ± 0.08
1963
+ white
1964
+ 181.63
1965
+ 185.62
1966
+ 3.93
1967
+ 208.6 ± 14.6
1968
+ 0.0149
1969
+ 15.29 ± 0.08
1970
+ white
1971
+ 185.63
1972
+ 189.62
1973
+ 3.94
1974
+ 186.0 ± 12.9
1975
+ 0.0147
1976
+ 15.42 ± 0.08
1977
+ white
1978
+ 189.63
1979
+ 193.63
1980
+ 3.94
1981
+ 192.9 ± 13.4
1982
+ 0.0146
1983
+ 15.38 ± 0.08
1984
+ white
1985
+ 193.64
1986
+ 197.62
1987
+ 3.93
1988
+ 179.6 ± 12.5
1989
+ 0.0147
1990
+ 15.45 ± 0.08
1991
+ white
1992
+ 197.63
1993
+ 201.62
1994
+ 3.94
1995
+ 164.6 ± 11.5
1996
+ 0.0147
1997
+ 15.55 ± 0.08
1998
+ white
1999
+ 201.64
2000
+ 205.62
2001
+ 3.93
2002
+ 187.3 ± 13.1
2003
+ 0.0149
2004
+ 15.41 ± 0.08
2005
+ white
2006
+ 205.63
2007
+ 209.62
2008
+ 3.94
2009
+ 146.1 ± 10.3
2010
+ 0.0145
2011
+ 15.68 ± 0.08
2012
+ white
2013
+ 209.64
2014
+ 213.62
2015
+ 3.93
2016
+ 158.1 ± 11.1
2017
+ 0.0148
2018
+ 15.59 ± 0.08
2019
+ white
2020
+ 213.63
2021
+ 217.62
2022
+ 3.94
2023
+ 147.3 ± 10.4
2024
+ 0.0149
2025
+ 15.67 ± 0.08
2026
+ white
2027
+ 217.63
2028
+ 221.63
2029
+ 3.94
2030
+ 134.1 ± 9.6
2031
+ 0.0149
2032
+ 15.77 ± 0.08
2033
+ white
2034
+ 221.64
2035
+ 225.62
2036
+ 3.93
2037
+ 135.8 ± 9.7
2038
+ 0.0147
2039
+ 15.76 ± 0.08
2040
+ white
2041
+ 225.63
2042
+ 229.63
2043
+ 3.94
2044
+ 117.3 ± 8.5
2045
+ 0.0145
2046
+ 15.92 ± 0.08
2047
+ white
2048
+ 229.64
2049
+ 233.62
2050
+ 3.93
2051
+ 118.3 ± 8.6
2052
+ 0.0146
2053
+ 15.91 ± 0.08
2054
+ white
2055
+ 233.63
2056
+ 237.63
2057
+ 3.94
2058
+ 114.9 ± 8.4
2059
+ 0.0143
2060
+ 15.94 ± 0.08
2061
+ white
2062
+ 237.64
2063
+ 239.56
2064
+ 1.90
2065
+ 102.2 ± 10.9
2066
+ 0.0145
2067
+ 16.07 ± 0.12
2068
+ H/Ld
2069
+ u
2070
+ 3627.5
2071
+ 3827.3
2072
+ 196.6
2073
+ 0.0194 ± 0.1266
2074
+ 0.0384
2075
+ > 20.74
2076
+ b
2077
+ 3832.6
2078
+ 4032.4
2079
+ 196.6
2080
+ 0.1181 ± 0.1624
2081
+ 0.0635
2082
+ > 19.95
2083
+ white
2084
+ 4037.3
2085
+ 4237.1
2086
+ 196.6
2087
+ 0.4286 ± 0.1266
2088
+ 0.1187
2089
+ 21.90 ± 0.32
2090
+ w2
2091
+ 4242.9
2092
+ 4442.6
2093
+ 196.6
2094
+ −0.3402 ± 0.0613
2095
+ 0.0012
2096
+ > 21.54
2097
+ v
2098
+ 4447.6
2099
+ 4647.4
2100
+ 196.6
2101
+ 0.4469 ± 0.0617
2102
+ 0.0151
2103
+ 18.66 ± 0.15
2104
+ m2
2105
+ 4652.4
2106
+ 4852.1
2107
+ 196.6
2108
+ 0.0015 ± 0.0168
2109
+ 0.0006
2110
+ > 21.25
2111
+ w1
2112
+ 4857.5
2113
+ 5057.3
2114
+ 196.6
2115
+ 0.0099 ± 0.0308
2116
+ 0.0019
2117
+ > 21.33
2118
+ u
2119
+ 5062.2
2120
+ 5201.4
2121
+ 137.0
2122
+ 0.0659 ± 0.0730
2123
+ 0.0080
2124
+ > 20.90
2125
+ white
2126
+ 10266
2127
+ 11051
2128
+ 765
2129
+ 0.3408 ± 0.0502
2130
+ 0.0602
2131
+ 22.15 ± 0.16
2132
+ v
2133
+ 21543
2134
+ 22361
2135
+ 798
2136
+ 0.1786 ± 0.0280
2137
+ 0.0141
2138
+ 19.66 ± 0.17
2139
+ white
2140
+ 27727
2141
+ 28549
2142
+ 802
2143
+ 0.1635 ± 0.0396
2144
+ 0.0594
2145
+ 22.95 ± 0.26
2146
+ v
2147
+ 39724
2148
+ 40112
2149
+ 378
2150
+ 0.1419 ± 0.0340
2151
+ 0.0138
2152
+ 19.91 ± 0.26
2153
+ white
2154
+ 44845
2155
+ 46039
2156
+ 1137
2157
+ 0.1662 ± 0.0492
2158
+ 0.0601
2159
+ 22.93 ± 0.36
2160
+ white
2161
+ 50868
2162
+ 61521
2163
+ 1528
2164
+ 0.1369 ± 0.0530
2165
+ 0.1073
2166
+ 23.13 ± 0.42
2167
+ white
2168
+ 66833
2169
+ 85013
2170
+ 5485
2171
+ 0.0202 ± 0.0378
2172
+ 0.1000
2173
+ > 23.33
2174
+ a. Signal photon count rates have been corrected for coincidence losses (30,51) and long-term sensitivity correction.
2175
+ b. Magnitudes are based on Swift/UVOT zeropoints (30), errors are adjusted by a binomial distribution (52), limiting magnitudes are 3σ upper
2176
+ limits. These values have not been corrected for the Galactic extinctions of E(B − V ) = 0.0483 (41).
2177
+ c. These data have been analyzed in ring apertures as introduced in supplementary materials.
2178
+ d. Images taken before are in high resolution, our photometry is in 5′′ aperture, after are in low resolution, our photometry is in 3′′ aperture.
2179
+ Table S5: Photometry for Swift UVOT observations of GRB 220101A.
2180
+
2181
+ GRB
2182
+ z
2183
+ Band
2184
+ Mpeak
2185
+ AV,MW
2186
+ β
2187
+ Aλa
2188
+ DMc
2189
+ Mabs
2190
+ Ref.
2191
+ AB
2192
+ fν ∝ ν−β
2193
+ AB
2194
+ 990123
2195
+ 1.600
2196
+ White to V
2197
+ MV = 8.86 ± 0.02
2198
+ 0.04
2199
+ 0.67
2200
+ 0.04
2201
+ 45.42
2202
+ -36.60
2203
+ (3)
2204
+ 050904
2205
+ 6.295
2206
+ White to 9500 ˚A
2207
+ M= 12.13 ± 0.24b
2208
+ 0.16
2209
+ 1.0
2210
+ 1.25
2211
+ 48.97
2212
+ -38.09
2213
+ (23)
2214
+ 080319B
2215
+ 0.937
2216
+ White to V
2217
+ MV = 5.34 ± 0.04
2218
+ 0.03
2219
+ 0.5
2220
+ 0.03
2221
+ 43.99
2222
+ -38.68
2223
+ (9)
2224
+ 220101A
2225
+ 4.618
2226
+ White to V
2227
+ Mwh = 13.56 ± 0.19
2228
+ 0.15
2229
+ 0.7
2230
+ 4.78
2231
+ 48.19
2232
+ -39.41
2233
+ This work
2234
+ a. Aλ= Aλ,MW+Aλ,host+Aλ,IGM is derived from photometric SED fit.
2235
+ b. Converted from fλ=9500 ˚A = 17 ± 4 × 10−15 erg cm−2 s−1 ˚A−1.
2236
+ c. Absolute Magnitude at the peak Mpeak,abs = Mpeak − DM − Aλ.
2237
+ Table S6: Properties of extremely bright GRB flares at the peak.
2238
+
2239
+ Supplementary Figures
2240
+ (a) GRB 130427A WH
2241
+ (b) GRB 220101A WH
2242
+ deep exposure
2243
+ (c) GRB 220101A WH
2244
+ deep exposure mask map
2245
+ (d) GRB 220101A WH
2246
+ T-T0=103.63s, M~14.7
2247
+ (e) GRB 220101A WH
2248
+ T-T0=115.63s, M~13.56
2249
+ (f) GRB 220101A WH
2250
+ T-T0=167.63s, M~15.06
2251
+ Figure S1: Swift/UVOT white (WH) band images demonstrating the halo ring photometry
2252
+ method. Panel (a) is the White band image of GRB 130427A, where the solid circle represents
2253
+ the standard aperture of UVOT with a radius of 5 arcsec. The dotted square region strongly
2254
+ suffered from coincidence loss with a typical side length of ∼ 20 arcsec. Dashed annulus with
2255
+ an inner radius of 15 arcsec and an out radius of 25 arcsec is the halo ring region defined in
2256
+ this work, for which the ˙Nring is derived. Panel (b) shows the deep exposure of GRB 220101A
2257
+ field in White band, which reveals 2 faint sources in the halo ring region, hence we masked the
2258
+ annulus region from 95◦ to 150◦, as shown in panel (c). In addition, images of panel (b) and (c)
2259
+ have a pixel scale of 1.004 arcsec/pixel instead of 0.502 arcsec/pixel for other 4 images. Panel
2260
+ (d), (e) and (f) show some images around the peak time of GRB 220101A. We measured count
2261
+ rates in unmasked annulus region and corrected it to the whole annulus region.
2262
+
2263
+ V-0.8
2264
+ M2+0.8
2265
+ B-0.4
2266
+ W2+1.2
2267
+ U
2268
+ B-0.4 Maselli
2269
+ W1+0.4
2270
+ U Maselli
2271
+ 3×102
2272
+ 5×102
2273
+ 1×103
2274
+ 2×103
2275
+ 3×103
2276
+ 10
2277
+ 11
2278
+ 12
2279
+ 13
2280
+ 14
2281
+ 15
2282
+ 16
2283
+ t-t0[s]
2284
+ AB Magnitude
2285
+ Epoch 1 -0.75
2286
+ Epoch 5 +0.25
2287
+ Epoch 2 -0.5
2288
+ Epoch 6 +0.5
2289
+ Epoch 3 -0.25
2290
+ Epoch 7 +0.75
2291
+ Epoch 4
2292
+ Epoch 8 +1.
2293
+ 3×1014
2294
+ 5×1014
2295
+ 1×1015
2296
+ 2×1015
2297
+ 3×1015
2298
+ 10
2299
+ 11
2300
+ 12
2301
+ 13
2302
+ 14
2303
+ 15
2304
+ 16
2305
+ Frequency[Hz]
2306
+ AB Magnitude
2307
+ a
2308
+ b
2309
+ Figure S2: The UVOT lightcurves (left) as well as the SEDs (right) of GRB 130427A. In
2310
+ the left panel, the vertical grey regions mark the observation periods of the White filter. Note
2311
+ that the second U-band data is saturated, which was however a detection point in Maselli et
2312
+ al. (31) if only event data in the last 6s was measured, hence the filled and the empty green
2313
+ triangles coincide. The shaded colorful regions across photometry points are our interpolation
2314
+ results of light curve. The right panel presents the optical to ultraviolet SEDs at the White
2315
+ band observation times constructed with the extrapolated UVOT narrow band data. A single
2316
+ power-law spectrum well reproduces the data, as anticipated in the fireball external forward
2317
+ shock afterglow model, with which a reliable evaluation of the White band emission is yielded,
2318
+ as reported in the last column of Table S2.
2319
+
2320
+ 0
2321
+ 10
2322
+ 20
2323
+ 30
2324
+ 40
2325
+ 50
2326
+ 60
2327
+ 70
2328
+ 80
2329
+ Nring[count/s]
2330
+ 0
2331
+ 500
2332
+ 1000
2333
+ 1500
2334
+ 2000
2335
+ 2500
2336
+ 3000
2337
+ Naper[count/s]
2338
+ a
2339
+ Fit Func: y=k*x
2340
+ k=22.22±0.84
2341
+ 2/d.o.f=0.90
2342
+ GRB130427A extracted
2343
+ GRB220101A
2344
+ stars in GRB 220101A field
2345
+ GRB130427A Maselli
2346
+ 0
2347
+ 10
2348
+ 20
2349
+ 30
2350
+ 40
2351
+ 50
2352
+ 60
2353
+ 70
2354
+ 80
2355
+ Nring[count/s]
2356
+ 0
2357
+ 500
2358
+ 1000
2359
+ 1500
2360
+ 2000
2361
+ 2500
2362
+ 3000
2363
+ Naper[count/s]
2364
+ b
2365
+ Fit Func: y=k*x
2366
+ k=20.62±0.43
2367
+ 2/d.o.f=0.37
2368
+ GRB080319B Wozniak
2369
+ GRB080319B Page
2370
+ GRB080319B
2371
+ Figure S3: Photon count rates in 5′′ aperture ˙Naper (directly measured or inferred from
2372
+ the intrinsic value ˙Nint) and 15 − 25′′ ring ˙Nring (coincidence loss corrected) for some
2373
+ Swift/UVOT white and V band measurements. The left panel is for the White band. The dark
2374
+ green upward triangles represent the two unsaturated measurements of GRB 220101A in the
2375
+ tail phase of the flash. The filled squares are for three bright stars in the filed of GRB 220101A.
2376
+ The light green downward empty triangle represents inferred ˙Naper with the photometry result
2377
+ of GRB 130427A derived with readout streak method (31). As for orange points, the vertical
2378
+ coordinate represents the White-band emission of GRB 130427A inferred from measurements
2379
+ in other UVOT bands (see Fig. S2), while the horizontal coordinate is the ˙Nring (see Fig. S1 for
2380
+ definition). Black squares are 3 unsaturated stars in GRB 220101A field. The right panel is for
2381
+ the V band. Empty dark green triangles are unsaturated measurements of GRB 080319B with
2382
+ HEASoft and empty light green squares are photometry results of GRB 080319B derived with
2383
+ the readout streak method (20). As for orange points, the vertical coordinate represents the pho-
2384
+ tometry result of GRB 080319B observed with RAPTOR-T (32) when the UVOT observations
2385
+ were ongoing, while the horizontal axis represents ˙Nring in the corresponding UVOT V-band
2386
+ image. The linear fit is just for filled points in both panels, and the correlation coefficients of
2387
+ filled points are 0.990 and 0.998 for the left and right panel, respectively. Black dashed lines
2388
+ represent the saturation count rate (coincidence loss corrected, ∼ 372 count s−1) of UVOT.
2389
+
2390
+ 10-1
2391
+ 100
2392
+ 101
2393
+ 102
2394
+ 103
2395
+ 102
2396
+ 103
2397
+ 104
2398
+ 105
2399
+ UVOT count rate (count/s)
2400
+ Time since trigger (s)
2401
+ a
2402
+ white
2403
+ v
2404
+ 0
2405
+ 10
2406
+ 20
2407
+ 30
2408
+ 40
2409
+ 50
2410
+ 60
2411
+ 70
2412
+ 80
2413
+ 90
2414
+ 2000
2415
+ 3000
2416
+ 4000
2417
+ 5000
2418
+ 6000
2419
+ 7000
2420
+ 8000
2421
+ Effective area (cm2)
2422
+ Wavelength (Å)
2423
+ b
2424
+ Lyα
2425
+ Lyman limit
2426
+ V
2427
+ B
2428
+ U
2429
+ W1
2430
+ M2
2431
+ W2
2432
+ White
2433
+ Figure S4: The similarity of Swift/UVOT White and V band observations of GRB 220101A.
2434
+ The left panel shows that the photon count rates in White band are almost the same as that in
2435
+ V band. This is because the photons with wavelengths below the Lyman limit (in the observer
2436
+ frame, it is 5124 ˚A; see the right panel) are almost fully absorbed, and the photons near the
2437
+ Lyman α may also suffer from strong absorption (see Fig. S5 for this effect). Therefore the
2438
+ collected photons are mainly within the V band.
2439
+
2440
+ 17
2441
+ 18
2442
+ 19
2443
+ 20
2444
+ 21
2445
+ 22
2446
+ 23
2447
+ 24
2448
+ 25
2449
+ 1014
2450
+ 1015
2451
+ 1016
2452
+ 1017
2453
+ 1018
2454
+ 10−6
2455
+ 10−5
2456
+ 10−4
2457
+ Magnitude (AB)
2458
+ Flux density (Jy)
2459
+ Frequency (Hz)
2460
+ GRB 000131 −4 Mag
2461
+ GRB 100219A −3 Mag
2462
+ GRB 220101A
2463
+
2464
+ Figure S5: Optical to X-ray SED of GRB 220101A. Swift XRT, UVOT and g, r, i, z observa-
2465
+ tions of Liverpool telescope in the time interval of t ∼ 0.62−0.68 day after the burst (38). Such
2466
+ a set of ground-based telescope observation data are chosen because they are almost simulta-
2467
+ neous with one UVOT White exposure. Neither the X-ray nor the optical emission displays a
2468
+ flare. Therefore, we construct the optical SED with the data collected at t ∼ 0.625 day. We find
2469
+ that the absorption correction is AWh = 4.78 mag for intrinsic optical to X-ray spectrum with
2470
+ index βoX = 0.65, it is well consistent with X-ray spectrum βX = 0.63 ± 0.09. The central fre-
2471
+ quency of the White band observation has been taken as the same as that of the V band because
2472
+ of the serious absorption of the bluer photons, as demonstrated in Fig. S4. The optical SEDs
2473
+ of other two GRBs 000131 (39) and 100219A (40) at similar redshifts (z = 4.500 and 4.667,
2474
+ respectively) are also shown for comparison.
2475
+
2476
+ 10
2477
+ 15
2478
+ 20
2479
+ 25
2480
+ 30
2481
+ 102
2482
+ 103
2483
+ 104
2484
+ 105
2485
+ 106
2486
+ 10−9
2487
+ 10−8
2488
+ 10−7
2489
+ 10−6
2490
+ 10−5
2491
+ 10−4
2492
+ 10−3
2493
+ 10−2
2494
+ 10−1
2495
+ 100
2496
+ Magnitude (AB)
2497
+ Flux density (Jy)
2498
+ Time since trigger (s)
2499
+ z−6mag
2500
+ i−4mag
2501
+ r−2mag
2502
+ Swift white
2503
+ Swift v
2504
+ g+2mag
2505
+ BAT 10 keV
2506
+ XRT 10 keV
2507
+ Figure S6: Fit to the multi-band afterglow lightcurves of GRB 220101A. The Swift XRT
2508
+ and UVOT data are analyzed in this work, and the other optical data are adopted from Liv-
2509
+ erpool telescope (38, 49). The total extinction corrections, including Galactic extinction and
2510
+ interstellar-medium extinction are AWh = 4.78, Av = 1.88, Ag = 3.51, Ar = 1.46, Ai = 0.24
2511
+ and Az = 0.10, respectively. The dashed and dash-dotted lines represents forward and reverse
2512
+ shock emission arising from the weak/slow and main/fast outflow collision. Solid and dotted
2513
+ lines are the regular external forward and reverse shock emission of the outflow. In our calcula-
2514
+ tion, the main/fast outflow was launched 92 seconds after the BAT trigger. Note that the X-ray
2515
+ emission at t ≤ 170 sec was attributed to the low energy part of the prompt emission and has
2516
+ not been addressed in our modeling.
2517
+
2518
+ 0
2519
+ 20
2520
+ 40
2521
+ 60
2522
+ 80
2523
+ 100
2524
+ 3000
2525
+ 4000
2526
+ 5000
2527
+ 6000
2528
+ 7000
2529
+ 8000
2530
+ 9000
2531
+ 10000 11000
2532
+ Response (%)
2533
+ Wavelength (Å)
2534
+ Lyα
2535
+ Lyβ
2536
+ Lyγ
2537
+ Lyman limit
2538
+ B
2539
+ B
2540
+ R
2541
+ R
2542
+ Figure S7: The response of the SVOM/VT and the Lyman absorption of the high redshift
2543
+ (∼ 6) event. The optical/ultraviolet flash will surfer from strong absorption by intergalactic
2544
+ medium. Following Moller & Jakobsen (50), we find that AB ∼ 5 mag (the received photons
2545
+ are mainly caused by red leak of blue filter) and AR ∼ 1 mag for a source at z = 6, based on
2546
+ the responses of SVOM/VT blue and red channels (i.e., B and R). If the initial flash is as bright
2547
+ as that detected in GRB 080319B and GRB 220101A, the absorbed one would still be caught
2548
+ by SVOM/VT with a dynamic range of 9 − 18 mag for the shortest exposure of 1s. Therefore
2549
+ SVOM/VT is a suitable equipment to detected extremely bright optical flares of GRBs at z ∼ 6.
2550
+
89E0T4oBgHgl3EQffwAL/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
8tAzT4oBgHgl3EQfE_rp/content/2301.01005v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:357a92735e5f6c6df0882b1a187b42da295660d7041f670d65ea47ec31088dc3
3
+ size 298106
8tAzT4oBgHgl3EQfE_rp/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c1a9125f20e05d85fc15e93699dac7612b30627abe997de43232ee457d572a5
3
+ size 4390957
8tE1T4oBgHgl3EQf7wU5/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8acd73833d747f5e49312a472ab9c6dd5c0a4416134bcc710a8a6d8b494a5523
3
+ size 179481
8tFLT4oBgHgl3EQfBi4b/content/2301.11970v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc1be24401cb52ffb2e1f4b068f833bb0eaa37f6acd217fcf110136d69a3367e
3
+ size 807184
9dE1T4oBgHgl3EQfCQJ2/content/2301.02862v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1862b6ca96e474c7929433ed181617d5d5583698b554d0102602ddc86ec66cd
3
+ size 205035
9dE1T4oBgHgl3EQfCQJ2/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b6890a9282cfb62c6bc3e7ee6fd598a7c478ab56fe9fa79d3e230c1e47bf805
3
+ size 2424877
9dE1T4oBgHgl3EQfCQJ2/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aed33eca0a240277c519a4fe0e161ea87c21115d48d469fd8c8188383bcd084a
3
+ size 97276
AdE3T4oBgHgl3EQfsgtu/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea119d707e59b549021b6b99dc071a3a8e959930558847f82e55996083b7d750
3
+ size 73151
CNFJT4oBgHgl3EQftC1e/content/2301.11615v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a43bafa0ed8519126b913037dddcfc04edd686907a0870329508cbd44075f4f7
3
+ size 1552724
CNFJT4oBgHgl3EQftC1e/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:406ad6d6ab1d3c4fca276ad71cc8eefc782505e5f4d44531473c4915a996d4cf
3
+ size 6357037
D9AyT4oBgHgl3EQfSPfV/content/tmp_files/2301.00084v1.pdf.txt ADDED
@@ -0,0 +1,966 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Selection of Centrality Measures Using Self-Consistency
2
+ and Bridge Axioms
3
+ Pavel Chebotarev∗
4
+ Moscow Institute of Physics and Technology
5
+ 9 Inststitutskii per., Dolgoprudny, Moscow Region, 141700 Russia
6
+ January 3, 2023
7
+ Abstract
8
+ We consider several families of network centrality measures induced by graph ker-
9
+ nels. The Self-consistency and Bridge axioms that appeared earlier in the literature
10
+ turn out to be closely related to two of these families. We obtain a necessary and suffi-
11
+ cient condition of Self-consistency, a sufficient condition of the Bridge axiom, indicate
12
+ specific measures that satisfy these axioms and show that under some additional con-
13
+ ditions they are incompatible. It is also shown that PageRank centrality violates most
14
+ conditions under consideration, and has a property that, according to some authors,
15
+ is hardly imaginable for a centrality measure. Adopting such conditions as the Self-
16
+ consistency or Bridge axioms allows one to dramatically reduce the length of a survey
17
+ for selecting the most appropriate centrality measures in the culling method proposed
18
+ in [1].
19
+ Keywords: network | centrality measure | axiomatic approach | self-consistency | bridge
20
+ axiom | PageRank
21
+ 1
22
+ Introduction
23
+ The number of network centrality measures studied in the literature exceeds 400 [2] and many
24
+ new measures appear every year. This diversity needs to be structured. The main means
25
+ of structuring it is to establish a correspondence between the measures and their properties,
26
+ some of which can be considered as normative conditions or axioms. The purpose of this
27
+ paper is to advance this work by studying two natural axiomatic conditions, namely, the Self-
28
+ consistency and Bridge axioms, which are closely related to special classes of kernel-based
29
+ centrality measures. We establish a sufficient condition of the Bridge axiom, a necessary
30
+ and sufficient condition of Self-consistency, and indicate centralities, some of which are well
31
+ known and others are new, that satisfy these axioms.
32
+ Very often, centrality is identified with structural importance [3–7]. However, there are
33
+ concepts of importance that are not reducible to centrality. Say, in a chain of moving people
34
+ modeled by a path graph, the most important actors may be the leader and the trailer, i.e.,
35
36
+ 1
37
+ arXiv:2301.00084v1 [physics.soc-ph] 31 Dec 2022
38
+
39
+ the least central end elements of the chain. Moreover, the central elements of such a chain
40
+ may not be of particular importance. Thus, the importance of nodes in networks is not
41
+ necessarily manifested through centrality.
42
+ Anyway, each point centrality measures some structural capital of the nodes. It turns out
43
+ that the types of capital accounted for by the centralities that satisfy the Bridge axiom on the
44
+ one hand and by centralities satisfying the conjunction of Self-consistency and Monotonicity
45
+ on the other hand are different, and therefore these conditions are incompatible, provided
46
+ that Equivalence is assumed.
47
+ Similarly, the Bridge axiom is incompatible with Transit
48
+ monotonicity.
49
+ PageRank is a centrality measure that attracts a lot of attention.
50
+ In this paper, we
51
+ show that it does not satisfy the most of the conditions under consideration and give an
52
+ explanation of this phenomenon.
53
+ The paper is organized as follows. After introducing the basic notation in Section 2,
54
+ in Section 3 we consider several families of centralities associated with graph kernels. In
55
+ Section 4, the Bridge and Self-consistency axioms are introduced.
56
+ Section 5 presents a
57
+ sufficient condition of the Bridge axiom as well as a number of measures that satisfy it.
58
+ In Section 6, we prove a necessary and sufficient condition of Self-consistency and present
59
+ centralities that satisfy it. In Section 7, simple general properties of centrality measures are
60
+ discussed. Axioms of Monotonicity and Transit monotonicity are considered in Section 8 and
61
+ we prove that the addition of these axioms is sufficient to ensure the properties of Section 7
62
+ and to form conditions incompatible with the Bridge axiom. In the concluding Section 9,
63
+ we propose some interpretations of the results obtained.
64
+ 2
65
+ Notation
66
+ Let G = (V, E) be an undirected graph with node set V = V (G) and edge set E = E(G).
67
+ The order of G is |V | = n. Graph nodes will be denoted by letters u, v, w, ui, vi, etc., numbers
68
+ 0, 1, 2, . . . , or names: Medici, Pazzi, etc. We consider graphs with n > 1, without loops and
69
+ multiple edges. Since some centrality measures under study are applicable only to connected
70
+ graphs, we confine ourselves to them.
71
+ Nodes u and v of G are neighbors iff {u, v} ∈ E(G). Let Nu denote the set of neighbors
72
+ of node u.
73
+ The adjacency matrix of G is denoted by A = A(G) = (auv)n×n: auv = 1 when u and v
74
+ are neighbors and auv = 0, otherwise. Let ρ(A) be the spectral radius of A.
75
+ The degree du of a node u is the number of neighbors of u: du = |Nu|. The vector of node
76
+ degrees is d = (d1, . . . , dn)T = A1, where 1 = (1, . . . , 1)T. A leaf is a node that has exactly
77
+ one neighbor. Nodes u and v are equivalent in G if there exists an automorphism of G that
78
+ takes u to v; in this case we write u ∼ v.
79
+ The Laplacian matrix of G is
80
+ L = diag(A1) − A,
81
+ where diag(x) is the diagonal matrix with vector x on the diagonal.
82
+ 2
83
+
84
+ The union of graphs G = G1 ∪ G2 (not necessarily disjoint) is defined by: V (G) =
85
+ V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2).
86
+ Given a graph G, a centrality measure (or centrality; sometimes, point centrality) f
87
+ attaches a real number f(v) to each node v ∈ V (G). Thus, f depends on G, however, for
88
+ simplicity we do not reflect this dependence in the notation. In most cases G is fixed, and
89
+ when it is not, we explicitly specify the graph to which centrality applies. Formally, for a
90
+ fixed graph G, a centrality on G is a function f : V (G) → R+ ∪ {0}. It associates a non-
91
+ negative real number f(v) with every node v ∈ V (G) based only on the graph structure [4].
92
+ Various conceptions of centrality are quite diverse.
93
+ In this regard, there is no generally
94
+ accepted definition of centrality that would semantically distinguish it from other types of
95
+ point structural measures. On some attempts to make such a distinction, see Section 7.
96
+ When a centrality measure f(·) on G is fixed, we will write u ≻ v, u ⪰ v, and u ∼= v as
97
+ short versions of f(u) > f(v), f(u) ≥ f(v), and f(u) = f(v), respectively. Moreover, if, for
98
+ instance, V = {1, . . . , 7}, then ({1, 6}, {2, 3, 4}, 5, 7) is an example of centrality ranking of
99
+ nodes 1 to 7 in which f(1) = f(6) > f(2) = f(3) = f(4) > f(5) > f(7).
100
+ 3
101
+ Centrality measures induced by graph kernels
102
+ In this section, we consider several families of centrality measures.
103
+ Let d(u, v) be the shortest path distance [8] between nodes u and v in a graph, i.e., the
104
+ length of a shortest path between u and v. Two popular1 distance based centrality measures
105
+ are the [Shortest path] Closeness [10,11]
106
+ f(u) =
107
+ � �
108
+ v∈V
109
+ d(u, v)
110
+ �−1
111
+ (1)
112
+ and [Shortest path] Eccentricity [10,12]
113
+ f(u) = (max
114
+ v∈V d(u, v))−1.
115
+ (2)
116
+ General classes of Closeness and Eccentricity centralities are defined by (1) and (2) with
117
+ d(u, v) being arbitrary distances for graph nodes. In the literature, several classes of such
118
+ distances and, more generally, dissimilarity measures have been proposed (see, e.g., [13,14]).
119
+ Substituting them in (1) and (2) provides centralities whose properties may vary. Most of
120
+ the alternative distances and dissimilarity measures are defined via graph kernels. Let us
121
+ consider several of them.
122
+ 1. The parametric Katz [15] kernels (also referred to as Walk [16] or Neumann diffusion
123
+ [17] kernels) are defined as
124
+ P Walk(t) =
125
+
126
+
127
+ k=0
128
+ (tA)k = (I − tA)−1
129
+ (3)
130
+ 1For example, in the recent study [9], the authors come to the conclusion that in the infection source
131
+ identification problem “a combination of eccentricity and closeness... generally performs better than several
132
+ state-of-the-art source identification techniques, with higher accuracy and lower average hop error.”
