jackkuo commited on
Commit
3989f83
·
verified ·
1 Parent(s): 457015e

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -9E1T4oBgHgl3EQfCwJj/content/2301.02868v1.pdf +3 -0
  2. -9E1T4oBgHgl3EQfCwJj/vector_store/index.faiss +3 -0
  3. -9E1T4oBgHgl3EQfCwJj/vector_store/index.pkl +3 -0
  4. .gitattributes +53 -0
  5. 0dE0T4oBgHgl3EQf_gIS/content/tmp_files/2301.02826v1.pdf.txt +2883 -0
  6. 0dE0T4oBgHgl3EQf_gIS/content/tmp_files/load_file.txt +0 -0
  7. 0tFQT4oBgHgl3EQf0TbP/content/2301.13416v1.pdf +3 -0
  8. 0tFQT4oBgHgl3EQf0TbP/vector_store/index.faiss +3 -0
  9. 0tFQT4oBgHgl3EQf0TbP/vector_store/index.pkl +3 -0
  10. 1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf +3 -0
  11. 1dFAT4oBgHgl3EQfkB03/vector_store/index.faiss +3 -0
  12. 29AyT4oBgHgl3EQf1vl1/vector_store/index.pkl +3 -0
  13. 29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf +3 -0
  14. 29FQT4oBgHgl3EQf2zan/vector_store/index.faiss +3 -0
  15. 2dE0T4oBgHgl3EQfugHS/content/2301.02607v1.pdf +3 -0
  16. 2tFKT4oBgHgl3EQfQC0t/content/tmp_files/2301.11765v1.pdf.txt +2154 -0
  17. 2tFKT4oBgHgl3EQfQC0t/content/tmp_files/load_file.txt +0 -0
  18. 3tAzT4oBgHgl3EQfR_u4/content/tmp_files/2301.01226v1.pdf.txt +2087 -0
  19. 3tAzT4oBgHgl3EQfR_u4/content/tmp_files/load_file.txt +0 -0
  20. 3tE2T4oBgHgl3EQfjgeA/content/tmp_files/2301.03969v1.pdf.txt +1533 -0
  21. 3tE2T4oBgHgl3EQfjgeA/content/tmp_files/load_file.txt +0 -0
  22. 4NE3T4oBgHgl3EQfogr8/vector_store/index.faiss +3 -0
  23. 6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf +3 -0
  24. 7NAyT4oBgHgl3EQfpviE/content/tmp_files/2301.00531v1.pdf.txt +2435 -0
  25. 7NAyT4oBgHgl3EQfpviE/content/tmp_files/load_file.txt +0 -0
  26. 7tAyT4oBgHgl3EQfc_c0/content/tmp_files/2301.00292v1.pdf.txt +0 -0
  27. 7tAyT4oBgHgl3EQfc_c0/content/tmp_files/load_file.txt +0 -0
  28. 8tAzT4oBgHgl3EQfE_rp/vector_store/index.pkl +3 -0
  29. 8tFLT4oBgHgl3EQfBi4b/vector_store/index.faiss +3 -0
  30. 8tFLT4oBgHgl3EQfBi4b/vector_store/index.pkl +3 -0
  31. 99E3T4oBgHgl3EQfrQpl/content/tmp_files/2301.04658v1.pdf.txt +1246 -0
  32. 99E3T4oBgHgl3EQfrQpl/content/tmp_files/load_file.txt +0 -0
  33. 9tE1T4oBgHgl3EQfoARp/vector_store/index.faiss +3 -0
  34. CNFJT4oBgHgl3EQftC1e/vector_store/index.pkl +3 -0
  35. EtFRT4oBgHgl3EQfyjjm/content/tmp_files/2301.13646v1.pdf.txt +1964 -0
  36. EtFRT4oBgHgl3EQfyjjm/content/tmp_files/load_file.txt +0 -0
  37. FNAyT4oBgHgl3EQfe_gi/content/tmp_files/2301.00330v1.pdf.txt +3503 -0
  38. FNAyT4oBgHgl3EQfe_gi/content/tmp_files/load_file.txt +0 -0
  39. H9FKT4oBgHgl3EQfdS4O/vector_store/index.faiss +3 -0
  40. HdE0T4oBgHgl3EQfhgHx/content/tmp_files/2301.02434v1.pdf.txt +3387 -0
  41. HdE0T4oBgHgl3EQfhgHx/content/tmp_files/load_file.txt +0 -0
  42. INE1T4oBgHgl3EQf_wYq/content/tmp_files/2301.03583v1.pdf.txt +1020 -0
  43. INE1T4oBgHgl3EQf_wYq/content/tmp_files/load_file.txt +0 -0
  44. IdE2T4oBgHgl3EQfUQce/vector_store/index.faiss +3 -0
  45. JNE0T4oBgHgl3EQfiAH8/content/tmp_files/2301.02441v1.pdf.txt +4576 -0
  46. JNE0T4oBgHgl3EQfiAH8/content/tmp_files/load_file.txt +0 -0
  47. JNE3T4oBgHgl3EQfuwvk/vector_store/index.pkl +3 -0
  48. LNFRT4oBgHgl3EQfEjcG/content/tmp_files/2301.13476v1.pdf.txt +841 -0
  49. LNFRT4oBgHgl3EQfEjcG/content/tmp_files/load_file.txt +0 -0
  50. LdE4T4oBgHgl3EQfJww5/content/tmp_files/2301.04923v1.pdf.txt +2046 -0
-9E1T4oBgHgl3EQfCwJj/content/2301.02868v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c72e70b2f3efb7df38fa895410ba6b9d4df8274e834e45e6659ec9d043292ee
3
+ size 612439
-9E1T4oBgHgl3EQfCwJj/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dcf7f28d7bdfbbe80fbab9df426199449cf7555c6aa29a5574da8f4e0ba995f1
3
+ size 2490413
-9E1T4oBgHgl3EQfCwJj/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a9dd78ff85ff3d3876cee8423270d94b0efa8a31d7496e18c8d2961bc6c005f
3
+ size 90934
.gitattributes CHANGED
@@ -6649,3 +6649,56 @@ bdA0T4oBgHgl3EQfGf9T/content/2301.02047v1.pdf filter=lfs diff=lfs merge=lfs -tex
6649
  y9FAT4oBgHgl3EQfBBzs/content/2301.08402v1.pdf filter=lfs diff=lfs merge=lfs -text
6650
  yNFKT4oBgHgl3EQfLi3P/content/2301.11747v1.pdf filter=lfs diff=lfs merge=lfs -text
6651
  pNAyT4oBgHgl3EQfZPcw/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6649
  y9FAT4oBgHgl3EQfBBzs/content/2301.08402v1.pdf filter=lfs diff=lfs merge=lfs -text
6650
  yNFKT4oBgHgl3EQfLi3P/content/2301.11747v1.pdf filter=lfs diff=lfs merge=lfs -text
6651
  pNAyT4oBgHgl3EQfZPcw/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6652
+ 6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf filter=lfs diff=lfs merge=lfs -text
6653
+ MdE0T4oBgHgl3EQf0ALT/content/2301.02681v1.pdf filter=lfs diff=lfs merge=lfs -text
6654
+ 29FQT4oBgHgl3EQf2zan/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6655
+ 1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf filter=lfs diff=lfs merge=lfs -text
6656
+ OtE1T4oBgHgl3EQfaASJ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6657
+ idE4T4oBgHgl3EQfSgzP/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6658
+ r9E1T4oBgHgl3EQfjAT1/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6659
+ qNFQT4oBgHgl3EQfszbV/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6660
+ ZdFPT4oBgHgl3EQfujVG/content/2301.13156v1.pdf filter=lfs diff=lfs merge=lfs -text
6661
+ udAzT4oBgHgl3EQfBvq_/content/2301.00948v1.pdf filter=lfs diff=lfs merge=lfs -text
6662
+ dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf filter=lfs diff=lfs merge=lfs -text
6663
+ Z9FQT4oBgHgl3EQffTZu/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6664
+ P9E0T4oBgHgl3EQfTwDw/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6665
+ P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf filter=lfs diff=lfs merge=lfs -text
6666
+ t9E1T4oBgHgl3EQf3wV6/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6667
+ H9FKT4oBgHgl3EQfdS4O/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6668
+ Q9AyT4oBgHgl3EQfU_ew/content/2301.00136v1.pdf filter=lfs diff=lfs merge=lfs -text
6669
+ -9E1T4oBgHgl3EQfCwJj/content/2301.02868v1.pdf filter=lfs diff=lfs merge=lfs -text
6670
+ 4NE3T4oBgHgl3EQfogr8/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6671
+ 0tFQT4oBgHgl3EQf0TbP/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6672
+ 0tFQT4oBgHgl3EQf0TbP/content/2301.13416v1.pdf filter=lfs diff=lfs merge=lfs -text
6673
+ ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf filter=lfs diff=lfs merge=lfs -text
6674
+ -9E1T4oBgHgl3EQfCwJj/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6675
+ MdE3T4oBgHgl3EQfYwoW/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6676
+ bdA0T4oBgHgl3EQfGf9T/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6677
+ MdE3T4oBgHgl3EQfYwoW/content/2301.04490v1.pdf filter=lfs diff=lfs merge=lfs -text
6678
+ udAzT4oBgHgl3EQfBvq_/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6679
+ jdE0T4oBgHgl3EQfYQCg/content/2301.02305v1.pdf filter=lfs diff=lfs merge=lfs -text
6680
+ MtFLT4oBgHgl3EQfNS8Q/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6681
+ 9tE1T4oBgHgl3EQfoARp/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6682
+ bdFAT4oBgHgl3EQf5B6R/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6683
+ 29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf filter=lfs diff=lfs merge=lfs -text
6684
+ MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf filter=lfs diff=lfs merge=lfs -text
6685
+ y9FAT4oBgHgl3EQfBBzs/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6686
+ sdE2T4oBgHgl3EQfLgYA/content/2301.03713v1.pdf filter=lfs diff=lfs merge=lfs -text
6687
+ 2dE0T4oBgHgl3EQfugHS/content/2301.02607v1.pdf filter=lfs diff=lfs merge=lfs -text
6688
+ b9FRT4oBgHgl3EQfSTce/content/2301.13528v1.pdf filter=lfs diff=lfs merge=lfs -text
6689
+ qtFAT4oBgHgl3EQffR0e/content/2301.08580v1.pdf filter=lfs diff=lfs merge=lfs -text
6690
+ gNE4T4oBgHgl3EQfqw2j/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6691
+ IdE2T4oBgHgl3EQfUQce/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6692
+ SNAyT4oBgHgl3EQfVPeU/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6693
+ jdE0T4oBgHgl3EQfYQCg/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6694
+ t9E1T4oBgHgl3EQf3wV6/content/2301.03493v1.pdf filter=lfs diff=lfs merge=lfs -text
6695
+ 1dFAT4oBgHgl3EQfkB03/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6696
+ zNE2T4oBgHgl3EQfMgZz/content/2301.03725v1.pdf filter=lfs diff=lfs merge=lfs -text
6697
+ htE2T4oBgHgl3EQfcgdl/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6698
+ atFLT4oBgHgl3EQfXS8c/content/2301.12060v1.pdf filter=lfs diff=lfs merge=lfs -text
6699
+ edE2T4oBgHgl3EQfGgYZ/content/2301.03657v1.pdf filter=lfs diff=lfs merge=lfs -text
6700
+ dtFAT4oBgHgl3EQf6x4A/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6701
+ ZdFPT4oBgHgl3EQfujVG/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6702
+ kdE2T4oBgHgl3EQfIgZc/content/2301.03681v1.pdf filter=lfs diff=lfs merge=lfs -text
6703
+ edE2T4oBgHgl3EQfGgYZ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6704
+ 8tFLT4oBgHgl3EQfBi4b/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
0dE0T4oBgHgl3EQf_gIS/content/tmp_files/2301.02826v1.pdf.txt ADDED
@@ -0,0 +1,2883 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Boundary conditions dependence of the phase transition in the quantum
2
+ Newman-Moore model
3
+ Konstantinos Sfairopoulos,∗ Luke Causer, Jamie F. Mair, and Juan P. Garrahan
4
+ School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK and
5
+ Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems,
6
+ University of Nottingham, Nottingham, NG7 2RD, UK
7
+ We study the triangular plaquette model (TPM, also known as the Newman-Moore model) in
8
+ the presence of a transverse magnetic field on a lattice with periodic boundaries in both spatial
9
+ dimensions.
10
+ We consider specifically the approach to the ground state phase transition of this
11
+ quantum TPM (QTPM, or quantum Newman-Moore model) as a function of the system size and
12
+ type of boundary conditions. Using cellular automata methods, we obtain a full characterization of
13
+ the minimum energy configurations of the TPM for arbitrary tori sizes. For the QTPM, we use these
14
+ cycle patterns to obtain the symmetries of the model, which we argue determine its quantum phase
15
+ transition: we find it to be a first-order phase transition, with the addition of spontaneous symmetry
16
+ breaking for system sizes which have degenerate classical ground states.
17
+ For sizes accessible to
18
+ numerics, we also find that this classification is consistent with exact diagonalization, Matrix Product
19
+ States and Quantum Monte Carlo simulations.
20
+ I.
21
+ INTRODUCTION
22
+ In this paper, we study the ground state phase transi-
23
+ tion of the quantum Newman-Moore model, or quantum
24
+ triangular plaquette model. The classical triangular pla-
25
+ quette model (TPM), introduced by Newman and Moore
26
+ [1], is a model of Ising spins interacting in triplets in (half
27
+ of) the plaquettes of a triangular lattice.
28
+ Despite the
29
+ absence of quenched disorder and its trivial static prop-
30
+ erties, the model has rich glassy dynamics [1–3].
31
+ The
32
+ TPM is an important model as it realises in an interact-
33
+ ing system the paradigm of slow (super-Arrhenius) re-
34
+ laxation at low temperatures due to effective kinetic con-
35
+ straints. This phenomenon is central to the dynamic fa-
36
+ cilitation picture of the glass transition [4–6]. The physics
37
+ of the TPM can also be generalised to three dimensions,
38
+ for example in the five-spin interaction square-pyramid
39
+ model [7], or maintaining the triangular interactions in
40
+ the models of Ref. [8]. A three-dimensional generalisa-
41
+ tion of the TPM with non-commuting terms [9] actually
42
+ started what is now the field of fractons [10, 11].
43
+ The simplest way to transform the TPM into a quan-
44
+ tum model is by adding a transverse field term to the
45
+ classical Hamiltonian. Such quantum TPM (QTPM, or
46
+ quantum Newman-Moore model) was considered in the
47
+ context of fractons in Refs. [12, 13]. Numerics in Ref. [12]
48
+ suggested that the ground state undergoes a first-order
49
+ transition. A related work studying the large deviations
50
+ of plaquette observables in the stochastic dynamics of in-
51
+ dependent spins [14] also found numerical evidence for a
52
+ first-order transition at the self-dual point of the model.
53
+ In contrast, the results from Ref. [15] indicated that the
54
+ transition is continuous, with a particular form of fractal
55
+ symmetry breaking. The classical TPM and its connec-
56
+ tion with fractals and topological order was also drawn in
57
58
+ Ref. [16]. Here we aim to resolve these discrepancies by
59
+ exploiting a general connection between D-dimensional
60
+ cellular automata (CA) [17] and the ground states of
61
+ (D + 1)-dimensional classical spin models [18]. By us-
62
+ ing this method in the specific case of the QTPM with
63
+ periodic boundary conditions, we are able to character-
64
+ ize the approach to its quantum phase transition in the
65
+ large size limit. Our key observation is that the nature of
66
+ the transition depends on the specific lattice dimensions,
67
+ and this is manifested in the finite size scaling.
68
+ For the TPM, the relevant CA is Rule 60 [17] and
69
+ not Rule 90 that might be assumed from comment [18]
70
+ in Ref. [1]. For system sizes where one dimension is a
71
+ power of two, Rule 60 has a single fixed point [19], im-
72
+ plying a single energy minimum for the classical TPM.
73
+ In such cases, we verify that the quantum phase tran-
74
+ sition in the QTPM is first-order (that is, a sequence
75
+ of such system sizes tends to a first-order transition in
76
+ the large size limit). This also holds for other sizes for
77
+ which Rule 60 has no non-trivial attractors. However,
78
+ for certain sizes there can be periodic orbits on top of
79
+ the fixed point for the CA, giving rise to classical ground
80
+ state degeneracies in the TPM. For the quantum model,
81
+ this translates into a mixed order quantum phase transi-
82
+ tion. We provide evidence for this scenario by means of
83
+ numerical simulations, namely, for small sizes using ex-
84
+ act diagonalisation, and for large sizes using both Matrix
85
+ Product State approximations of the ground state, and
86
+ continuous-time Quantum Monte Carlo [20–23].
87
+ The paper is organised as follows. In Sec. II, we review
88
+ the classical and quantum TPM. In Sec. III, we provide
89
+ the necessary background on CA and the connection to
90
+ the ground states of the classical TPM. In Sec. IV, we dis-
91
+ cuss the ground state phase transition of the QTPM in
92
+ terms of the symmetries that follow from the properties
93
+ of the associated CA, and support our predictions with
94
+ numerical simulations. In Sec. V we give our conclusions.
95
+ In the Appendix we provide further details, including a
96
+ discussion on the case of the QTPM with open bound-
97
+ arXiv:2301.02826v1 [cond-mat.stat-mech] 7 Jan 2023
98
+
99
+ 2
100
+ aries.
101
+ II.
102
+ TRIANGULAR PLAQUETTE MODEL,
103
+ CLASSICAL AND QUANTUM
104
+ A.
105
+ Classical
106
+ The triangular plaquette model (or TPM or Newman-
107
+ Moore model) [1–3] is a model of Ising spins si = ±1
108
+ on the sites i = 1, . . . , N of a triangular lattice, with
109
+ cubic interactions between the spins on the corners of
110
+ downward-pointing triangles of the lattice, Fig. 1. The
111
+ Hamiltonian of this classical model reads
112
+ ETPM = −J
113
+
114
+ i,j,k∈▽
115
+ sisjsk.
116
+ (1)
117
+ In what follows, it will be convenient to consider the
118
+ equivalent model on a square lattice of size N = L × M,
119
+ with classical Hamiltonian,
120
+ ETPM = −J
121
+ L,M
122
+
123
+ x,y=1
124
+ sx,ysx+1,ysx+1,y+1,
125
+ (2)
126
+ where we assume periodic boundary conditions in both
127
+ directions by identifying
128
+ x + L = x
129
+ mod L
130
+ y + L = y
131
+ mod L.
132
+ In Eq.(2), we label the spins by sx,y at site with coordi-
133
+ nates (x, y) in the square lattice.
134
+ The classical TPM has been predominantly studied in
135
+ the context of the glass transition. For lattices with at
136
+ least one dimension being a power of two, the energy
137
+ Eq.(1) reduces to that of the non-interacting plaquette
138
+ variables [1–3],
139
+ ETPM = −J
140
+
141
+
142
+ d▽,
143
+ (3)
144
+ where d▽ = sisjsk with i, j, k ∈ ▽ for every downward-
145
+ pointing triangle in the lattice. When at least one di-
146
+ mension is a power of two, the relation between plaque-
147
+ ttes and spin variables is one-to-one, exactly proving the
148
+ above. The thermodynamics of the TPM is therefore one
149
+ of free binary excitations and, as such, it is essentially
150
+ trivial.
151
+ In contrast to the statics, the single spin-flip dynamics
152
+ of the TPM is highly non-trivial, as flipping one spin
153
+ changes three adjacent plaquettes.
154
+ This implies that
155
+ at low temperatures, where excited plaquettes are sup-
156
+ pressed, cf. Eq.(3), the dynamics has effective kinetic con-
157
+ straints [2]. These dynamical constraints lead to an ac-
158
+ tivated relaxation similar to that of the East model [24],
159
+ with relaxation times growing as the exponential of the
160
+ inverse temperature squared [2] (a super-Arrhenius form
161
+
162
+
163
+
164
+
165
+
166
+
167
+
168
+
169
+
170
+
171
+
172
+
173
+
174
+
175
+
176
+
177
+ FIG. 1: Triangular plaquette model. The shaded
178
+ triangles indicate the interacting triplets, Eq.(1).
179
+ Dotted lines indicate spins that interact for periodic
180
+ boundary conditions on an N = 4 × 4 lattice.
181
+ known as the “parabolic law” [25]). Similar glassy be-
182
+ haviour is seen in generalisations of the TPM with odd
183
+ plaquette interactions [8, 26]. The TPM has also been
184
+ considered in the presence of a (longitudinal) magnetic
185
+ field [27] and in the related case of coupled replicas [28],
186
+ and the TPM with open boundary conditions was studied
187
+ in Ref. [29] through partial trace methods. The classical
188
+ TPM was studied in the context of topological order in
189
+ fractal models in Ref. [16]. Autoregressive neural net-
190
+ works were applied to the classical TPM with limited
191
+ success in [30].
192
+ B.
193
+ Quantum: TPM in a transverse field
194
+ Taking Eq.(1) and adding a transverse field, we obtain
195
+ the Hamiltonian of the quantum TPM (QTPM),
196
+ HQTPM = −J
197
+
198
+ i,j,k∈▽
199
+ ZiZjZk − h
200
+
201
+ i
202
+ Xi,
203
+ (4)
204
+ where Zi and Xi represent Pauli operators acting non-
205
+ trivially on site i. This quantum model was studied in
206
+ Refs. [12, 13] and its connections to models of fractons
207
+ were investigated.
208
+ The Hamiltonian (4) is expected to have a quantum
209
+ phase transition at the self-dual point J = h [14]. Nu-
210
+ merical results from [12, 14] suggested the transition to be
211
+ first-order. Ref. [14] used trajectory sampling in systems
212
+ with linear size a power of two and periodic boundaries.
213
+ In contrast, Ref. [15] found evidence for a continuous
214
+ phase transition with fractal symmetry breaking using
215
+ stochastic series expansion methods, also with periodic
216
+ boundary conditions but not restricted to power of two
217
+ sizes. The study of QTPM was connected to Rydberg
218
+ atoms in Ref. [31]. Further studies on the QTPM and its
219
+ generalisations from the viewpoint of fracton field theory
220
+ were presented in Refs. [32, 33].
221
+
222
+ 3
223
+ III.
224
+ CELLULAR AUTOMATA AND GROUND
225
+ STATES OF THE CLASSICAL TPM
226
+ A.
227
+ General aspects of CA
228
+ Cellular automata (CA) consist of a D-dimensional ar-
229
+ ray of sites evolving under discrete-time and synchronous
230
+ dynamics given by a CA rule. Under this evolution, the
231
+ state is updated by a deterministic rule which is local in
232
+ time (although generalisations exist) [17, 34–36]. As a
233
+ result, CA dynamics gives rise to, often rich, (D + 1)-
234
+ dimensional structures.
235
+ In what follows, we consider
236
+ D = 1, linear CA with deterministic local transition rules
237
+ with sites taking values from the finite field F2.
238
+ Discrete cellular automata are fully specified by an ini-
239
+ tial configuration of L sites and a local transition rule.
240
+ The local update rule determines the configuration of ev-
241
+ ery site at each timestep using the local neighbourhood
242
+ of size r. For D = 1, the simplest CA rules are those
243
+ defined only by r = 1.
244
+ For a neighbourhood of three
245
+ sites, r = 1, there are 8 possible configurations giving
246
+ rise to 256 possible choices for update rules. These ele-
247
+ mentary CA were classified by Wolfram [17, 34]. Figure
248
+ 2(a) shows Rule 60, which will be the relevant one for
249
+ the TPM: if we identify the empty and occupied sites of
250
+ the CA with the up and down spins of the TPM, then
251
+ Rule 60 is the same as the condition that the product of
252
+ spins in Eq.(2) is one, thus maximising the local energy.
253
+ Figure 2(b) also shows the closely related Rule 90. CA
254
+ like these are called elementary [34].
255
+ Figure 3(a,b) shows the patterns generated for Rules
256
+ 60 and 90 starting from an initial single seed. Note that
257
+ these depend on the boundary conditions (for a generic
258
+ analysis on cellular automata with periodic boundaries,
259
+ see Ref. [37]). For example, Fig. 3(b) shows Rule 90 for
260
+ L = 64 and periodic boundaries: the timestep after the
261
+ last one shown will take the CA to the trivial, empty
262
+ configuration; in contrast for a length L = 63 the Sier-
263
+ pinski fractal [38] will continue. Similarly, time evolution
264
+ will bring in one timestep the pattern of Fig. 3(a) to the
265
+ trivial one for periodic boundaries with L = 32, but the
266
+ fractal shape would continue to be reproduced for open
267
+ boundaries. Focusing on Rules 60 and 90 for concrete-
268
+ ness, CA evolution can be written as polynomials (or
269
+ generating functions, see Ref. [34]), as
270
+ T60(x) = 1 + x
271
+ (5)
272
+ T90(x) = x−1 + x,
273
+ (6)
274
+ with the evolution of the whole lattice obeying [34]
275
+ A(t)(x) = TA(t−1)(x)
276
+ mod (xL − 1).
277
+ (7)
278
+ Given a configuration at timestep t for the evolution
279
+ of any given rule, the configuration at timestep t + 1 will
280
+ be its successor and the one at t − 1 its predecessor. For
281
+ Rules 60 and 90, following Ref. [34], we have:
282
+ • There are no predecessors for configurations with
283
+ an odd number of sites being equal to 1 for both
284
+ (a)
285
+ (b)
286
+ FIG. 2: (a) Rule 60 and (b) Rule 90 evolution rules.
287
+ (a)
288
+ (b)
289
+ (c)
290
+ FIG. 3: (a) Evolution from a single site for Rule 60. (b)
291
+ Same for Rule 90. (c) A stable cycle generated by Rule
292
+ 60.
293
+ rules. For Rule 90, 2L−1 configurations for a system
294
+ of size L cannot be reached if L is odd and 3 ×
295
+ 2L−2 if L is even. For Rule 60, 2L−1 configurations
296
+ cannot be reached for any system size. This means
297
+ that rows with an odd number of ones can only
298
+ occur as initial states for any given time evolution
299
+ for Rule 60.
300
+ • Similarly, there may exist configurations that can
301
+ be reached in one timestep by more than one pre-
302
+ decessors. More specifically, given a configuration
303
+ with at least one predecessor, there are 2 predeces-
304
+ sors if the length L is odd and 4 if it is even for
305
+ Rule 90, while there are always 2 for Rule 60.
306
+ Regarding the length of cycles for Rule 90, more results
307
+ can be found in Ref. [34]. For Rule 60, which is most
308
+ relevant for the TPM, we discuss the cycle lengths and
309
+ their multiplicities next.
310
+ B.
311
+ Periodic orbits of Rule 60
312
+ The iterated map
313
+ Dn(x) = (|x1 − x2|, |x2 − x3|, ..., |xL − x1|)
314
+ (8)
315
+ for Dn : Zn → Zn and x = (x1, x2, ..., xL) is known as the
316
+ Ducci map (also known as rule 102 in Wolfram’s nota-
317
+ tion [17, 34], the mirror image of Rule 60, e.g. Ref. [39]).
318
+ Ducci’s map (and therefore Rule 60) exhibits periodic
319
+ orbits or evolves to a fixed point depending on L being
320
+ a power of two or not.
321
+ For L = 2k, any initial state
322
+
323
+ 4
324
+ (b)
325
+ (a)
326
+ (c)
327
+ FIG. 4: The fixed point and limit cycles of Rule 60. Filled circles indicate states of the CA and the arrows the flow
328
+ under the dynamics. (a) For L = 5 there is a cycle of length C = 15 and the fixed point (which flows into itself). (b)
329
+ For L = 6 there are two cycles of period C = 6, a cycle of period C = 3 and the fixed point. (c) For L = 8, there is
330
+ the fixed point and no cycles.
331
+ evolves to the trivial state of zeros [40], while for L ̸= 2k
332
+ it evolves to a richer attractor structure [41].
333
+ In F2 and by using periodic boundary conditions, the
334
+ Ducci map can be brought into matrix form as follows,
335
+ Dn x = ((x1 + x2), (x2 + x3), · · · , (xL + x1))
336
+ mod 2,
337
+ (9)
338
+ where
339
+ Dn =
340
+
341
+ �������
342
+ 1 1 0 . . . 0 0 0
343
+ 0 1 1 . . . 0 0 0
344
+ ...
345
+ ...
346
+ ... ... ...
347
+ ...
348
+ ...
349
+ 0 0 0 . . . 1 1 0
350
+ 0 0 0 . . . 0 1 1
351
+ 1 0 0 . . . 0 0 1
352
+
353
+ �������
354
+ .
355
+ (10)
356
+ The matrix D can be expressed as
357
+ D = I + SL
358
+ (11)
359
+ with SL the left shift map [19, 41]. It is easy to check
360
+ that
361
+ D2k = (I + SL)2k
362
+ = I + S2k
363
+ L = I + I = 0
364
+ mod 2, (12)
365
+ with k ∈ Z and, thus, a system that has L a power of
366
+ 2 ends up in the trivial configuration. For Rule 60 the
367
+ corresponding matrix is D⊺.
368
+ In order to obtain the cycles of Rule 60, we need
369
+ the following definitions and results for Rule 102 from
370
+ Refs. [19, 35, 36, 41–44]:
371
+ • For any given CA, each array of sites can be
372
+ thought of as a vector, v. For any such vector v in
373
+ F2, its order is defined through the monic polyno-
374
+ mial, which satisfies µv(D)v = 0.
375
+ • The order of the minimal annihilating polynomial,
376
+ ord µv(λ), is equal to the smallest natural number
377
+ n, such that µv(λ)|λn − 1. If µv(0) = 0, then for
378
+ µv(λ) = λk˜µv(λ) with ˜µv(0) ̸= 0 and k ∈ N, the
379
+ order of µv is ord (µv) = ord (˜µv).
380
+ • Assuming that µv(λ) = λk˜µv(λ) with k ≥ 0, then
381
+ the k-th successor of v belongs to a cycle of length
382
+ c = ord µv. This applies to a vector v of any pos-
383
+ itive integer L and any linear map (or cellular au-
384
+ tomaton rule).
385
+ The minimal annihilating polynomial for the Ducci
386
+ map was calculated in Refs. [19, 43], based on the char-
387
+ acteristic polynomial of the matrix D. It was found that
388
+ µn(λ) = pn(λ) = (1 + λ)L + 1.
389
+ (13)
390
+ We are now in a position to obtain the attractor struc-
391
+ ture of Rule 60 by following Ref. [36] (specifically “Prin-
392
+ ciple C”). We decompose the minimal annihilating poly-
393
+ nomial into the product of its irreducible polynomials,
394
+ πi(λ). We call their polynomial powers bi. Thus,
395
+ µv(λ) =
396
+ m
397
+
398
+ i=1
399
+ πi(λ)bi,
400
+ (14)
401
+ and
402
+ ord µv(λ) = rpt,
403
+ (15)
404
+ where r is the least common multiple of ord πi and t the
405
+ smallest integer satisfying pt ≥ max (b1, b2, . . . , bm).
406
+ Figure 4 illustrates the different scenarios for cycles as
407
+ a function of L. We show three different sizes, L = 5, 6, 8,
408
+ small enough to be able to visualise the network of states.
409
+ Configurations of the CA are identified by blue circles,
410
+
411
+ 5
412
+ 1
413
+ 1
414
+ 0
415
+ 2
416
+ 1
417
+ 0
418
+ 3
419
+ 1
420
+ 3
421
+ 3
422
+ 4
423
+ 1
424
+ 0
425
+ 5
426
+ 1 15
427
+ 15
428
+ 6
429
+ 1
430
+ 3
431
+ 6
432
+ 15
433
+ 7
434
+ 1
435
+ 7
436
+ 63
437
+ 8
438
+ 1
439
+ 0
440
+ 9
441
+ 1
442
+ 3 63
443
+ 255
444
+ 10
445
+ 1 15 30
446
+ 255
447
+ 11
448
+ 1 341
449
+ 1023
450
+ 12
451
+ 1
452
+ 3
453
+ 6 12
454
+ 255
455
+ 13
456
+ 1 819
457
+ 4095
458
+ 14
459
+ 1
460
+ 7 14
461
+ 4095
462
+ 15
463
+ 1
464
+ 3
465
+ 5 15
466
+ 16383
467
+ 16
468
+ 1
469
+ 0
470
+ 17
471
+ 1 85 255
472
+ 65535
473
+ 18
474
+ 1
475
+ 3
476
+ 6 63 126
477
+ 65535
478
+ 19
479
+ 1 9709
480
+ 262143
481
+ 20
482
+ 1 15 30 60
483
+ 65535
484
+ 21
485
+ 1
486
+ 3
487
+ 7 21 63
488
+ 1048575
489
+ 22
490
+ 1 341 682
491
+ 1048575
492
+ 23
493
+ 1 2047
494
+ 4194303
495
+ 24
496
+ 1
497
+ 3
498
+ 6 12 24
499
+ 4095
500
+ 25
501
+ 1 15 25575
502
+ 16777215
503
+ 26
504
+ 1 819 1638
505
+ 16777215
506
+ 27
507
+ 1
508
+ 3 63 13797
509
+ 67108863
510
+ 28
511
+ 1
512
+ 7 14 28
513
+ 16777215
514
+ 29
515
+ 1 475107
516
+ 268435455
517
+ 30
518
+ 1
519
+ 3
520
+ 5
521
+ 6 10 15 30
522
+ 268435455
523
+ 31
524
+ 1 31
525
+ 1073741823
526
+ 32
527
+ 1
528
+ 0
529
+ 33
530
+ 1
531
+ 3 341 1023
532
+ 4294967295
533
+ 34
534
+ 1 85 170 255 510
535
+ 4294967295
536
+ 35
537
+ 1
538
+ 7 15 105 819 4095
539
+ 17179869183
540
+ 36
541
+ 1
542
+ 3
543
+ 6 12 63 126 252
544
+ 4294967295
545
+ 37
546
+ 1
547
+ 3233097
548
+ 68719476735
549
+ 38
550
+ 1 9709 19418
551
+ 68719476735
552
+ 39
553
+ 1
554
+ 3 455 819 1365 4095
555
+ 274877906943
556
+ 40
557
+ 1 15 30 60 120
558
+ 16777215
559
+ TABLE I: Cycle lengths for Rule 60. The second
560
+ column indicates the cycle lengths and the third the
561
+ total number of periods for Rule 60 (each period of
562
+ length C is counted C-times), assuming that the least
563
+ common multiple of the periods for each given L divides
564
+ M, lcm C|M. The last column is constructed based on
565
+ the number of predecessors for all configurations for
566
+ Rule 60, given a length L.
567
+ and arrows indicate to which configurations they evolve
568
+ to under the CA dynamics. Figure 4(a) shows L = 5:
569
+ here there is one fixed point to which one other state
570
+ evolves to (shown at the centre of the figure), and one
571
+ limit cycle of period C = 15, to which all other configura-
572
+ tions flow. Figure 4(b) shows a more general situation of
573
+ multiple distinct cycles for the case of L = 6: there are
574
+ two cycles of period C = 6, one cycle of period C = 3 and
575
+ one fixed point. For the case of L a power of 2, as shown
576
+ in Fig. 4(c) for L = 8, there is a unique fixed point and
577
+ all states evolve towards it.
578
+ C.
579
+ Classical ground states of the TPM
580
+ From the analysis above for Rule 60, we can enumerate
581
+ all the minimum energy configurations of the TPM, cf.
582
+ Eq.(2). The classical ground states for a system of size
583
+ N = L × M are: (i) the state with all spins up, corre-
584
+ sponding to the fixed point of Rule 60, for any value of
585
+ L and M; (ii) two-dimensional spin configurations that
586
+ correspond to periodic trajectories of Rule 60, that is,
587
+ CA trajectories starting from any of the states of a limit
588
+ cycle, for all limit cycles whose period is contained an in-
589
+ teger number of times in M—this occurs only for certain
590
+ combinations of L and M (never if L is a power of two).
591
+ We show the relevant Rule 60 information in Table
592
+ I for up to L = 40. Under the column C we give the
593
+ distinct periods of the limit cycles. In the column labelled
594
+ by M we give the corresponding degeneracy of classical
595
+ ground states of the TPM, apart from the uniform spin-
596
+ up state, given that lcm C|M. For example, for L = 15,
597
+ there is one cycle of length 3, three cycles of length 5,
598
+ and 1091 cycles of length 15, which means 1 + M =
599
+ 1+3+3×5+1091×15 = 16384 distinct two-dimensional
600
+ spin configurations that minimise the energy in a TPM
601
+ of size N = 15 × M as long as 15|M. In contrast, for
602
+ L = 15, if 5|M but 3 ∤ M and 15 ∤ M, then there are
603
+ 1+15 different ground states. The symmetries of a TPM
604
+ of size N = L × M can be similarly constructed from
605
+ the number of ground states and their multiplicities, as
606
+ determined by Rule 60.
607
+ IV.
608
+ PHASE TRANSITION IN THE QUANTUM
609
+ TPM
610
+ As we will now show, the set of minimum energy con-
611
+ figurations and the associated symmetries of the classical
612
+ TPM, as obtained from the Rule 60 CA, determine the
613
+ properties of the ground state phase transition in the
614
+ quantum TPM, Eq.(4).
615
+ A.
616
+ Symmetries of the QTPM
617
+ Like its classical counterpart, the QTPM with periodic
618
+ boundaries has full translational invariance. The symme-
619
+
620
+ 6
621
+ (b)
622
+ (a)
623
+ FIG. 5: (a) Symmetry operators for the 3 × 3 QTPM
624
+ with periodic boundaries. (b) One of the symmetry
625
+ operators of the 9 × 9 QTPM.
626
+ tries of the QTPM will then be deduced by the results of
627
+ Sec. III.
628
+ For systems with dimensions N = L × M, which can
629
+ accommodate non-trivial cycles of Rule 60, the symme-
630
+ tries of the corresponding QTPM easily follow. Consider
631
+ as a simple example the case of N = 3 × 3 with periodic
632
+ boundaries in both dimensions.
633
+ From Table I, we see
634
+ that L = 3 has one cycle of period 3. This means that
635
+ for M = 3 there are three non-trivial symmetries, given
636
+ by the operators
637
+ G1 = X1,2X1,3X2,1X2,2X3,1X3,3
638
+ (16)
639
+ G2 = X1,1X1,3X2,2X2,3X3,1X3,2
640
+ (17)
641
+ G3 = X1,1X1,2X2,1X2,3X3,2X3,3
642
+ (18)
643
+ see Fig. 5(a). Note that translational invariance plays a
644
+ crucial role in the determination of the symmetries: in
645
+ the example above G2 = TxG1T −1
646
+ x
647
+ and G3 = TxG2T −1
648
+ x
649
+ ,
650
+ where Tx is the translation operator in the x direction,
651
+ and these symmetries alongside the identity form the
652
+ Klein group K4, which, in turn, is isomorphic to Z2 ⊗Z2.
653
+ This approach generalises to other system sizes, and
654
+ the symmetries are products of K4.
655
+ For example, the
656
+ symmetries of the N = 5×15 and the N = 6×6 systems
657
+ form the group K4 ⊗ K4. Since the symmetry operators
658
+ are products of the X Pauli matrices, cf. Eqs.(16-18),
659
+ they commute with the transverse field term in Eq.(4),
660
+ and, therefore, are symmetries of the QTPM for all values
661
+ of J and h.
662
+ B.
663
+ The character of the quantum phase transition
664
+ The character of the phase transition for the QTPM
665
+ is now easy to predict based on the information of its
666
+ symmetries for a given system size. By this we mean:
667
+ given a sequence of increasing system sizes with periodic
668
+ boundaries, all having the same number of symmetries,
669
+ the progressively sharper finite size crossovers will be in-
670
+ dicative of an eventual phase transition in the large size
671
+ limit whose character—first-order or continuous—will be
672
+ determined by the underlying symmetries of the given
673
+ system sizes in the sequence. As these symmetries in a
674
+ system of size N = L × M depend on the precise values
675
+ of both L and M, this analysis has to be done carefully.
676
+ In the next section we show numerical evidence for the
677
+ general considerations we give here.
678
+ First consider the system sizes N = L × M such that
679
+ the underlying Rule 60 has only one fixed point, as de-
680
+ scribed previously. Then, the QTPM has no non-trivial
681
+ symmetries. In the limit J ≫ h, there is a single ground
682
+ state corresponding to the all-up state, and a vanishing
683
+ number of excited plaquettes, as the classical TPM has
684
+ a single minimum.
685
+ In the opposite limit, J ≪ h, the
686
+ ground state is paramagnetic, with spins aligned in the
687
+ x direction, with an explicit Z2 symmetry for its ground
688
+ state, corresponding to a high density of excited plaque-
689
+ ttes.
690
+ In the limit of large N, we expect the quantum
691
+ phase transition at the self-dual point J = h to be first-
692
+ order.
693
+ A second scenario is that of system sizes where the
694
+ underlying Rule 60 cycles give rise to non-trivial sym-
695
+ metries in the QTPM. In this case, in the limit J ≪ h,
696
+ the ground state is the same paramagnetic one as be-
697
+ fore, invariant under a global Z2 symmetry.
698
+ However,
699
+ for J ≫ h there exists spontaneous breaking of the sym-
700
+ metries emerging from Rule 60.
701
+ This case, therefore,
702
+ has characteristics of a first-order phase transition (the
703
+ explicit symmetry breaking of the global symmetry of
704
+ the paramagnetic ground state) with those of a contin-
705
+ uous transition (spontaneous symmetry breaking). This
706
+ is similar to the first-order phase transitions observed in
707
+ kinetically constrained models [45] and suggests that, for
708
+ local observables, the phase transition will appear first-
709
+ order; for example, in a discontinuous jump in the excited
710
+ plaquette density,
711
+ Mzzz = 1
712
+ N
713
+
714
+ i,j,k∈▽
715
+ ZiZjZk.
716
+ (19)
717
+ Appropriate operators will quantify the symmetry break-
718
+ ing of the degenerate classical ground states.
719
+ The choice of these operators depends on the size and
720
+ specific lattice dimensions of the system. Consider, for
721
+ example, the case of L = 3 and M = 3k with k ∈ N,
722
+ where we know from Rule 60 that there is a single fixed
723
+ point and the three non-trivial ground states. For the
724
+ trivial ground state this operator is just the magnetisa-
725
+ tion Mz =
726
+ 1
727
+ N
728
+ �N
729
+ i Zi. To detect the symmetry breaking
730
+ into the other three states, we can define the three op-
731
+ erators ˜
732
+ M m
733
+ z =
734
+ 1
735
+ N
736
+ �N
737
+ i (−1)niZi, where ni = 1 if the spin
738
+ i is flipped for a state of the cycle m of Rule 60, and
739
+ ni = 0 otherwise. For example, for the state associated
740
+
741
+ 7
742
+ to Eq.(16), we have
743
+ ˜
744
+ Mz = 1
745
+ N (Z1,1 − Z1,2 − Z1,3 − Z2,1 − Z2,2 + Z2,3
746
+ −Z3,1 + Z3,2 − Z3,3) .
747
+ (20)
748
+ Note that when there are multiple non-trivial ground
749
+ states connected by translations, there will be no sin-
750
+ gle operator taking the form of a sum of local terms for
751
+ which it will be possible to discern between them. For
752
+ example, in the N = 3k case, Mz will only distinguish be-
753
+ tween the trivial ground state and the 3-fold degenerate
754
+ ones, while the operators ˜
755
+ M m
756
+ z
757
+ will be able to distinguish
758
+ between one of the non-trivial ground states.
759
+ C.
760
+ Numerics
761
+ We now provide evidence for the general observations
762
+ above from numerical simulations.
763
+ For small systems
764
+ we use exact diagonalization (ED) [46–48], allowing the
765
+ study of system sizes up to 28 sites. For larger systems
766
+ we estimate the properties of the ground states using
767
+ two different approaches.
768
+ The first of these is Matrix
769
+ Product States (MPS) [49–52], which we “snake” around
770
+ the 2D lattice, and optimize with the 2D Density-Matrix
771
+ Renormalization Group (DMRG) [53, 54]. By employing
772
+ a bond dimension up to D = 1000, we are able to reli-
773
+ ably estimate the ground state properties for system sizes
774
+ on the square lattice for up to N = 16 × 16. Time and
775
+ memory constraints hinder progressively the convergence
776
+ in the paramagnetic phase, where J ∼ h. As discussed
777
+ below, we are also able to apply MPS to cylindrical sys-
778
+ tems, which can be considered to be quasi-1D, allowing
779
+ us to reach much larger sizes than in the case of square
780
+ geometries.
781
+ To confirm the results of 2D DMRG, we also employ
782
+ Quantum Monte Carlo (QMC) methods. In particular,
783
+ we use the continuous-time expansion (ctQMC) [20], with
784
+ local spin updates which re-draw the entire trajectory
785
+ of a single spin, subject to a time-dependent environ-
786
+ ment, where the trajectories of unmodified spins are con-
787
+ sidered to act as a “heat bath”, e.g., see Refs. [21, 22].
788
+ We run our simulations with an inverse temperature of
789
+ β = 128, which we find to be large enough to converge
790
+ to the ground state [23].
791
+ 1.
792
+ First-order transition
793
+ As explained above, when the underlying Rule 60 has a
794
+ single fixed point, and the classical TPM a single energy
795
+ minimum with all spins up, we thus expect the phase
796
+ transition of the QTPM to be first-order.
797
+ Figure 6 shows results for N = L×L with L = 4, 8, 16.
798
+ We show that our MPS and ctQMC results coincide with
799
+ the large deviations results of Ref. [14], obtained via tran-
800
+ sition path sampling (TPS). What is plotted is the pla-
801
+ quette density Mzzz as a function of the coupling J for
802
+ □□□□□□□□□□□□□□□□
803
+ ▽▽▽▽▽▽
804
+ ▽▽▽▽▽▽▽▽▽▽
805
+ ◇◇◇◇◇◇
806
+ ◇◇◇◇◇◇◇◇◇◇
807
+
808
+
809
+
810
+
811
+
812
+ 0.95
813
+ 1.00
814
+ 1.05
815
+ 1.10
816
+ 0.4
817
+ 0.6
818
+ 0.8
819
+ □□□□□□□□□□□□□□□□□□□□□□□□□□□□
820
+
821
+ □□□□□□□□□□□□□□□□□□□□□□□□□□□□
822
+ ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
823
+ ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
824
+ ◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇
825
+ ◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇
826
+ □□□□□□□□□□□□□□□□□□□□□□□□□□□□
827
+
828
+ □□□□□□□□□□□□□□□□□□□□□□□□□□□□
829
+ ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
830
+ ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
831
+ ◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇
832
+ ◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇
833
+
834
+
835
+
836
+
837
+
838
+
839
+
840
+
841
+
842
+
843
+
844
+
845
+
846
+
847
+
848
+
849
+
850
+
851
+
852
+ ▼ ▼
853
+
854
+ ▼ ▼▼
855
+ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
856
+
857
+
858
+ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
859
+ 0.0
860
+ 0.5
861
+ 1.0
862
+ 1.5
863
+ 2.0
864
+ 0.0
865
+ 0.2
866
+ 0.4
867
+ 0.6
868
+ 0.8
869
+ 1.0
870
+ ctQMC
871
+
872
+
873
+
874
+ MPS
875
+
876
+
877
+
878
+ TPS
879
+
880
+
881
+ FIG. 6: Normalized three-spin correlator, Eq.(19), in
882
+ the QTPM as a function of J for fixed h = 1, with
883
+ N = L × L with L a power of two. We compare results
884
+ from MPS and ctQMC obtained here with results from
885
+ Ref. [14]. The numerical data indicates a first-order
886
+ transition at J = h.
887
+ fixed transverse field h = 1. The data indicates a first-
888
+ order transition at J = h, as expected. For J > 1.0, we
889
+ see small deviations in the TPS results, due to the extra
890
+ field used for the acquisition of this data in Ref. [14]. Sim-
891
+ ilar issues are observed for ctQMC close to the J = 1.0
892
+ point, where the single spin updates do not allow for the
893
+ collective effects necessary to move between phases.
894
+ In Fig. 7, we show the results for several system sizes
895
+ in a square geometry, N = L × L. Figure
896
+ 7(a) shows
897
+ the ground state energy as a function of J (at h = 1)
898
+ for L = 5 to 16, obtained from MPS numerics. For the
899
+ smallest size we also show ED results, which coincide
900
+ with the MPS ones. The kink near J = 1 indicates a
901
+ quantum phase transition. Note that this behaviour is
902
+ similar in systems with a single classical ground state
903
+ (L = 5, 8, 16) or multiple ones (L = 6, 7), cf. Table I. In
904
+ Figs. 7(b,c) we show the average transverse magnetisa-
905
+ tion, Mx = 1
906
+ N
907
+
908
+ i Xi, and Mzzz, respectively, for systems
909
+ with L a power of two. We get exactly the same results
910
+ for different system sizes too.
911
+ Both MPS and ctQMC
912
+ show clear indications of a first-order transition at J = 1
913
+ in both observables.
914
+ Figure 8 shows similar results in a rectangular geome-
915
+ try, N = 3×M. For such thin stripe systems we can per-
916
+ form MPS more efficiently for larger system sizes than for
917
+ square geometries. Once again, MPS and ctQMC results
918
+ coincide, and indicate a first-order transition at J = 1
919
+ (although weaker than in the square lattice case, in the
920
+ sense that the discontinuity in the local operators shown
921
+ is smaller). Note that these results include not only val-
922
+ ues of M which are multiples of three, for which there
923
+ are multiple classical ground state cycles, but also values
924
+ of M for which a single ground state is found. What we
925
+ see in this case is that the observables Mx and Mzzz are
926
+ unable to detect changes related to any given classical
927
+ ground states.