133
+ 3
134
+
135
+ with 0 < t < (ρ(A))−1.
136
+ 2. The Communicability kernels [18,19] are
137
+ P Comm(t) =
138
+
139
+
140
+ k=0
141
+ (tA)k
142
+ k!
143
+ = exp(tA),
144
+ t > 0.
145
+ Two other classes of kernels are defined similarly via the Laplacian matrix L = L(G).
146
+ 3. The Forest kernels or regularized Laplacian kernels [20,21] are
147
+ P For(t) = (I + tL)−1, where t > 0.
148
+ (4)
149
+ 4. The Heat kernels are the Laplacian exponential diffusion kernels [22]
150
+ P Heat(t) =
151
+
152
+
153
+ k=0
154
+ (−tL)k
155
+ k!
156
+ = exp(−tL),
157
+ t > 0.
158
+ By Schoenberg’s theorem [23,24], if matrix P = (puv) is a kernel (i.e., is positive semidef-
159
+ inite), then it produces a Euclidean distance d(u, v) by means of the transformation
160
+ d(u, v) =
161
+ � 1
162
+ 2(puu + pvv − puv − pvu)
163
+ � 1
164
+ 2,
165
+ u, v ∈ V,
166
+ (5)
167
+ where factor 1
168
+ 2 determines the scale.
169
+ Thus, all Walk, Communicability, Forest, and Heat kernels with appropriate parameters t
170
+ provide distances that can be substituted in (1) and (2) to obtain Closeness and Eccentricity
171
+ centralities. We will denote them by Closeness(Kernel) and Eccentricity(Kernel) with the
172
+ corresponding kernels substituted.
173
+ Furthermore, if Pn×n = (puv) determines a proximity measure (which means that for any
174
+ x, y, z ∈ V, pxy + pxz − pyz ≤ pxx, and the inequality is strict whenever z = y and y ̸= x),
175
+ then [25] transformation
176
+ d(u, v) = 1
177
+ 2(puu + pvv − puv − pvu),
178
+ u, v ∈ V
179
+ (6)
180
+ provides a distance function that satisfies the axioms of a metric. The Forest kernel with
181
+ any t > 0 produces a proximity measure, while kernels in the remaining three families do
182
+ so when t is sufficiently small [14]. The centralities obtained from a Proximity measure by
183
+ transformation (6) and substitution of the resulting distance into (1) and (2) will be denoted
184
+ by Closeness∗(Proximity) and Eccentricity∗(Proximity), respectively.
185
+ Moreover, if P represents a strictly positive transitional measure on G (i.e., pxy pyz ≤
186
+ pxz pyy for all nodes x, y, and z, with pxy pyz = pxz pyy whenever every path in G from x to z
187
+ visits y), then transformation
188
+ ˆpuv = ln puv,
189
+ u, v ∈ V
190
+ produces [13,26] a proximity measure. In this case, (6) applied to ˆP = (ˆpuv) reduces to
191
+ d(u, v) = 1
192
+ 2(ln puu + ln pvv − ln puv − ln pvu)
193
+ (7)
194
+ 4
195
+
196
+ and generates [13] a cutpoint additive distance d(u, v), viz., such a distance that d(u, v) +
197
+ d(v, w) = d(u, w) whenever v is a cutpoint between u and w in G (or, equivalently, whenever
198
+ all paths connecting u and w visit v). The centralities obtained from anyTransitional Measure
199
+ by transformation (7) and substitution of the resulting distance into (1) and (2) will be
200
+ denoted by Closeness∗(logTransitionalMeasure) and Eccentricity∗(logTransitionalMeasure),
201
+ respectively.
202
+ Since the Walk and Forest kernels determine [26] strictly positive transitional measures,
203
+ transformation (7) applied to them generates cutpoint additive distances. Substituting them
204
+ into (1) and (2) produces Closeness∗(logForest), Closeness∗(logWalk) and the corresponding
205
+ Eccentricity∗(·) centrality measures.
206
+ Thus, based on the above results, we define Closeness and Eccentricity centrality mea-
207
+ sures obtained by substituting the:
208
+ • Forest kernel;
209
+ • Heat kernel;
210
+ • logarithmic Forest kernel;
211
+ • logarithmic Walk kernel;
212
+ • logarithmic Heat kernel, and
213
+ • logarithmic Communicability kernel
214
+ transformed by (5) or (6) into (1) and (2).
215
+ These centralities were used in the survey
216
+ proposed in [1] with parameter t = 1 for the Forest, Heat, and Communicability kernels and
217
+ t = (ρ(A) + 1)−1 for the Walk kernel.
218
+ While the above measures are promising kernel-based centralities, they do not exhaust all
219
+ kernels and transformations [14,17] that can be used to obtain such measures. To mention
220
+ some alternative constructions, note that every distance on graph nodes can be integrated
221
+ in the p-Means framework [27] or in the framework developed in [28].
222
+ The Closeness(Forest) centrality was examined in [29] with the conclusion that “forest
223
+ distance centrality has a better discriminating power than alternate metrics such as be-
224
+ tweenness, harmonic centrality, eigenvector centrality, and PageRank.” Along with this, the
225
+ authors note that the order of node importance induced by forest distances on some simple
226
+ graphs is consistent with their intuition.
227
+ In addition to the above approaches, kernels and similarity/proximity measures can be
228
+ used to obtain centralities directly, without transformations into distances.
229
+ An example
230
+ of such measures is the Estrada subgraph centrality [18].
231
+ This index of a graph node u
232
+ is equal to the diagonal entry pComm
233
+ uu
234
+ of the Communicability kernel, so we denote it by
235
+ Communicability(Kii). Similarly, Walk(Kii) is the measure f(u) = pWalk
236
+ uu
237
+ , u ∈ V determined
238
+ by the diagonal entries of the Walk kernel.
239
+ One more type of centrality measures is constructed by summing the non-diagonal entries
240
+ of the rows of a kernel matrix. We consider the measures of this kind Communicability(Kij)
241
+ and Walk(Kij) defined by f(u) = �
242
+ v̸=u pComm
243
+ uv
244
+ and f(u) = �
245
+ v̸=u pWalk
246
+ uv
247
+ , u ∈ V, respectively.
248
+ Finally, Total communicability [30] is obtained by summing all row entries of the Commu-
249
+ nicability kernel: f(u) = �
250
+ v∈V pComm
251
+ uv
252
+ ; it can be described [31] in terms of “potential gain,”
253
+ as well as the corresponding Walk measure.
254
+ 5
255
+
256
+ The existence of hundreds of types and subtypes of centralities compounded by the
257
+ existence of infinite families of them highlights the need for powerful tools for comparing
258
+ centrality measures and choosing the most appropriate ones. The axiomatic approach is
259
+ indispensable in this regard.
260
+ 4
261
+ Axioms of Bridge and Self-consistency
262
+ The axioms considered in this section determine the relation between the centrality values of
263
+ two nodes in a graph of a special structure. As mentioned above, the measures under study
264
+ assign centrality to nodes based solely on the graph structure. The Equivalence axiom is a
265
+ partial embodiment of this idea (cf. [32, axiom A3]).
266
+ Axiom E (Equivalence).
267
+ If u, v ∈ V (G) and u ∼ v, then f(u) = f(v).
268
+ All measures under consideration satisfy axiom E; it will be assumed by default.
269
+ Among the most appealing axioms characterizing various classes of “reasonable” centrality
270
+ measures are those of an ordinal nature. Such axioms allow one to compare the centrality of
271
+ some nodes, but they do not determine specific computational algorithms. In other words,
272
+ they are not fingerprints of particular centrality measures.
273
+ Positive responsiveness is a type of axiom, which is of primary importance in many
274
+ axiomatic constructions. The template of these axioms is as follows: “an increase in input
275
+ (making a node more central from some point of view) leads to an increase in output (i.e.,
276
+ raises its centrality).” Now we present two axioms of this kind. In the next two sections, we
277
+ will find centrality measures that satisfy them.
278
+ Recall that a bridge in a graph is an edge whose deletion increases the number of graph’s
279
+ connected components. The following axiom [33] relates the centrality of the endpoints of
280
+ any bridge.
281
+ Axiom B (Bridge).
282
+ If edge {u, v} is a bridge in G, i.e., the removal of {u, v} from E(G)
283
+ separates G into two connected components (with node sets Vu ∋ u and Vv ∋ v), then
284
+ |Vu| < |Vv| ⇔ f(u) < f(v).
285
+ A strengthening of this axiom is the Ratio property [34], which holds when under the
286
+ same premise, f(w) > 0 for all w ∈ V and f(u)/f(v) = |Vu|/|Vv|.
287
+ The idea of the second axiom is quite different. We assume that the vector of centrality
288
+ values of the neighbors of any node u carries a lot of information about the centrality of
289
+ u itself (cf. Consistency in [35]). A more specific form of this idea is that “the higher the
290
+ centrality values of a node’s neighbors, the higher the centrality of the node itself.”
291
+ This is in line with the justification given by Bonacich and Lloyd [36] to the Eigenvector
292
+ centrality, a measure satisfying (Section 6) the axiom we are going to introduce: “The eigen-
293
+ vector is an appropriate measure when one believes that actors’ status is determined by those
294
+ with whom they are in contact. This conception of importance or centrality makes sense in
295
+ a variety of circumstances. Social status rubs off on one’s associates. Receiving information
296
+ 6
297
+
298
+ from knowledgeable sources adds more to one’s own knowledge. However, eigenvectors can
299
+ give weird and misleading results when misapplied.”
300
+ The final step in refining this concept leads to the axiom of Self-consistency. In the case
301
+ of directed graphs that express paired comparisons, it appeared in [37–39]; for undirected
302
+ graphs, in [40, 41] under the name of Structural consistency. It strengthens Preservation
303
+ of neighborhood-inclusion [42], whose directed version goes back to Preservation of cover
304
+ relation [43].
305
+ Axiom S (Self-consistency).
306
+ If for u, v ∈ V, there is a bijection between Nu to Nv such
307
+ that every element of Nu is, according to f(·), no more central than the corresponding element
308
+ of Nv, then f(u) ≤ f(v). If “no more” is actually “less” at least once, then f(u) < f(v).
309
+ Both the Bridge and Self-consistency axioms belong to the class of positive responsive-
310
+ ness axioms, however, the positivity requirement in the premise of Self-consistency is not
311
+ objective: it reduces to positivity in terms of f(·). This implies that when f(·) satisfies ax-
312
+ iom S and the values of ¯f(·) are ordered oppositely to those of f(·), then ¯f(·) also satisfies S.
313
+ Consequently, the sole axiom S allows in some cases to conclude that f(u) = f(v), but never
314
+ that f(u) > f(v). In particular, if f(u) = f(v) for all u, v ∈ V, then f(·) satisfies S for any
315
+ graph. Therefore, Self-consistency is usually combined with other axioms indicating how
316
+ centrality is related to the graph structure itself rather than to the neighbors’ centrality.
317
+ In the following two sections, we present several results on the centrality measures that
318
+ satisfy the Bridge or Self-consistency axioms.
319
+ 5
320
+ Centrality measures satisfying the Bridge axiom
321
+ In the statements of this section, the notion of a cutpoint additive distance and the Close-
322
+ ness∗(logForest) and Closeness∗(logWalk) measures are those introduced in Section 3.
323
+ The Connectivity centrality [34] of vertex u is equal to the number of permutations
324
+ π = (π1, . . . , π|V |) of V (G) such that π1 = u and for every j ∈ {2, . . . , |V | − 1}, the induced
325
+ subgraph of G with node set {π1, . . . , πj} is connected.
326
+ Lemma 1. Any Closeness centrality of the form (1) such that the corresponding distance
327
+ d(·, ·) is cutpoint additive satisfies axiom B.
328
+ Proof.
329
+ For any connected G, consider a Closeness centrality f(u) =
330
+ ��
331
+ v∈V d(u, v)
332
+ �−1,
333
+ where d(·, ·) is a cutpoint additive distance.
334
+ Let {u, v} be a bridge in G. Since v is a
335
+ cutpoint between u and any node w ∈ Vv∖{v}, it holds that
336
+ (f(u))−1
337
+ =
338
+
339
+ w∈V (G)
340
+ d(u, w) =
341
+
342
+ w∈Vu
343
+ d(u, w) +
344
+
345
+ w∈Vv
346
+ d(u, w)
347
+ =
348
+
349
+ w∈Vu
350
+ d(u, w) + |Vv| d(u, v) +
351
+
352
+ w∈Vv
353
+ d(v, w).
354
+ 7
355
+
356
+ Figure 1: A tree on which Betweenness violates axiom B.
357
+ Similarly, (f(v))−1 = �
358
+ w∈Vv d(v, w) + |Vu| d(v, u) + �
359
+ w∈Vu d(u, w). Hence
360
+ (f(u))−1 − (f(v))−1 = (|Vv| − |Vu|) d(u, v),
361
+ consequently, f(u) < f(v) ⇔ (f(v))−1 < (f(u))−1 ⇔ |Vu| < |Vv|. Therefore, f(·) satisfies the
362
+ Bridge axiom.
363
+ Proposition 1. The Shortest path Closeness, Connectivity, Closeness∗(logWalk), and
364
+ Closeness∗(logForest) centralities satisfy the Bridge axiom.
365
+ Proof. The fulfilment of the Bridge axiom for the Shortest path Closeness is due to Skibski
366
+ and Sosnowska [33]. Alternatively, it follows from Lemma 1.
367
+ The Bridge axiom holds for Connectivity since this centrality measure satisfies the
368
+ stronger Ratio property [34].
369
+ The Walk (3) and Forest (4) kernels represent [26] strictly positive transitional measures
370
+ on any connected graph. Therefore, definition (7) transforms [13] them into cutpoint additive
371
+ distances d(u, v). By Lemma 1 this implies that the Closeness centralities corresponding
372
+ to these distances, namely, the Closeness∗(logWalk) and Closeness∗(logForest) centralities,
373
+ satisfy the Bridge axiom.
374
+ Similarly, other strictly positive transitional measures [26] and cutpoint additive distances
375
+ also produce centralities that satisfy the Bridge axiom.
376
+ Remark 1. It is worth noting that the Betweenness centrality [44] satisfies the Bridge axiom
377
+ for many graphs, however, generally this is not the case. The simplest graph on which Be-
378
+ tweenness violates this axiom is shown in Fig. 1. Here, axiom B requires that the centralities
379
+ of nodes 0 and 5 are equal since |V0| = |V5|. However, the Betweenness centrality of node 0
380
+ is higher than that of node 5, as 0 lies on the shortest path from 1 to 2.
381
+ 6
382
+ Centrality measures satisfying Self-consistency
383
+ To formulate a necessary and sufficient condition of Self-consistency, we introduce two defi-
384
+ nitions.
385
+ 8
386
+
387
+ Definition 1. A function ϕ : Mk → R, where Mk = {M : 0 < |M| < k}, M being a
388
+ multiset2 of real numbers, will be called a scoring function if ϕ(M) is strictly increasing in
389
+ any element of M, while the remaining elements, including those equal to the varying one,
390
+ are fixed.
391
+ Definition 2. A centrality vector x = (x1, . . . , xn)T assigned to a connected graph G with
392
+ V (G) = {1, . . . , n} (xu = f(u), u ∈ V (G), where f is the corresponding centrality measure)
393
+ has a monotonic neighborhood representation if there exists a scoring function ϕ such that
394
+ x satisfies the system of equations
395
+ xu = ϕ({xw : w ∈ Nu}),
396
+ u = 1, . . . , n.
397
+ (8)
398
+ In Definition 2, {xw : w ∈ Nu} is the multiset of the components of x that correspond to
399
+ the neighbors of node u in G. If a centrality vector has a monotonic neighborhood represen-
400
+ tation, then finding this vector reduces to solving the system (8).
401
+ Lemma 2. A centrality measure on G satisfies Self-consistency if and only if the centrality
402
+ vector this measure attaches to G has a monotonic neighborhood representation.
403
+ Proof.
404
+ Suppose that the centrality vector x = (x1, . . . , xn)T associated with G has a
405
+ monotonic neighborhood representation (8). Let the premise of Self-consistency be true for
406
+ nodes u and v. Consider the equations (8) corresponding to u and v:
407
+ xu
408
+ =
409
+ ϕ({xw : w ∈ Nu}),
410
+ (9)
411
+ xv
412
+ =
413
+ ϕ({xw : w ∈ Nv}).
414
+ (10)
415
+ Since there is a bijection that maps each element of Nu to an element of Nv with a greater
416
+ or equal centrality, step by step replacing in (9) the xw value of each element of Nu by the
417
+ x component of the corresponding element of Nv and using the definition of monotonic
418
+ neighborhood representation, we get a growth or preservation of the value of ϕ(·) at each
419
+ step, yielding the value xv in the last step. This implies that xu ≤ xv, or, stronger, xu < xv
420
+ whenever xw has been strictly increased at least once. Therefore, Self-consistency is satisfied.
421
+ Conversely, suppose that a centrality measure on G is Self-consistent. Let us construct a
422
+ scoring function ϕ(·) that provides a monotonic neighborhood representation of the centrality
423
+ vector x = (x1, . . . , xn)T associated with G. First, we set ϕ({xw : w ∈ Nu})
424
+ def
425
+ = xu for all
426
+ u ∈ {1, . . . , n}. Whenever {xw : w ∈ Nu} = {xw : w ∈ Nv} for some u, v ∈ V, Self-consistency
427
+ implies xu = xv, i.e., the above definition of ϕ(·) on the set of multisets P = {{xw : w ∈ Nu},
428
+ 1 ≤ u ≤ n} ⊂ Mk is not contradictory. Thus, we defined the function ϕP(·) on P. Now,
429
+ to obtain a monotonic neighborhood representation of x, it suffices to extend ϕP(·) to the
430
+ entire set Mk (k = max{|Nu|, 1 ≤ u ≤ n}) of multisets of real numbers in such a way that
431
+ the resulting ϕ(·) is strictly increasing on Mk.
432
+ 2A finite multiset is an equivalence class of vectors such that two vectors z and z′ are equivalent whenever
433
+ z′ can be obtained from z by permuting its components. As distinct from a set, a multiset may contain
434
+ several copies of the same element, as the components of a vector may be equal.
435
+ 9
436
+
437
+ By the definition of a scoring function, the strict increase of ϕ(·) is required with respect
438
+ to the following preorder ≽ on Mk: for X, Y ∈ Mk, X ≽ Y ⇔ [there is a bijection between
439
+ X to Y such that every element of Y does not exceed the corresponding element of X]. The
440
+ condition of strict increase reduces to the implication [X ≽ Y and Y ̸≽ X] ⇒ ϕ(X) > ϕ(Y ),
441
+ since the second necessary implication [X ≽ Y and Y ≽ X] ⇒ ϕ(X) = ϕ(Y ) is trivial as its
442
+ premise implies X = Y.
443
+ Observe that the preorder ≽ has a numerical [utility] representation. This means that
444
+ there exists a function u: Mk → R such that for all X, Y ∈ Mk, X ≻ Y ⇒ u(X) > u(Y ),
445
+ where, by definition, X ≻ Y ⇔ [X ≽ Y and Y ̸≽ X]. Indeed, u(X) can be defined, say,
446
+ as the sum of the elements of multiset X. Then X ≻ Y ⇒ u(X) > u(Y ) and so u(·) is a
447
+ numerical representation of ≽.
448
+ By Self-consistency, ϕP(·) strictly increases on P, i.e., ϕP(·) is a numerical representation
449
+ of ≽P, the restriction of ≽ to P. Since ≽ has a numerical representation, it follows from [45,
450
+ Theorem 1] that ϕP(·) has a strictly increasing extension to Mk if and only if ϕP(·) is gap-
451
+ safe increasing, i.e., is weakly increasing and for any X, Y ∈ Mk ∪ {−∞, +∞}, Y ≻ X
452
+ implies
453
+ inf{ϕP(Z) : Z ≽ Y, Z ∈ P} > sup{ϕP(Z) : X ≽ Z, Z ∈ P},
454
+ (11)
455
+ where, by convention, sup ∅ = −∞ and inf ∅ = +∞.
456
+ To prove that ϕP(·) is gap-safe increasing, first observe that since P is finite, sup and inf
457
+ in (11) can be replaced by max and min, respectively, under the convention that max ∅ = −∞
458
+ and min ∅ = +∞. Then, if the [multi]sets on the left-hand and right-hand sides of (11) are
459
+ both nonempty, then for any Z′′ and Z′ minimizing ϕP(Z) on the left and maximizing ϕP(Z)
460
+ on the right, respectively, Z′′ ≽ Y ≻ X ≽ Z′ holds, and by the “mixed” strict transitivity3 of
461
+ ≽, Z′′ ≻ Z′. By Self-consistency this implies ϕP(Z′′) > ϕP(Z′) and (11) is valid. Otherwise,
462
+ if some multiset in (11) is empty, then we have +∞ on the left or/and −∞ on the right, in a
463
+ possible combination with a finite number on one of the sides. In all these cases, (11) is valid,
464
+ hence ϕP(·) is gap-safe increasing. Therefore, by [45, Theorem 1], ϕP(·) can be extended
465
+ to Mk so that its extension ϕ(·) is a strictly increasing function and therefore, provides
466
+ a monotonic neighborhood representation of the centrality vector x = (x1, . . . , xn)T. This
467
+ completes the proof. The extension of ϕP(·) to Mk can be made, in particular, using the
468
+ approach proposed in [45].
469
+ The following propositions involve five centrality measures; we now recall their definitions
470
+ using the notation introduced in Section 2.
471
+ For a connected graph G of order n, vector x = (x1, . . . , xn)T presents:
472
+ • the Walk centrality [15] if
473
+ x =
474
+
475
+
476
+ k=1
477
+ (tA)k1 = ((I − tA)−1 − I)1,
478
+ (12)
479
+ where t ∈ R is a parameter such that 0 < t < (ρ(A))−1;
480
+ 3This means that for any X, Y, Z ∈ Mk, Z ≽ Y ≻ X ⇒ Z ≻ X and Y ≻ X ≽ Z ⇒ Y ≻ Z.
481
+ 10
482
+
483
+ • the Bonacich centrality [46] with real parameters α and β > 0 if x satisfies the system
484
+ of equations
485
+ xu =
486
+
487
+ w∈Nu
488
+ (α + βxw),
489
+ u = 1, . . . , n;
490
+ (13)
491
+ • the Generalized Degree centrality [47] if x satisfies the system of equations
492
+ (I + εL)x = d,
493
+ (14)
494
+ where ε > 0 is a real parameter;
495
+ • the Eigenvector centrality [48,49] if x is positive and satisfies the equation
496
+ Ax = ρ(A)x;
497
+ (15)
498
+ • the PageRank centrality [50] if x is positive and satisfies the equation4
499
+ x =
500
+
501
+ αAT(diag(A1))−1 + (1 − α)J
502
+
503
+ x,
504
+ (16)
505
+ where J = 1
506
+ n11T, while α ∈ R is the “teleportation” parameter such that 0 < α < 1.
507
+ Proposition 2. The Generalized Degree, Walk, Eigenvector, and Bonacich centralities sat-
508
+ isfy Self-consistency.
509
+ Proof. 1.
510
+ Since for any u, du = |Nu|, Eq. (14) can be written in component form as
511
+ xu(1 + ε|Nu|) − ε
512
+
513
+ w∈Nu
514
+ xw = |Nu|,
515
+ u = 1, . . . , n,
516
+ which is equivalent to
517
+ xu = (1 + ε|Nu|)−1 �
518
+ w∈Nu
519
+ (1 + εxw),
520
+ u = 1, . . . , n.
521
+ (17)
522
+ Eq. (17) is a monotonic neighborhood representation of vector x, therefore, by Lemma 2,
523
+ the Generalized Degree centrality satisfies Self-consistency.
524
+ 2. It follows from (12) that
525
+ (I − tA)x = td,
526
+ from which
527
+ xu = t
528
+
529
+ w∈Nu
530
+ (1 + xw),
531
+ u = 1, . . . , n.
532
+ (18)
533
+ Since for any t > 0, (18) is a monotonic neighborhood representation of x, Lemma 2
534
+ implies that the Walk centrality satisfies Self-consistency.
535
+ 3.
536
+ A component form of (15) is
537
+ xu = (ρ(A))−1 �
538
+ w∈Nu
539
+ xw,
540
+ u = 1, . . . , n,
541
+ (19)
542
+ 4In the case of simple graphs considered in this paper, AT = A.
543
+ 11
544
+
545
+ which is a monotonic neighborhood representation of x. Hence, by Lemma 2, the Eigenvector
546
+ centrality satisfies Self-consistency.
547
+ 4.
548
+ The equations (13) of the Bonacich centrality provide a monotonic neighborhood
549
+ representation of x. By Lemma 2, these centralities satisfy Self-consistency. It follows from
550
+ the comparison of (18) and (13) that the Walk centralities are the Bonacich centralities with
551
+ α = β = t.
552
+ To prove that a centrality measure satisfies Self-consistency, it suffices to find its mono-
553
+ tonic neighborhood representation, as we did, e.g., for the Walk centrality. Disproving the
554
+ hypothesis of the Self-consistency of some measure reduces to giving a refuting example, i.e.,
555
+ an appropriate pair of nodes in some network. Here, among others, the famous network of
556
+ Florentine ruling families (Fig. 2) can be of help, as we show in Lemma 3 and Proposition 3.
557
+ Figure 2: Marriage network of the Florentine ruling families of the 15th century (without
558
+ the isolated Pucci family).
559
+ Let f(·) be a centrality measure on a graph G. We say that two arrays (u1, . . . , uk)
560
+ and (v1, . . . , vk) of the nodes of G are f(·) order equivalent iff for any i, j ∈ {1, . . . , k},
561
+ sign(f(ui) − f(uj)) = sign(f(vi) − f(vj)).
562
+ Lemma 3. If a centrality measure f(·) satisfies axiom S, then for the Florentine families
563
+ graph of Fig. 2, the following arrays of nodes are f(·) order equivalent:
564
+ (a) (Tornabuoni, Albizzi) and (Ridolfi, Ginori);
565
+ (b) (Bischeri, Peruzzi) and (Guadagni, Castellani);
566
+ (c) (Bischeri, Castellani) and (Guadagni, Barbadori);
567
+ 12
568
+
569
+ Lamberteschi
570
+ Ginori
571
+ Guadagni
572
+ Albizzi
573
+ Bischeri
574
+ Tornabuoni
575
+ Acciaiuoli
576
+ Medici
577
+ Ridolfi
578
+ Strozzi
579
+ Peruzzi
580
+ Salviati
581
+ Barbadori
582
+ Castellahi
583
+ Pazzi(d) (Peruzzi, Castellani) and (Bischeri, Barbadori);
584
+ (e) (Tornabuoni, Ridolfi) and (Guadagni, Strozzi);
585
+ (f) (Barbadori, Salviati) and (Castellani, Pazzi);
586
+ (g) (Ginori, Aciaiuoli, Pazzi, Lamberteschi) and (Albizzi, Medici, Salviati, Guadagni).
587
+ Proof. (a) Observe that Tornabuoni and Albizzi have three neighbors each, and they share
588
+ two neighbors. Therefore, by S, the relation between them is the same as the relation between
589
+ the remaining neighbors, Ridolfi and Ginori. (b) Bischeri and Peruzzi are adjacent and have
590
+ a common neighbor Strozzi; in addition, Bischeri has a neighbor Guadagni, while Peruzzi has
591
+ a neighbor Castellani. Due to S, the relation between Bischeri and Peruzzi coincides with
592
+ that between Guadagni and Castellani. Indeed, it is easy to see that the edge {Bischeri,
593
+ Peruzzi} cannot correct the violation of Self-consistency that may occur in the absence of
594
+ this edge. This completes the proof of (b). The remaining parts are proved similarly.
595
+ The following proposition demonstrates that Lemma 3 can be quite useful in proving
596
+ that certain measures violate Self-consistency.
597
+ Proposition 3. Walk(Kii), Communicability(Kii), Closeness(Forest), Closeness(Heat),
598
+ Closeness∗(logWalk), Closeness∗(logCommunicability), Closeness∗(logForest), and Close-
599
+ ness∗(logHeat) centralities violate axiom S.
600
+ Proof.
601
+ For the graph in Fig. 2, Walk(Kii) and Communicability(Kii) provide a central-
602
+ ity ranking in which Peruzzi ≻ Bischeri, but Guadagni ≻ Castellani. Thus, by part (b)
603
+ of Lemma 3, these measures violate Self-consistency. Measures Closeness(Forest), Close-
604
+ ness∗(logWalk), Closeness∗(logCommunicability), and Closeness∗(logHeat) provide rankings
605
+ in which Ridolfi ≻ Tornabuoni, but Guadagni ≻ Strozzi. Thus, by part (e) of Lemma 3, these
606
+ measures violate Self-consistency. Measures Closeness(Heat), and Closeness∗(logForest) pro-
607
+ vide rankings in which Castellani ≻ Peruzzi, but Bischeri ≻ Barbadori. Thus, by part (d)
608
+ of Lemma 3, these measures violate Self-consistency.
609
+ 7
610
+ On core intuition behind centrality
611
+ The best example of a “central” node is the center of a star of order more than 2.
612
+ A star of order n is a graph with one node (the center) having degree n − 1 and n − 1
613
+ nodes of degree 1. The edges of a star are sometimes called rays.
614
+ As Freeman [51] noted, “one general intuitive theme seems to have run through all the
615
+ earlier thinking about point centrality in social networks: the point at the center of a star
616
+ [...] is the most central possible position.”
617
+ Definition 3. We say that a centrality measure on a star G with n ≥ 3 nodes satisfies the
618
+ star condition if it assigns maximum centrality to the center of this star.
619
+ For an example of a centrality measure that violates the star condition, see [1, Section 1].
620
+ 13
621
+
622
+ Self-consistency is a strong axiom, however, as was noted, it is not comprehensive. One
623
+ of its features is that it only applies to nodes of the same degree. Therefore, it does not
624
+ imply the star condition. As distinct from it, the Bridge axiom implies this condition.
625
+ Proposition 4. On a star with two or more rays, any centrality measure that satisfies
626
+ axiom B also satisfies the star condition.
627
+ Proof. This is true as each ray of a star is a bridge, and among the components formed after
628
+ its removal, the component containing a leaf is smaller than that containing the center.
629
+ However, axiom B does not imply that the centrality of all leaves of a star is the same,
630
+ which is immediate from Self-consistency (or from axiom E, as the leaves are equivalent).
631
+ Roy and Tredan [6], trying to capture the intuition underlying the concept of centrality
632
+ claim that for a path graph with nodes 1, . . . , n, where each node u such that 1 < u < n is
633
+ linked to u − 1 and u + 1, it is (converting to our notation) “hard to imagine a centrality f
634
+ such that, given a node u (u ̸= n+1
635
+ 2 ), we have f(u) ̸∈ [f(u − 1), f(u + 1)].”
636
+ Definition 4. Let G be a path graph where each node u such that 1 < u < n is linked to
637
+ u − 1 and u + 1. A centrality measure f on G is said to satisfy the
638
+ • Roy-Tredan (RT) condition if for any node u, u ̸= n+1
639
+ 2
640
+ ⇒ f(u) ∈ [f(u − 1), f(u + 1)];
641
+ • path centripetal condition if the centrality of a node strictly increases with increasing
642
+ shortest path distance from the nearest leaf.
643
+ Obviously, the path centripetal condition is generally stronger than the RT condition.
644
+ Proposition 5 states that the path centripetal condition is fulfilled for all centralities that
645
+ satisfy axioms B and E.
646
+ Proposition 5. For a path graph, any centrality measure that satisfies axioms B and E also
647
+ satisfies the path centripetal condition.
648
+ Proof. Let f(·) satisfy axioms B and E. Consider the path graph 1—2—· · · —n, where “—”
649
+ denotes an edge. Let 1 ≤ u = v − 1 < n. Suppose that v ≤ n+1
650
+ 2 . Then {u, v} ∈ E is a
651
+ bridge and by axiom B, f(u) < f(v), since |Vu| < |Vv|. Hence for such u and v, the centrality
652
+ strictly increases with increasing distance from the nearest leaf 1. The case of u ≥ n+1
653
+ 2
654
+ is
655
+ considered similarly. Finally, if u − 1 = n − v, i.e., u and v have the same distance from the
656
+ nearest leaf, then u ∼ v and by axiom E, f(u) = f(v).
657
+ It is all the more remarkable that PageRank, one of the most popular5 centrality measures,
658
+ according to Roy and Tredan, is “hard to imagine” as it violates the RT condition.
659
+ Proposition 6. For the path graph 1—2—3—4—5, the PageRank centrality f PR
660
+ α (·) with any
661
+ parameter α violates the RT condition. Namely, f PR
662
+ α (2) > f PR
663
+ α (1) and f PR
664
+ α (2) > f PR
665
+ α (3).
666
+ 5According to [52], “PageRank centrality is probably the most well-known and frequently used measure.”
667
+ 14
668
+
669
+ Proof.
670
+ For the path graph 1—2—3—4—5, let us search the solution of (16) in the form
671
+ x = (x1, x2, x3, x2, x1)T, where x1 = 1. Then the first two equations of (16) have the form
672
+ α
673
+ 2 x2 + 1 − α
674
+ 5
675
+ (2 + 2x2 + x3)
676
+ =
677
+ 1;
678
+ α + α
679
+ 2 x3 + 1 − α
680
+ 5
681
+ (2 + 2x2 + x3)
682
+ =
683
+ x2.
684
+ The solution of this system is:
685
+ x2
686
+ =
687
+ 2(−α2 + 2α + 4)−1(3α + 2);
688
+ x3
689
+ =
690
+ 2(−α2 + 2α + 4)−1(α2 + 2α + 2).
691
+ Since both differences x2 − x1 = α(α + 4)(−α2 + 2α + 4)−1 and x2 − x3 = 2α(1 − α)(−α2 +
692
+ 2α + 4)−1 are strictly positive for all α ∈ (0, 1), PageRank centralities with all appropriate
693
+ parameter values violate the RT condition. Namely, x2 > x1 and x2 > x3.
694
+ Node 3 of the 1—2—3—4—5 path can be considered as its center. It follows from the
695
+ proof of Proposition 6 that PageRank never assigns maximum centrality to this center. It
696
+ can be shown that PageRank centrality also violates the RT condition on paths with n > 5.
697
+ It is worth noting that if the user considers the Self-consistency or Bridge axiom as an
698
+ indispensable property of a centrality measure, then this leads to a dramatic reduction of
699
+ the set of candidate measures (see [1], where the corresponding reduced surveys for choosing
700
+ the most appropriate centrality measure are shown in Figures 7 and 8).
701
+ 8
702
+ Combinations with monotonicity axioms
703
+ In this section, we focus on edge-monotonicity conditions, which, as well as the Self-
704
+ consistency and Bridge axioms, belongs to the class of positive responsiveness axioms. It is
705
+ proved that together with axiom E (and once S) they imply the star and path centripetal
706
+ conditions and contradict axiom B, while PageRank violates axioms B, S, and Transit mono-
707
+ tonicity.
708
+ The edge-monotonicity axioms of this section involve two graphs: an original graph G0
709
+ and a graph G obtained from G0 by adding an extra edge (extra edges). These axioms
710
+ restrict a universal centrality measure fG(·) operating on any connected graph G. The word
711
+ “universal” in the formulations of Propositions 7 to 10 is implied, not explicit.
712
+ Axiom M (Monotonicity). Suppose that u, v ∈ V (G0), fG0(u) ≤ fG0(v), u ̸= v, and G =
713
+ G0 ∪ G′ ̸= G0, where V (G′) = {v, w}, E(G′) = {{v, w}}, and w ̸= u. Then fG(u) < fG(v).
714
+ According to Monotonicity, if u is no more central than v and a new edge not adjacent
715
+ to u is attached to v, then v becomes or remains more central than u.
716
+ Similar axioms called Adding rank monotonicity and Strict rank-monotonicity have been
717
+ proposed in [47] and [53] (for directed graphs), respectively. Item 1.2 of Dynamic monotonic-
718
+ ity in [54] is the corresponding condition for directed graphs representing paired comparisons.
719
+ Monotonicity together with axiom E imply the star condition.
720
+ 15
721
+
722
+ Proposition 7. For a star with two or more rays, any centrality measure that satisfies
723
+ axioms E and M also satisfies the star condition and assigns the same centrality to all leaves.
724
+ Proof.
725
+ By E, the centrality of the two nodes of a 1-ray star is the same. By M, adding one
726
+ more node adjacent to the “center” of the 1-ray star makes the centrality of the center greater
727
+ than the same centrality of the leaves, and attaching additional leaves preserves this.
728
+ Transit monotonicity is a natural strengthening of M.
729
+ Axiom T (Transit monotonicity).
730
+ If u, v ∈ V (G0), fG0(u) ≤ fG0(v), u ̸= v, G =
731
+ G0 ∪ G′ ̸= G0, and any path in G from a node of G′ to u contains v, then fG(u) < fG(v).
732
+ According to Transit monotonicity, if u is no more central than v and v is a cutpoint
733
+ between the new edges and u, then v becomes or remains more central than u.
734
+ Together with E, Transit monotonicity implies the path centripetal condition.
735
+ Proposition 8. For a path graph, any centrality measure that satisfies axioms E and T also
736
+ satisfies the path centripetal condition.
737
+ Proof.
738
+ By E, the conclusion holds for the 1—2 path graph on two nodes. Assume that it
739
+ holds for the path graph 1—· · · —2k. Then for all i ∈ {1, . . . , k}, f(i) ≤ f(i + 1). Attaching
740
+ a new node 2k +1 and the edge {2k, 2k +1} provides the path graph 1—· · · —(2k +1). Since
741
+ any path in the new graph from 2k + 1 to i contains i + 1, axiom T implies f(i) < f(i + 1).
742
+ Therefore, the centrality of the nodes i ∈ {1, . . . , k + 1} of the new graph strictly increases
743
+ with the increase of the shortest path distance from the nearest leaf. This is also the case
744
+ for the remaining nodes i ∈ {k + 2, . . . , 2k + 1} by axiom E, since for them i ∼ (2k + 2 − i).
745
+ Thus, the conclusion of Proposition 8 is true for the 1—· · · —(2k + 1) graph. Adding node
746
+ 2k + 2 and edge {2k + 1, 2k + 2} to it, we similarly derive that this conclusion also holds for
747
+ the resulting 1—· · · —(2k + 2) graph. This completes the proof by induction.
748
+ As a corollary of Proposition 8 we obtain that PageRank centrality violates axiom T.
749
+ Moreover, it does not satisfy axioms B and S.
750
+ Proposition 9. The PageRank centrality with any parameter α violates axioms T, B, and S.
751
+ Proof. PageRank centrality violates axiom T since otherwise, by Proposition 8, PageRank,
752
+ obeying axiom E, satisfies the path centripetal condition and therefore the RT condition,
753
+ which is not true by Proposition 6.
754
+ By Proposition 5, axioms B and E imply the path centripetal condition. Thus, PageRank
755
+ centrality similarly violates axiom B.
756
+ In the path graph 1—2—3—4—5, node 2 has neighbors 1 and 3, 3 has neighbors 2 and 4;
757
+ by Proposition 6, for any α ∈ (0, 1), f PR
758
+ α (2) > f PR
759
+ α (1) and f PR
760
+ α (4) = f PR
761
+ α (2) > f PR
762
+ α (3), i.e.,
763
+ the neighbors of 3 have higher centrality values than the corresponding neighbors of 2. In
764
+ this case, axiom S requires f PR
765
+ α (3) > f PR
766
+ α (2), which is not the case. Therefore, axiom S is
767
+ violated.
768
+ On some other peculiarities of the PageRank centrality, see [1, Section 1].
769
+ We conclude by showing that under Equivalence, the conjunction of M and S is incom-
770
+ patible with axiom B, and so is T.
771
+ 16
772
+
773
+ Proposition 10. If a centrality measure satisfies axioms E, M, and S or axioms E and T,
774
+ then it violates axiom B.
775
+ Proof.
776
+ Let a universal centrality measure satisfy axioms E and B. For the graph G in
777
+ Fig. 3a, fG(4) = fG(3) by B. For the graph G0 in Fig. 3b, fG0(4) = fG0(3) by E. Observe
778
+ that G = G0 ∪ G′, where V (G′) = {0, 1} and E(G′) = {{0, 1}}.
779
+ (a)
780
+ (b)
781
+ Figure 3: (a) A graph G on which axiom B is incompatible with E&M&S as well as with
782
+ E&T; (b) G0, a subgraph of G used in the proof of Proposition 10.
783
+ Assume that this universal centrality measure satisfies axioms M and S. By E and M,
784
+ fG(0) = fG(1) > fG(2) = fG(5). Therefore, by S, fG(4) > fG(3), a contradiction.
785
+ Now assume that, instead of M&S, this centrality measure satisfies axiom T. Since all
786
+ paths in G from 0 or 1 to 3 contain 4, by T, fG(4) > fG(3) holds, a contradiction.
787
+ Axioms B and T are incompatible under Equivalence for the following reason. Suppose
788
+ that {u, v} is a bridge in G and |Vu| = |Vv|. Then B implies f(u) = f(v). However, if
789
+ the restriction of E(G) to Vu is sparse, while its restriction to Vv is dense, then T requires
790
+ f(u) < f(v). The logic of axiom S is similar to that of T in terms of transferring influences,
791
+ however, S is not “grounded” as it does not require any direct effect of density on centrality.
792
+ In the conjunction M&S, axiom M provides this “grounding.”
793
+ 9
794
+ Discussion
795
+ Each point centrality measures some structural capital of the nodes.
796
+ According to the
797
+ Bridge axiom, one end-node of a bridge is more central than the other if and only if the
798
+ removal of the bridge leaves the first one in a greater (in terms of the number of nodes)
799
+ component. In this sense, the corresponding capital is node-based: it does not depend on
800
+ the density of the components. Self-consistency states that a node’s capital increases with
801
+ the capital of its neighbors. By the Monotonicity axiom, edges incident to a node contribute
802
+ to its capital, i.e., the corresponding capital is locally edge-based. The conjunction of the
803
+ Self-consistency and Monotonicity makes this impact of edges global.
804
+ As a result, this
805
+ conjunction turns out to be incompatible (under Equivalence) with the node-based Bridge
806
+ axiom (Proposition 10). Similarly, by the same proposition, the Bridge axiom is incompatible
807
+ with the Transit monotonicity axiom, which postulates the edge nature of the capital globally.
808
+ 17
809
+
810
+ 5
811
+ 4
812
+ 3
813
+ 2
814
+ 05
815
+ 4
816
+ 3
817
+ 2
818
+ 0
819
+ GoAn additional subject of this paper is the properties of the PageRank centrality measure
820
+ related to the main topic. It turns out that this measure violates most of the conditions
821
+ we consider and even has a property that, according to some authors, “is hard to imag-
822
+ ine” for a measure of centrality. The reason for this is the stochastic normalization used
823
+ in PageRank. In the path graph 1—2—3—4—5 used in Proposition 6, nodes 2 and 4 have
824
+ maximum PageRank centrality as they are linked to the leaves: these links receive a maxi-
825
+ mum weight of 1, since normalization does not change them. This maximum weight can be
826
+ interpreted as the specific importance of these links for the leaves, and not for the nodes 2
827
+ and 4, which profit from this weight. It is this counterintuitive normalization that violates
828
+ the RT condition.
829
+ The axioms of Self-consistency and Bridge are quite strong, so the adoption of either
830
+ of them dramatically reduces the set of centrality measures under consideration. This fact
831
+ is used in [1], where the “culling” method for determining the most appropriate centrality
832
+ measure is proposed.
833
+ This method consists in compiling and completing a survey that
834
+ allows the user to find a measure that matches their underlying concept of centrality. In the
835
+ framework of this method, adopting a certain axiom results in compiling a shorter survey
836
+ on the set of measures that satisfy this axiom. In [1], the surveys reduced to the measures
837
+ obeying the Self-consistency or Bridge axioms are shown in Figures 7 and 8, respectively.
838
+ Acknowledgement
839
+ The author thanks Anna Khmelnitskaya and Dmitry Gubanov for helpful discussions.
840
+ References
841
+ [1] P. Chebotarev, D. Gubanov, How to choose the most appropriate centrality measure?, Preprint
842
+ [physics.soc-ph] 2003.01052, arXiv, https://doi.org/10.48550/arXiv.2003.01052 (2020).
843
+ [2] Centiserver: the most comprehensive centrality resource and web application for centrality
844
+ measures calculation, https://www.centiserver.org/?q1=centrality (2022).
845
+ [3] R. E. Preston, Two centrality models, Yearbook of the Association of Pacific Coast Geographers
846
+ 32 (1) (1970) 59–78.
847
+ [4] S. Wasserman, K. Faust, Social Network Analysis: Methods and Applications, Cambridge
848
+ University Press, 1994.
849
+ [5] R. Geisberger, P. Sanders, D. Schultes, Better approximation of betweenness centrality, in: 2008
850
+ Proceedings of the Tenth Workshop on Algorithm Engineering and Experiments (ALENEX),
851
+ SIAM, 2008, pp. 90–100.
852
+ [6] M. Roy, G. Tr´edan, Sharpening the definition of centrality, Poster session presented at 1st
853
+ Workshop on Social Networks and Distributed Systems (SNDS’10), https://homepages.laas.
854
+ fr/gtredan/pdf/snds10.pdf (2010).
855
+ 18
856
+
857
+ [7] J. Lockhart, G. Minello, L. Rossi, S. Severini, A. Torsello, Edge centrality via the Holevo quan-
858
+ tity, in: Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition
859
+ (SPR) and Structural and Syntactic Pattern Recognition (SSPR), Springer, 2016, pp. 143–152.
860
+ [8] F. Buckley, F. Harary, Distance in Graphs, Addison-Wesley, Redwood City, CA, 1990.
861
+ [9] S. S. Ali, T. Anwar, S. A. M. Rizvi, A revisit to the infection source identification problem
862
+ under classical graph centrality measures, Online Social Networks and Media 17 (2020) 100061.
863
+ [10] A. Bavelas, A mathematical model for group structures, Applied Anthropology 7 (3) (1948)
864
+ 16–30.
865
+ [11] A. Bavelas, Communication patterns in task-oriented groups, The Journal of the Acoustical
866
+ Society of America 22 (6) (1950) 725–730.
867
+ [12] F. Harary, R. Z. Norman, The dissimilarity characteristic of Husimi trees, Annals of Mathe-
868
+ matics (1953) 134–141.
869
+ [13] P. Chebotarev, Studying new classes of graph metrics, in: F. Nielsen, F. Barbaresco (Eds.),
870
+ Proceedings of the SEE Conference “Geometric Science of Information” (GSI–2013), LNCS
871
+ 8085, Springer, Berlin, 2013, pp. 207–214.
872
+ [14] K. Avrachenkov, P. Chebotarev, D. Rubanov, Similarities on graphs: Kernels versus proximity
873
+ measures, European Journal of Combinatorics 80 (2019) 47–56.
874
+ [15] L. Katz, A new status index derived from sociometric analysis, Psychometrika 18 (1) (1953)
875
+ 39–43.
876
+ [16] P. Y. Chebotarev, E. V. Shamis, On proximity measures for graph vertices, Automation and
877
+ Remote Control 59 (10) (1998) 1443–1459.
878
+ [17] F. Fouss, M. Saerens, M. Shimbo, Algorithms and Models for Network Data and Link Analysis,
879
+ Cambridge University Press, 2016.
880
+ [18] E. Estrada, J. A. Rodriguez-Velazquez, Subgraph centrality in complex networks, Physical
881
+ Review E 71 (5) (2005) 056103.
882
+ [19] F. Fouss, L. Yen, A. Pirotte, M. Saerens, An experimental investigation of graph kernels
883
+ on a collaborative recommendation task, in: Sixth International Conference on Data Mining
884
+ (ICDM’06), 2006, pp. 863–868.
885
+ [20] P. Y. Chebotarev, E. Shamis, On the proximity measure for graph vertices provided by the
886
+ inverse Laplacian characteristic matrix, in: Abstracts of the Conference “Linear Algebra and
887
+ its Applications”, University of Manchester, Manchester, UK, 1995, pp. 6–7, http://www.ma.
888
+ man.ac.uk/~higham/laa95/abstracts.ps.
889
+ [21] A. J. Smola, R. I. Kondor, Kernels and regularization of graphs, in: Proceedings of the 16th
890
+ Annual Conference on Learning Theory, 2003, pp. 144–158.
891
+ [22] R. I. Kondor, J. Lafferty, Diffusion kernels on graphs and other discrete structures, in: Pro-
892
+ ceedings of the 19th International Conference on Machine Learning, 2002, pp. 315–322.
893
+ 19
894
+
895
+ [23] I. J. Schoenberg, Remarks to M. Fr´echet’s article “Sur la d´efinition axiomatique d’une classe
896
+ d’espaces vectoriels distanci´es applicables vectoriellement sur l’espace de Hilbert”, Annals of
897
+ Mathematics 36 (1935) 724–732.
898
+ [24] I. J. Schoenberg, Metric spaces and positive definite functions, Transactions of the American
899
+ Mathematical Society 44 (1938) 522–536.
900
+ [25] P. Y. Chebotarev, E. V. Shamis, On a duality between metrics and Σ-proximities, Automation
901
+ and Remote Control 59 (4) (1998) 608–612.
902
+ [26] P. Chebotarev, The graph bottleneck identity, Advances in Applied Mathematics 47 (3) (2011)
903
+ 403–413.
904
+ [27] R. L. de Andrade, L. C. Rˆego, p-means centrality, Communications in Nonlinear Science and
905
+ Numerical Simulation 68 (2019) 41–55.
906
+ [28] F. Agneessens, S. P. Borgatti, M. G. Everett, Geodesic based centrality: Unifying the local
907
+ and the global, Social Networks 49 (2017) 12–26.
908
+ [29] Y. Jin, Q. Bao, Z. Zhang, Forest distance closeness centrality in disconnected graphs, in: 2019
909
+ IEEE International Conference on Data Mining (ICDM), IEEE, 2019, pp. 339–348.
910
+ [30] M. Benzi, C. Klymko, Total communicability as a centrality measure, Journal of Complex
911
+ Networks 1 (2) (2013) 124–149.
912
+ [31] P. De Meo, M. Levene, F. Messina, A. Provetti, A general centrality framework based on node
913
+ navigability, IEEE Transactions on Knowledge and Data Engineering 32 (11) (2020) 2088–2100.
914
+ [32] G. Sabidussi, The centrality index of a graph, Psychometrika 31 (4) (1966) 581–603.
915
+ [33] O. Skibski, J. Sosnowska, Axioms for distance-based centralities, in: Thirty-Second AAAI
916
+ Conference on Artificial Intelligence (AAAI–18), 2018, pp. 1218–1225.
917
+ [34] A. Khmelnitskaya, G. van der Laan, D. Talman, Generalization of binomial coefficients to
918
+ numbers on the nodes of graphs, Tech. rep., Tinbergen Institute (2016).
919
+ [35] V. Dequiedt, Y. Zenou, Local and consistent centrality measures in parameterized networks,
920
+ Mathematical Social Sciences 88 (2017) 28–36.
921
+ [36] P. Bonacich, P. Lloyd, Eigenvector-like measures of centrality for asymmetric relations, Social
922
+ Networks 23 (3) (2001) 191–201.
923
+ [37] P. Y. Chebotarev, E. Shamis, Constructing an objective function for aggregating incomplete
924
+ preferences, in: A. Tangian, J. Gruber (Eds.), Econometric Decision Models, Lecture Notes in
925
+ Economics and Mathematical Systems, Vol. 453, Springer, Berlin, 1997, pp. 100–124.
926
+ [38] P. Y. Chebotarev, E. Shamis, Characterizations of scoring methods for preference aggregation,
927
+ Annals of Operations Research 80 (1998) 299–332.
928
+ [39] P. Y. Chebotarev, E. V. Shamis, Preference fusion when the number of alternatives exceeds two:
929
+ Indirect scoring procedures, Journal of the Franklin Institute 336 (1999) 205–226, Erratum, J.
930
+ Franklin Inst., 1999, vol. 336, pp. 747–748.
931
+ 20
932
+
933
+ [40] S. Bandyopadhyay, M. N. Murty, R. Narayanam, A generic axiomatic characterization of cen-
934
+ trality measures in social network, Preprint [cs.SI] 1703.07580, arXiv, https://doi.org/10.
935
+ 48550/arXiv.1703.07580 (2017).
936
+ [41] S. Bandyopadhyay, R. Narayanam, M. N. Murty, A generic axiomatic characterization for mea-
937
+ suring influence in social networks, in: 24th International Conference on Pattern Recognition
938
+ (ICPR–2018), IEEE, 2018, pp. 2606–2611.
939
+ [42] D. Schoch, Centrality without indices: Partial rankings and rank probabilities in networks,
940
+ Social Networks 54 (2018) 50–60.
941
+ [43] N. R. Miller, A new solution set for tournaments and majority voting: Further graph-theoretical
942
+ approaches to the theory of voting, American Journal of Political Science 24 (1) (1980) 68–96.
943
+ [44] L. C. Freeman, A set of measures of centrality based on betweenness, Sociometry 40 (1) (1977)
944
+ 35–41.
945
+ [45] P. Chebotarev, Extending utility functions on arbitrary sets, Preprint [math.OC] 2212.03394,
946
+ arXiv, https://doi.org/10.48550/arXiv.2212.03394 (2022).
947
+ [46] P. Bonacich, Power and centrality: A family of measures, American Journal of Sociology 92 (5)
948
+ (1987) 1170–1182.
949
+ [47] L. Csat´o, Measuring centrality by a generalization of degree, Central European Journal of
950
+ Operations Research 25 (4) (2017) 771–790.
951
+ [48] E. Landau, Zur relativen Wertbemessung der Turnierresultate, Deutsches Wochenschach 11
952
+ (1895) 366–369.
953
+ [49] P. Bonacich, Factoring and weighting approaches to status scores and clique identification,
954
+ Journal of Mathematical Sociology 2 (1) (1972) 113–120.
955
+ [50] S. Brin, L. Page, The anatomy of a large-scale hypertextual web search engine, Computer
956
+ Networks and ISDN Systems 30 (1–7) (1998) 107–117.
957
+ [51] L. C. Freeman, Centrality in social networks: Conceptual clarification, Social Networks 1 (3)
958
+ (1978) 215–239.
959
+ [52] X. Tu, G.-P. Jiang, Y. Song, X. Zhang, Novel multiplex PageRank in multilayer networks,
960
+ IEEE Access 6 (2018) 12530–12538.
961
+ [53] P. Boldi, A. Luongo, S. Vigna, Rank monotonicity in centrality measures, Network Science
962
+ 5 (4) (2017) 529–550.
963
+ [54] P. Y. Chebotarev, Aggregation of preferences by the generalized row sum method, Mathemat-
964
+ ical Social Sciences 27 (1994) 293–320.
965
+ 21
966
+
D9AyT4oBgHgl3EQfSPfV/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
DNAyT4oBgHgl3EQfefhw/content/tmp_files/2301.00322v1.pdf.txt ADDED
@@ -0,0 +1,871 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Encrypted Data-driven Predictive Cloud Control with Disturbance
2
+ Observer
3
+ Qiwen Li, Runze Gao and Yuanqing Xia∗
4
+ Abstract— In data-driven predictive cloud control tasks, the
5
+ privacy of data stored and used in cloud services could be leaked
6
+ to malicious attackers or curious eavesdroppers. Homomorphic
7
+ encryption technique could be used to protect data privacy
8
+ while allowing computation. However, extra errors are intro-
9
+ duced by the homomorphic encryption extension to ensure the
10
+ privacy-preserving properties, and the real number truncation
11
+ also brings uncertainty. Also, process and measure noise existed
12
+ in system input and output may bring disturbance. In this work,
13
+ a data-driven predictive cloud controller is developed based
14
+ on homomorphic encryption to protect the cloud data privacy.
15
+ Besides, a disturbance observer is introduced to estimate and
16
+ compensate the encrypted control signal sequence computed in
17
+ the cloud. The privacy of data is guaranteed by encryption and
18
+ experiment results show the effect of our cloud-edge cooperative
19
+ design.
20
+ Index Terms— Cloud Control Systems, Data-Driven Predic-
21
+ tive Control, Disturbance Observer, Homomorphic Encryption.
22
+ I. INTRODUCTION
23
+ Cloud computing provides enormous computing and stor-
24
+ age resources for the implementation of control applications,
25
+ which brings the concept of cloud control systems (CCSs)
26
+ [1]–[3]. In CCSs, control algorithms are outsourced and
27
+ executed on cloud platforms to offer control services for
28
+ local plants. With the development of CCSs, there is an
29
+ emerging requirement of cloud control for complex systems.
30
+ However, the complexity and scale of control systems bring
31
+ new difficulty in designing model-based cloud control laws,
32
+ since system models are difficult to obtain. As a kind of
33
+ model-free control approach, data-driven predictive control
34
+ (DPC) [4] directly computes control sequences based on the
35
+ input-output data of the system, which avoids the process
36
+ of system modeling. Therefore, the combination of CCSs
37
+ and DPC, i.e., data-driven predictive cloud control (DPCC)
38
+ [5]–[7], takes advantage of data storage and computation in
39
+ the cloud, as well as the model-free manner in control of
40
+ complex systems, becoming a potential candidate in CCSs.
41
+ However, in DPCC scenarios, the input-output data and
42
+ control law of systems are stored and computed in the
43
+ cloud with no data privacy protection, leading to the risk
44
+ of privacy leakage. To be specific, an eavesdropper could
45
+ get access to the private system data through communication
46
+ channel, cloud storage and memory. The eavesdropper could
47
+ consequently infer the state and model of the system for
48
+ malicious purposes, such as advanced persistent threat (APT)
49
+ Q. Li, R. Gao and Y. Xia are with School of Automation, Beijing
50
+ Institute of Technology, Beijing 100081, P. R. China. (Corresponding
51
+ author: Yuanqing Xia). E-mail address: [email protected] (Q. Li),
52
+ runze [email protected] (R. Gao), xia [email protected] (Y. Xia).
53
+ design and system state tracking. Thus, the privacy issues in
54
+ DPCC should be seriously considered.
55
+ As a solution, we use homomorphic encryption (HE)
56
+ approaches to protect data privacy while computing the
57
+ DPCC control law, since HE schemes allow computations
58
+ on encrypted data. Specifically, we use CKKS scheme [8],
59
+ which is a RLWE-based HE protocol that ensures the privacy
60
+ of the scheme through introducing errors to satisfy the
61
+ hardness of the RLWE problem. In CKKS scheme, complex-
62
+ number vectors are mapped to integer-coefficient polyno-
63
+ mials through interpolation, amplification and truncation.
64
+ Consequently, the addition and multiplication of ciphertext
65
+ in polynomials are homomorphically equivalent to element-
66
+ wise addition and multiplication of plaintext in vectors. In
67
+ this work, we design a privacy-preserving DPCC controller
68
+ based on CKKS scheme to compute control sequences while
69
+ keeping system information invisible to potential attackers.
70
+ When performing the privacy-preserving DPCC tasks
71
+ described above, we should consider the effects on the
72
+ control quality induced by system noise and uncertainty.
73
+ Firstly, errors are introduced to the privacy-preserving DPCC
74
+ procedure through HE scheme. To be specific, errors are
75
+ introduced to public keys in CKKS scheme to protect the
76
+ semantic security properties. Moreover, the amplification and
77
+ truncation procedure bring noises into ciphertexts. Besides,
78
+ measurement noise, process noise and system uncertainty are
79
+ ubiquitous in control systems, which consequently influence
80
+ the control effect of data-driven approaches.
81
+ Hence, disturbance observer (DOB) [5], [9], [10] is used
82
+ to guarantee the control accuracy under the uncertainty,
83
+ including system noise and errors induced by HE scheme.
84
+ The function of DOB is to estimate the effects performed
85
+ on a system based on an auxiliary system. If estimated, the
86
+ system uncertainty could be properly compensated with a
87
+ suitable magnitude.
88
+ Motivated by the above reasons, the main contributions of
89
+ the privacy-preserving DPCC based on HE scheme are listed
90
+ as follows:
91
+ • We design a private DPCC protocol based on CKKS
92
+ scheme, which preserves the privacy of sensitive system
93
+ input-output data.
94
+ • We apply the DOB technique to estimate and com-
95
+ pensate for the uncertainty induced by the HE scheme
96
+ and system noise under the privacy-preserving DPCC
97
+ scenario.
98
+ • A numerical example shows the effectiveness of
99
+ privacy-preserving DPCC with DOB, compared to un-
100
+ encrypted non-DOB and encrypted non-DOB condi-
101
+ arXiv:2301.00322v1 [eess.SY] 1 Jan 2023
102
+
103
+ tions.
104
+ The remainder of this work is shown as follows. DPCC
105
+ approaches and their privacy issues are briefly surveyed in
106
+ Section II, based on which we develop a privacy-preserving
107
+ data-driven control protocol in Section III. In Section IV,
108
+ a disturbance observer is proposed to compensate for the
109
+ error induced by encryption and data noise. In Section V
110
+ a numerical example of our proposed method is shown to
111
+ demonstrate its effectiveness. Section VI concludes the paper.
112
+ II. RELATED WORKS
113
+ Showing potential in model-free control scenarios, DPC
114
+ approaches compute the control input directly from the input-
115
+ output data of the system, and have been widely used in
116
+ extended situations. [11] propose a model-free approach for
117
+ linear parameter-varying systems. A data-driven error model
118
+ is learned with precollected data in [12] to achieve accurate
119
+ position tracking with a robot arm.
120
+ DPC approaches may require extensive data to estimate
121
+ system models or generate control inputs, in which cases the
122
+ computation time of system input may become the bottleneck
123
+ of implementation. Thus cloud computing and distributed
124
+ computing are gathering more and more attention in DPC
125
+ tasks for the possibility of computation acceleration by prop-
126
+ erly utilizing elastic resources in the cloud. [6], [7] develop a
127
+ cloud-edge-endpoint DPC prototype, showing the feasibility
128
+ of cloud-based control systems. To optimize the effort of
129
+ subspace identification task, which is the basis of data-driven
130
+ control, [13] decomposes the identification algorithm to inter-
131
+ connected containerized tasks through parallel computing.
132
+ A further implementation of cloud-edge cooperative DPCC
133
+ [5] uses workflow-based parallel cloud control and edge
134
+ compensation.
135
+ The privacy of data and models could be leaked through
136
+ outsourced tasks, since the communication channel and
137
+ execution environment could be eavesdropped by untrusted
138
+ third-parties. Therefore, encrypted control approaches have
139
+ been widely studied since it could simultaneously allow
140
+ the computation of control signals and preservation of data
141
+ privacy. Encrypted linear feedback controllers are realized
142
+ in [14]. Moreover, the encrypted realization of more ef-
143
+ ficient and complex control schemes are proposed to fit
144
+ integrated cloud scenarios. In [15], a privacy-preserving sub-
145
+ space identification approach based on partially HE scheme
146
+ is proposed. Alexandru et al. [16] offer offline and online
147
+ encrypted cloud control designs, both based on HE, to
148
+ protect the input-output data of DPC based on a single cloud
149
+ server. Subsequently a privacy-preserving distributed alter-
150
+ nating direction method of multipliers approach is designed
151
+ to perform the system estimation process in ciphertexts [17].