928
+
929
+ 8
930
+ △△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△
931
+ △△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△
932
+ 0.0
933
+ 0.5
934
+ 1.0
935
+ 1.5
936
+ 2.0
937
+ -2.0
938
+ -1.5
939
+ -1.0
940
+ (a)
941
+
942
+
943
+
944
+
945
+
946
+
947
+ ● MPS
948
+ △ ED
949
+ □□□□□□□□□□□□□□□□□□□□□□□□□□□□□
950
+ □□□□□□□□□□□□□□□□□□□□□□□□□□□□
951
+ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
952
+ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
953
+ △△△△△△△△△△△△△△△△△△△△△△△△△△△△△
954
+ △△△△△△△△△△△△△△△△△△△△△△△△△△△△
955
+ ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
956
+ ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
957
+ ◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇
958
+ ◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇
959
+ ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
960
+ ○○○○○○○○○○○○○○○○○○○○○○○○○○○○
961
+ □□□□□□□□□□□□□□□□□□□□□□□□□□□□□
962
+ □□□□□□□□□□□□□□□□□□□□□□□□□□□□
963
+ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
964
+ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
965
+ △△△△△△△△△△△△△△△△△△△△△△△△△△△△△
966
+ △△△△△△△△△△△△△△△△△△△△△△△△△△△△
967
+ ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
968
+ ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
969
+ ◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇
970
+ ◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇
971
+ ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
972
+ ○○○○○○○○○○○○○○○○○○○○○○○○○○○○
973
+ ■ ■ ■ ■ ■ ■ ■
974
+
975
+
976
+ ■ ■ ■ ■ ■ ■ ■
977
+ ▮ ▮ ▮ ▮ ▮
978
+
979
+ ▮ ▮▮
980
+ ▮ ▮ ▮ ▮ ▮ ▮ ▮ ▮ ▮ ▮
981
+
982
+
983
+ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
984
+ 0.0
985
+ 0.5
986
+ 1.0
987
+ 1.5
988
+ 2.0
989
+ 0.0
990
+ 0.2
991
+ 0.4
992
+ 0.6
993
+ 0.8
994
+ 1.0
995
+ (b)
996
+ ctQMC
997
+
998
+
999
+
1000
+
1001
+
1002
+
1003
+ MPS
1004
+
1005
+
1006
+
1007
+ □□□□□□□□□□□□□□□□□□□□□□□□□□□□□
1008
+ □□□□□□□□□□□□□□□□□□□□□□□□□□□□
1009
+ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
1010
+ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
1011
+ △△△△△△△△△△△△△△△△△△△△△△△△△△△△△
1012
+ △△△△△△△△△△△△△△△△△△△△△△△△△△△△
1013
+ ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
1014
+ ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
1015
+ ◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇
1016
+ ◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇
1017
+ ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
1018
+ ○○○○○○○○○○○○○○○○��○○○○○○○○○○○
1019
+ □□□□□□□□□□□□□□□□□□□□□□□□□□□□□
1020
+ □□□□□□□□□□□□□□□□□□□□□□□□□□□□
1021
+ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
1022
+ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
1023
+ △△△△△△△△△△△△△△△△△△△△△△△△△△△△△
1024
+ △△△△△△△△△△△△△△△△△△△△△△△△△△△△
1025
+ ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
1026
+ ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
1027
+ ◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇
1028
+ ◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇
1029
+ ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
1030
+ ○○○○○○○○○○○○○○○○○○○○○○○○○○○○
1031
+
1032
+
1033
+
1034
+
1035
+
1036
+
1037
+
1038
+
1039
+
1040
+
1041
+
1042
+
1043
+
1044
+
1045
+
1046
+
1047
+
1048
+
1049
+
1050
+ ▮ ▮
1051
+
1052
+ ▮ ▮▮
1053
+ ▮ ▮ ▮ ▮ ▮ ▮ ▮ ▮ ▮ ▮
1054
+
1055
+
1056
+ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
1057
+ 0.0
1058
+ 0.5
1059
+ 1.0
1060
+ 1.5
1061
+ 2.0
1062
+ 0.0
1063
+ 0.2
1064
+ 0.4
1065
+ 0.6
1066
+ 0.8
1067
+ 1.0
1068
+ (c)
1069
+ ctQMC
1070
+
1071
+
1072
+
1073
+
1074
+
1075
+
1076
+ MPS
1077
+
1078
+
1079
+
1080
+ FIG. 7: First-order transition in the QTPM for systems of size N = L × L. (a) The normalised by the system size
1081
+ ground state energy as a function of J at fixed h = 1. Open symbols are results from ED, filled symbols from
1082
+ numerical MPS. (b) Transverse magnetisation as a function of J. In this case the open symbols are from ctQMC. (c)
1083
+ Average three-spin interaction as a function of J.
1084
+
1085
+
1086
+
1087
+ ■ ■ ■ ■
1088
+
1089
+
1090
+
1091
+
1092
+
1093
+
1094
+
1095
+
1096
+
1097
+ ▲ ▲ ▲ ▲
1098
+
1099
+
1100
+
1101
+
1102
+
1103
+
1104
+
1105
+
1106
+
1107
+ ▼ ▼ ▼ ▼
1108
+
1109
+
1110
+
1111
+
1112
+
1113
+
1114
+
1115
+
1116
+
1117
+
1118
+ ◆ ◆ ◆
1119
+
1120
+
1121
+
1122
+
1123
+
1124
+
1125
+
1126
+
1127
+
1128
+
1129
+ ● ● ●
1130
+
1131
+
1132
+
1133
+
1134
+
1135
+
1136
+
1137
+
1138
+
1139
+ ■ ■ ■ ■
1140
+
1141
+
1142
+
1143
+
1144
+
1145
+
1146
+
1147
+
1148
+
1149
+ ▲ ▲ ▲ ▲
1150
+
1151
+
1152
+
1153
+
1154
+
1155
+
1156
+
1157
+
1158
+
1159
+ ▼ ▼ ▼ ▼
1160
+
1161
+
1162
+
1163
+
1164
+
1165
+
1166
+
1167
+
1168
+
1169
+
1170
+ ◆ ◆ ◆
1171
+
1172
+
1173
+
1174
+
1175
+
1176
+
1177
+
1178
+
1179
+
1180
+
1181
+ ● ● ●
1182
+
1183
+
1184
+
1185
+
1186
+
1187
+
1188
+ 0.0
1189
+ 0.5
1190
+ 1.0
1191
+ 1.5
1192
+ 2.0
1193
+ -2.0
1194
+ -1.5
1195
+ -1.0
1196
+ (a)
1197
+ MPS
1198
+
1199
+
1200
+
1201
+
1202
+
1203
+ □□□□□□□□□□□□□□□□□□□□□□□□□□□□
1204
+
1205
+ □□□□□□□□□□□□□□□□□□□□□□□□□□□□
1206
+ △△△△△△△△△△△△△△△△△△△△△△△△△△△△△
1207
+ △△△△△△△△△△△△△△△△△△△△△△△△△△△△
1208
+ ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
1209
+ ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
1210
+ ◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇
1211
+ ◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇
1212
+ ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
1213
+ ○○○○○○○○○○○○○○○○○○○○ ○○○○○○○
1214
+
1215
+
1216
+
1217
+ ■ ■
1218
+
1219
+ ■ ■
1220
+ ■ ■
1221
+
1222
+ ■ ■
1223
+
1224
+
1225
+
1226
+ ▲ ▲
1227
+
1228
+ ▲ ▲
1229
+ ▲ ▲
1230
+
1231
+ ▲ ▲
1232
+
1233
+
1234
+
1235
+ ▼ ▼
1236
+
1237
+ ▼ ▼
1238
+ ▼ ▼
1239
+
1240
+ ▼ ▼
1241
+
1242
+
1243
+
1244
+
1245
+
1246
+
1247
+ ◆ ◆
1248
+ ◆ ◆ ◆
1249
+ ◆ ◆
1250
+
1251
+
1252
+
1253
+
1254
+
1255
+
1256
+ ● ●
1257
+ ● ● ●
1258
+ ● ●
1259
+ 0.0
1260
+ 0.5
1261
+ 1.0
1262
+ 1.5
1263
+ 2.0
1264
+ 0.0
1265
+ 0.2
1266
+ 0.4
1267
+ 0.6
1268
+ 0.8
1269
+ 1.0
1270
+ (b)
1271
+ ctQMC
1272
+
1273
+
1274
+
1275
+
1276
+
1277
+ MPS
1278
+
1279
+
1280
+
1281
+
1282
+
1283
+ □□□□□□□□□□□□□□□□□□□□□□□□□□□□
1284
+
1285
+ □□□□□□□□□□□□□□□□□□□□□□□□□□□□
1286
+ △△△△△△△△△△△△△△△△△△△△△△△△△△△△△
1287
+ △△△△△△△△△△△△△△△△△△△△△△△△△△△△
1288
+ ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
1289
+ ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
1290
+ ◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇
1291
+ ◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇
1292
+ ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
1293
+ ○○○○○○○○○○○○○○○○○○○○ ○○○○○○○
1294
+
1295
+
1296
+
1297
+ ■ ■
1298
+
1299
+ ■ ■
1300
+ ■ ■
1301
+
1302
+ ■ ■
1303
+
1304
+
1305
+
1306
+ ▲ ▲
1307
+
1308
+ ▲ ▲
1309
+ ▲ ▲
1310
+
1311
+ ▲ ▲
1312
+
1313
+
1314
+
1315
+ ▼ ▼
1316
+
1317
+ ▼ ▼
1318
+ ▼ ▼
1319
+
1320
+ ▼ ▼
1321
+
1322
+
1323
+
1324
+
1325
+
1326
+
1327
+ ◆ ◆
1328
+ ◆ ◆ ◆
1329
+ ◆ ◆
1330
+
1331
+
1332
+
1333
+
1334
+
1335
+
1336
+ ● ●
1337
+ ● ● ●
1338
+ ● ●
1339
+ 0.0
1340
+ 0.5
1341
+ 1.0
1342
+ 1.5
1343
+ 2.0
1344
+ 0.0
1345
+ 0.2
1346
+ 0.4
1347
+ 0.6
1348
+ 0.8
1349
+ 1.0
1350
+ (c)
1351
+ ctQMC
1352
+
1353
+
1354
+
1355
+
1356
+
1357
+ MPS
1358
+
1359
+
1360
+
1361
+
1362
+
1363
+ FIG. 8: Same as Fig. 7 but for systems of size N = 3 × L.
1364
+ 2.
1365
+ Symmetry breaking
1366
+ In Figs. 7 and 8, we show the two terms that com-
1367
+ pete in the Hamiltonian, Mx and Mzzz. For system sizes
1368
+ where there is one classical ground state and no non-
1369
+ trivial symmetries, the total longitudinal magnetisation
1370
+ Mz can also serve as an order parameter, as it picks up
1371
+ the orientation of the ground state. Figure 9(a) shows
1372
+ that the transition is also clear for this observable for
1373
+ square lattices.
1374
+ For system sizes where degeneracies are expected for
1375
+ J ≥ h, however, Mz is unable to detect the symme-
1376
+ try breaking related to the extra symmetries. For these
1377
+ cases, we need the staggered magnetisations, ˜
1378
+ M m
1379
+ z , such
1380
+ as that for N = 3 × 3 in Eq.(20). Figure 9(b) shows that
1381
+ such operators are able to detect the spontaneous break-
1382
+ ing of symmetry for these lattices. Note that Fig. 9(b)
1383
+ was obtained through the use of a small symmetry break-
1384
+ ing field. This is a standard method for the detection of
1385
+ the symmetry breaking in the ground state of a degen-
1386
+ erate quantum model [55]. As a result, the calculations
1387
+ were performed through the use of a modified Hamilto-
1388
+ nian H = HQTPM − p ˜
1389
+ Mz, where p is chosen to be small.
1390
+ The detection of the spontaneous symmetry breaking can
1391
+ be similarly preformed for any of the classical ground
1392
+ states of the given lattice size with the appropriate oper-
1393
+ ator ˜
1394
+ Mz.
1395
+ In order to more clearly understand the mechanism of
1396
+ the phase transition, in Figs. 10 and 11 we plot the low-
1397
+ lying spectrum of the QTPM from ED as a function of
1398
+ h for fixed J.
1399
+ These results support our above obser-
1400
+ vations: for system sizes where only a first-order phase
1401
+ transition is expected, there is an avoided crossing be-
1402
+ tween the ground state and the first excited state; for
1403
+ system sizes with extra symmetries from the cycles of
1404
+ Rule 60, we see both an avoided crossing (indicative of
1405
+ first-order transitions) and a merging of eigenstates in-
1406
+ dicative of spontaneous symmetry breaking. As seen in
1407
+ Fig. 11 for the case of N = 3 × M, the avoided crossing
1408
+ becomes apparent only with increasing system size.
1409
+ We now comment on how our results compare to those
1410
+ in Ref. [15]. For the numerics, Ref. [15] used a stochastic
1411
+ series expansion (SSE) approach. We in turn use MPS
1412
+ and ctQMC. Both SSE and ctQMC are Quantum Monte
1413
+ Carlo based methods, which indicates that they, in prin-
1414
+ ciple, should be able to roughly access system sizes of the
1415
+ same order of magnitude.
1416
+ Furthermore, while Ref. [15] also considered periodic
1417
+ boundaries, there was no specific restriction on system
1418
+ size, and therefore no distinction between sizes for which
1419
+ there is a single classical minimum and sizes where there
1420
+ are multiple ones, with the implications for symmetries of
1421
+ the corresponding QTPM. Ref. [15] also used a non-local
1422
+ order parameter, compared to our local ones (the stag-
1423
+ gered magnetisations) that do reflect the minima of the
1424
+ underlying TPM. In [15], the existence of a phase tran-
1425
+ sition at J = h was confirmed through the study of the
1426
+ Binder cumulant; this was done, however, with limited
1427
+
1428
+ 9
1429
+ accuracy on the location of the phase transition point. It
1430
+ is important to note that some of the local observables
1431
+ we calculate here are also studied for specific system sizes
1432
+ in the Appendix of Ref. [15]. Since the temperature used
1433
+ for those calculations varied for different system sizes,
1434
+ it is possible that the smoothness observed in Ref. [15]
1435
+ is a consequence of thermal effects. We instead used a
1436
+ fixed inverse temperature β = 128 which we verified is
1437
+ sufficient to make thermal effects negligible.
1438
+ D.
1439
+ Nature of the phase transition in the
1440
+ thermodynamic limit
1441
+ The discussion above and the numerical results indi-
1442
+ cate the existence of a quantum phase transition in the
1443
+ thermodynamic limit, N → ∞, at the self-dual point,
1444
+ J = h, of the QTPM. However, the approach to the
1445
+ thermodynamic limit is different across different system
1446
+ size geometries.
1447
+ There are three different limits to thermodynamics: (i)
1448
+ across one of the two dimensions while the other one re-
1449
+ mains constant (that is, infinite stripes), (ii) across both
1450
+ dimensions, and (iii) on making the spins continuous. We
1451
+ briefly discuss the differences between these limits and
1452
+ the complications that might arise.
1453
+ In the case (i), if the limit is taken for fixed L and with
1454
+ M such that lcm C|M (e.g. M = 3k, with k ∈ N), the
1455
+ number of classical ground states remains the same. In
1456
+ our numerics we are restricted to narrow stripes to allow
1457
+ convergence of the MPS algorithm. Fig. 8 suggests that
1458
+ in such quasi-1D systems the transition will eventually
1459
+ be slighly weaker than for square system sizes.
1460
+ Case (ii) can be more involved. The simplest situation
1461
+ is that of square lattices N = L × L with L a power of
1462
+ two, where it is guaranteed that for all sizes there will be
1463
+ a single classical ground state, and therefore the transi-
1464
+ tion is certainly first-order. For other size sequences, the
1465
+ number of relevant Rule 60 cycles, and therefore symme-
1466
+ tries of the QTPM, may grow or decline with system size.
1467
+ For some cases this growth is monotonic (as for example
1468
+ for N = 3k × 3k with k → ∞), while in others it is not
1469
+ (as for example when N = 3k × 3k with k → ∞), see
1470
+ Table I.
1471
+ In case (iii) the nature of the underlying CA is altered
1472
+ [56, 57]. In this limit, Rule 60 becomes
1473
+ f(p, q, r) = p + q − 2pq,
1474
+ (21)
1475
+ where p, q and r indicate the state of the three sites
1476
+ in the neighbourhood determining the local evolution of
1477
+ the CA, see Fig. 2. Basic arguments [56] indicate a single
1478
+ fixed point in the evolution of this fuzzy CA. We spec-
1479
+ ulate that the same behaviour will be observed in the
1480
+ quantum field theory limit for QTPM; a single ground
1481
+ state across different regions of the whole J − h space
1482
+ and thus a first-order phase transition. However, a field
1483
+ theoretic description of the QTPM might not be as obvi-
1484
+ ous and straightforward to get for the above elementary
1485
+ argument to hold.
1486
+ V.
1487
+ CONCLUSIONS
1488
+ In this work, we used the cycles of the cellular automa-
1489
+ ton Rule 60 to describe the symmetries of the quantum
1490
+ triangular plaquette model. We found that the attrac-
1491
+ tor structure of Rule 60 plays an important role in the
1492
+ characterization of the degeneracies of the ground states
1493
+ of the classical TPM, allowing in turn to construct the
1494
+ symmetry operators of the QTPM. In this way, the exis-
1495
+ tence or absence of stable cycles in Rule 60 imply whether
1496
+ it is possible or not for the QTPM to display sponta-
1497
+ neous symmetry breaking of the corresponding symme-
1498
+ tries, which in turn impacts on the nature of the quantum
1499
+ phase transition at the self-dual point. These general ob-
1500
+ servations are also consistent with the finite size trends
1501
+ from our numerical simulations. A full description of the
1502
+ QTPM phase transition would require a field theoretical
1503
+ description and a renormalization group treatment; we
1504
+ leave these tasks for future works.
1505
+ ACKNOWLEDGMENTS
1506
+ We thank L. Vasiloiu for insightful comments.
1507
+ We
1508
+ acknowledge financial support from EPSRC Grant no.
1509
+ EP/R04421X/1, the Leverhulme Trust Grant No. RPG-
1510
+ 2018-181,
1511
+ and University of Nottingham grant no.
1512
+ FiF1/3. LC was supported by an EPSRC Doctoral prize
1513
+ from the University of Nottingham.
1514
+ Simulations were
1515
+ performed using the University of Nottingham Augusta
1516
+ HPC cluster, and the Sulis Tier 2 HPC platform hosted
1517
+ by the Scientific Computing Research Technology Plat-
1518
+ form at the University of Warwick (funded by EPSRC
1519
+ Grant EP/T022108/1 and the HPC Midlands+ consor-
1520
+ tium).
1521
+ [1] M. E. J. Newman and C. Moore, Glassy dynamics and
1522
+ aging in an exactly solvable spin model, Phys. Rev. E 60,
1523
+ 5068 (1999).
1524
+ [2] J. P. Garrahan and M. E. J. Newman, Glassiness and
1525
+ constrained dynamics of a short-range nondisordered spin
1526
+ model, Phys. Rev. E 62, 7670 (2000).
1527
+ [3] J. P. Garrahan, Glassiness through the emergence of
1528
+ effective dynamical constraints in interacting systems,
1529
+ Journal of Physics: Condensed Matter 14, 1571 (2002).
1530
+
1531
+ 10
1532
+ □□□□□□□□□□□□□□□□□□□□□□□□□□
1533
+
1534
+
1535
+
1536
+
1537
+
1538
+ □□□□□□□□□□□□□□□□□□□□□□□□□□
1539
+ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
1540
+ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
1541
+ △△△△△△△△△△△△△△△△△△△△△△△△△△△△△
1542
+ △△△△△△△△△△△△△△△△△△△△△△△△△△△△
1543
+ ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
1544
+ ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
1545
+ ◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇
1546
+ ◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇
1547
+ ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
1548
+ ○○○○○○○○○○○○○○○○○○○○○○○○○○○○
1549
+
1550
+
1551
+
1552
+
1553
+
1554
+
1555
+
1556
+
1557
+
1558
+
1559
+
1560
+
1561
+
1562
+
1563
+
1564
+
1565
+
1566
+
1567
+
1568
+ ▮ ▮
1569
+
1570
+ ▮ ▮▮
1571
+ ▮ ▮ ▮ ▮ ▮ ▮ ▮ ▮ ▮ ▮
1572
+
1573
+
1574
+ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
1575
+ ◀◀◀◀◀◀◀◀◀◀◀◀◀◀◀◀
1576
+
1577
+
1578
+
1579
+ ◀◀◀◀
1580
+ ◀◀◀◀◀◀◀◀◀◀◀◀◀◀◀◀
1581
+ ◀◀◀◀◀◀◀◀◀◀◀◀◀◀◀◀
1582
+ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
1583
+
1584
+ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
1585
+ ◆◆
1586
+ ◆◆◆◆◆◆◆
1587
+
1588
+
1589
+
1590
+
1591
+
1592
+
1593
+
1594
+
1595
+
1596
+
1597
+
1598
+
1599
+
1600
+
1601
+
1602
+
1603
+
1604
+
1605
+
1606
+ ▮ ▮
1607
+
1608
+ ▮ ▮▮
1609
+ ▮ ▮ ▮ ▮ ▮ ▮ ▮ ▮ ▮ ▮
1610
+
1611
+
1612
+ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
1613
+ □□□□□□□□□□□□□□□□□□□□□□□□□□
1614
+
1615
+
1616
+
1617
+
1618
+
1619
+ □□□□□□□□□□□□□□□□□□□□□□□□□□
1620
+ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
1621
+ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯���▯▯▯▯▯▯▯▯▯▯▯
1622
+ △△△△△△△△△△△△△△△△△△△△△△△△△△△△△
1623
+ △△△△△△△△△△△△△△△△△△△△△△△△△△△△
1624
+ ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
1625
+ ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
1626
+ ◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇
1627
+ ◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇
1628
+ ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
1629
+ ○○○○○○○○○○○○○○○○○○○○○○○○○○○○
1630
+ 0.0
1631
+ 0.5
1632
+ 1.0
1633
+ 1.5
1634
+ 2.0
1635
+ 0.0
1636
+ 0.2
1637
+ 0.4
1638
+ 0.6
1639
+ 0.8
1640
+ 1.0 (a)
1641
+ ED
1642
+
1643
+
1644
+ MPS
1645
+
1646
+
1647
+
1648
+ ctQMC
1649
+
1650
+
1651
+
1652
+
1653
+
1654
+
1655
+ 0.0
1656
+ 0.5
1657
+ 1.0
1658
+ 1.5
1659
+ 2.0
1660
+ 2.5
1661
+ 3.0
1662
+ 0.0
1663
+ 0.2
1664
+ 0.4
1665
+ 0.6
1666
+ 0.8
1667
+ 1.0 (b)
1668
+ MPS
1669
+
1670
+
1671
+
1672
+
1673
+
1674
+ FIG. 9: (a) Longitudinal magnetisation for systems with no symmetries. (b) Staggered magnetisation for detecting
1675
+ symmetry breaking in systems with multiple symmetries.
1676
+ □□□□□□□□□□□□□□□□□□□□□□□□□□□
1677
+ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
1678
+ △△△△△△△△△△△△△△△△△△△△△△△△△△△
1679
+ 0.7
1680
+ 0.8
1681
+ 0.9
1682
+ 1.0
1683
+ 1.1
1684
+ 1.2
1685
+ 1.3
1686
+ -18
1687
+ -16
1688
+ -14
1689
+ -12
1690
+ (a)
1691
+ Energy Levels
1692
+
1693
+ 1
1694
+
1695
+ 2
1696
+ △ 3-4
1697
+ □□□□□□□□□□□□□□□□□□□□□□□□□
1698
+ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
1699
+ △△△△△△△△△△△△△△△△△△△△△△△△△
1700
+ 0.7
1701
+ 0.8
1702
+ 0.9
1703
+ 1.0
1704
+ 1.1
1705
+ 1.2
1706
+ 1.3
1707
+ -22
1708
+ -20
1709
+ -18
1710
+ -16
1711
+ (b)
1712
+ Energy Levels
1713
+
1714
+ 1
1715
+
1716
+ 2
1717
+ △ 3-4
1718
+ □ □ □ □ □ □ □ □
1719
+
1720
+
1721
+
1722
+
1723
+
1724
+ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯
1725
+ △ △ △ △ △ △ △ △ △ △ △ △ △
1726
+ 0.7
1727
+ 0.8
1728
+ 0.9
1729
+ 1.0
1730
+ 1.1
1731
+ 1.2
1732
+ 1.3
1733
+ -30
1734
+ -28
1735
+ -26
1736
+ -24
1737
+ -22
1738
+ (c)
1739
+ Energy Levels
1740
+
1741
+ 1
1742
+
1743
+ 2
1744
+ △ 3-4
1745
+ FIG. 10: Low-lying spectrum of the QTPM as a function of h for fixed J = 1 from ED, for sizes without extra
1746
+ symmetries. (a) N = 3 × 4. (b) N = 4 × 4. (c) N = 3 × 7. The avoided crossing between the ground (black squares)
1747
+ and first excited (purple rectangles) states is indicative of a first-order transition.
1748
+ [4] D. Chandler and J. P. Garrahan, Dynamics on the Way to
1749
+ Forming Glass: Bubbles in Space-Time, Annual Review
1750
+ of Physical Chemistry 61, 191 (2010).
1751
+ [5] T. Speck, Dynamic facilitation theory: a statistical me-
1752
+ chanics approach to dynamic arrest, Journal of Statis-
1753
+ tical Mechanics: Theory and Experiment 2019, 084015
1754
+ (2019).
1755
+ [6] M. R. Hasyim and K. K. Mandadapu, A theory of lo-
1756
+ calized excitations in supercooled liquids, The Journal of
1757
+ Chemical Physics 155, 044504 (2021).
1758
+ [7] R. L. Jack and J. P. Garrahan, Phase Transition for
1759
+ Quenched Coupled Replicas in a Plaquette Spin Model
1760
+ of Glasses, Phys. Rev. Lett. 116, 055702 (2016).
1761
+ [8] S. Biswas, Y. H. Kwan, and S. A. Parameswaran, Be-
1762
+ yond the freshman’s dream: Classical fractal spin liquids
1763
+ from matrix cellular automata in three-dimensional lat-
1764
+ tice models, Phys. Rev. B 105, 224410 (2022).
1765
+ [9] C. Chamon, Quantum Glassiness in Strongly Correlated
1766
+ Clean Systems: An Example of Topological Overprotec-
1767
+ tion, Phys. Rev. Lett. 94, 040402 (2005).
1768
+ [10] R. M. Nandkishore and M. Hermele, Fractons, Annual
1769
+ Review of Condensed Matter Physics 10, 295 (2019).
1770
+ [11] M. Pretko, X. Chen, and Y. You, Fracton phases of
1771
+ matter, International Journal of Modern Physics A 35,
1772
+ 2030003 (2020).
1773
+ [12] B. Yoshida and A. Kubica, Quantum criticality from
1774
+ Ising model on fractal lattices, arXiv:1404.6311 (2014).
1775
+ [13] T.
1776
+ Devakul,
1777
+ Classifying
1778
+ local
1779
+ fractal
1780
+ subsystem
1781
+ symmetry-protected
1782
+ topological
1783
+ phases,
1784
+ Phys.
1785
+ Rev.
1786
+ B 99, 235131 (2019).
1787
+ [14] L. M. Vasiloiu, T. H. E. Oakes, F. Carollo, and J. P.
1788
+ Garrahan, Trajectory phase transitions in noninteracting
1789
+ spin systems, Phys. Rev. E 101, 042115 (2020).
1790
+ [15] Z. Zhou, X.-F. Zhang, F. Pollmann, and Y. You, Frac-
1791
+ tal Quantum Phase Transitions: Critical Phenomena Be-
1792
+ yond Renormalization, arXiv:2105.05851 (2021).
1793
+ [16] B. Yoshida, Exotic topological order in fractal spin liq-
1794
+ uids, Phys. Rev. B 88, 125122 (2013).
1795
+ [17] S. Wolfram, Statistical mechanics of cellular automata,
1796
+ Rev. Mod. Phys. 55, 601 (1983).
1797
+ [18] K. Sfairopoulos, J. F. Mair, L. Causer, and J. P. Garra-
1798
+ han, D-Dimensional Cellular Automata as Ground States
1799
+ of (D + 1)-Dimensional Spin Models (2023), in prepara-
1800
+ tion.
1801
+ [19] N. J. Calkin, J. G. Stevens, and D. M. Thomas, A Char-
1802
+ acterization for the Length of Cycles of the N-Number
1803
+ Ducci Game, Fibonacci Quarterly 43, 53 (2005).
1804
+ [20] B. B. Beard and U.-J. Wiese, Simulations of Discrete
1805
+ Quantum Systems in Continuous Euclidean Time, Phys.
1806
+ Rev. Lett. 77, 5130 (1996).
1807
+ [21] F. Krzakala, A. Rosso, G. Semerjian, and F. Zamponi,
1808
+ Path-integral representation for quantum spin models:
1809
+ Application to the quantum cavity method and Monte
1810
+ Carlo simulations, Phys. Rev. B 78, 134428 (2008).
1811
+ [22] T. Mora, A. M. Walczak, and F. Zamponi, Transition
1812
+ path sampling algorithm for discrete many-body systems,
1813
+ Phys. Rev. E 85, 036710 (2012).
1814
+ [23] L. Causer, J. F. Mair, K. Sfairopoulos, and J. P. Garra-
1815
+ han, In preparation (2023).
1816
+ [24] F. Ritort and P. Sollich, Glassy dynamics of kinetically
1817
+ constrained models, Advances in Physics 52, 219 (2003).
1818
+
1819
+ 11
1820
+ □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□
1821
+ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
1822
+ △△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△
1823
+ 0.4
1824
+ 0.6
1825
+ 0.8
1826
+ 1.0
1827
+ 1.2
1828
+ 1.4
1829
+ 1.6
1830
+ -16
1831
+ -14
1832
+ -12
1833
+ -10
1834
+ -8
1835
+ -6
1836
+ (a)
1837
+ Energy Levels
1838
+
1839
+ 1
1840
+ ▯ 2-4
1841
+
1842
+ 5
1843
+ □□□□□□□□□□□□□□□□□□□□□□□□□
1844
+ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
1845
+ △△△△△△△△△△△△△△△△△△△△△△△△△△
1846
+ 0.7
1847
+ 0.8
1848
+ 0.9
1849
+ 1.0
1850
+ 1.1
1851
+ 1.2
1852
+ 1.3
1853
+ -26
1854
+ -24
1855
+ -22
1856
+ -20
1857
+ -18
1858
+ (b)
1859
+ Energy Levels
1860
+
1861
+ 1
1862
+ ▯ 2-4
1863
+
1864
+ 5
1865
+ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
1866
+ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯
1867
+ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △
1868
+ 0.9
1869
+ 1.0
1870
+ 1.1
1871
+ 1.2
1872
+ -38
1873
+ -36
1874
+ -34
1875
+ -32
1876
+ -30
1877
+ -28
1878
+ (c)
1879
+ Energy Levels
1880
+
1881
+ 1
1882
+ ▯ 2-4
1883
+
1884
+ 5
1885
+ FIG. 11: Same as Fig. 10 but for systems with multiple symmetries. (a) N = 3 × 3. (b) N = 3 × 6. (c) N = 3 × 9.
1886
+ The merging of the ground state (black squares) with three degenerate excited states (purple rectangles) is
1887
+ indicative of spontaneous symmetry breaking.
1888
+ [25] Y. S. Elmatad, D. Chandler, and J. P. Garrahan, Cor-
1889
+ responding States of Structural Glass Formers, J. Phys.
1890
+ Chem. B 113, 5563 (2009).
1891
+ [26] R. M. Turner, R. L. Jack, and J. P. Garrahan, Over-
1892
+ lap and activity glass transitions in plaquette spin mod-
1893
+ els with hierarchical dynamics, Phys. Rev. E 92, 022115
1894
+ (2015).
1895
+ [27] S.-i. Sasa, Thermodynamic transition associated with ir-
1896
+ regularly ordered ground states in a lattice gas model,
1897
+ Journal of Physics A: Mathematical and Theoretical 43,
1898
+ 465002 (2010).
1899
+ [28] J. P. Garrahan, Transition in coupled replicas may not
1900
+ imply a finite-temperature ideal glass transition in glass-
1901
+ forming systems, Phys. Rev. E 89, 030301 (2014).
1902
+ [29] C. Yamaguchi, Static Exact Solutions of a Spin Model
1903
+ Exhibiting Glassy Dynamics, arXiv:1012.5651 (2010).
1904
+ [30] E. M. Inack, S. Morawetz, and R. G. Melko, Neural an-
1905
+ nealing and visualization of autoregressive neural net-
1906
+ works in the Newman-Moore model, arXiv:2204.11272
1907
+ (2022).
1908
+ [31] N. E. Myerson-Jain, S. Yan, D. Weld, and C. Xu, Con-
1909
+ struction of Fractal Order and Phase Transition with Ry-
1910
+ dberg Atoms, Phys. Rev. Lett. 128, 017601 (2022).
1911
+ [32] N. E. Myerson-Jain, K. Su, and C. Xu, Multicritical
1912
+ point with infinite fractal symmetries, Phys. Rev. B 106,
1913
+ 115130 (2022).
1914
+ [33] N. E. Myerson-Jain, S. Liu, W. Ji, C. Xu, and S. Vijay,
1915
+ Pascal’s Triangle Fractal Symmetries, Phys. Rev. Lett.
1916
+ 128, 115301 (2022).
1917
+ [34] O. Martin, A. M. Odlyzko, and S. Wolfram, Alge-
1918
+ braic properties of cellular automata, Communications
1919
+ in Mathematical Physics 93 (1984).
1920
+ [35] J. G. Stevens, R. E. Rosensweig, and A. E. Cerkanowicz,
1921
+ Transient and cyclic behavior of cellular automata with
1922
+ null boundary conditions, Journal of Statistical Physics
1923
+ 73 (1993).
1924
+ [36] J. G. Stevens, On the construction of state diagrams for
1925
+ cellular automata with additive rules, Information Sci-
1926
+ ences 115, 43 (1999).
1927
+ [37] E. Jen, Cylindrical cellular automata, Communications
1928
+ in Mathematical Physics 118 (1988).
1929
+ [38] W.
1930
+ Sierpinski,
1931
+ Comptes
1932
+ rendus
1933
+ hebdomadaires
1934
+ des
1935
+ s´eances de l’Acad´emie des sciences /publi´es par mm. Les
1936
+ secr´etaires perp´etuels, Gallica (1915).
1937
+ [39] E. W. Weisstein, Rule 102.
1938
+ [40] O. Andriychenko and M. Chamberland, Iterated strings
1939
+ and cellular automata, The Mathematical Intelligencer
1940
+ 22 (2000).
1941
+ [41] A. Ehrlich, Periods in Ducci’s n-Number Game of Differ-
1942
+ ences, Fibonacci Quarterly 28, 302 (1990).
1943
+ [42] M. Chamberland and D. M. Thomas, The N-Number
1944
+ Ducci Game, Journal of Difference Equations and Ap-
1945
+ plications 10, 339 (2004).
1946
+ [43] M. Misiurewicz, J. G. Stevens, and D. M. Thomas, Itera-
1947
+ tions of linear maps over finite fields, Linear Algebra and
1948
+ its Applications 413, 218 (2006).
1949
+ [44] D. M. Thomas, J. G. Stevens, and S. Lettieri, Character-
1950
+ istic and minimal polynomials of linear cellular automata,
1951
+ The Rocky Mountain Journal of Mathematics 36, 1077
1952
+ (2006).
1953
+ [45] L. Causer, M. C. Ba˜nuls, and J. P. Garrahan, Optimal
1954
+ sampling of dynamical large deviations via matrix prod-
1955
+ uct states, Phys. Rev. E 103, 062144 (2021).
1956
+ [46] A. W. Sandvik, Computational Studies of Quantum Spin
1957
+ Systems, AIP Conference Proceedings 1297, 135 (2010).
1958
+ [47] H. Fehske,
1959
+ R. Schneider, and A. Weiße, Computa-
1960
+ tional Many-Particle Physics, Lecture Notes in Physics
1961
+ (Springer Berlin Heidelberg, 2007).
1962
+ [48] A. Avella and F. Mancini, Strongly Correlated Systems:
1963
+ Numerical Methods, Springer Series in Solid-State Sci-
1964
+ ences (Springer Berlin Heidelberg, 2013).
1965
+ [49] U. Schollw¨ock, The density-matrix renormalization group
1966
+ in the age of matrix product states, Annals of Physics
1967
+ 326, 96 (2011).
1968
+ [50] J. I. Cirac, D. P´erez-Garc´ıa, N. Schuch, and F. Ver-
1969
+ straete, Matrix product states and projected entangled
1970
+ pair states: Concepts, symmetries, theorems, Rev. Mod.
1971
+ Phys. 93, 045003 (2021).
1972
+ [51] M. Fishman, S. R. White, and E. M. Stoudenmire, The
1973
+ ITensor Software Library for Tensor Network Calcula-
1974
+ tions, arXiv:2007.14822 (2020).
1975
+ [52] R. Or´us, A practical introduction to tensor networks:
1976
+ Matrix product states and projected entangled pair
1977
+ states, Annals of Physics 349, 117 (2014).
1978
+ [53] S. R. White, Density matrix formulation for quantum
1979
+ renormalization groups, Phys. Rev. Lett. 69, 2863 (1992).
1980
+ [54] E.
1981
+ Stoudenmire
1982
+ and
1983
+ S.
1984
+ R.
1985
+ White,
1986
+ Studying
1987
+ Two-
1988
+ Dimensional Systems with the Density Matrix Renor-
1989
+ malization Group, Annual Review of Condensed Matter
1990
+ Physics 3, 111 (2012).
1991
+ [55] J. D’Emidio, A. A. Eberharter, and A. M. L¨auchli, Di-
1992
+ agnosing weakly first-order phase transitions by coupling
1993
+ to order parameters, arXiv:2106.15462 (2021).
1994
+ [56] P. Flocchini, F. Geurts, A. Mingarelli, and N. Santoro,
1995
+ Convergence and aperiodicity in fuzzy cellular automata:
1996
+ revisiting rule 90, Physica D: Nonlinear Phenomena 142,
1997
+
1998
+ 12
1999
+ 20 (2000).
2000
+ [57] A. B. Mingarelli, The Dynamics of General Fuzzy Cellu-
2001
+ lar Automata, in Computational Science – ICCS 2005,
2002
+ edited by V. S. Sunderam, G. D. van Albada, P. M. A.
2003
+ Sloot, and J. J. Dongarra (Springer Berlin Heidelberg,
2004
+ Berlin, Heidelberg, 2005) pp. 351–359.
2005
+ Appendix A: TPM and QTPM for other boundary
2006
+ conditions
2007
+ In the main text, we show that ground state properties
2008
+ of the TPM and, consequently, the quantum phase tran-
2009
+ sition of the QTPM depends on the boundary conditions,
2010
+ but we only focused on systems with periodic boundaries.
2011
+ Here, we consider the cases of periodic boundaries in only
2012
+ the x-dimension (PBCx) and of open boundaries (OBC),
2013
+ using the same Rule 60 CA considerations as for the pe-
2014
+ riodic case.
2015
+ For PBCx, we use the update rule for Rule 60 as before,
2016
+ with the only difference that we do not need to explic-
2017
+ itly check for the periodicity across the y-direction. As
2018
+ a result, for an initial array of L sites, there will be 2L
2019
+ configurations and, thus, 2L ground states for the clas-
2020
+ sical TPM. In this case, only the number of sites in the
2021
+ x-direction matters for the number of classical ground
2022
+ states. For example, a lattice with size N = 3 × 3 and
2023
+ one with N = 3 × 80 will have the same number, 8, of
2024
+ ground states. The identification of the classical ground
2025
+ states can be worked out from the Rule 60 evolution, as
2026
+ before.
2027
+ For OBC, the update rule for Rule 60 is modified for
2028
+ the first cell of an L-length array so that it is not updated.
2029
+ This freedom on choosing two of the boundaries of the
2030
+ lattice gives an increased number of ground states for
2031
+ the classical TPM. Specifically, given a lattice of N spins,
2032
+ N = L × M, the number of the classical ground states is
2033
+ 2L+M−1.
2034
+ We now perform a similar numerical analysis as in
2035
+ Sec. IV C, but only using MPS methods. Data is nor-
2036
+ malised with the system size of the given lattice. The
2037
+ system sizes accessible do not give a clear indication of
2038
+ a well-formed phase transition, but only signatures of it.
2039
+ The first-order transition found is weaker than in the case
2040
+ of the fully PBC, which we attribute to the high number
2041
+ of ground states for the classical TPM, given the system
2042
+ sizes. We note that all these states for h ̸= 0 constitute
2043
+ low-lying excited states which affect the convergence of
2044
+ the MPS algorithm.
2045
+ As seen from Figs. 12 and 13 for PBCx, the difference
2046
+ between the square lattice size scaling and the quasi-1D
2047
+ rectangular stripes is more pronounced, when compared
2048
+ to the finite-size scaling for PBC. Extra calculations on
2049
+ wider rectangular stripes verify that this difference is only
2050
+ a feature of the quasi-1D geometry of the lattice and not
2051
+ an inherent property of the system. Accuracy is lost with
2052
+ increasing size and the MPS results for the sizes studied
2053
+ are not reflective of the true thermodynamic limit.
2054
+ The above considerations for PBCx are even more no-
2055
+ ticeable for the case of OBC, Figs. 14 and 15. Rectangu-
2056
+ lar stripes are fully continuous, while they seem to have
2057
+ converged to their “thermodynamic” behaviour.
2058
+ How-
2059
+ ever, as seen from the square system sizes, the behaviour
2060
+ of the model remains the same regardless of the bound-
2061
+ ary conditions. It becomes apparent though that bigger
2062
+ system sizes soon become computationally inaccessible
2063
+ due to the exponential number of classical ground states.
2064
+ This behaviour shows an obvious discrepancy with stan-
2065
+ dard MPS methods; normally, fully periodic system sizes
2066
+ are computationally harder to access.
2067
+ Here, we stud-
2068
+ ied a model where the exponential number of low-lying
2069
+ states (ground states for h = 0) deters the convergence of
2070
+ the algorithm and also significantly increases the lattice
2071
+ size where the “thermodynamic limit” has been reached.
2072
+ QTPM belongs to this class of models, coming from clas-
2073
+ sical glasses, where the number of classical ground states
2074
+ for PBCx or OBC would progressively constitute the
2075
+ model numerically inaccessible. Only for PBC, the ther-
2076
+ modynamic limit is evidently accessible.
2077
+ Another conclusion that can be drawn from Figs. 12,
2078
+ 13, 14 and 15 concerns the nature of the phase transi-
2079
+ tion. The possession of data for only OBC and Fig. 15,
2080
+ in particular, kschangewould possibly point towards a
2081
+ continuous quantum phase transition or an inconclusive
2082
+ statement. Note, however, that this conclusion would be
2083
+ inaccurate. Even if the “thermodynamic limit” has pos-
2084
+ sibly been reached, numerics for some system sizes alone
2085
+ does not provide enough evidence for the characterization
2086
+ of the phase transition for these cases; further knowledge
2087
+ of the ground states of the model is necessary, while also
2088
+ a general understanding of the behaviour (and number)
2089
+ of the low-lying states.
2090
+ The significance of these arguments is further evident
2091
+ from Figs. 16 and 17.
2092
+ For the case of PBCx, all de-
2093
+ generate ground states for the J ≫ h region are easily
2094
+ found from exact diagonalization calculations and classi-
2095
+ cally excited states are easily tractable too. However, the
2096
+ same is not true for OBC. The number of classically de-
2097
+ generate ground states increases exponentially and this
2098
+ is the reason why it would be pointless to show more
2099
+ ground states.
2100
+ Appendix B: Gap Scaling Analysis for PBC
2101
+ In this section we present a restricted and with limited
2102
+ accuracy analysis on the energy difference between the
2103
+ ground state and the first excited state. This analysis was
2104
+ conducted based on ED and MPS methods, which limits
2105
+ the validity of the conclusions that can be reached: it be-
2106
+ comes quickly obvious that MPS methods are not power-
2107
+ ful enough for the detection of the actual gap, especially
2108
+ in regions of the parameter space with high entanglement
2109
+ or with a high number of low-lying excited states, where
2110
+ MPS often converge to excited states above the lowest-
2111
+ lying ones. However, the analysis below still provides an
2112
+
2113
+ 13
2114
+ □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□
2115
+ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △
2116
+ □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□
2117
+ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △
2118
+ 0.0
2119
+ 0.5
2120
+ 1.0
2121
+ 1.5
2122
+ 2.0
2123
+ 2.5
2124
+ 3.0
2125
+ -3.0
2126
+ -2.5
2127
+ -2.0
2128
+ -1.5
2129
+ -1.0
2130
+ (a)
2131
+ □□□□□□□□□□□□□□
2132
+
2133
+ □□□□□□□□□□□□□□□□
2134
+ △ △ △ △ △ △
2135
+
2136
+
2137
+ △ △ △ △ △ △ △ △
2138
+ □□□□□□□□□□□□□□
2139
+
2140
+ □□□□□□□□□□□□□□□□
2141
+ △ △ △ △ △ △
2142
+
2143
+
2144
+ △ △ △ △ △ △ △ △
2145
+ 0.0
2146
+ 0.5
2147
+ 1.0
2148
+ 1.5
2149
+ 2.0
2150
+ 2.5
2151
+ 3.0
2152
+ 0.0
2153
+ 0.2
2154
+ 0.4
2155
+ 0.6
2156
+ 0.8
2157
+ 1.0
2158
+ (b)
2159
+ □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□
2160
+ △ △ △ △ △ △
2161
+
2162
+ △ △ △ △ △ △ △ △ △
2163
+ □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□
2164
+ △ △ △ △ △ △
2165
+
2166
+ △ △ △ △ △ △ △ △ △
2167
+ 0.0
2168
+ 0.5
2169
+ 1.0
2170
+ 1.5
2171
+ 2.0
2172
+ 2.5
2173
+ 3.0
2174
+ 0.0
2175
+ 0.2
2176
+ 0.4
2177
+ 0.6
2178
+ 0.8 (c)
2179
+ MPS
2180
+
2181
+
2182
+
2183
+
2184
+
2185
+ ED
2186
+
2187
+
2188
+ FIG. 12: (a) Normalised energy, (b) Mx and (c) Mzzz of ground states from MPS and ED for square lattices with
2189
+ PBCx. Data from ED are denoted as empty squares and empty triangles.
2190
+ 0.0
2191
+ 0.5
2192
+ 1.0
2193
+ 1.5
2194
+ 2.0
2195
+ 2.5
2196
+ 3.0
2197
+ -3.0
2198
+ -2.5
2199
+ -2.0
2200
+ -1.5
2201
+ -1.0
2202
+ (a)
2203
+ 0.0
2204
+ 0.5
2205
+ 1.0
2206
+ 1.5
2207
+ 2.0
2208
+ 2.5
2209
+ 3.0
2210
+ 0.0
2211
+ 0.2
2212
+ 0.4
2213
+ 0.6
2214
+ 0.8
2215
+ 1.0
2216
+ (b)
2217
+ 0.0
2218
+ 0.5
2219
+ 1.0
2220
+ 1.5
2221
+ 2.0
2222
+ 2.5
2223
+ 3.0
2224
+ 0.0
2225
+ 0.2
2226
+ 0.4
2227
+ 0.6
2228
+ 0.8
2229
+ 1.0 (c)
2230
+ MPS
2231
+
2232
+
2233
+
2234
+
2235
+
2236
+
2237
+ FIG. 13: Same as Fig. 12 but for systems of size N = 3 × L.
2238
+ indication of the behaviour of the gap with system size
2239
+ when comparing systems with different symmetries.
2240
+ This limited accuracy when measuring the first excited
2241
+ state energy is evident in Fig. 18(a). Data is calculated
2242
+ for the J = h = 1.0 point. The gap seems to decrease
2243
+ with increasing the system size, but at the same time,
2244
+ the power of MPS to detect it is significantly reduced.
2245
+ The situation seems clearer for Fig. 18(b). However, it is
2246
+ equally problematic despite the monotonically decreasing
2247
+ gap. The only significance of these results are an upper
2248
+ bounds of the actual gap.
2249
+ For the first case, the gap
2250
+ seems to decrease algebraically to zero, while for the case
2251
+ of multiple classical ground states, it seems to decrease
2252
+ exponentially.
2253
+ This underlines the different behaviour
2254
+ depending on the existence or not of multiple classical
2255
+ ground states.
2256
+ The same problems are encountered close to the phase
2257
+ transition from the MPS results in Fig. 19(a). Both plots
2258
+ are normalised by the maximum value of the gap encoun-
2259
+ tered in the region of J values studied. For 0.0 < J < 2.0,
2260
+ the gap appears always to be maximum at J = 2.0 for
2261
+ Fig. 19(a) and at J = 0 for Fig. 19(b). In Fig. 19(b), for
2262
+ J > h = 1.0 the gap approaches zero, as expected from
2263
+ the existence of degenerate ground states.
2264
+
2265
+ 14
2266
+ □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□
2267
+ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △
2268
+ □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□
2269
+ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △
2270
+ 0.0
2271
+ 0.5
2272
+ 1.0
2273
+ 1.5
2274
+ 2.0
2275
+ 2.5
2276
+ 3.0
2277
+ -2.5
2278
+ -2.0
2279
+ -1.5
2280
+ -1.0
2281
+ (a)
2282
+ □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□
2283
+ △ △ △ △ △ △ △
2284
+
2285
+
2286
+ △ △ △ △ △ △ △
2287
+ □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□
2288
+ △ △ △ △ △ △ △
2289
+
2290
+
2291
+ △ △ △ △ △ △ △
2292
+ 0.0
2293
+ 0.5
2294
+ 1.0
2295
+ 1.5
2296
+ 2.0
2297
+ 2.5
2298
+ 3.0
2299
+ 0.0
2300
+ 0.2
2301
+ 0.4
2302
+ 0.6
2303
+ 0.8
2304
+ 1.0
2305
+ (b)
2306
+ □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□
2307
+ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △
2308
+ □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□
2309
+ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △
2310
+ 0.0
2311
+ 0.5
2312
+ 1.0
2313
+ 1.5
2314
+ 2.0
2315
+ 2.5
2316
+ 3.0
2317
+ 0.0
2318
+ 0.2
2319
+ 0.4
2320
+ 0.6
2321
+ 0.8 (c)
2322
+ MPS
2323
+
2324
+
2325
+
2326
+
2327
+
2328
+ ED
2329
+
2330
+
2331
+ FIG. 14: (a)Normalised energy, (b) Mx and (c) Mzzz of ground states from MPS and ED for square lattices with
2332
+ OBC. Data from ED are denoted as empty squares and empty triangles.