152
+ III. PRELIMINARIES
153
+ In this section, we sketch the preliminaries of DPC and
154
+ RLWE-based HE.
155
+ A. Implementation of data-driven predictive control
156
+ We consider a state-space expression of discrete linear
157
+ time-invariant (LTI) system:
158
+ x(k + 1) =Ax(k) + Bu(k) + ϵp,
159
+ y(k) =Cx(k) + ϵs,
160
+ (1)
161
+ where x(k) ∈ Rn, u(k) ∈ Rm, y(k) ∈ Rp are the state,
162
+ input and output vector of the system, ϵp, ϵs are process
163
+ noise and measure noise of suitable shapes, respectively. In
164
+ the following statements, vectors are all viewed as column
165
+ vectors, except for additional specifications.
166
+ In DPC, we cannot access the specific parameter A, B
167
+ and C mentioned in (1). Therefore, data-driven approaches
168
+ are used to infer the system information and perform control
169
+ task. Specifically, we have the input-output data series of the
170
+ system through time:
171
+ {u(n), y(n), n = 1, 2, ..., T}.
172
+ At every time step k, we use some slices of the input-
173
+ output data series as prior information of the system for
174
+ identification, which are denoted as:
175
+ uf(k) =
176
+
177
+ ����
178
+ u(k)
179
+ u(k + 1)
180
+ ...
181
+ u(k + N − 1)
182
+
183
+ ���� , yf(k) =
184
+
185
+ ����
186
+ y(k)
187
+ y(k + 1)
188
+ ...
189
+ y(k + N − 1)
190
+
191
+ ���� ,
192
+ up(k) =
193
+
194
+ ����
195
+ u(k − N)
196
+ u(k − N + 1)
197
+ ...
198
+ u(k − 1)
199
+
200
+ ���� , yp(k) =
201
+
202
+ ����
203
+ y(k − N)
204
+ y(k − N + 1)
205
+ ...
206
+ y(k − 1)
207
+
208
+ ���� ,
209
+ (2)
210
+ and
211
+ vp(k) =
212
+ � yp(k)
213
+ up(k)
214
+
215
+ ,
216
+ (3)
217
+ where the subscript ”p” and ”f” indicate ”past” and ”future”,
218
+ respectively.
219
+ Based on the slices shown above, we can fit the implicit
220
+ system expression with linear regression:
221
+ yf(k) = Lvvp(k) + Luuf(k) + e(k),
222
+ (4)
223
+ where Lv and Lu are coefficient matrices to be fit with
224
+ appropriate shapes that contain system information, e(k) is
225
+ a noise vector.
226
+ Aiming at sufficiently utilizing prior information, we con-
227
+ catenate the slices of data into the form of Hankel matrix:
228
+ Uf(k) = [uf(N) uf(N + 1) · · · uf(N + j − 1)],
229
+ (5)
230
+ Yf(k) = [yf(N) yf(N + 1) · · · yf(N + j − 1)],
231
+ (6)
232
+ Vp(k) = [vp(N) vp(N + 1) · · · vp(N + j − 1)].
233
+ (7)
234
+ Thus the linear regression problem (4) can be viewed as:
235
+ Yf(k) = LvVp(k) + LuUf(k) + E(k).
236
+ (8)
237
+
238
+ After solving this linear regression problem, i.e. Lv, Lu
239
+ being obtained, we consider an optimal control problem with
240
+ the loss function
241
+ J = (rf(k) − yf(k))⊤Q(rf(k) − yf(k)) + uf(k)⊤Ruf(k),
242
+ (9)
243
+ where Q and R are positive-definite matrices of appropriate
244
+ shapes, rf is the reference signal. Problem (9) could be
245
+ solved by taking derivative of J with respect to uf after
246
+ substituting (4) to (9):
247
+ uf(k) = (R + L⊤
248
+ u QLu)−1L⊤
249
+ u Q(rf − Lvvp(k)),
250
+ (10)
251
+ where uf(k) is a sequence of predicted control signals.
252
+ B. Lattice-based HE
253
+ HE schemes enable addition and/or multiplication on en-
254
+ crypted data, which is ensured by a homomorphism between
255
+ ciphertext space and plaintext space [18]. HE schemes can
256
+ be divided into three categories [16]: partially HE, somewhat
257
+ HE and fully HE. Partially HE schemes only support addition
258
+ or multiplication. Levelled or somewhat HE schemes extend
259
+ the functionality of partially HE and enable both addition and
260
+ multiplication, with limited times of computation. Fully HE
261
+ schemes allow infinite times of addition and multiplication,
262
+ thus support evaluating arbitrary computable functions. Some
263
+ levelled HE schemes could be converted to fully HE schemes
264
+ with the use of a refresh algorithm called bootstrapping [19].
265
+ In this work, we use CKKS scheme [8], [19], a typical
266
+ public key encryption scheme which is levelled homomor-
267
+ phic on complex vectors. CKKS scheme supports addition,
268
+ finite times element-wise multiplication on real vectors, to
269
+ protect the privacy of data-driven control. Besides, CKKS
270
+ scheme utilizes key-switching technique to support advanced
271
+ operation like element-wise vector rotation and relineariza-
272
+ tion after multiplication. Also, CKKS scheme supports ci-
273
+ phertext rescaling to control the noise expansion caused by
274
+ specific operations.
275
+ A brief description of CKKS scheme is shown in Fig.
276
+ 1. Denote N be power of 2 and QL be a big modulus
277
+ that equals to the product of a series of positive integers
278
+ {q0, q1, ..., qL}. In CKKS scheme, a complex vector m with
279
+ at most N/2 elements is interpolated into a polynomial.
280
+ Then the embedded polynomial is multiplied by a large
281
+ scaling factor ∆ and truncated to get plaintext p, which is a
282
+ polynomial in ZQL [X] /(XN + 1), for further encryption.
283
+ Vector
284
+ Plaintext Polynomial
285
+ Ciphertext
286
+ Vector
287
+ Plaintext Polynomial
288
+ Ciphertext
289
+ Interpolation
290
+ Evaluation
291
+ Encryption
292
+ Decryption
293
+ Addition
294
+ Multiplication
295
+ Rotation
296
+ ……
297
+ �/�
298
+ ��
299
+
300
+
301
+
302
+ ��
303
+
304
+
305
+
306
+
307
+ ��
308
+
309
+
310
+ ��
311
+
312
+ �/�
313
+ Fig. 1.
314
+ A brief description of CKKS scheme.
315
+ The plaintext p will be encrypted into the form of cipher-
316
+ text c = (c0, c1) such that c0 + c1s = p + e (mod Ql),
317
+ where s is the secret key and e is the error. Here, ciphertext
318
+ c ∈ Z2
319
+ Ql [X] /(XN + 1) is denoted to be at level l with
320
+ Ql = �l
321
+ i=0 qi for l = 1, ..., L + 1. The plaintext p could be
322
+ encrypted both by the secret key s and the public key but
323
+ could be only decrypted with the secret key. The security
324
+ properties of CKKS scheme are ensured by the hardness of
325
+ the RLWE problem [18]. Specifically, all the public keys
326
+ are in the form of RLWE example (−as + e, a), where
327
+ random polynomial a and error e safely seal the secret
328
+ key s according to the hardness of the RLWE problem.
329
+ Besides, extra public keys in CKKS scheme are available to
330
+ perform advanced operations like relinearization and rotation
331
+ to support the design of elaborated computations.
332
+ The noise bound in ciphertexts explodes when performing
333
+ multiple homomorphic multiplications since the noise is
334
+ exponentially amplified by the extra scaling factor ∆. As
335
+ shown in Fig. 2, the multiplication result c at level l could
336
+ be rescaled by dividing ql, and the level is consequently
337
+ reduced to l − 1. Therefore, the noise bound explosion
338
+ could be reduced to linear expansion, which allows more
339
+ multiplications to be performed.
340
+
341
+
342
+ ���
343
+
344
+ Multiplication
345
+ &
346
+ Relinearization
347
+ Rescalation
348
+ Fig. 2.
349
+ Illustrated procedure of the scale limitation in CKKS scheme.
350
+ IV. PRIVACY-PRESERVING DPCC DESIGN WITH
351
+ DOB
352
+ In DPCC scenarios, we assume that the public cloud envi-
353
+ ronment and potential eavesdroppers are honest but curious,
354
+ which means that they will perform the specified compu-
355
+ tation or communication correctly, but they want to access
356
+ the system information to infer the current state and system
357
+ dynamics. Therefore, the untrusted part placed in the cloud
358
+ should be encrypted. In this process, the encryption module
359
+ may introduce new uncertainty. Based on this consideration,
360
+ the DOB-based privacy-preserving DPCC solution requires
361
+ the cooperation of three general components: public cloud,
362
+ trustable edge and plant, respectively. The system design
363
+ is shown in Fig. 3. In the public cloud, an encrypted con-
364
+ troller is deployed, maintaining some encrypted matrices to
365
+ compute encrypted control input sequences. On the trustable
366
+ edge platform, the HE module is equipped to encrypt and
367
+ decrypt data, along with a DOB to perform control signal
368
+ compensation. The plant feeds the modified control input
369
+ to the system and returns the current output to the edge
370
+ side. The encrypted data in the cloud controller could be
371
+ periodically updated to fit the current system dynamics.
372
+
373
+ Edge
374
+ Plant
375
+ Public Cloud
376
+ Encrypted Data
377
+ Predicted control
378
+ inputs (encrypted)
379
+ Historical information
380
+ (encrypted)
381
+ System Dynamics
382
+ HE Module
383
+ DOB-based Compensator
384
+ Encryption
385
+ Decryption
386
+ Compensated inputs
387
+ Trustable
388
+ Untrustable
389
+ Fig. 3.
390
+ Design of privacy-preserving DPCC.
391
+ A. Privacy-preserving DPC
392
+ The privacy of the system behavior, including input-output
393
+ data, should be protected. Similar to [16], an offline privacy-
394
+ preserving DPC solution is introduced based on CKKS
395
+ homomorphic encryption scheme.
396
+ We could observe that the computation of (10) is realized
397
+ by specified matrix-vector multiplications. In practice, denote
398
+ matrix Mr := (R + L⊤
399
+ u QLu)−1L⊤
400
+ u Q and Mv := (R +
401
+ L⊤
402
+ u QLu)−1L⊤
403
+ u QLv, which are 2 terms in (10). Since we
404
+ could compute Lv and Lu in advance, Mr and Mv could
405
+ be consequently computed offline on a trustable platform,
406
+ which could be encrypted and uploaded to the cloud, then
407
+ updated periodically.
408
+ Then, the cloud receives the ciphertexts of Mr and Mv,
409
+ and the control input could be consequently computed:
410
+ uf = Mrrf − Mvvp,
411
+ (11)
412
+ where vp is the same as in (3) and timestamp t is omitted
413
+ for convenience. For the efficiency of computation, matrices
414
+ Mr and Mv would be reused for a given interval and then
415
+ updated, which is a trade-off in the computation overhead.
416
+ Consequently, the computing procedure could be reduced
417
+ to a matrix-vector multiplication in ciphertext space. Here,
418
+ a diagonal computation method is utilized to perform the
419
+ computation [19]. To implement the encrypted matrix-vector
420
+ computation Mx, the matrix M ∈ RK×L and vector x ∈ RL
421
+ should firstly be rewritten in an encryption-friendly way,
422
+ which are illustrated in upper part of Fig. 4(a). The modified
423
+ matrix Mmod of matrix M and repeated vector xdup =
424
+
425
+ x⊤ x⊤ ... x⊤�⊤ of x are provided, which are encrypted
426
+ and sent to the cloud computing component.
427
+ Denote the encrypted columns of matrix Mmod ∈ RK×L
428
+ as M (i)
429
+ mod, and we need to homomorphically compute matrix-
430
+ vector multiplication y = Mx in the form of ciphertexts. The
431
+ matrix-vector multiplication in ciphertext is shown as below:
432
+ y =
433
+ L−1
434
+
435
+ i=0
436
+ M (i)
437
+ mod ∗ rot(xdup, i),
438
+ (12)
439
+ where the function rot(xdup, i) is the rotation operation
440
+ supported by the CKKS scheme, meaning that rotating vector
441
+ xdup i steps to the left. The computation procedures are
442
+ illustrated in Fig. 4(b).
443
+ Based on above description, the whole encrypted matrix-
444
+ vector computation procedure is described in Algorithm 1.
445
+ Algorithm 1 Encryption-friendly matrix-vector multiplica-
446
+ tion.
447
+ Input: Matrix M ∈ Rm×n, vector x ∈ Rn.
448
+ Output: Encrypted result of Mx.
449
+ 1: Initialization: build a full zero matrix Mmod with the
450
+ same shape as M.
451
+ 2: for i := 0 to n − 1 do
452
+ 3:
453
+ for j := 0 to m − 1 do
454
+ 4:
455
+ Mmod[j][i] = M[j][(i + j) mod n].
456
+ 5:
457
+ end for
458
+ 6: end for
459
+ 7: xdup := Encryption of
460
+
461
+ x⊤ x⊤ ... x⊤�⊤.
462
+ 8: M (0)
463
+ mod, ... M (n−1)
464
+ mod
465
+ := Encryption of Mmod’s columns
466
+ 9: Compute matrix-vector multiplication through (12).
467
+ B. DOB and DOB-based cooperative control design
468
+ As analyzed in III, CKKS scheme introduces error to pro-
469
+ tect its security, meanwhile the amplification and truncation
470
+ procedures bring error to the system. Besides, the process
471
+ and measurement noise may also impact the control effect.
472
+ For reducing the uncertainty and disturbance existed in HE
473
+ scheme and system dynamics, we adopt the solution in [5],
474
+ which uses a cloud-edge cooperative control design with a
475
+ data-driven DOB to estimate the uncertainty and disturbance
476
+ brought by the cloud. The estimation result obtained by
477
+ data-driven DOB could be added to the control input for
478
+ compensation with a proper gain.
479
+ Assume that only the first term in the decrypted uf is fed
480
+ to the system, which is denoted as uc, as the cloud control
481
+ signal. We take the nominal input-output relationship into
482
+ consideration without noise and disturbance:
483
+ ˆy(k + 1) =
484
+ N
485
+
486
+ i=1
487
+ ˆgiy(k + i − N)
488
+ +
489
+ N
490
+
491
+ i=1
492
+ ˆhiu(k + i − N) + ˆb(k)uc(k + 1),
493
+ (13)
494
+ where ˆgi and ˆhis form the first block row of ˆ
495
+ Lv and ˆ
496
+ Lu,
497
+ i.e. the disturbed term of Lv and Lu, respectively. (13) is
498
+ actually the first p rows of the HE implementation of (4).
499
+ If uncertainty and disturbance are considered, the real
500
+ system dynamics should be:
501
+ y(k + 1) =
502
+ N
503
+
504
+ i=1
505
+ ˆgiy(k + i − N)
506
+ +
507
+ N
508
+
509
+ i=1
510
+ ˆhiu(k + i − N) + ˆbuc(k) + ˆb(k)d(k),
511
+ (14)
512
+ where d(k) = ∆u(k) is the input disturbance.
513
+ Then, a DOB is introduced with the form
514
+ ˆd(k) = P(k) + Ky(k),
515
+ (15)
516
+ where the disturbance d(k) is estimated by ˆd(k), K is the
517
+ observer amplification matrix to be designed, and P(k) is an
518
+
519
+ Repeat & Concatenate
520
+ Duplicate
521
+ Reform
522
+ xdup
523
+ Mmod
524
+ M0,0
525
+ M0,1
526
+ M1,0
527
+ M1,1
528
+ M2,0
529
+ M2,1
530
+ M3,0
531
+ M3,1
532
+ M0,2
533
+ M1,2
534
+ M2,2
535
+ M3,2
536
+ M0,0
537
+ M0,1
538
+ M1,0
539
+ M1,1
540
+ M2,0
541
+ M2,1
542
+ M3,0
543
+ M3,1
544
+ M0,2
545
+ M1,2
546
+ M2,2
547
+ M3,2
548
+ M0,0
549
+ M0,1
550
+ M1,0
551
+ M1,1
552
+ M2,0
553
+ M2,1
554
+ M3,0
555
+ M3,1
556
+ M0,2
557
+ M1,2
558
+ M2,2
559
+ M3,2
560
+ M0,0
561
+ M0,1
562
+ M1,1
563
+ M1,2
564
+ M2,2
565
+ M2,0
566
+ M3,0
567
+ M3,1
568
+ M0,2
569
+ M1,0
570
+ M2,1
571
+ M3,2
572
+ x0
573
+ x1
574
+ x2
575
+ x0
576
+ x1
577
+ x2
578
+ x0
579
+ x1
580
+ x2
581
+ x0
582
+ x1
583
+ x2
584
+ (a) Reformation of matrix and vector.
585
+ Mul
586
+ Mul
587
+ Mul
588
+ Sum
589
+ Rotate(1)
590
+ Rotate(1)
591
+ M0,0
592
+ M0,1
593
+ M1,1
594
+ M1,2
595
+ M2,2
596
+ M2,0
597
+ M3,0
598
+ M3,1
599
+ M0,2
600
+ M1,0
601
+ M2,1
602
+ M3,2
603
+ *
604
+ *
605
+ *
606
+ *
607
+ *
608
+ *
609
+ x2
610
+ x0
611
+ x1
612
+ x2
613
+ *
614
+ *
615
+ x0
616
+ x1
617
+ x2
618
+ x0
619
+ x1
620
+ x2
621
+ x1
622
+ x2
623
+ x0
624
+ x1
625
+ x2
626
+ *
627
+ (Mx)0,1,2,3
628
+ *
629
+ (b) Matrix-vector multiplication procedure.
630
+ Fig. 4.
631
+ Encryption-friendly matrix-vector multiplication: an illustrative example.
632
+ auxiliary vector which is updated as below:
633
+ P(k + 1) = −K(
634
+ N
635
+
636
+ i=1
637
+ ˆgi(k)y(k + i − N)
638
+ +
639
+ N
640
+
641
+ i=1
642
+ ˆhi(k)u(k + i − N)
643
+ +ˆbuc(k) + ˆb ˆd(k)).
644
+ (16)
645
+ From (16), one can obtain
646
+ ˆd(k + 1) = Kˆb(d(k) − ˆd(k)).
647
+ (17)
648
+ Now, define the estimation error as ∆d(k) = d(k) − ˆd(k)
649
+ and we have the residue system:
650
+ ∆d(k + 1) = −Kˆb∆d(k) + d(k + 1).
651
+ (18)
652
+ In this system, the edge-compensated input ue is added to
653
+ the cloud control signal uc, i.e. u = uc+ue, to get the DPCC
654
+ cloud-edge co-design. Since the uncertainty caused by HE is
655
+ viewed as a part of input disturbance, ue is designed to be
656
+ ue(k) = − ˆd(k),
657
+ (19)
658
+ and
659
+ ˆd(k) = K
660
+
661
+ y(k) −
662
+ N
663
+
664
+ i=1
665
+ ˆgi(k − 1)y(k − N + i − 1)
666
+
667
+ N−1
668
+
669
+ i=0
670
+ ˆhi(k − 1)u(k − N + i − 1)
671
+ − ˆb(k − 1)uc(k − 1)
672
+
673
+ (20)
674
+ when k = N + 1, N + 2, ....
675
+ When k = 1, 2, ..., N, the DOB-based edge compensator
676
+ do not have enough data in the DPC stage, and ue could be
677
+ set to 0 in this time interval, i.e. u = uc.
678
+ V. NUMERICAL EXAMPLES
679
+ We consider a typical 2-order discrete LTI system control
680
+ problem with parameters
681
+ A =
682
+ �2
683
+ −1
684
+ 1
685
+ 0
686
+
687
+ ,
688
+ (21)
689
+ B =
690
+ �1
691
+ 0
692
+
693
+ ,
694
+ (22)
695
+ and
696
+ C =
697
+ �0.00014
698
+ 0.00014�
699
+ .
700
+ (23)
701
+ The control input u is clipped between -0.15 and 0.15,
702
+ and the measure output y is clipped between 0 and 0.4.
703
+ The system parameters are: N = 20, j = 1000, K = 62,
704
+ λ = 0.009. The system state is initialized at [0 0]⊤ and the
705
+ whole control procedure is divided into 2 stages, i.e. data
706
+ precollection stage and data-driven control stage. In the data
707
+ precollection stage, the system is controlled through a PID
708
+ controller with Kp = Kd = 9 and Ki = 3. The control
709
+ reference is yr = 0.2 in the first 2N + j = 1040 steps.
710
+ In the data-driven control stage, Lw and Lu are computed
711
+ and updated periodically every 50 iterations based on newly
712
+ collected data. In this stage, the control reference is set to
713
+ 0.1.
714
+ The whole experiment is realized in a standard Hyper
715
+ Elastic Cloud Server (HECS) in Huawei Cloud with 2GB
716
+ RAM and 1 CPU. We implement the private-preserving
717
+ part of the whole algorithm using the RLWE-based HE
718
+ library Microsoft SEAL [20]. The security parameter λ is
719
+ chosen to be 128-bit, meaning an encryption scheme could
720
+ be infiltrated with a probability of 2−128. The ring dimension
721
+ is chosen to be 4096, which controls the packing capability
722
+ of vectors and multiplication depth. The truncation error,
723
+ which is related to the scaling factor and modulus bits,
724
+ influences the effect of control. The scaling factor determines
725
+ the multiplication level, which is bounded by the 128-bit
726
+ security requirement. The multiplication depth is chosen to
727
+ be 2, since in this experiment only one multiplication depth is
728
+ performed in each step. The scaling factor of CKKS scheme
729
+ is chosen to be 222 and 225, based on which the influence of
730
+ floating point number truncation is researched. The process
731
+ noise and measurement noise are set to be Gaussian with the
732
+ variance of 0.0027.
733
+ The experiment is performed to show the control effect of
734
+ the privacy-preserving DPCC with a DOB-based compen-
735
+ sator in three circumstances for comparison, i.e. data-driven
736
+ control in plaintext, data-driven control in ciphertext with
737
+ and without DOB-based compensator.
738
+ The experimental results are illustrated in Fig. 5(a) and
739
+ Fig. 5(b). As shown in these figures, the DOB-based com-
740
+ pensator effectively removes the error induced by system
741
+ uncertainty, encryption error and external noise. Specifically,
742
+ in Fig 5(a), the scaling factor is set to be 222, i.e. about
743
+
744
+ 0
745
+ 250
746
+ 500
747
+ 750
748
+ 1000 1250 1500 1750 2000 2250 2500
749
+ Time Step
750
+ 0.00
751
+ 0.05
752
+ 0.10
753
+ 0.15
754
+ 0.20
755
+ 0.25
756
+ 0.30
757
+ 0.35
758
+ 0.40
759
+ Output
760
+ Unencrypted without DOB
761
+ Encrypted without DOB
762
+ Encrypted with DOB
763
+ Switching line
764
+ DPC Reference
765
+ (a) Control results with 22-bit scaling factor.
766
+ 0
767
+ 250
768
+ 500
769
+ 750
770
+ 1000 1250 1500 1750 2000 2250 2500
771
+ Time Step
772
+ 0.00
773
+ 0.05
774
+ 0.10
775
+ 0.15
776
+ 0.20
777
+ 0.25
778
+ 0.30
779
+ 0.35
780
+ 0.40
781
+ Output
782
+ Unencrypted without DOB
783
+ Encrypted without DOB
784
+ Encrypted with DOB
785
+ Switching line
786
+ DPC Reference
787
+ (b) Control results with 25-bit scaling factor.
788
+ Fig. 5.
789
+ Simulation results of the privacy-preserving DPCC.
790
+ 4 million, which truncates too much information from the
791
+ plaintext such that compromises the system performance.
792
+ The system is out of control without compensation. In
793
+ contrast, DOB-based compensator successfully compensates
794
+ the uncertainty and disturbance, which improves the control
795
+ quality. In Fig 5(b), the scaling factor is 8 times bigger
796
+ than 222, reducing the truncation error by 8 times, which
797
+ leads to a similar performance compared to the unencrypted
798
+ and uncompensated benchmark. In this case, the uncertainty
799
+ mainly appears in encryption and noise, which could be well
800
+ estimated and compensated.
801
+ VI. CONCLUSION
802
+ In this work, we design a privacy-preserving DPCC so-
803
+ lution. Based on HE, we implement a privacy-preserving
804
+ cloud controller to ensure the data privacy using the CKKS
805
+ scheme. Also, the uncertainty and disturbance in HE-based
806
+ control systems are considered, a DOB-based compensator
807
+ is designed on a trustable edge to estimate and compensate
808
+ the uncertainty and disturbance. A numerical example shows
809
+ the effect of our proposed privacy-preserving DPCC design.
810
+ In the future, the computation efficiency problem of privacy-
811
+ preserving cloud control solutions would be studied.
812
+ REFERENCES
813
+ [1] Y. Xia, “From networked control systems to cloud control systems,”
814
+ in Proc. Chin. Control Conf., pp. 5878–5883, 2012.
815
+ [2] Y. Xia, “Cloud control systems,” IEEE/CAA J. Automatica Sinica,
816
+ vol. 2, pp. 134–142, Apr. 2015.
817
+ [3] Y. Xia, Y. Zhang, L. Dai, Y. Zhan, and Z. Guo, “A brief survey on
818
+ recent advances in cloud control systems,” IEEE Trans. Circuits Syst.
819
+ II, Exp. Briefs, vol. 69, May 2022.
820
+ [4] Y. Xia, W. Xie, B. Liu, and X. Wang, “Data-driven predictive control
821
+ for networked control systems,” Inf. Sci., vol. 235, pp. 45–54, Jun.
822
+ 2013.
823
+ [5] R. Gao, Q. Li, L. Dai, Y. Zhan, and Y. Xia, “Workflow-based fast
824
+ data-driven predictive control with disturbance observer in cloud-edge
825
+ collaborative architecture,” arXiv preprint arXiv:2209.07884, 2022.
826
+ [6] R. Gao, Y. Xia, and L. Ma, “A new approach of cloud control systems:
827
+ Ccss based on data-driven predictive control,” in Proc. Chin. Control
828
+ Conf., pp. 3419–3422, 2017.
829
+ [7] R. Gao, Y. Xia, L. Dai, Z. Sun, and Y. Zhan, “Design and implemen-
830
+ tation of data-driven predictive cloud control system,” J. Syst. Eng.
831
+ Electron., vol. 33, pp. 1258–1268, Dec. 2022.
832
+ [8] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
833
+ for arithmetic of approximate numbers,” in Proc. Int. Conf. Theory
834
+ Appl. Cryptol. Inf. Secur., pp. 409–437, 2017.
835
+ [9] W.-H. Chen, J. Yang, L. Guo, and S. Li, “Disturbance-observer-
836
+ based control and related methods—an overview,” IEEE Trans. Ind.
837
+ Electron., vol. 63, pp. 1083–1095, Feb. 2016.
838
+ [10] D. Ginoya, P. Shendge, and S. Phadke, “Delta-operator-based extended
839
+ disturbance observer and its applications,” IEEE Trans. Ind. Electron.,
840
+ vol. 62, pp. 5817–5828, Sep. 2015.
841
+ [11] C. Verhoek, H. Abbas, R. T´oth, and S. Haesaert, “Data-driven
842
+ predictive control for linear parameter-varying systems,” IFAC-
843
+ PapersOnLine, vol. 54, no. 8, pp. 101–108, 2021.
844
+ [12] A. Carron, E. Arcari, M. Wermelinger, L. Hewing, M. Hutter, and
845
+ M. N. Zeilinger, “Data-driven model predictive control for trajectory
846
+ tracking with a robotic arm,” IEEE Robot. Autom. Lett., vol. 4,
847
+ pp. 3758–3765, Oct. 2019.
848
+ [13] R. Gao, Y. Xia, G. Wang, L. Yang, and Y. Zhan, “Fast subspace iden-
849
+ tification method based on containerised cloud workflow processing
850
+ system,” arXiv preprint arXiv:2112.14349, 2021.
851
+ [14] K. Kogiso and T. Fujita, “Cyber-security enhancement of networked
852
+ control systems using homomorphic encryption,” in Proc. Conf. Decis.
853
+ Control, pp. 6836–6843, 2015.
854
+ [15] S. Emad, A. Alanwar, Y. Alkabani, M. W. El-Kharashi, H. Sandberg,
855
+ and K. H. Johansson, “Privacy guarantees for cloud-based state esti-
856
+ mation using partially homomorphic encryption,” in Proc. Eur. Control
857
+ Conf., pp. 98–105, 2022.
858
+ [16] A. B. Alexandru, A. Tsiamis, and G. J. Pappas, “Towards private data-
859
+ driven control,” in Proc. Conf. Decis. Control, pp. 5449–5456, 2020.
860
+ [17] A. B. Alexandru, A. Tsiamis, and G. J. Pappas, “Encrypted distributed
861
+ lasso for sparse data predictive control,” in Proc. Conf. Decis. Control,
862
+ pp. 4901–4906, 2021.
863
+ [18] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A survey on
864
+ homomorphic encryption schemes: Theory and implementation,” ACM
865
+ Computing Surveys, vol. 51, pp. 1–35, Jul. 2018.
866
+ [19] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “Bootstrapping
867
+ for approximate homomorphic encryption,” in Proc. Annu. Int. Conf.
868
+ Theory Appl. Cryptograph. Techn., pp. 360–384, 2018.
869
+ [20] “Microsoft seal (release 4.0).” https://github.com/Microsoft/SEAL,
870
+ Mar 2022. Microsoft Research, Redmond, WA.
871
+
DNAyT4oBgHgl3EQfefhw/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
E9FQT4oBgHgl3EQfRDbD/content/2301.13285v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ea4ee81cff5fca7576352c599312b897201ad2445e6dd33fba5e22e5ed5e160
3
+ size 311059
E9FQT4oBgHgl3EQfRDbD/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f0841c5153a838f851cfb6fb49805a77c78543da0ef11fdbf5c2a9be2218972e
3
+ size 3080237
E9FQT4oBgHgl3EQfRDbD/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc40f9b6a2dd4c0076a458314f9649b0e8e606c6cb36eb4feb8ef9018026cbe3
3
+ size 117310
F9AzT4oBgHgl3EQfUfyk/content/2301.01268v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8065d21853117cec2b4f92cf90a0ee575c0682f357e91e7d92f9815fcc20c322
3
+ size 268312
F9AzT4oBgHgl3EQfUfyk/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97de3b975df3f6963c459a2d7a4b5315b9c5e981d047b6ae38c32d92b9856543
3
+ size 159870
FdE3T4oBgHgl3EQftAvj/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b63db422edab39be55ecf7a3888b0ae8d0f2fe23993ffd26fbfd0835f9496e52
3
+ size 357717
GdE0T4oBgHgl3EQfhQG7/content/tmp_files/2301.02430v1.pdf.txt ADDED
@@ -0,0 +1,660 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.02430v1 [math.GM] 6 Jan 2023
2
+ Some Solitons on Homogeneous Almost
3
+ α-Cosymplectic 3-Manifolds and Harmonic
4
+ Manifolds
5
+ Naeem Ahmad Pundeer, Paritosh Ghosh, Hemangi Madhusudan
6
+ Shah and Arindam Bhattacharyya
7
+ Abstract. In this paper, we investigate the nature of Einstein solitons,
8
+ whether it is steady, shrinking or expanding on almost α-cosymplectic
9
+ 3-manifolds. We also prove that a simply connected homogeneous al-
10
+ most α-cosymplectic 3-manifold, admitting a contact Einstein soliton,
11
+ is an unimodular semidirect product Lie group. Finally, we show that a
12
+ harmonic manifold admits a Ricci soliton if and only if it is flat.