2333
+ 0.0
2334
+ 0.5
2335
+ 1.0
2336
+ 1.5
2337
+ 2.0
2338
+ 2.5
2339
+ 3.0
2340
+ -2.0
2341
+ -1.8
2342
+ -1.6
2343
+ -1.4
2344
+ -1.2
2345
+ -1.0
2346
+ (a)
2347
+ 0.0
2348
+ 0.5
2349
+ 1.0
2350
+ 1.5
2351
+ 2.0
2352
+ 2.5
2353
+ 3.0
2354
+ 0.0
2355
+ 0.2
2356
+ 0.4
2357
+ 0.6
2358
+ 0.8
2359
+ 1.0
2360
+ (b)
2361
+ 0.0
2362
+ 0.5
2363
+ 1.0
2364
+ 1.5
2365
+ 2.0
2366
+ 2.5
2367
+ 3.0
2368
+ 0.0
2369
+ 0.1
2370
+ 0.2
2371
+ 0.3
2372
+ 0.4
2373
+ 0.5
2374
+ 0.6 (c)
2375
+ MPS
2376
+
2377
+
2378
+
2379
+
2380
+
2381
+
2382
+ FIG. 15: Same as Fig. 14 but for systems of size N = 3 × L.
2383
+ □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□
2384
+ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
2385
+ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
2386
+ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
2387
+ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
2388
+ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
2389
+ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
2390
+ △△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△
2391
+ ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
2392
+ ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
2393
+ ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
2394
+ ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
2395
+ ◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇
2396
+ ◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇
2397
+ ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
2398
+ ◻◻◻◻◻◻◻◻◻◻◻◻◻◻◻◻◻◻◻◻◻◻◻◻◻◻◻◻◻◻◻◻◻
2399
+ □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□
2400
+ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
2401
+ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
2402
+ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
2403
+ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
2404
+ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
2405
+ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
2406
+ △△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△
2407
+ ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
2408
+ ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
2409
+ ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
2410
+ ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
2411
+ ◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇
2412
+ ◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇
2413
+ ○○○○○○○○○○○○○○○○○○○○○○○○○���○○○○○○○
2414
+ ◻◻◻◻◻◻◻◻◻◻◻◻◻◻◻◻◻◻◻◻◻◻◻◻◻◻◻◻◻◻◻◻◻
2415
+ 0.2
2416
+ 0.4
2417
+ 0.6
2418
+ 0.8
2419
+ 1.0
2420
+ -18
2421
+ -16
2422
+ -14
2423
+ -12
2424
+ -10
2425
+ (a)
2426
+ Energy Levels
2427
+
2428
+ 1
2429
+ ▯ 2-7
2430
+
2431
+ 8
2432
+ ▽ 9-12
2433
+ ◇ 13-14
2434
+
2435
+ 15
2436
+
2437
+ 16
2438
+ 17
2439
+ □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□
2440
+ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
2441
+ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
2442
+ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
2443
+ △△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△
2444
+ △△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△
2445
+ △△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△
2446
+ ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
2447
+ ◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇
2448
+ □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□
2449
+ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
2450
+ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
2451
+ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
2452
+ △△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△
2453
+ △△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△
2454
+ △△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△
2455
+ ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
2456
+ ◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇
2457
+ 0.2
2458
+ 0.4
2459
+ 0.6
2460
+ 0.8
2461
+ 1.0
2462
+ 1.2
2463
+ -26
2464
+ -24
2465
+ -22
2466
+ -20
2467
+ -18
2468
+ -16
2469
+ -14
2470
+ -12
2471
+ (b)
2472
+ Energy Levels
2473
+
2474
+ 1
2475
+ ▯ 2-4
2476
+ △ 5-7
2477
+ ▽ 8
2478
+ ◇ 9
2479
+ FIG. 16: The unnormalised state diagrams for a (a) 4 × 4 and a (b) 3 × 6 lattice with PBCx.
2480
+ □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□
2481
+ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
2482
+ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
2483
+ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
2484
+ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
2485
+ △△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△
2486
+ □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□
2487
+ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
2488
+ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
2489
+ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
2490
+ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
2491
+ △△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△
2492
+ 0.5
2493
+ 1.0
2494
+ 1.5
2495
+ -30
2496
+ -25
2497
+ -20
2498
+ -15
2499
+ -10
2500
+ (a)
2501
+ Energy Levels
2502
+
2503
+ 1
2504
+ ▯ 2-5
2505
+
2506
+ 6
2507
+ □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□
2508
+ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
2509
+ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
2510
+ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
2511
+ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
2512
+ △△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△
2513
+ 0.5
2514
+ 1.0
2515
+ 1.5
2516
+ -35
2517
+ -30
2518
+ -25
2519
+ -20
2520
+ -15
2521
+ -10
2522
+ (b)
2523
+ Energy Levels
2524
+
2525
+ 1
2526
+ ▯ 2-5
2527
+
2528
+ 6
2529
+ FIG. 17: Same as Fig. 16 for OBC.
2530
+
2531
+ 15
2532
+
2533
+
2534
+
2535
+
2536
+
2537
+
2538
+
2539
+
2540
+ 100
2541
+ 200
2542
+ 300
2543
+ 400
2544
+ 500
2545
+ 0.00
2546
+ 0.05
2547
+ 0.10
2548
+ 0.15
2549
+ 0.20
2550
+
2551
+
2552
+
2553
+
2554
+
2555
+
2556
+
2557
+
2558
+
2559
+ 0
2560
+ 100
2561
+ 200
2562
+ 300
2563
+ 400
2564
+ 0.00
2565
+ 0.05
2566
+ 0.10
2567
+ 0.15
2568
+ 0.20
2569
+ 0.25
2570
+ 0.30
2571
+ FIG. 18: The scaling of the gap, g, for different lattice sizes without (a) and with (b) symmetries for the QTPM for
2572
+ the J = h = 1/0 point. Both ED and MPS methods are used (where appropriate) for the calculation of the given
2573
+ gaps. Square and rectangular sizes are equally used.
2574
+
2575
+
2576
+
2577
+
2578
+
2579
+
2580
+
2581
+
2582
+
2583
+
2584
+
2585
+
2586
+
2587
+
2588
+
2589
+
2590
+
2591
+
2592
+
2593
+
2594
+
2595
+
2596
+
2597
+
2598
+
2599
+
2600
+
2601
+
2602
+
2603
+
2604
+
2605
+
2606
+
2607
+
2608
+
2609
+
2610
+
2611
+
2612
+
2613
+
2614
+
2615
+
2616
+
2617
+
2618
+
2619
+
2620
+
2621
+
2622
+
2623
+
2624
+
2625
+
2626
+
2627
+
2628
+
2629
+
2630
+
2631
+
2632
+
2633
+
2634
+
2635
+
2636
+
2637
+
2638
+
2639
+
2640
+
2641
+
2642
+
2643
+
2644
+
2645
+
2646
+
2647
+
2648
+
2649
+
2650
+
2651
+
2652
+
2653
+
2654
+
2655
+
2656
+
2657
+
2658
+ ◆ ◆ ◆
2659
+
2660
+
2661
+
2662
+
2663
+
2664
+
2665
+
2666
+
2667
+
2668
+ ● ● ●
2669
+
2670
+
2671
+
2672
+
2673
+ ● ●
2674
+
2675
+
2676
+
2677
+
2678
+
2679
+
2680
+
2681
+
2682
+
2683
+
2684
+
2685
+
2686
+
2687
+
2688
+
2689
+
2690
+
2691
+
2692
+
2693
+
2694
+
2695
+
2696
+
2697
+
2698
+
2699
+
2700
+
2701
+
2702
+
2703
+
2704
+
2705
+
2706
+
2707
+
2708
+
2709
+
2710
+
2711
+
2712
+
2713
+
2714
+
2715
+
2716
+
2717
+
2718
+
2719
+
2720
+
2721
+
2722
+
2723
+
2724
+
2725
+
2726
+
2727
+
2728
+
2729
+
2730
+
2731
+
2732
+
2733
+
2734
+
2735
+
2736
+
2737
+
2738
+
2739
+
2740
+
2741
+
2742
+
2743
+
2744
+
2745
+
2746
+
2747
+
2748
+
2749
+
2750
+
2751
+
2752
+
2753
+
2754
+
2755
+
2756
+
2757
+
2758
+ ◆ ◆ ◆
2759
+
2760
+
2761
+
2762
+
2763
+
2764
+
2765
+
2766
+
2767
+
2768
+ ● ● ●
2769
+
2770
+
2771
+
2772
+
2773
+ ● ●
2774
+ 0.0
2775
+ 0.5
2776
+ 1.0
2777
+ 1.5
2778
+ 2.0
2779
+ 0.0
2780
+ 0.2
2781
+ 0.4
2782
+ 0.6
2783
+ 0.8
2784
+ 1.0
2785
+ MPS
2786
+
2787
+
2788
+
2789
+
2790
+
2791
+
2792
+
2793
+
2794
+
2795
+
2796
+
2797
+
2798
+
2799
+
2800
+
2801
+
2802
+
2803
+
2804
+
2805
+
2806
+
2807
+
2808
+
2809
+
2810
+
2811
+
2812
+
2813
+
2814
+
2815
+
2816
+
2817
+
2818
+
2819
+
2820
+
2821
+
2822
+
2823
+
2824
+
2825
+
2826
+
2827
+
2828
+
2829
+
2830
+
2831
+
2832
+
2833
+
2834
+
2835
+
2836
+
2837
+
2838
+
2839
+
2840
+
2841
+
2842
+
2843
+
2844
+
2845
+
2846
+
2847
+
2848
+
2849
+
2850
+
2851
+
2852
+ ◆ ◆ ◆ ◆
2853
+ ◆ ◆
2854
+
2855
+
2856
+
2857
+ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
2858
+ ● ● ● ●
2859
+
2860
+
2861
+
2862
+
2863
+
2864
+ ● ● ● ● ● ● ● ● ● ● ●
2865
+ 0.5
2866
+ 1.0
2867
+ 1.5
2868
+ 2.0
2869
+ 0.0
2870
+ 0.2
2871
+ 0.4
2872
+ 0.6
2873
+ 0.8
2874
+ 1.0
2875
+ MPS
2876
+
2877
+
2878
+
2879
+
2880
+
2881
+ FIG. 19: The gap, g, normalised with the maximum gap, gmax, in the given domain for different lattice sizes from
2882
+ MPS without (a) and with (b) symmetries for the QTPM. For (a) gmax ≈ 3.43 − 3.50 and for (b) gmax = 2.0.
2883
+
0dE0T4oBgHgl3EQf_gIS/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
0tFQT4oBgHgl3EQf0TbP/content/2301.13416v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a96baccbf1ff8e084d439a4a282f220fc88c6f996031227500a283bd3c490a91
3
+ size 1943160
0tFQT4oBgHgl3EQf0TbP/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81fc094e310382e7f9f5eb6e5f5e8341854fde1580b74d1df75c62a8aa7d798f
3
+ size 3604525
0tFQT4oBgHgl3EQf0TbP/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0efbe6bbc6466e22161d644e769fc0a8f19004044893d93f5b61dc644b18d0bc
3
+ size 120191
1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95e62218137a2068407cdebfe5689e58b0a37dd135b35cfaafa0eda3920b4789
3
+ size 335218
1dFAT4oBgHgl3EQfkB03/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bff1f3099198791f76f016721e5b7682633318db67c1a9faef958289a32c9205
3
+ size 3670061
29AyT4oBgHgl3EQf1vl1/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1511f6cc583ff928921f5a37e9cc4929b5b333435157ffac45f412bb28ca63c7
3
+ size 174419
29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d6ce845501f756a608f85bd24d579dbf9bcbad1a8ad88b9079af0ab8255bd27
3
+ size 14627629
29FQT4oBgHgl3EQf2zan/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6946d57153f45164f6e4cfda11020eb2a2c57447337e10721946b216ad518555
3
+ size 2359341
2dE0T4oBgHgl3EQfugHS/content/2301.02607v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:085731fbf6e24a2e868ddaf9fac53209d1e09f74dfff0efb75eb5f8547d347f5
3
+ size 306058
2tFKT4oBgHgl3EQfQC0t/content/tmp_files/2301.11765v1.pdf.txt ADDED
@@ -0,0 +1,2154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ExplainableFold: Understanding AlphaFold Prediction with Explainable AI
2
+ Juntao Tan 1 Yongfeng Zhang 1
3
+ Abstract
4
+ This paper presents ExplainableFold, an explain-
5
+ able AI framework for protein structure prediction.
6
+ Despite the success of AI-based methods such as
7
+ AlphaFold in this field, the underlying reasons for
8
+ their predictions remain unclear due to the black-
9
+ box nature of deep learning models. To address
10
+ this, we propose a counterfactual learning frame-
11
+ work inspired by biological principles to generate
12
+ counterfactual explanations for protein structure
13
+ prediction, enabling a dry-lab experimentation
14
+ approach. Our experimental results demonstrate
15
+ the ability of ExplainableFold to generate high-
16
+ quality explanations for AlphaFold’s predictions,
17
+ providing near-experimental understanding of the
18
+ effects of amino acids on 3D protein structure.
19
+ This framework has the potential to facilitate a
20
+ deeper understanding of protein structures.
21
+ 1. Introduction
22
+ The protein folding problem studies how a protein’s amino
23
+ acid sequence determines its tertiary structure. It is crucial
24
+ to biochemical research because a protein’s structure influ-
25
+ ences its interaction with other molecules and thus its func-
26
+ tion. Current machine learning models have gain increasing
27
+ success on 3D structure prediction (AlQuraishi, 2021; Tor-
28
+ risi et al., 2020). Among them, AlphaFold (Jumper et al.,
29
+ 2021) provides near-experimental accuracy on structure pre-
30
+ diction, which is considered as an importance achievement
31
+ in recent years. Nevertheless, one of the important problems
32
+ of AlphaFold, as well as other deep models, is that they can-
33
+ not provide explanations for their predictions. Essentially,
34
+ the why question still remains largely unsolved: the model
35
+ gives limited understanding of why the proteins are folded
36
+ into the structures they are, which hinders the model’s ability
37
+ to provide deeper insights for human scientists.
38
+ However, it is crucial to understand the mechanism of pro-
39
+ tein folding from both AI and scientific perspectives. From
40
+ 1Department of Computer Science, Rutgers University. Corre-
41
+ spondence to: Juntao Tan <[email protected]>, Yongfeng
42
+ Zhang <[email protected]>.
43
+ Copyright by the author(s).
44
+ the AI perspective, explainability has long been an important
45
+ consideration. State-of-the-art protein structure prediction
46
+ models leverage complex deep and large neural networks,
47
+ which makes it difficult to explain their predictions or debug
48
+ the trained model for further improvement. From the sci-
49
+ entific perspective, scientists’ eager to conquest knowledge
50
+ is not satisfied with just knowing the prediction results, but
51
+ also knowing the why behind the results (Li et al., 2022).
52
+ In particular, structural biologists not only care about the
53
+ structure of proteins, but also need to know the underlying
54
+ relationship between protein primary sequences and tertiary
55
+ structures (Dill et al., 2008; Dill & MacCallum, 2012).
56
+ It has been established that certain amino acids play signifi-
57
+ cant roles in the protein folding process. For instance, one
58
+ single disorder in the HBB gene can significantly change
59
+ the structure of hemoglobin, the protein that carries oxygen
60
+ in blood, causing the sickle-cell anaemia (Kato et al., 2018).
61
+ Knowing the relationship between amino acids and protein
62
+ structure helps scientists to produce synthetic proteins with
63
+ precisely controlled structures (Tan et al., 2020) or mod-
64
+ ify existing proteins with desired properties (Szymkowski,
65
+ 2005; Mart´ınez et al., 2020; Ackers & Smith, 1985), which
66
+ are essential for advanced research directions such as drug
67
+ design. Additionally, in certain research tasks, scientists
68
+ would like to modify the amino acids without drastically
69
+ changing the protein structure, which requires the knowl-
70
+ edge of “safe” residue substitutions (Bordo & Argos, 1991),
71
+ i.e., the knowledge of which amino acids are not the most
72
+ crucial ones in the folding process.
73
+ While currently there are few Explainable AI-based methods
74
+ to study the mechanism of protein folding, many previous
75
+ biochemical researches have been conducted for this pur-
76
+ pose. One of the best known methods is via site-directed
77
+ mutagenesis (Hutchison et al., 1978; Carter, 1986; Sarkar &
78
+ Sommer, 1990). To test the role of certain residues in pro-
79
+ tein folding, biologists either delete them from the sequence
80
+ (i.e., site-directed deletion) (Arpino et al., 2014; Gl¨uck &
81
+ Wool, 2002; Flores-Ram´ırez et al., 2007; Dominy & An-
82
+ drews, 2003) or replace them with other types of amino acids
83
+ (i.e., site-directed substitution) (Flores-Ram´ırez et al., 2007;
84
+ Bordo & Argos, 1991; Betts & Russell, 2003) and then mea-
85
+ sure their influences on the 3D structure. However, these
86
+ approaches suffer from several limitations: 1) So far, modi-
87
+ fication of such residues can be limited by methods for their
88
+ arXiv:2301.11765v1 [cs.AI] 27 Jan 2023
89
+
90
+ ExplainableFold: Understanding AlphaFold Prediction with Explainable AI
91
+ Figure 1. (a) Some amino acids play crucial roles in protein folding. By removing the effects of a relative small set of these residues, the
92
+ predicted structure will be different. (b) Some other residues are less important. Despite deleting a large set of these residues, the protein
93
+ still folds into a similar structure. (c) Some substitutions are radical to the protein structure and even a small number of such substitutions
94
+ can drastically change the structure. (d) Some other substitutions are conservative and have small effect on the protein structure.
95
+ installation and the chemistry available for reaction, and
96
+ the modification of some residues can be very challenging
97
+ (Spicer & Davis, 2014), 2) Wet-lab methods for determin-
98
+ ing protein structures are very difficult and time-consuming
99
+ (Ilari & Savino, 2008), and 3) The wet lab experiments de-
100
+ scribed above have many prerequisites and obstacles, and
101
+ may not be completely safe for many researchers.
102
+ Recently, AI-based dry-lab methods such as AlphaFold pro-
103
+ vide near-experimental protein structure predictions (Jumper
104
+ et al., 2021), which sheds light on the possibility to gen-
105
+ erate insightful understandings of protein folding by ex-
106
+ plaining AlphaFold’s inference process. Such (Explainable)
107
+ AI-driven dry-lab approach will largely overcome the afore-
108
+ mentioned limitations and can be very helpful for human
109
+ scientists. Furtunately, we observe that the process of testing
110
+ the effects of residues on protein structure by site-directed
111
+ mutagenesis is fundamentally similar to counterfactual rea-
112
+ soning, a commonly used technique for generating explana-
113
+ tions for machine learning models (Tan et al., 2021; 2022;
114
+ Goyal et al., 2019; Tolkachev et al., 2022; Cito et al., 2022).
115
+ Intuitively, counterfactual reasoning perturbs parts of the
116
+ input data, such as interaction records of a user (Tan et al.,
117
+ 2021), nodes or edges of a graph (Tan et al., 2022), pixels
118
+ of an image (Goyal et al., 2019), or words of a sentence
119
+ (Tolkachev et al., 2022), and then observes how the model
120
+ output changes accordingly.
121
+ In this paper, we propose ExplainableFold, a counterfac-
122
+ tual explanation framework that generates explanations for
123
+ protein structure prediction models. ExplainableFold mim-
124
+ ics existing biochemical experiments by manipulating the
125
+ amino acids in a protein sequence to alter the protein struc-
126
+ ture through carefully designed optimization objectives. It
127
+ provides insights about which residue(s) of a sequence is cru-
128
+ cial (or indecisive) to the protein’s structure and how certain
129
+ changes on the residue(s) will change the structure, which
130
+ helps to understand, e.g., what are the most impactful amino
131
+ acids on the structure, and what are the most radical (or safe)
132
+ substitutions when modifying a protein structure. An exam-
133
+ ple of applying our framework on CASP14 target protein
134
+ T1030 is shown in Figure 1, which shows that deletion or
135
+ substitution of a small number of residues can result in sig-
136
+ nificant changes to the protein structure, while some other
137
+ deletions or substitutions may have very small effects. We
138
+ evaluate the framework based on both standard explainable
139
+ AI metrics and biochemical heuristics. Experiments show
140
+ that the proposed method produces more faithful explana-
141
+ tions compared to previous statistical baselines. Meanwhile,
142
+ the predicted relationship between protein amino acids and
143
+ their structures are highly positively correlated with wet-lab
144
+ biochemical experimental results.
145
+ 2. Related Work
146
+ The essential idea of the proposed method is to integrate
147
+ counterfactual reasoning and site-directed mutagenesis anal-
148
+ ysis in a unified machine learning framework. We discuss
149
+ the two research directions in this section.
150
+ 2.1. Residue Effect Analysis by Site-directed Mutagenesis
151
+ Many studies in molecular biology, such as those involv-
152
+ ing genes and proteins, rely on the use of human-induced
153
+ mutation analysis (Stenson et al., 2017). Early metagenesis
154
+ methods were not site-specific, resulting in entirely random
155
+ and indiscriminate mutations (Egli et al., 2006). In 1978,
156
+
157
+ a) Most Intolerant Deletion:
158
+ c) Most Radical Substitution:
159
+ TM-score: 0.47 Changed # of Residues: 80 / 273 (29%)
160
+ b) Most Tolerant Deletion:
161
+ d) Most Conservative Substitution:
162
+ TM-score: 0.66 Changed # of Residues: 142 / 273 (52%)
163
+ TM-score: 0.57 Changed # of Residues: 82 / 273 (30%)ExplainableFold: Understanding AlphaFold Prediction with Explainable AI
164
+ Hutchison et al. proposed the first method that can modify
165
+ biological sequences at desired positions with specific inten-
166
+ tions, which is known as site-directed mutagenesis. Later,
167
+ more precise and effective tools were constantly developed
168
+ (Motohashi, 2015; Doering et al., 2018). Site-directed muta-
169
+ genesis is widely utilized in biomedical research for various
170
+ applications. In this section, we focus on the use of site-
171
+ directed mutagenesis to study the impact of amino acid
172
+ mutations on protein structures (Studer et al., 2013).
173
+ Two common approaches to site-directed mutagenesis are
174
+ amino acid deletion and substitution (Choi & Chan, 2015).
175
+ The deletion approach deletes certain residues from the
176
+ sequence and observes the effects on the structure. For in-
177
+ stance, Gl¨uck & Wool (2002) identified the amino acids that
178
+ are essential to the action of the ribotoxin restrictocin by
179
+ systematic deletion of its amino acids. Flores-Ram´ırez et al.
180
+ (2007) proposed a random deletion approach to measure the
181
+ amino acids’ effects on the longest loop of GFP. Arpino et al.
182
+ (2014) conducted experiments to measure the the protein’s
183
+ tolerance to random single amino acid deletion. The substi-
184
+ tution approach, on the other hand, replaces one or multiple
185
+ residues with other types of amino acids to test their influ-
186
+ ence. For example, Clemmons (2001) substituted a small
187
+ domain of the IGF-binding protein to measure weather spe-
188
+ cific domains account for specific structures and functions.
189
+ Zhang et al. (2018) mutated a specific amino acid on the
190
+ surface of a Pin1 sub-region, known as the WW domain, and
191
+ observed significant structural change on the protein struc-
192
+ ture. Guo et al. (2004) randomly replaced amino acids to
193
+ test proteins’ tolerance to substitution at different positions.
194
+ When developing our framework, we draw insights from the
195
+ aforementioned biochemical methods, which were proven
196
+ effective in wet-lab experiments. We aim to translate the
197
+ wet-lab methods for understanding protein structures into a
198
+ dry-lab AI-driven approach. We note that there have been ex-
199
+ isting attempts which built models to understand the relation-
200
+ ship between protein structures and their residues (Masso
201
+ & Vaisman, 2008; Masso et al., 2006; Sotomayor-Vivas
202
+ et al., 2022). However, they were mostly based on statistical
203
+ analysis on wet-lab experimentation data. Our method is
204
+ the first AI-driven machine learning method developed for
205
+ understading protein structure predictions.
206
+ 2.2. Counterfactual Reasoning for Explainable AI
207
+ Counterfactual explanation is a type of model-agnostic ex-
208
+ plainable AI method that tries to understand the underlying
209
+ mechanism of a model’s behavior by perturbing its input.
210
+ The basic idea is to investigate the difference of the model’s
211
+ prediction before and after changing the input data in spe-
212
+ cific ways (Wachter et al., 2017). Since counterfactual ex-
213
+ planation is well-suited for explaining black-box models,
214
+ it has been an important explainable AI method and has
215
+ been employed in various applications, including but not
216
+ limited to recommender systems (Tan et al., 2021; Ghaz-
217
+ imatin et al., 2020), computer vision (Goyal et al., 2019;
218
+ Vermeire et al., 2022), natural language processing (Yang
219
+ et al., 2020; Lampridis et al., 2020; Tolkachev et al., 2022),
220
+ molecular analysis (Tan et al., 2022; Ying et al., 2019; Lin
221
+ et al., 2021), and software engineering (Cito et al., 2022).
222
+ In this paper, we explore counterfactual explanation to ex-
223
+ plain the amino acids’ effects on protein folding. How-
224
+ ever, counterfactual explanation for protein folding exhibits
225
+ unique challenges compared with previous tasks. For exam-
226
+ ple: 1) most of the aforementioned applications are classifi-
227
+ cation tasks, for which the explanation goal is very clear –
228
+ looking for a minimal change that alter the predicted label.
229
+ However, protein structure prediction is a generation task
230
+ in a continuous space, which requires careful design of the
231
+ counterfactual reasoning objective; 2) protein structure pre-
232
+ diction models such as AlphaFold take complicated input
233
+ besides the primary sequence, e.g., the MSA and templates;
234
+ 3) it is easier to evaluate the explanations for the classifi-
235
+ cation tasks, nevertheless, as a new explainable AI task,
236
+ protein structure prediction poses unique challenges on the
237
+ evaluation of explanation. We will show how to overcome
238
+ these challenges in the following parts of the paper.
239
+ 3. Problem Formulation
240
+ In this section, we first provide formulation of the Explain-
241
+ ableFold problem. Since a protein tertiary (3D) structure is
242
+ uniquely determined by its primary structure (amino acid
243
+ sequences) (Dill et al., 2008; Wiltgen, 2009), according to
244
+ the key idea of counterfactual explanation, we define the ex-
245
+ planation as identifying the most crucial residues that cause
246
+ the proteins to fold into the structures they are.
247
+ Suppose a protein consists of a chain of l residues, where
248
+ the i-th residue is encoded as a 21-dimensional one-hot col-
249
+ umn vector ri. The “1” element in ri indicates the type
250
+ of the residue, which can be one of the 20 common amino
251
+ acids or an additional dimension for unknown residue. By
252
+ concatenating all the residue vectors, a protein P is de-
253
+ noted as P = [r1, r2, · · · , rl], where P ∈ {0, 1}21×l is
254
+ called the protein embedding matrix. Many state-of-the-art
255
+ protein structure prediction models predict the 3D struc-
256
+ ture not only based on the residue sequence, but also uti-
257
+ lize supplementary evolutionary information (Senior et al.,
258
+ 2020; Jumper et al., 2021) by extracting Multiple Sequence
259
+ Alignment (MSA) (Edgar & Batzoglou, 2006) from pro-
260
+ tein databases. Suppose m proteins are retrieved from the
261
+ evolutionary database based on their similarity with protein
262
+ P, the constructed MSAs can be encoded as another ma-
263
+ trix M(P ) ∈ {0, 1}m×21×l. A protein structure prediction
264
+ model fθ predicts the protein 3D structure S based on the
265
+
266
+ ExplainableFold: Understanding AlphaFold Prediction with Explainable AI
267
+ residue sequence and MSA embeddings:
268
+ S = fθ
269
+
270
+ P , M(P )
271
+
272
+ (1)
273
+ where M(P ) can be omitted if the model only takes the
274
+ residue sequence information. Though a structure predic-
275
+ tion model may predict the positions of all atoms, in many
276
+ structural biology research, only the backbone of residues
277
+ are used for comparing the similarities of protein structures
278
+ (Zhang & Skolnick, 2004; 2005; Xu & Zhang, 2010; Zemla,
279
+ 2003). Therefore, we adopt the same idea in this paper,
280
+ where S ∈ R3×l only contains the predicted (x, y, z)T co-
281
+ ordinates of the α-carbon atom of each amino acid residue.
282
+ The explanation is expected to be a subset of residues ex-
283
+ tracted from the protein sequence, expressed as E. The
284
+ objective of the ExplainableFold problem is to find the mini-
285
+ mum set of E that contains the most influential information
286
+ for the prediction of the 3D structure.
287
+ 4. The ExplainableFold Framework
288
+ In biochemistry, the most common methods for studying
289
+ the effects of amino acids on protein structure fall into two
290
+ categories: amino acid deletion and substitution (Choi &
291
+ Chan, 2015). We design the ExplainableFold framework
292
+ from both of the two perspectives, and we introduce them
293
+ separately in the following.
294
+ 4.1. The Residue Deletion Approach
295
+ The deletion approach simulates the biochemical studies
296
+ that detect essential residues for a protein by deleting one or
297
+ more residues and measuring the protein’s tolerance to such
298
+ deletion (Arpino et al., 2014; Gl¨uck & Wool, 2002; Flores-
299
+ Ram´ırez et al., 2007). The key idea is to apply a residue
300
+ mask that removes the effect of certain residues from the se-
301
+ quence and then measure the change of the protein structure.
302
+ From the counterfactual machine learning perspective, this
303
+ can be considered from two complementary views (Guidotti
304
+ et al., 2019; Tan et al., 2022): 1) Identify the minimal dele-
305
+ tion that will alter the predicted structure and the deleted
306
+ residues will be the necessary explanation; 2) Identify the
307
+ maximal deletion that still keeps the predicted structure and
308
+ the undeleted residues will be the sufficient explanation. We
309
+ design the counterfactual explanation algorithm from these
310
+ two views accordingly.
311
+ 4.1.1. NECESSARY EXPLANATION (MOST INTOLERANT
312
+ DELETION)
313
+ From the necessary perspective, we aim to find the minimal
314
+ set of residues in the original sequence which, if deleted,
315
+ will change the AI model’s (such as AlphaFold’s) predicted
316
+ structure. The deleted residues thus contain the most neces-
317
+ sary information for the model’s original prediction.
318
+ We can express the perturbation on the original sequence
319
+ as a multi-hot vector ∆ = {0, 1}1×l, where δi = 1 means
320
+ that the i-th residue will be deleted and δi = 0 means it will
321
+ be kept. Then the counterfactual protein embedding matrix
322
+ P ∆ can be expressed as:
323
+ P ∆ = P ⊙ (1 − ∆) + U ⊙ ∆
324
+ (2)
325
+ where ⊙ is the element-wise product and U ∈ {0, 1}21×l
326
+ denotes an “unknown” matrix of the same shape with P ,
327
+ but with all elements being 0 except for the last row being 1
328
+ (i.e., unknown type amino acid). Thus, for δi = 0, the i-th
329
+ residue in the original sequence will be preserved, while for
330
+ δi = 1, the i-th residue will be treated as an unknown amino
331
+ acid without any specific chemical property.
332
+ Motivated by the Occam’s Razor Principle (Blumer et al.,
333
+ 1987), we aim to find simple and effective explanations. The
334
+ simpleness can be characterized by the number of residues
335
+ that need to be deleted, which should be as few as possi-
336
+ ble, while effectiveness means that the predicted protein
337
+ structure should be different before and after applying the
338
+ deletions. We can use zero-norm ∥∆∥0 to represent the
339
+ number of deletions (for simpleness), while using the TM-
340
+ score between the original and the new protein structures
341
+ TM(S, S∗) to represent the degree of change on the struc-
342
+ ture (for effectiveness). TM-score is a standard measure-
343
+ ment for comparing aligned protein structures, where TM-
344
+ score > 0.5 suggests the same folding and TM-score ≤ 0.5
345
+ suggests different foldings (Zhang & Skolnick, 2004; Xu &
346
+ Zhang, 2010). The counterfactual expxlanation algorithm
347
+ then learns the optimal explanation by solving the following
348
+ constrained optimization problem:
349
+ minimize ∥∆∥0
350
+ s.t. TM(S, S∗) ≤ 0.5, ∆ = {0, 1}1×l
351
+ where S∗ = fθ(P ∆, M(P ∆))
352
+ (3)
353
+ where the objective ∥∆∥0 aims to find the minimal dele-
354
+ tion, while the constraint guarantees the effectiveness of the
355
+ deletion, i.e., the deletion will change the predicted protein
356
+ structure to be different from before.
357
+ Due to the exponential combinations of sub-sequences for
358
+ a given sequence, it is impractical to search for an optimal
359
+ solution on the discrete space. To solve the problem, we use
360
+ a continuous relaxation approach to solve the optimization
361
+ problem by relaxing the multi-hot vector ∆ to a real-valued
362
+ vector. We also relax the hard constraint in Eq.(3) and
363
+ combine them into a single trainable loss function:
364
+ L1 = max
365
+
366
+ 0, TM(S, S∗) − 0.5 + α
367
+
368
+ + λ1∥σ(∆)∥1
369
+ s.t. ∆ ∈ R1×l, where S∗ = fθ(P σ(∆), M(P σ(∆)))
370
+ (4)
371
+ where the sigmoid function σ(·) is applied so that σ(∆) ∈
372
+ (0, 1)1×l approximates the probability distribution between
373
+
374
+ ExplainableFold: Understanding AlphaFold Prediction with Explainable AI
375
+ the original residues and unknown residues, and α is the
376
+ margin value of the hinge loss whose default value is 0.1.
377
+ This relaxation approach has been justified in several previ-
378
+ ous studies which also learn explanation on discrete inputs
379
+ (Ying et al., 2019; Goyal et al., 2019; Tan et al., 2022). The
380
+ 1-norm regularizer assures the learned perturbation σ(∆)
381
+ to be sparse (Candes & Tao, 2005), i.e., the learned expla-
382
+ nation only contains a small set of residues. λ1 is a hyper-
383
+ parameter that controls the trade-off between the complexity
384
+ and strength of the generated explanation. Eq.(4) can be
385
+ easily optimized with gradient descent. After optimization,
386
+ we convert σ(∆) to a binary vector with the threshold 0.5.
387
+ 4.1.2. SUFFICIENT EXPLANATION (MOST TOLERANT
388
+ DELETION)
389
+ Symmetrically, from the sufficiency perspective, we aim to
390
+ find the maximal set of residues in the orignal sequence
391
+ which, if deleted, will not change the AI model’s predicted
392
+ structure. The undeleted residues thus contain the most
393
+ sufficient information for the model’s original prediction.
394
+ This can be formulated as a similar but reversed optimization
395
+ process as Eq.(3), which looks for the maximal perturba-
396
+ tion ∆ while keeping the same folding (TM-score > 0.5).
397
+ Therefore, the optimization problem is formulated as:
398
+ maximize ∥∆∥0
399
+ s.t. TM(S, S∗) > 0.5, ∆ = {0, 1}1×l
400
+ where S∗ = fθ
401
+
402
+ P ∆, M(P ∆)
403
+
404
+ (5)
405
+ Similarly, we relax Eq.(5) to a differentiable loss function:
406
+ L2 = max
407
+
408
+ 0, 0.5 − TM(S, S∗) + α
409
+
410
+ − λ2∥σ(∆)∥1
411
+ s.t. ∆ ∈ R1×l, where S∗ = fθ(P σ(∆), M(P σ(∆)))
412
+ (6)
413
+ Contrary to the necessary explanation, the sufficient explana-
414
+ tion consists the undeleted residues. Hence, after optimiza-
415
+ tion, we filter the residues according to
416
+
417
+ 1 − σ(∆)
418
+
419
+ > 0.5
420
+ and include them into the sufficient explanation.
421
+ 4.2. The Residue Substitution Approach
422
+ Another popular approach in biochemistry, site-directed sub-
423
+ stitution, studies the influence of the amino acids on protein
424
+ folding by replacing certain residues with other known-type
425
+ residues (Flores-Ram´ırez et al., 2007; Bordo & Argos, 1991;
426
+ Betts & Russell, 2003). Different replacements may have
427
+ different effects on protein structures, and they can be clas-
428
+ sified into two types: conservative substitution and radical
429
+ substitution (Zhang, 2000; Dagan et al., 2002). A conser-
430
+ vative substitution is considered as a “safe” substitution for
431
+ which the amino acid replacement usually have no or minor
432
+ effects on the protein structure. A radical substitution is
433
+ considered “unsafe,” which usually causes significant struc-
434
+ tual changes. Based on the above concepts, we design the
435
+ substitution approach from these two different perspectives.
436
+ 4.2.1. RADICAL SUBSTITUTION EXPLANATION
437
+ From the radical substitution perspective, we aim to find the
438
+ mimimal set of residue replacements which will lead to a
439
+ different folding, and then the learned substitutions are the
440
+ most radical substitutions for the protein.
441
+ For a target protein with binary embedding matrix P , we
442
+ learn a counterfactual binary protein embedding P ′, which
443
+ has the same shape as the original embedding matrix. The
444
+ number of substitutions is represented by ∥P −P ′∥0, which
445
+ is the 0-norm of the difference between the two matrices.
446
+ To find the minimal residue substitution that changes the
447
+ original folding, the optimization problem is defined as:
448
+ minimize ||P − P ′||0
449
+ s.t. TM(S, S′) ≤ 0.5, P ′ ∈ {0, 1}21×l
450
+ where S′ = fθ
451
+
452
+ P ′, M(P ′)
453
+
454
+ (7)
455
+ Due to the exponential search space of the substitutions,
456
+ we use the similar continuous relaxation method as in the
457
+ deletion approach. First, we relax the binary counterfactual
458
+ embedding matrix P ′ to continuous space. We also relax
459
+ the hard constraint in Eq.(7) and define the differentiable
460
+ loss function as:
461
+ L3 = max
462
+
463
+ 0, TM(S, S′) − 0.5 + α
464
+
465
+ + λ3∥P − σ(P ′)∥1
466
+ s.t. P ′ ∈ R21×l, where S′ = fθ
467
+
468
+ P ′, M(P ′)
469
+
470
+ (8)
471
+ After optimization, we convert the learned continuous ma-
472
+ trix σ(P ′) into binary by setting the maximum value of each
473
+ column as 1 and others as 0. Then, the changed residues
474
+ between P and P ′ are the radical substitution explanations.
475
+ 4.2.2. CONSERVATIVE SUBSTITUTION EXPLANATION
476
+ From the conservative substitution perspective, we aim to
477
+ find the maximal set of residue replacements which how-
478
+ ever lead to the same folding, and then the learned substitu-
479
+ ions are the most conservative substitutions for the protein.
480
+ On the contrary to Eq.(7), we formulate an inverse optimiza-
481
+ tion problem as:
482
+ maximize ||P − P ′||0
483
+ s.t. TM(S, S′) > 0.5, P ′ ∈ {0, 1}21×l
484
+ where S′ = fθ
485
+
486
+ P ′, M(P ′)
487
+
488
+ (9)
489
+ With the same relaxation process, the loss function is:
490
+ L4 = max
491
+
492
+ 0, 0.5 − TM(S, S′) + α
493
+
494
+ − λ4∥P − σ(P ′)∥1
495
+ s.t. P ′ ∈ R21×l, where S′ = fθ
496
+
497
+ P ′, M(P ′)
498
+
499
+ (10)
500
+
501
+ ExplainableFold: Understanding AlphaFold Prediction with Explainable AI
502
+ After learning σ(P ′) and getting the binary matrix, again,
503
+ the changed residues between P and P ′ are the conservative
504
+ substitution explanations.
505
+ 4.3. Phased MSA Re-alignment
506
+ It is impractical to re-compute MSAs in each training step.
507
+ Therefore, we propose a phased MSA re-alignment strategy.
508
+ When learning the explanations, we fix the generated MSAs
509
+ and only learn the changes on the sequence embedding for
510
+ t training steps (t = 100 by default), which is one pahse.
511
+ Then, we re-align the MSAs and start another training phase.
512
+ 5. Experiments
513
+ We first introduce the datasets and implementation details.
514
+ Then, we introduce the evaluation results of the deletion
515
+ approach and substitution approach, respectively.
516
+ 5.1. Datasets
517
+ We test the ExplainableFold framework on the 14th Criti-
518
+ cal Assessment of protein Structure Prediction (CASP-14)
519
+ dataset1 (Moult et al.). CASP consecutively establishes
520
+ protein data with detailed structural information as a stan-
521
+ dard evaluation benchmark for protein structure prediction.
522
+ Following Jumper et al. (2021), we remove all sequences
523
+ for which fewer than 80 amino acids had the alpha carbon
524
+ resolved and remove duplicated sequences. After filtering,
525
+ 55 protein sequences are selected.
526
+ 5.2. Implementation Details
527
+ Though the ExplainableFold framework can be applied on
528
+ any model that predicts protein 3D structures, we choose
529
+ Alphafold2 (Jumper et al., 2021), the state-of-the-art model,
530
+ as the base model in the experiments. More specifically, we
531
+ use the OpenFold (Ahdritz et al., 2022) implementation and
532
+ load the official pre-trained AlphaFold parameters2.
533
+ When learning the explanations, the pre-trained parame-
534
+ ters of AlphaFold are fixed, and only the perturbation vec-
535
+ tor on the input (∆ for the deletion approach and P ′ for
536
+ the substitution approach) will be optimized. However, it
537
+ still requires computing the gradient through the entire Al-
538
+ phafold network, as a result, the learning process requires
539
+ extensive memory consumption. To solve the problem, we
540
+ follow exactly the same training procedure as introduced in
541
+ the original AlphaFold paper (Jumper et al., 2021). More
542
+ specifically, we use the gradient checkpointing technique to
543
+ reduce the memory usage (Chen et al., 2016). Meanwhile,
544
+ if a protein has more than 384 residues, we cut it to differ-
545
+ ent chunks for each consecutive 384 residues, and generate
546
+ 1https://predictioncenter.org/casp14/
547
+ 2https://github.com/deepmind/alphafold
548
+ explanations for each of them.
549
+ We employ the same training strategy for both deletion and
550
+ substitution explanation methods: for each training phase
551
+ between MSA re-alignments, we optimize the purturbation
552
+ vector for 100 steps with Adam optimizer (Kingma & Ba,
553
+ 2014) and learning rate 0.1. After each training loop, we re-
554
+ align the MSAs with the AlphaFold HHblits/JackHMMER
555
+ pipeline. We repeat the training and alignment process for
556
+ 3 phases when generating explanations for each protein.
557
+ All experiments are conducted on NVIDIA A5000 GPUs.
558
+ The entire training process (including all 3 phases) for one
559
+ protein takes approximately 5 hours. We set α = 0.1 and
560
+ λ = 0.01 in Equations (4)(6)(8)(10). To realize an incre-
561
+ mental substitution process, we initialize the counterfactual
562
+ protein embedding matrix as a duplication of the original
563
+ protein embedding matrix, i.e., we initialize ∆ with all 0’s
564
+ and initialize σ(P ′) equal to the original P . Thus, the
565
+ optimal explanations are gradually learned.
566
+ 5.3. Evaluation of the Deletion Approach
567
+ Counterfactual explanations can be evaluated by their com-
568
+ plexity, sufficiency and necessity (Glymour et al., 2016; Tan
569
+ et al., 2022). First, according to the Occam’s Razor Princi-
570
+ ple (Blumer et al., 1987), we hope an explanation can be as
571
+ simple as possible so that it is cognitively easy to understand
572
+ for humans. This can be evaluated by the complexity of the
573
+ explanation, i.e., the percentage of residues that are included
574
+ in the explanation:
575
+ Complexity = |E|/l
576
+ (11)
577
+ where l is the length of the protein.
578
+ Sufficiency and necessity measure how crucial the generated
579
+ explanations are for the protein structure. We follow the def-
580
+ inition in causal inference theory (Glymour et al., 2016) and
581
+ existing explainable AI research (Tan et al., 2022) and mea-
582
+ sure the explanations with two causal metrics: Probability
583
+ of Necessity (PN) and Probability of Sufficiency (PS).
584
+ PN measures the necessity of the explanation. A set of
585
+ explanation residues is considered a necessary explanation
586
+ if, by removing their effects from the protein sequence,
587
+ the predicted structure of the protein will have a different
588
+ folding (TM-score < 0.5). Suppose there are N proteins in
589
+ the testing data, then PN is calculated as:
590
+ PN =
591
+ �N
592
+ k=1 PNk
593
+ N
594
+ , PNk =
595
+
596
+ 1, if TM(Sk, S∗
597
+ k) ≤ 0.5
598
+ 0, else
599
+ (12)
600
+ Intuitively, PN measures the percentage of proteins whose
601
+ explanation residues, if removed, will change the protein
602
+ structure, and thus their explanation residues are necessary.
603
+ PS measures the sufficiency of the explanation. A set of
604
+ explanation residues is considered a sufficient explanation if,
605
+
606
+ ExplainableFold: Understanding AlphaFold Prediction with Explainable AI
607
+ Table 1. PN Evaluation. Deletion∗ is the necessity optimization.
608
+ Ave Exp.
609
+ Ave Comp.
610
+ Ave TM-score
611
+ PN
612
+ Size (|E|) ↓
613
+ (|E|/l) ↓
614
+ TM(S, S∗) ↓
615
+ score↑
616
+ Random
617
+ 77.31
618
+ 0.30
619
+ 0.83
620
+ 0.07
621
+ Evo (Masso et al., 2006)
622
+ 88.42
623
+ 0.33
624
+ 0.77
625
+ 0.16
626
+ Deletion (necessity)∗
627
+ 74.54
628
+ 0.29
629
+ 0.48
630
+ 0.44
631
+ Table 2. PS Evaluation. Deletion∗ is the sufficiency optimization.
632
+ Ave Exp.
633
+ Ave Comp.
634
+ Ave TM-score
635
+ PS
636
+ Size (|E|) ↓
637
+ (|E|/l) ↓
638
+ TM(S, S∗) ↑
639
+ score↑
640
+ Random
641
+ 102.9
642
+ 0.40
643
+ 0.38
644
+ 0.31
645
+ Evo (Masso et al., 2006)
646
+ 104.95
647
+ 0.42
648
+ 0.41
649
+ 0.40
650
+ Deletion (sufficiency)∗
651
+ 95.20
652
+ 0.37
653
+ 0.61
654
+ 0.62
655
+ by removing all of the other residues and only keeping the
656
+ explanation residues, the protein still has the same folding.
657
+ Similarty, PS is calculated as:
658
+ PS =
659
+ �N
660
+ k=1 PSk
661
+ N
662
+ , PSk =
663
+
664
+ 1, if TM(Sk, S∗
665
+ k) > 0.5
666
+ 0, else
667
+ (13)
668
+ Intuitively, PS measures the percentage of proteins whose
669
+ explanation residues alone can keep the protein structure
670
+ unchanged, and thus their explanation resides are sufficient.
671
+ 5.3.1. BASELINES
672
+ We compare the model performance with a common com-
673
+ putational biology baseline (Masso et al., 2006), which
674
+ analyzes a protein’s tolerance to the change on each residue
675
+ by extracting the data from evolutionary database. More
676
+ specifically, proteins are not tolerate to the mutations at evo-
677
+ lutionary conserved positions. However, they are capable
678
+ of withstanding certain mutations at other positions. When
679
+ implementing the baseline, we refer to a protein’s MSAs
680
+ and select the evolutionary conserved residues as the expla-
681
+ nation. This is illustrated in Figure 2 using protein CASP14
682
+ target T1030 as an example, where for each residue position,
683
+ we count the number of MSAs that conserve the residue
684
+ at this position, and show the top 30% and 40% conserved
685
+ residues. We also randomly select residues as explanation
686
+ and compute PN and PS scores as another baseline to mea-
687
+ sure the general difficulty of the evaluation task, and more
688
+ details are provided in the following subsection.
689
+ 5.3.2. RESULTS
690
+ The results of PN and PS evaluation are reported in Table
691
+ 1 and Table 2, respectively. The explanation complexity
692
+ of our method (29% for necessary explanation and 37%
693
+ for sufficient explanation) are automatically decided by our
694
+ optimization process. However, the baselines do not have
695
+ the ability to decide the optimal explanation complexity. For
696
+ fair comparison, we set the complexities of the baselines
697
+ to be slightly larger than our method (30% for necessary
698
+ explanation and 40% for sufficient explanation). Therefore,
699
+ the baselines will have a small advantage over our method
700
+ (a) Top 30% conserved residues (b) Top 40% conserved residues
701
+ Figure 2. Evolutionary conserved residues are considered more
702
+ important for the protein structures (the residues marked red).
703
+ because they are allowed to use more residues to achieve
704
+ the necessity or sufficiency goals.
705
+ For PN evaluation, the results of the random baseline shows
706
+ that protein structures tend to be robust to residue deletions.
707
+ For example, when randomly removing the effects of 30%
708
+ residues, only 7% of the proteins fold into different struc-
709
+ tures, which indicates that finding necessary explanations
710
+ is a challenging problem. The evolutionary baseline is able
711
+ to select more necessary residues with a PN score of 0.16,
712
+ which is 128.6% better than random selection. Compared to
713
+ them, our method shows much better performance: with a
714
+ smaller number of residues, the generated explanations are
715
+ able to cause 44% of the proteins fold into different struc-
716
+ tures, outperforming the evolutionary baseline by 175%.
717
+ For PS evaluation, the evolutionary baseline is not notice-
718
+ ably better than randomly selecting residues. The reason
719
+ may be that despite the proteins’ less tolerance to the evo-
720
+ lutionary conserved residues, there is no guarantee that the
721
+ evolutionary conserved residues alone contain sufficient in-
722
+ formation to preserve the protein structure. In comparison,
723
+ our method does generate more sufficient explanations, out-
724
+ performing the evolutionary baseline by 55% according to
725
+ the PS score with less complex explanations. Meanwhile,
726
+ our TM score is > 50%, indicating that the protein structure
727
+ is indeed preserved under our sufficient explanation.
728
+ Additionally, we show the learning curve of the optimization
729
+ for CASP14 target protein T1030 in Figure 3. For necessary
730
+ optimization, the algorithm gradually deletes the protein
731
+ residues until the TM-score is smaller than 0.4 (i.e., 0.5−α,
732
+ see Eq.(4)). Then, the explanation complexity slightly drops
733
+ back while keeping the TM-score at the same level. For
734
+ sufficient optimization, the L1-loss drastically increases at
735
+ the beginning, which suggests that the algorithm is trying
736
+ to delete as many residues as possible while keeping the
737
+ original folding structure unchanged. However, after re-
738
+ computing MSAs, the TM-score becomes too low. Thus,
739
+ the algorithm increases the number of preserved residues
740
+ to keep TM-score larger than 0.6 (i.e., 0.5 + α, see Eq.(6)).