13
+ Mathematics Subject Classification (2010). 53B40, 58B20, 53C25,
14
+ 53D15.
15
+ Keywords. Almost α-cosymplectic manifold, Harmonic manifold, Ricci
16
+ soliton, Einstein soliton.
17
+ 1. Introduction
18
+ The study of solitons, in particular Ricci solitons, on Riemannian man-
19
+ ifolds play a vital role in understanding the geometry of underlying mani-
20
+ fold. It is very interesting to study Ricci and Einstein solitons on almost α-
21
+ cosymplectic 3-manifolds. Recently, Jin and Ximin [9] showed that a simply
22
+ connected homogeneous almost α-cosymplectic 3-manifold, admitting con-
23
+ tact Ricci solitons, is cosymplectic; and the manifold under consideration is
24
+ an unimodular semidirect product Lie group R2⋊AR, where A =
25
+
26
+ 0
27
+ b
28
+ −b
29
+ 0
30
+
31
+ ,
32
+ equipped with a flat left invariant cosymplectic structure.
33
+ Motivated by this result we show in this paper that, if a simply con-
34
+ nected homogeneous almost α-cosymplectic 3-manifold, with some additional
35
+ hypothesis, admits a contact Einstein soliton, then the manifold is an uni-
36
+ modular semidirect product Lie group G of type G0bb = R2 ⋊A R, where
37
+
38
+ 2
39
+ N. A. Pundeer, P. Ghosh, H. M. Shah and A. Bhattacharyya
40
+ A =
41
+
42
+ 0
43
+ b
44
+ −b
45
+ 0
46
+
47
+ ̸= 0. And also G is the Lie group ˜E2 equipped with its
48
+ flat left invariant cosymplectic structure (see Corrollary 3.5). In order to
49
+ prove this result, we first obtain a characterization of almost α-cosymplectic
50
+ 3-manifold admitting contact Einstein solitons, which is the main theorem
51
+ (Theorem 3.4) of Section 3. To establish this aforementioned theorem we
52
+ derive an identity (Lemma 3.3) involving scalar curvature, Lie derivative of
53
+ the metric and Ricci operator on a Riemannian manifold admitting Einstein
54
+ soliton. We also give some conditions on α for contact Einstein solitons to
55
+ be steady, shrinking or expanding on almost α-cosymplectic 3-manifolds (see
56
+ Theorem 3.1).
57
+ Another interesting topic in the differential geometry is the geometry
58
+ of harmonic manifolds. In 1965, Tashiro [19] showed that if a complete Rie-
59
+ mannian manifold admits a Gaussian, then it is either flat or a complete
60
+ warped product manifold or a sphere. In this paper, we show that a har-
61
+ monic manifold admits a Gaussian if and only if it is flat; thus confirming
62
+ Tashiro’s result for harmonic manifolds. Moreover, we prove that flat har-
63
+ monic manifold admits Ricci solitons of steady, expanding or shrinking type.
64
+ We also determine the corresponding potential function. In fact, Busemann
65
+ function on Rn turns to be the potential function in case of steady solitons
66
+ (see Theorem 4.1 of Section 4).
67
+ The paper is divided into four sections. Section 2 is devoted to the
68
+ preliminaries about Ricci soliton, Einstein soliton, almost α-cosymplectic 3-
69
+ manifolds and harmonic manifolds. In Section 3, we prove our main results
70
+ on almost α-cosymplectic 3-manifold admitting contact Einstein solitons, as
71
+ stated above. In the last section, we prove the main flatness result about
72
+ harmonic manifolds admitting Ricci solitons.
73
+ 2. Preliminaries
74
+ In this section, we discuss some notions required to prove the results of this
75
+ paper.
76
+ 2.1. Ricci solitons
77
+ Ricci solitons are the self similar solutions of the Ricci flow. The concept of
78
+ Ricci flow was first introduced by Hamilton [7] in (1982), motivated by the
79
+ work of Eells and Sampson [6] on harmonic map and the flow was given by
80
+ the equation
81
+ ∂g
82
+ ∂t = −2S,
83
+ where S is the Ricci tensor.
84
+ Ricci solitons are the generalizations of the Einstein metrics and are the
85
+ solutions of the equation
86
+ Ric(g) + 1
87
+ 2LXg = λg,
88
+ (1)
89
+
90
+ On harmonic and homogeneous almost α-cosymplectic 3-manifolds
91
+ 3
92
+ where Ric(X, Y ) = S(X, Y ) is the Ricci curvature tensor, LX is the Lie
93
+ derivative along the direction of the vector field X and λ is a real constant.
94
+ The soliton is said to be shrinking if λ > 0, steady if λ = 0 and expanding if
95
+ λ < 0.
96
+ Tashiro [15] proved very important result for complete Einstein manifolds
97
+ admitting Ricci solitons.
98
+ Theorem 2.1. [15] Let (M, g) be a complete Riemannian n-manifold admit-
99
+ ting a nontrivial function f such that Hess f = λg, then (M, g) is isometric
100
+ to a complete warped product metric and must have one of the three forms:
101
+ 1. M = R × N, g = dr2 + ρ2(r)gN,
102
+ 2. M = Rn, g = dr2 + ρ2(r)ds2
103
+ n−1, r ≥ 0,
104
+ 3. M = Sn, g = dr2 + ρ2(r)ds2
105
+ n−1, r ∈ [a, b].
106
+ 2.2. Einstein solitons
107
+ The Einstein solitons are the generalization of the Ricci solitons, was first
108
+ introduced by Catino and Mazzieri [3] in (2016). They are the solutions of
109
+ the equation
110
+ LV g + 2S = (2λ + r)g,
111
+ (2)
112
+ where, Ricci tensor S(X, Y ) = g(X, QY ), Q being the Ricci operator, r is
113
+ the scalar curvature, λ ∈ R is a constant and V is known as potential vector
114
+ field.
115
+ Einstein solitons are the self-similar solutions of the Einstein flow,
116
+
117
+ ∂tg + 2S = rg.
118
+ It is said to be steady if λ = 0, shrinking if λ > 0 and expanding if λ < 0.
119
+ 2.3. Almost contact metric manifolds
120
+ In order to define contact metric manifolds, we need the concept of Reeb
121
+ vector field.
122
+ Reeb vector field [2]: A global vector field ξ on a contact manifold M 2n+1,
123
+ equipped with a global 1-form η, is called Reeb vector field or characteristic
124
+ vector field, if any vector field X satisfies η(ξ) = 1 and dη(X, ξ) = 0.
125
+ Almost contact manifold [2]: Let M be a Riemannian manifold of di-
126
+ mension (2n + 1), n ≥ 1. M 2n+1 is said to have an almost contact structure
127
+ (ϕ, ξ, η), if there exists a (1, 1)-tensor ϕ, a global vector field ξ and a 1-form
128
+ η such that
129
+ ϕ2X = −X + η(X)ξ, η(ξ) = 1,
130
+ (3)
131
+ for any vector field X on M, where ξ is the Reeb vector field. The manifold
132
+ M equipped with the structure (ϕ, ξ, η) is called an almost contact manifold.
133
+ Almost contact metric manifold [2]: A Riemannian metric g is said to
134
+ be compatible with an almost contact structure (ϕ, ξ, η), if
135
+ g(ϕX, ϕY ) = g(X, Y ) − η(X)η(Y ),
136
+ (4)
137
+
138
+ 4
139
+ N. A. Pundeer, P. Ghosh, H. M. Shah and A. Bhattacharyya
140
+ holds for any X, Y ∈ χ(M) and (M, ϕ, ξ, η, g) is called an almost contact
141
+ metric manifold.
142
+ Normal almost contact metric manifold [2]: An almost contact met-
143
+ ric manifold is said to be normal, if for any X, Y ∈ χ(M) the tensor field
144
+ N = [ϕ, ϕ]+ 2dη ⊗ ξ vanishes everywhere on the manifold, where [ϕ, ϕ] is the
145
+ Nijenhuis tensor of ϕ.
146
+ Homogeneous almost contact metric manifold [9]: An almost contact
147
+ metric manifold (M, ϕ, ξ, η, g) is said to be homogeneous, if there exists a con-
148
+ nected Lie group G of isometries acting transitively on M leaving η invariant.
149
+ 2.4. Cosymplectic manifolds
150
+ A (2n + 1)-dimensional manifold is said to be a cosymplectic manifold [10],
151
+ if it admits a closed, 1-form η and 2-form Φ such that η ∧ Φn is a volume
152
+ element, where Φ(X, Y ) = g(ϕX, Y ) is a 2-form on M 2n+1.
153
+ Almost cosymplectic manifold [10]: If η and Φ are not closed but η ∧ Φn
154
+ is a volume form, then the manifold is called almost cosymplectic manifold.
155
+ α-cosymplectic manifold [12]: An almost cosymplectic manifold is said
156
+ to be α-cosymplectic if dη = 0 and dΦ = 2αη ∧ Φ for some constant α.
157
+ Almost α-cosymplectic manifold [10]: An almost α-cosymplectic manifold
158
+ is defined as an almost contact metric manifold with dη = 0 and dΦ = 2αη∧Φ,
159
+ for any constant α. In particular, the almost α-cosymplectic manifold is
160
+ • almost α-Kenmotsu if α ̸= 0,
161
+ • almost cosymplectic if α = 0,
162
+ • almost Kenmotsu if α = 1.
163
+ Harmonic vector field [14]: A characteristic vector field ξ on an almost
164
+ α-cosymplectic manifold is harmonic if and only if ξ is an eigenvector field
165
+ of the Ricci operator Q.
166
+ 2.5. Almost α-cosymplectic 3-manifold
167
+ In this article, we will mainly focus on 3-dimensional almost α-cosymplectic
168
+ manifold. In what follows, we will be using the following results.
169
+ Theorem 2.2. [12] An almost α-cosymplectic 3-manifold is α-cosymplectic
170
+ if and only if Lξh = 0, where h = 1
171
+ 2Lξϕ.
172
+ Any almost α-cosymplectic 3-manifold satisfies important relationships be-
173
+ tween Φ, ξ and h.
174
+ Lemma 2.3. [12] Let M 2n+1 be an almost α-cosymplectic 3-manifold, then
175
+ we have,
176
+ ∇ξϕ = 0, ∇ξ = 0, hϕ + ϕh = 0, hξ = 0,
177
+ (5)
178
+
179
+ On harmonic and homogeneous almost α-cosymplectic 3-manifolds
180
+ 5
181
+ with
182
+ ∇Xξ = −αϕ2X − ϕhX.
183
+ (6)
184
+ We would require some identities on the ϕ-bases [2] and the following table
185
+ of the Levi-Civita connection.
186
+ Proposition 2.4. [12] On almost α-cosymplectic 3-manifold, there exists
187
+ ϕ-bases satisfying
188
+ he = σe, hϕe = −σϕe, hξ = 0,
189
+ with σ a local smooth eigen-function of h.
190
+ Theorem 2.5. [12] The Levi-Civita connection on almost α-cosymplectic
191
+ 3-manifold are given by,
192
+
193
+
194
+
195
+
196
+
197
+ ∇ee = −aϕe − αξ, ∇ϕee = −bϕe + σξ, ∇ξe = µϕe,
198
+ ∇eϕe = ae + σξ, ∇ϕeϕe = be − αξ, ∇ξϕe = −µe,
199
+ ∇eξ = αe − σϕe, ∇ϕeξ = −σe + αϕe, ∇ξξ = 0,
200
+ (7)
201
+ where a = g(∇eϕe, e), b = −g(∇ϕee, ϕe) and µ = g(∇ξe, ϕe) are smooth
202
+ functions.
203
+ The Ricci operator on almost α-cosymplectic 3-manifold is known explicitly
204
+ [12].
205
+ Proposition 2.6. [12] The Ricci operator Q on almost α-cosymplectic 3-
206
+ manifold is given by,
207
+
208
+
209
+
210
+
211
+
212
+ Qξ = −(2α2 + tr h2)ξ + (2bσ − e(σ))ϕe − (2aσ + (ϕe)(σ))e,
213
+ Qϕe = (2bσ − e(σ))ξ + (α2 + r
214
+ 2 + tr h2
215
+ 2
216
+ + 2σµ)ϕe + (ξ(σ) + 2ασ)e,
217
+ Qe = −(2aσ + (ϕe)(σ))ξ + (ξ(σ) + 2ασ)ϕe + (α2 + r
218
+ 2 + tr h2
219
+ 2
220
+ − 2σµ)e.
221
+ (8)
222
+ Furthermore, the scalar curvature r = tr Q is given by
223
+ r = −6α2 − tr h2 − 2(a2 + b2) − 2(ϕe)(a) + 2e(b).
224
+ (9)
225
+ The structure of simply-connected, homogeneous almost α-cosymplectic 3-
226
+ manifold, admitting a contact Ricci soliton, is very well known.
227
+ Theorem 2.7. [9] Let M be a simply-connected, homogeneous almost α-
228
+ cosymplectic 3-manifold admitting a contact Ricci soliton. Then M is an
229
+ unimodular semidirect product Lie group G of type G0bb = R2 ⋊A R, where
230
+ A =
231
+
232
+ 0
233
+ b
234
+ −b
235
+ 0
236
+
237
+ , equipped with a flat left invariant cosymplectic structure.
238
+ Moreover, we have the following:
239
+ 1. If A = 0, i.e., b = 0, G is the abelian Lie group R3 equipped with its flat
240
+ left invariant cosymplectic structure.
241
+ 2. If A ̸= 0, i.e., b ̸= 0, G is the Lie group ˜E2 equipped with its flat left
242
+ invariant cosymplectic structure.
243
+
244
+ 6
245
+ N. A. Pundeer, P. Ghosh, H. M. Shah and A. Bhattacharyya
246
+ 2.6. Harmonic manifolds
247
+ A complete Riemannian manifold (M n, g) is said to be harmonic, if for any
248
+ p ∈ M, the volume density ωp(q) =
249
+
250
+ det(gij(q)) in normal coordinates,
251
+ centered at any p ∈ M is a radial function [1]. Thus,
252
+ Θ(r) = rn−1�
253
+ det(gij(q))
254
+ is density of geodesic sphere, is a radial function. It is known that harmonic
255
+ manifolds are Einstein [1]. They are naturally classified as per the sign of the
256
+ Ricci constant. Let r be the constant scalar curvature of M.
257
+ • If r = 0, then M is flat, that is (M, g) = (Rn, Can) (Lemma 4.4).
258
+ • If r > 0, then by Bonnet-Myer’s theorem M is compact with finite
259
+ fundamental group. They are compact rank one symmetric spaces by a
260
+ well known result of Szabo (cf. [18]).
261
+ • If r < 0, then M is non-compact harmonic manifold. They are rank one
262
+ symmetric spaces of non-compact type, if dimension of M is atmost 5.
263
+ The main result in the theory of harmonic spaces is the Lichnerowicz
264
+ Conjecture: Any simply connected, complete harmonic manifold is either flat
265
+ or a rank one symmetric space. By the above classification, we see that the
266
+ conjecture is resolved for compact harmonic manifolds and is open for non-
267
+ compact harmonic manifolds of dimension 6. There are counter examples to
268
+ the conjecture when dimension is atleast 7, known as the Damek-Ricci spaces
269
+ or NA spaces. See for more details references in [18].
270
+ In the category of non-compact harmonic manifolds, we will be con-
271
+ sidering simply connected, complete, non-compact harmonic manifolds. It
272
+ follows that, these spaces don’t have conjugate points (cf. [18]). Hence, by
273
+ the Cartan-Hadamard theorem,
274
+ expp : TpM → M
275
+ is a diffeomorphism and every geodesic of M is a line. That is, if γv : R → M
276
+ is a geodesic of M with v ∈ SpM, γ′
277
+ v(0) = v, then d(γv(t), γv(s)) = |t − s|.
278
+ Busemann function: Let γv be a geodesic line, then the two Busemann
279
+ functions associated to γv are defined as [15]:
280
+ b+
281
+ v (x) = lim
282
+ t→∞ d(x, γv(t)) − t,
283
+ b−
284
+ v (x) =
285
+ lim
286
+ t→−∞ d(x, γv(t)) − t.
287
+ 3. Einstein Solitons on Almost α-Cosymplectic
288
+ 3-Manifolds
289
+ In this section, we examine the nature of a contact Einstein soliton on al-
290
+ most α-cosymplectic manifold. We also show that, the characteristic vector
291
+ field ξ is harmonic on almost α-cosymplectic 3-manifold admitting a contact
292
+
293
+ On harmonic and homogeneous almost α-cosymplectic 3-manifolds
294
+ 7
295
+ Einstein soliton. Finally, we generalize Theorem 2.7 using these results.
296
+ Contact Einstein soliton: Let (M 2n+1, g) be a Riemannian manifold of
297
+ dimension 2n + 1 (n ≥ 1). Consider the Einstein soliton (2), with potential
298
+ vector field V , on an almost contact metric manifold (M, ϕ, ξ, η, g). Then the
299
+ soliton is called contact Einstein soliton, if V = ξ that is, the potential vector
300
+ field is the characteristic vector field.
301
+ The potential vector field V is called transversal, if it is orthogonal to the
302
+ characteristic vector field, that is V ⊥ ξ.
303
+ Theorem 3.1. Let (M, ϕ, ξ, η, g) be an almost α-cosymplectic 3-manifold,
304
+ admitting a contact Einstein soliton. Then the soliton is:
305
+ 1. steady, if α2 = σ2 − (a2 + b2) − (ϕe)(a) + e(b),
306
+ 2. shrinking, if α2 > σ2 − (a2 + b2) − (ϕe)(a) + e(b),
307
+ 3. expanding, if α2 < σ2 − (a2 + b2) − (ϕe)(a) + e(b).
308
+ Proof. If the soliton is contact Einstein soliton, using V = ξ in (2), we have
309
+ g(∇Xξ, Y ) + g(X, ∇Y ξ) + 2g(X, QY ) = (2λ + r)g(X, Y ),
310
+ (10)
311
+ for any vector fields X, Y on M.
312
+ Substituting X = Y = ξ in the above equation and using (8), we obtain
313
+ λ = −2α2 − 2σ2 − r
314
+ 2.
315
+ (11)
316
+ From the expression of r (9), we get
317
+ λ = α2 − σ2 + (a2 + b2) + (ϕe)(a) − e(b),
318
+ (12)
319
+ from which we can conclude the proof.
320
+
321
+ Theorem 3.2. Let (M, ϕ, ξ, η, g) be an almost α-cosymplectic 3-manifold,
322
+ admitting a contact Einstein soliton. Then the characteristic vector field ξ is
323
+ harmonic.
324
+ Proof. From (10), we get for X = ξ and Y = e,
325
+ (ϕe)(σ) = −2aσ.
326
+ (13)
327
+ And for X = ξ and Y = ϕe, from (10) we have
328
+ e(σ) = 2bσ.
329
+ (14)
330
+ Now, using (13) and (14) in the expression of Qξ in (8), we obtain
331
+ Qξ = −(2α2 + 2σ2)ξ,
332
+ which shows that ξ is an eigenvector field of the Ricci operator Q concluding
333
+ the fact that ξ is harmonic.
334
+
335
+ We derive the identity involving the Lie derivative of the metric, Ricci oper-
336
+ ator, the potential vector field V .
337
+
338
+ 8
339
+ N. A. Pundeer, P. Ghosh, H. M. Shah and A. Bhattacharyya
340
+ Lemma 3.3. Let (M, g) be a Riemannian manifold of scalar curvature r,
341
+ admitting an Einstein soliton (2). Then
342
+ ∥LV g∥2 = 2V (r) + 4 div
343
+ ��
344
+ λ + r
345
+ 2
346
+
347
+ V − QV
348
+
349
+ ,
350
+ (15)
351
+ where Q is the Ricci operator.
352
+ Proof. In local coordinate system, (2) leads to
353
+ LV gij + Sij = (2λ + r)gij.
354
+ Therefore,
355
+ ∥LV g∥2 = − SijLV gij + (2λ + r)gijLV gij.
356
+ = − LV r + gijLV Sij − (2λ + r)gijLV gij.
357
+ (16)
358
+ Now,
359
+ gijLV Sij =gij∇V Sij − gij∇αViSαj − gij∇αVjSiα
360
+ =2V (r) − 2 div QV.
361
+ (17)
362
+ Observing that gijLV gij = −2 div V and using (16) and (17), we get the
363
+ required result.
364
+
365
+ Now we derive the main result of this section.
366
+ Theorem 3.4. Consider M to be an almost α-cosymplectic 3-manifold, ad-
367
+ mitting a contact Einstein soliton. Then the following hold.
368
+ 1. If σ ̸= 0, then α = a2 + b2 − 2λ2 + (ϕe)(a) − e(b).
369
+ 2. If σ = 0, then M is cosymplectic.
370
+ Proof. Replacing X by e and Y by ϕe, from (10) we get
371
+ g(∇eξ, ϕe) + g(e, ∇ϕeξ) + 2g(e, Qϕe) = (2λ + r)g(e, ϕe).
372
+ Using (7) and (8), after simplification we acquire,
373
+ ξ(σ) = σ − 2ασ.
374
+ (18)
375
+ Now putting X = e = Y in (10) and using (7), (8), (9) and (12), we get
376
+ 6α2 + 6σ2 − 4σµ + 2α + r = 0.
377
+ (19)
378
+ Similarly, putting X = ϕe = Y in (10) and using (7), (8), (9) and (12), we
379
+ also obtain
380
+ 6α2 + 6σ2 + 4σµ + 2α + r = 0.
381
+ (20)
382
+ So comparing (19) and (20), we have σµ = 0. If σ ̸= 0, then from (20), we
383
+ obtain the required result using (9).
384
+ Now suppose σ = 0, then M is α-cosymplectic. From [12], recall that an
385
+ almost α-cosymplectic manifold M is α-cosymplectic if and only if for any
386
+ X ∈ χ(M),
387
+ QX =
388
+
389
+ α2 + r
390
+ 2
391
+
392
+ X −
393
+
394
+ 3α2 + r
395
+ 2
396
+
397
+ η(X)ξ.
398
+ (21)
399
+
400
+ On harmonic and homogeneous almost α-cosymplectic 3-manifolds
401
+ 9
402
+ Since ∇ξ is symmetric, (10) becomes
403
+ g(∇Xξ, Y ) + g(X, QY ) =
404
+
405
+ λ + r
406
+ 2
407
+
408
+ g(X, Y ).
409
+ (22)
410
+ Using (6) and (21), we have from (22), for any X, Y ∈ χ(M),
411
+ (α2 + α − λ)g(X, Y ) −
412
+
413
+ 3α2 + α + r
414
+ 2
415
+
416
+ η(X)η(Y ) = 0,
417
+ which implies α2 + α − λ = 0 and 3α2 + α + r
418
+ 2 = 0.
419
+ That is λ = α2 + α and r = −6α2 − 2α = constant, so that, λ + r
420
+ 2 = −2α2.
421
+ Also, from (21), we have Qξ = −2α2ξ which implies (λ + r
422
+ 2)ξ − Qξ = 0.
423
+ Therefore, using Lemma 3.3 (15), we can say that ξ is a Killing vector field,
424
+ that is, ∇ξ is skew-symmetric. But in our case ∇ξ is symmetric, which implies
425
+ ∇ξ = 0, that is, α = 0, proving the fact that M is cosymplectic.
426
+
427
+ Corollary 3.5. Consider M to be a simply-connected, homogeneous, almost
428
+ α-cosymplectic 3-manifold, admitting a contact Einstein soliton with σ = 0.
429
+ Then M is an unimodular semidirect product Lie group G of type G0µµ =
430
+ R2 ⋊A R, where A =
431
+
432
+ 0
433
+ µ
434
+ −µ
435
+ 0
436
+
437
+ ̸= 0, is a real matrix. Moreover, G is the
438
+ Lie group ˜E2 equipped with its flat left invariant cosymplectic structure.
439
+ Proof. The proof follows from Theorem 2.7 and Theorem 3.4.
440
+
441
+ 4. Ricci Solitons on Harmonic Manifolds
442
+ In this section, we study Ricci solitons on complete, simply connected, har-
443
+ monic manifolds. We prove a Lichnerowicz type result that, a harmonic man-
444
+ ifold admits a Ricci soliton if and only if M is flat. More precisely, we show
445
+ that compact harmonic manifolds and non-flat harmonic manifolds do not
446
+ admit Ricci solitons. But flat harmonic manifold do admit steady, shrinking,
447
+ expanding Ricci solitons.
448
+ In the sequel, harmonic manifold means complete, simply connected harmonic
449
+ manifold. The main theorem of this section is:
450
+ Theorem 4.1. Let (M, g) be a harmonic manifold. Then M admits Ricci
451
+ soliton if and only if M is flat. In this case, the steady Ricci soliton is Killing
452
+ given by X = ∇bv
453
+ −; where b−
454
+ v (x) = −⟨x, v⟩, the Busemann function, is a
455
+ potential function on M. In case, the Ricci soliton is shrinking or expanding,
456
+ the potential function is given by f(x) = λd(x, p)2 +f(p), for constant λ ̸= 0;
457
+ and point p is minimum or maximum of f and X = ∇f is the corresponding
458
+ Ricci soliton.
459
+ We begin with the following important proposition.
460
+
461
+ 10
462
+ N. A. Pundeer, P. Ghosh, H. M. Shah and A. Bhattacharyya
463
+ Proposition 4.2. Every Ricci soliton is a gradient soliton on complete man-
464
+ ifold. Hence, in particular on any harmonic manifold Ricci soliton is a gra-
465
+ dient soliton. Consequently, any harmonic manifold admits a Gaussian.
466
+ Proof. Perelman showed that, Ricci soliton on any complete manifold is al-
467
+ ways a gradient soliton [11]. Hence, in this case X = ∇f, for some smooth
468
+ function f : M → R. As L∇fg = ∇2f, (1) reduces to
469
+ Ric + 1
470
+ 2∇2f = λg.
471
+ (23)
472
+ As (M, g) is harmonic and hence Einstein, then it follows that
473
+ ∇2f = 2(λ − r)g,
474
+ (24)
475
+ where r is a constant scalar curvature of M. Thus f is a Gaussian, that is it
476
+ satisifes (24).
477
+
478
+ Remark 4.3. Note that because any harmonic manifold is Einstein, trivial
479
+ solitons X = 0 and X a Killing vector field are solutions of (1) with λ = r.
480
+ Lemma 4.4. Ricci flat harmonic manifold is flat.
481
+ Proof. It can be shown that any harmonic manifold (M, g) is asymptotically
482
+ harmonic [18]. That is there exists a constant h ≥ 0 such that
483
+ ∆bv
484
+ ± = h.
485
+ Let L = ∇2bv
486
+ + denote the second fundamental form of horospheres, b−1
487
+ v (t).
488
+ Then L satisfies the Riccati equation, that is for x ∈ v⊥,
489
+ L′(x) + L2(x) + R(x, v)v = 0.
490
+ Tracing the above equation, we obtain that tr L2 = 0, as Ricci(v, v) = 0. But
491
+ L is a symmetric operator on v⊥. This implies that L = 0 for any v ∈ SM.
492
+ Consequently, R(x, v)v = 0 for any x ∈ v⊥. Thus (M, g) is flat.
493
+
494
+ Lemma 4.5. Let X = ∇f be a Killing vector field on compact harmonic
495
+ manifold, then X is trivial. Solitons of Killing type do not exist on non-
496
+ compact, non-flat harmonic manifold. On flat harmonic manifold, Killing
497
+ vector field is X = ∇bv
498
+ −, where b−
499
+ v (x) = −⟨x, v⟩ is a Busemann function on
500
+ Rn.
501
+ Proof. Because X = ∇f is a non-trivial Killing vector field, we have
502
+ ∇2f = 0.
503
+ Therefore, ∥∇f∥ = constant ̸= 0, consequently, f has no critical points.
504
+ Any Killing vector field of constant norm satisfies (p. 164-167, [15]):
505
+ ∥∇2f∥
506
+ 2 = Ric(∇f, ∇f).
507
+
508
+ On harmonic and homogeneous almost α-cosymplectic 3-manifolds
509
+ 11
510
+ Therefore,
511
+ 0 =∥∇2f∥ = r∥∇f∥2
512
+ This implies that for f non-constant, r = 0 and therefore Ric ≡ 0 and hence
513
+ harmonic manifold must be flat (Lemma 4.4).
514
+ We have ∥∇f∥ = constant. We may assume that ∥∇f∥ = 1, therefore f is
515
+ distance function which is harmonic function on (Rn, Can). By Proposition
516
+ 5.1 of [18], it follows that
517
+ f(x) = b−
518
+ v (x) = −⟨x, v⟩,
519
+ is a Busemann function on Rn [15].
520
+ If M is compact, ∇2f = 0 implies that f is a harmonic function. Hence, f
521
+ must be a constant function.
522
+
523
+ Proposition 4.6. Let (M, g) be a compact harmonic manifold, then a Ricci
524
+ soliton on M is trivial.
525
+ Proof. We have,
526
+ ∇2f = 2(λ − r)g.
527
+ Therefore, ∆f = 2(λ − r)n implies by the Bochner’s formula that,
528
+ 1
529
+ 2∆(∥∇f∥2) = 4(λ − r)2n2 + r(∥∇f∥2).
530
+ (25)
531
+ Therefore,
532
+ 4(λ − r)2n2 Vol(M) = −r
533
+
534
+ M
535
+ ∥∇f∥2 < 0.
536
+ This implies that ∥∇f∥ = 0, therefore f is constant.
537
+
538
+ Lemma 4.7. Let (M, g) be a non-compact, non-flat harmonic manifold.
539
+ Then Ricci solitons on M don’t exist. In case, (λ − r) ̸= 0, implies that
540
+ M is flat and r = 0. In this case the potential function is given by f(x) =
541
+ λd(p, x)2 + f(p), for some p ∈ M.
542
+ Proof. We have,
543
+ ∇2f = 2(λ − r)g.
544
+ Therefore, f is either convex or concave function. Consequently, the only
545
+ possible critical point of f is either maximum or minimum of f. Suppose
546
+ that p is a critical point of f. Note that along any unit speed geodesic of M
547
+ starting from p,
548
+ f ′′(t) = 2(λ − r).
549
+ (26)
550
+ Therefore, f ′(t) = 2(λ − r)t + c. Hence, there is exactly one critical point,
551
+ and hence c = 0. Thus, f(t) = (λ − r)t2 + f(p), consequently f is a radial
552
+ function. This implies that,
553
+ ∆f = f ′′ + Θ′
554
+ Θ f ′ = 2(λ − r)n.
555
+
556
+ 12
557
+ N. A. Pundeer, P. Ghosh, H. M. Shah and A. Bhattacharyya
558
+ Therefore,
559
+ f ′′ + Θ′
560
+ Θ 2(λ − r)t = 2(λ − r)n.
561
+ Consequently by (26),
562
+ Θ′(t)
563
+ Θ(t) = n − 1
564
+ t
565
+ .
566
+ Comparing with the series expansion (see (4.4) of [18]),
567
+ Θ′(t)
568
+ Θ(t) = n − 1
569
+ r
570
+ − r
571
+ 3 + · · · ,
572
+ we obtain r = 0, hence M is flat. Finally, f(x) = λd(p, x)2 + f(p) follows
573
+ from section 1 of [4].
574
+
575
+ Finally we come to the proof of Theorem 4.1.
576
+ Proof of Theorem 4.1: If M is compact, then the Ricci soliton on M is
577
+ trivial (Proposition 4.6). If (λ−r) = 0, then M is flat and X = ∇bv
578
+ − (Lemma
579
+ 4.5). If (λ−r) ̸= 0, then M is flat, and X = ∇f, where f(x) = λd(p, x)2+f(p),
580
+ for some p ∈ M (Lemma 4.7).