741
+ Note that the TM-scores change sharply when re-computing
742
+ MSAs at the end of each training loop. The more frequently
743
+
744
+ 175
745
+ 150
746
+ MSAs Num
747
+ 125
748
+ 100
749
+ 75
750
+ 50
751
+ 25
752
+ 0
753
+ 20
754
+ 40
755
+ 60
756
+ 80
757
+ 0
758
+ 100
759
+ 120
760
+ Residue Position175
761
+ 150
762
+ iSAs Num
763
+ 125
764
+ 100
765
+ 75
766
+ 50
767
+ 25
768
+ 20
769
+ 40
770
+ 60
771
+ 80
772
+ 0
773
+ 100
774
+ 120
775
+ Residue PositionExplainableFold: Understanding AlphaFold Prediction with Explainable AI
776
+ (a) Necessary Optimization
777
+ (b) Sufficient Optimization
778
+ Figure 3. Learning Curves of the Deletion Approach
779
+ we re-align MSAs, the smoother the optimization will be.
780
+ 5.4. Evaluation of the Substitution Approach
781
+ The substitution approach identifies the most radical or con-
782
+ servative amino acid substitutions, which are of particular
783
+ interest in biochemical research (Zhang, 2000). Previously,
784
+ it was impractical to conduct wet-lab experiments to investi-
785
+ gate the relative “safety” of replacing specific residues with
786
+ alternative amino acids due to their prohibitive cost (Bordo
787
+ & Argos, 1991). Alternatively, scientists infer the exchange-
788
+ ability of two types of amino acids either through the use of
789
+ heuristics based on their physical or chemical properties or
790
+ through the analysis of evolutionary data, such as:
791
+ • Epstein’s distance(Epstein, 1967): Predict the impact of
792
+ switching two amino acids based on their size and polarity.
793
+ • Miyata’s distance (Miyata et al., 1979): Predict the impact
794
+ based on their volume and polarity.
795
+ • Evolutionary indicator (Bordo & Argos, 1991): Detect
796
+ “safe” substitutions based on evolutionary data.
797
+ Note that these indicators are rather suggestions than ground-
798
+ truth. They provide general trends that are better than ran-
799
+ dom selection but cannot be expected to be precise in every
800
+ scenario (Bordo & Argos, 1991). These methods are not
801
+ perfectly consistent with each other, but are linearly related.
802
+ Therefore, we utilize the amino acid substitution data gener-
803
+ ated by our method to caculate the pair-wise exchangeability
804
+ between the amino acids, and test the correlation between
805
+ our exchangeability with the above three existing exchange-
806
+ ability indicators. The details of the pair-wise substitution
807
+ statistics and the calculation of pair-wise exchangeability
808
+ are provided in the Appendix.
809
+ In Table 3, we report the correlation of our generated pair-
810
+ wise exchangeability with the three aforementioned indica-
811
+ tors by a non-parametric method: Pearson’s correlation r.
812
+ Besides, the correlation among the three biochemical meth-
813
+ ods themselves range from 0.438 to 0.578. Additionally,
814
+ the correlation is also visualized in Figure 4, where darker
815
+ color indicates higher correlation. For Pearson’s correlation,
816
+ a value greater than 0 indicates a positive association, where
817
+ r > 0.1, r > 0.3, r > 0.5 represents small, medium, and
818
+ Table 3. Correlation between our method and each of the biochem-
819
+ ical indicators. Metrics with “*” are originally distance metrics,
820
+ for which we take the inverse to reprenst the exchangeability. The
821
+ results are significant at p < 0.001 under two-tailed test.
822
+ Epstein∗
823
+ Miyata∗
824
+ Evolution
825
+ Radical
826
+ 0.388
827
+ 0.602
828
+ 0.382
829
+ Conservative
830
+ 0.494
831
+ 0.796
832
+ 0.405
833
+ (a) Corr. w/ Epstein’s distance
834
+ (b) Corr. w/ Miyata’s distance
835
+ Figure 4. The correlation between the exchangeability provided by
836
+ our conservative optimization method and (a) Epstein’s distance
837
+ as well as (b) Miyata’s distance.
838
+ large correlations, accordingly (Cohen et al., 2009). Both
839
+ Table 3 and Figure 4 show that our method has clear posi-
840
+ tive correlations with all of the three biochemical methods,
841
+ indicating that ExplainableFold can provide informative
842
+ exchangeability signals (Yampolsky & Stoltzfus, 2005). Be-
843
+ sides, the results generated by ExplainableFold may further
844
+ improve when larger protein datasets are available or applied
845
+ on even better base models in the future.
846
+ 6. Conclusions and Future Work
847
+ In this paper, we propose ExplainableFold—an Explain-
848
+ able AI framework that helps to understand the deep learn-
849
+ ing based protein structure prediction models such as Al-
850
+ phaFold. Technically, we develop a counterfactual explana-
851
+ tion framework and implement the framework based on two
852
+ approaches: the residue deletion approach and the residue
853
+ substitution approach. Intuitively, ExplainableFold aims to
854
+ find simple explanations that are effective enough to keep
855
+ or change the protein’s folding structure. Experiments are
856
+ conducted on CASP-14 protein datasets and results show
857
+ that our approach outperforms the results from traditional
858
+ biochemical methods. We believe Explainable AI is funda-
859
+ mentally important for AI-driven scientific research because
860
+ science not only pursues the answers for the “what” ques-
861
+ tions but also (or even more) for the “why” questions. In the
862
+ future, we will further improve our framework by consider-
863
+ ing more protein modification methods beyond deletion and
864
+ substitution. We will also generalize our framework to other
865
+ scientific problems due to the flexibility of our framework.
866
+
867
+ 1.0
868
+ L1 Loss
869
+ TM-score
870
+ 0.8
871
+ 0.6
872
+ 0.4
873
+ 0.2
874
+ 0.0
875
+ 0
876
+ 50
877
+ 100
878
+ 150
879
+ 200
880
+ 250
881
+ 300
882
+ Training Steps1.0
883
+ L1 Loss
884
+ TM-score
885
+ 0.8
886
+ 0.6
887
+ 0.4
888
+ 0.2
889
+ 0
890
+ 50
891
+ 100
892
+ 150
893
+ 200
894
+ 250
895
+ 300
896
+ Training StepsARN
897
+ YV
898
+ A
899
+ R
900
+ N -
901
+ D
902
+ 0.8
903
+ C-
904
+ Q:
905
+ E
906
+ G
907
+ 0.6
908
+ H -
909
+ L-
910
+ K-
911
+ 0.4
912
+ M -
913
+ F -
914
+ S -
915
+ 0.2
916
+ W-
917
+ Y
918
+ V
919
+ 0.0ARN
920
+ D
921
+ C
922
+ H
923
+ M
924
+ STWYV
925
+ A
926
+ R
927
+ N -
928
+ 0.8
929
+ D
930
+ 0.7
931
+ Q
932
+ E
933
+ 0.6
934
+ G
935
+ H -
936
+ 0.5
937
+ I-
938
+ L-
939
+ K-
940
+ 0.4
941
+ M -
942
+ F
943
+ 0.3
944
+ P
945
+ 0.2
946
+ T-
947
+ W -
948
+ 0.1
949
+ Y-
950
+ V
951
+ 0.0ExplainableFold: Understanding AlphaFold Prediction with Explainable AI
952
+ References
953
+ Ackers, G. K. and Smith, F. R. Effects of site-specific amino
954
+ acid modification on protein interactions and biological
955
+ function. Annual review of biochemistry, 54(1):597–629,
956
+ 1985.
957
+ Ahdritz, G., Bouatta, N., Kadyan, S., Xia, Q., Gerecke,
958
+ W., O’Donnell, T. J., Berenberg, D., Fisk, I., Zanichelli,
959
+ N., Zhang, B., Nowaczynski, A., Wang, B., Stepniewska-
960
+ Dziubinska, M. M., Zhang, S., Ojewole, A., Guney, M. E.,
961
+ Biderman, S., Watkins, A. M., Ra, S., Lorenzo, P. R.,
962
+ Nivon, L., Weitzner, B., Ban, Y.-E. A., Sorger, P. K.,
963
+ Mostaque, E., Zhang, Z., Bonneau, R., and AlQuraishi, M.
964
+ Openfold: Retraining alphafold2 yields new insights into
965
+ its learning mechanisms and capacity for generalization.
966
+ bioRxiv, 2022. doi: 10.1101/2022.11.20.517210.
967
+ AlQuraishi, M. Machine learning in protein structure pre-
968
+ diction. Current opinion in chemical biology, 65:1–8,
969
+ 2021.
970
+ Arpino, J. A., Reddington, S. C., Halliwell, L. M., Rizkallah,
971
+ P. J., and Jones, D. D. Random single amino acid deletion
972
+ sampling unveils structural tolerance and the benefits of
973
+ helical registry shift on gfp folding and structure. Struc-
974
+ ture, 22(6):889–898, 2014.
975
+ Betts, M. J. and Russell, R. B.
976
+ Amino acid properties
977
+ and consequences of substitutions. Bioinformatics for
978
+ geneticists, 317:289, 2003.
979
+ Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth,
980
+ M. K. Occam’s razor. Information processing letters, 24
981
+ (6):377–380, 1987.
982
+ Bordo, D. and Argos, P. Suggestions for “safe” residue
983
+ substitutions in site-directed mutagenesis. Journal of
984
+ molecular biology, 217(4):721–729, 1991.
985
+ Candes, E. J. and Tao, T. Decoding by linear programming.
986
+ IEEE transactions on information theory, 51(12):4203–
987
+ 4215, 2005.
988
+ Carter, P. Site-directed mutagenesis. Biochemical Journal,
989
+ 237(1):1, 1986.
990
+ Chen, T., Xu, B., Zhang, C., and Guestrin, C. Training
991
+ deep nets with sublinear memory cost. arXiv preprint
992
+ arXiv:1604.06174, 2016.
993
+ Choi, Y. and Chan, A. P. Provean web server: a tool to
994
+ predict the functional effect of amino acid substitutions
995
+ and indels. Bioinformatics, 31(16):2745–2747, 2015.
996
+ Cito, J., Dillig, I., Murali, V., and Chandra, S. Counter-
997
+ factual explanations for models of code. In Proceedings
998
+ of the 44th International Conference on Software Engi-
999
+ neering: Software Engineering in Practice, pp. 125–134,
1000
+ 2022.
1001
+ Clemmons, D. R. Use of mutagenesis to probe igf-binding
1002
+ protein structure/function relationships. Endocrine re-
1003
+ views, 22(6):800–817, 2001.
1004
+ Cohen, I., Huang, Y., Chen, J., Benesty, J., Benesty, J.,
1005
+ Chen, J., Huang, Y., and Cohen, I. Pearson correlation
1006
+ coefficient. Noise reduction in speech processing, pp.
1007
+ 1–4, 2009.
1008
+ Dagan, T., Talmor, Y., and Graur, D. Ratios of radical
1009
+ to conservative amino acid replacement are affected by
1010
+ mutational and compositional factors and may not be
1011
+ indicative of positive darwinian selection. Molecular
1012
+ biology and evolution, 19(7):1022–1025, 2002.
1013
+ Dill, K. A. and MacCallum, J. L. The protein-folding prob-
1014
+ lem, 50 years on. science, 338(6110):1042–1046, 2012.
1015
+ Dill, K. A., Ozkan, S. B., Shell, M. S., and Weikl, T. R. The
1016
+ protein folding problem. Annual review of biophysics, 37:
1017
+ 289, 2008.
1018
+ Doering, J. A., Lee, S., Kristiansen, K., Evenseth, L., Bar-
1019
+ ron, M. G., Sylte, I., and LaLone, C. A. In silico site-
1020
+ directed mutagenesis informs species-specific predictions
1021
+ of chemical susceptibility derived from the sequence
1022
+ alignment to predict across species susceptibility (se-
1023
+ qapass) tool. Toxicological Sciences, 166(1):131–145,
1024
+ 2018.
1025
+ Dominy, C. N. and Andrews, D. W. Site-directed muta-
1026
+ genesis by inverse pcr. In E. coli Plasmid Vectors, pp.
1027
+ 209–223. Springer, 2003.
1028
+ Edgar, R. C. and Batzoglou, S. Multiple sequence alignment.
1029
+ Current opinion in structural biology, 16(3):368–373,
1030
+ 2006.
1031
+ Egli, M., Flavell, A., Pyle, A. M., Wilson, W. D., Haq, S. I.,
1032
+ Luisi, B., Fisher, J., Laughton, C., Allen, S., and Engels, J.
1033
+ Chapter 5.6 Nucleic Acids in Biotechnology. The Royal
1034
+ Society of Chemistry, 2006. ISBN 978-0-85404-654-6.
1035
+ doi: 10.1039/9781847555380.
1036
+ Epstein, C. J. Non-randomness of ammo-acid changes in
1037
+ the evolution of homologous proteins. Nature, 215(5099):
1038
+ 355–359, 1967.
1039
+ Flores-Ram´ırez, G., Rivera, M., Morales-Pablos, A., Osuna,
1040
+ J., Sober´on, X., and Gayt´an, P. The effect of amino acid
1041
+ deletions and substitutions in the longest loop of gfp.
1042
+ BMC chemical biology, 7(1):1–10, 2007.
1043
+ Ghazimatin, A., Balalau, O., Saha Roy, R., and Weikum, G.
1044
+ Prince: Provider-side interpretability with counterfactual
1045
+ explanations in recommender systems. In Proceedings
1046
+ of the 13th International Conference on Web Search and
1047
+ Data Mining, pp. 196–204, 2020.
1048
+
1049
+ ExplainableFold: Understanding AlphaFold Prediction with Explainable AI
1050
+ Gl¨uck, A. and Wool, I. G. Analysis by systematic deletion
1051
+ of amino acids of the action of the ribotoxin restrictocin.
1052
+ Biochimica et Biophysica Acta (BBA)-Protein Structure
1053
+ and Molecular Enzymology, 1594(1):115–126, 2002.
1054
+ Glymour, M., Pearl, J., and Jewell, N. P. Causal inference
1055
+ in statistics: A primer. John Wiley & Sons, 2016.
1056
+ Goyal, Y., Wu, Z., Ernst, J., Batra, D., Parikh, D., and Lee, S.
1057
+ Counterfactual visual explanations. In International Con-
1058
+ ference on Machine Learning, pp. 2376–2384. PMLR,
1059
+ 2019.
1060
+ Guidotti, R., Monreale, A., Giannotti, F., Pedreschi, D.,
1061
+ Ruggieri, S., and Turini, F. Factual and counterfactual
1062
+ explanations for black box decision making. IEEE Intel-
1063
+ ligent Systems, 34(6):14–23, 2019.
1064
+ Guo, H. H., Choe, J., and Loeb, L. A. Protein tolerance to
1065
+ random amino acid change. Proceedings of the National
1066
+ Academy of Sciences, 101(25):9205–9210, 2004.
1067
+ Hutchison, C. A., Phillips, S., Edgell, M. H., Gillam, S.,
1068
+ Jahnke, P., and Smith, M. Mutagenesis at a specific posi-
1069
+ tion in a dna sequence. Journal of Biological Chemistry,
1070
+ 253(18):6551–6560, 1978.
1071
+ Ilari, A. and Savino, C. Protein structure determination by
1072
+ x-ray crystallography. Bioinformatics, pp. 63–87, 2008.
1073
+ Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M.,
1074
+ Ronneberger, O., Tunyasuvunakool, K., Bates, R., ˇZ´ıdek,
1075
+ A., Potapenko, A., et al. Highly accurate protein structure
1076
+ prediction with alphafold. Nature, 596(7873):583–589,
1077
+ 2021.
1078
+ Kato, G. J., Piel, F. B., Reid, C. D., Gaston, M. H., Ohene-
1079
+ Frempong, K., Krishnamurti, L., Smith, W. R., Panepinto,
1080
+ J. A., Weatherall, D. J., Costa, F. F., et al. Sickle cell
1081
+ disease. Nature Reviews Disease Primers, 4(1):1–22,
1082
+ 2018.
1083
+ Kingma, D. P. and Ba, J. Adam: A method for stochastic
1084
+ optimization. arXiv preprint arXiv:1412.6980, 2014.
1085
+ Lampridis, O., Guidotti, R., and Ruggieri, S.
1086
+ Explain-
1087
+ ing sentiment classification with synthetic exemplars and
1088
+ counter-exemplars. In International Conference on Dis-
1089
+ covery Science, pp. 357–373. Springer, 2020.
1090
+ Li, Z., Ji, J., and Zhang, Y. From Kepler to Newton: Ex-
1091
+ plainable AI for Science Discovery. In ICML 2022 2nd
1092
+ AI for Science Workshop, 2022.
1093
+ Lin, W., Lan, H., and Li, B. Generative causal explanations
1094
+ for graph neural networks. In International Conference
1095
+ on Machine Learning, pp. 6666–6679. PMLR, 2021.
1096
+ Mart´ınez, D. G., H¨uttelmaier, S., and Bertoldo, J. B. Un-
1097
+ veiling druggable pockets by site-specific protein modifi-
1098
+ cation: Beyond antibody-drug conjugates. Frontiers in
1099
+ Chemistry, 8:586942, 2020.
1100
+ Masso, M. and Vaisman, I. I. Accurate prediction of sta-
1101
+ bility changes in protein mutants by combining machine
1102
+ learning with structure based computational mutagenesis.
1103
+ Bioinformatics, 24(18):2002–2009, 2008.
1104
+ Masso, M., Lu, Z., and Vaisman, I. I. Computational muta-
1105
+ genesis studies of protein structure-function correlations.
1106
+ Proteins: Structure, Function, and Bioinformatics, 64(1):
1107
+ 234–245, 2006.
1108
+ Miyata, T., Miyazawa, S., and Yasunaga, T. Two types of
1109
+ amino acid substitutions in protein evolution. Journal of
1110
+ molecular evolution, 12:219–236, 1979.
1111
+ Motohashi, K. A simple and efficient seamless dna cloning
1112
+ method using slice from escherichia coli laboratory
1113
+ strains and its application to slip site-directed mutage-
1114
+ nesis. BMC biotechnology, 15(1):1–9, 2015.
1115
+ Moult, J., Fidelis, K., Kryshtafovych, A., Schwede, T., and
1116
+ Topf, M. Critical assessment of techniques for protein
1117
+ structure prediction, fourteenth round. CASP 14 Abstract
1118
+ Book.
1119
+ Sarkar, G. and Sommer, S. S. The” megaprimer” method of
1120
+ site-directed mutagenesis. Biotechniques, 8(4):404–407,
1121
+ 1990.
1122
+ Senior, A. W., Evans, R., Jumper, J., Kirkpatrick, J., Sifre,
1123
+ L., Green, T., Qin, C., ˇZ´ıdek, A., Nelson, A. W., Bridg-
1124
+ land, A., et al. Improved protein structure prediction
1125
+ using potentials from deep learning. Nature, 577(7792):
1126
+ 706–710, 2020.
1127
+ Sotomayor-Vivas, C., Hern´andez-Lemus, E., and Dorantes-
1128
+ Gilardi, R.
1129
+ Linking protein structural and functional
1130
+ change to mutation using amino acid networks. Plos one,
1131
+ 17(1):e0261829, 2022.
1132
+ Spicer, C. D. and Davis, B. G. Selective chemical protein
1133
+ modification. Nature communications, 5(1):1–14, 2014.
1134
+ Stenson, P. D., Mort, M., Ball, E. V., Evans, K., Hayden, M.,
1135
+ Heywood, S., Hussain, M., Phillips, A. D., and Cooper,
1136
+ D. N. The human gene mutation database: towards a
1137
+ comprehensive repository of inherited mutation data for
1138
+ medical research, genetic diagnosis and next-generation
1139
+ sequencing studies. Human genetics, 136:665–677, 2017.
1140
+ Studer, R. A., Dessailly, B. H., and Orengo, C. A. Residue
1141
+ mutations and their impact on protein structure and func-
1142
+ tion: detecting beneficial and pathogenic changes. Bio-
1143
+ chemical journal, 449(3):581–594, 2013.
1144
+
1145
+ ExplainableFold: Understanding AlphaFold Prediction with Explainable AI
1146
+ Szymkowski, D. E. Creating the next generation of pro-
1147
+ tein therapeutics through rational drug design. CUR-
1148
+ RENT OPINION IN DRUG DISCOVERY AND DEVEL-
1149
+ OPMENT, 8(5):590, 2005.
1150
+ Tan, J., Xu, S., Ge, Y., Li, Y., Chen, X., and Zhang, Y. Coun-
1151
+ terfactual explainable recommendation. In Proceedings
1152
+ of the 30th ACM International Conference on Information
1153
+ & Knowledge Management, pp. 1784–1793, 2021.
1154
+ Tan, J., Geng, S., Fu, Z., Ge, Y., Xu, S., Li, Y., and Zhang,
1155
+ Y. Learning and evaluating graph neural network expla-
1156
+ nations based on counterfactual and factual reasoning.
1157
+ In Proceedings of the ACM Web Conference 2022, pp.
1158
+ 1018–1027, 2022.
1159
+ Tan, Y., Wu, H., Wei, T., and Li, X. Chemical protein
1160
+ synthesis: advances, challenges, and outlooks. Journal of
1161
+ the American Chemical Society, 142(48):20288–20298,
1162
+ 2020.
1163
+ Tolkachev, G., Mell, S., Zdancewic, S., and Bastani, O.
1164
+ Counterfactual explanations for natural language inter-
1165
+ faces. In Proceedings of the 60th Annual Meeting of the
1166
+ Association for Computational Linguistics, pp. 113–118,
1167
+ 2022.
1168
+ Torrisi, M., Pollastri, G., and Le, Q. Deep learning meth-
1169
+ ods in protein structure prediction. Computational and
1170
+ Structural Biotechnology Journal, 18:1301–1310, 2020.
1171
+ Vermeire, T., Brughmans, D., Goethals, S., de Oliveira, R.
1172
+ M. B., and Martens, D. Explainable image classifica-
1173
+ tion with evidence counterfactual. Pattern Analysis and
1174
+ Applications, pp. 1–21, 2022.
1175
+ Wachter, S., Mittelstadt, B., and Russell, C. Counterfactual
1176
+ explanations without opening the black box: Automated
1177
+ decisions and the gdpr. Harv. JL & Tech., 31:841, 2017.
1178
+ Wiltgen, M. Structural bioinformatics: From the sequence
1179
+ to structure and function. Current Bioinformatics, 4:54–
1180
+ 87, 01 2009. doi: 10.2174/157489309787158170.
1181
+ Xu, J. and Zhang, Y. How significant is a protein structure
1182
+ similarity with tm-score= 0.5?
1183
+ Bioinformatics, 26(7):
1184
+ 889–895, 2010.
1185
+ Yampolsky, L. Y. and Stoltzfus, A. The exchangeability
1186
+ of amino acids in proteins. Genetics, 170(4):1459–1472,
1187
+ 2005.
1188
+ Yang, L., Kenny, E. M., Ng, T. L. J., Yang, Y., Smyth,
1189
+ B., and Dong, R. Generating plausible counterfactual
1190
+ explanations for deep transformers in financial text clas-
1191
+ sification. arXiv preprint arXiv:2010.12512, 2020.
1192
+ Ying, Z., Bourgeois, D., You, J., Zitnik, M., and Leskovec, J.
1193
+ Gnnexplainer: Generating explanations for graph neural
1194
+ networks. Advances in neural information processing
1195
+ systems, 32, 2019.
1196
+ Zemla, A. Lga: a method for finding 3d similarities in
1197
+ protein structures. Nucleic acids research, 31(13):3370–
1198
+ 3374, 2003.
1199
+ Zhang, J. Rates of conservative and radical nonsynonymous
1200
+ nucleotide substitutions in mammalian nuclear genes.
1201
+ Journal of molecular evolution, 50(1):56–68, 2000.
1202
+ Zhang, M., Case, D. A., and Peng, J. W. Propagated per-
1203
+ turbations from a peripheral mutation show interactions
1204
+ supporting ww domain thermostability. Structure, 26(11):
1205
+ 1474–1485, 2018.
1206
+ Zhang, Y. and Skolnick, J. Scoring function for automated
1207
+ assessment of protein structure template quality. Proteins:
1208
+ Structure, Function, and Bioinformatics, 57(4):702–710,
1209
+ 2004.
1210
+ Zhang, Y. and Skolnick, J. Tm-align: a protein structure
1211
+ alignment algorithm based on the tm-score. Nucleic acids
1212
+ research, 33(7):2302–2309, 2005.
1213
+
1214
+ ExplainableFold: Understanding AlphaFold Prediction with Explainable AI
1215
+ Appendix
1216
+ A. Statistical Analysis of Amino Acid Substitutions
1217
+ Table 4 shows the total count of each amino acid in the
1218
+ testing proteins. In Table 5, we show how many times a
1219
+ specific type of substitution happens in the generated ex-
1220
+ planations learned by the conservative substitution method.
1221
+ For instance, the substitution of A → R happens 19 times.
1222
+ The exchangeability of X → Y can be easily calculated by
1223
+ |X → Y |/|X| (Bordo & Argos, 1991; Masso et al., 2006).
1224
+ The same statistics for radical substitution is provided in
1225
+ Table 6. For radical substitution, the higher the number
1226
+ in Table 6, the lower the exchangeability, and thus the ex-
1227
+ changeability of X → Y is calculated as the reciprocal
1228
+ |X|/|X → Y | (Bordo & Argos, 1991; Masso et al., 2006).
1229
+ Table 4. Total number of each amino acid in testing data
1230
+ A
1231
+ R
1232
+ N
1233
+ D
1234
+ C
1235
+ Q
1236
+ E
1237
+ G
1238
+ H
1239
+ I
1240
+ #
1241
+ 782
1242
+ 581
1243
+ 827
1244
+ 776
1245
+ 175
1246
+ 520
1247
+ 848
1248
+ 853
1249
+ 309
1250
+ 904
1251
+ L
1252
+ K
1253
+ M
1254
+ F
1255
+ P
1256
+ S
1257
+ T
1258
+ W
1259
+ Y
1260
+ V
1261
+ #
1262
+ 1122
1263
+ 911
1264
+ 273
1265
+ 600
1266
+ 506
1267
+ 916
1268
+ 746
1269
+ 149
1270
+ 595
1271
+ 780
1272
+ Table 5. Structural Conservative Statistics
1273
+ A
1274
+ R
1275
+ N
1276
+ D
1277
+ C
1278
+ Q
1279
+ E
1280
+ G
1281
+ H
1282
+ I
1283
+ L
1284
+ K
1285
+ M
1286
+ F
1287
+ P
1288
+ S
1289
+ T
1290
+ W
1291
+ Y
1292
+ V
1293
+ A
1294
+ 0
1295
+ 19
1296
+ 25
1297
+ 16
1298
+ 50
1299
+ 18
1300
+ 21
1301
+ 78
1302
+ 23
1303
+ 26
1304
+ 22
1305
+ 22
1306
+ 19
1307
+ 14
1308
+ 39
1309
+ 28
1310
+ 15
1311
+ 42
1312
+ 35
1313
+ 8
1314
+ R
1315
+ 8
1316
+ 0
1317
+ 15
1318
+ 23
1319
+ 23
1320
+ 11
1321
+ 15
1322
+ 37
1323
+ 12
1324
+ 12
1325
+ 19
1326
+ 18
1327
+ 9
1328
+ 15
1329
+ 23
1330
+ 18
1331
+ 11
1332
+ 49
1333
+ 18
1334
+ 9
1335
+ N
1336
+ 15
1337
+ 33
1338
+ 0
1339
+ 32
1340
+ 51
1341
+ 19
1342
+ 18
1343
+ 56
1344
+ 16
1345
+ 19
1346
+ 11
1347
+ 19
1348
+ 50
1349
+ 21
1350
+ 33
1351
+ 21
1352
+ 16
1353
+ 42
1354
+ 22
1355
+ 14
1356
+ D
1357
+ 7
1358
+ 29
1359
+ 22
1360
+ 0
1361
+ 57
1362
+ 21
1363
+ 25
1364
+ 42
1365
+ 11
1366
+ 19
1367
+ 23
1368
+ 19
1369
+ 16
1370
+ 21
1371
+ 44
1372
+ 16
1373
+ 15
1374
+ 32
1375
+ 16
1376
+ 11
1377
+ C
1378
+ 2
1379
+ 1
1380
+ 1
1381
+ 2
1382
+ 0
1383
+ 7
1384
+ 1
1385
+ 9
1386
+ 8
1387
+ 4
1388
+ 5
1389
+ 5
1390
+ 2
1391
+ 2
1392
+ 2
1393
+ 4
1394
+ 0
1395
+ 8
1396
+ 2
1397
+ 5
1398
+ Q
1399
+ 5
1400
+ 12
1401
+ 18
1402
+ 12
1403
+ 33
1404
+ 0
1405
+ 14
1406
+ 42
1407
+ 15
1408
+ 18
1409
+ 7
1410
+ 15
1411
+ 21
1412
+ 7
1413
+ 33
1414
+ 5
1415
+ 7
1416
+ 32
1417
+ 21
1418
+ 18
1419
+ E
1420
+ 14
1421
+ 14
1422
+ 14
1423
+ 50
1424
+ 47
1425
+ 30
1426
+ 0
1427
+ 62
1428
+ 15
1429
+ 35
1430
+ 19
1431
+ 19
1432
+ 18
1433
+ 29
1434
+ 32
1435
+ 16
1436
+ 11
1437
+ 79
1438
+ 19
1439
+ 11
1440
+ G
1441
+ 18
1442
+ 11
1443
+ 19
1444
+ 19
1445
+ 62
1446
+ 18
1447
+ 18
1448
+ 0
1449
+ 23
1450
+ 26
1451
+ 29
1452
+ 9
1453
+ 18
1454
+ 25
1455
+ 29
1456
+ 22
1457
+ 12
1458
+ 46
1459
+ 15
1460
+ 9
1461
+ H
1462
+ 0
1463
+ 15
1464
+ 4
1465
+ 15
1466
+ 11
1467
+ 14
1468
+ 9
1469
+ 28
1470
+ 0
1471
+ 5
1472
+ 9
1473
+ 7
1474
+ 5
1475
+ 12
1476
+ 9
1477
+ 9
1478
+ 2
1479
+ 21
1480
+ 9
1481
+ 7
1482
+ I
1483
+ 9
1484
+ 16
1485
+ 16
1486
+ 14
1487
+ 46
1488
+ 16
1489
+ 25
1490
+ 58
1491
+ 33
1492
+ 0
1493
+ 49
1494
+ 19
1495
+ 56
1496
+ 35
1497
+ 29
1498
+ 14
1499
+ 14
1500
+ 54
1501
+ 18
1502
+ 32
1503
+ L
1504
+ 5
1505
+ 28
1506
+ 23
1507
+ 50
1508
+ 57
1509
+ 30
1510
+ 25
1511
+ 70
1512
+ 21
1513
+ 53
1514
+ 0
1515
+ 19
1516
+ 47
1517
+ 40
1518
+ 40
1519
+ 21
1520
+ 19
1521
+ 51
1522
+ 22
1523
+ 33
1524
+ K
1525
+ 2
1526
+ 44
1527
+ 22
1528
+ 56
1529
+ 78
1530
+ 22
1531
+ 28
1532
+ 51
1533
+ 22
1534
+ 35
1535
+ 18
1536
+ 0
1537
+ 29
1538
+ 19
1539
+ 47
1540
+ 7
1541
+ 11
1542
+ 49
1543
+ 21
1544
+ 15
1545
+ M
1546
+ 4
1547
+ 5
1548
+ 5
1549
+ 5
1550
+ 9
1551
+ 8
1552
+ 8
1553
+ 26
1554
+ 5
1555
+ 12
1556
+ 28
1557
+ 5
1558
+ 0
1559
+ 7
1560
+ 9
1561
+ 5
1562
+ 4
1563
+ 16
1564
+ 7
1565
+ 8
1566
+ F
1567
+ 8
1568
+ 19
1569
+ 16
1570
+ 25
1571
+ 35
1572
+ 18
1573
+ 9
1574
+ 36
1575
+ 14
1576
+ 21
1577
+ 19
1578
+ 7
1579
+ 21
1580
+ 0
1581
+ 21
1582
+ 9
1583
+ 5
1584
+ 46
1585
+ 21
1586
+ 2
1587
+ P
1588
+ 8
1589
+ 11
1590
+ 5
1591
+ 12
1592
+ 16
1593
+ 9
1594
+ 14
1595
+ 25
1596
+ 9
1597
+ 28
1598
+ 9
1599
+ 14
1600
+ 28
1601
+ 16
1602
+ 0
1603
+ 4
1604
+ 14
1605
+ 30
1606
+ 16
1607
+ 2
1608
+ S
1609
+ 21
1610
+ 26
1611
+ 22
1612
+ 33
1613
+ 49
1614
+ 14
1615
+ 28
1616
+ 53
1617
+ 23
1618
+ 30
1619
+ 26
1620
+ 21
1621
+ 29
1622
+ 22
1623
+ 36
1624
+ 0
1625
+ 40
1626
+ 65
1627
+ 36
1628
+ 19
1629
+ T
1630
+ 9
1631
+ 19
1632
+ 21
1633
+ 35
1634
+ 33
1635
+ 22
1636
+ 21
1637
+ 40
1638
+ 9
1639
+ 33
1640
+ 42
1641
+ 22
1642
+ 30
1643
+ 28
1644
+ 29
1645
+ 22
1646
+ 0
1647
+ 47
1648
+ 25
1649
+ 19
1650
+ W
1651
+ 0
1652
+ 2
1653
+ 4
1654
+ 4
1655
+ 7
1656
+ 1
1657
+ 1
1658
+ 12
1659
+ 4
1660
+ 7
1661
+ 5
1662
+ 0
1663
+ 5
1664
+ 7
1665
+ 7
1666
+ 4
1667
+ 0
1668
+ 0
1669
+ 7
1670
+ 4
1671
+ Y
1672
+ 7
1673
+ 9
1674
+ 16
1675
+ 23
1676
+ 25
1677
+ 18
1678
+ 15
1679
+ 36
1680
+ 11
1681
+ 9
1682
+ 5
1683
+ 7
1684
+ 29
1685
+ 26
1686
+ 15
1687
+ 16
1688
+ 8
1689
+ 37
1690
+ 0
1691
+ 9
1692
+ V
1693
+ 8
1694
+ 12
1695
+ 7
1696
+ 29
1697
+ 44
1698
+ 25
1699
+ 9
1700
+ 54
1701
+ 25
1702
+ 49
1703
+ 14
1704
+ 14
1705
+ 43
1706
+ 19
1707
+ 11
1708
+ 15
1709
+ 11
1710
+ 40
1711
+ 18
1712
+ 0
1713
+ Table 6. Structural Radical Statistics
1714
+ A
1715
+ R
1716
+ N
1717
+ D
1718
+ C
1719
+ Q
1720
+ E
1721
+ G
1722
+ H
1723
+ I
1724
+ L
1725
+ K
1726
+ M
1727
+ F
1728
+ P
1729
+ S
1730
+ T
1731
+ W
1732
+ Y
1733
+ V
1734
+ A
1735
+ 0
1736
+ 28
1737
+ 22
1738
+ 16
1739
+ 39
1740
+ 5
1741
+ 19
1742
+ 22
1743
+ 30
1744
+ 28
1745
+ 25
1746
+ 5
1747
+ 25
1748
+ 22
1749
+ 33
1750
+ 14
1751
+ 14
1752
+ 64
1753
+ 16
1754
+ 14
1755
+ R
1756
+ 8
1757
+ 0
1758
+ 11
1759
+ 33
1760
+ 19
1761
+ 5
1762
+ 28
1763
+ 22
1764
+ 16
1765
+ 25
1766
+ 8
1767
+ 2
1768
+ 11
1769
+ 36
1770
+ 25
1771
+ 5
1772
+ 5
1773
+ 33
1774
+ 11
1775
+ 11
1776
+ N
1777
+ 11
1778
+ 16
1779
+ 0
1780
+ 8
1781
+ 47
1782
+ 11
1783
+ 22
1784
+ 16
1785
+ 14
1786
+ 19
1787
+ 25
1788
+ 22
1789
+ 19
1790
+ 25
1791
+ 25
1792
+ 5
1793
+ 8
1794
+ 25
1795
+ 14
1796
+ 19
1797
+ D
1798
+ 11
1799
+ 11
1800
+ 11
1801
+ 0
1802
+ 25
1803
+ 14
1804
+ 22
1805
+ 16
1806
+ 19
1807
+ 25
1808
+ 11
1809
+ 16
1810
+ 44
1811
+ 16
1812
+ 16
1813
+ 11
1814
+ 0
1815
+ 22
1816
+ 14
1817
+ 25
1818
+ C
1819
+ 2
1820
+ 0
1821
+ 0
1822
+ 0
1823
+ 0
1824
+ 2
1825
+ 2
1826
+ 11
1827
+ 2
1828
+ 0
1829
+ 8
1830
+ 8
1831
+ 2
1832
+ 2
1833
+ 5
1834
+ 8
1835
+ 5
1836
+ 2
1837
+ 0
1838
+ 5
1839
+ Q
1840
+ 2
1841
+ 19
1842
+ 5
1843
+ 11
1844
+ 25
1845
+ 0
1846
+ 22
1847
+ 16
1848
+ 14
1849
+ 14
1850
+ 14
1851
+ 16
1852
+ 14
1853
+ 16
1854
+ 25
1855
+ 5
1856
+ 5
1857
+ 19
1858
+ 8
1859
+ 8
1860
+ E
1861
+ 5
1862
+ 11
1863
+ 5
1864
+ 19
1865
+ 58
1866
+ 5
1867
+ 0
1868
+ 22
1869
+ 14
1870
+ 19
1871
+ 14
1872
+ 11
1873
+ 28
1874
+ 36
1875
+ 19
1876
+ 5
1877
+ 8
1878
+ 39
1879
+ 25
1880
+ 19
1881
+ G
1882
+ 2
1883
+ 25
1884
+ 2
1885
+ 16
1886
+ 56
1887
+ 11
1888
+ 14
1889
+ 0
1890
+ 8
1891
+ 33
1892
+ 28
1893
+ 22
1894
+ 53
1895
+ 28
1896
+ 14
1897
+ 14
1898
+ 5
1899
+ 44
1900
+ 22
1901
+ 8
1902
+ H
1903
+ 2
1904
+ 5
1905
+ 0
1906
+ 0
1907
+ 16
1908
+ 14
1909
+ 8
1910
+ 11
1911
+ 0
1912
+ 11
1913
+ 8
1914
+ 8
1915
+ 0
1916
+ 0
1917
+ 14
1918
+ 2
1919
+ 0
1920
+ 5
1921
+ 5
1922
+ 14
1923
+ I
1924
+ 25
1925
+ 28
1926
+ 22
1927
+ 36
1928
+ 33
1929
+ 5
1930
+ 22
1931
+ 44
1932
+ 5
1933
+ 0
1934
+ 2
1935
+ 8
1936
+ 16
1937
+ 8
1938
+ 30
1939
+ 11
1940
+ 11
1941
+ 47
1942
+ 5
1943
+ 11
1944
+ L
1945
+ 22
1946
+ 28
1947
+ 25
1948
+ 30
1949
+ 64
1950
+ 28
1951
+ 28
1952
+ 72
1953
+ 19
1954
+ 25
1955
+ 0
1956
+ 47
1957
+ 33
1958
+ 11
1959
+ 56
1960
+ 28
1961
+ 22
1962
+ 36
1963
+ 28
1964
+ 19
1965
+ K
1966
+ 14
1967
+ 2
1968
+ 8
1969
+ 25
1970
+ 81
1971
+ 22
1972
+ 19
1973
+ 30
1974
+ 11
1975
+ 14
1976
+ 8
1977
+ 0
1978
+ 16
1979
+ 30
1980
+ 33
1981
+ 5
1982
+ 19
1983
+ 64
1984
+ 19
1985
+ 19
1986
+ M
1987
+ 2
1988
+ 0
1989
+ 16
1990
+ 11
1991
+ 5
1992
+ 2
1993
+ 2
1994
+ 25
1995
+ 8
1996
+ 8
1997
+ 0
1998
+ 8
1999
+ 0
2000
+ 2
2001
+ 19
2002
+ 2
2003
+ 0
2004
+ 14
2005
+ 5
2006
+ 5
2007
+ F
2008
+ 16
2009
+ 11
2010
+ 11
2011
+ 22
2012
+ 28
2013
+ 8
2014
+ 28
2015
+ 19
2016
+ 11
2017
+ 16
2018
+ 11
2019
+ 19
2020
+ 14
2021
+ 0
2022
+ 39
2023
+ 19
2024
+ 2
2025
+ 11
2026
+ 8
2027
+ 5
2028
+ P
2029
+ 8
2030
+ 11
2031
+ 2
2032
+ 19
2033
+ 22
2034
+ 5
2035
+ 16
2036
+ 11
2037
+ 8
2038
+ 2
2039
+ 14
2040
+ 16
2041
+ 36
2042
+ 14
2043
+ 0
2044
+ 2
2045
+ 5
2046
+ 36
2047
+ 22
2048
+ 8
2049
+ S
2050
+ 22
2051
+ 8
2052
+ 5
2053
+ 14
2054
+ 44
2055
+ 16
2056
+ 22
2057
+ 30
2058
+ 22
2059
+ 28
2060
+ 28
2061
+ 28
2062
+ 25
2063
+ 22
2064
+ 25
2065
+ 0
2066
+ 16
2067
+ 58
2068
+ 16
2069
+ 14
2070
+ T
2071
+ 11
2072
+ 14
2073
+ 16
2074
+ 22
2075
+ 56
2076
+ 8
2077
+ 19
2078
+ 42
2079
+ 14
2080
+ 5
2081
+ 19
2082
+ 8
2083
+ 33
2084
+ 22
2085
+ 19
2086
+ 14
2087
+ 0
2088
+ 58
2089
+ 16
2090
+ 11
2091
+ W
2092
+ 2
2093
+ 0
2094
+ 0
2095
+ 2
2096
+ 2
2097
+ 8
2098
+ 2
2099
+ 14
2100
+ 2
2101
+ 2
2102
+ 0
2103
+ 0
2104
+ 2
2105
+ 2
2106
+ 5
2107
+ 5
2108
+ 2
2109
+ 0
2110
+ 2
2111
+ 8
2112
+ Y
2113
+ 25
2114
+ 14
2115
+ 2
2116
+ 5
2117
+ 28
2118
+ 5
2119
+ 8
2120
+ 25
2121
+ 16
2122
+ 11
2123
+ 5
2124
+ 19
2125
+ 25
2126
+ 8
2127
+ 19
2128
+ 8
2129
+ 8
2130
+ 14
2131
+ 0
2132
+ 11
2133
+ V
2134
+ 8
2135
+ 19
2136
+ 16
2137
+ 36
2138
+ 25
2139
+ 19
2140
+ 30
2141
+ 53
2142
+ 14
2143
+ 8
2144
+ 11
2145
+ 11
2146
+ 44
2147
+ 16
2148
+ 19
2149
+ 11
2150
+ 8
2151
+ 56
2152
+ 8
2153
+ 0
2154
+
2tFKT4oBgHgl3EQfQC0t/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
3tAzT4oBgHgl3EQfR_u4/content/tmp_files/2301.01226v1.pdf.txt ADDED
@@ -0,0 +1,2087 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ k-planar Placement and Packing
2
+ of ∆-regular Caterpillars
3
+ Carla Binucci1, Emilio Di Giacomo1, Michael Kaufmann2,
4
+ Giuseppe Liotta1, and Alessandra Tappini1
5
+ 1Dipartimento di Ingegneria, Universit`a degli Studi di Perugia, via
6
+ G. Duranti 93, 06125, Perugia, Italy. {carla.binucci,
7
+ emilio.digiacomo, giuseppe.liotta,
8
+ alessandra.tappini}@unipg.it
9
+ 2Wilhelm-Schickard Institut f¨ur Informatik, Universit¨at T¨ubingen,
10
+ Sand 13, 72076, T¨ubingen, Germany.
11
12
+ January 4, 2023
13
+ Abstract
14
+ This paper studies a packing problem in the so-called beyond-planar
15
+ setting, that is when the host graph is “almost-planar” in some sense. Pre-
16
+ cisely, we consider the case that the host graph is k-planar, i.e., it admits
17
+ an embedding with at most k crossings per edge, and focus on families of
18
+ ∆-regular caterpillars, that are caterpillars whose non-leaf vertices have
19
+ the same degree ∆. We study the dependency of k from the number h of
20
+ caterpillars that are packed, both in the case that these caterpillars are all
21
+ isomorphic to one another (in which case the packing is called placement)
22
+ and when they are not. We give necessary and sufficient conditions for
23
+ the placement of h ∆-regular caterpillars and sufficient conditions for the
24
+ packing of a set of ∆1-, ∆2-, . . . , ∆h-regular caterpillars such that the
25
+ degree ∆i and the degree ∆j of the non-leaf vertices can differ from one
26
+ caterpillar to another, for 1 ≤ i, j ≤ h, i ̸= j.
27
+ 1
28
+ Introduction
29
+ Graph packing is a classical problem in graph theory.
30
+ The original formu-
31
+ lation requires to merge several smaller graphs into a larger graph, called the
32
+ host graph, without creating multiple edges. More precisely, graphs G1, G2, . . . , Gh
33
+ with Gi = (Vi, Ei) should be combined to a new graph G = (V, E) by injec-
34
+ tive mappings ηi : Vi → V so that V = V1 ∪ V2 ∪ · · · ∪ Vh and the images of
35
+ 1
36
+ arXiv:2301.01226v1 [math.CO] 3 Jan 2023
37
+
38
+ the edge sets Ei do not intersect. It has been often assumed that |Vi| = n for
39
+ all i = 1, 2, . . . h, and thus the mappings ηi are bijective. Many combinatorial
40
+ problems can be regarded as packing problems. For example, the Hamiltonian
41
+ cycle problem for a graph G can be stated as the problem of packing an n-vertex
42
+ cycle with the complement of G.
43
+ When no restriction is imposed on the host graph, we say that the host
44
+ graph is Kn. Some classical results in this setting are those by Bollob´as and
45
+ Eldridge [6], Teo and Yap [26], Sauer and Spencer [25], while related famous
46
+ conjectures are by Erd˝os and S´os from 1963 [10] and by Gy´arf´as from 1978 [16].
47
+ Within this line of research, Wang and Sauer [27], and Mah´eo et al. [22] char-
48
+ acterized triples of trees that admit a packing into Kn. Haler and Wang [17]
49
+ extended this result to four copies of a tree. Further notable work on graph
50
+ packing into Kn is by Hedetniemi et al. [18], Wozniak and Wojda [28] and Aich-
51
+ holzer et al. [2]. A packing problem with identical copies of a graph is also called
52
+ a placement problem (see, e.g., [17, 27, 29]).
53
+ A tighter relation to graph drawing was established when researchers did not
54
+ consider Kn to be the host graph, but required that the host graph is planar.
55
+ The main question here is how to pack two trees of size n into a planar graph
56
+ of size n. After a long series of intermediate steps [11, 12, 13, 14, 24] where the
57
+ class of trees that could be packed has been gradually generalized, Geyer et al.
58
+ [15] showed that any two non-star trees can be embedded into a planar graph.
59
+ Relaxing the planarity condition allows for packing of more (than two) trees,
60
+ and restricting the number of crossings for each edge, i.e., in the so-called
61
+ beyond-planar setting [9, 19, 21], still keeps the host graph sparse. The study
62
+ of the packing problem in the beyond planarity setting was started by De Luca
63
+ et al. [8], who consider how to pack caterpillars, paths, and cycles into 1-planar
64
+ graphs (see, e.g., [21] for a survey and references on 1-planarity). While two
65
+ trees can always be packed into a planar graph, it may not be possible to pack
66
+ three trees into a 1-planar graph.
67
+ In this work we further generalize the problem by allowing the host graph
68
+ to be k-planar for any k ≥ 1, and we study the dependency of k on the number
69
+ of caterpillars to be packed and on their vertex degree. We consider ∆-regular
70
+ caterpillars, which are caterpillars whose non-leaf vertices all have the same
71
+ degree. Our results can be briefly outlined as follows.
72
+ • We consider the packing problem of h copies of the same ∆-regular cater-
73
+ pillar into a k-planar graph. We characterize those families of h ∆-regular
74
+ caterpillars which admit a placement into a k-planar graph and show that
75
+ k ∈ O(∆h + h2).
76
+ • We extend the study from the placement problem to the packing problem
77
+ by considering a set of ∆1-, ∆2-, . . . , ∆h-regular caterpillars such that the
78
+ degree ∆i and the degree ∆j of the non-leaf vertices can differ from one
79
+ caterpillar to another, with 1 ≤ i, j ≤ h, i ̸= j. By extending the tech-
80
+ niques of the bullet above, we give sufficient conditions for the existence
81
+ of a k-planar packing of these caterpillars and show that k ∈ O(∆h2).
82
+ 2
83
+
84
+ • Finally, we prove a general lower bound on k and show that this lower
85
+ bound can be increased for small values of h and for caterpillars that are
86
+ not ∆-regular.
87
+ The rest of the paper is organized as follows. Preliminaries are in Section 2.
88
+ The placement of h ∆-regular caterpillars into a k-planar graph is discussed
89
+ in Section 3. Section 4 is devoted to k-planar h-packing, while Section 5 gives
90
+ lower bounds on the value of k as a function of h. Concluding remarks and open
91
+ problems can be found in Section 6.
92
+ 2
93
+ Preliminaries
94
+ We assume familiarity with basic graph drawing and graph theory terminology
95
+ (see, e.g., [5, 20, 23]) and recall here only those concepts and notation that will
96
+ be used in the paper.
97
+ Given a graph G, we denote by degG(v) the degree of a vertex v in G. Let
98
+ G1, G2, . . . , Gh be h graphs, all having n vertices, an h-packing of G1, G2, . . . , Gh
99
+ is an n-vertex graph G that contains G1, G2, . . . , Gh as edge-disjoint spanning
100
+ subgraphs.
101
+ We also say that G1, G2, . . . , Gh can be packed into G and that
102
+ G is the host graph of G1, G2, . . . , Gh. An h-packing of h graphs into a host
103
+ graph G such that the h graphs are all isomorphic to a graph H, is called an
104
+ h-placement of H into G. We also say that G1, G2, . . . , Gh can be placed into
105
+ G. The following property establishes a necessary condition for the existence of
106
+ an h-packing into any host graph.
107
+ Property 1. A packing of h connected n-vertex graphs exists only if n ≥ 2h
108
+ and degGi(v) ≤ n − h, for each i ∈ {1, 2, . . . , h} and for each vertex v.
109
+ Proof. Each Gi has at least n−1 edges (because it is connected); thus, if n < 2h
110
+ the h graphs have more edges in total than the number of edges of any graph
111
+ with n vertices. But since graphs Gi must be edge-disjoint subgraphs of G, the
112
+ number of edges of G must be at least the total number of edges of the graphs
113
+ Gi.
114
+ Since degGi(v) ≥ 1 for every i ∈ {1, 2, . . . , h} and for each v (because
115
+ each Gi is connected) and since �h
116
+ i=1 degGi(v) ≤ n − 1 (because G cannot
117
+ have vertex-degree larger that n − 1), it holds that degGi(v) ≤ n − h, for each
118
+ i ∈ {1, 2, . . . , h} and for each vertex v.
119
+ A k-planar graph is a graph that admits a drawing in the plane such that each
120
+ edge is crossed at most k times. If the host graph of an h-packing (h-placement)
121
+ is k-planar, we will talk about a k-planar h-packing (k-planar h-placement).
122
+ Sometimes, we shall simply say k-planar packing or k-planar placement, when
123
+ the value of h is clear from the context or not relevant.
124
+ A caterpillar is a tree such that removing all leaves we are left with a path,
125
+ called spine. A caterpillar T is ∆-regular, for ∆ ≥ 2, if degT (v) = ∆ for every
126
+ vertex v of the spine of T. The number of vertices of a ∆-regular caterpillar is
127
+ n = σ(∆ − 1) + 2 for some positive integer σ, which is the number of vertices of
128
+ the spine.
129
+ 3
130
+
131
+ 3
132
+ h-placement of ∆-regular Caterpillars into k-
133
+ planar Graphs
134
+ Given h copies of a same ∆-regular caterpillar, we want to study under which
135
+ conditions they admit a placement into a k-planar graph. We start by showing
136
+ that the necessary condition stated in Property 1 is, in general, not sufficient to
137
+ guarantee a placement even for ∆-regular caterpillars.
138
+ Theorem 1. For every h ≥ 2, let ∆ be a positive integer such that
139
+ h−1
140
+ ∆−1 is not
141
+ an integer. A set of h ∆-regular caterpillars with n = 2h vertices does not admit
142
+ a placement into any graph.
143
+ Proof. Since each caterpillar has n − 1 edges and the number of caterpillars is
144
+ h = n
145
+ 2 , the total number of edges is n(n−1)
146
+ 2
147
+ and thus, if a placement exists, the
148
+ host graph can only be Kn. We now prove that this is not possible. Denote by
149
+ C1, C2, . . . , Ch the h caterpillars and suppose that a packing into Kn exists. Let
150
+ v be a vertex of Kn and let v1, v2, . . . , vh be the h vertices that are mapped to
151
+ v, with vi being a vertex of Ci. Each vertex vi has degree in Ci that is either ∆
152
+ or 1 (because each Ci is ∆-regular). Denote by c the number of vertices among
153
+ v1, v2, . . . , vh that have degree ∆; the degree of v in the packing is c∆ + (h − c)
154
+ and since the degree of v in Kn is n − 1, it must be c∆ + (h − c) = n − 1, i.e.,
155
+ c∆ + (h − c) = 2h − 1, which can be rewritten as c =
156
+ h−1
157
+ ∆−1. But this is not
158
+ possible because c is integer, while h−1
159
+ ∆−1 is not.
160
+ In the rest of this section we shall establish necessary and sufficient condi-
161
+ tions that characterize when a set of h isomorphic ∆-regular caterpillars admit
162
+ a k-planar h-placement. Concerning the sufficiency, in Section 3.1 we describe
163
+ a constructive argument that computes a set of so-called zig-zag drawings and
164
+ study the properties of such drawings. In Section 3.2, we complete the charac-
165
+ terization by also giving necessary conditions for an h-placement of ∆-regular
166
+ caterpillars into a k-planar graph; in the same section, we give an upper bound
167
+ on k as a function of h and ∆.
168
+ We recall that a ∆-regular caterpillar has a number of vertices n that is equal
169
+ to σ(∆ − 1) + 2 for some natural number σ, which is the number of vertices
170
+ of the spine. While ∆-regular caterpillars are defined for any value of σ ≥ 1,
171
+ when we want to pack a set of h ≥ 2 caterpillars, Property 1 requires that each
172
+ caterpillar has at least two spine vertices, i.e., that σ ≥ 2 for each caterpillar.
173
+ Otherwise, the unique spine vertex would have degree n − 1 and Property 1
174
+ would not hold.
175
+ 3.1
176
+ Zig-zag Drawings of ∆-regular caterpillars
177
+ Let C be a ∆-regular caterpillar with n vertices; we construct a drawing Γ of
178
+ C as shown in Fig. 1. The number of vertices of the spine of C is σ =
179
+ n−2
180
+ ∆−1;
181
+ consider a set of σ points on a circle γ and denote by u1, u2, . . . , uσ these points
182
+ according to the circular clockwise order they appear along γ. Draw the spine
183
+ 4
184
+
185
+ u1
186
+ u2
187
+ u3
188
+ u4
189
+ u5
190
+ (a)
191
+ v17
192
+ v1
193
+ v2
194
+ v3
195
+ v4
196
+ v5
197
+ v6
198
+ v7
199
+ v8
200
+ v9
201
+ v10
202
+ v11
203
+ v12
204
+ v13
205
+ v14
206
+ v15
207
+ v16
208
+ upper part
209
+ lower part
210
+ hole short
211
+ edge
212
+ (b)
213
+ v17
214
+ v1
215
+ v2
216
+ v3
217
+ v4
218
+ v5
219
+ v6
220
+ v7
221
+ v8
222
+ v9
223
+ v10
224
+ v11
225
+ v12
226
+ v13
227
+ v14
228
+ v15
229
+ v16
230
+ (c)
231
+ Figure 1:
232
+ (a) A zig-zag drawing of a 4-regular caterpillar; (b) the upper and
233
+ the lower part are highlighted; c) a 2-packing obtained by the drawing of (b)
234
+ with a copy of it rotated by one step.
235
+ of C by connecting, for i = 1, 2, . . . , ⌊ σ
236
+ 2 ⌋, the points ui and ui+1 to the point
237
+ uσ−i+1; see Fig. 1(a).
238
+ If σ is even and i =
239
+ σ
240
+ 2 , the points ui+1 and uσ−i+1
241
+ coincide and therefore the point u σ
242
+ 2 is connected only to u σ
243
+ 2 +1. Notice that
244
+ all points ui have two incident edges, except u1 and u⌊ σ
245
+ 2 ⌋+1 which have only
246
+ one. We add the leaves adjacent to each vertex ui ̸∈ {u1, u⌊ σ
247
+ 2 ⌋+1} by connecting
248
+ uσ−i+1 to ∆−2 points between ui and ui+1; we then add the leaves adjacent to
249
+ u1 by connecting it to ∆−1 points between uσ and u1; we finally add the leaves
250
+ adjacent to u⌊ σ
251
+ 2 ⌋+1 by connecting it to ∆ − 1 points between u σ
252
+ 2 and u σ
253
+ 2 +1 if σ
254
+ is even, or to ∆−1 points between u⌊ σ
255
+ 2 ⌋+1 and u⌊ σ
256
+ 2 ⌋+2 if σ is odd. The resulting
257
+ drawing is called a zig-zag drawing of C.
258
+ From now on, we assume that in a zig-zag drawing the points that represent
259
+ vertices are equally spaced on the circle γ. Let χ be the convex hull of the points
260
+ representing the vertices of C in Γ. A zig-zag drawing has exactly two sides of
261
+ χ that coincide with two edges of C; we call these two edges short edges of Γ;
262
+ each other side of χ is called a hole. Denote by v1, v2, . . . , vn the vertices of Γ
263
+ according to the circular clockwise order they appear along χ with v1 ≡ u1; see
264
+ Fig. 1(b). Notice that (v1, vn) is a short edge and vn is the degree-1 vertex of
265
+ this edge.
266
+ Consider a straight line s that intersects both short edges of Γ; line s inter-
267
+ sects all the edges of the zig-zag drawing. Without loss of generality, assume
268
+ that s is horizontal and denote by U the set of vertices that are above s and by
269
+ L the set of vertices that are below s. The vertices in U form the upper part of
270
+ Γ and those in L form the lower part of Γ. Without loss of generality assume
271
+ that v1 is in the upper part (and therefore vn is in the lower part). It follows
272
+ that each edge has the end-vertex with lower index in the upper part, and the
273
+ end-vertex with higher index in the lower part. Hence the short edge different
274
+ from (v1, vn), which we denote as (vr−1, vr), is such that vr−1 is in the upper
275
+ part and vr is in the lower part. The first vertex of the upper part, i.e., vertex
276
+ v1, is called starting point of Γ, while the first vertex of the lower part, i.e.,
277
+ 5
278
+
279
+ vertex vr, is called ending point of Γ. We observe that r = n
280
+ 2 + 1 if the number
281
+ of vertices of the spine σ =
282
+ n−2
283
+ ∆−1 is even, while r = 1 + n−(∆−1)
284
+ 2
285
+ if σ is odd.
286
+ This can be written with a single formula as r = 1+ n−(∆−1)(σ
287
+ mod 2)
288
+ 2
289
+ . The two
290
+ short edges separate two sets of consecutive holes, one completely contained in
291
+ the upper part and one completely contained in the lower part; if σ is even,
292
+ these two sets have the same number of holes equal to n−2
293
+ 2 ; if σ is odd, then
294
+ one of the two sets has n−∆−1
295
+ 2
296
+ holes, while the other has n+∆−3
297
+ 2
298
+ . Note that the
299
+ smaller set is in the upper part.
300
+ Let ℓ be a positive integer and let Γ′ be the drawing obtained by re-mapping
301
+ vertex vi to the point1 representing vi+ℓ in Γ. We say that Γ′ is the drawing
302
+ obtained by rotating Γ by ℓ steps. Note that the starting point of Γ′ is vj with
303
+ j = 1 + ℓ and the ending point is vr with r = 1 + ℓ + n−(∆−1)(σ
304
+ mod 2)
305
+ 2
306
+ =
307
+ j + n−(∆−1)(σ
308
+ mod 2)
309
+ 2
310
+ .
311
+ The drawing in Fig. 1(c) is the union of two zig-zag
312
+ drawings Γ1 and Γ2, where Γ2 is obtained by rotating Γ1 by one step; the
313
+ starting point of Γ1 is v1 while its ending point is v8; the starting point of Γ2 is
314
+ v2, while its ending point is v9.
315
+ Lemma 1. Let Γ1 be a zig-zag drawing of a ∆-regular caterpillar C with starting
316
+ point j1 and ending point r1; let Γ2 be a zig-zag drawing of C with starting
317
+ point j2. If 0 < j2 − j1 < n−(∆−1)(σ
318
+ mod 2)
319
+ 2
320
+ , where σ is the number of spine
321
+ vertices of C, then Γ1 ∪ Γ2 has no multiple edges.
322
+ Proof. We first observe that Γ2 is obtained by rotating Γ1 by ℓ steps, where
323
+ ℓ = j2 − j1. Suppose that a multiple edge (vi, vg), with i < g exists in Γ1 ∪ Γ2.
324
+ This implies that in the drawing Γ1 there must be an edge (vi′, vg′) that, when
325
+ rotated by ℓ steps, coincides with (vi, vg). In other words, the two edges (vi, vg)
326
+ and (vi′, vg′) must be such that: (i) i′ < i < r1 ≤ g < g′; (ii) g = i′ + ℓ; (iii) the
327
+ number α of vertices encountered between vi and vg when going clockwise from
328
+ vi to vg is the same as the number of vertices encountered when going clockwise
329
+ from vg′ to vi′ (see Fig. 2). Denote by β the number of vertices encountered
330
+ when going clockwise from vi′ to vi, and by ζ the number of vertices encountered
331
+ when going clockwise from vg to vg′. We have 2α + β + ζ + 4 = n. If σ is even,
332
+ then β = ζ (see Fig. 2(a)), which implies α + β + 2 = n
333
+ 2 . Notice that g = i′ + ℓ
334
+ implies that ℓ = β + α + 2 (ℓ is equal to the number of vertices encountered
335
+ clockwise between vi′ and vg plus one) and therefore (vi′, vg′) can coincide with
336
+ (vi, vg) after a rotation of ℓ steps only if ℓ = n
337
+ 2 but, when σ is even, we have
338
+ ℓ = j2 − j1 < n
339
+ 2 and therefore a multiple edge cannot exist.
340
+ If σ is odd, then β − (∆ − 1) ≤ ζ ≤ β + (∆ − 1) (see Figs. 2(b) and 2(c)) and
341
+ therefore 2α + 2β − (∆ − 1) + 4 ≤ 2α + β + ζ + 4 = n ≤ 2α + 2β + (∆ − 1) + 4,
342
+ which can be rewritten as n−(∆−1)
343
+ 2
344
+ ≤ α + β + 2 ≤ n+(∆−1)
345
+ 2
346
+ . It follows that,
347
+ in order to have (vi′, vg′) and (vi, vg) coincident after a rotation of ℓ steps, the
348
+ value of ℓ must be such that n−(∆−1)
349
+ 2
350
+ ≤ ℓ ≤ n+(∆−1)
351
+ 2
352
+ ; but, when σ is odd, we
353
+ have ℓ = j2 − j1 < n−(∆−1)
354
+ 2
355
+ and therefore a multiple edge cannot exist.
356
+ 1In a drawing in convex position the indices of the vertices are taken modulo n.
357
+ 6
358
+
359
+ vj1
360
+ vr1
361
+ vi′
362
+ vh′
363
+ vi
364
+ vh
365
+ β
366
+ ζ
367
+ α
368
+ α
369
+
370
+ (a)
371
+ vj1≡vi′
372
+ vr1
373
+ vh′
374
+ vi
375
+ vh
376
+ β
377
+ ζ
378
+ α
379
+ α
380
+
381
+ (b)
382
+ vj1
383
+ vr1
384
+ vi′
385
+ vh′
386
+ vi
387
+ vh
388
+ β
389
+ ζ
390
+ α
391
+ α
392
+
393
+ (c)
394
+ Figure 2:
395
+ Illustration for the proof of Lemma 1; (a) σ even; (b)-(c) σ odd.
396
+ We conclude this section by computing the maximum number of crossings
397
+ per edge in the union of two zig-zag drawings without overlapping edges. We
398
+ state this lemma in general terms assuming that the two ∆-regular caterpillars
399
+ can have different vertex degrees, as we are going to use the lemma to establish
400
+ upper bounds on k both for k-planar h-placements and for k-planar h-packings
401
+ (Section 4).
402
+ Let Γ be a union of a set of zig-zag drawings.
403
+ To ease the description
404
+ that follows, we regard Γ as a sub-drawing of a straight-line drawing of Kn
405
+ whose vertices coincide with those of Γ (and therefore are equally spaced along
406
+ a circle). In particular, for each vertex vj, we denote by ej,0, ej,1, . . . , ej,n−2
407
+ the edges incident to vj in Kn according to the circular counterclockwise order
408
+ around vj starting from ej,0 = (vj, vj−1). Each of the zig-zag drawings that
409
+ form Γ contains a subset of these edges and Γ is a valid packing if there is no
410
+ edge that belongs to two different zig-zag drawings in the set whose union is Γ.
411
+ We denote by Sn the (circular) sequence of slopes si = i · π
412
+ n, for i =
413
+ 0, 1, . . . , n − 1; refer to Fig. 3. Notice that, without loss of generality, we can
414
+ assume that the convex hull of Γ has a side with slope s0 and, as a consequence,
415
+ every edge of Γ has a slope in the set Sn. Let vj be a vertex; if the slope of
416
+ ej,0 is sij, then the slope of ej,p is sij+p (with indices taken modulo n); in other
417
+ words, the edges incident to each vertex have slopes that form a sub-sequence of
418
+ n − 1 consecutive elements of Sn; we denote such a sequence as ψ(ij), where ij
419
+ indicates that the first element of ψ(ij) is sij. We say that vj uses the sequence
420
+ ψ(ij). If we consider two different vertices vj and vj+p and vj uses the sequence
421
+ ψ(ij), then vj+p uses the sequence ψ(ij − 2p) (with indices taken modulo n);
422
+ in other words, the sequence used by a vertex shifts clockwise by two elements
423
+ moving to the next vertex.
424
+ Lemma 2. Let C1 be an n-vertex ∆1-regular caterpillar and let C2 be an n-
425
+ vertex ∆2-regular caterpillar with ∆i ≤ n − 2 (for i = 1, 2). Let Γ1 be a zig-zag
426
+ drawing of C1 with starting point vj1 and let Γ2 be a zig-zag drawing of C2 with
427
+ starting point vj2 with 0 < j2 − j1 < n
428
+ 2 . If Γ1 ∪ Γ2 has no multiple edges, then
429
+ any edge of Γ1 ∪ Γ2 is crossed at most 2(∆1 + ∆2) + 4(j2 − j1) times.
430
+ 7
431
+
432
+ s0
433
+ s1
434
+ sn−1
435
+ sn−2
436
+ vj
437
+ ej,0
438
+ ej,n−2
439
+ ej+1,0
440
+ vj+1
441
+ ψ(j)
442
+ ψ(j + 1)
443
+ Sn
444
+ ej+1,n−2
445
+
446
+ Figure 3: Illustration for the definition of slopes.
447
+ Proof. We first observe that the edges of a zig-zag drawing of a ∆-regular cater-
448
+ pillar are all drawn as segments whose slope belongs to a set of ∆ slopes. In
449
+ particular, for every spine vertex v, the edges incident to v are drawn using all
450
+ these ∆ slopes.
451
+ Consider the starting vertex vj1 of Γ1; the edges incident to vj1 are drawn
452
+ with the first ∆1 slopes of ψ(ij1). Analogously, the edges incident to the starting
453
+ vertex vj2 of Γ2 are drawn with the first ∆2 slopes of ψ(ij2). The sequence ψ(ij2)
454
+ is shifted clockwise by 2(j2−j1) units with respect to ψ(ij1). On the other hand,
455
+ since j2−j1 < n
456
+ 2 , the first slope of ψ(ij2) is distinct from the first slope of ψ(ij1).
457
+ Let e = (vi, vg) be an edge of Γ1. We now prove that the number of crossings
458
+ along e is at most the one given in the statement. Let e1 = (vi, va) be the
459
+ edge of Γ2 incident to vi that forms the smallest angle with e; analogously, let
460
+ e2 = (vg, vb) be the edge of Γ2 incident to vg that forms the smallest angle with
461
+ e. Notice that, in principle there are four possible clockwise orders of vi, va,
462
+ vg, and vb (see cases (a)–(d) in Fig. 4 for an illustration). However the case (b)
463
+ cannot happen. Namely, in case (b) the slopes used to draw the edges of Γ2
464
+ would be shifted counterclockwise with respect to those used to represent the
465
+ edges of Γ1; but, as observed above, the slopes used by Γ2 are shifted clockwise
466
+ with respect to those used by Γ1.
467
+ Let α1 be the angle between e and e1 and let α2 be the angle between e and
468
+ e2. Let V1 be the set of vertices seen by the angle α1 including va and excluding
469
+ vg; analogously let V2 be the set of vertices seen by the angle α2 including vb
470
+ and excluding vi. In each of the three cases (a), (c), and (d), at least one of α1
471
+ and α2 is such that e sweeps the angle moving clockwise. Let αl with l ∈ {1, 2}
472
+ be the angle that satisfies this condition. In particular, for case (a) αl can be
473
+ both α1 or α2, in case (c) αl is α2 and in case (d) αl is α1 (see Fig. 4). Every
474
+ edge that crosses e has an end-vertex in V1 and one end-vertex in V2. To count
475
+ the number of such edges (and therefore the number of crossings along e), we
476
+ evaluate |Vl|. The value of |Vl| is at most the number of slopes of Sn that are
477
+ encountered in counterclockwise order between the slope s ∈ Sn of el and the
478
+ slope s′ ∈ Sn of e. In particular, in case (a) |Vl| is exactly this number, while in
479
+ case (c) and (d) |Vl| is less than this number. The slope s′ is at most the last
480
+ 8
481
+
482
+ vi
483
+ vg
484
+ va
485
+ vb
486
+ α1
487
+ α2
488
+ V1
489
+ V2
490
+ (a)
491
+ vi
492
+ vg
493
+ va
494
+ vb
495
+ α1
496
+ α2
497
+ (b)
498
+ vi
499
+ vg
500
+ va
501
+ vb
502
+ α1
503
+ α2
504
+ V2
505
+ (c)
506
+ vi
507
+ vg
508
+ va
509
+ vb
510
+ α1
511
+ α2
512
+ V1
513
+ (d)
514
+ Figure 4:
515
+ Illustration for the proof of Lemma 2. The edges of Γ2 are dashed.
516
+ 9
517
+
518
+ slope used by Γ1, which is sp with p = j1 + ∆1, while the slope s is at least the
519
+ first slope used by Γ2, which is sq with q = j1 − 2(j2 − j1). Thus, the number of
520
+ slopes between s′ (included) and s (excluded) is at most p−q = ∆1 +2(j2 −j1).
521
+ Hence |Vl| ≤ ∆1 + 2(j2 − j1).
522
+ We call a block a subset of consecutive vertices of Vl starting with a spine
523
+ vertex and containing all the leaves that follow that spine vertex. The number
524
+ of edges of Γ2 incident to the vertices of a block is 2(∆2 − 1) (since ∆2 edges
525
+ are incident to the spine vertex and ∆2 − 2 is the number of leaves).
526
+ The
527
+ number of blocks in Vl is
528
+
529
+ |Vl|
530
+ (∆2−1)
531
+
532
+ . It follows that the number of crossings χe
533
+ along e is at most
534
+
535
+ |Vl|
536
+ (∆2−1)
537
+
538
+ 2(∆2 − 1) which is less than 2(|Vl| + ∆2). Since
539
+ |Vl| ≤ ∆1 + 2(j2 − j1), we have χe ≤ 2(∆1 + ∆2) + 4(j2 − j1), which concludes
540
+ the proof in the case when e belongs to Γ1. The case when the edge e belongs
541
+ to Γ2 is analogous. In particular, when e belongs to Γ2, the cases (b), (c), and
542
+ (d) apply, while case (a) does not happen.
543
+ 3.2
544
+ Characterization
545
+ We are now ready to characterize the ∆-regular caterpillars that admit an h-
546
+ placement.
547
+ Theorem 2. Let C be a ∆-regular caterpillar with n vertices. An h-placement
548
+ of C exists if and only if: (i) ∆ ≤ n − h; and (ii) n ≥ 2h + (∆ − 1) · (σ mod 2),
549
+ where σ is the number of spine vertices of C. Further, if an h-placement exists,
550
+ there exists one that is k-planar for k ∈ O(∆h + h2).
551
+ Proof. We first prove the sufficient condition. Let C1, C2, . . . , Ch be the h cater-
552
+ pillars and assume that n ≥ 2h+(∆−1)(σ mod 2). We compute an h-placement
553
+ of C1, C2, . . . , Ch starting from a zig-zag drawing Γ1 of C1 and obtaining the
554
+ drawing Γi of Ci by rotating Γ1 by i − 1 steps, for i = 2, 3, . . . , h.
555
+ Notice that, when the number of spine vertices σ of each Ci is even, h ≤ n
556
+ 2
557
+ and therefore each Γi is rotated by less than n
558
+ 2 steps; when σ is odd h ≤ n−(∆−1)
559
+ 2
560
+ and each Γi is rotated by less than n−(∆−1)
561
+ 2
562
+ steps. In both cases, each pair of
563
+ drawings Γi and Γj satisfies the conditions of Lemma 1 and therefore there
564
+ are no multiple edges, that is, the union of all Γi is a valid h-placement of
565
+ C1, C2, . . . , Ch.
566
+ We now prove the necessary condition.
567
+ If σ is even, then conditions (i)
568
+ and (ii) are necessary by Property 1. Hence, consider the case when σ is odd.
569
+ Condition (i) is necessary by Property 1. Assume, by contradiction, that (ii) is
570
+ not necessary, i.e., there exists an h-placement of h caterpillars C1, C2, . . . , Ch
571
+ such that n < 2h + (∆ − 1). Since C1, C2, . . . , Ch admit an h-placement, by
572
+ Property 1 n must be at least 2h. Thus, it would be 2h ≤ n < 2h + (∆ − 1); in
573
+ other words, n = 2h + α with 0 ≤ α ≤ ∆ − 2.
574
+ Let G be the host graph of the h-placement and let v be the vertex of G to
575
+ which the largest number of spine vertices of C1, C2, . . . , Ch is mapped. Let β
576
+ be the number of spine vertices that are mapped to v. There are other h − β
577
+ 10
578
+
579
+ leaf vertices that are mapped to v (because one vertex per caterpillar has to be
580
+ mapped on each vertex of G). The degree of v in G is at most n − 1 and each
581
+ of the spine vertices mapped to v has degree ∆. Hence, the β spine vertices
582
+ mapped to v have degree β∆ in total. Vertex v can have at most other n−1−β∆
583
+ edges and therefore it must be n − 1 − β∆ ≥ h − β, i.e., β ≤ n−1−h
584
+ ∆−1 . On the
585
+ other hand, there are σh spine vertices in total and, since G has n vertices, there
586
+ are at least ⌈ σh
587
+ n ⌉ spine vertices mapped to v, i.e., β ≥ ⌈ σh
588
+ n ⌉. Putting together
589
+ the two conditions on β we obtain:
590
+ �σh
591
+ n
592
+
593
+ ≤ β ≤ n − 1 − h
594
+ ∆ − 1
595
+ .
596
+ Since n = 2h + α, we have h = n−α
597
+ 2 ; replacing h in Section 3.2, we obtain:
598
+ �σ
599
+ 2 − σα
600
+ 2n
601
+
602
+ ≤ β ≤ n + α − 2
603
+ 2(∆ − 1) .
604
+ Since n = σ(∆ − 1) + 2, we have:
605
+ �σ
606
+ 2 −
607
+ σα
608
+ 2(σ(∆ − 1) + 2)
609
+
610
+ ≤ β ≤ σ(∆ − 1) + α
611
+ 2(∆ − 1)
612
+ .
613
+ (1)
614
+ Eq. (1) implies that:
615
+ �σ
616
+ 2 −
617
+ α
618
+ 2(∆ − 1) + 4
619
+ σ
620
+
621
+ ≤ σ
622
+ 2 +
623
+ α
624
+ 2(∆ − 1).
625
+ (2)
626
+ We now prove that Eq. (2) cannot be satisfied. Since σ is odd, it is σ = 2i+1
627
+ for some i ∈ N, and thus:
628
+
629
+ i + 1
630
+ 2 − ζ
631
+
632
+ ≤ k + 1
633
+ 2 + ζ′,
634
+ (3)
635
+ with ζ =
636
+ α
637
+ 2(∆−1)+ 4
638
+ σ and ζ′ =
639
+ α
640
+ 2(∆−1). We have ζ < ζ′ and we prove that ζ′ < 1
641
+ 2:
642
+ ζ′ =
643
+ α
644
+ 2(∆ − 1) ≤
645
+ ∆ − 2
646
+ 2(∆ − 1) <
647
+ ∆ − 1
648
+ 2(∆ − 1) = 1
649
+ 2.
650
+ The first term of Eq. (3) is i + 1 because 0 < 1
651
+ 2 − ζ < 1; the second term is less
652
+ than i + 1 because 0 < 1
653
+ 2 + ζ′ < 1. It follows that Eq. (3) does not hold and
654
+ therefore Eq. (2) does not hold.
655
+ We now prove the bound on the number of crossings along an edge. We
656
+ consider an edge of Γ1; the number of crossings along an edge of the drawing
657
+ of another caterpillar is bounded by the same number. Let e be an edge of the
658
+ drawing Γ1. By Lemma 2, the number of crossings χe along e due to the edges of
659
+ another drawing Γl (with 2 ≤ l ≤ h) is at most 2(∆1+∆l)+4(jl−j1). Summing
660
+ 11
661
+
662
+ u1
663
+ u2
664
+ u3
665
+ u4
666
+ u5
667
+ (a)
668
+ v17
669
+ v1
670
+ v2
671
+ v3 v4
672
+ v5
673
+ v6
674
+ v7
675
+ v8
676
+ v9
677
+ v10
678
+ v11
679
+ v12
680
+ v13
681
+ v14
682
+ v15
683
+ v16
684
+ (b)
685
+ Figure 5:
686
+ (a) An inner zig-zag drawing and (d) an outer zig-zag drawing of a
687
+ 4-regular caterpillar.
688
+ over all drawings distinct from Γ1, we obtain χe ≤ �h
689
+ l=2(2(∆1+∆l)+4(jl−j1)).
690
+ Considering that ∆l = ∆ for every l and that jl − j1 = l − 1, we have
691
+ χe ≤
692
+ h
693
+
694
+ l=2
695
+ (4∆ + 4(l − 1)) ≤ (4∆ − 2)h + 2h2 − 4∆.
696
+ (4)
697
+ We conclude by observing that the number of crossings given by Eq. (4) can
698
+ be reduced, although not asymptotically. A zig-zag drawing can be embedded
699
+ inside the circle (see Fig. 5(a)) or outside the circle (see Fig. 5(b)). Thus, the
700
+ number given by Eq. (4) can be halved by embedding half of the caterpillars
701
+ inside the circle and the other half outside the circle.
702
+ 4
703
+ h-packing of ∆-regular Caterpillars in k-planar
704
+ Graphs
705
+ In this section we study h-packings of h ∆1-, ∆2-, . . . , ∆h-regular caterpillars
706
+ such that the degree ∆i and the degree ∆j of the spine vertices can differ from
707
+ one caterpillar to another, for 1 ≤ i, j ≤ h, i ̸= j.
708
+ Lemma 3. Let C1 be an n-vertex ∆1-regular caterpillar and let C2 be an n-
709
+ vertex ∆2-regular caterpillar such that ∆1 > ∆2 and ∆1 ≤ n − 2. Let Γ1 be
710
+ a zig-zag drawing of C1 with starting point vj1 and ending point vr1, and let
711
+ Γ2 be a zig-zag drawing of C2 with starting point vj2 and ending point vr2. If
712
+ ∆2
713
+ 2 ≤ j2 − j1 < n−(∆1−1)
714
+ 2
715
+ , then Γ1 ∪ Γ2 has no multiple edges.
716
+ 12
717
+
718
+ Proof. As described in the proof of Lemma 2, the edges of a zig-zag drawing of
719
+ a ∆-regular caterpillar are all drawn as segments whose slope belongs to a set
720
+ of ∆ slopes. In particular, for every spine vertex v, the edges incident to v are
721
+ drawn using all these ∆ slopes. Based on this observation, we show that the ∆1
722
+ slopes used to represent the edges of Γ1 are distinct from the ∆2 slopes used to
723
+ represent the edges of Γ2. We use the same notation used in Theorem 2.
724
+ Consider the staring vertex vj1 of Γ1; the edges incident to vj1 are drawn
725
+ with the first ∆1 slopes of ψ(ij1). Analogously, the edges incident to the starting
726
+ vertex vj2 of Γ2 are drawn with the first ∆2 slopes of ψ(ij2). Since j2 −j1 ≥ ∆2
727
+ 2 ,
728
+ the sequence ψ(ij2) is shifted clockwise by ∆2 units with respect to ψ(ij1). On
729
+ the other hand, since j2 − j1 ≤ n−(∆1−1)
730
+ 2
731
+ , the sequence of the first ∆2 slopes of
732
+ ψ(ij2) does not overlap with the first ∆1 slopes of ψ(ij1), which concludes the
733
+ proof.
734
+ Theorem 3. Let C1, C2, . . . , Ch be h caterpillars such that Ci is ∆i-regular,
735
+ for 1 ≤ i ≤ h, and ∆h ≤ ∆h−1 ≤ · · · ≤ ∆1 ≤ n − h. If �h
736
+ i=1 ∆i ≤ n − 1 and
737
+ �h
738
+ i=2
739
+ � ∆i
740
+ 2
741
+
742
+ < n−(∆1−1)
743
+ 2
744
+ , then there exists a k-planar packing with k ∈ O(∆1h2).
745
+ Proof. We compute a zig-zag drawing of C1 with starting point vj1, with j1 = 1;
746
+ for each Ci, with 2 ≤ i ≤ h, we compute a zig-zag drawing Γi with starting
747
+ vertex vji where ji = ji−1 +
748
+ � ∆i
749
+ 2
750
+
751
+ . Notice that, each vertex v of Γ1 ∪Γ2 ∪· · ·∪Γh
752
+ has degree at most n−1; namely �h
753
+ i=1 degCi(v) ≤ �h
754
+ i=1 ∆i ≤ n−1. Moreover,
755
+ given two caterpillars Ci and Ci′ with 1 ≤ i < i′ ≤ h, we have that: (i)
756
+ ji′ − ji ≥ ji′ − ji′−1 =
757
+
758
+ ∆i′
759
+ 2
760
+
761
+ ; and (ii) ji′ − ji ≤ jh − j1 = �h
762
+ i=2⌈ ∆i
763
+ 2 ⌉, which
764
+ gives ji′ − ji < n−(∆1−1)
765
+ 2
766
+ < n−(∆i−1)
767
+ 2
768
+ . Putting together (i) and (ii), we obtain
769
+ ∆i′
770
+ 2
771
+ < ji′ − ji < n−(∆i−1)
772
+ 2
773
+ . Hence, Lemma 3 holds for every pair of caterpillars
774
+ and the union of all the zig-zag drawings Γ1, Γ2, . . . , Γh is a valid packing of
775
+ C1, C2, . . . , Ch.
776
+ We now prove the bound on the number of crossings along an edge. We
777
+ consider an edge of Γ1; the number of crossings along an edge of another drawing
778
+ is bounded by the same number.
779
+ Let e be an edge of the drawing Γ1.
780
+ By
781
+ Lemma 2, the number of crossings χe along e due to the edges of another
782
+ drawing Γl (with 2 ≤ l ≤ h) is at most 2(∆1 + ∆l) + 4(jl − j1). Summing over
783
+ all drawings distinct form Γ1, we obtain χe ≤ �h
784
+ l=2(2(∆1 + ∆l) + 4(jl − j1)).
785
+ Considering that jl ≥ jl−1 +
786
+ � ∆i
787
+ 2
788
+
789
+ , we obtain that jl − j1 = �l
790
+ i=2
791
+ � ∆i
792
+ 2
793
+
794
+ . Since
795
+ ∆l ≤ ∆1 for every 2 ≤ l ≤ h, we have jl − j1 ≤ (l − 1)( ∆1
796
+ 2 + 1). Therefore, we
797
+ obtain χe ≤ �h
798
+ l=2(4∆1 + 4(l − 1)( ∆1
799
+ 2 + 1)) ≤ (∆1 + 2)h2 + 4∆1(h − 1).
800
+ We now consider a special case of packing a set of h ∆1-, ∆2-, . . . , ∆h-
801
+ regular caterpillars where, for each ∆i (1 ≤ i ≤ h), we have that ∆i − 1 is a
802
+ multiple of ∆i+1 − 1. In this case, we show that the sufficient conditions of
803
+ Theorem 3 can be relaxed. For example, consider the packing of a 17-regular
804
+ caterpillar and two 9-regular caterpillars, each having 34 vertices. These three
805
+ caterpillars do not satisfy the sufficient condition of Theorem 3. However, a k-
806
+ planar packing of these caterpillars is possible, as proven in Theorem 4. We start
807
+ 13
808
+
809
+ vj
810
+ vi
811
+ vr
812
+ vg
813
+ upper part
814
+ lower part
815
+ c = 0
816
+ c = 1
817
+ c = 2
818
+ d = 0
819
+ d = 1
820
+ d = 2
821
+ Figure 6: Illustration for Property 2; σ = 5. For each spine vertex, c and d are
822
+ shown. Considering adjacent spine vertices, the sum of c and d is 2 or 3.
823
+ with the following property, which immediately follows from the construction of
824
+ a zig-zag drawing (see also Fig. 6 for an illustration).
825
+ Property 2. Let Γ be a zig-zag drawing of a ∆-regular caterpillar with starting
826
+ vertex vj and ending vertex vr. If vi is a spine vertex in the upper part of Γ,
827
+ then i = j + c(∆ − 1) for some c ∈ N; if vg is a spine vertex in the lower part of
828
+ Γ, then g = r + d(∆ − 1) for some d ∈ N. Moreover, if vi and vg are adjacent
829
+ then either c + d =
830
+ � σ
831
+ 2
832
+
833
+ − 1 or c + d =
834
+ � σ
835
+ 2
836
+
837
+ , where σ is the number of spine
838
+ vertices of Γ.
839
+ Property 2 is extensively used in the proof of the following lemma.
840
+ Lemma 4. Let C1 be an n-vertex ∆1-regular caterpillar and let C2 be an n-
841
+ vertex ∆2-regular caterpillar such that ∆1−1 = q(∆2−1), for some q ∈ N+ and
842
+ ∆i ≤ n − 2 (for i = 1, 2). Let Γ1 be a zig-zag drawing of C1 with starting point
843
+ vj1 and ending point vr1, and let Γ2 be a zig-zag drawing of C2 with starting
844
+ point vj2 and ending point vr2. If 0 < j2 − j1 < n−(∆1−1)
845
+ 2
846
+ , then Γ1 ∪ Γ2 has no
847
+ multiple edges.
848
+ Proof. Let (vi1, vg1) be an edge of Γ1 and (vi2, vg2) be an edge of Γ2. Assume
849
+ that vi1 belongs to the upper part of Γ1 and vi2 belongs to the upper part of Γ2.
850
+ Note that this implies that vg1 belongs to the lower part of Γ1 and vg2 belongs
851
+ to the lower part of Γ2. We prove that (vi1, vg1) and (vi2, vg2) do not coincide.
852
+ We first show that it does not happen that vi1 coincides with vi2 and vg1
853
+ coincides with vg2. We then show that it does not happen that vi1 coincides
854
+ with vg2 and vg1 coincides with vi2. In the rest of the proof we will express the
855
+ four indices i1, i2, g1 and g2 in terms of the values j1, j2, r1 and r2, according to
856
+ Property 2. Without loss of generality, we can assume that r2 ≤ n and j1 ≥ 1,
857
+ i.e., that the vertices vr2, vn, v1, and vj1 appear in this clockwise order, with
858
+ vr2 and vn possibly coincident and with v1 and vj1 possibly coincident. With
859
+ these assumptions, we have j1 < j2 < r1 < r2 and vi1 can coincide with vg2
860
+ 14
861
+
862
+ only if i1 = g2 − n, i.e., only if the value of g2 is greater than n and coincides
863
+ with i1 modulo n. Thus, while assuming that vi1 coincides with vi2 implies that
864
+ i1 = i2, assuming that vi1 coincides with vg2 implies that i1 = g2 − n.
865
+ Case 1: It does not happen that vi1 coincides with vi2 and vg1 coincides
866
+ with vg2.
867
+ At least one vertex per edge is a spine vertex. We distinguish four sub-cases
868
+ depending on which vertex is a spine vertex for each edge. Since all the cases
869
+ are very similar, we give here only the first case and the others can be found in
870
+ the appendix.
871
+ Case 1.a: vi1 and vi2 are spine vertices. By Property 2 we have, for some
872
+ c1, c2 ∈ N:
873
+ i1 = j1 + c1(∆1 − 1) = j1 + qc1(∆2 − 1).
874
+ (5)
875
+ and
876
+ i2 = j2 + c2(∆2 − 1).
877
+ (6)
878
+ If vi1 coincides with vi2, we have i1 = i2; from Eq. (5) and Eq. (6) we obtain:
879
+ j2 − j1 = (qc1 − c2)(∆2 − 1).
880
+ (7)
881
+ Concerning vg1 and vg2, we have:
882
+ gm
883
+ 1 ≤ g1 ≤ gM
884
+ 1 ;
885
+ gm
886
+ 2 ≤ g2 ≤ gM
887
+ 2 .
888
+ with gm
889
+ l
890
+ = rl + dl(∆l − 1), gM
891
+ l
892
+ = rl + (dl + 1)(∆l − 1) for some dl ∈ N such that
893
+ cl + dl =
894
+ � σl
895
+ 2
896
+
897
+ − 1, where σl is the number of spine vertices of Cl, for l = 1, 2.
898
+ We prove that gM
899
+ 1
900
+ < gm
901
+ 2 , which implies g1 ̸= g2. To have gM
902
+ 1
903
+ < gm
904
+ 2 it must be:
905
+ r1 + (d1 + 1)(∆1 − 1) < r2 + d2(∆2 − 1)
906
+ r1 + q(d1 + 1)(∆2 − 1) < r2 + d2(∆2 − 1)
907
+ r2 − r1 > (qd1 + q − d2)(∆2 − 1).
908
+ (8)
909
+ Since rl = jl + n−(∆l−1)(σl
910
+ mod 2)
911
+ 2
912
+ , for l = 1, 2, Eq. (8) can be rewritten as:
913
+ j2 − j1 >
914
+
915
+ (qd1 + q − d2) + (σ2
916
+ mod 2)
917
+ 2
918
+ − q(σ1
919
+ mod 2)
920
+ 2
921
+
922
+ (∆2 − 1).
923
+ (9)
924
+ Combining Eq. (7) and Eq. (9) we obtain:
925
+ qc1 − c2 > (qd1 + q − d2) + (σ2
926
+ mod 2)
927
+ 2
928
+ − q(σ1
929
+ mod 2)
930
+ 2
931
+ .
932
+ Since cl + dl =
933
+ � σl
934
+ 2
935
+
936
+ − 1, we have dl =
937
+ σl+1(σl
938
+ mod 2)
939
+ 2
940
+ − cl − 1, for l = 1, 2;
941
+ replacing d1 and d2 in the previous equation, we obtain:
942
+ qc1 − c2 > qσ1
943
+ 2
944
+ + q(σ1
945
+ mod 2)
946
+ 2
947
+ − qc1 − q + q − σ2
948
+ 2 − 1(σ2
949
+ mod 2)
950
+ 2
951
+ + c2+
952
+ + 1 + σ2
953
+ mod 2
954
+ 2
955
+ − q(σ1
956
+ mod 2)
957
+ 2
958
+ 15
959
+
960
+ which, considering that σ2 =
961
+ n−2
962
+ ∆2−1 = q(n−2)
963
+ ∆1−1 = qσ1, implies:
964
+ qc1 − c2 > 1
965
+ 2
966
+ (10)
967
+ In summary, to have gM
968
+ 1
969
+ < gm
970
+ 2 Eq. (10) must hold. On the other hand, from
971
+ Eq. (7) and from the hypothesis that j2−j1 > 0 we obtain (qc1−c2)(∆2−1) > 0
972
+ which, since (∆2 − 1) > 0, implies qc1 − c2 > 0 and, since qc1 − c2 is integer,
973
+ can be rewritten as qc1 − c2 ≥ 1. This implies that Eq. (10) holds and therefore
974
+ that gM
975
+ 1
976
+ < gm
977
+ 2 and g1 ̸= g2.
978
+ Case 2: It does not happen that vi1 coincides with vg2 and vg1 coincides
979
+ with vi2.
980
+ Also in this case we distinguish four sub-cases depending on which vertex is
981
+ a spine vertex for each edge. As in Case 1, we give here only the first sub-case,
982
+ while the others can be found in the appendix.
983
+ Case 2.a:
984
+ vi1 and vi2 are spine vertices.
985
+ Since vg2 is a vertex in the
986
+ lower part of Γ2, it must be g2 = r2 + d2(∆2 − 1) + α2, for some α2 such that
987
+ 0 ≤ α2 < ∆2 − 1. If vg2 coincides with vi1, as explained above, it must be
988
+ i1 = g2 − n. Combining the expression of g2 with Eq. (5) we obtain:
989
+ r2 − j1 = (qc1 − d2)(∆2 − 1) − α2 + n.
990
+ (11)
991
+ Concerning vg1, we have:
992
+ gm
993
+ 1 ≤ g1 ≤ gM
994
+ 1 ;
995
+ with gm
996
+ 1 = r1 + d1(∆1 − 1), gM
997
+ 1
998
+ = r1 + (d1 + 1)(∆1 − 1) for some d1 ∈ N such
999
+ that c1 + d1 =
1000
+ � σ1
1001
+ 2
1002
+
1003
+ − 1, where σ1 is the number of spine vertices of C1.
1004
+ We prove that i2 < gm
1005
+ 1 , which implies i2 ̸= g1. To have i2 < gm
1006
+ 1 it must be:
1007
+ j2 + c2(∆2 − 1) < r1 + d1(∆1 − 1)
1008
+ j2 + c2(∆2 − 1) < r1 + qd1(∆2 − 1)
1009
+ j2 − r1 < (qd1 − c2)(∆2 − 1).
1010
+ (12)
1011
+ Since rl = jl + n−(∆l−1)(σl
1012
+ mod 2)
1013
+ 2
1014
+ , for l = 1, 2, Eq. (11) can be rewritten as:
1015
+ j2 − j1 = (qc1 − d2)(∆2 − 1) − α2 + n
1016
+ 2 + (∆2 − 1)(σ2
1017
+ mod 2)
1018
+ 2
1019
+ ,
1020
+ (13)
1021
+ while Eq. (12) can be rewritten as:
1022
+ j2 − j1 <
1023
+
1024
+ (qd1 − c2) − q(σ1
1025
+ mod 2)
1026
+ 2
1027
+
1028
+ (∆2 − 1) + n
1029
+ 2 .
1030
+ (14)
1031
+ Combining Eq. (13) and Eq. (14) we obtain:
1032
+ qc1 − d2 < (qd1 − c2) − (σ2
1033
+ mod 2)
1034
+ 2
1035
+ − q(σ1
1036
+ mod 2)
1037
+ 2
1038
+ +
1039
+ α2
1040
+ ∆2 − 1.
1041
+ 16
1042
+
1043
+ Since cl + dl =
1044
+ � σl
1045
+ 2
1046
+
1047
+ − 1, we have dl =
1048
+ σl+1(σl
1049
+ mod 2)
1050
+ 2
1051
+ − cl − 1, for l = 1, 2;
1052
+ replacing d1 and d2 in the previous equation, we obtain:
1053
+ qc1 − σ2
1054
+ 2 − σ2
1055
+ mod 2
1056
+ 2
1057
+ + c2 + 1 < qσ1
1058
+ 2
1059
+ + q(σ1
1060
+ mod 2)
1061
+ 2
1062
+ − qc1 − q − c2−
1063
+ − σ2
1064
+ mod 2
1065
+ 2
1066
+ − q(σ1
1067
+ mod 2)
1068
+ 2
1069
+ +
1070
+ α2
1071
+ ∆2 − 1
1072
+ which, considering that σ2 =
1073
+ n−2
1074
+ ∆2−1 = q(n−2)
1075
+ ∆1−1 = qσ1, implies:
1076
+ qc1 − qσ1
1077
+ 2
1078
+ + c2 < −q + 1
1079
+ 2
1080
+ +
1081
+ α2
1082
+ 2(∆2 − 1)
1083
+ (15)
1084
+ In summary, to have iM
1085
+ 2
1086
+ < gm
1087
+ 1 Eq. (15) must hold. On the other hand, from
1088
+ Eq. (13) and from the hypothesis that j2 − j1 <
1089
+ n−(∆1−1)
1090
+ 2
1091
+ =
1092
+ n−q(∆2−1)
1093
+ 2
1094
+ we
1095
+ obtain:
1096
+ qc1 − d2 + 1
1097
+ 2(σ2
1098
+ mod 2) < −q
1099
+ 2 +
1100
+ α2
1101
+ ∆2 − 1.
1102
+ Replacing again d2 with σ2+1(σ2
1103
+ mod 2)
1104
+ 2
1105
+ − c2 − 1, we obtain:
1106
+ qc1 − qσ1
1107
+ 2
1108
+ + c2 < −q + 2
1109
+ 2
1110
+ +
1111
+ α2
1112
+ ∆2 − 1.
1113
+ (16)
1114
+ We have that − q
1115
+ 2 − 1 +
1116
+ α2
1117
+ ∆2−1 < − q
1118
+ 2 − 1
1119
+ 2 +
1120
+ α2
1121
+ 2(∆2−1), since
1122
+ α2
1123
+ 2(∆2−1) < 1
1124
+ 2.
1125
+ In other words, Eq. (16) implies that Eq. (15) holds and therefore that
1126
+ i2 < gm
1127
+ 1 and i2 ̸= g1.
1128
+ Theorem 4. Let C1, C2, . . . , Ch be h caterpillars such that Ci is ∆i-regular,
1129
+ ∆i − 1 is a multiple of ∆i+1 − 1, with 1 ≤ i < h, and ∆i ≤ n − h (for i =
1130
+ 1, 2, . . . , h). If n ≥ 2h + (∆1 − 1), then there exists a k-planar packing with
1131
+ k ∈ O(∆1h + h2).
1132
+ Proof. For each Ci, with 1 ≤ i ≤ h, we compute a zig-zag drawing Γi with
1133
+ starting vertex vi. Notice that, given two caterpillars Cj1 and Cj2 with 1 ≤
1134
+ j1 < j2 ≤ h, we have that ∆j1 − 1 is a multiple of ∆j2 − 1, and the zig-zag
1135
+ drawings Γj1 and Γj2 have starting vertices vj1 and vj2, respectively. Hence,
1136
+ 0 < j2 − j1 < h and by hypothesis h ≤ n−(∆1−1)
1137
+ 2
1138
+ . Hence, Lemma 4 holds for
1139
+ every pair of caterpillars and the union of all zig-zag drawings Γ1, Γ2, . . . , Γh is
1140
+ a valid packing of C1, C2, . . . , Ch.
1141
+ The proof of the bound on the number of crossings along an edge is the same
1142
+ as the one of Theorem 2, considering that ∆l ≤ ∆1 and that jl − j1 = l − 1 for
1143
+ every 2 ≤ l ≤ h.
1144
+ 17
1145
+
1146
+ 5
1147
+ Lower bounds
1148
+ In this section we first give a general lower bound on the value of k for k-planar
1149
+ h-packings; we then increase this lower bound for some small values of h.
1150
+ Theorem 5. Every k-planar h-packing of h graphs with n vertices and m edges
1151
+ is such that k ≥
1152
+ h2m2
1153
+ 14.6n2 .
1154
+ Proof. The number of edges of a k-planar graph with n vertices is at most
1155
+ 3.81
1156
+
1157
+ k ·n, for k ≥ 2 [1]. Since the h graphs have h·m edges in total, a k-planar
1158
+ packing of these graphs can exist only if h ≤ 3.81
1159
+
1160
+ k n
1161
+ m, i.e., if k ≥
1162
+ h2m2
1163
+ 14.6n2 .