581
+
582
+ Remark: We have shown that Theorem 4.1 confirms Theorem 2.1 in case of
583
+ harmonic manifolds. Also Theorem 4.1 implies that there are no non-trivial
584
+ deformation of non-flat harmonic manifolds. This indicates a result support-
585
+ ing the conjecture that, there are no non-trivial deformations of harmonic
586
+ manifolds; and hence there should be only finitely many classes of harmonic
587
+ manifolds.
588
+ 5. Acknowledgements
589
+ Dr. Naeem Ahmad Pundeer would like to thank to U.G.C. for its Dr. D.S.
590
+ Kothari Postdoctoral Fellowship. The corresponding author, Mr. Paritosh
591
+ Ghosh, thanks UGC Junior Research Fellowship of India. The authors also
592
+ would like to thank Mr. Dipen Ganguly for his wishful help in this research.
593
+ References
594
+ [1] Besse, A.L. Manifolds all of whose geodesics are closed, Berlin Heidel-
595
+ berg, Springer-Verlag, (1978).
596
+ [2] Blair, D.E. Riemannian geometry of contact and symplectic manifolds,
597
+ Progress in Mathematics, Birkh¨auser, New York, (2010).
598
+ [3] Catino, G. and Mazzieri, L. Gradient Einstein solitons, Nonlinear
599
+ Anal., 132, 66–94, (2016).
600
+ [4] Cheeger, J. and Colding, T. Lower bounds on Ricci curvature and
601
+ the almost rigidity of warped products, Ann. Math., 144(1), 189-237,
602
+ (1996).
603
+
604
+ On harmonic and homogeneous almost α-cosymplectic 3-manifolds
605
+ 13
606
+ [5] Cunha, A.W. and Griffin, E. On non-compact gradient solitons,
607
+ arXiv:2207.05822, (2022).
608
+ [6] Eells, J. and Sampson, J.H. Harmonic Mappings of Riemannian Man-
609
+ ifolds, Amer. J. Math., 86, 109-160, (1964).
610
+ [7] Hamilton, R.S. Three manifolds with positive Ricci curvature, J. Diff.
611
+ Geom., 17, 255-306, (1982).
612
+ [8] Hu, Q., Xu, G. and Yu, C. The rigidity and stability of gradient esti-
613
+ mates, J. Geom. Anal., 32, 1-13, (2022).
614
+ [9] Li, J. and Liu, X. Ricci solitons on homogeneous almost α-cosymplectic
615
+ three-Manifolds, Mediterr. J. Math., 19, 1-12, (2022).
616
+ [10] Libermann, P. Sur les automorphismes infinit´esimaux des structures
617
+ symplectiques et des structures de contact, Colloque G´eom. Diff. Glob-
618
+ ale, 37–59, (1959).
619
+ [11] Perelman, G. The entropy formula for the Ricci flow and its geometric
620
+ applications, arXiv:math 211159, (2002).
621
+ [12] Perrone, D. Classification of homogeneous almost α-coK¨ahler three-
622
+ manifolds, Diff. Geom. Appl., 59, 66–90, (2018).
623
+ [13] Perrone, D. Classification of homogeneous almost cosymplectic three
624
+ manifolds, Diff. Geom. Appl., 30, 49–58, (2012).
625
+ [14] Perrone, D. Left-invariant almost α-co K¨ahler structures on 3D semidi-
626
+ rect product Lie groups, Int. J. Geom. Meth. Mod. Phys., 16, 1-18,
627
+ (2018).
628
+ [15] Petersen, P. Riemannian geometry, New York, Springer-Verlag, (2006).
629
+ [16] Petersen, P. and Wylie, W. Rigidity of gradient Ricci solitons, Pac. J.
630
+ Math., 241, 329-345, (2009).
631
+ [17] Ranjan, A. and Shah, H. Harmonic manifolds with minimal horo-
632
+ spheres, J. Geom. Anal., 12, 683-694, (2002).
633
+ [18] Ranjan, A. and Shah, H. Busemann functions in a harmonic manifold,
634
+ Geom. Dedicata, 101, 167-183, (2003).
635
+ [19] Tashiro, Y. Complete Riemannian manifolds and some vector fields,
636
+ Trans. Amer. Math. Soc., 117, 251-275, (1965).
637
+ Naeem Ahmad Pundeer
638
+ Department of Mathematics
639
+ Jadavpur University
640
+ Kolkata-700032, India.
641
+ e-mail: [email protected]
642
+ Paritosh Ghosh
643
+ Department of Mathematics
644
+ Jadavpur University
645
+ Kolkata-700032, India.
646
+ e-mail: [email protected]
647
+
648
+ 14
649
+ N. A. Pundeer, P. Ghosh, H. M. Shah and A. Bhattacharyya
650
+ Hemangi Madhusudan Shah
651
+ Harish-Chandra Research Institute
652
+ A CI of Homi Bhabha National Institute
653
+ Chhatnag Road, Jhunsi, Prayagraj-211019, India.
654
+ e-mail: [email protected]
655
+ Arindam Bhattacharyya
656
+ Department of Mathematics
657
+ Jadavpur University
658
+ Kolkata-700032, India
659
+ e-mail: [email protected]
660
+
GdE0T4oBgHgl3EQfhQG7/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,474 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf,len=473
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
3
+ page_content='02430v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
4
+ page_content='GM] 6 Jan 2023 Some Solitons on Homogeneous Almost α-Cosymplectic 3-Manifolds and Harmonic Manifolds Naeem Ahmad Pundeer, Paritosh Ghosh, Hemangi Madhusudan Shah and Arindam Bhattacharyya Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
5
+ page_content=' In this paper, we investigate the nature of Einstein solitons, whether it is steady, shrinking or expanding on almost α-cosymplectic 3-manifolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
6
+ page_content=' We also prove that a simply connected homogeneous al- most α-cosymplectic 3-manifold, admitting a contact Einstein soliton, is an unimodular semidirect product Lie group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
7
+ page_content=' Finally, we show that a harmonic manifold admits a Ricci soliton if and only if it is flat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
8
+ page_content=' Mathematics Subject Classification (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
9
+ page_content=' 53B40, 58B20, 53C25, 53D15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
10
+ page_content=' Keywords.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
11
+ page_content=' Almost α-cosymplectic manifold, Harmonic manifold, Ricci soliton, Einstein soliton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
12
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
13
+ page_content=' Introduction The study of solitons, in particular Ricci solitons, on Riemannian man- ifolds play a vital role in understanding the geometry of underlying mani- fold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
14
+ page_content=' It is very interesting to study Ricci and Einstein solitons on almost α- cosymplectic 3-manifolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
15
+ page_content=' Recently, Jin and Ximin [9] showed that a simply connected homogeneous almost α-cosymplectic 3-manifold, admitting con- tact Ricci solitons, is cosymplectic;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
16
+ page_content=' and the manifold under consideration is an unimodular semidirect product Lie group R2⋊AR, where A = � 0 b −b 0 � , equipped with a flat left invariant cosymplectic structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
17
+ page_content=' Motivated by this result we show in this paper that, if a simply con- nected homogeneous almost α-cosymplectic 3-manifold, with some additional hypothesis, admits a contact Einstein soliton, then the manifold is an uni- modular semidirect product Lie group G of type G0bb = R2 ⋊A R, where 2 N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
18
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
19
+ page_content=' Pundeer, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
20
+ page_content=' Ghosh, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
21
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
22
+ page_content=' Shah and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
23
+ page_content=' Bhattacharyya A = � 0 b −b 0 � ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
24
+ page_content=' And also G is the Lie group ˜E2 equipped with its flat left invariant cosymplectic structure (see Corrollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
25
+ page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
26
+ page_content=' In order to prove this result, we first obtain a characterization of almost α-cosymplectic 3-manifold admitting contact Einstein solitons, which is the main theorem (Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
27
+ page_content='4) of Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
28
+ page_content=' To establish this aforementioned theorem we derive an identity (Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
29
+ page_content='3) involving scalar curvature, Lie derivative of the metric and Ricci operator on a Riemannian manifold admitting Einstein soliton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
30
+ page_content=' We also give some conditions on α for contact Einstein solitons to be steady, shrinking or expanding on almost α-cosymplectic 3-manifolds (see Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
31
+ page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
32
+ page_content=' Another interesting topic in the differential geometry is the geometry of harmonic manifolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
33
+ page_content=' In 1965, Tashiro [19] showed that if a complete Rie- mannian manifold admits a Gaussian, then it is either flat or a complete warped product manifold or a sphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
34
+ page_content=' In this paper, we show that a har- monic manifold admits a Gaussian if and only if it is flat;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
35
+ page_content=' thus confirming Tashiro’s result for harmonic manifolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
36
+ page_content=' Moreover, we prove that flat har- monic manifold admits Ricci solitons of steady, expanding or shrinking type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
37
+ page_content=' We also determine the corresponding potential function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
38
+ page_content=' In fact, Busemann function on Rn turns to be the potential function in case of steady solitons (see Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
39
+ page_content='1 of Section 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
40
+ page_content=' The paper is divided into four sections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
41
+ page_content=' Section 2 is devoted to the preliminaries about Ricci soliton, Einstein soliton, almost α-cosymplectic 3- manifolds and harmonic manifolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
42
+ page_content=' In Section 3, we prove our main results on almost α-cosymplectic 3-manifold admitting contact Einstein solitons, as stated above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
43
+ page_content=' In the last section, we prove the main flatness result about harmonic manifolds admitting Ricci solitons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
44
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
45
+ page_content=' Preliminaries In this section, we discuss some notions required to prove the results of this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
46
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
47
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
48
+ page_content=' Ricci solitons Ricci solitons are the self similar solutions of the Ricci flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
49
+ page_content=' The concept of Ricci flow was first introduced by Hamilton [7] in (1982), motivated by the work of Eells and Sampson [6] on harmonic map and the flow was given by the equation ∂g ∂t = −2S, where S is the Ricci tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
50
+ page_content=' Ricci solitons are the generalizations of the Einstein metrics and are the solutions of the equation Ric(g) + 1 2LXg = λg, (1) On harmonic and homogeneous almost α-cosymplectic 3-manifolds 3 where Ric(X, Y ) = S(X, Y ) is the Ricci curvature tensor, LX is the Lie derivative along the direction of the vector field X and λ is a real constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
51
+ page_content=' The soliton is said to be shrinking if λ > 0, steady if λ = 0 and expanding if λ < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
52
+ page_content=' Tashiro [15] proved very important result for complete Einstein manifolds admitting Ricci solitons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
53
+ page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
54
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
55
+ page_content=' [15] Let (M, g) be a complete Riemannian n-manifold admit- ting a nontrivial function f such that Hess f = λg, then (M, g) is isometric to a complete warped product metric and must have one of the three forms: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
56
+ page_content=' M = R × N, g = dr2 + ρ2(r)gN, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
57
+ page_content=' M = Rn, g = dr2 + ρ2(r)ds2 n−1, r ≥ 0, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
58
+ page_content=' M = Sn, g = dr2 + ρ2(r)ds2 n−1, r ∈ [a, b].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
59
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
60
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
61
+ page_content=' Einstein solitons The Einstein solitons are the generalization of the Ricci solitons, was first introduced by Catino and Mazzieri [3] in (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
62
+ page_content=' They are the solutions of the equation LV g + 2S = (2λ + r)g, (2) where, Ricci tensor S(X, Y ) = g(X, QY ), Q being the Ricci operator, r is the scalar curvature, λ ∈ R is a constant and V is known as potential vector field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
63
+ page_content=' Einstein solitons are the self-similar solutions of the Einstein flow, ∂ ∂tg + 2S = rg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
64
+ page_content=' It is said to be steady if λ = 0, shrinking if λ > 0 and expanding if λ < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
65
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
66
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
67
+ page_content=' Almost contact metric manifolds In order to define contact metric manifolds, we need the concept of Reeb vector field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
68
+ page_content=' Reeb vector field [2]: A global vector field ξ on a contact manifold M 2n+1, equipped with a global 1-form η, is called Reeb vector field or characteristic vector field, if any vector field X satisfies η(ξ) = 1 and dη(X, ξ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
69
+ page_content=' Almost contact manifold [2]: Let M be a Riemannian manifold of di- mension (2n + 1), n ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
70
+ page_content=' M 2n+1 is said to have an almost contact structure (ϕ, ξ, η), if there exists a (1, 1)-tensor ϕ, a global vector field ξ and a 1-form η such that ϕ2X = −X + η(X)ξ, η(ξ) = 1, (3) for any vector field X on M, where ξ is the Reeb vector field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
71
+ page_content=' The manifold M equipped with the structure (ϕ, ξ, η) is called an almost contact manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
72
+ page_content=' Almost contact metric manifold [2]: A Riemannian metric g is said to be compatible with an almost contact structure (ϕ, ξ, η), if g(ϕX, ϕY ) = g(X, Y ) − η(X)η(Y ), (4) 4 N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
73
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
74
+ page_content=' Pundeer, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
75
+ page_content=' Ghosh, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
76
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
77
+ page_content=' Shah and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
78
+ page_content=' Bhattacharyya holds for any X, Y ∈ χ(M) and (M, ϕ, ξ, η, g) is called an almost contact metric manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
79
+ page_content=' Normal almost contact metric manifold [2]: An almost contact met- ric manifold is said to be normal, if for any X, Y ∈ χ(M) the tensor field N = [ϕ, ϕ]+ 2dη ⊗ ξ vanishes everywhere on the manifold, where [ϕ, ϕ] is the Nijenhuis tensor of ϕ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
80
+ page_content=' Homogeneous almost contact metric manifold [9]: An almost contact metric manifold (M, ϕ, ξ, η, g) is said to be homogeneous, if there exists a con- nected Lie group G of isometries acting transitively on M leaving η invariant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
81
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
82
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
83
+ page_content=' Cosymplectic manifolds A (2n + 1)-dimensional manifold is said to be a cosymplectic manifold [10], if it admits a closed, 1-form η and 2-form Φ such that η ∧ Φn is a volume element, where Φ(X, Y ) = g(ϕX, Y ) is a 2-form on M 2n+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
84
+ page_content=' Almost cosymplectic manifold [10]: If η and Φ are not closed but η ∧ Φn is a volume form, then the manifold is called almost cosymplectic manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
85
+ page_content=' α-cosymplectic manifold [12]: An almost cosymplectic manifold is said to be α-cosymplectic if dη = 0 and dΦ = 2αη ∧ Φ for some constant α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
86
+ page_content=' Almost α-cosymplectic manifold [10]: An almost α-cosymplectic manifold is defined as an almost contact metric manifold with dη = 0 and dΦ = 2αη∧Φ, for any constant α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
87
+ page_content=' In particular, the almost α-cosymplectic manifold is almost α-Kenmotsu if α ̸= 0, almost cosymplectic if α = 0, almost Kenmotsu if α = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
88
+ page_content=' Harmonic vector field [14]: A characteristic vector field ξ on an almost α-cosymplectic manifold is harmonic if and only if ξ is an eigenvector field of the Ricci operator Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
89
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
90
+ page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
91
+ page_content=' Almost α-cosymplectic 3-manifold In this article, we will mainly focus on 3-dimensional almost α-cosymplectic manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
92
+ page_content=' In what follows, we will be using the following results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
93
+ page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
94
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
95
+ page_content=' [12] An almost α-cosymplectic 3-manifold is α-cosymplectic if and only if Lξh = 0, where h = 1 2Lξϕ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
96
+ page_content=' Any almost α-cosymplectic 3-manifold satisfies important relationships be- tween Φ, ξ and h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
97
+ page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
98
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
99
+ page_content=' [12] Let M 2n+1 be an almost α-cosymplectic 3-manifold, then we have, ∇ξϕ = 0, ∇ξ = 0, hϕ + ϕh = 0, hξ = 0, (5) On harmonic and homogeneous almost α-cosymplectic 3-manifolds 5 with ∇Xξ = −αϕ2X − ϕhX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
100
+ page_content=' (6) We would require some identities on the ϕ-bases [2] and the following table of the Levi-Civita connection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
101
+ page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
102
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
103
+ page_content=' [12] On almost α-cosymplectic 3-manifold, there exists ϕ-bases satisfying he = σe, hϕe = −σϕe, hξ = 0, with σ a local smooth eigen-function of h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
104
+ page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
105
+ page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
106
+ page_content=' [12] The Levi-Civita connection on almost α-cosymplectic 3-manifold are given by, \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 ∇ee = −aϕe − αξ, ∇ϕee = −bϕe + σξ, ∇ξe = µϕe, ∇eϕe = ae + σξ, ∇ϕeϕe = be − αξ, ∇ξϕe = −µe, ∇eξ = αe − σϕe, ∇ϕeξ = −σe + αϕe, ∇ξξ = 0, (7) where a = g(∇eϕe, e), b = −g(∇ϕee, ϕe) and µ = g(∇ξe, ϕe) are smooth functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
107
+ page_content=' The Ricci operator on almost α-cosymplectic 3-manifold is known explicitly [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
108
+ page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
109
+ page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
110
+ page_content=' [12] The Ricci operator Q on almost α-cosymplectic 3- manifold is given by, \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 Qξ = −(2α2 + tr h2)ξ + (2bσ − e(σ))ϕe − (2aσ + (ϕe)(σ))e, Qϕe = (2bσ − e(σ))ξ + (α2 + r 2 + tr h2 2 + 2σµ)ϕe + (ξ(σ) + 2ασ)e, Qe = −(2aσ + (ϕe)(σ))ξ + (ξ(σ) + 2ασ)ϕe + (α2 + r 2 + tr h2 2 − 2σµ)e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
111
+ page_content=' (8) Furthermore, the scalar curvature r = tr Q is given by r = −6α2 − tr h2 − 2(a2 + b2) − 2(ϕe)(a) + 2e(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
112
+ page_content=' (9) The structure of simply-connected, homogeneous almost α-cosymplectic 3- manifold, admitting a contact Ricci soliton, is very well known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
113
+ page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
114
+ page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
115
+ page_content=' [9] Let M be a simply-connected, homogeneous almost α- cosymplectic 3-manifold admitting a contact Ricci soliton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
116
+ page_content=' Then M is an unimodular semidirect product Lie group G of type G0bb = R2 ⋊A R, where A = � 0 b −b 0 � , equipped with a flat left invariant cosymplectic structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
117
+ page_content=' Moreover, we have the following: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
118
+ page_content=' If A = 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
119
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
120
+ page_content=', b = 0, G is the abelian Lie group R3 equipped with its flat left invariant cosymplectic structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
121
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
122
+ page_content=' If A ̸= 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
123
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
124
+ page_content=', b ̸= 0, G is the Lie group ˜E2 equipped with its flat left invariant cosymplectic structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
125
+ page_content=' 6 N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
126
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
127
+ page_content=' Pundeer, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
128
+ page_content=' Ghosh, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
129
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
130
+ page_content=' Shah and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
131
+ page_content=' Bhattacharyya 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
132
+ page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
133
+ page_content=' Harmonic manifolds A complete Riemannian manifold (M n, g) is said to be harmonic, if for any p ∈ M, the volume density ωp(q) = � det(gij(q)) in normal coordinates, centered at any p ∈ M is a radial function [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
134
+ page_content=' Thus, Θ(r) = rn−1� det(gij(q)) is density of geodesic sphere, is a radial function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
135
+ page_content=' It is known that harmonic manifolds are Einstein [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
136
+ page_content=' They are naturally classified as per the sign of the Ricci constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
137
+ page_content=' Let r be the constant scalar curvature of M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
138
+ page_content=' If r = 0, then M is flat, that is (M, g) = (Rn, Can) (Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
139
+ page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
140
+ page_content=' If r > 0, then by Bonnet-Myer’s theorem M is compact with finite fundamental group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
141
+ page_content=' They are compact rank one symmetric spaces by a well known result of Szabo (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
142
+ page_content=' [18]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
143
+ page_content=' If r < 0, then M is non-compact harmonic manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
144
+ page_content=' They are rank one symmetric spaces of non-compact type, if dimension of M is atmost 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
145
+ page_content=' The main result in the theory of harmonic spaces is the Lichnerowicz Conjecture: Any simply connected, complete harmonic manifold is either flat or a rank one symmetric space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
146
+ page_content=' By the above classification, we see that the conjecture is resolved for compact harmonic manifolds and is open for non- compact harmonic manifolds of dimension 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
147
+ page_content=' There are counter examples to the conjecture when dimension is atleast 7, known as the Damek-Ricci spaces or NA spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
148
+ page_content=' See for more details references in [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
149
+ page_content=' In the category of non-compact harmonic manifolds, we will be con- sidering simply connected, complete, non-compact harmonic manifolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
150
+ page_content=' It follows that, these spaces don’t have conjugate points (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
151
+ page_content=' [18]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
152
+ page_content=' Hence, by the Cartan-Hadamard theorem, expp : TpM → M is a diffeomorphism and every geodesic of M is a line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
153
+ page_content=' That is, if γv : R → M is a geodesic of M with v ∈ SpM, γ′ v(0) = v, then d(γv(t), γv(s)) = |t − s|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
154
+ page_content=' Busemann function: Let γv be a geodesic line, then the two Busemann functions associated to γv are defined as [15]: b+ v (x) = lim t→∞ d(x, γv(t)) − t, b− v (x) = lim t→−∞ d(x, γv(t)) − t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
155
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
156
+ page_content=' Einstein Solitons on Almost α-Cosymplectic 3-Manifolds In this section, we examine the nature of a contact Einstein soliton on al- most α-cosymplectic manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
157
+ page_content=' We also show that, the characteristic vector field ξ is harmonic on almost α-cosymplectic 3-manifold admitting a contact On harmonic and homogeneous almost α-cosymplectic 3-manifolds 7 Einstein soliton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
158
+ page_content=' Finally, we generalize Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
159
+ page_content='7 using these results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
160
+ page_content=' Contact Einstein soliton: Let (M 2n+1, g) be a Riemannian manifold of dimension 2n + 1 (n ≥ 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
161
+ page_content=' Consider the Einstein soliton (2), with potential vector field V , on an almost contact metric manifold (M, ϕ, ξ, η, g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
162
+ page_content=' Then the soliton is called contact Einstein soliton, if V = ξ that is, the potential vector field is the characteristic vector field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
163
+ page_content=' The potential vector field V is called transversal, if it is orthogonal to the characteristic vector field, that is V ⊥ ξ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
164
+ page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
165
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
166
+ page_content=' Let (M, ϕ, ξ, η, g) be an almost α-cosymplectic 3-manifold, admitting a contact Einstein soliton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
167
+ page_content=' Then the soliton is: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
168
+ page_content=' steady, if α2 = σ2 − (a2 + b2) − (ϕe)(a) + e(b), 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
169
+ page_content=' shrinking, if α2 > σ2 − (a2 + b2) − (ϕe)(a) + e(b), 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
170
+ page_content=' expanding, if α2 < σ2 − (a2 + b2) − (ϕe)(a) + e(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
171
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
172
+ page_content=' If the soliton is contact Einstein soliton, using V = ξ in (2), we have g(∇Xξ, Y ) + g(X, ∇Y ξ) + 2g(X, QY ) = (2λ + r)g(X, Y ), (10) for any vector fields X, Y on M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
173
+ page_content=' Substituting X = Y = ξ in the above equation and using (8), we obtain λ = −2α2 − 2σ2 − r 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
174
+ page_content=' (11) From the expression of r (9), we get λ = α2 − σ2 + (a2 + b2) + (ϕe)(a) − e(b), (12) from which we can conclude the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
175
+ page_content=' □ Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
176
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
177
+ page_content=' Let (M, ϕ, ξ, η, g) be an almost α-cosymplectic 3-manifold, admitting a contact Einstein soliton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
178
+ page_content=' Then the characteristic vector field ξ is harmonic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
179
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
180
+ page_content=' From (10), we get for X = ξ and Y = e, (ϕe)(σ) = −2aσ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
181
+ page_content=' (13) And for X = ξ and Y = ϕe, from (10) we have e(σ) = 2bσ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
182
+ page_content=' (14) Now, using (13) and (14) in the expression of Qξ in (8), we obtain Qξ = −(2α2 + 2σ2)ξ, which shows that ξ is an eigenvector field of the Ricci operator Q concluding the fact that ξ is harmonic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
183
+ page_content=' □ We derive the identity involving the Lie derivative of the metric, Ricci oper- ator, the potential vector field V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
184
+ page_content=' 8 N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
185
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
186
+ page_content=' Pundeer, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
187
+ page_content=' Ghosh, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
188
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
189
+ page_content=' Shah and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
190
+ page_content=' Bhattacharyya Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
191
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
192
+ page_content=' Let (M, g) be a Riemannian manifold of scalar curvature r, admitting an Einstein soliton (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
193
+ page_content=' Then ∥LV g∥2 = 2V (r) + 4 div �� λ + r 2 � V − QV � , (15) where Q is the Ricci operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
194
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
195
+ page_content=' In local coordinate system, (2) leads to LV gij + Sij = (2λ + r)gij.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
196
+ page_content=' Therefore, ∥LV g∥2 = − SijLV gij + (2λ + r)gijLV gij.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
197
+ page_content=' = − LV r + gijLV Sij − (2λ + r)gijLV gij.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
198
+ page_content=' (16) Now, gijLV Sij =gij∇V Sij − gij∇αViSαj − gij∇αVjSiα =2V (r) − 2 div QV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
199
+ page_content=' (17) Observing that gijLV gij = −2 div V and using (16) and (17), we get the required result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
200
+ page_content=' □ Now we derive the main result of this section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
201
+ page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
202
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
203
+ page_content=' Consider M to be an almost α-cosymplectic 3-manifold, ad- mitting a contact Einstein soliton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
204
+ page_content=' Then the following hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
205
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
206
+ page_content=' If σ ̸= 0, then α = a2 + b2 − 2λ2 + (ϕe)(a) − e(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
207
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
208
+ page_content=' If σ = 0, then M is cosymplectic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
209
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
210
+ page_content=' Replacing X by e and Y by ϕe, from (10) we get g(∇eξ, ϕe) + g(e, ∇ϕeξ) + 2g(e, Qϕe) = (2λ + r)g(e, ϕe).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
211
+ page_content=' Using (7) and (8), after simplification we acquire, ξ(σ) = σ − 2ασ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
212
+ page_content=' (18) Now putting X = e = Y in (10) and using (7), (8), (9) and (12), we get 6α2 + 6σ2 − 4σµ + 2α + r = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
213
+ page_content=' (19) Similarly, putting X = ϕe = Y in (10) and using (7), (8), (9) and (12), we also obtain 6α2 + 6σ2 + 4σµ + 2α + r = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
214
+ page_content=' (20) So comparing (19) and (20), we have σµ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
215
+ page_content=' If σ ̸= 0, then from (20), we obtain the required result using (9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
216
+ page_content=' Now suppose σ = 0, then M is α-cosymplectic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
217
+ page_content=' From [12], recall that an almost α-cosymplectic manifold M is α-cosymplectic if and only if for any X ∈ χ(M), QX = � α2 + r 2 � X − � 3α2 + r 2 � η(X)ξ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
218
+ page_content=' (21) On harmonic and homogeneous almost α-cosymplectic 3-manifolds 9 Since ∇ξ is symmetric, (10) becomes g(∇Xξ, Y ) + g(X, QY ) = � λ + r 2 � g(X, Y ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
219
+ page_content=' (22) Using (6) and (21), we have from (22), for any X, Y ∈ χ(M), (α2 + α − λ)g(X, Y ) − � 3α2 + α + r 2 � η(X)η(Y ) = 0, which implies α2 + α − λ = 0 and 3α2 + α + r 2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
220
+ page_content=' That is λ = α2 + α and r = −6α2 − 2α = constant, so that, λ + r 2 = −2α2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
221
+ page_content=' Also, from (21), we have Qξ = −2α2ξ which implies (λ + r 2)ξ − Qξ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
222
+ page_content=' Therefore, using Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
223
+ page_content='3 (15), we can say that ξ is a Killing vector field, that is, ∇ξ is skew-symmetric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
224
+ page_content=' But in our case ∇ξ is symmetric, which implies ∇ξ = 0, that is, α = 0, proving the fact that M is cosymplectic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
225
+ page_content=' □ Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
226
+ page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
227
+ page_content=' Consider M to be a simply-connected, homogeneous, almost α-cosymplectic 3-manifold, admitting a contact Einstein soliton with σ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
228
+ page_content=' Then M is an unimodular semidirect product Lie group G of type G0µµ = R2 ⋊A R, where A = � 0 µ −µ 0 � ̸= 0, is a real matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
229
+ page_content=' Moreover, G is the Lie group ˜E2 equipped with its flat left invariant cosymplectic structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
230
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
231
+ page_content=' The proof follows from Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
232
+ page_content='7 and Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
233
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
234
+ page_content=' □ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
235
+ page_content=' Ricci Solitons on Harmonic Manifolds In this section, we study Ricci solitons on complete, simply connected, har- monic manifolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
236
+ page_content=' We prove a Lichnerowicz type result that, a harmonic man- ifold admits a Ricci soliton if and only if M is flat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
237
+ page_content=' More precisely, we show that compact harmonic manifolds and non-flat harmonic manifolds do not admit Ricci solitons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
238
+ page_content=' But flat harmonic manifold do admit steady, shrinking, expanding Ricci solitons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
239
+ page_content=' In the sequel, harmonic manifold means complete, simply connected harmonic manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
240
+ page_content=' The main theorem of this section is: Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
241
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
242
+ page_content=' Let (M, g) be a harmonic manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
243
+ page_content=' Then M admits Ricci soliton if and only if M is flat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
244
+ page_content=' In this case, the steady Ricci soliton is Killing given by X = ∇bv −;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
245
+ page_content=' where b− v (x) = −⟨x, v⟩, the Busemann function, is a potential function on M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
246
+ page_content=' In case, the Ricci soliton is shrinking or expanding, the potential function is given by f(x) = λd(x, p)2 +f(p), for constant λ ̸= 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
247
+ page_content=' and point p is minimum or maximum of f and X = ∇f is the corresponding Ricci soliton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
248
+ page_content=' We begin with the following important proposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
249
+ page_content=' 10 N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
250
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
251
+ page_content=' Pundeer, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
252
+ page_content=' Ghosh, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
253
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
254
+ page_content=' Shah and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
255
+ page_content=' Bhattacharyya Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
256
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
257
+ page_content=' Every Ricci soliton is a gradient soliton on complete man- ifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
258
+ page_content=' Hence, in particular on any harmonic manifold Ricci soliton is a gra- dient soliton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
259
+ page_content=' Consequently, any harmonic manifold admits a Gaussian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
260
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
261
+ page_content=' Perelman showed that, Ricci soliton on any complete manifold is al- ways a gradient soliton [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
262
+ page_content=' Hence, in this case X = ∇f, for some smooth function f : M → R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
263
+ page_content=' As L∇fg = ∇2f, (1) reduces to Ric + 1 2∇2f = λg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
264
+ page_content=' (23) As (M, g) is harmonic and hence Einstein, then it follows that ∇2f = 2(λ − r)g, (24) where r is a constant scalar curvature of M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
265
+ page_content=' Thus f is a Gaussian, that is it satisifes (24).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
266
+ page_content=' □ Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
267
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
268
+ page_content=' Note that because any harmonic manifold is Einstein, trivial solitons X = 0 and X a Killing vector field are solutions of (1) with λ = r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
269
+ page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
270
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
271
+ page_content=' Ricci flat harmonic manifold is flat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
272
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
273
+ page_content=' It can be shown that any harmonic manifold (M, g) is asymptotically harmonic [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
274
+ page_content=' That is there exists a constant h ≥ 0 such that ∆bv ± = h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
275
+ page_content=' Let L = ∇2bv + denote the second fundamental form of horospheres, b−1 v (t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
276
+ page_content=' Then L satisfies the Riccati equation, that is for x ∈ v⊥, L′(x) + L2(x) + R(x, v)v = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
277
+ page_content=' Tracing the above equation, we obtain that tr L2 = 0, as Ricci(v, v) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
278
+ page_content=' But L is a symmetric operator on v⊥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
279
+ page_content=' This implies that L = 0 for any v ∈ SM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
280
+ page_content=' Consequently, R(x, v)v = 0 for any x ∈ v⊥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
281
+ page_content=' Thus (M, g) is flat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
282
+ page_content=' □ Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
283
+ page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
284
+ page_content=' Let X = ∇f be a Killing vector field on compact harmonic manifold, then X is trivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
285
+ page_content=' Solitons of Killing type do not exist on non- compact, non-flat harmonic manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
286
+ page_content=' On flat harmonic manifold, Killing vector field is X = ∇bv −, where b− v (x) = −⟨x, v⟩ is a Busemann function on Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
287
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
288
+ page_content=' Because X = ∇f is a non-trivial Killing vector field, we have ∇2f = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
289
+ page_content=' Therefore, ∥∇f∥ = constant ̸= 0, consequently, f has no critical points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
290
+ page_content=' Any Killing vector field of constant norm satisfies (p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
291
+ page_content=' 164-167, [15]): ∥∇2f∥ 2 = Ric(∇f, ∇f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
292
+ page_content=' On harmonic and homogeneous almost α-cosymplectic 3-manifolds 11 Therefore, 0 =∥∇2f∥ = r∥∇f∥2 This implies that for f non-constant, r = 0 and therefore Ric ≡ 0 and hence harmonic manifold must be flat (Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
293
+ page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
294
+ page_content=' We have ∥∇f∥ = constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
295
+ page_content=' We may assume that ∥∇f∥ = 1, therefore f is distance function which is harmonic function on (Rn, Can).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
296
+ page_content=' By Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
297
+ page_content='1 of [18], it follows that f(x) = b− v (x) = −⟨x, v⟩, is a Busemann function on Rn [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
298
+ page_content=' If M is compact, ∇2f = 0 implies that f is a harmonic function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
299
+ page_content=' Hence, f must be a constant function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
300
+ page_content=' □ Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
301
+ page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
302
+ page_content=' Let (M, g) be a compact harmonic manifold, then a Ricci soliton on M is trivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
303
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
304
+ page_content=' We have, ∇2f = 2(λ − r)g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
305
+ page_content=' Therefore, ∆f = 2(λ − r)n implies by the Bochner’s formula that, 1 2∆(∥∇f∥2) = 4(λ − r)2n2 + r(∥∇f∥2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
306
+ page_content=' (25) Therefore, 4(λ − r)2n2 Vol(M) = −r � M ∥∇f∥2 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
307
+ page_content=' This implies that ∥∇f∥ = 0, therefore f is constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
308
+ page_content=' □ Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
309
+ page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
310
+ page_content=' Let (M, g) be a non-compact, non-flat harmonic manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
311
+ page_content=' Then Ricci solitons on M don’t exist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
312
+ page_content=' In case, (λ − r) ̸= 0, implies that M is flat and r = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
313
+ page_content=' In this case the potential function is given by f(x) = λd(p, x)2 + f(p), for some p ∈ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
314
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
315
+ page_content=' We have, ∇2f = 2(λ − r)g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
316
+ page_content=' Therefore, f is either convex or concave function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
317
+ page_content=' Consequently, the only possible critical point of f is either maximum or minimum of f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
318
+ page_content=' Suppose that p is a critical point of f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
319
+ page_content=' Note that along any unit speed geodesic of M starting from p, f ′′(t) = 2(λ − r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
320
+ page_content=' (26) Therefore, f ′(t) = 2(λ − r)t + c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
321
+ page_content=' Hence, there is exactly one critical point, and hence c = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
322
+ page_content=' Thus, f(t) = (λ − r)t2 + f(p), consequently f is a radial function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
323
+ page_content=' This implies that, ∆f = f ′′ + Θ′ Θ f ′ = 2(λ − r)n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
324
+ page_content=' 12 N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
325
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
326
+ page_content=' Pundeer, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
327
+ page_content=' Ghosh, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
328
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
329
+ page_content=' Shah and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
330
+ page_content=' Bhattacharyya Therefore, f ′′ + Θ′ Θ 2(λ − r)t = 2(λ − r)n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
331
+ page_content=' Consequently by (26), Θ′(t) Θ(t) = n − 1 t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
332
+ page_content=' Comparing with the series expansion (see (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
333
+ page_content='4) of [18]), Θ′(t) Θ(t) = n − 1 r − r 3 + · · · , we obtain r = 0, hence M is flat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
334
+ page_content=' Finally, f(x) = λd(p, x)2 + f(p) follows from section 1 of [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
335
+ page_content=' □ Finally we come to the proof of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
336
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
337
+ page_content=' Proof of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
338
+ page_content='1: If M is compact, then the Ricci soliton on M is trivial (Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
339
+ page_content='6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
340
+ page_content=' If (λ−r) = 0, then M is flat and X = ∇bv − (Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
341
+ page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
342
+ page_content=' If (λ−r) ̸= 0, then M is flat, and X = ∇f, where f(x) = λd(p, x)2+f(p), for some p ∈ M (Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
343
+ page_content='7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
344
+ page_content=' □ Remark: We have shown that Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
345
+ page_content='1 confirms Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
346
+ page_content='1 in case of harmonic manifolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
347
+ page_content=' Also Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
348
+ page_content='1 implies that there are no non-trivial deformation of non-flat harmonic manifolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
349
+ page_content=' This indicates a result support- ing the conjecture that, there are no non-trivial deformations of harmonic manifolds;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
350
+ page_content=' and hence there should be only finitely many classes of harmonic manifolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
351
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
352
+ page_content=' Acknowledgements Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
353
+ page_content=' Naeem Ahmad Pundeer would like to thank to U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
354
+ page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
355
+ page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
356
+ page_content=' for its Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
357
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
358
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
359
+ page_content=' Kothari Postdoctoral Fellowship.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
360
+ page_content=' The corresponding author, Mr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
361
+ page_content=' Paritosh Ghosh, thanks UGC Junior Research Fellowship of India.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
362
+ page_content=' The authors also would like to thank Mr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
363
+ page_content=' Dipen Ganguly for his wishful help in this research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
364
+ page_content=' References [1] Besse, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
365
+ page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
366
+ page_content=' Manifolds all of whose geodesics are closed, Berlin Heidel- berg, Springer-Verlag, (1978).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
367
+ page_content=' [2] Blair, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
368
+ page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
369
+ page_content=' Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, Birkh¨auser, New York, (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
370
+ page_content=' [3] Catino, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
371
+ page_content=' and Mazzieri, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
372
+ page_content=' Gradient Einstein solitons, Nonlinear Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
373
+ page_content=', 132, 66–94, (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
374
+ page_content=' [4] Cheeger, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
375
+ page_content=' and Colding, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
376
+ page_content=' Lower bounds on Ricci curvature and the almost rigidity of warped products, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
377
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
378
+ page_content=', 144(1), 189-237, (1996).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
379
+ page_content=' On harmonic and homogeneous almost α-cosymplectic 3-manifolds 13 [5] Cunha, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
380
+ page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
381
+ page_content=' and Griffin, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
382
+ page_content=' On non-compact gradient solitons, arXiv:2207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
383
+ page_content='05822, (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
384
+ page_content=' [6] Eells, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
385
+ page_content=' and Sampson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
386
+ page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
387
+ page_content=' Harmonic Mappings of Riemannian Man- ifolds, Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
388
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
389
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
390
+ page_content=', 86, 109-160, (1964).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
391
+ page_content=' [7] Hamilton, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
392
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
393
+ page_content=' Three manifolds with positive Ricci curvature, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
394
+ page_content=' Diff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
395
+ page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
396
+ page_content=', 17, 255-306, (1982).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
397
+ page_content=' [8] Hu, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
398
+ page_content=', Xu, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
399
+ page_content=' and Yu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
400
+ page_content=' The rigidity and stability of gradient esti- mates, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
401
+ page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
402
+ page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
403
+ page_content=', 32, 1-13, (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
404
+ page_content=' [9] Li, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
405
+ page_content=' and Liu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
406
+ page_content=' Ricci solitons on homogeneous almost α-cosymplectic three-Manifolds, Mediterr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
407
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
408
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
409
+ page_content=', 19, 1-12, (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
410
+ page_content=' [10] Libermann, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
411
+ page_content=' Sur les automorphismes infinit´esimaux des structures symplectiques et des structures de contact, Colloque G´eom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
412
+ page_content=' Diff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
413
+ page_content=' Glob- ale, 37–59, (1959).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
414
+ page_content=' [11] Perelman, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
415
+ page_content=' The entropy formula for the Ricci flow and its geometric applications, arXiv:math 211159, (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
416
+ page_content=' [12] Perrone, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
417
+ page_content=' Classification of homogeneous almost α-coK¨ahler three- manifolds, Diff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
418
+ page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
419
+ page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
420
+ page_content=', 59, 66–90, (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
421
+ page_content=' [13] Perrone, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
422
+ page_content=' Classification of homogeneous almost cosymplectic three manifolds, Diff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
423
+ page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
424
+ page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
425
+ page_content=', 30, 49–58, (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
426
+ page_content=' [14] Perrone, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
427
+ page_content=' Left-invariant almost α-co K¨ahler structures on 3D semidi- rect product Lie groups, Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
428
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
429
+ page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
430
+ page_content=' Meth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
431
+ page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
432
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
433
+ page_content=', 16, 1-18, (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
434
+ page_content=' [15] Petersen, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
435
+ page_content=' Riemannian geometry, New York, Springer-Verlag, (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
436
+ page_content=' [16] Petersen, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
437
+ page_content=' and Wylie, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
438
+ page_content=' Rigidity of gradient Ricci solitons, Pac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
439
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
440
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
441
+ page_content=', 241, 329-345, (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
442
+ page_content=' [17] Ranjan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
443
+ page_content=' and Shah, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
444
+ page_content=' Harmonic manifolds with minimal horo- spheres, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
445
+ page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
446
+ page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
447
+ page_content=', 12, 683-694, (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
448
+ page_content=' [18] Ranjan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
449
+ page_content=' and Shah, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
450
+ page_content=' Busemann functions in a harmonic manifold, Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
451
+ page_content=' Dedicata, 101, 167-183, (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
452
+ page_content=' [19] Tashiro, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
453
+ page_content=' Complete Riemannian manifolds and some vector fields, Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
454
+ page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
455
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
456
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
457
+ page_content=', 117, 251-275, (1965).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
458
+ page_content=' Naeem Ahmad Pundeer Department of Mathematics Jadavpur University Kolkata-700032, India.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
459
+ page_content=' e-mail: pundir.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
460
+ page_content='naeem@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
461
+ page_content='com Paritosh Ghosh Department of Mathematics Jadavpur University Kolkata-700032, India.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
462
+ page_content=' e-mail: paritoshghosh112@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
463
+ page_content='com 14 N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
464
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
465
+ page_content=' Pundeer, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
466
+ page_content=' Ghosh, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
467
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
468
+ page_content=' Shah and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
469
+ page_content=' Bhattacharyya Hemangi Madhusudan Shah Harish-Chandra Research Institute A CI of Homi Bhabha National Institute Chhatnag Road, Jhunsi, Prayagraj-211019, India.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
470
+ page_content=' e-mail: hemangimshah@hri.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
471
+ page_content='res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
472
+ page_content='in Arindam Bhattacharyya Department of Mathematics Jadavpur University Kolkata-700032, India e-mail: bhattachar1968@yahoo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
473
+ page_content='co.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
474
+ page_content='in' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfhQG7/content/2301.02430v1.pdf'}
HNE1T4oBgHgl3EQfXgRU/content/tmp_files/2301.03127v1.pdf.txt ADDED
@@ -0,0 +1,1010 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Logically at Factify 2023: A Multi-Modal Fact
2
+ Checking System Based on Evidence Retrieval
3
+ techniques and Transformer Encoder Architecture
4
+ Pim Jordi Verschuuren, Jie Gao, Adelize van Eeden, Stylianos Oikonomou and
5
+ Anil Bandhakavi
6
+ Brookfoot Mills, Brookfoot Industrial Estate, Brighouse, HD6 2RW, United Kingdom
7
+ Abstract
8
+ In this paper, we present the Logically submissions to De-Factify 2 challenge (DE-FACTIFY 2023) on
9
+ the task 1 of Multi-Modal Fact Checking. We describes our submissions to this challenge including
10
+ explored evidence retrieval and selection techniques, pre-trained cross-modal and unimodal models, and
11
+ a cross-modal veracity model based on the well established Transformer Encoder (TE) architecture which
12
+ is heavily relies on the concept of self-attention. Exploratory analysis is also conducted on this Factify
13
+ 2 data set that uncovers the salient multi-modal patterns and hypothesis motivating the architecture
14
+ proposed in this work. A series of preliminary experiments were done to investigate and benchmarking
15
+ different pre-trained embedding models, evidence retrieval settings and thresholds. The final system, a
16
+ standard two-stage evidence based veracity detection system, yields weighted avg. 0.79 on both val set
17
+ and final blind test set on the task 1, which achieves 3rd place with a small margin to the top performing
18
+ system on the leaderboard among 9 participants.
19
+ Keywords
20
+ fact verification, multimodal representation learning, multimodal entailment, text entailment, Multi-head
21
+ Attention
22
+ 1. Introduction
23
+ Misinformation and fake news can spread rapidly and cause harm at various levels. One way to
24
+ protect ourselves from these negative impacts is through fact-checking and debunking false
25
+ information with evidence-based reporting. However, this process can be resource-intensive and
26
+ time-consuming. To address this issue, researchers have developed automated fact-checking
27
+ systems using deep learning techniques, which can handle tasks such as claim detection,
28
+ claim matching, evidence retrieval, and veracity prediction using natural language processing
29
+ techniques on textual content. While there has been progress in this area, there is still a need
30
+ for multimodal approaches that can handle both text and image inputs. To address this gap,
31
+ this paper presents a multimodal veracity prediction system for automated fact-checking and is
32
+ De-Factify: Workshop on Multimodal Fact-Checking and Hate Speech Detection, co-located with AAAI 2023. 2023
33
+ Washington DC, USA
34
+ [email protected] (P. J. Verschuuren); [email protected] (J. Gao); [email protected] (A. v. Eeden);
35
+ [email protected] (S. Oikonomou); [email protected] (A. Bandhakavi)
36
+ � https://www.logically.ai/team/leadership/anil-bandhakavi (A. Bandhakavi)
37
+ � 0000-0002-3610-8748 (J. Gao)
38
+ © 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
39
+ CEUR
40
+ Workshop
41
+ Proceedings
42
+ http://ceur-ws.org
43
+ ISSN 1613-0073
44
+ CEUR Workshop Proceedings (CEUR-WS.org)
45
+ arXiv:2301.03127v1 [cs.CL] 9 Jan 2023
46
+
47
+ developed as part of the Factify 2 competition organized by De-Factify@AAAI 2023.
48
+ The remainder of the paper is structured as follows: Section 2 presents a brief overview of
49
+ related work and section 3 describes our general framework and model architecture. Section
50
+ 4 discusses the dataset supplied by the Factify 2 competition followed by an overview of
51
+ our experiments in section 5. Section 6 and 7 present the final results and our conclusions,
52
+ respectively.
53
+ 2. Related Work
54
+ As an essential part of automated fact verification, effective techniques for modeling claim-
55
+ evidence for veracity prediction have been a hot topic and key research questions in existing
56
+ fact-checking methods. Most of the recent work focuses on using textual evidence in veracity
57
+ prediction and there are mainly two lines of work. One direction [1, 2, 3] is to use a single
58
+ document (such as is provided in the Factify task dataset) with long text evidence and through
59
+ leveraging models constructed for long sequences. Examples such as BigBird [4], Longformer[5]
60
+ and recent advancements in the ConvNets architecture witnessed in the Long Range Arena
61
+ leaderboard (e.g., Mega [6], S5[7]) are seen to obtain top results in a wide range of tasks and
62
+ leader boards. The benefits of exploiting long-sequence model at document level is a) the
63
+ simplicity of the overall architecture; b) allows to accommodate for more context of the whole
64
+ article into modeling and natural language inference. An optimal setup of the maximum length
65
+ for both claim (or query) and document sequence, and the document level veracity labels is
66
+ commonly required [8, 1, 3]. The advantage of incorporating lots of context into inference is also
67
+ seen in modeling question answering (QA) tasks [4, 5], for which the document-level veracity
68
+ labels are relatively "cheap" to obtain. The downside of using a simple long-text model technique
69
+ at document-level is the lack of interpretability (w.r.t. evidence selection), it is computational
70
+ expensive, the limitation in dealing with the complexity of certain (multi-hop) claims [9], and
71
+ lack of diversity and scalability when dealing with a large amount of diverse documents in a
72
+ real-world application. These constraints were more apparent in open domain fact checking
73
+ task that make use of web data extracted with commercial search engines as building blocks
74
+ in fact-checking system in order to incorporate more diverse sources. It is worth to note that
75
+ long-sequence model can be adapted for the purpose of evidence selection e.g., through framing
76
+ the task as a token-level prediction task. For instance, as one of the top systems in SciFact
77
+ leaderboard 1, LongChecker [10] used LongFormer [5] for scientific claim verification with
78
+ paragraph-level evidence selection. In their method, every sentences is inserted with a [CLS]
79
+ token with global attention, which allows the model to predict on this sentence-level token as
80
+ evidence. Most of these works focus on a limited context such as a few Wikipedia documents, a
81
+ single article and abstracts or text snippets from research literature or a small synthetic corpus.
82
+ Another line of work widely adopted and one of the key tasks in FEVER [11, 12] is to involve
83
+ evidence retrieval and selection. The framework exploits larger document context to extract
84
+ evidentiary (or rationales) passages as first step and veracity prediction is then modeled to
85
+ condition on the claim and the selected rationales. The evidentiary passages can be either at
86
+ sentence-level or paragraph-level and report the findings to the claim which can be used to
87
+ 1https://leaderboard.allenai.org/scifact/submissions/public
88
+
89
+ justify each veracity label. Despite the revolutionary breakthroughs with Large-Scale Language
90
+ Models (LSLMs), such as GPT-3[13] and ChatGPT2, and their impressive generative capabilities,
91
+ these large models are still lacking key zero-shot or few-shot learning capabilities needed for
92
+ fact checking tasks. This is mainly due to their incorrectly retrieved, incomplete or outdated
93
+ knowledge stored in their weights which makes these techniques susceptible to hallucinations
94
+ [14, 15], which is conflicting with fact checking tasks that require factuality as an essential
95
+ element in modeling. Moreover, an efficient approach to keep LSLMs up-to-date and grounded
96
+ to ever-growing factual and new information is imperative but still unresolved to date. Recent
97
+ work [15, 16] shows that lightweight methods with fine-tuned and smaller models outperform
98
+ these big models in a range of knowledge-intensive NLP tasks including Natural Language
99
+ Inference (NLI), Recognizing textual entailment (RTE), Reading Comprehension (RC), QA, etc.
100
+ Sentence-BERT (SBERT) [17] is one of the most popular techniques based on the BERT language
101
+ model [18] used for evidence selection [19, 20] which can be framed as a sentence-pair regression
102
+ task. SBERT models are used to encode contextualized representations for each of the evidence
103
+ passages which are then ranked according to their semantic similarity with the contextualized
104
+ representation of the corresponding claim. In the final step, top 𝑘 evidentiary passages are
105
+ selected for veracity prediction. The challenge of this multi-staged verification framework is
106
+ 1) the rationales extracted out-of-context may lack information required to make a prediction
107
+ (e.g., acronyms, unresolved coreferences); 2) the evidence extraction (through passages ranking)
108
+ requires high quality training data that is costly to obtain with domain experts from both closed
109
+ and open domain tasks [21]. Various efforts to address the constraints have been undertaken
110
+ to explore 1) paragraph level train data from scientific literature with paper title as claim and
111
+ abstract as evidence as high-precision heuristics (e.g., SciFact [1]); 2) QA dataset with question
112
+ and answer considered as claim and evidence respectively [22]; 3) NLI dataset with hypothesis
113
+ as the claim and premise as evidence [23]. We follow a second line of work for which the
114
+ evidence retrieval component is implemented in our system following current SoTA methods.
115
+ Automated multi- or cross-modal fact checking is an under developed field compared to
116
+ text-based techniques. Recent developments have shown that cross-modal pre-trained models
117
+ (e.g.,VideoBERT [24], VisualBERT [25], Uniter [26], CLIP [27]) has achieved significant results
118
+ in downstream cross-modal tasks [28, 29, 30] with great transferability for zero-shot or few-shot
119
+ scenarios. Our work is inspired by [31], which one of the initial explorations in multimodal
120
+ fact-checking task. In their proposed method, Contrastive Language–Image Pre-training (CLIP)
121
+ model [27]) is adopted as encoder to learn joint language-image embedding between each
122
+ image and the input claim text. Top-5 candidate image evidences are taken as input along
123
+ with multi-modal claim for multimodal claim verification model with a simple cross-attention
124
+ network. It is worth noting that CLIP model allows to model image-text contextual alignment at
125
+ coarse-grained contextual (global) level but ignores the compositional matching of disentangled
126
+ concepts (i.e., finer-grained cross-modal alignment at region-word level)[30, 32, 32].
127
+ 2https://openai.com/blog/chatgpt/
128
+
129
+ 3. Methodology
130
+ 3.1. Problem statement
131
+ We frame the Factify 2 problem as a multimodal entailment task as in the previous submission
132
+ [3], which considers a multimodal claim 𝑐 = 𝑐𝑡𝑒𝑥𝑡 + 𝑐𝑖𝑚𝑎𝑔𝑒 as hypothesis and a multimodal
133
+ document 𝑑 = 𝑑𝑡𝑒𝑥𝑡 + 𝑑𝑖𝑚𝑎𝑔𝑒 as premise. The goal is to learn a function 𝑓(𝑐, 𝑑) that infers one
134
+ of the five entailment categories including "Support_Multimodal", "Support_Text", "Refutes",
135
+ "Insufficient_Multimodal" and "Insufficient_Text". Additional details on the task can be found in
136
+ [33].
137
+ 3.2. General Architecture
138
+ Our system architecture follows a standard two-stage claim verification approach as established
139
+ through various shared tasks in recent years, typically FEVER[34], FEVER 2.0 [35], FEVEROUS
140
+ [36] and SCIVER [37]. First, a textual evidence retrieval component identifies from a given
141
+ document the evidence passages most relevant to the corresponding claim text. Then, a trans-
142
+ former based cross-modal model is trained on all the input across multi-modalities including
143
+ selected evidence passages text, claim text, claim image, document image, claim OCR text
144
+ and document OCR text to predict five multimodal entailment categories with respect to the
145
+ multimodal claim. A pre-trained cross-modal model (i.e. CLIP) and a pre-trained text embedding
146
+ model are both employed in the embedding layer in order to learn a cross-modal matching
147
+ model using both unified-multimodal and unimodal representations. Overall, the implemented
148
+ architecture adopts listwise concatenation strategy [38] which is one of common strategies in
149
+ most recent sequence-to-sequence SoTA veracity prediction models.
150
+ Figure 1: Logically General System Architecture
151
+
152
+ Cross-modal veracity prediction model
153
+ Text Encoder
154
+ Cross-modal
155
+ (CLIP)
156
+ Claim text embed
157
+ Transformer Encoder
158
+ Self-Attention
159
+ Evidence Retrieval
160
+ max
161
+ Multihead
162
+ embedding layer
163
+ Masked
164
+ Semantic Search
165
+ Image Encoder
166
+ (cosine similarity)
167
+ 00
168
+ (CLIP)
169
+ Sofmax
170
+ 4
171
+ Re-rank & Concatenate
172
+ Text passages dense
173
+ Top K evidence
174
+ W
175
+ representations
176
+ candidates
177
+ Claim text dense
178
+ Text Embedding Layer
179
+ representations
180
+ Transformer E ncoder
181
+ im+Doc text embedding
182
+ Self-Attention
183
+ M utihead
184
+ xe W
185
+ Wr2V
186
+ Masked
187
+ Pooling
188
+ SBERT
189
+ (MPNet-QA dense retriever)
190
+ Doc
191
+ Claim text
192
+ Claim Image
193
+ Doc Image
194
+ Claim ORC text
195
+ Doc ORC text3.3. Evidence Retrieval
196
+ In evidence retrieval, ‘multi-qa-mpnet-base-dot-v1‘ 3 is employed to compute embeddings for
197
+ both claim text and document text at passage level. In terms of passage granularity, both
198
+ paragraph-level retrieval and sentence-level retrieval are experimented (see Section 5). This
199
+ is a SBERT model based on the MPNet architecture [39] and is trained on a Question-Answer
200
+ (QA) dataset with 215M QA pairs from diverse sources. The model was tuned for a semantic
201
+ search using a dot-product score function in order to find relevant passages corresponding to a
202
+ given query. The model encodes text into a 768-d vector and supports 512 maximum number of
203
+ tokens.
204
+ Regarding the similarity computation and semantic search, we use a simple dot product with
205
+ the normalised SBERT embeddings (as proxy to cosine similarity) which enables a quick and
206
+ efficient passage ranking and scalability of up to about 1 Million entries.
207
+ Top 𝐾 passages obtained from the semantic search are then re-ranked based on their relevancy
208
+ to the claim text and concatenated into a longer text snippet before being fed into the cross-modal
209
+ veracity prediction model.
210
+ 3.4. Embedding Layer
211
+ Our embedding layer consists of a cross-modal encoder and a unimodal text encoder. We
212
+ hypothesize that modeling solely on text-to-text interaction (i.e., text premise and hypothesis)
213
+ can supplement the modeling solely on cross-modal premise and hypothesis interaction and
214
+ vice versa. This architecture facilitates the measuring of multi-modal semantic relatedness in
215
+ this multi-modal fact checking task by mapping more textual alignment signals into subse-
216
+ quent semantic space. This considers that text specific models can capture more accurate and
217
+ semantically meaningful word-level or sentence level alignment.
218
+ The cross-modal encoder is implemented with a pre-trained CLIP model that aims to map
219
+ visual and text embeddings into a common space. The ViT-B/32 variant (ViT-Base with patch
220
+ size 32) is chosen in this work because of its smaller amount of parameters, less FLOPS and
221
+ greater inference speed. ViT-B/32 consists of a text encoder and an image encoder which
222
+ are used to encode text inputs (including claim text, evidentiary passage and two images
223
+ OCR text) and image inputs (including claim image and document image) respectively before
224
+ concatenating into a 6 × 512 matrix as a single input to subsequent transformer encoder.
225
+ The CLIP architecture allows for a maximum input text length of 77 tokens. The pre-trained
226
+ Word2vec model ("Word2vec Google News 300") [40] is adopted as a unimodal text encoder. It
227
+ encodes the concatenated text sequence of claim and document evidentiary passage text, and
228
+ obtains a 300-D feature vector for each token. Zero-padding is applied to match the longest
229
+ sentence in the training set. Both the pre-trained CLIP and Word2Vec embedding model were
230
+ not fine-tuned.
231
+ 3The model is available in on the Hugging Face hub and accessible via https://huggingface.co/sentence-
232
+ transformers/multi-qa-mpnet-base-dot-v1
233
+
234
+ 3.5. Cross-modal veracity prediction
235
+ The second component of veracity prediction is based on the well established Transformer
236
+ Encoder (TE) architecture, which heavily relies on the concept of self-attention [41] to effectively
237
+ model higher-order interactions and context in an input. Recent research has shown that multi-
238
+ head self-attention mechanisms and transformer architectures are computationally efficient and
239
+ accurate in this regard. The self-attention mechanisms of the TE encoder allows for simple but
240
+ powerful reasoning that can identify hidden relationships between vector entities, regardless of
241
+ whether they are visual or textual in nature. Therefore, our cross-modal veracity prediction
242
+ model is implemented based on self-attention mechanisms to learn the joint distribution of
243
+ text representations of claim-document text pair and cross-modal feature representations of all
244
+ modalities contained in claim and document .
245
+ Specifically, the claim and document embeddings of joint input by CLIP and text input by
246
+ text embedding layer are passed through two separate transformer encoder [41] consisting
247
+ of 𝑁 identical sequential blocks of a multi-head attention (MHA) and a fully connected feed-
248
+ forward network (FFN). Within each transformer encoder, multiple blocks allows for a deeper
249
+ understanding of the inputs. For each block the input 𝑥 is passed through a multi-head attention
250
+ layer of which the output is added to the initial input such that. Passing on both the initial input
251
+ and the output ensures that information in the initial sequence is not lost. Layer normalization is
252
+ applied to the output to allow for faster training and small regularization i.e. 𝑥 = LayerNorm(𝑥+
253
+ MHA(𝑥)). The output is then passed to a feed-forward network to allow for more model
254
+ complexity. The output is again added to the original input and layer normalization is applied i.e.
255
+ 𝑥 = LayerNorm(𝑥 + FFN(𝑥)). The output of the final block (i.e., the output of each transformer
256
+ encoder in the diagram) is passed through an adaptive max pooling layer to reduce the output
257
+ dimensions. The output of two separate transformer encoders are then concatenated before
258
+ feeding into a MLP classifier for five categories prediction. The five categories probabilities are
259
+ obtained from the final output softmax layer.
260
+ 4. Factify Dataset
261
+ 4.1. Dataset Description
262
+ The Factify 2 dataset created and supplied by the organisers covers a train, validation, and test
263
+ set. The train set contains 35000 data pairs, while the validation and test sets each contain 7500
264
+ data pairs. Each data pair consists of a claim and a document, each of which comprises an image,
265
+ a text, and OCR text extracted from the image. The data pairs are annotated with one label from
266
+ 5 categories including Support_Multimodal, Support_Text, Refute, Insufficient_Multimodal, or
267
+ Insufficient_Text.
268
+ 4.2. Text Length Distribution
269
+ The training set text and OCR text length distributions are represented in Figures 2 and 3. The
270
+ text length distribution varies between the claim and document text, with the document text
271
+ that tends to be much longer. This is expected as it is to be used to verify the claim. From Figure
272
+ 2 (a), we can can see that claim text is much shorter and less varied for the Refute category
273
+
274
+ than for the rest of the categories, which all have similar claim text length distributions. Figure
275
+ 2 (b) shows that the Support_Multimodal and Support_Text categories have the larger spread
276
+ of document text lengths and also the longest document text lengths. The two Insufficient
277
+ categories have a smaller document text length distribution, and Refute has the smallest variance
278
+ and maximum length in document text length.
279
+ Considering the claim OCR length we see from Figure 3a that the Refute category has a much
280
+ larger claim OCR length distribution and maximum length than any other category. The second
281
+ largest claim OCR length distributions are the Support_Text and the Insufficient_Text categories,
282
+ which then leaves the two Multimodal categories with the shortest claim OCR text lengths. The
283
+ document OCR length distribution is very similar to that of the claim OCR, from Figure 3b we
284
+ see the only real difference is that the two Text categories have a smaller document OCR length
285
+ distrubution than that of the claim OCR.
286
+ (a) Claim Text Length
287
+ (b) Document Text Length
288
+ Figure 2: Boxplot of Text Length of all Categories
289
+ 4.3. Image Similarity Distribution
290
+ An image similarity investigation was conducted in order to gain an intuition of the similarity
291
+ between the claim and document images for each category. Using image pairwise CLIP embed-
292
+ dings we calculate a similarity score and analyse it per category. Figures 4a and 4b illustrate
293
+ that the similarity between the claim and document image is comparatively higher within
294
+ the categories for Support_Multimodal and Insufficient_Multimodal than the other categories.