1164
+ Since for a tree m = n − 1, we have the following.
1165
+ Corollary 1. Every k-planar h-packing of h trees is such that k ≥
1166
+ h2
1167
+ 58.4.
1168
+ We now refine the lower bound above for small values of h in an h-placement
1169
+ of caterpillars. Specifically we show that for values of h equal to 3, 4, and 5 the
1170
+ corresponding lower bounds are 2, 3, and 5, respectively. Note that for all these
1171
+ cases the lower bound implied by Corollary 1 is 1.
1172
+ Theorem 6. For h = 3, 4 there exists a caterpillar C with at least h+7 vertices
1173
+ for which every k-planar h-placement of C is such that k ≥ h − 1. For h = 5
1174
+ there exists a caterpillar C with at least 24 vertices for which every k-planar
1175
+ 5-placement of C is such that k ≥ h.
1176
+ Proof. Case h = 3, 4. Let n be an integer such that n ≥ h + 7, and let Cn,h be
1177
+ the n-vertex caterpillar shown in Fig. 7. Notice that the vertex of Cn,h denoted
1178
+ as v in Fig. 7 has degree n − h; we call it the center of Cn,h. Consider any
1179
+ h-placement of Cn,h into a graph G and denote as vi the vertex of G which the
1180
+ center of Ci is mapped to (i = 1, 2, . . . , h). The vertices v1, v2, . . . , vh must be
1181
+ distinct because, if two centers were mapped to the same vertex of G then this
1182
+ vertex would have degree larger than n − 1. Namely, if two centers are mapped
1183
+ to the same vertex, this vertex has degree 2n − 2h which is larger than n − 1
1184
+ if n > 2h − 1, i.e., if h + 7 > 2h − 1, which is true for h < 6. Since each vi
1185
+ (1 ≤ i ≤ h) has degree n − h in Ci and degree 1 in each of the h − 1 other
1186
+ caterpillars, its degree in G is n−1. Thus, G contains Kh,n−h. Thus, for h = 3,
1187
+ G contains K3,7 (n ≥ 10 in this case), which is not 1-planar [7]; for h = 4, G
1188
+ contains K4,7 (n ≥ 11 in this case), which is not 2-planar [4]. The case h = 5 is
1189
+ analogous with K5,19, which is not 4-planar [3].
1190
+ 6
1191
+ Concluding Remarks and Open Problems
1192
+ This paper studied the placement and the packing of caterpillars into k-planar
1193
+ graphs. It proved necessary and sufficient conditions for the h-placement of ∆-
1194
+ regular caterpillars in a k-planar graph and sufficient conditions for the packing
1195
+ of a set of ∆1-, ∆2-, . . . , ∆h-regular caterpillars with k ∈ O(∆1h2) (∆1 is the
1196
+ 18
1197
+
1198
+ . . .
1199
+ . . .
1200
+ v
1201
+ h + 2
1202
+ h
1203
+ n − h − 2
1204
+ Cn,h
1205
+ Figure 7:
1206
+ A caterpillar as described in the proof of Theorem 6.
1207
+ maximum vertex degree in the set). The work in this paper contributes to the
1208
+ rich literature concerning the placement and the packing problem in planar and
1209
+ non-planar host graphs and it specifically relates with a recent re-visitation of
1210
+ these questions in the beyond-planar context.
1211
+ Many open problems naturally arise from the research in this paper. We
1212
+ conclude the paper by listing some of those that, in our opinion, are among the
1213
+ most interesting.
1214
+ • Extend the characterization of Theorem 2 to the placement of caterpillars
1215
+ that are not ∆-regular.
1216
+ • Theorems 4 and 3 give sufficient conditions for the k-planar packing of
1217
+ some families of caterpillars. It would be interesting to give a complete
1218
+ characterization of the packability of these families into k-planar graphs.
1219
+ • Theorem 6 improves the lower bound of Theorem 5 for caterpillars that
1220
+ are not ∆-regular. It would be interesting to find a similar result with
1221
+ ∆-regular caterpillars.
1222
+ Finally, we point out that one could investigate what graphs can be packed/placed
1223
+ into a k-planar graph for a given value of k, instead of studying how k varies with
1224
+ the number h and the vertex degree of the caterpillars that are packed/placed.
1225
+ While the interested reader can refer to [3] for results with k = 1, the following
1226
+ theorem gives a preliminary result for k = 2 (see the appendix for a proof).
1227
+ Notice that Eq. (4) in the proof of Theorem 2 would give upper bounds in the
1228
+ range [86, 137] for the caterpillars considered by the following theorem.
1229
+ Theorem 7. A ∆-regular caterpillar with 4 ≤ ∆ ≤ 7 admits a 2-planar 3-
1230
+ placement.
1231
+ References
1232
+ [1] Eyal Ackerman. On topological graphs with at most four crossings per
1233
+ edge. Computational Geometry, 85:101574, 2019.
1234
+ [2] Oswin Aichholzer, Thomas Hackl, Matias Korman, Marc van Kreveld,
1235
+ Maarten L¨offler, Alexander Pilz, Bettina Speckmann, and Emo Welzl.
1236
+ 19
1237
+
1238
+ Packing plane spanning trees and paths in complete geometric graphs. In-
1239
+ formation Processing Letters, 124:35 – 41, 2017.
1240
+ [3] Patrizio Angelini, Michael A. Bekos, Michael Kaufmann, Philipp Kinder-
1241
+ mann, and Thomas Schneck. 1-fan-bundle-planar drawings of graphs. The-
1242
+ oretical Computer Science, 723:23–50, 2018.
1243
+ [4] Patrizio Angelini, Michael A. Bekos, Michael Kaufmann, and Thomas
1244
+ Schneck.
1245
+ Efficient generation of different topological representations of
1246
+ graphs beyond-planarity. Journal of Graph Algorithms and Applications,
1247
+ 24(4):573–601, 2020.
1248
+ [5] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tol-
1249
+ lis. Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-
1250
+ Hall, 1999.
1251
+ [6] B´ela Bollob´as and Stephen E. Eldridge. Packings of graphs and applications
1252
+ to computational complexity.
1253
+ J. Comb. Theory, Ser. B, 25(2):105–124,
1254
+ 1978.
1255
+ [7] J´ulius Czap and D´avid Hud´ak. 1-planarity of complete multipartite graphs.
1256
+ Discrete Applied Mathematics, 160(4):505–512, 2012.
1257
+ [8] Felice De Luca, Emilio Di Giacomo, Seok-Hee Hong, Stephen G. Kobourov,
1258
+ William Lenhart, Giuseppe Liotta, Henk Meijer, Alessandra Tappini, and
1259
+ Stephen K. Wismath. Packing trees into 1-planar graphs. J. Graph Algo-
1260
+ rithms Appl., 25(2):605–624, 2021.
1261
+ [9] Walter Didimo, Giuseppe Liotta, and Fabrizio Montecchiani.
1262
+ A survey
1263
+ on graph drawing beyond planarity. ACM Comput. Surv., 52(1):4:1–4:37,
1264
+ 2019.
1265
+ [10] P. Erd˝os. Extremal problems in graph theory. In Theory of Graphs and its
1266
+ Applications, Proc. Sympos. Smolenice, pages 29–36, 1964.
1267
+ [11] Fabrizio Frati. Planar packing of diameter-four trees. In Proceedings of
1268
+ the 21st Annual Canadian Conference on Computational Geometry, pages
1269
+ 95–98, 2009.
1270
+ [12] Fabrizio Frati, Markus Geyer, and Michael Kaufmann. Planar packing of
1271
+ trees and spider trees. Inf. Process. Lett., 109(6):301–307, 2009.
1272
+ [13] Alfredo Garc´ıa Olaverri, M. Carmen Hernando, Ferran Hurtado, Marc Noy,
1273
+ and Javier Tejel.
1274
+ Packing trees into planar graphs.
1275
+ Journal of Graph
1276
+ Theory, 40(3):172–181, 2002.
1277
+ [14] Markus Geyer, Michael Hoffmann, Michael Kaufmann, Vincent Kusters,
1278
+ and Csaba D. T´oth.
1279
+ Planar packing of binary trees.
1280
+ In WADS 2013,
1281
+ volume 8037 of LNCS, pages 353–364. Springer, 2013.
1282
+ 20
1283
+
1284
+ [15] Markus Geyer, Michael Hoffmann, Michael Kaufmann, Vincent Kusters,
1285
+ and Csaba D. T´oth. The planar tree packing theorem. JoCG, 8(2):109–
1286
+ 177, 2017.
1287
+ [16] Andr´as Gy´arf´as and Jen˝o Lehel. Packing trees of different order into Kn. In
1288
+ Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), volume 1,
1289
+ pages 463–469. North-Holland New York, 1978.
1290
+ [17] Sean P. Haler and Hong Wang. Packing four copies of a tree into a complete
1291
+ graph. Australas. J Comb., 59:323–332, 2014. URL: http://ajc.maths.
1292
+ uq.edu.au/pdf/59/ajc_v59_p323.pdf.
1293
+ [18] S.M. Hedetniemi, Stephen Hedetniemi, and P.J. Slater. A note on packing
1294
+ two trees into Kn. Ars Combinatoria, 11, 01 1981.
1295
+ [19] Seok-Hee Hong and Takeshi Tokuyama, editors. Beyond Planar Graphs.
1296
+ Springer, 2020. doi:10.1007/978-981-15-6533-5.
1297
+ [20] Michael Kaufmann and Dorothea Wagner, editors. Drawing Graphs, Meth-
1298
+ ods and Models, volume 2025 of Lecture Notes in Computer Science.
1299
+ Springer, 2001. doi:10.1007/3-540-44969-8.
1300
+ [21] Stephen G. Kobourov, Giuseppe Liotta, and Fabrizio Montecchiani. An
1301
+ annotated bibliography on 1-planarity. Computer Science Review, 25:49 –
1302
+ 67, 2017.
1303
+ [22] Maryvonne Mah´eo, Jean-Fran¸cois Sacl´e, and Mariusz Wozniak.
1304
+ Edge-
1305
+ disjoint placement of three trees. Eur. J. Comb., 17(6):543–563, 1996.
1306
+ [23] Takao Nishizeki and Md. Saidur Rahman.
1307
+ Planar Graph Drawing, vol-
1308
+ ume 12 of Lecture Notes Series on Computing.
1309
+ World Scientific, 2004.
1310
+ doi:10.1142/5648.
1311
+ [24] Yoshiaki Oda and Katsuhiro Ota. Tight planar packings of two trees. In
1312
+ 22nd European Workshop on Computational Geometry, 2006.
1313
+ [25] Norbert Sauer and Joel Spencer. Edge disjoint placement of graphs. J.
1314
+ Comb. Theory, Ser. B, 25(3):295–302, 1978.
1315
+ [26] S. K. Teo and H. P. Yap. Packing two graphs of order n having total size
1316
+ at most 2n − 2. Graphs Comb., 6(2):197–205, 1990.
1317
+ [27] Hong Wang and Norbert Sauer.
1318
+ Packing three copies of a tree into a
1319
+ complete graph. European Journal of Combinatorics, 14(2):137 – 142, 1993.
1320
+ [28] Mariusz Wozniak and A. Pawel Wojda. Triple placement of graphs. Graphs
1321
+ and Combinatorics, 9(1):85–91, 1993.
1322
+ [29] Andrzej Zak. A note on k-placeable graphs. Discret. Math., 311(22):2634–
1323
+ 2636, 2011. doi:10.1016/j.disc.2011.08.002.
1324
+ 21
1325
+
1326
+ A
1327
+ Missing cases for the proof of Lemma 4
1328
+ Case 1.b: vg1 and vg2 are spine vertices. By Property 2 we have, for some
1329
+ d1, d2 ∈ N:
1330
+ g1 = r1 + d1(∆1 − 1) = r1 + qd1(∆2 − 1).
1331
+ (17)
1332
+ and
1333
+ g2 = r2 + d2(∆2 − 1).
1334
+ (18)
1335
+ If vg1 coincides with vg2, we have g1 = g2; from Eq. (17) and Eq. (18) we
1336
+ obtain:
1337
+ r2 − r1 = (qd1 − d2)(∆2 − 1).
1338
+ (19)
1339
+ Concerning vi1 and vi2, we have:
1340
+ im
1341
+ 1 ≤ i1 ≤ iM
1342
+ 1 ;
1343
+ im
1344
+ 2 ≤ i2 ≤ iM
1345
+ 2 .
1346
+ with im
1347
+ l = il + cl(∆l − 1), iM
1348
+ l
1349
+ = il + (cl + 1)(∆l − 1) for some cl ∈ N such that
1350
+ cl + dl =
1351
+ � σl
1352
+ 2
1353
+
1354
+ − 1, where σl is the number of spine vertices of Cl, for l = 1, 2.
1355
+ We prove that iM
1356
+ 1 < im
1357
+ 2 , which implies i1 ̸= i2. To have iM
1358
+ 1 < im
1359
+ 2 it must be:
1360
+ j1 + (c1 + 1)(∆1 − 1) < j2 + c2(∆2 − 1)
1361
+ j1 + q(c1 + 1)(∆2 − 1) < j2 + c2(∆2 − 1)
1362
+ j2 − j1 > (qc1 + q − c2)(∆2 − 1).
1363
+ (20)
1364
+ Since rl = jl + n−(∆l−1)(σl
1365
+ mod 2)
1366
+ 2
1367
+ , for l = 1, 2, Eq. (19) can be rewritten as:
1368
+ j2 − j1 =
1369
+
1370
+ (qd1 − d2) + (σ2
1371
+ mod 2)
1372
+ 2
1373
+ − q(σ1
1374
+ mod 2)
1375
+ 2
1376
+
1377
+ (∆2 − 1).
1378
+ (21)
1379
+ Combining Eq. (21) and Eq. (20) we obtain:
1380
+ c2 − qc1 − q > −1
1381
+ 2.
1382
+ (22)
1383
+ In summary, to have iM
1384
+ 1
1385
+ < im
1386
+ 2 Eq. (22) must hold. On the other hand, from
1387
+ Eq. (21) and from the hypothesis that j2 − j1 > 0 we obtain c2 − qc1 − q > −1
1388
+ which, since c2 − qc1 − q is integer, can be rewritten as c2 − qc1 − q ≥ 0. This
1389
+ implies that Eq. (22) holds and therefore that iM
1390
+ 1 < im
1391
+ 2 and i1 ̸= i2.
1392
+ Case 1.c: vi1 and vg2 are spine vertices. By Property 2 we have, for some
1393
+ c1 ∈ N:
1394
+ i1 = j1 + c1(∆1 − 1) = j1 + qc1(∆2 − 1).
1395
+ (23)
1396
+ We also have, for some c2 ∈ N and 0 ≤ α2 < ∆2 − 1:
1397
+ i2 = j2 + c2(∆2 − 1) + α2.
1398
+ (24)
1399
+ 22
1400
+
1401
+ If vi1 coincides with vi2, we have i1 = i2; from Eq. (23) and Eq. (24) we
1402
+ obtain:
1403
+ j2 − j1 = (qc1 − c2)(∆2 − 1) − α2.
1404
+ (25)
1405
+ Concerning vg1, we have:
1406
+ gm
1407
+ 1 ≤ g1 ≤ gM
1408
+ 1 ;
1409
+ with gm
1410
+ 1 = r1 + d1(∆1 − 1), gM
1411
+ 1
1412
+ = r1 + (d1 + 1)(∆1 − 1) for some d1 ∈ N such
1413
+ that c1 + d1 =
1414
+ � σ1
1415
+ 2
1416
+
1417
+ − 1, where σ1 is the number of spine vertices of C1.
1418
+ Since vg2 is a vertex in the lower part of Γ2, it must be g2 = r2 + d2(∆2 − 1).
1419
+ We prove that gM
1420
+ 1
1421
+ < g2, which implies g1 ̸= g2. To have gM
1422
+ 1
1423
+ < g2 it must be:
1424
+ r1 + (d1 + 1)(∆1 − 1) < r2 + d2(∆2 − 1)
1425
+ r1 + q(d1 + 1)(∆2 − 1) < r2 + d2(∆2 − 1)
1426
+ r2 − r1 > (qd1 + q − d2)(∆2 − 1).
1427
+ (26)
1428
+ Since rl = jl + n−(∆l−1)(σl
1429
+ mod 2)
1430
+ 2
1431
+ , for l = 1, 2, Eq. (26) can be rewritten as:
1432
+ j2 − j1 >
1433
+
1434
+ (qd1 + q − d2) + (σ2
1435
+ mod 2)
1436
+ 2
1437
+ − q(σ1
1438
+ mod 2)
1439
+ 2
1440
+
1441
+ (∆2 − 1).
1442
+ (27)
1443
+ Combining Eq. (25) and Eq. (27) we obtain:
1444
+ qc1 − c2 −
1445
+ α2
1446
+ ∆2 − 1 > (qd1 + q − d2) + (σ2
1447
+ mod 2)
1448
+ 2
1449
+ − q(σ1
1450
+ mod 2)
1451
+ 2
1452
+ .
1453
+ Since cl + dl =
1454
+ � σl
1455
+ 2
1456
+
1457
+ − 1, we have dl =
1458
+ σl+1(σl
1459
+ mod 2)
1460
+ 2
1461
+ − cl − 1, for l = 1, 2;
1462
+ replacing d1 and d2 in the previous equation, we obtain:
1463
+ qc1 − c2 −
1464
+ α2
1465
+ ∆2 − 1 > qσ1
1466
+ 2
1467
+ + q(σ1
1468
+ mod 2)
1469
+ 2
1470
+ − qc1 − q + q − σ2
1471
+ 2 − 1(σ2
1472
+ mod 2)
1473
+ 2
1474
+ + c2+
1475
+ + 1 + σ2
1476
+ mod 2
1477
+ 2
1478
+ − q(σ1
1479
+ mod 2)
1480
+ 2
1481
+ which, considering that σ2 =
1482
+ n−2
1483
+ ∆2−1 = q(n−2)
1484
+ ∆1−1 = qσ1, implies:
1485
+ qc1 − c2 > 1
1486
+ 2 +
1487
+ α2
1488
+ 2(∆2 − 1)
1489
+ (28)
1490
+ In summary, to have gM
1491
+ 1
1492
+ < g2 Eq. (28) must hold. On the other hand, from
1493
+ Eq. (25) and from the hypothesis that j2 −j1 > 0 we obtain (qc1 −c2)(∆2 −1)−
1494
+ α2 > 0 which, since (∆2 − 1) > 0, implies qc1 − c2 >
1495
+ α2
1496
+ ∆2−1. Since 0 ≤
1497
+ α2
1498
+ ∆2−1 < 1
1499
+ and qc1 − c2 is integer, we have qc1 − c2 ≥ 1. This implies that Eq. (28) holds
1500
+ and therefore that gM
1501
+ 1
1502
+ < g2 and g1 ̸= g2.
1503
+ Case 1.d: vg1 and vi2 are spine vertices. By Property 2 we have, for some
1504
+ c2 ∈ N:
1505
+ i2 = j2 + c2(∆2 − 1).
1506
+ (29)
1507
+ 23
1508
+
1509
+ We also have, for some c1 ∈ N and 0 ≤ α1 < ∆2 − 1:
1510
+ i1 = j1 + c1(∆1 − 1) + α1 = j1 + qc1(∆2 − 1) + α1.
1511
+ (30)
1512
+ If vi1 coincides with vi2, we have i1 = i2; from Eq. (30) and Eq. (29) we
1513
+ obtain:
1514
+ j2 − j1 = (qc1 − c2)(∆2 − 1) + α1.
1515
+ (31)
1516
+ Concerning vg2, we have:
1517
+ gm
1518
+ 2 ≤ g2 ≤ gM
1519
+ 2 .
1520
+ with gm
1521
+ 2 = r2 + d2(∆2 − 1), gM
1522
+ 2
1523
+ = r2 + (d2 + 1)(∆2 − 1) for some d2 ∈ N such
1524
+ that c2 + d2 =
1525
+ � σ2
1526
+ 2
1527
+
1528
+ − 1, where σ2 is the number of spine vertices of C2.
1529
+ Since vg1 is a vertex in the lower part of Γ1, it must be g1 = r1 + d1(∆1 − 1).
1530
+ We prove that g1 < gm
1531
+ 2 , which implies g1 ̸= g2. To have g1 < gm
1532
+ 2 it must be:
1533
+ r1 + d1(∆1 − 1) < r2 + d2(∆2 − 1)
1534
+ r1 + qd1(∆2 − 1) < r2 + d2(∆2 − 1)
1535
+ r2 − r1 > (qd1 − d2)(∆2 − 1).
1536
+ (32)
1537
+ Since rl = jl + n−(∆l−1)(σl
1538
+ mod 2)
1539
+ 2
1540
+ , for l = 1, 2, Eq. (32) can be rewritten as:
1541
+ j2 − j1 >
1542
+
1543
+ (qd1 − d2) + (σ2
1544
+ mod 2)
1545
+ 2
1546
+ − q(σ1
1547
+ mod 2)
1548
+ 2
1549
+
1550
+ (∆2 − 1).
1551
+ (33)
1552
+ Combining Eq. (31) and Eq. (33) we obtain:
1553
+ qc1 − c2 +
1554
+ α1
1555
+ ∆2 − 1 > (qd1 − d2) + (σ2
1556
+ mod 2)
1557
+ 2
1558
+ − q(σ1
1559
+ mod 2)
1560
+ 2
1561
+ .
1562
+ Since cl + dl =
1563
+ � σl
1564
+ 2
1565
+
1566
+ − 1, we have dl =
1567
+ σl+1(σl
1568
+ mod 2)
1569
+ 2
1570
+ − cl − 1, for l = 1, 2;
1571
+ replacing d1 and d2 in the previous equation, we obtain:
1572
+ qc1 − c2 +
1573
+ α1
1574
+ ∆2 − 1 > qσ1
1575
+ 2
1576
+ + q(σ1
1577
+ mod 2)
1578
+ 2
1579
+ − qc1 − q − σ2
1580
+ 2 − 1(σ2
1581
+ mod 2)
1582
+ 2
1583
+ + c2+
1584
+ + 1 + σ2
1585
+ mod 2
1586
+ 2
1587
+ − q(σ1
1588
+ mod 2)
1589
+ 2
1590
+ which, considering that σ2 =
1591
+ n−2
1592
+ ∆2−1 = q(n−2)
1593
+ ∆1−1 = qσ1, implies:
1594
+ qc1 − c2 > 1 − q
1595
+ 2
1596
+
1597
+ α1
1598
+ 2(∆2 − 1)
1599
+ (34)
1600
+ In summary, to have g1 < gm
1601
+ 2
1602
+ Eq. (34) must hold. On the other hand, from
1603
+ Eq. (31) and from the hypothesis that j2 −j1 > 0 we obtain (qc1 −c2)(∆2 −1)+
1604
+ α1 > 0 which, since (∆2−1) > 0, implies qc1−c2 > −
1605
+ α1
1606
+ ∆2−1. Since 0 ≤
1607
+ α1
1608
+ ∆2−1 < 1
1609
+ and qc1 − c2 is integer, we have qc1 − c2 > 0. Since q is a positive integer, this
1610
+ implies that Eq. (34) holds and therefore that g1 < gm
1611
+ 2 and g1 ̸= g2.
1612
+ 24
1613
+
1614
+ Case 2.b: vg1 and vg2 are spine vertices. Since vg2 is a vertex in the lower
1615
+ part of Γ2, it must be g2 = r2+d2(∆2−1). If vg2 coincides with vi1, as explained
1616
+ above, it must be i1 = g2 − n. Combining the expression of g2 with Eq. (30) we
1617
+ obtain:
1618
+ r2 − j1 = (qc1 − d2)(∆2 − 1) + α1 + n.
1619
+ (35)
1620
+ Concerning vi2, we have:
1621
+ im
1622
+ 2 ≤ i2 ≤ iM
1623
+ 2 ;
1624
+ with iM
1625
+ 2 = j2 + (c2 + 1)(∆2 − 1) for some c2 ∈ N such that c2 + d2 =
1626
+ � σ2
1627
+ 2
1628
+
1629
+ − 1,
1630
+ where σ2 is the number of spine vertices of C2.
1631
+ We prove that iM
1632
+ 2 < g1, which implies i2 ̸= g1. To have iM
1633
+ 2 < g1 it must be:
1634
+ j2 + (c2 + 1)(∆2 − 1) < r1 + d1(∆1 − 1)
1635
+ j2 + (c2 + 1)(∆2 − 1) < r1 + qd1(∆2 − 1)
1636
+ j2 − r1 < (qd1 − c2 − 1)(∆2 − 1).
1637
+ (36)
1638
+ Since rl = jl + n−(∆l−1)(σl
1639
+ mod 2)
1640
+ 2
1641
+ , for l = 1, 2, Eq. (35) can be rewritten as:
1642
+ j2 − j1 = (qc1 − d2)(∆2 − 1)/α1 + n
1643
+ 2 + (∆2 − 1)(σ2
1644
+ mod 2)
1645
+ 2
1646
+ ,
1647
+ (37)
1648
+ while Eq. (36) can be rewritten as:
1649
+ j2 − j1 <
1650
+
1651
+ (qd1 − c2 − 1) − q(σ1
1652
+ mod 2)
1653
+ 2
1654
+
1655
+ (∆2 − 1) + n
1656
+ 2 .
1657
+ (38)
1658
+ Combining Eq. (37) and Eq. (38) we obtain:
1659
+ qc1 − d2 < (qd1 − c2 − 1) − (σ2
1660
+ mod 2)
1661
+ 2
1662
+ − q(σ1
1663
+ mod 2)
1664
+ 2
1665
+
1666
+ α1
1667
+ ∆2 − 1.
1668
+ Since cl + dl =
1669
+ � σl
1670
+ 2
1671
+
1672
+ − 1, we have dl =
1673
+ σl+1(σl
1674
+ mod 2)
1675
+ 2
1676
+ − cl − 1, for l = 1, 2;
1677
+ replacing d1 and d2 in the previous equation, we obtain:
1678
+ qc1 − σ2
1679
+ 2 − σ2
1680
+ mod 2
1681
+ 2
1682
+ + c2 + 1 + σ2
1683
+ mod 2
1684
+ 2
1685
+ +
1686
+ α1
1687
+ ∆2 − 1 < qσ1
1688
+ 2
1689
+ + q(σ1
1690
+ mod 2)
1691
+ 2
1692
+
1693
+ − qc1 − q − c2 − q(σ1
1694
+ mod 2)
1695
+ 2
1696
+ − 1
1697
+ which, considering that σ2 =
1698
+ n−2
1699
+ ∆2−1 = q(n−2)
1700
+ ∆1−1 = qσ1, implies:
1701
+ qc1 − qσ1
1702
+ 2
1703
+ + c2 + 1 < −q
1704
+ 2 −
1705
+ α1
1706
+ 2(∆2 − 1)
1707
+ (39)
1708
+ In summary, to have iM
1709
+ 2
1710
+ < gm
1711
+ 1 Eq. (39) must hold. On the other hand, from
1712
+ Eq. (37) and from the hypothesis that j2 − j1 <
1713
+ n−(∆1−1)
1714
+ 2
1715
+ =
1716
+ n−q(∆2−1)
1717
+ 2
1718
+ we
1719
+ obtain:
1720
+ qc1 − qσ1
1721
+ 2
1722
+ + c2 + 1 < −q
1723
+ 2 −
1724
+ α1
1725
+ ∆2 − 1.
1726
+ (40)
1727
+ 25
1728
+
1729
+ We have that − q
1730
+ 2 −
1731
+ α1
1732
+ ∆2−1 < − q
1733
+ 2 −
1734
+ α1
1735
+ 2(∆2−1), since
1736
+ α1
1737
+ 2(∆2−1) <
1738
+ 1
1739
+ 2. In other
1740
+ words, Eq. (40) implies that Eq. (39) holds and therefore that iM
1741
+ 2
1742
+ < g1 and
1743
+ i2 ̸= g1.
1744
+ Case 2.c: vi1 and vg2 are spine vertices. Since vg2 is a vertex in the lower
1745
+ part of Γ2, it must be g2 = r2+d2(∆2−1). If vg2 coincides with vi1, as explained
1746
+ above, it must be i1 = g2 − n. Combining the expression of g2 with Eq. (23) we
1747
+ obtain:
1748
+ r2 − j1 = (qc1 − d2)(∆2 − 1) + n.
1749
+ (41)
1750
+ Concerning vg1, we have:
1751
+ gm
1752
+ 1 ≤ g1 ≤ gM
1753
+ 1 ;
1754
+ with gm
1755
+ 1 = r1 + d1(∆1 − 1), gM
1756
+ 1
1757
+ = r1 + (d1 + 1)(∆1 − 1) for some d1 ∈ N such
1758
+ that c1 + d1 =
1759
+ � σ1
1760
+ 2
1761
+
1762
+ − 1, where σ1 is the number of spine vertices of C1.
1763
+ We prove that iM
1764
+ 2 < gm
1765
+ 1 , which implies i2 ̸= g1. To have iM
1766
+ 2 < gm
1767
+ 1 it must be:
1768
+ j2 + (c2 + 1)(∆2 − 1) < r1 + d1(∆1 − 1)
1769
+ j2 + (c2 + 1)(∆2 − 1) < r1 + qd1(∆2 − 1)
1770
+ j2 − r1 < (qd1 − c2 − 1)(∆2 − 1).
1771
+ (42)
1772
+ Since rl = jl + n−(∆l−1)(σl
1773
+ mod 2)
1774
+ 2
1775
+ , for l = 1, 2, Eq. (41) can be rewritten as:
1776
+ j2 − j1 = (qc1 − d2)(∆2 − 1) + n
1777
+ 2 + (∆2 − 1)(σ2
1778
+ mod 2)
1779
+ 2
1780
+ ,
1781
+ (43)
1782
+ while Eq. (42) can be rewritten as:
1783
+ j2 − j1 <
1784
+
1785
+ (qd1 − c2 − 1) − q(σ1
1786
+ mod 2)
1787
+ 2
1788
+
1789
+ (∆2 − 1) + n
1790
+ 2 .
1791
+ (44)
1792
+ Combining Eq. (43) and Eq. (44) we obtain:
1793
+ qc1 − d2 < (qd1 − c2 − 1) − (σ2
1794
+ mod 2)
1795
+ 2
1796
+ − q(σ1
1797
+ mod 2)
1798
+ 2
1799
+ .
1800
+ Since cl + dl =
1801
+ � σl
1802
+ 2
1803
+
1804
+ − 1, we have dl =
1805
+ σl+1(σl
1806
+ mod 2)
1807
+ 2
1808
+ − cl − 1, for l = 1, 2;
1809
+ replacing d1 and d2 in the previous equation, we obtain:
1810
+ qc1 − σ2
1811
+ 2 − σ2
1812
+ mod 2
1813
+ 2
1814
+ + c2 + 1 < qσ1
1815
+ 2
1816
+ + q(σ1
1817
+ mod 2)
1818
+ 2
1819
+ − qc1 − q − c2 − 1−
1820
+ − σ2
1821
+ mod 2
1822
+ 2
1823
+ − q(σ1
1824
+ mod 2)
1825
+ 2
1826
+ which, considering that σ2 =
1827
+ n−2
1828
+ ∆2−1 = q(n−2)
1829
+ ∆1−1 = qσ1, implies:
1830
+ qc1 − qσ1
1831
+ 2
1832
+ + c2 + 1 < −q
1833
+ 2
1834
+ (45)
1835
+ 26
1836
+
1837
+ In summary, to have iM
1838
+ 2
1839
+ < gm
1840
+ 1 Eq. (45) must hold. On the other hand, from
1841
+ Eq. (43) and from the hypothesis that j2 − j1 <
1842
+ n−(∆1−1)
1843
+ 2
1844
+ =
1845
+ n−q(∆2−1)
1846
+ 2
1847
+ we
1848
+ obtain:
1849
+ qc1 − d2 + 1
1850
+ 2(σ2
1851
+ mod 2) < −q
1852
+ 2.
1853
+ Replacing again d2 with σ2+1(σ2
1854
+ mod 2)
1855
+ 2
1856
+ − c2 − 1, we obtain:
1857
+ qc1 − qσ1
1858
+ 2
1859
+ + c2 + 1 < −q
1860
+ 2.
1861
+ (46)
1862
+ Since Eq. (45) is equivalent to Eq. (46), we can conclude that Eq. (45) holds
1863
+ and therefore that iM
1864
+ 2 < gm
1865
+ 1 and i2 ̸= g1.
1866
+ Case 2.d: vg1 and vi2 are spine vertices. Since vg1 is a vertex in the lower
1867
+ part of Γ1, it must be g1 = r1 + d1(∆1 − 1). If vg1 coincides with vi2, combining
1868
+ the expression of g1 with Eq. (6) we obtain:
1869
+ j2 − r1 = (qd1 − c2)(∆2 − 1).
1870
+ (47)
1871
+ Concerning vi1 vg2, we have:
1872
+ im
1873
+ 1 ≤ i1 ≤ iM
1874
+ 1 ;
1875
+ and
1876
+ gm
1877
+ 2 ≤ g2 ≤ gM
1878
+ 2 .
1879
+ with im
1880
+ 1 = j1 + c1(∆1 − 1) = j1 + qc1(∆2 − 1), gM
1881
+ 2
1882
+ = r2 + (d2 + 1)(∆2 − 1) − n
1883
+ for some d2 ∈ N such that c2 + d2 =
1884
+ � σ2
1885
+ 2
1886
+
1887
+ − 1, where σ2 is the number of spine
1888
+ vertices of C2.
1889
+ We prove that gM
1890
+ 2
1891
+ < im
1892
+ 1 , which implies g2 ̸= i1. To have gM
1893
+ 2
1894
+ < im
1895
+ 1 it must be:
1896
+ r2 + (d2 + 1)(∆2 − 1) − n < j1 + c1(∆1 − 1)
1897
+ r2 + (d2 + 1)(∆2 − 1) − n < j1 + qc1(∆2 − 1)
1898
+ r2 − j1 < (qc1 − d2 − 1)(∆2 − 1) + n(∆2 − 1).
1899
+ (48)
1900
+ Since rl = jl + n−(∆l−1)(σl
1901
+ mod 2)
1902
+ 2
1903
+ , for l = 1, 2, Eq. (47) can be rewritten as:
1904
+ j2 − j1 = (qd1 − c2)(∆2 − 1) − q(∆2 − 1)(σ1
1905
+ mod 2)
1906
+ 2
1907
+ + n
1908
+ 2 ,
1909
+ (49)
1910
+ while Eq. (48) can be rewritten as:
1911
+ j2 − j1 < (qc1 − d2 − 1)(∆2 − 1) + (∆2 − 1)(σ2
1912
+ mod 2)
1913
+ 2
1914
+ + n
1915
+ 2 .
1916
+ (50)
1917
+ Combining Eq. (49) and Eq. (50) we obtain:
1918
+ qd1 − c2 − q(σ1
1919
+ mod 2)
1920
+ 2
1921
+ < (qc1 − d2 − 1) + (σ2
1922
+ mod 2)
1923
+ 2
1924
+ .
1925
+ 27
1926
+
1927
+ Since cl + dl =
1928
+ � σl
1929
+ 2
1930
+
1931
+ − 1, we have dl =
1932
+ σl+1(σl
1933
+ mod 2)
1934
+ 2
1935
+ − cl − 1, for l = 1, 2;
1936
+ replacing d1 and d2 in the previous equation, we obtain:
1937
+ qσ1
1938
+ 2
1939
+ + q(σ1
1940
+ mod 2)
1941
+ 2
1942
+ − qc1 − q − c2 − q(σ1
1943
+ mod 2)
1944
+ 2
1945
+ < qc1 − σ2
1946
+ 2 − σ2
1947
+ mod 2
1948
+ 2
1949
+ +
1950
+ + c2 + 1 − 1 + σ2
1951
+ mod 2
1952
+ 2
1953
+ which, considering that σ2 =
1954
+ n−2
1955
+ ∆2−1 = q(n−2)
1956
+ ∆1−1 = qσ1, implies:
1957
+ 2
1958
+
1959
+ qc1 − qσ1
1960
+ 2
1961
+ + c2
1962
+
1963
+ > −q
1964
+ (51)
1965
+ In summary, to have gM
1966
+ 2
1967
+ < im
1968
+ 1 Eq. (51) must hold. On the other hand, from
1969
+ Eq. (49) and from the hypothesis that j2 − j1 <
1970
+ n−(∆1−1)
1971
+ 2
1972
+ =
1973
+ n−q(∆2−1)
1974
+ 2
1975
+ we
1976
+ obtain:
1977
+ qd1 − c2 − q
1978
+ 2(σ1
1979
+ mod 2) < −q
1980
+ 2.
1981
+ Replacing again d1 with σ1+1(σ1
1982
+ mod 2)
1983
+ 2
1984
+ − c1 − 1, we obtain:
1985
+ 2
1986
+
1987
+ qc1 − qσ1
1988
+ 2
1989
+ + c2
1990
+
1991
+ > −q.
1992
+ (52)
1993
+ Since Eq. (51) is equivalent to Eq. (52), we can conclude that Eq. (51) holds
1994
+ and therefore that gM
1995
+ 2
1996
+ < im
1997
+ 1 and g2 ̸= i1.
1998
+ B
1999
+ Proof of Theorem 7
2000
+ Theorem 7. A ∆-regular caterpillar with 4 ≤ ∆ ≤ 7 admits a 2-planar 3-
2001
+ placement.
2002
+ Proof. Let C1, C2, and C3 be three copies (shown in red, blue and green, respec-
2003
+ tively, in Fig. 8) of a ∆-regular caterpillar C with 4 ≤ ∆ ≤ 7. We denote the
2004
+ vertices of caterpillar Cj for j = 1, 2, 3 as follows; the spine vertices are denoted
2005
+ as vj
2006
+ 0, vj
2007
+ 1, . . . , vj
2008
+ c−1 in the order they appear along the spine; the leaves adjacent
2009
+ to vertex vj
2010
+ i (for i = 1, 2, . . . , c−1) are denoted as uj
2011
+ i,l with l = 0, 1, . . . , d, where
2012
+ d = ∆ − 2 if i = 0 or i = c − 1 and d = ∆ − 3 if 0 < i < c − 1.
2013
+ Let p0, p1, . . . , pn−1 be n points on a circle in clockwise order (with indices
2014
+ taken modulo n). To construct the packing, we compute a drawing for each
2015
+ caterpillar such that the vertices are mapped to points p1, p2, . . . , pn and the
2016
+ union of the three drawings is a 2-planar drawing. We describe the construction
2017
+ for ∆ = 4, 5, 6 (see also Figs. 8(a) to 8(c)); the construction in the case ∆ = 7
2018
+ is slightly different and it is shown in Fig. 8(d).
2019
+ Caterpillar C1 is drawn outside the circle so that vertex v1
2020
+ 0 is mapped to
2021
+ point p0, each vertex v1
2022
+ i , for i = 1, 2, . . . , c − 1 is mapped to pi(∆−1)+1, each
2023
+ leaf u1
2024
+ 0,l is mapped to the point pl+1, and each leaf u1
2025
+ i,l is mapped to the point
2026
+ pi(∆−1)+2+l. In other words, each vertex of the spine is followed clockwise by
2027
+ 28
2028
+
2029
+ ∆ = 4
2030
+ (a)
2031
+ ∆ = 5
2032
+ (b)
2033
+ ∆ = 6
2034
+ (c)
2035
+ ∆ = 7
2036
+ (d)
2037
+ Figure 8:
2038
+ 2-planar 3-placements of ∆-regular caterpillars.
2039
+ its leaves and the last of these leaves is followed by the next vertex of the spine.
2040
+ Caterpillar C2 is drawn inside the circle so that vertex v2
2041
+ i is mapped to the
2042
+ point immediately following clockwise the point hosting v1
2043
+ i and each leaf u2
2044
+ i,l is
2045
+ mapped to the point immediately following clockwise u1
2046
+ i,l. Clearly, the drawings
2047
+ of the first two caterpillars do not cross each other because they are on different
2048
+ sides of the circle; also, their union has no multiple edges. Concerning C3, the
2049
+ vertex v3
2050
+ i , for i = 0, 1, . . . , c−2 is mapped to the point that hosts u1
2051
+ i,d and u2
2052
+ i,d−1,
2053
+ i.e., the last leaf of v1
2054
+ i and the second last leaf of v2
2055
+ i ; the vertex v3
2056
+ c−1 is mapped
2057
+ to the point that hosts u1
2058
+ i,d−1 and u2
2059
+ i,d−2, i.e., the second last leaf of v1
2060
+ c−1 and
2061
+ the third last leaf of v2
2062
+ i . About this mapping, observe that if we draw the edges
2063
+ of the spine of C3 outside the circle, each edge of the spine of C3 intersects two
2064
+ consecutive edges of the spine of C1 and each edge of the spine of C1 intersects
2065
+ at most two consecutive edges of the spine of C3. To complete the drawing, we
2066
+ need to draw the leaves of C3. Consider two consecutive spine vertices v3
2067
+ i and
2068
+ v3
2069
+ i+1, with 0 ≤ i ≤ c − 2; between these two vertices there are ∆ − 2 points not
2070
+ yet used by C3, we connect the first two of these vertices in clockwise order to
2071
+ vi. Depending on the value of ∆, there remain 0, 1, or 2 points between vi and
2072
+ vi+1 not yet used by C3; we connect these points to vi+1. Notice that, there
2073
+ remain to map ∆ − 3 leaves adjacent to v3
2074
+ 0 and 3 leaves adjacent to v3
2075
+ c−1. On
2076
+ the other hand, there are ∆ points not yet used by C3 that are between v3
2077
+ c−1
2078
+ and v3
2079
+ 0 clockwise; we connect the three vertices following clockwise v3
2080
+ c−1 to v3
2081
+ c−1,
2082
+ and the remaining ones to v3
2083
+ 0. All the edges of C3 that are incident to leaves
2084
+ are drawn inside the circle. This mapping of C3 does not create multiple edges
2085
+ and gives rise to at most two crossings along the edges of C2 and C3.
2086
+ 29
2087
+
3tAzT4oBgHgl3EQfR_u4/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
3tE2T4oBgHgl3EQfjgeA/content/tmp_files/2301.03969v1.pdf.txt ADDED
@@ -0,0 +1,1533 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Exploring bulk viscous unified scenarios with Gravitational Waves Standard Sirens
2
+ Weiqiang Yang,1, ∗ Supriya Pan,2, 3, † Eleonora Di Valentino,4, ‡
3
+ Celia Escamilla-Rivera,5, § and Andronikos Paliathanasis3, 6, 7, ¶
4
+ 1Department of Physics, Liaoning Normal University, Dalian, 116029, P. R. China
5
+ 2Department of Mathematics, Presidency University, 86/1 College Street, Kolkata 700073, India
6
+ 3Institute of Systems Science, Durban University of Technology,
7
+ PO Box 1334, Durban 4000, Republic of South Africa
8
+ 4School of Mathematics and Statistics, University of Sheffield,
9
+ Hounsfield Road, Sheffield S3 7RH, United Kingdom
10
+ 5Instituto de Ciencias Nucleares, Universidad Nacional Aut´onoma de M´exico,
11
+ Circuito Exterior C.U., A.P. 70-543, M´exico D.F. 04510, M´exico
12
+ 6Instituto de Ciencias F´ısicas y Matem´aticas, Universidad Austral de Chile, Valdivia 5090000, Chile
13
+ 7Mathematical Physics and Computational Statistics Research Laboratory,
14
+ Department of Environment, Ionian University, Zakinthos 29100, Greece
15
+ We consider the unified bulk viscous scenarios and constrain them using the Cosmic Microwave
16
+ Background observations from Planck 2018 and the Pantheon sample from Type Ia Supernovae.
17
+ Then we generate the luminosity distance measurements from O(103) mock Gravitational Wave
18
+ Standard Sirens (GWSS) events for the proposed Einstein Telescope. We then combine these mock
19
+ luminosity distance measurements from the GWSS with the current cosmological probes in order to
20
+ forecast how the mock GWSS data could be effective in constraining these bulk viscous scenarios.
21
+ Our results show that a non-zero time dependent bulk viscosity in the universe sector is strongly
22
+ preferred by the current cosmological probes and will possibly be confirmed at many standard
23
+ deviations by the future GWSS measurements. We further mention that the addition of GWSS
24
+ data can significantly reduce the uncertainties of the key cosmological parameters obtained from
25
+ the usual cosmological probes employed in this work.
26
+ I.
27
+ INTRODUCTION
28
+ Understanding the nature of dark matter and dark en-
29
+ ergy has been a challenge for cosmologists. The standard
30
+ cosmological model, namely, the so-called Λ-Cold Dark
31
+ Matter (ΛCDM) model representing a mixture of two
32
+ non-interacting fluids − a positive cosmological constant
33
+ (Λ > 0) and a cold dark matter component, has un-
34
+ doubtedly proved its unprecedented success by explain-
35
+ ing a large span of astronomical data.
36
+ However, this
37
+ simplest cosmological scenario has some limitations. For
38
+ example, the cosmological constant problem [1] and the
39
+ coincidence problem [2] have already questioned the ex-
40
+ isting assumptions in the ΛCDM model, e.g. constant
41
+ energy density of the vacuum and the non-interacting na-
42
+ ture between Λ and CDM. These limitations motivated
43
+ the cosmologists to find alternative cosmological scenar-
44
+ ios beyond ΛCDM by relaxing the above assumptions,
45
+ and as a consequence, several new cosmological models
46
+ were introduced, see [3–12] for a review of various dark
47
+ energy and modified gravity models. Additionally, the
48
+ appearance of cosmological tensions at many standard
49
+ deviations between Planck [13] (assuming ΛCDM in the
50
+ background) and other cosmological probes, such as dis-
51
+ tance ladders [14–24] or weak lensing [25–29] and galaxy
52
53
54
+ ‡ e.divalentino@sheffield.ac.uk
55
56
57
+ cluster data [30–32] has further weakened the confidence
58
+ in the ΛCDM cosmological model [33–37]. Thus, the list
59
+ of cosmological models aiming to address the cosmolog-
60
+ ical tensions is increasing in time, see the review arti-
61
+ cles [38–44] and references therein. Given the fact that
62
+ the origin of dark matter and dark energy is not clearly
63
+ understood yet, thus, there is no reason to favor any par-
64
+ ticular cosmological theory over others. As a result, var-
65
+ ious ways have been proposed to interpret the dynamics
66
+ of the dark sector in terms of dark matter and dark en-
67
+ ergy.
68
+ The simplest assumption is the consideration of
69
+ independent evolution of these dark fluids. The general-
70
+ ization of the above consideration is the assumption of a
71
+ non-gravitational interaction between these dark sectors.
72
+ On the other hand, a heuristic approach is to consider a
73
+ unified dark fluid that can explain the dynamics of dark
74
+ energy and dark matter at cosmological scales. The at-
75
+ tempt to unify the dark sector of the Universe began long
76
+ back ago. The most simplest unified dark sector mod-
77
+ els can be constructed in the context of Einstein gravity
78
+ with the introduction of a generalized equation of state
79
+ p = F(ρ), where p and ρ are respectively the pressure and
80
+ energy density of the unified dark sector and F is an an-
81
+ alytic function of the energy density, ρ. The well known
82
+ unified cosmological models, such as the Chaplygin gas
83
+ model [45] and its successive generalizations, namely, the
84
+ generalized Chaplygin gas, modified Chaplygin gas, see
85
+ Refs. [46–57] and some other unified cosmological scenar-
86
+ ios as well [58–60] belong to this classification. While it
87
+ is essential to mention that a subset of the unified mod-
88
+ els has been diagnosed with exponential blowup in the
89
+ arXiv:2301.03969v1 [astro-ph.CO] 10 Jan 2023
90
+
91
+ 2
92
+ matter power spectrum which is not consistent with the
93
+ observations [61], however, this does not rule out the pos-
94
+ sibility of unified models aiming to cover a wide region
95
+ of the universe evolution because a new kind of unified
96
+ fluid may avoid such unphysical activities. The unified
97
+ cosmological models can also be developed by considering
98
+ a relation like p = G(H) where G is an analytic function
99
+ of H, the Hubble function of the Friedmann-Lemaˆıtre-
100
+ Robertson-Walker (FLRW) line element.
101
+ Apparently,
102
+ theories with p = F(ρ) and p = G(H) seem identical,
103
+ however, this is only true in spatially flat FLRW uni-
104
+ verse. For a curved universe, the two approaches are not
105
+ the same.
106
+ In the present work we are interested to study a partic-
107
+ ular class of unified models endowed with bulk viscosity.
108
+ The cosmological fluids allowing bulk viscosity as an ex-
109
+ tra ingredient can explain the accelerating expansion of
110
+ the universe, and hence they are also enlisted as possi-
111
+ ble alternatives to the standard ΛCDM cosmology in the
112
+ literature [62, 63].
113
+ Following an earlier work Ref. [64]
114
+ where an evidence of non-zero bulk viscosity was pre-
115
+ ferred by the current cosmological probes, in the present
116
+ article, we use the simulated Gravitational Waves Stan-
117
+ dard Sirens (GWSS) measurements from the Einstein
118
+ Telescope [65]1 in order to quantify the improvements
119
+ of the cosmological parameters, if any, from the future
120
+ GWSS measurements. As the gravitational waves (GW)
121
+ have opened a new window for astrophysics and cosmol-
122
+ ogy, therefore, it will be interesting to investigate the
123
+ contribution from the simulated GWSS data, once com-
124
+ bined with the current cosmological probes. This moti-
125
+ vated many investigators to use the mock GWSS data
126
+ matching the expected sensitivity of the Einstein Tele-
127
+ scope to constrain a class of cosmological models, see for
128
+ instance, [66–77]. In particular, the combined analysis of
129
+ simulated GWSS measurements from Einstein Telescope
130
+ and the standard cosmological probes has proven to be
131
+ very effective for a class of cosmological models, in the
132
+ sense that the error bars in the key cosmological param-
133
+ eters of these cosmological models are significantly re-
134
+ duced thanks to the mock GWSS dataset [70, 71, 74, 78–
135
+ 81], however, in some specific f(R) theories of gravity, the
136
+ generated mock GWSS from the Einstein Telescope may
137
+ not be very much helpful to give stringent constraints on
138
+ them during its first phase of running
139
+ [82]. Thus, one
140
+ may expect that the constraining power of the Einstein
141
+ Telescope may depend on the underlying cosmological
142
+ model. Aside from the future GWSS measurements from
143
+ the Einstein Telescope, one can also use the simulated
144
+ GWSS measurements from other GW observatories, such
145
+ as, Laser Interferometer Space Antenna (LISA) [83–86]
146
+ and DECi-heltz Interferometer Gravitational wave Ob-
147
+ servatory (DECIGO) [87, 88], TianQin [89]. In this ar-
148
+ ticle, we focus only on the simulated GWSS data from
149
+ 1 https://www.einsteintelescope.nl/en/
150
+ Einstein Telescope to constrain the bulk viscous unified
151
+ scenario.