295
+ The label correlation with similarity of image pairs has been largely increased compared to
296
+
297
+ 350
298
+ 300
299
+ Length of Text
300
+ 250
301
+ 200
302
+ 150
303
+ 100
304
+ 50
305
+ 0
306
+ Refute
307
+ Support_Multi
308
+ Support_Text
309
+ Multi
310
+ Text
311
+ Insuf_
312
+ Insuf_
313
+ Categories40000
314
+ 30000
315
+ Length of Text
316
+ 20000
317
+ 10000
318
+ Refute
319
+ Multi
320
+ _Text
321
+ _Multi
322
+ Insuf_Text,
323
+ R
324
+ Support_
325
+ Insuf_
326
+ S
327
+ Categories(a) Claim OCR Text Length
328
+ (b) Document OCR Text Length
329
+ Figure 3: Boxplot of OCR Text Length of all Categories
330
+ factity 1 dataset [3] last year. This further indicates that there is explicit correlation multimodal
331
+ categories which can be leveraged to learn and verify multimodal entailment categories.
332
+ 4.4. Multimodal Similarity Distribution
333
+ The multimodal CLIP similarity between claim-text pairs is explored to investigate our hypothe-
334
+ sis that Image should contain content that is related to claim in order to entail either support or
335
+ refute veracity decision. Figures 5a and 5b depict the cosine similarity scores between the claim
336
+ text and document image. From the figures, there is no clear indicator of the entailment between
337
+ doc image and claim text. However, it is noticeable that “Support_Multimodal” presents the
338
+ highest pairwise similarity correlation between label and claim-evidence pair. “Insufficient text”
339
+ have the lowest pairwise similarity correlation, although our initial hypothesis was that “Insuf-
340
+ ficient_Multimodal” should have the lowest value. This analysis suggests that differentiating
341
+ between the different categories based on the claim text and document image correlation could
342
+ be challenging.
343
+ In terms of correlation between the claim image and document text, due to the maximum
344
+ text sequence constraints with CLIP, text access maximum length is truncated. Consequently,
345
+ longer context of document text is not incorporated in this analysis. As shown in Figure 6a and
346
+ 6c, there is low degree of similarity correlation across 5 categories, among which the "Refute"
347
+ category shows highest similarity correlation.
348
+ Lastly, Figure 6b and Figure 6d about the similarity correlation between the claim image and
349
+ the claim text show no significant deviation in similarity scores of different categories when
350
+
351
+ 800
352
+ Length of Text
353
+ 600
354
+ 400
355
+ 200
356
+
357
+
358
+ 0
359
+ Refute
360
+ Support_Text
361
+ Multi -
362
+ Insuf_Text
363
+ Insuf_
364
+ Categories800
365
+ Length of Text
366
+ 600
367
+ 400
368
+ 200
369
+
370
+ 0
371
+ Refute
372
+ Support_Text
373
+ Multi -
374
+ Insuf_Text
375
+ Insuf_
376
+ Categories(a) Claim Image and Document Image Similarity Score Histogram
377
+ (b) Claim Image and Document Image Similarity Boxplot
378
+ Figure 4: Claim Image and Document Image Similarity Scores
379
+ the claim image and claim text are compared to each other. For the purpose of this task and this
380
+ dataset, we hypothesis that the claim image provides supplementary information to the claim
381
+ text.
382
+
383
+ Occurence
384
+ 150
385
+ Refute
386
+ Support Multi
387
+ 100
388
+ Support_Text
389
+ Insuf Multi
390
+ Insuf Text
391
+ 50
392
+ 0.0
393
+ 0.2
394
+ 0.4
395
+ 0.6
396
+ 0.8
397
+ 1.0
398
+ Similaritv Score1.0
399
+ 0.8
400
+ Score
401
+ 0.6
402
+ S
403
+ 0.4
404
+ 0.2
405
+ Refute
406
+ Multi
407
+ Text
408
+ Insuf Multi
409
+ Insuf_Text -
410
+ Support_
411
+ Categories(a) Claim Text and Document Image Similarity Score Histogram
412
+ (b) Claim Text and Document Image Similarity Boxplot
413
+ Figure 5: Claim Image and Document Image Similarity Scores
414
+ 5. Experiments
415
+ 5.1. Model settings
416
+ To validate and optimal the effect of evidence retrieval, We attempt to experiment our model
417
+ with 1) with or without evidence selection; 2) vary length of evidence doc text sorted by evidence
418
+ retriever; 3) passage ranking at paragraph level versus sentence level; 4) text-to-text alignment
419
+ with SBERT versus cross-modal alignment with CLIP. Both SBERT and CLIP is used to rank
420
+ evidence doc with paragraph and sentence level; 5) if SBERT model trained on QA dataset
421
+ perform better than general purpose SBERT model. Note that ranking at paragraph level on
422
+
423
+ Occurence
424
+ Refute
425
+ 150
426
+ Support_Multi
427
+ Support_Text
428
+ 100
429
+ of
430
+ Insuf Multi
431
+ Frequency
432
+ Insuf Text
433
+ 50
434
+ 0
435
+ 0.00
436
+ 0.05
437
+ 0.10
438
+ 0.15
439
+ 0.20
440
+ 0.25
441
+ 0.30
442
+ 0.35
443
+ 0.400.40
444
+ 0.35
445
+ 0.30
446
+ 0.25
447
+ 0.20
448
+ 0.15
449
+ 0.10
450
+ Refute
451
+ Support_Multi
452
+ Support_Text
453
+ Insuf_Multi
454
+ Insuf_Text
455
+ Categories(a) Claim Image and Document Text Similarity Score His-
456
+ togram
457
+ (b) Claim Image and Claim Text Similarity Score His-
458
+ togram
459
+ (c) Claim Image and Document Text Similarity Score
460
+ Boxplot
461
+ (d) Claim Image and Claim Text Similarity Score Box-
462
+ plot
463
+ Figure 6: Similarity Scores
464
+ top <5 or sentence level on top <5 is only option to CLIP due to its maximum allowed length
465
+ restriction.
466
+ For two transformer encoders, we choose an empirical setting of four heads in two MHAs.
467
+ The number of sequential MHA and feed-forward network blocks per embedding input is
468
+ 𝑁𝑏𝑙𝑜𝑐𝑘𝑠 = 2. All our experiments are trained on 3-layered MLP and number of nodes per layer
469
+ are set to 3072, 1024 and 5 respectively. A dropout of 0.5 and ReLU activations are applied
470
+ between the MLP layers.
471
+ Preliminary experiments conducted in this work are elaborated in details as follows:
472
+ • "model_w/o_ER": to validate the effectiveness with evidence retrieval, we remove evidence
473
+ retrieval in our system and provide original document text to "Cross-modal veracity
474
+ prediction model".
475
+
476
+ Occurence
477
+ 150
478
+ Refute
479
+ Support Multi
480
+ 100
481
+ Support Text
482
+ of
483
+ Insuf Multi
484
+ Frequency
485
+ Insuf Text
486
+ 50
487
+ 0
488
+ 0.0
489
+ 0.1
490
+ 0.2
491
+ 0.3
492
+ 0.4
493
+ Similarity ScoreOccurence
494
+ 200
495
+ Refute
496
+ 150
497
+ Support Multi
498
+ Support Text
499
+ a
500
+ 100
501
+ Insuf Multi
502
+ Frequency
503
+ Insuf Text
504
+ 50
505
+ 0
506
+ 0.0
507
+ 0.1
508
+ 0.2
509
+ 0.3
510
+ 0.4
511
+ Similarity Score0.5
512
+ 0.4
513
+ Similarity Score
514
+ 0.3
515
+ 0.2
516
+ 0.1
517
+ 0.0
518
+ Refute
519
+ Support_Multi
520
+ Support_Text
521
+ Insuf_Multi
522
+ Insuf_Text
523
+ Categories0.5
524
+ 0.4
525
+ Score
526
+ 0.3
527
+ Similarity s
528
+ 0.2
529
+ 0.1
530
+ 0.0
531
+ Refute
532
+ Support_Multi
533
+ Support_Text
534
+ Insuf_Multi
535
+ Insuf_Text
536
+ Categories• "SBERT_sentence_ER_top5": One of the "top" 4 performing general purpose SBERT model
537
+ ("all-MiniLM-L6-v2") is chosen in our experiment. This is a all-round model tuned for
538
+ many use-cases and 5 times faster while offering good quality compared to best all-round
539
+ model "all-mpnet-base-v2". The model is trained on a large and diverse dataset of over
540
+ 1 billion training pairs and also fine-tuned for dot-product score function suitable for
541
+ cosine similarity. The use of all-round model allows us to evaluate the value of adopting
542
+ QA fine-tuned counterpart that we hypothesis as optimal solution. Top 5 sorted sentence
543
+ sorted by all-round SBERT model is configured in this setting.
544
+ • "SBERT_sentence_ER_top10": Top 10 sorted sentence sorted by all-round SBERT model
545
+ is configured in this setting.
546
+ • "SBERT_sentence_ER_top15": Top 15 sorted sentence sorted by all-round SBERT model
547
+ is configured in this setting.
548
+ • "SBERT-QA_paragraph_ER_top5": SBERT QA dataset fine-tuned model (as described
549
+ in 3.3) is adopted in this setting to obtain top 5 paragraphs as evidentiary passages for
550
+ veracity inference in this setting.
551
+ • "SBERT-QA_sentence_ER_top5": Top 5 sentences sorted by SBERT QA model and selected
552
+ as evidentiary passages in this setting.
553
+ • "BigBird_w/o_ER": To evaluate the value of evidence selection against the long context
554
+ modeling solution, the Google’s BigBird pre-trained model fine-tuned on Factity dataset
555
+ from last year [3] is used in replace of Word2Vec model in "Text Embedding layer" with this
556
+ setting. This BigBird model allows a maximum 1396 tokens and contextual representation
557
+ of text is adopted in this setting.
558
+ 5.2. Training and validation
559
+ For our experiment, the model was trained up to 80 epochs with early stopping on minimum
560
+ validation loss by minimizing the cross-entropy loss function, the adaptive AdamW optimizer
561
+ [42] with initial learning rate 𝛾 = 1e−4 and epsilon 𝜖 = 1e−8 with batch size 𝑁𝑏𝑎𝑡𝑐ℎ = 16.
562
+ Early stopping patience is set to 5. A linear decreasing learning rate scheduler was used including
563
+ 𝑁𝑠𝑡𝑒𝑝𝑠 = 438 warming up training steps during which the learning rate increased linearly to
564
+ the chosen learning rate.
565
+ We have found that data scraping error leads to invalid doc text content in the development
566
+ dateset provided by organiser with 463 and 114 invalid samples in train and val set respectively.
567
+ There also are 112 invalid samples in test set. This results in document text containing only
568
+ "We’ve detected that JavaScript is disabled in this browser ...". The invalid samples are removed
569
+ from our training data.
570
+ 6. Results and Discussion
571
+ The best model results in preliminary experiments described in section 5 are presented in Table
572
+ 1, Table 2 and Table 3 respectively.
573
+ 4The best performing general purpose model is selected with a sorted list of model performances and use cases
574
+ recommended provided by SBERT, accessible via https://www.sbert.net/docs/pretrained_models.html
575
+
576
+ Table 1
577
+ 5-way Classification Results of experiments without ER on val set
578
+ Categories
579
+ model_w/o_ER
580
+ BigBird_w/o_ER
581
+ P
582
+ R
583
+ F1
584
+ P
585
+ R
586
+ F1
587
+ Support_Multimodal
588
+ 0.73
589
+ 0.79
590
+ 0.76
591
+ 0.73
592
+ 0.81
593
+ 0.77
594
+ Support_Text
595
+ 0.71
596
+ 0.61
597
+ 0.66
598
+ 0.77
599
+ 0.59
600
+ 0.67
601
+ Insufficient_Multimodal
602
+ 0.66
603
+ 0.66
604
+ 0.66
605
+ 0.64
606
+ 0.70
607
+ 0.67
608
+ Insufficient_Text
609
+ 0.71
610
+ 0.75
611
+ 0.73
612
+ 0.73
613
+ 0.75
614
+ 0.74
615
+ Refute
616
+ 0.99
617
+ 0.98
618
+ 0.98
619
+ 0.98
620
+ 0.98
621
+ 0.98
622
+ Weighted Avg.
623
+ 0.76
624
+ 0.76
625
+ 0.76
626
+ 0.77
627
+ 0.77
628
+ 0.77
629
+ Table 2
630
+ 5-way Classification Results of experiments with all-round SBERT + ER on val set
631
+ Categories
632
+ SBERT_sentence_ER_top5
633
+ SBERT_sentence_ER_top10
634
+ SBERT_sentence_ER_top15
635
+ P
636
+ R
637
+ F1
638
+ P
639
+ R
640
+ F1
641
+ P
642
+ R
643
+ F1
644
+ Support_Multimodal
645
+ 0.72
646
+ 0.85
647
+ 0.78
648
+ 0.74
649
+ 0.78
650
+ 0.76
651
+ 0.75
652
+ 0.77
653
+ 0.76
654
+ Support_Text
655
+ 0.63
656
+ 0.73
657
+ 0.68
658
+ 0.71
659
+ 0.61
660
+ 0.66
661
+ 0.71
662
+ 0.62
663
+ 0.66
664
+ Insufficient_Multimodal
665
+ 0.70
666
+ 0.64
667
+ 0.67
668
+ 0.66
669
+ 0.67
670
+ 0.66
671
+ 0.65
672
+ 0.67
673
+ 0.66
674
+ Insufficient_Text
675
+ 0.80
676
+ 0.58
677
+ 0.67
678
+ 0.70
679
+ 0.77
680
+ 0.74
681
+ 0.71
682
+ 0.76
683
+ 0.73
684
+ Refute
685
+ 0.96
686
+ 0.99
687
+ 0.97
688
+ 0.96
689
+ 0.99
690
+ 0.97
691
+ 0.98
692
+ 0.98
693
+ 0.98
694
+ Weighted Avg.
695
+ 0.76
696
+ 0.76
697
+ 0.75
698
+ 0.76
699
+ 0.76
700
+ 0.76
701
+ 0.76
702
+ 0.76
703
+ 0.76
704
+ Firstly, the Table 1 shows that our veracity model without ER exhibits a reasonably good
705
+ performance and utilising long sequence model (BigBird) for text embedding improves the
706
+ base model with a small margin, by 1% for all categories except "Refute". As comparison,
707
+ further experiments with ER are conducted in Table 2 and Table 3. The results in Table 2
708
+ indicates that all-round SBERT based evidence selection do not provide obvious performance
709
+ improvement based on current preliminary exploration covering three top K sentences settings
710
+ (K=5, 10, 15). In contrast, SERT-QA based model achieves big marginal improvement at both
711
+ paragraph and sentence level. Our experiments covers both top 5 paragraphs and sentences,
712
+ which improves best base model (without ER) by 1% and 2% respectively. Final results across 7
713
+ different experiment setup shows that combining SBERT-QA at top K sentence-level evidence
714
+ passage retrieval achieves optimal performance compared to the base model without ER and
715
+ the use of all-round SBERT model. The best model "SBERT-QA_sentence_ER_top5" obtains 0.79
716
+ weighted avg. F1 with 20th epochs.
717
+ 6.1. Competition Result
718
+ Final test set results and competition leaderboard are presented in Table 4. The results shows
719
+ that top 3 participating systems achieves similar performance and our system is ranked at 3rd
720
+ place with a small margin (by 0.028) to the top performing system. Please refer to [43] for the
721
+
722
+ Table 3
723
+ 5-way Classification Results of experiments with SBERT-QA + ER on val set
724
+ Categories
725
+ SBERT-QA_paragraph_ER_top5
726
+ SBERT-QA_sentence_ER_top5
727
+ P
728
+ R
729
+ F1
730
+ P
731
+ R
732
+ F1
733
+ Support_Multimodal
734
+ 0.80
735
+ 0.77
736
+ 0.78
737
+ 0.79
738
+ 0.83
739
+ 0.81
740
+ Support_Text
741
+ 0.70
742
+ 0.68
743
+ 0.69
744
+ 0.70
745
+ 0.69
746
+ 0.70
747
+ Insufficient_Multimodal
748
+ 0.66
749
+ 0.72
750
+ 0.69
751
+ 0.71
752
+ 0.72
753
+ 0.73
754
+ Insufficient_Text
755
+ 0.76
756
+ 0.72
757
+ 0.74
758
+ 0.74
759
+ 0.72
760
+ 0.73
761
+ Refute
762
+ 0.96
763
+ 1.00
764
+ 0.98
765
+ 0.99
766
+ 0.98
767
+ 0.98
768
+ Weighted Avg.
769
+ 0.78
770
+ 0.78
771
+ 0.78
772
+ 0.79
773
+ 0.79
774
+ 0.79
775
+ Table 4
776
+ Factify Official Leaderboard
777
+ Rank
778
+ Team
779
+ Support_Text
780
+ Support_Multi.
781
+ Insufficient_Text
782
+ Insufficient_Multi.
783
+ Refute
784
+ Final
785
+ 1
786
+ Triple-Check
787
+ 0.828
788
+ 0.914
789
+ 0.852
790
+ 0.892
791
+ 1.0
792
+ 0.818
793
+ 2
794
+ INO
795
+ 0.812
796
+ 0.9
797
+ 0.888
798
+ 0.852
799
+ 0.999
800
+ 0.808
801
+ 3
802
+ Logically
803
+ 0.804
804
+ 0.905
805
+ 0.844
806
+ 0.856
807
+ 0.985
808
+ 0.79
809
+ 4
810
+ Zhang
811
+ 0.766
812
+ 0.879
813
+ 0.816
814
+ 0.879
815
+ 0.999
816
+ 0.774
817
+ 5
818
+ gzw
819
+ 0.785
820
+ 0.863
821
+ 0.814
822
+ 0.833
823
+ 1.0
824
+ 0.761
825
+ 6
826
+ coco
827
+ 0.773
828
+ 0.865
829
+ 0.815
830
+ 0.83
831
+ 1.0
832
+ 0.757
833
+ 7
834
+ Noir
835
+ 0.771
836
+ 0.873
837
+ 0.785
838
+ 0.816
839
+ 0.997
840
+ 0.745
841
+ 8
842
+ Yet
843
+ 0.707
844
+ 0.826
845
+ 0.786
846
+ 0.719
847
+ 1.0
848
+ 0.691
849
+ 9
850
+ TeamX
851
+ 0.582
852
+ 0.709
853
+ 0.537
854
+ 0.556
855
+ 0.698
856
+ 0.456
857
+ -
858
+ BASELINE
859
+ 0.5
860
+ 0.827
861
+ 0.802
862
+ 0.759
863
+ 0.988
864
+ 0.65
865
+ competition details.
866
+ 7. Conclusion
867
+ In this research, we present our multimodal fact checking system that is submitted to the De-
868
+ Factify 2023 competition. The system consists of various components, including a multimodal
869
+ fact checking dataset, a QA-enhanced evidence passage retrieval component, and a Transformer-
870
+ based cross-modal sequence-to-sequence veracity prediction model. Our findings from the
871
+ De-Factify 2023 competition show that recent advances in pre-trained cross-modal models, such
872
+ as CLIP, have strong zero-shot or few-shot capabilities and can be effectively transferred to a
873
+ variety of downstream tasks, including multimodal fact checking. However, there is still a need
874
+ for more effective techniques for multimodal modeling and explainability, particularly in regards
875
+ to learning finer-grained cross-modal representations by jointly modeling intra- and inter-
876
+ modality relationships and aligning vision regions with sentence words or entities. Additionally,
877
+ more focus should be placed on real-world challenges that involve handling large amounts of
878
+ textual and multimodal information from multiple sources and domains for claim verification.
879
+ There is also a need for techniques that can effectively handle more complex and nuanced
880
+ real-world scenarios, such as those involving sarcasm, irony, and misleading context. The
881
+
882
+ difficulties in creating large and high-quality multimodal fact checking datasets that accurately
883
+ reflect real-world scenarios, as identified in our last year work, remain a significant challenge.
884
+ References
885
+ [1] D. Wadden, K. Lo, L. Wang, A. Cohan, I. Beltagy, H. Hajishirzi, Multivers: Improving
886
+ scientific claim verification with weak supervision and full-document context, in: Findings
887
+ of the Association for Computational Linguistics: NAACL 2022, 2022, pp. 61–76.
888
+ [2] D. Stammbach, Evidence selection as a token-level prediction task, in: Proceedings of the
889
+ Fourth Workshop on Fact Extraction and VERification (FEVER), EMNLP, Association for
890
+ Computational Linguistics (ACL), 2021.
891
+ [3] J. Gao, H.-F. Hoffmann, S. Oikonomou, D. Kiskovski, A. Bandhakavi, Logically at factify
892
+ 2022: Multimodal fact verification, arXiv (2021). URL: https://arxiv.org/abs/2112.09253.
893
+ doi:10.48550/ARXIV.2112.09253.
894
+ [4] M. Zaheer, G. Guruganesh, K. A. Dubey, J. Ainslie, C. Alberti, S. Ontanon, P. Pham,
895
+ A. Ravula, Q. Wang, L. Yang, et al., Big bird: Transformers for longer sequences, Advances
896
+ in Neural Information Processing Systems 33 (2020) 17283–17297.
897
+ [5] I. Beltagy, M. E. Peters, A. Cohan, Longformer: The long-document transformer, arXiv
898
+ preprint arXiv:2004.05150 (2020).
899
+ [6] X. Ma, C. Zhou, X. Kong, J. He, L. Gui, G. Neubig, J. May, L. Zettlemoyer, Mega: Moving
900
+ average equipped gated attention, arXiv preprint arXiv:2209.10655 (2022).
901
+ [7] J. T. Smith, A. Warrington, S. W. Linderman, Simplified state space layers for sequence
902
+ modeling, arXiv preprint arXiv:2208.04933 (2022).
903
+ [8] J. Zhao, J. Bao, Y. Wang, Y. Zhou, Y. Wu, X. He, B. Zhou, Ror: Read-over-read for long
904
+ document machine reading comprehension, arXiv preprint arXiv:2109.04780 (2021).
905
+ [9] R. Nakano, J. Hilton, S. Balaji, J. Wu, L. Ouyang, C. Kim, C. Hesse, S. Jain, V. Kosaraju,
906
+ W. Saunders, et al., Webgpt: Browser-assisted question-answering with human feedback,
907
+ arXiv preprint arXiv:2112.09332 (2021).
908
+ [10] D. Wadden, S. Lin, K. Lo, L. L. Wang, M. van Zuylen, A. Cohan, H. Hajishirzi, Fact or
909
+ fiction: Verifying scientific claims, arXiv preprint arXiv:2004.14974 (2020).
910
+ [11] J. Thorne, A. Vlachos, C. Christodoulopoulos, A. Mittal, Fever: a large-scale dataset for
911
+ fact extraction and verification, in: Proceedings of the 2018 Conference of the North
912
+ American Chapter of the Association for Computational Linguistics: Human Language
913
+ Technologies, Volume 1 (Long Papers), Association for Computational Linguistics, New
914
+ Orleans, Louisiana, 2018, pp. 809–819. URL: https://aclanthology.org/N18-1074. doi:10.
915
+ 18653/v1/N18-1074.
916
+ [12] R. Aly, Z. Guo, M. Schlichtkrull, J. Thorne, A. Vlachos, C. Christodoulopoulos, O. Cocarascu,
917
+ A. Mittal, Feverous: Fact extraction and verification over unstructured and structured
918
+ information, arXiv preprint arXiv:2106.05707 (2021).
919
+ [13] L. Floridi, M. Chiriatti, Gpt-3: Its nature, scope, limits, and consequences, Minds and
920
+ Machines 30 (2020) 681–694.
921
+ [14] J. Maynez, S. Narayan, B. Bohnet, R. McDonald, On faithfulness and factuality in abstractive
922
+ summarization, arXiv preprint arXiv:2005.00661 (2020).
923
+
924
+ [15] A. Lazaridou, E. Gribovskaya, W. Stokowiec, N. Grigorev, Internet-augmented language
925
+ models through few-shot prompting for open-domain question answering, arXiv preprint
926
+ arXiv:2203.05115 (2022).
927
+ [16] J. Wei, M. Bosma, V. Y. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du, A. M. Dai, Q. V. Le,
928
+ Finetuned language models are zero-shot learners, arXiv preprint arXiv:2109.01652 (2021).
929
+ [17] N. Reimers, I. Gurevych, Sentence-bert: Sentence embeddings using siamese bert-networks,
930
+ arXiv preprint arXiv:1908.10084 (2019).
931
+ [18] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep bidirectional
932
+ transformers for language understanding, arXiv preprint arXiv:1810.04805 (2018).
933
+ [19] A. Saakyan, T. Chakrabarty, S. Muresan, Covid-fact: Fact extraction and verification of
934
+ real-world claims on covid-19 pandemic, arXiv preprint arXiv:2106.03794 (2021).
935
+ [20] B. M. Yao, A. Shah, L. Sun, J.-H. Cho, L. Huang, End-to-end multimodal fact-checking and
936
+ explanation generation: A challenging dataset and models, arXiv preprint arXiv:2205.12487
937
+ (2022).
938
+ [21] A. Barrón-Cedeño, T. Elsayed, P. Nakov, G. Da San Martino, M. Hasanain, R. Suwaileh,
939
+ F. Haouari, N. Babulkov, B. Hamdan, A. Nikolov, et al., Overview of checkthat! 2020:
940
+ Automatic identification and verification of claims in social media, in: International
941
+ Conference of the Cross-Language Evaluation Forum for European Languages, Springer,
942
+ 2020, pp. 215–236.
943
+ [22] N. Lee, C.-S. Wu, P. Fung, Improving large-scale fact-checking using decomposable
944
+ attention models and lexical tagging, in: Proceedings of the 2018 Conference on Empirical
945
+ Methods in Natural Language Processing, 2018, pp. 1133–1138.
946
+ [23] T. Schuster, A. Fisch, R. Barzilay,
947
+ Get your vitamin c! robust fact verification with
948
+ contrastive evidence, arXiv preprint arXiv:2103.08541 (2021).
949
+ [24] C. Sun, A. Myers, C. Vondrick, K. Murphy, C. Schmid, Videobert: A joint model for video
950
+ and language representation learning, arXiv (2019). URL: https://arxiv.org/abs/1904.01766.
951
+ doi:10.48550/ARXIV.1904.01766.
952
+ [25] L. H. Li, M. Yatskar, D. Yin, C.-J. Hsieh, K.-W. Chang, Visualbert: A simple and performant
953
+ baseline for vision and language, arXiv (2019). URL: https://arxiv.org/abs/1908.03557.
954
+ doi:10.48550/ARXIV.1908.03557.
955
+ [26] Y.-C. Chen, L. Li, L. Yu, A. E. Kholy, F. Ahmed, Z. Gan, Y. Cheng, J. Liu, Uniter: Universal
956
+ image-text representation learning, arXiv (2019). URL: https://arxiv.org/abs/1909.11740.
957
+ doi:10.48550/ARXIV.1909.11740.
958
+ [27] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
959
+ P. Mishkin, J. Clark, et al., Learning transferable visual models from natural language
960
+ supervision, in: International Conference on Machine Learning, PMLR, 2021, pp. 8748–
961
+ 8763.
962
+ [28] P. Gao, S. Geng, R. Zhang, T. Ma, R. Fang, Y. Zhang, H. Li, Y. Qiao, Clip-adapter: Better
963
+ vision-language models with feature adapters, arXiv preprint arXiv:2110.04544 (2021).
964
+ [29] Z. Guo, R. Zhang, L. Qiu, X. Ma, X. Miao, X. He, B. Cui, Calip: Zero-shot enhancement of
965
+ clip with parameter-free attention, arXiv preprint arXiv:2209.14169 (2022).
966
+ [30] K. Jiang, X. He, R. Xu, X. E. Wang, Comclip: Training-free compositional image and text
967
+ matching, arXiv preprint arXiv:2211.13854 (2022).
968
+ [31] W.-Y. Wang, W.-C. Peng, Team yao at factify 2022: Utilizing pre-trained models and
969
+
970
+ co-attention networks for multi-modal fact verification, arXiv (2022). URL: https://arxiv.
971
+ org/abs/2201.11664. doi:10.48550/ARXIV.2201.11664.
972
+ [32] N. Messina, G. Amato, A. Esuli, F. Falchi, C. Gennaro, S. Marchand-Maillet, Fine-grained
973
+ visual textual alignment for cross-modal retrieval using transformer encoders, ACM
974
+ Transactions on Multimedia Computing, Communications, and Applications (TOMM) 17
975
+ (2021) 1–23.
976
+ [33] S. Suryavardan, S. Mishra, P. Patwa, M. Chakraborty, A. Rani, A. Reganti, A. Chadha,
977
+ A. Das, A. Sheth, M. Chinnakotla, A. Ekbal, S. Kumar, Factify 2: A multimodal fake news
978
+ and satire news dataset, in: proceedings of defactify 2: second workshop on Multimodal
979
+ Fact-Checking and Hate Speech Detection, CEUR, 2023.
980
+ [34] J. Thorne, A. Vlachos, O. Cocarascu, C. Christodoulopoulos, A. Mittal, The fact extraction
981
+ and verification (fever) shared task, arXiv preprint arXiv:1811.10971 (2018).
982
+ [35] J. Thorne, A. Vlachos, O. Cocarascu, C. Christodoulopoulos, A. Mittal, The fever2. 0
983
+ shared task, in: Proceedings of the Second Workshop on Fact Extraction and VERification
984
+ (FEVER), 2019, pp. 1–6.
985
+ [36] R. Aly, Z. Guo, M. S. Schlichtkrull, J. Thorne, A. Vlachos, C. Christodoulopoulos, O. Co-
986
+ carascu, A. Mittal, The fact extraction and verification over unstructured and structured
987
+ information (feverous) shared task, in: Proceedings of the Fourth Workshop on Fact
988
+ Extraction and VERification (FEVER), 2021, pp. 1–13.
989
+ [37] D. Wadden, K. Lo, Overview and insights from the sciver shared task on scientific claim
990
+ verification, arXiv preprint arXiv:2107.08188 (2021).
991
+ [38] K. Jiang, R. Pradeep, J. Lin, Exploring listwise evidence reasoning with t5 for fact verifica-
992
+ tion, in: Proceedings of the 59th Annual Meeting of the Association for Computational
993
+ Linguistics and the 11th International Joint Conference on Natural Language Processing
994
+ (Volume 2: Short Papers), 2021, pp. 402–410.
995
+ [39] K. Song, X. Tan, T. Qin, J. Lu, T.-Y. Liu, Mpnet: Masked and permuted pre-training for
996
+ language understanding, Advances in Neural Information Processing Systems 33 (2020)
997
+ 16857–16867.
998
+ [40] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, J. Dean, Distributed representations of
999
+ words and phrases and their compositionality, Advances in neural information processing
1000
+ systems 26 (2013).
1001
+ [41] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, I. Polo-
1002
+ sukhin, Attention is all you need, arXiv (2017). URL: https://arxiv.org/abs/1706.03762.
1003
+ doi:10.48550/ARXIV.1706.03762.
1004
+ [42] I. Loshchilov, F. Hutter, Decoupled weight decay regularization (2017). URL: https://arxiv.
1005
+ org/abs/1711.05101. doi:10.48550/ARXIV.1711.05101.
1006
+ [43] S. Suryavardan, S. Mishra, M. Chakraborty, P. Patwa, A. Rani, A. Chadha, A. Reganti,
1007
+ A. Das, A. Sheth, M. Chinnakotla, A. Ekbal, S. Kumar, Findings of factify 2: multimodal
1008
+ fake news detection, in: proceedings of defactify 2: second workshop on Multimodal
1009
+ Fact-Checking and Hate Speech Detection, CEUR, 2023.
1010
+