152
+ The paper has been organized as follows: in Sec. II we
153
+ discuss the gravitational equations for the bulk viscous
154
+ scenario. Sec. III describes the observational data that
155
+ we have considered for the analysis in this work. Sec. IV
156
+ presents the observational constraints on the bulk vis-
157
+ cous models, and mainly we discuss how the inclusion
158
+ of gravitational waves data from the Einstein Telescope
159
+ improves the constraints. Finally, in Sec. V we present
160
+ the conclusions.
161
+ II.
162
+ REVISITING THE BULK VISCOUS
163
+ SCENARIOS: BACKGROUND AND
164
+ PERTURBATIONS
165
+ As usual, we consider the homogeneous and isotropic
166
+ space
167
+ time
168
+ described
169
+ by
170
+ the
171
+ Friedmann-Lemaˆıtre-
172
+ Robertson-Walker (FLRW) line element
173
+ ds2 = −dt2 + a2(t)
174
+
175
+ dr2
176
+ 1 − kr2 + r2 �
177
+ dθ2 + sin2 θdφ2��
178
+ ,
179
+ (1)
180
+ where a(t) is the expansion scale factor and k denotes the
181
+ spatial curvature of the universe. For k = 0, −1, +1, we
182
+ have three different geometries of the universe, namely,
183
+ spatially flat, open and closed, respectively. In this paper
184
+ we restrict ourselves to the spatially flat scenario where
185
+ we assume that (i) the gravitational sector is described
186
+ by the Einstein’s gravity, (ii) the matter sector of the uni-
187
+ verse consists of the relativistic radiation, non-relativistic
188
+ baryons and a unified bulk viscous fluid which combines
189
+ the effects of dark matter and dark energy, (iii) all the
190
+ fluids are non-interacting with each other. Within this
191
+ framework, we can write down the gravitational field
192
+ equations as follows (in the units where 8πG = 1)
193
+ H2 = 1
194
+ 3ρtot,
195
+ (2)
196
+ 2 ˙H + 3H2 = − ptot,
197
+ (3)
198
+ where an overhead dot indicates the derivative with re-
199
+ spect to the cosmic time t; H ≡ ˙a/a is the Hubble ex-
200
+ pansion rate; (ρtot, ptot) = (ρr +ρb +ρu, pr +pb +pu) are
201
+ the total energy density and total pressure of the cosmic
202
+ components in which (ρr, pr), (ρb, pb), (ρu, pu) are the en-
203
+ ergy density and pressure of radiation, baryons and the
204
+ unified fluid, respectively. The conservation equation for
205
+ each fluid follows the usual law ˙ρi + 3H(1 + wi)ρi = 0,
206
+ where the subscript i refers to radiation (i = r), baryons
207
+ (i = b) and the unified fluid (i = u) and wi are the stan-
208
+ dard barotropic state parameters: wr = pr/ρr = 1/3,
209
+ wb = pb/ρb = 0 and wu = pu/ρu = (γ − 1), where γ
210
+ is a constant parameter.
211
+ In general for different val-
212
+ ues of γ, say for instance, γ = 0, we realize a cosmo-
213
+ logical constant-like fluid endowed with the bulk viscos-
214
+ ity and similarly γ = 1 results in a dust-like fluid en-
215
+ dowed with the bulk viscosity.
216
+ As the nature of the
217
+
218
+ 3
219
+ fluid is not clearly understood and as the observational
220
+ data play an effective role to understand this nature,
221
+ thus, in order to be more transparent in this direction
222
+ we consider γ lying in the interval [−3, 3] which includes
223
+ both exotic (pu/ρu = (γ − 1) < −1/3) and non-exotic
224
+ (pu/ρu = (γ − 1) > −1/3 ) fluids. As already mentioned,
225
+ since the unified fluid has a bulk viscosity, therefore, it en-
226
+ joys an effective pressure [90]: peff = pu−uν
227
+ ;νη(ρu), where
228
+
229
+ ;µ is the expansion scalar of this fluid and η(ρu) > 0 is
230
+ the coefficient of the bulk viscosity. Thus, in the FLRW
231
+ background, the effective pressure of the bulk viscous
232
+ fluid reduces to
233
+ peff = pu − 3Hη(ρu).
234
+ (4)
235
+ Since there is no unique selection for the bulk viscous
236
+ coefficient, η(ρu), therefore, we consider a well known
237
+ choice for it in which the bulk viscous coefficient has a
238
+ power law evolution of the form [90–92]:
239
+ η(ρu) = αρm
240
+ u ,
241
+ (5)
242
+ where α is a positive constant and m is any real number.
243
+ Notice that for the case m = 0 we recover the scenario
244
+ with a constant bulk viscous coefficient. Now, with the
245
+ consideration of the bulk viscous coefficient in (5), the
246
+ effective pressure of the unified fluid can be expressed as
247
+ peff = (γ − 1)ρu −
248
+
249
+ 3αρ1/2
250
+ tot ρm
251
+ u ,
252
+ (6)
253
+ and consequently, one can define the effective equation
254
+ of state of the viscous dark fluid as
255
+ weff = peff
256
+ ρu
257
+ = (γ − 1) −
258
+
259
+ 3αρ1/2
260
+ tot ρm−1
261
+ u
262
+ .
263
+ (7)
264
+ The adiabatic sound speed for the viscous fluid is given
265
+ by
266
+ c2
267
+ a,eff = p′
268
+ eff
269
+ ρ′u
270
+ = weff +
271
+ w′
272
+ eff
273
+ 3H(1 + weff).
274
+ (8)
275
+ where the prime denotes the derivative with respect to
276
+ the conformal time τ and H is the conformal Hubble pa-
277
+ rameter, H = aH. Note that depending on the nature of
278
+ weff, c2
279
+ a,eff could be negative, and hence ca,eff could be an
280
+ imaginary quantity. This may invite instabilities in the
281
+ perturbations. Thus, in order to avoid this possible un-
282
+ physical situation, we consider the entropy perturbations
283
+ (non-adiabatic perturbations) in the unified dark fluid
284
+ following the analysis of generalized dark matter [93].
285
+ Now we focus on the evolution of the unified bulk vis-
286
+ cous fluid at the level of perturbations. In the entropy
287
+ perturbation mode, the true pressure perturbation comes
288
+ from the effective pressure given by
289
+ δpeff = δpu − δη(∇σuσ) − η(δ∇σuσ)
290
+ = δpu − 3Hδη − η
291
+ a
292
+
293
+ θ + h′
294
+ 2
295
+
296
+ .
297
+ (9)
298
+ The effective sound speed of viscous dark fluid for the
299
+ bulk viscous coefficient (5) can be defined as
300
+ c2
301
+ s,eff ≡
302
+ �δpeff
303
+ δρu
304
+
305
+ rf
306
+ = c2
307
+ s −
308
+
309
+ 3αmρ1/2
310
+ tot ρm−1
311
+ u
312
+ − αρm−1
313
+ u
314
+ aδu
315
+
316
+ θ + h′
317
+ 2
318
+
319
+ ,
320
+ (10)
321
+ where ’|rf’ denotes the rest frame. Following the analysis
322
+ in [93], the sound speed in the rest frame is assumed to
323
+ be zero, i.e. c2
324
+ s = 0.
325
+ The density perturbation and the velocity perturba-
326
+ tion can also be written as [93]
327
+ δ′
328
+ u = −(1 + weff)(θu + h′
329
+ 2 ) +
330
+ w′
331
+ eff
332
+ 1 + weff
333
+ δu
334
+ − 3H(c2
335
+ s,eff − c2
336
+ a,eff)
337
+
338
+ δu + 3H(1 + weff)θD
339
+ k2
340
+
341
+ ,
342
+ (11)
343
+ θ′
344
+ u = −H(1 − 3c2
345
+ s,eff)θu +
346
+ c2
347
+ s,eff
348
+ 1 + weff
349
+ k2δu,
350
+ (12)
351
+ Thus, following the evolution at the background and per-
352
+ turbation level prescribed above, one can now be able to
353
+ understand the dynamics of the bulk viscous fluid. In
354
+ this work we consider two different bulk viscous scenar-
355
+ ios characterized as follows: the bulk viscous model 1
356
+ (labeled as BVF1) where we consider γ = 1, and the
357
+ bulk viscous model 2 (labeled as BVF2) where we keep
358
+ γ as a free parameter. The common parameters in both
359
+ BVF1 and BVF2 are α and m.
360
+ III.
361
+ STANDARD COSMOLOGICAL PROBES,
362
+ SIMULATED GWSS DATA, AND
363
+ METHODOLOGY
364
+ In this section we describe the cosmological data
365
+ sets employed to perform the statistical analyses of the
366
+ present bulk viscous scenarios.
367
+ • Cosmic Microwave Background (CMB): We
368
+ use the CMB data from the Planck 2018 data re-
369
+ lease.
370
+ Precisely, we use the CMB temperature
371
+ and polarization angular power spectra plikTT-
372
+ TEEE+lowl+lowE [94, 95].
373
+ • Pantheon sample from Type Ia Supernovae
374
+ (SNIa) data: Type Ia Supernovae are the first
375
+ astronomical data that probed the accelerating ex-
376
+ pansion of the universe and hence indicated the
377
+ existence of an exotic fluid with negative pressure
378
+ (dark energy). Here we use the Pantheon compila-
379
+ tion of the SNIa data comprising 1048 data points
380
+ spanned in the redshift interval [0.01, 2.3] [96].
381
+ • Gravitational
382
+ Waves
383
+ Standard
384
+ Sirens
385
+ (GWSS): We take the mock Gravitational Waves
386
+ Standard
387
+ Sirens
388
+ (GWSS)
389
+ data
390
+ generated
391
+ by
392
+ matching
393
+ the
394
+ expected
395
+ sensitivity
396
+ of
397
+ Einstein
398
+
399
+ 4
400
+ Telescope in order to understand the constraining
401
+ power of the future GWSS data from the Einstein
402
+ Telescope.
403
+ The Einstein Telescope is a proposed
404
+ ground based third-generation (3G) GW detector.
405
+ The telescope will take a triangular shape and
406
+ its each arm length will be increased to 10 km,
407
+ compared to 3 km arm length VIRGO and 4 km
408
+ arm length LIGO [65, 97]. Thus, due to such in-
409
+ creased arm length, the Einstein Telescope will be
410
+ a potential GW detector by reducing all displace-
411
+ ment noises [65, 97]. It is expected that after 10
412
+ years of operation, Einstein Telescope will detect
413
+ O(103) GWSS events. Although the detection of
414
+ O(103) GWSS events is very optimistic while the
415
+ number of detections could be low in reality [65].
416
+ As argued in [65], the Einstein Telescope will likely
417
+ to detect 20 − 50 events per year, i.e. 200 − 500
418
+ events in 10 years. However, following the earlier
419
+ works [66, 67, 70, 71, 74, 77, 79, 81, 82], in this
420
+ article, we restrict ourselves to the detection of
421
+ O(103) GWSS events by the Einstein Telescope
422
+ to constrain the bulk viscous scenarios. For more
423
+ features of the Einstein Telescope we refer the
424
+ readers to [65].
425
+ We originally generate the mock GWSS luminosity
426
+ distance measurements matching the expected sen-
427
+ sitivity of the Einstein Telescope after 10 years of
428
+ full operation. Specifically we create 1000 triples
429
+ (zi, dL(zi), σi) where zi is the redshift of a GW
430
+ source, dL(zi) is the measured luminosity distance
431
+ at redshift zi and σi is the uncertainty associated
432
+ with the luminosity distance dL(zi). Let us briefly
433
+ summarize the procedure of generating the mock
434
+ GWSS dataset and we refer to Refs. [70, 71, 81]
435
+ for more technical details.
436
+ The initial step for
437
+ generating the mock GWSS dataset is to identify
438
+ the expected GW sources.
439
+ We consider the GW
440
+ events originating from two distinct binary systems,
441
+ namely, (i) a combination of a Black Hole (BH) and
442
+ a Neutron Star (NS) merger, identified as BHNS
443
+ and (ii) the binary neutron star (BNS) merger.
444
+ Following the mass distributions as described in
445
+ Ref. [81], the ratio of the number of GW events for
446
+ the BHNS merger versus BNS merger is taken to be
447
+ 0.03 as predicted for the Advanced LIGO-VIRGO
448
+ network [98]. We then determine the merger rate
449
+ R(z) of sources and from the merger rate of the
450
+ sources, we determine the redshift distribution of
451
+ the sources, P(z) given by [66, 67, 70, 79, 81, 99]
452
+ P(z) ∝ 4πd2
453
+ C(z)R(z)
454
+ H(z)(1 + z) ,
455
+ (13)
456
+ where dC(z) ≡
457
+ � z
458
+ 0 H−1(z′)dz′ is the co-moving dis-
459
+ tance and for R(z) we take the following piece-
460
+ wise linear function estimated in [100] (also see [66,
461
+ 67, 70, 79, 81, 101]): R(z) = 1 + 2z for z ≤ 1,
462
+ R(z) = 3
463
+ 4(5 − z), for 1 < z < 5 and R(z) = 0 for
464
+ z > 5. After having P(z), we sample 1000 values
465
+ of redshifts from this distribution which represent
466
+ the redshifts zi of our 1000 mock GWSS data.
467
+ The next step is to choose a fiducial model because
468
+ while going from the merger rate to the redshift dis-
469
+ tributions, a fiducial cosmological model is needed
470
+ since the expression for P(z) includes both the co-
471
+ moving distance and expansion rate at redshift z,
472
+ i.e. dL(z) and H(z) respectively. This H(z) cor-
473
+ responds to the fiducial model.
474
+ As in this arti-
475
+ cle we are interested to investigate how the inclu-
476
+ sion of GWSS data improves the constraints on the
477
+ BVF models, therefore, we generate two different
478
+ mock GWSS datasets choosing BVF1 and BVF2
479
+ as the fiducial models.
480
+ We take the fiducial val-
481
+ ues of the cosmological parameters given by the
482
+ best fit values of the same cosmological parame-
483
+ ters of the BVF1 and BVF2 models obtained from
484
+ the CMB+Pantheon data analysis. Now, for the
485
+ chosen fiducial model(s), one can now estimate the
486
+ luminosity distance at the redshift zi using the re-
487
+ lation
488
+ dL(zi) = (1 + zi)
489
+ � zi
490
+ 0
491
+ dz′
492
+ H(z′) .
493
+ (14)
494
+ Thus, after having the luminosity distance dL(zi) of
495
+ the GW source, our last job is now to determine the
496
+ uncertainty σi associated with this luminosity dis-
497
+ tance. The determination of the uncertainty σi di-
498
+ rectly connects to the waveform of GW because the
499
+ GW amplitude depends on the luminosity distance
500
+ (also on the so-called chirp mass [66, 67, 79]) and
501
+ hence one can extract the information about dL(zi)
502
+ and σi. We refer to Refs. [66, 67, 70, 79, 81] for the
503
+ technical details to calculate the uncertainties on
504
+ the luminosity distance measurements. The lumi-
505
+ nosity distance measurement dL(zi) has two kind of
506
+ uncertainties, one is the instrumental uncertainty
507
+ σinst
508
+ i
509
+ and the other one is the weak lensing uncer-
510
+ tainty σlens
511
+ i
512
+ . The instrumental error can be derived
513
+ to be σinst
514
+ i
515
+ (≃ 2dL(zi)/S where S is the combined
516
+ signal-to-noise ratio of the Einstein Telescope) us-
517
+ ing the Fisher matrix approach and assuming that
518
+ the uncertainty on dL(zi) is not correlated with
519
+ the uncertainties on the remaining GW parame-
520
+ ters (see [66, 67, 70, 79, 81]) and the lensing error
521
+ is σlens
522
+ i
523
+ ≃ 0.05zidL(zi) [66]. Thus, the total uncer-
524
+ tainty due to the instrumental and the weak lensing
525
+ uncertainties on dL(zi) is σi =
526
+
527
+ (σinst
528
+ i
529
+ )2 + (σlens
530
+ i
531
+ )2.
532
+ Finally, let us note that the combined signal-to-
533
+ noise ratio of the GW detector is a very crucial
534
+ quantity in this context since for the Einstein Tele-
535
+ scope, the combined signal-to-noise ratio should be
536
+
537
+ 5
538
+ Parameter Priors (BVF1) Priors (BVF2)
539
+ Ωbh2
540
+ [0.005, 0.1]
541
+ [0.005, 0.1]
542
+ τ
543
+ [0.01, 0.8]
544
+ [0.01, 0.8]
545
+ ns
546
+ [0.5, 1.5]
547
+ [0.5, 1.5]
548
+ ln(1010As)
549
+ [2.4, 4]
550
+ [2.4, 4]
551
+ 100θMC
552
+ [0.5, 10]
553
+ [0.5, 10]
554
+ β
555
+ [0, 1]
556
+ [0, 1]
557
+ m
558
+ [−2, 0.5]
559
+ [−2, 0.5]
560
+ γ
561
+
562
+ [−3, 3]
563
+ TABLE I. We show the flat priors on all the free parameters
564
+ associated with the bulk viscous models.
565
+ at least 8 for a GW detection [99]. Thus, in sum-
566
+ mary, we generate 1000 GW sources up to redshift
567
+ z = 2 with S > 8. For more technical details we
568
+ refer the readers to Refs. [66, 67, 70, 79, 81, 99].
569
+ To constrain the BVF scenarios we modify the pub-
570
+ licly available CosmoMC package [102] which is an excel-
571
+ lent cosmological code supporting the Planck 2018 like-
572
+ lihood [95] and it has a convergence diagnostic follow-
573
+ ing the Gelman-Rubin statistic R − 1 [103]. It is essen-
574
+ tial to mention that for both BVF1 and BVF2 scenarios,
575
+ we have used the dimensionless quantity β = αH0ρm−1
576
+ tot,0
577
+ where ρtot,0 is the present value of ρtot. We further men-
578
+ tion here that β = 0 (equivalently, α = 0) implies no vis-
579
+ cosity and hence the overall picture behaves like a unified
580
+ cosmic fluid without bulk viscosity. Thus, in summary,
581
+ the parameter space of BVF1 and BVF2 are as below:
582
+ PBVF1 ≡ {Ωbh2, 100θMC, τ, ns, ln(1010As), β, m}
583
+ PBVF2 = {Ωbh2, 100θMC, τ, ns, ln(1010As), β, m, γ}
584
+ where the description of the free parameters are as fol-
585
+ lows: Ωbh2 is the baryons density, 100θMC is the ratio
586
+ of the sound horizon to the angular diameter distance;
587
+ τ is the optical depth, ns is the scalar spectral index,
588
+ As is the amplitude of the initial power spectrum. The
589
+ flat priors on both cosmological scenarios are shown in
590
+ Table I.
591
+ IV.
592
+ OBSERVATIONAL CONSTRAINTS:
593
+ RESULTS AND ANALYSIS
594
+ In this section we present the constraints on the
595
+ bulk viscous scenarios considering CMB+Pantheon and
596
+ CMB+Pantheon+GWSS. As we are interested to esti-
597
+ mate the improvement of the cosmological parameters in
598
+ presence of the GWSS measurements, and as the com-
599
+ bined standard cosmological probes offer the most strin-
600
+ gent constraints on the cosmological parameters, there-
601
+ fore, the inclusion of GWSS with the combined standard
602
+ cosmological probes is reasonable. As mentioned earlier,
603
+ the key common free parameters of BVF1 and BVF2 are
604
+ β and m, since β ̸= 0 indicates the preference for a non-
605
+ zero bulk viscosity and m ̸= 0 indicates that the coeffi-
606
+ cient of the bulk viscosity is not constant in the redshift
607
+ range considered. In the following subsections we discuss
608
+ the constraints on these two scenarios in detail.
609
+ A.
610
+ Constraints on the BVF1 scenario
611
+ In
612
+ Table
613
+ II
614
+ we
615
+ have
616
+ presented
617
+ the
618
+ constraints
619
+ on
620
+ the
621
+ BVF1
622
+ scenario
623
+ for
624
+ CMB+Pantheon
625
+ and
626
+ CMB+Pantheon+GWSS. The latter dataset is aimed to
627
+ understand the improvement expected from GWSS on
628
+ the constraints from CMB+Pantheon. In Fig. 1 we have
629
+ compared these datasets graphically by showing the one
630
+ dimensional marginalized distribution of some model pa-
631
+ rameters and the two dimensional joint contours.
632
+ As
633
+ discussed, this scenario has two main key parameters,
634
+ namely, β, quantifying the existence of bulk viscosity in
635
+ the cosmic sector, and m, which tells us whether the bulk
636
+ viscosity will have a dynamical nature (corresponding to
637
+ m ̸= 0) or not.
638
+ Since for CMB+Pantheon, we find an evidence for a
639
+ non-zero bulk viscosity in the cosmic sector at many
640
+ standard deviations, i.e. β = 0.430+0.017
641
+ −0.016 at 68% CL,
642
+ this is further strengthen for CMB+Pantheon+GWSS,
643
+ where β = 0.4262+0.0079
644
+ −0.0078 at 68% CL.2 One can clearly
645
+ see that the inclusion of GWSS to CMB+Pantheon im-
646
+ proves the error bars on β by a factor of at least 2.
647
+ This reflects the constraining power of GWSS. On the
648
+ other hand, focusing on the parameter m, which quanti-
649
+ fies the time evolution of the bulk viscosity, we see that
650
+ m remains non-zero at several standard deviations for
651
+ CMB+Pantheon, where the 68% CL constraint on m
652
+ is m = −0.557+0.068
653
+ −0.059, and becomes m = −0.519+0.038
654
+ −0.035
655
+ for CMB+Pantheon+GWSS. From the constraints on
656
+ m, one can clearly see that the uncertainty in m is re-
657
+ duced by a factor of ∼ 1.7 − 1.8 when the GWSS data
658
+ are included with the combined dataset CMB+Pantheon.
659
+ Concerning the Hubble constant, we find that H0 as-
660
+ sumes slightly higher values compared to the ΛCDM
661
+ based Planck. Actually, we have H0 = 68.1+1.2
662
+ −1.1 at 68%
663
+ CL for CMB+Pantheon, while H0 = 68.30+0.46
664
+ −0.45 at 68%
665
+ CL for CMB+Pantheon+GWSS, again improving the
666
+ uncertainty in H0 by a factor of 2.5. This shows that the
667
+ effects of GWSS are clearly visible through these param-
668
+ eters. In Fig. 1, one can compare the constraints on the
669
+ model parameters obtained from CMB+Pantheon and
670
+ CMB+Pantheon+GWSS.
671
+ 2 It is worthwhile to note here that the mean value of β is not
672
+ significantly changed when the GWSS data are included, because
673
+ we built the simulated data using the best fit obtained from
674
+ CMB+Pantheon.
675
+
676
+ 6
677
+ Parameters
678
+ CMB+Pantheon
679
+ CMB+Pantheon+GWSS
680
+ Ωbh2
681
+ 0.02232+0.00015+0.00029
682
+ −0.00015−0.00028
683
+ 0.02253+0.00014+0.00028
684
+ −0.00014−0.00026
685
+ 100θMC
686
+ 1.02780+0.00058+0.0011
687
+ −0.00055−0.0011
688
+ 1.02808+0.00037+0.00073
689
+ −0.00038−0.00073
690
+ τ
691
+ 0.0537+0.0074+0.016
692
+ −0.0075−0.015
693
+ 0.0567+0.0079+0.016
694
+ −0.0078−0.015
695
+ ns
696
+ 0.9641+0.0043+0.0086
697
+ −0.0043−0.0084
698
+ 0.9686+0.0041+0.0080
699
+ −0.0040−0.0080
700
+ ln(1010As)
701
+ 3.046+0.016+0.031
702
+ −0.015−0.031
703
+ 3.048+0.016+0.033
704
+ −0.016−0.033
705
+ β
706
+ 0.430+0.017+0.033
707
+ −0.016−0.034
708
+ 0.4262+0.0079+0.016
709
+ −0.0078−0.015
710
+ m
711
+ −0.557+0.068+0.12
712
+ −0.059−0.13
713
+ −0.519+0.038+0.074
714
+ −0.035−0.075
715
+ H0
716
+ 68.1+1.2+2.2
717
+ −1.1−2.3
718
+ 68.30+0.46+0.91
719
+ −0.45−0.85
720
+ TABLE II. We report the observational constraints on the BVF1 scenario at 68% and 95% CL for CMB+Pantheon and
721
+ CMB+Pantheon+GWSS datasets.
722
+ 64
723
+ 66
724
+ 68
725
+ 70
726
+ 72
727
+ H0
728
+ −0.8
729
+ −0.7
730
+ −0.6
731
+ −0.5
732
+ −0.4
733
+ m
734
+ 0.022
735
+ 0.0228
736
+ Ωbh 2
737
+ 0.36
738
+ 0.39
739
+ 0.42
740
+ 0.45
741
+ 0.48
742
+ β
743
+ 64
744
+ 66
745
+ 68
746
+ 70
747
+ 72
748
+ H0
749
+ 0.8
750
+ 0.7
751
+ 0.6
752
+ 0.5
753
+ 0.4
754
+ m
755
+ 0.0220
756
+ 0.0228
757
+ Ωbh 2
758
+ BVF1: CMB+Pantheon
759
+ BVF1: CMB+Pantheon+GWSS
760
+ FIG. 1.
761
+ For the BVF1 scenario we show the 1-dimensional posterior distribution of some model parameters and the 2-
762
+ dimensional joint contours of the model parameters at 68% and 95% CL for CMB+Pantheon and CMB+Pantheon+GWSS.
763
+ Finally, through Fig. 2 we examine how the model af-
764
+ fects the CMB TT power spectrum for different values
765
+ of the model parameters, β and m with respect to the
766
+ standard ΛCDM scenario. In the upper panel of Fig. 2
767
+ we depict the evolution in the CMB TT power spectrum
768
+ for different values of β while in the lower panel of Fig. 2
769
+ we depict the evolution in the CMB TT power spectrum
770
+ for different values of m. From both the graphs, we no-
771
+ tice that as long as β or m increases, the model exhibits
772
+ significant differences in the lower multipoles (ℓ ≤ 10).
773
+ For ℓ ≥ 10, we observe that with the increasing values
774
+ of β and m, the peaks of the CMB TT power spectrum
775
+ increase significantly, particularly changing their mutual
776
+ ratio.
777
+
778
+ 7
779
+ Parameters
780
+ CMB+Pantheon
781
+ CMB+Pantheon+GWSS
782
+ Ωbh2
783
+ 0.02241+0.00016+0.00032
784
+ −0.00016−0.00032
785
+ 0.02238+0.00015+0.00030
786
+ −0.00016−0.00031
787
+ 100θMC
788
+ 1.02907+0.00111+0.00180
789
+ −0.00082−0.00198
790
+ 1.02921+0.00041+0.00080
791
+ −0.00040−0.00079
792
+ τ
793
+ 0.0516+0.0074+0.015
794
+ −0.0072−0.015
795
+ 0.0521+0.0071+0.015
796
+ −0.0078−0.014
797
+ ns
798
+ 0.9575+0.0053+0.012
799
+ −0.0066−0.012
800
+ 0.9583+0.0038+0.0075
801
+ −0.0039−0.0077
802
+ ln(1010As)
803
+ 3.038+0.016+0.032
804
+ −0.017−0.032
805
+ 3.040+0.015+0.032
806
+ −0.015−0.031
807
+ β
808
+ 0.447+0.022+0.042
809
+ −0.022−0.042
810
+ 0.425+0.018+0.032
811
+ −0.016−0.034
812
+ m
813
+ −0.85+0.30+0.46
814
+ −0.19−0.50
815
+ −0.683+0.099+0.18
816
+ −0.089−0.19
817
+ γ
818
+ 0.9970+0.0015+0.0042
819
+ −0.0024−0.0036
820
+ 0.99757+0.00049+0.0011
821
+ −0.00058−0.0011
822
+ H0
823
+ 65.2+1.7+4.4
824
+ −2.6−3.9
825
+ 64.91+0.59+1.1
826
+ −0.60−1.2
827
+ TABLE III. We report the observational constraints on the BVF2 scenario at 68% and 95% CL for CMB+Pantheon and
828
+ CMB+Pantheon+GWSS.
829
+ 101
830
+ 102
831
+ 103
832
+ l
833
+ 0
834
+ 1000
835
+ 2000
836
+ 3000
837
+ 4000
838
+ 5000
839
+ 6000
840
+ 7000
841
+ l(l + 1)C TT
842
+ l /(2π)[µK 2]
843
+ ΛCDM
844
+ BVF1 : β = 0.1
845
+ BVF1 : β = 0.3
846
+ BVF1 : β = 0.5
847
+ 101
848
+ 102
849
+ 103
850
+ l
851
+ 0
852
+ 2000
853
+ 4000
854
+ 6000
855
+ 8000
856
+ 10000
857
+ 12000
858
+ l(l + 1)C TT
859
+ l /(2π)[µK 2]
860
+ ΛCDM
861
+ BVF1 : m = − 1.5
862
+ BVF1 : m = − 0.5
863
+ BVF1 : m = 0.5
864
+ FIG. 2.
865
+ The CMB CT T
866
+ l
867
+ power spectrum versus multipole
868
+ moment l using the best fits values obtained for the BVF1
869
+ model using the join data sets described, with three arbitrary
870
+ β and m values.
871
+ B.
872
+ Constraints on the BVF2 scenario
873
+ In Table III we present the constraints on the
874
+ BVF2
875
+ scenario
876
+ for
877
+ both
878
+ CMB+Pantheon
879
+ and
880
+ CMB+Pantheon+GWSS.
881
+ And
882
+ in
883
+ Fig.
884
+ 3,
885
+ we
886
+ com-
887
+ pare the constraints from these datasets explicitly
888
+ showing the one dimensional marginalized distribution
889
+ of some model parameters and the two dimensional joint
890
+ contours. As already discussed, this scenario has three
891
+ main key parameters, namely, β, which quantifies the
892
+ existence of bulk viscosity in the cosmic sector, m, which
893
+ tells us whether the bulk viscosity enjoys a dynamical
894
+ nature (corresponding to m ̸= 0) or not, and finally, the
895
+ parameter γ, which indicates the fluid which endows
896
+ the bulk viscosity.
897
+ We note that γ = 1 refers to the
898
+ dust fluid endowing the bulk viscosity in which we are
899
+ interested in, for which we recover the previous scenario
900
+ BVF1.
901
+ For CMB+Pantheon, we find that β ̸= 0 at several
902
+ standard deviations yielding β = 0.447 ± 0.022 at 68%
903
+ CL which gives a clear indication of a non-zero bulk
904
+ viscosity in the cosmic sector.
905
+ When the GWSS are
906
+ added to this combination, i.e. CMB+Pantheon+GWSS,
907
+ the conclusion about β does not change significantly
908
+ (β = 0.425+0.018
909
+ −0.016 at 68% CL), indicating that for this
910
+ scenario GWSS do not provide any additional constrain-
911
+ ing power on β. Looking at the dynamical nature of the
912
+ bulk viscosity, we see that for CMB+Pantheon, m re-
913
+ mains nonzero at more than 2 standard deviations lead-
914
+ ing to m = −0.85+0.30
915
+ −0.19 at 68% CL. However, this evi-
916
+ dence could be further strengthened by the inclusion of
917
+ the GWSS data, that we forecast to be m = −0.683+0.099
918
+ −0.089
919
+ at 68% CL for CMB+Pantheon+GWSS, improving the
920
+ error bars up to a factor of 3. Finally, focusing on the pa-
921
+ rameter γ which directly connects with the nature of the
922
+ cosmic fluid endowing the bulk viscosity, we can see that
923
+ it is consistent with 1, which corresponds to a dust-like
924
+ fluid, within 2 standard deviations for CMB+Pantheon
925
+ (γ = 0.9970+0.0015
926
+ −0.0024 at 68% CL). Also for this param-
927
+ eter, the addition of the GWSS further improves the
928
+ constraining power of a factor larger than 3 to 4, that
929
+ we forecast to be γ = 0.99757+0.00049
930
+ −0.00058 at 68% CL for
931
+ CMB+Pantheon+GWSS. Therefore, with respect to the
932
+ BVF1 case, where the inclusion of the forecasted GWSS
933
+ was able to improve both β and m, in this BVF2 scenario,
934
+ the improvement of the constraining power is displayed
935
+ only on m and γ but does not affect anymore β signifi-
936
+
937
+ 8
938
+ 60
939
+ 64
940
+ 68
941
+ 72
942
+ H0
943
+ −1.6
944
+ −1.2
945
+ −0.8
946
+ −0.4
947
+ m
948
+ 0.993
949
+ 0.999
950
+ 1.005
951
+ γ
952
+ 0.022
953
+ 0.0228
954
+ Ωbh 2
955
+ 0.36 0.40 0.44 0.48 0.52
956
+ β
957
+ 60
958
+ 64
959
+ 68
960
+ 72
961
+ H0
962
+ 1.6
963
+ 1.2
964
+ 0.8
965
+ 0.4
966
+ m
967
+ 0.993
968
+ 0.999
969
+ 1.005
970
+ γ
971
+ 0.0220
972
+ 0.0228
973
+ Ωbh 2
974
+ BVF2: CMB+Pantheon
975
+ BVF2: CMB+Pantheon+GWSS
976
+ FIG. 3.
977
+ For the BVF2 scenario we show the 1-dimensional posterior distributions of some model parameters and the 2-
978
+ dimensional joint contours of the model parameters at 68% and 95% CL for CMB+Pantheon and CMB+Pantheon+GWSS.
979
+ cantly.
980
+ Furthermore, we find that for this scenario, the Hub-
981
+ ble constant attains a very low value for CMB+Pantheon
982
+ compared to Planck’s estimation within the ΛCDM
983
+ paradigm. We also note that H0 is correlated to all three
984
+ free parameters of this scenario, namely, β, m and γ.
985
+ With β and γ, H0 is positively correlated while with m,
986
+ it has a strong anti-correlation.
987
+ For CMB+Pantheon,
988
+ H0 = 65.2+1.7
989
+ −2.6 km/s/Mpc at 68% CL and after the in-
990
+ clusion of GWSS it becomes H0 = 64.91+0.59
991
+ −0.60 km/s/Mpc
992
+ at 68% CL, reducing the uncertainty in H0 by a factor
993
+ of ∼ 4.
994
+ Finally, in Fig. 4, we examine the CMB TT power
995
+ spectrum for this bulk viscous scenario BVF2 consider-
996
+ ing different values of the free parameter γ with respect
997
+ to the standard ΛCDM scenario. As γ lies in the region
998
+ [−3, 3] and the nature of the cosmic fluid characterized by
999
+ its equation of state pu = (γ−1)ρu depends on the sign of
1000
+ γ, therefore, we have considered two separate plots, one
1001
+ where γ is non-negative (i.e. γ ≥ 0) and another plot
1002
+ where γ allows both positive and negative values includ-
1003
+ ing γ = 0. From both the panels of Fig. 4, we clearly see
1004
+ that any deviation from γ = 1 makes significant changes
1005
+ in the amplitude of the CMB TT power spectrum. In
1006
+ particular, we see that the peaks of the CMB TT spec-
1007
+ trum significantly increases and shift towards higher mul-
1008
+ tipoles for any value different from γ = 1 at small scales,
1009
+ as well as the Integrated Sachs Wolfe (ISW) plateau at
1010
+ large scales. As γ = 1 indicates a cosmological constant-
1011
+ like fluid endowed with the bulk viscosity, therefore, for
1012
+ γ = 1, we replicate an equivalent behaviour of the ΛCDM
1013
+ scenario.
1014
+ V.
1015
+ CONCLUSIONS
1016
+ Although the ΛCDM cosmological model is extremely
1017
+ successful in describing a large span of astronomical ob-
1018
+ servations, it cannot explain several theoretical and ob-
1019
+ servational issues.
1020
+ This motivated the scientific com-
1021
+ munity to construct a variety of cosmological proposals
1022
+ and testing them with the available astronomical data.
1023
+ Among these cosmological models, in this article, we fo-
1024
+ cus on the unified cosmological models allowing bulk vis-
1025
+
1026
+ 9
1027
+ 101
1028
+ 102
1029
+ 103
1030
+ l
1031
+ 0
1032
+ 2000
1033
+ 4000
1034
+ 6000
1035
+ 8000
1036
+ 10000
1037
+ 12000
1038
+ l(l + 1)C TT
1039
+ l /(2π)[µK 2]
1040
+ ΛCDM
1041
+ BVF2 : γ = − 1
1042
+ BVF2 : γ = 0
1043
+ BVF2 : γ = 1
1044
+ 101
1045
+ 102
1046
+ 103
1047
+ l
1048
+ 0
1049
+ 2000
1050
+ 4000
1051
+ 6000
1052
+ 8000
1053
+ 10000
1054
+ 12000
1055
+ l(l + 1)C TT
1056
+ l /(2π)[µK 2]
1057
+ ΛCDM
1058
+ BVF2 : γ = 0
1059
+ BVF2 : γ = 0.5
1060
+ BVF2 : γ = 1
1061
+ FIG. 4.
1062
+ The CMB CT T
1063
+ l
1064
+ power spectrum versus multipole
1065
+ moment l using the best fits values obtained for each BVF2
1066
+ models with three γ values, respectively using the join data
1067
+ sets described.
1068
+ cosity in the background. However, since these models
1069
+ do not recover the ΛCDM scenario as a special case, our
1070
+ only ability in distinguishing them, once the GWSS data
1071
+ will be available, will rely only on a Bayesian model com-
1072
+ parison for a better fit of the cosmological observations,
1073
+ as done in Ref. [64].
1074
+ The unified cosmological scenar-
1075
+ ios endowed with bulk viscosity are appealing from two
1076
+ different perspectives: the first one is the concept of a
1077
+ unified picture of dark matter and dark energy, and the
1078
+ second is the inclusion of bulk viscosity into that unified
1079
+ picture. Effectively, the unified bulk viscous scenario is
1080
+ a generalized cosmic picture combining two distinct cos-
1081
+ mological directions. According to a recent paper on the
1082
+ unified bulk viscous scenarios [64], current cosmological
1083
+ probes prefer a non-zero dynamical bulk viscosity in the
1084
+ dark sector at many standard deviations. So, in light of
1085
+ the current cosmological probes, unified bulk viscous cos-
1086
+ mological scenarios are attractive. In this line of thought,
1087
+ what about the future of such unified bulk viscous sce-
1088
+ narios?
1089
+ In this article we have focused on it with an
1090
+ answer.
1091
+ Following Ref. [64], in this work we have explored
1092
+ these scenarios with the GWSS aiming to understand
1093
+ how the future distance measurements from GWSS may
1094
+ improve the constraints on such scenarios. In order to
1095
+ proceed toward this confrontation, we have generated
1096
+ O(103) mock GWSS luminosity distance measurements
1097
+ matching the expected sensitivity of the Einstein Tele-
1098
+ scope and added these mock data to the current cosmo-
1099
+ logical probes, namely CMB from Planck 2018 release3
1100
+ and SNIa Pantheon sample. We find that the inclusion of
1101
+ GWSS luminosity distance measurements together with
1102
+ the current cosmological probes makes the possible fu-
1103
+ ture evidence for new physics stronger, by reducing the
1104
+ uncertainty in the parameters in a significant way. This
1105
+ is a potential behaviour of the GWSS luminosity distance
1106
+ measurements since this makes the parameter much de-
1107
+ terministic. Overall for both BVF1 and BVF2 scenar-
1108
+ ios, we find a very strong preference of a non-zero time
1109
+ dependent bulk viscous coefficient (alternatively, the vis-
1110
+ cous nature of the unified dark fluid) at many standard
1111
+ deviations.
1112
+ In conclusion, in the present paper we demonstrate
1113
+ that future GWSS distance measurements from the Ein-
1114
+ stein Telescope might be powerful to extract more infor-
1115
+ mation about the physics of the dark sector. Therefore,
1116
+ based on the present results, we feel that it might just
1117
+ be a matter of time before we convincingly detect the
1118
+ viscosity in the dark sector, if any.
1119
+ VI.
1120
+ ACKNOWLEDGMENTS
1121
+ The authors thank the referee for some important com-
1122
+ ments which helped us to improve the article consider-
1123
+ ably. WY was supported by the National Natural Science
1124
+ Foundation of China under Grants No. 12175096 and No.
1125
+ 11705079, and Liaoning Revitalization Talents Program
1126
+ under Grant no. XLYC1907098. SP acknowledges the
1127
+ financial support from the Department of Science and
1128
+ Technology (DST), Govt.
1129
+ of India, under the Scheme
1130
+ “Fund for Improvement of S&T Infrastructure (FIST)”
1131
+ [File No.
1132
+ SR/FST/MS-I/2019/41].
1133
+ EDV is supported
1134
+ by a Royal Society Dorothy Hodgkin Research Fellow-
1135
+ ship. CE-R is supported by the Royal Astronomical So-
1136
+ ciety as FRAS 10147 and by PAPIIT UNAM Project
1137
+ TA100122. This article/publication is based upon work
1138
+ from COST Action CA21136 Addressing observational
1139
+ tensions in cosmology with systematics and fundamen-
1140
+ tal physics (CosmoVerse) supported by COST (European
1141
+ Cooperation in Science and Technology). AP was sup-
1142
+ ported in part by the National Research Foundation of
1143
+ South Africa (Grant Number 131604). Also AP thanks
1144
+ the support of Vicerrector´ıa de Investigaci´on y Desarrollo
1145
+ Tecnol´ogico (Vridt) at Universidad Cat´olica del Norte
1146
+ 3 We mention that in the earlier work [64], CMB data from Planck
1147
+ 2015 were used to constrain the bulk viscous scenarios.
1148
+
1149
+ 10
1150
+ through N´ucleo de Investigaci´on Geometr´ıa Diferencial
1151
+ y Aplicaciones, Resoluci´on Vridt No - 096/2022.
1152
+ [1] S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).
1153
+ [2] I. Zlatev, L.-M. Wang, and P. J. Steinhardt, Phys. Rev.
1154
+ Lett. 82, 896 (1999), arXiv:astro-ph/9807002.
1155
+ [3] E. J. Copeland, M. Sami,
1156
+ and S. Tsujikawa, Int. J.
1157
+ Mod. Phys. D 15, 1753 (2006), arXiv:hep-th/0603057.
1158
+ [4] S. Nojiri and S. D. Odintsov, eConf C0602061, 06
1159
+ (2006), arXiv:hep-th/0601213.
1160
+ [5] T. P. Sotiriou and V. Faraoni, Rev. Mod. Phys. 82, 451
1161
+ (2010), arXiv:0805.1726 [gr-qc].
1162
+ [6] A. De Felice and S. Tsujikawa, Living Rev. Rel. 13, 3
1163
+ (2010), arXiv:1002.4928 [gr-qc].
1164
+ [7] S. Capozziello and M. De Laurentis, Phys. Rept. 509,
1165
+ 167 (2011), arXiv:1108.6266 [gr-qc].
1166
+ [8] T. Clifton, P. G. Ferreira, A. Padilla,
1167
+ and C. Sko-
1168
+ rdis, Phys. Rept. 513, 1 (2012), arXiv:1106.2476 [astro-
1169
+ ph.CO].
1170
+ [9] K. Bamba,
1171
+ S. Capozziello,
1172
+ S. Nojiri,
1173
+ and S. D.
1174
+ Odintsov, Astrophys. Space Sci. 342, 155 (2012),
1175
+ arXiv:1205.3421 [gr-qc].
1176
+ [10] Y.-F. Cai, S. Capozziello, M. De Laurentis,
1177
+ and
1178
+ E. N. Saridakis, Rept. Prog. Phys. 79, 106901 (2016),
1179
+ arXiv:1511.07586 [gr-qc].
1180
+ [11] S. Nojiri, S. Odintsov, and V. Oikonomou, Phys. Rept.
1181
+ 692, 1 (2017), arXiv:1705.11098 [gr-qc].
1182
+ [12] S. Bahamonde, K. F. Dialektopoulos, C. Escamilla-
1183
+ Rivera,
1184
+ G.
1185
+ Farrugia,
1186
+ V.
1187
+ Gakis,
1188
+ M.
1189
+ Hendry,
1190
+ M.
1191
+ Hohmann,
1192
+ J.
1193
+ L.
1194
+ Said,
1195
+ J.
1196
+ Mifsud,
1197
+ and
1198
+ E.
1199
+ Di
1200
+ Valentino,
1201
+ arXiv:2106.13793
1202
+ (2021),
1203
+ arXiv:2106.13793 [gr-qc].
1204
+ [13] N. Aghanim et al. (Planck), Astron. Astrophys. 641, A6
1205
+ (2020), arXiv:1807.06209 [astro-ph.CO].
1206
+ [14] K. C. Wong et al., Mon. Not. Roy. Astron. Soc. 498,
1207
+ 1420 (2020), arXiv:1907.04869 [astro-ph.CO].
1208
+ [15] A. G. Riess, S. Casertano, W. Yuan, J. B. Bowers,
1209
+ L. Macri, J. C. Zinn,
1210
+ and D. Scolnic, Astrophys. J.
1211
+ Lett. 908, L6 (2021), arXiv:2012.08534 [astro-ph.CO].
1212
+ [16] A. J. Shajib et al. (DES), Mon. Not. Roy. Astron. Soc.
1213
+ 494, 6072 (2020), arXiv:1910.06306 [astro-ph.CO].
1214
+ [17] S. Birrer et al., Astron. Astrophys. 643, A165 (2020),
1215
+ arXiv:2007.02941 [astro-ph.CO].
1216
+ [18] W.
1217
+ L.
1218
+ Freedman,
1219
+ Astrophys.
1220
+ J.
1221
+ 919,
1222
+ 16
1223
+ (2021),
1224
+ arXiv:2106.15656 [astro-ph.CO].
1225
+ [19] G.
1226
+ S.
1227
+ Anand,
1228
+ R.
1229
+ B.
1230
+ Tully,
1231
+ L.
1232
+ Rizzi,
1233
+ A.
1234
+ G.
1235
+ Riess,
1236
+ and W. Yuan, Astrophys. J. 932, 15 (2022),
1237
+ arXiv:2108.00007 [astro-ph.CO].
1238
+ [20] J. P. Blakeslee, J. B. Jensen, C.-P. Ma, P. A. Milne,
1239
+ and J. E. Greene, Astrophys. J. 911, 65 (2021),
1240
+ arXiv:2101.02221 [astro-ph.CO].
1241
+ [21] D. W. Pesce et al., Astrophys. J. Lett. 891, L1 (2020),
1242
+ arXiv:2001.09213 [astro-ph.CO].
1243
+ [22] P. Shah, P. Lemos, and O. Lahav, Astron. Astrophys.
1244
+ Rev. 29, 9 (2021), arXiv:2109.01161 [astro-ph.CO].
1245
+ [23] T. de Jaeger, L. Galbany, A. G. Riess, B. E. Stahl, B. J.
1246
+ Shappee, A. V. Filippenko, and W. Zheng, Mon. Not.
1247
+ Roy. Astron. Soc. 514, 4620 (2022), arXiv:2203.08974
1248
+ [astro-ph.CO].
1249
+ [24] A. G. Riess et al., Astrophys. J. Lett. 934, L7 (2022),
1250
+ arXiv:2112.04510 [astro-ph.CO].
1251
+ [25] C. Heymans et al., Mon. Not. Roy. Astron. Soc. 427,
1252
+ 146 (2012), arXiv:1210.0032 [astro-ph.CO].
1253
+ [26] H. Hildebrandt et al., Mon. Not. Roy. Astron. Soc. 465,
1254
+ 1454 (2017), arXiv:1606.05338 [astro-ph.CO].
1255
+ [27] M. Asgari et al. (KiDS), Astron. Astrophys. 645, A104
1256
+ (2021), arXiv:2007.15633 [astro-ph.CO].
1257
+ [28] T. M. C. Abbott et al. (DES), Phys. Rev. D 98, 043526
1258
+ (2018), arXiv:1708.01530 [astro-ph.CO].
1259
+ [29] T. M. C. Abbott et al. (DES), Phys. Rev. D 105, 023520
1260
+ (2022), arXiv:2105.13549 [astro-ph.CO].
1261
+ [30] P. A. R. Ade et al. (Planck), Astron. Astrophys. 594,
1262
+ A24 (2016), arXiv:1502.01597 [astro-ph.CO].
1263
+ [31] S. Bocquet et al. (SPT), Astrophys. J. 878, 55 (2019),
1264
+ arXiv:1812.01679 [astro-ph.CO].
1265
+ [32] M.
1266
+ Hasselfield
1267
+ et
1268
+ al.,
1269
+ JCAP
1270
+ 07,
1271
+ 008
1272
+ (2013),
1273
+ arXiv:1301.0816 [astro-ph.CO].
1274
+ [33] A.
1275
+ G.
1276
+ Riess,
1277
+ Nature
1278
+ Rev.
1279
+ Phys.
1280
+ 2,
1281
+ 10
1282
+ (2019),
1283
+ arXiv:2001.03624 [astro-ph.CO].
1284
+ [34] L. Verde, T. Treu, and A. G. Riess, in Nature Astron-
1285
+ omy 2019 (2019) arXiv:1907.10625 [astro-ph.CO].
1286
+ [35] E. Di Valentino, Mon. Not. Roy. Astron. Soc. 502, 2065
1287
+ (2021), arXiv:2011.00246 [astro-ph.CO].
1288
+ [36] E. Di Valentino et al., Astropart. Phys. 131, 102604
1289
+ (2021), arXiv:2008.11285 [astro-ph.CO].
1290
+ [37] E. Di Valentino et al., Astropart. Phys. 131, 102605
1291
+ (2021), arXiv:2008.11284 [astro-ph.CO].
1292
+ [38] L. Knox and M. Millea, Phys. Rev. D 101, 043533
1293
+ (2020), arXiv:1908.03663 [astro-ph.CO].
1294
+ [39] K. Jedamzik, L. Pogosian, and G.-B. Zhao, Commun.
1295
+ in Phys. 4, 123 (2021), arXiv:2010.04158 [astro-ph.CO].
1296
+ [40] E. Di Valentino,
1297
+ O. Mena,
1298
+ S. Pan,
1299
+ L. Visinelli,
1300
+ W. Yang, A. Melchiorri, D. F. Mota, A. G. Riess,
1301
+ and J. Silk, Class. Quant. Grav. 38, 153001 (2021),
1302
+ arXiv:2103.01183 [astro-ph.CO].
1303
+ [41] L. Perivolaropoulos and F. Skara, New Astron. Rev. 95,
1304
+ 101659 (2022), arXiv:2105.05208 [astro-ph.CO].
1305
+ [42] N. Sch¨oneberg, G. Franco Abell´an, A. P´erez S´anchez,
1306
+ S. J. Witte, V. Poulin, and J. Lesgourgues, Phys. Rept.
1307
+ 984, 1 (2022), arXiv:2107.10291 [astro-ph.CO].
1308
+ [43] E.
1309
+ Abdalla
1310
+ et
1311
+ al.,
1312
+ JHEAp
1313
+ 34,
1314
+ 49
1315
+ (2022),
1316
+ arXiv:2203.06142 [astro-ph.CO].
1317
+ [44] M. Kamionkowski and A. G. Riess, arXiv:2211.04492
1318
+ (2022), arXiv:2211.04492 [astro-ph.CO].
1319
+ [45] S. Chaplygin, Sci. Mem. Moscow Univ. Math. Phys. 21,
1320
+ 1 (1904).
1321
+ [46] A. Y. Kamenshchik, U. Moschella,
1322
+ and V. Pasquier,
1323
+ Phys. Lett. B 511, 265 (2001), arXiv:gr-qc/0103004.
1324
+ [47] N. Bilic, G. B. Tupper, and R. D. Viollier, Phys. Lett.
1325
+ B 535, 17 (2002), arXiv:astro-ph/0111325.
1326
+ [48] V. Gorini, A. Kamenshchik,
1327
+ and U. Moschella, Phys.
1328
+ Rev. D 67, 063509 (2003), arXiv:astro-ph/0209395.
1329
+ [49] V. Gorini, A. Kamenshchik, U. Moschella, V. Pasquier,
1330
+ and A. Starobinsky, Phys. Rev. D 72, 103518 (2005),
1331
+ arXiv:astro-ph/0504576.
1332
+ [50] M. C. Bento, O. Bertolami, and A. A. Sen, Phys. Rev.
1333
+ D 66, 043507 (2002), arXiv:gr-qc/0202064.
1334
+ [51] L. Xu and J. Lu, JCAP 03, 025 (2010), arXiv:1004.3344
1335
+ [astro-ph.CO].
1336
+
1337
+ 11
1338
+ [52] J. Lu, Y. Gui, and L.-X. Xu, Eur. Phys. J. C 63, 349
1339
+ (2009), arXiv:1004.3365 [astro-ph.CO].
1340
+ [53] H.
1341
+ Benaoum,
1342
+ Universe
1343
+ 8,
1344
+ 340
1345
+ (2022),
1346
+ arXiv:hep-
1347
+ th/0205140.
1348
+ [54] U. Debnath, A. Banerjee,
1349
+ and S. Chakraborty, Class.
1350
+ Quant. Grav. 21, 5609 (2004), arXiv:gr-qc/0411015.
1351
+ [55] J. Lu, L. Xu, J. Li, B. Chang, Y. Gui, and H. Liu, Phys.
1352
+ Lett. B 662, 87 (2008), arXiv:1004.3364 [astro-ph.CO].
1353
+ [56] L. Xu, Y. Wang, and H. Noh, Eur. Phys. J. C 72, 1931
1354
+ (2012), arXiv:1204.5571 [astro-ph.CO].
1355
+ [57] C.
1356
+ Escamilla-Rivera,
1357
+ M.
1358
+ A.
1359
+ C.
1360
+ Quintero,
1361
+ and
1362
+ S. Capozziello, JCAP 03, 008 (2020), arXiv:1910.02788
1363
+ [astro-ph.CO].
1364
+ [58] H. Hova and H. Yang, Int. J. Mod. Phys. D 27, 1750178
1365
+ (2017), arXiv:1011.4788 [astro-ph.CO].
1366
+ [59] A. Hernandez-Almada,
1367
+ J. Magana,
1368
+ M. A. Garcia-
1369
+ Aspeitia, and V. Motta, Eur. Phys. J. C 79, 12 (2019),
1370
+ arXiv:1805.07895 [astro-ph.CO].
1371
+ [60] W. Yang, S. Pan, A. Paliathanasis, S. Ghosh,
1372
+ and
1373
+ Y. Wu, Mon. Not. Roy. Astron. Soc. 490, 2071 (2019),
1374
+ arXiv:1904.10436 [gr-qc].
1375
+ [61] H.
1376
+ Sandvik,
1377
+ M.
1378
+ Tegmark,
1379
+ M.
1380
+ Zaldarriaga,
1381
+ and
1382
+ I. Waga, Phys. Rev. D 69, 123524 (2004), arXiv:astro-
1383
+ ph/0212114.
1384
+ [62] A. K. Yadav, A. K. Yadav, M. Singh, R. Prasad, N. Ah-
1385
+ mad,
1386
+ and K. P. Singh, Phys. Rev. D 104, 064044
1387
+ (2021).
1388
+ [63] B. D. Normann and I. H. Brevik, Mod. Phys. Lett. A
1389
+ 36, 2150198 (2021), arXiv:2107.13533 [gr-qc].
1390
+ [64] W. Yang, S. Pan, E. Di Valentino, A. Paliathana-
1391
+ sis,
1392
+ and J. Lu, Phys. Rev. D100, 103518 (2019),
1393
+ arXiv:1906.04162 [astro-ph.CO].
1394
+ [65] M.
1395
+ Maggiore
1396
+ et
1397
+ al.,
1398
+ JCAP
1399
+ 03,
1400
+ 050
1401
+ (2020),
1402
+ arXiv:1912.02622 [astro-ph.CO].
1403
+ [66] W. Zhao, C. Van Den Broeck, D. Baskaran,
1404
+ and
1405
+ T.
1406
+ G.
1407
+ F.
1408
+ Li,
1409
+ Phys.
1410
+ Rev.
1411
+ D
1412
+ 83,
1413
+ 023005
1414
+ (2011),
1415
+ arXiv:1009.0206 [astro-ph.CO].
1416
+ [67] R.-G. Cai and T. Yang, Phys. Rev. D 95, 044024 (2017),
1417
+ arXiv:1608.08008 [astro-ph.CO].
1418
+ [68] X. Zhang, J. Yu, T. Liu, W. Zhao, and A. Wang, Phys.
1419
+ Rev. D 95, 124008 (2017), arXiv:1703.09853 [gr-qc].
1420
+ [69] R.-G.
1421
+ Cai,
1422
+ T.-B.
1423
+ Liu,
1424
+ X.-W.
1425
+ Liu,
1426
+ S.-J.
1427
+ Wang,
1428
+ and
1429
+ T.
1430
+ Yang,
1431
+ Phys.
1432
+ Rev.
1433
+ D
1434
+ 97,
1435
+ 103005
1436
+ (2018),
1437
+ arXiv:1712.00952 [astro-ph.CO].
1438
+ [70] W. Yang, S. Pan, E. Di Valentino, B. Wang,
1439
+ and
1440
+ A. Wang, JCAP 05, 050 (2020), arXiv:1904.11980
1441
+ [astro-ph.CO].
1442
+ [71] W. Yang, S. Vagnozzi, E. Di Valentino, R. C. Nunes,
1443
+ S. Pan,
1444
+ and D. F. Mota, JCAP 07, 037 (2019),
1445
+ arXiv:1905.08286 [astro-ph.CO].
1446
+ [72] R. R. A. Bachega, A. A. Costa, E. Abdalla, and K. S. F.
1447
+ Fornazier, JCAP 05, 021 (2020), arXiv:1906.08909
1448
+ [astro-ph.CO].
1449
+ [73] L. Zhou, X. Fu, Z. Peng,
1450
+ and J. Chen, Phys. Rev. D
1451
+ 100, 123539 (2019), arXiv:1912.02327 [gr-qc].
1452
+ [74] W. Yang, S. Pan, D. F. Mota, and M. Du, Mon. Not.
1453
+ Roy. Astron. Soc. 497, 879 (2020), arXiv:2001.02180
1454
+ [astro-ph.CO].
1455
+ [75] A. Mitra, J. Mifsud, D. F. Mota,
1456
+ and D. Parkin-
1457
+ son, Mon. Not. Roy. Astron. Soc. 502, 5563 (2021),
1458
+ arXiv:2010.00189 [astro-ph.CO].
1459
+ [76] C. Escamilla-Rivera and H. Quevedo, Class. Quant.
1460
+ Grav. 38, 115009 (2021), arXiv:2005.08784 [gr-qc].
1461
+ [77] Y. Pan, Y. He, J. Qi, J. Li, S. Cao, T. Liu, and J. Wang,
1462
+ Astrophys. J. 911, 135 (2021), arXiv:2103.05212 [astro-
1463
+ ph.CO].
1464
+ [78] X.-N. Zhang, L.-F. Wang, J.-F. Zhang, and X. Zhang,
1465
+ Phys. Rev. D 99, 063510 (2019), arXiv:1804.08379
1466
+ [astro-ph.CO].
1467
+ [79] L.-F. Wang, X.-N. Zhang, J.-F. Zhang, and X. Zhang,
1468
+ Phys. Lett. B 782, 87 (2018), arXiv:1802.04720 [astro-
1469
+ ph.CO].
1470
+ [80] E.
1471
+ Di
1472
+ Valentino,
1473
+ D.
1474
+ E.
1475
+ Holz,
1476
+ A.
1477
+ Melchiorri,
1478
+ and F. Renzi, Phys. Rev. D 98, 083523 (2018),
1479
+ arXiv:1806.07463 [astro-ph.CO].
1480
+ [81] M. Du, W. Yang, L. Xu, S. Pan, and D. F. Mota, Phys.
1481
+ Rev. D 100, 043535 (2019), arXiv:1812.01440 [astro-
1482
+ ph.CO].
1483
+ [82] I. S. Matos, M. O. Calv˜ao, and I. Waga, Phys. Rev. D
1484
+ 103, 104059 (2021), arXiv:2104.10305 [gr-qc].
1485
+ [83] A. Allahyari, R. C. Nunes, and D. F. Mota, Mon. Not.
1486
+ Roy. Astron. Soc. 514, 1274 (2022), arXiv:2110.07634
1487
+ [astro-ph.CO].
1488
+ [84] M. Corman, C. Escamilla-Rivera,
1489
+ and M. A. Hendry,
1490
+ JCAP 02, 005 (2021), arXiv:2004.04009 [astro-ph.CO].
1491
+ [85] E. Belgacem et al. (LISA Cosmology Working Group),
1492
+ JCAP 07, 024 (2019), arXiv:1906.01593 [astro-ph.CO].
1493
+ [86] R.-G. Cai, N. Tamanini, and T. Yang, JCAP 05, 031
1494
+ (2017), arXiv:1703.07323 [astro-ph.CO].
1495
+ [87] S. Hou, X.-L. Fan,
1496
+ and Z.-H. Zhu, Mon. Not. Roy.
1497
+ Astron. Soc. 507, 761 (2021), arXiv:2106.01765 [astro-
1498
+ ph.CO].
1499
+ [88] X. Zheng, S. Cao, Y. Liu, M. Biesiada, T. Liu, S. Geng,
1500
+ Y. Lian, and W. Guo, Eur. Phys. J. C 81, 14 (2021),
1501
+ arXiv:2012.14607 [astro-ph.CO].
1502
+ [89] J. Luo et al. (TianQin), Class. Quant. Grav. 33, 035010
1503
+ (2016), arXiv:1512.02076 [astro-ph.IM].
1504
+ [90] J. D. Barrow, Nucl. Phys. B 310, 743 (1988).
1505
+ [91] J. D. Barrow, Phys. Lett. B 180, 335 (1986).
1506
+ [92] J. D. Barrow, Phys. Lett. B 235, 40 (1990).
1507
+ [93] W. Hu, Astrophys. J. 506, 485 (1998), arXiv:astro-
1508
+ ph/9801234.
1509
+ [94] N. Aghanim et al. (Planck), Astron. Astrophys. 641, A8
1510
+ (2020), arXiv:1807.06210 [astro-ph.CO].
1511
+ [95] N. Aghanim et al. (Planck), Astron. Astrophys. 641, A5
1512
+ (2020), arXiv:1907.12875 [astro-ph.CO].
1513
+ [96] D. Scolnic et al., Astrophys. J. 859, 101 (2018),
1514
+ arXiv:1710.00845 [astro-ph.CO].
1515
+ [97] B. Sathyaprakash et al., Class. Quant. Grav. 29,
1516
+ 124013 (2012), [Erratum: Class.Quant.Grav. 30, 079501
1517
+ (2013)], arXiv:1206.0331 [gr-qc].
1518
+ [98] J. Abadie et al. (LIGO Scientific), Nucl. Instrum. Meth.
1519
+ A 624, 223 (2010), arXiv:1007.3973 [gr-qc].
1520
+ [99] B. S. Sathyaprakash, B. F. Schutz,
1521
+ and C. Van
1522
+ Den Broeck, Class. Quant. Grav. 27, 215006 (2010),
1523
+ arXiv:0906.4151 [astro-ph.CO].
1524
+ [100] R. Schneider, V. Ferrari, S. Matarrese,
1525
+ and S. F.
1526
+ Portegies Zwart, Mon. Not. Roy. Astron. Soc. 324, 797
1527
+ (2001), arXiv:astro-ph/0002055.
1528
+ [101] C. Cutler and D. E. Holz, Phys. Rev. D 80, 104009
1529
+ (2009), arXiv:0906.3752 [astro-ph.CO].
1530
+ [102] A. Lewis and S. Bridle, Phys. Rev. D 66, 103511 (2002),
1531
+ arXiv:astro-ph/0205436.
1532
+ [103] A. Gelman and D. B. Rubin, Statist. Sci. 7, 457 (1992).
1533
+
3tE2T4oBgHgl3EQfjgeA/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
4NE3T4oBgHgl3EQfogr8/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a0ab75d51613e9b0f36caf763d2de1cbc403bb63aa9e86db70758c4104341a7
3
+ size 4849709
6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60729fe31f4a5050fd7a5d350a416169d60830f9c50f3060603752c6674513a3
3
+ size 1775555
7NAyT4oBgHgl3EQfpviE/content/tmp_files/2301.00531v1.pdf.txt ADDED
@@ -0,0 +1,2435 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ SUBMISSION TO IEEE TRANSACTION ON MULTIMEDIA
2
+ 1
3
+ Multi-Stage Spatio-Temporal Aggregation
4
+ Transformer for Video Person
5
+ Re-identification
6
+ Ziyi Tang, Ruimao Zhang, Member, IEEE, Zhanglin Peng, Jinrui Chen, Liang Lin, Senior
7
+ Member, IEEE
8
+ Abstract—In recent years, the Transformer architec-
9
+ ture has shown its superiority in the video-based person
10
+ re-identification task. Inspired by video representation
11
+ learning, these methods mainly focus on designing mod-
12
+ ules to extract informative spatial and temporal fea-
13
+ tures. However, they are still limited in extracting local
14
+ attributes and global identity information, which are
15
+ critical for the person re-identification task. In this paper,
16
+ we propose a novel Multi-Stage Spatial-Temporal Aggre-
17
+ gation Transformer (MSTAT) with two novel designed
18
+ proxy embedding modules to address the above issue.
19
+ Specifically, MSTAT consists of three stages to encode
20
+ the attribute-associated, the identity-associated, and the
21
+ attribute-identity-associated information from the video
22
+ clips, respectively, achieving the holistic perception of
23
+ the input person. We combine the outputs of all the
24
+ stages for the final identification. In practice, to save the
25
+ computational cost, the Spatial-Temporal Aggregation
26
+ (STA) modules are first adopted in each stage to conduct
27
+ the self-attention operations along the spatial and tem-
28
+ poral dimensions separately. We further introduce the
29
+ Attribute-Aware and Identity-Aware Proxy embedding
30
+ modules (AAP and IAP) to extract the informative
31
+ and discriminative feature representations at different
32
+ stages. All of them are realized by employing newly
33
+ designed self-attention operations with specific meanings.
34
+ Moreover, temporal patch shuffling is also introduced to
35
+ further improve the robustness of the model. Extensive
36
+ experimental results demonstrate the effectiveness of
37
+ the proposed modules in extracting the informative and
38
+ discriminative information from the videos, and illustrate
39
+ the MSTAT can achieve state-of-the-art accuracies on
40
+ various standard benchmarks.
41
+ Index
42
+ Terms—Video-based
43
+ Person
44
+ Re-ID,
45
+ Trans-
46
+ former, Spatial Temporal Modeling, Deep Representation
47
+ Learning
48
+ I. INTRODUCTION
49
+ P
50
+ ERSON Re-identification (re-ID) [6], [26], [28],
51
+ which aims at matching pedestrians across dif-
52
+ ferent camera views at different times, is a critical
53
+ Ziyi Tang, Ruimao Zhang, and Jinrui Chen are with The Chi-
54
+ nese University of Hong Kong (Shenzhen), and Ziyi Tang is
55
+ also with Sun Yat-sen University (e-mail: [email protected],
56
57
+ Zhanglin Peng is with the Department of Computer Science,
58
+ The University of Hong Kong, Hong Kong, China (e-mail:
59
60
+ Liang Lin is with the School of Computer Science and Engineer-
61
+ ing, Sun Yat-sen University (e-mail: [email protected]).
62
+ This paper was done when Ziyi Tang was working as a Research
63
+ Assistant at The Chinese University of Hong Kong (Shenzhen).
64
+ The Corresponding Author is Ruimao Zhang
65
+ Fig. 1: Comparison between different Transformer-
66
+ based frameworks for video re-ID. (a) shows the
67
+ framework where the Transformer fuse post-CNN fea-
68
+ tures of the entire video. (b) is Trigeminal Trans-
69
+ former [51], including three separate streams for tem-
70
+ poral, spatial, and spatio-temporal feature extraction.
71
+ (c) displays a multi-stage spatio-temporal aggregation
72
+ Transformer, which consists of three stages, all with a
73
+ spatio-temporal view but different meanings.
74
+ task of visual surveillance. In the earlier stage, the
75
+ studies have mainly focused on image-based person
76
+ re-ID [26], [28], [46], which mine the discrimina-
77
+ tive information in the spatial domain. With the de-
78
+ velopment of the monitoring sensors, multi-modality
79
+ information has been introduced to re-ID task [33],
80
+ [71], [72]. Numerous methods have been proposed to
81
+ break down barriers between modalities regarding their
82
+ image styles [86], structural features [81], [84], [97],
83
+ or network parameters [33], [82].
84
+ On the other hand, some studies have exploited
85
+ multi-frame data and proposed various schemes [40],
86
+ [62], [100] to extract informative temporal represen-
87
+ tations to pursue video-based person re-ID. In such a
88
+ setting, each time a non-labeled query tracklet clip is
89
+ given, its discriminative feature representation needs to
90
+ be extracted to retrieve the clips of the corresponding
91
+ person in the non-labeled gallery. In practice, how to
92
+ simultaneously extract such discriminative information
93
+ arXiv:2301.00531v1 [cs.CV] 2 Jan 2023
94
+
95
+ Cross-viewTransfomer
96
+ Spatio-temporalTransfomer
97
+ Temporal
98
+ Spatial
99
+ Spatio-
100
+ temporal
101
+ Transfomer
102
+ Transfomer
103
+ Transformer
104
+ CNN
105
+ CNN
106
+ (a)Post-fusion Transformer
107
+ (b)TrigeminalTransformer
108
+ i Concatenation
109
+
110
+
111
+ Space-related module/
112
+ Attribute-Aware
113
+ Identity-Aware
114
+ Identity-Aware
115
+ featurerepresentation
116
+ Proxy Embedding
117
+ ProxyEmbedding
118
+ ProxyEmbedding
119
+ Module
120
+ Module
121
+ Module
122
+ Time-related module/
123
+ featurerepresentation
124
+ AttributeSpatio
125
+ Space-time-relatedmodule/
126
+ Spatio-Temporal
127
+ Spatio-Temporal
128
+ Temporal
129
+ featurerepresentation
130
+ Aggregation
131
+ Aggregation
132
+ Aggregation
133
+ Attribute-relatedmodule
134
+ Attribute-Associated
135
+ Identity-Associated
136
+ Attribute-ldentity-
137
+ /featurerepresentation
138
+ Stage
139
+ Stage
140
+ AssociatedStage
141
+ Identity-related module
142
+ (c) MSTATTANG et al.: MULTI-STAGE SPATIO-TEMPORAL AGGREGATION TRANSFORMER FOR VIDEO PERSON RE-IDENTIFICATION
143
+ 2
144
+ from spatial and temporal dimensions is the key to
145
+ improving the accuracy of video-based re-ID.
146
+ To address such an issue, traditional methods [20]
147
+ usually employ hierarchically convolutional architec-
148
+ tures to update local patterns progressively. Further-
149
+ more, some attempts [14], [15], [48], [73], [94] adopt
150
+ attention-based modules to dynamically infer discrim-
151
+ inative information from videos. For instance, Wu et
152
+ al. [72] embed body part prior knowledge inside the
153
+ network architecture via dense and non-local region-
154
+ based attention. Although recent years have witnessed
155
+ the success of convolution-based methods [12], [13],
156
+ [20], [38], [43], [74], [94], [104], they have encoun-
157
+ tered a bottleneck of accuracy improvement, as con-
158
+ volution layers suffer from their intrinsic limitations
159
+ of spatial-temporal dependency modeling and infor-
160
+ mation aggregation [96].
161
+ Recently, the Transformer architecture [24], [32],
162
+ [54], [89] has attracted much attention in the com-
163
+ puter vision area because of its excellent context
164
+ modeling ability. The core idea of such a model is
165
+ to construct interrelationships between local contents
166
+ via global attention operation. In the literature, some
167
+ hybrid network architectures [19], [34], [51] have
168
+ been proposed to tackle long-range context modeling
169
+ in video-based re-ID. A widely used paradigm is
170
+ to leverage Transformer as the post-processing unit,
171
+ coupled with a convolutional neural network (CNN)
172
+ as the basic feature extractor. For example, as sum-
173
+ marized in Fig. 1 (a), He et al. [35] and Zhang
174
+ et al. [95] adopt a monolithic Transformer to fuse
175
+ frame-level CNN feature. As shown in Fig. 1 (b),
176
+ Liu et al. [51] take a step further and put forward
177
+ multi-stream Transformer architecture in which each
178
+ stream emphasizes a particular dimension of the video
179
+ features. In a hybrid architecture, however, the 2D
180
+ CNN bottom encoder restricts the long-range spatio-
181
+ temporal interactions among local contents, which
182
+ hinders the discovery of contextual cues. Later, to
183
+ address this problem, some pure Transformer-based
184
+ approaches are introduced to video-based re-ID. Nev-
185
+ ertheless, the existing Transformer-based frameworks
186
+ are mainly motivated by those in video understanding
187
+ and concentrate on designing the architecture to learn
188
+ spatial-temporal representations efficiently. Most of
189
+ them are still limited in extracting informative and
190
+ human-relevant discriminative information from the
191
+ video clips, which are critical for large-scale matching
192
+ tasks [39], [92], [98], [104].
193
+ To address the above issues, we propose a novel
194
+ Multi-stage
195
+ Spatial-Temporal
196
+ Aggregation
197
+ Trans-
198
+ former framework, named MSTAT, which consists
199
+ of three stages to respectively encode the attribute-
200
+ associated, the identity-associated, and the attribute-
201
+ identity-associated
202
+ information
203
+ from
204
+ video
205
+ clips.
206
+ Firstly, to save the computational cost, the Spatial-
207
+ Temporal Aggregation (STA) modules [4], [7] are
208
+ firstly adopted in each stage as their building blocks
209
+ to conduct the self-attention operations along the
210
+ spatial and temporal dimensions separately. Further,
211
+ as shown in Fig. 1, we introduce the plug-and-play
212
+ Attribute-Aware Proxy and Identity-Aware Proxy
213
+ (AAP and IAP) embedding modules into different
214
+ stages, for the purpose of reserving informative at-
215
+ tribute features and aggregating discriminative identity
216
+ features respectively. They are both implemented by
217
+ self-attention operations but with different learnable
218
+ proxy embedding schemes. For the AAP embedding
219
+ module, AAPs play the role of attribute queries to
220
+ reserve a diversity of implicit attributes of a person.
221
+ Arguably, the combination of these attribute repre-
222
+ sentations is informative and provides discriminative
223
+ power, complementary to the identity-only prediction.
224
+ In contrast, the IAP embedding module maintains a
225
+ group of IAPs as key-value pairs. With explicit con-
226
+ straints, they learn to successively match and aggregate
227
+ the discriminative identity-aware features embedded
228
+ in patch tokens. During similarity measurement, the
229
+ output feature representations of the three stages are
230
+ concatenated to form a holistic view of the input
231
+ person.
232
+ In practice, a Transformer-specific data augmenta-
233
+ tion scheme, Temporal Patch Shuffling, is also intro-
234
+ duced, which randomly rearranges the patches tem-
235
+ porally. With such a scheme, the enriched training
236
+ data effectively improve the ability to learn invariant
237
+ appearance features, leading to the robustness of the
238
+ model. Extensive experiments on three public bench-
239
+ marks demonstrate our proposed framework is superior
240
+ to the state-of-the-art on different metrics. Concretely,
241
+ we achieve the best performance of 91.8% rank-1
242
+ accuracy on MARS, which is the largest video re-ID
243
+ dataset at present.
244
+ In summary, our contributions are three-fold. (1) We
245
+ introduce a Multi-stage Spatial-Temporal Aggregation
246
+ Transformer framework (MSTAT) for video-based per-
247
+ son re-ID. Compared to existing Transformer-based
248
+ frameworks, MSTAT better learns informative attribute
249
+ features and discriminative identity features. (2) For
250
+ different stages, we devise two different proxy embed-
251
+ ding modules, named Attribute-Aware and Identity-
252
+ Aware Proxy embedding modules, to extract infor-
253
+ mative attribute features and aggregate discriminative
254
+ identity features from the entire video, respectively.
255
+ (3) A simple yet effective data augmentation scheme,
256
+ referred to as Temporal Patch Shuffling, is proposed
257
+ to consolidate the network’s invariance to appearance
258
+ shifts and enrich training data.
259
+ II. RELATED WORKS
260
+ A. Image-Based Person Re-ID
261
+ Image-based person re-ID mainly focuses on person
262
+ representation learning. Early works focus primarily
263
+ on carefully designed handcraft features [6], [26], [28],
264
+ [44], [46], [103]. Recently, The flourishing deep learn-
265
+ ing has become the mainstream method for learning
266
+
267
+ 3
268
+ IEEE TRANSACTIONS ON MULTIMEDIA
269
+ representation in person ReID [43], [65], [67], [74],
270
+ [77], [88]. For the last few years, CNN has been a
271
+ widely-used feature extractor [1], [17], [41], [43]–[45],
272
+ [65], [76], [94]. OSNet [104] fuses multi-scale features
273
+ in an attention-style sub-network to obtain informative
274
+ omni-scale features. Some works
275
+ [18], [87], [98]
276
+ focus on extracting and aligning semantic information
277
+ to address misalignment caused by pose/viewpoint
278
+ variations, imperfect person detection, etc. To avoid
279
+ the misleading by noisy labels, Ye et al. [83] presents
280
+ a self-label refining strategy, deeply integrating anno-
281
+ tation optimization and network training. So far, some
282
+ works [19], [34] also explore Image-based person re-
283
+ ID based on Vision Transformer [24]. For example,
284
+ TransReID [34] adopts Transformer as the backbone
285
+ and extracts discriminative features from randomly
286
+ sampled patch groups.
287
+ B. Video-Based Person ReID
288
+ Compared to image-based person re-ID, video-
289
+ based person re-ID usually performs better because it
290
+ provides temporal information and mitigates occlusion
291
+ by taking advantage of multi-frame information. For
292
+ capturing more robust and discriminative representa-
293
+ tion from frame sequences, traditional video-based re-
294
+ ID methods usually focus on two areas: 1) encoding
295
+ of temporal information; 2) aggregation of temporal
296
+ information.
297
+ To encode additional temporal information, early
298
+ methods [40], [62], [100] directly use temporal infor-
299
+ mation as additional features. Some works [1], [49],
300
+ [55], [73] use recurrent models, e.g., RNNs [56] and
301
+ LSTM [37], to process the temporal information. Some
302
+ other works [1], [12], [13], [53], [55], [60], [105]
303
+ go further by introducing the attention mechanism to
304
+ apply dynamic temporal feature fusion. Another class
305
+ of works [21] introduces optical flow that captures
306
+ temporal motion. What is more, some works [2],
307
+ [42], [63], [75], [91], [102] directly implement spatio-
308
+ temporal pooling to video sequences and generate a
309
+ global representation via CNNs. Recently, 3D CNNs
310
+ [29], [45] learn to encode video features in a joint
311
+ spatio-temporal manner. M3D [41] endows 2D CNN
312
+ with multi-scale temporal feature extraction ability via
313
+ multi-scale 3D convolutional kernels.
314
+ For the sake of aggregation that aims to generate
315
+ discriminative features from full video features, a
316
+ class of approaches [55], [93], [105] applies average
317
+ pooling on the time dimension to aggregate spatio-
318
+ temporal feature maps. Recently, some attention-based
319
+ methods [2], [15], [72], [80] attained significant per-
320
+ formance improvement by dynamically highlighting
321
+ different video frames/regions so as to filter more dis-
322
+ criminative features from these critical frames/regions.
323
+ For instance, Liu et al. [51] introduce cross-attention
324
+ to aggregate multi-view video features by pair-wise
325
+ interaction between these views. Apart from the explo-
326
+ ration of more effective architectural design, a branch
327
+ of works study the effect of pedestrian attributes [10],
328
+ [61], [101], such as shoes, bag, and down color, or
329
+ the gait [11], [57], i.e. walking style of pedestrians, as
330
+ a more comprehensive form of pedestrian description.
331
+ Chang et al. [11] closely integrate two coherent tasks:
332
+ gait recognition and video-based re-ID by using a
333
+ hybrid framework including a set-based gait recogni-
334
+ tion branch. Some works [61], [101] embed attribute
335
+ predictors into the network supported by annotations
336
+ obtained from a network pretrained on an attribute
337
+ dataset. Chai et al. [10] separate attributes into ID-
338
+ relevant and ID-irrelevant ones and propose a novel
339
+ pose-invariant and motion-invariant triplet loss to mine
340
+ the hardest samples considering the distance of pose
341
+ and motion states.
342
+ Although the above methods have made significant
343
+ progress in performance, Transformer [66], which is
344
+ deemed a more powerful architecture to process se-
345
+ quence data, may raise the performance ceiling of
346
+ video-based re-ID. To illustrate this, Transformer can
347
+ readily adapt to video data with the support of the
348
+ global attention mechanism to capture spatio-temporal
349
+ dependencies and temporal positional encoding to or-
350
+ der spatio-temporal positions. In addition, the class
351
+ token is off-the-shelf for Transformer-based models
352
+ to aggregate spatio-temporal information. However,
353
+ Transformer suffers from multiple drawbacks [24],
354
+ [70], [89], [90], and few works have been released so
355
+ far on video-based person re-ID based on Transformer.
356
+ In this work, we attempt to explore the potential of
357
+ intractable Transformer in video-based person re-ID.
358
+ C. Vision Transformer
359
+ Recently, Transformer has shown its ability as an
360
+ alternative to CNN. Inspired by the great success of
361
+ Transformer in natural language processing, recent
362
+ researchers [24], [54], [54], [70] have extended Trans-
363
+ former to CV tasks and obtained promising results.
364
+ Bertasius et al. [7] explores different video self-
365
+ attention schemes considering their cost-performance
366
+ trade-off, resulting in a conclusion that the di-
367
+ vided space-time self-attention is optimal. Similarly,
368
+ ViViT [4] factorizes self-attention to compute self-
369
+ attention spatially and then temporally. Inspired by
370
+ these works, we divide video self-attention into spa-
371
+ tial attention followed by temporal attention, and we
372
+ further propose a attribute-aware variant for video-
373
+ based re-ID. Furthermore, little research has been
374
+ done on Transformer for Video-based person re-ID.
375
+ Trigeminal Transformers (TMT) [51] puts the input
376
+ patch token sequence through a spatial, a temporal, and
377
+ a spatio-temporal minor Transformer, respectively, and
378
+ a cross-view interaction module fuses their outputs.
379
+ Differently, MSTAT has three stages, all extracting
380
+ spatio-temporal features but with different meanings:
381
+ (1) attribute features, (2) identity features, (3) attribute-
382
+ identity features.
383
+
384
+ TANG et al.: MULTI-STAGE SPATIO-TEMPORAL AGGREGATION TRANSFORMER FOR VIDEO PERSON RE-IDENTIFICATION
385
+ 4
386
+ c
387
+ Tokenization
388
+ Class
389
+ Token
390
+ Patch
391
+ Tokens
392
+ Attribute-aware Prxoy
393
+ Embedding Module
394
+
395
+
396
+ L CE + L Tri
397
+ N3
398
+ Stage III
399
+ 2
400
+ Spatio-Temporal
401
+ Aggregation
402
+ N2
403
+ Stage II
404
+ Class Token Re-init
405
+ L CE + L Tri
406
+ L CE + L Tri
407
+ c
408
+ Inference
409
+ Element-wise
410
+ Addition
411
+ Spatial Positional
412
+ Encoding
413
+ Concatenation
414
+ Attribute
415
+ Representation
416
+ c
417
+ M
418
+ X
419
+ E
420
+ ×
421
+ 3
422
+ M
423
+ ×
424
+ ×
425
+ ×
426
+ A-Spatio-Temporal
427
+ Aggregation
428
+ Spatio-Temporal
429
+ Aggregation
430
+ N
431
+ ×
432
+ Stage I
433
+ 1
434
+ Identity-aware Prxoy
435
+ Embedding Module
436
+ Identity-aware Prxoy
437
+ Embedding Module
438
+ Fig. 2: The overall architecture of our proposed MSTAT which consists of three stages, all based on the
439
+ Transformer architecture. Stage I updates the spatio-temporal patch token sequence of the input video
440
+ and aggregates them into a group of attribute-associated representations. Subsequently, Stage II aggregates
441
+ discriminative identity-associated features and Stage III attribute-identity-associated features, relying upon
442
+ their stage-specific class tokens. Here, we omit the input and output of each module except the attribute-
443
+ aware proxy embedding module in Stage I. At inference time, all these feature representations are combined
444
+ through concatenation to infer the pedestrian’s identity jointly.
445
+ III. METHOD
446
+ In Sec. III-A, we first overview the proposed
447
+ MSTAT framework. Then, Spatio-Temporal Aggrega-
448
+ tion (STA), the normal spatial-temporal feature extrac-
449
+ tor in MSTAT, is formulated in section Sec. III-B.
450
+ Along with it, we introduce the proposed Attribute-
451
+ Aware Proxy (AAP) and Identity-Aware Proxy (IAP)
452
+ embedding modules in Sec. III-C. Finally, Tem-
453
+ poral Patch Shuffling (TPS), a newly introduced
454
+ Transformer-specific data augmentation scheme, is
455
+ presented in section III-E.
456
+ A. Overview
457
+ This section briefly summarizes the workflow of
458
+ MSTAT. The overall MSTAT framework is shown in
459
+ Fig. 2. Given a video tracklet V P RT ˆ3ˆHˆW with
460
+ T frames and the resolution of each frame is H ˆ W,
461
+ the goal of MSTAT is to learn a mapping from a video
462
+ tracklet V to a d-dimension representation space in
463
+ which each identity is discriminative from the others.
464
+ Specifically, as shown on the left of Fig. 2, MSTAT
465
+ first linearly projects non-overlapping image patches
466
+ of size 3 ˆ P ˆ P into d-dimensional patch tokens,
467
+ where d “ 3P 2 denotes the embedded dimension of
468
+ tokens. Thus, a patch token sequence X P RT ˆNˆd is
469
+ obtained, where the number of patch tokens in each
470
+ frame is denoted by N “ HˆW
471
+ P 2 . Meanwhile, spatial
472
+ positional encoding E P RNˆd is added to X in a
473
+ element-wise manner for reserving spatial structure
474
+ in each frame. Notably, we do not insert temporal
475
+ positional encoding into X, since the temporal order
476
+ is usually not conducive to video-based re-ID, which
477
+ is also demonstrated in [92]. Finally, a class token
478
+ c P Rd is associated with X to aggregate global identity
479
+ representation.
480
+ Next, we feed the token sequence X into Stage I of
481
+ MSTAT. It takes X and c as input, and employs a stack
482
+ of eight Spatio-Temporal Aggregation (STA) blocks
483
+ for inter-frame and intra-frame correlation modeling.
484
+ The output tokens are then fed into an Attribute-Aware
485
+ Proxy (AAP) embedding module to mine rich visual
486
+ attributes, a composite group of semantic cues that im-
487
+ ply identity information, e.g., garments, handbags
488
+ and so on. The Stage II includes a series of STA
489
+ blocks (three in our experiments), followed by an
490
+ Identity-Aware Proxy (IAP) embedding module which
491
+ is able to screen out discriminative identity-associated
492
+ information by inspecting the entire sequence in par-
493
+ allel. In the Stage III, we first introduce a novel class
494
+ token to directly aggregate higher-level features. In
495
+ addition, a stack of Attribute-STA (A-STA) blocks is
496
+ used to fuse attributes from different frames. At last,
497
+ an IAP embedding module is adopted to generate a
498
+ discriminative representation for the person. In the
499
+ training phase, the attribute representations extracted
500
+ from Stage I and the class tokens of Stage II and
501
+ Stage III are supervised separately by a group of
502
+ losses. During the testing, the attribute representations
503
+ and the class tokens from the last two stages are
504
+ concatenated for similarity measurement.
505
+ B. Spatio-temporal Aggregation
506
+ To begin with, we make a quick review of the vanilla
507
+ Transformer self-attention mechanism first proposed in
508
+ [66]. In practice, visual Transformer embeds an image
509
+ into a sequence of patch tokens, and self-attention
510
+ operation first linearly projects these tokens to the
511
+ corresponding query Q, key K and value V respec-
512
+ tively. Then, the scaled product of Q and K generates
513
+ an attention map A, indicating estimated relationships
514
+
515
+ s:/iblog.csdn.net/qqn34182315
516
+ IEEE TRANSACTIONS ON MULTIMEDIA
517
+ between token representations in Q and K. Then, V
518
+ performs a re-weighting by multiplying the attention
519
+ map A, to obtain the output of Transformer self-
520
+ Attention. In this way, patch tokens are reconstructed
521
+ by leveraging interaction with each other. Formally,
522
+ self-Attention operation SAp.q can be formulated as
523
+ follows:
524
+ Q, K, V “ ˆSWq, ˆSWk, ˆSWv
525
+ A “ SoftmaxpQKTq{
526
+ ?
527
+ d
528
+ SApˆSq “ AV
529
+ (1)
530
+ where ˆS P R ˆ
531
+ Nˆd denotes an 2-dimensional input
532
+ token sequence, and Wq, Wk, Wv P Rdˆd1 denote
533
+ three learnable parameter matrices of size d ˆ d1. In
534
+ the multi-head setting, we let d1 “ d{n, where n
535
+ indicates the number of attention heads. The function
536
+ Softmaxp¨q denotes the softmax operation for each
537
+ row. And the scaling operation in Eqn.(1) eliminates
538
+ the influence from the scale of embedded dimension
539
+ d1.
540
+ In our Spatio-Temporal Aggregation block (STA),
541
+ self-attention operation along time axis and along
542
+ space axis (i.e. temporal attention and spatial attention)
543
+ are separately denoted as SAtp¨q and SAsp¨q. Let
544
+ S P R ˆT ˆ ˆ
545
+ Nˆd denote an input spatio-temporal token
546
+ sequence. Formally, SAtp¨q and SAsp¨q can be written
547
+ as:
548
+ SAtpSq “ SApConcatpS:,0, ..., S:,n, ..., S:,N´1qq
549
+ SAspSq “ SApConcatpS0,:, ..., St,:, ..., ST´1,:qq
550
+ (2)
551
+ where T indicates the total number of frames in
552
+ video clip, N is the total spatial position index, and
553
+ Concatp¨q denotes the concatenation operation in the
554
+ split dimension, e.g., the spatial position dimension in
555
+ Eqn.(2).
556
+ Given SAtp.q and SAsp.q, the STA block consecu-
557
+ tively integrates these two self-attention modules to ex-
558
+ tract spatial-temporal features. As illustrated in Fig. 3,
559
+ STA further extracts discriminative information from
560
+ patch tokens to the class token through spatial attention
561
+ SAsp¨q, which can be realized by concatenating the
562
+ copies of class token to the token sequence of each
563
+ frame before SAsp.q, and taking the average of class
564
+ token copies after SAsp.q to further apply the later
565
+ temporal aggregation. In this way, the general form
566
+ of STA can be presented as:
567
+ S1 “ S ` α ˆ SAtpLNpSqq
568
+ STApS, cq “ ConcatpS1, cq
569
+ `β ˆ SAspLNpConcatpS1, cqqq
570
+ (3)
571
+ where LNp¨q denotes Layer Normalization [5]. The
572
+ hyper-parameter α and β are learnable scalar residual
573
+ weights to balance temporal attention and spatial at-
574
+ tention. Compared with the space-time joint attention
575
+ in [7] and [4], which jointly processes all patches of a
576
+ video, STA is more computation-efficient by reducing
577
+ Fig. 3: The detailed comparison between (a) Spatio-
578
+ Temporal Aggregation block (STA) and (b) Attri-
579
+ bution Spatio-Temporal Aggregation block (A-STA).
580
+ Two additional Attribute-Aware Proxy (AAP) embed-
581
+ ding modules are placed into the latter, before and
582
+ after the temporal attention module. The class token
583
+ broadcasting operation duplicates the class token for
584
+ each frame to attend spatial attention within a specific
585
+ frame. Oppositely, class token averaging calculates the
586
+ average of all class token copies. Note that the Pre-
587
+ Norm [79] layers before temporal attention and spatial
588
+ attention are omitted.
589
+ Fig. 4: The detailed module design of the Attribute-
590
+ Aware
591
+ Proxy
592
+ (AAP)
593
+ embedding
594
+ module.
595
+ The
596
+ Attribute-Aware
597
+ Proxy
598
+ Embedding
599
+ denotes
600
+ a
601
+ learnable matrix that is used as the query of the
602
+ attention operation. For simplicity, this figure only
603
+ shows the single-head version of the AAP embedding
604
+ module and the scaling operation before the softmax
605
+ operation is omitted.
606
+ complexity from OpT 2N 2q to OpT 2 ` N 2q. Actually,
607
+ it avoids operating on a long sequence, whose length
608
+ always leads to quadratic growth of computational
609
+ complexity [31], [68].
610
+ C. Attribute-Aware Proxy Embedding Module
611
+ Local patch tokens usually contain rich attributive
612
+ information, e.g., glasses, umbrellas, logos,
613
+ and so on. Even if a single attribute is not discrimina-
614
+ tive enough to recover one’s identity, the combinations
615
+
616
+ 00000
617
+ 00000
618
+ 个个个个个
619
+ 个个个个个
620
+ ClassToken
621
+ Class Token
622
+ Averaging
623
+ -
624
+ Averaging
625
+ -
626
+ -
627
+ -
628
+ -
629
+ SpatialAttention
630
+ Spatial Attention
631
+ -
632
+ -
633
+ ClassToken
634
+ -
635
+ ClassToken
636
+ -
637
+ Broadcasting
638
+ Broadcasting
639
+ -
640
+ -
641
+ -
642
+ -
643
+ -
644
+ -
645
+ AAP embeddingmodule
646
+ -
647
+ -
648
+ -
649
+ TemporalAttention
650
+ -
651
+ TemporalAttention
652
+ -
653
+ -
654
+ -
655
+ -
656
+ -
657
+ AAP embeddingmodule
658
+ -
659
+ 个个个个个
660
+ 个不不个个
661
+ 00000
662
+ 00000
663
+ (a) STA
664
+ (b) A-STAAttribute
665
+ Representation
666
+ Linear
667
+ Attribute-Aware
668
+ i Proxy Embedding
669
+ : Module
670
+ Softmax
671
+ Q
672
+ K
673
+ V
674
+ Attribute-Aware
675
+ Linear
676
+ Linear
677
+ Proxy Embeddings
678
+ Class
679
+ 0000000
680
+ Patch
681
+ Token
682
+ TokenTANG et al.: MULTI-STAGE SPATIO-TEMPORAL AGGREGATION TRANSFORMER FOR VIDEO PERSON RE-IDENTIFICATION
683
+ 6
684
+ of a pedestrian’s rich attributes should be discrimina-
685
+ tive as each attribute eliminates a certain degree of
686
+ uncertainty. Rather than directly aggregating into a
687
+ “coarse” class token, we introduce the Attribute-Aware
688
+ Proxy (AAP) embedding module to directly extract
689
+ attribute features from a single-frame or multi-frame
690
+ patch token sequence. Practically, AAP embeddings
691
+ are formed by a learnable matrix with anisotropic
692
+ initialization for the richness of learned attributes. It
693
+ can be considered as the “attribute bank” to serve as
694
+ the query of the attention operation to match with
695
+ the feature representations of the input patch tokens.
696
+ Specifically, AAP embeddings interact with the keys
697
+ of the patch token sequence. Finally, the resulting
698
+ attention map is used to re-weight the value, generating
699
+ the attribute representations of the specific video clip
700
+ with the same dimension of AAPs. Formally, an AAP
701
+ embedding module can be written as follows,
702
+ Q, K, V “ PQ, SWk, SWv,
703
+ AAPpSq “ SoftmaxpQKTq
704
+ ?
705
+ d
706
+ V
707
+ (4)
708
+ here we use the multi-head version of AAP embedding
709
+ module in practice, which has the same multi-head
710
+ setting as SAp¨q in Eqn.(1). Note that the spatio-
711
+ temporal input S here can also be ˆS P R ˆ
712
+ Nˆd for
713
+ spatial-only use. Compared with SAp¨q, the newly
714
+ proposed AAP module consider the query Q in Eqn.(1)
715
+ as the a set of learnable parameters PQ P RNaˆd1,
716
+ where Na ! N is a hyper-parameter that indicates the
717
+ number of AAPs. By controlling Na, the AAP module
718
+ could have a manually defined capacity, which leads
719
+ to flexibility for various real applications.
720
+ As shown in Fig. 2, both Stage I and Stage
721
+ III employ the proposed AAP embedding modules.
722
+ Specifically, in Stage I, the proposed AAP module is
723
+ firstly used to generate attribute representations from a
724
+ multi-frame sequence of patch tokens S P R ˆT ˆ ˆ
725
+ Nˆd for
726
+ similarity measurement. Although we do not have any
727
+ attribute-level annotations, we hope the AAP module
728
+ can automatically learn a rich set of implicit attributes
729
+ from the entire training dataset, while these resultant
730
+ attribute representations could also present discrimina-
731
+ tive power complementary to ID-only representations.
732
+ To achieve this goal, the ID-level supervision signal is
733
+ first imposed on the combination of learned attribute
734
+ representations to constrain its discriminative power.
735
+ In addition, we initialize the AAPs with anisotropic
736
+ distributions to capture diverse implicit attribute rep-
737
+ resentations. In practice, we surprisingly find that
738
+ such anisotropy can maintain after the model training,
739
+ which means such optimized AAP could respond to a
740
+ set of differentiated attributes. Moreover, the number
741
+ of AAPs can be relatively large compared with the
742
+ class token to cover rich attribute information. In
743
+ this sense, both the richness and diversity of learned
744
+ implicit attributes can be guaranteed.
745
+ In Stage III, we further insert two intra-frame
746
+ AAP embedding modules before and after the tem-
747
+ poral attention of each STA to conduct attribute-aware
748
+ temporal interaction. Such a modified STA block is
749
+ named A-STA, which is illustrated in Fig. 3. In A-STA,
750
+ semantic-related attributes in different frames experi-
751
+ ence inter-frame interaction to model their temporal
752
+ relations. In the end, after temporal attention, we set
753
+ Na equal to N for the second AAP embedding module
754
+ so that it has N tokens as output to keep the input-
755
+ output consistency.
756
+ D. Identity-Aware Proxy Embedding Module
757
+ Extracting discriminative identity representation is
758
+ also crucial for video-based re-ID. To this end, the
759
+ Identity-Aware Proxy (IAP) embedding module is pro-
760
+ posed for effective and efficient discriminative repre-
761
+ sentation generation. In previous works, joint space-
762
+ time attention has shown promising results [4], [7], as
763
+ it accelerates information aggregation by applying self-
764
+ attention over spatial and temporal dimensions jointly.
765
+ However, the quadratic computational overheads limit
766
+ its applicability. The IAP embedding module is pro-
767
+ posed to address such an issue, which performs joint
768
+ space-time attention with high efficiency while main-
769
+ taining the discrimination of the identity feature rep-
770
+ resentation.
771
+ The IAP module contains a set of identity proto-
772
+ types, which are presented as two learnable matrics.
773
+ In practice, we exploit them to replace the keys
774
+ tpi
775
+ KuM
776
+ i“1 P PK and values tpi
777
+ V uM
778
+ i“1 P PV of the
779
+ attention operation. Both PK, PV
780
+ P RMˆd1, where
781
+ M P N` denotes the number of identity prototypes
782
+ and determine the capacity of the IAP module (usually
783
+ M ! N). As shown in Fig. 5, an attention map
784
+ A P RMˆN is first calculated to present the affinity
785
+ between prototype-patch pairs. Thus each element in A
786
+ reflects how close a patch token is to a specific identity
787
+ prototype. Then this attention map is sparsified by suc-
788
+ cessively applying an L1 normalization and softmax
789
+ normalization along M and N, respectively. At last,
790
+ the class token c, i.e. the first row of V, is updated
791
+ by the multiplication of V and A. Such an operation
792
+ aggregates the most discriminative identity features
793
+ from the entire patch token sequence. Formally, given
794
+ the spatio-temporal token sequence S, the output of
795
+ the IAP module can be calculated as follows:
796
+ Q, K, V “ SWq, PK, PV
797
+ A “ SoftmaxpL1NormpQKTqq
798
+ ?
799
+ d
800
+ IAPpSq “ AV
801
+ (5)
802
+ where K and V are not conditioned on input S
803
+ but are learnable parameters. Here we insert an L1
804
+ normalization layer before the softmax operation in
805
+ Eqn. (5), resulting in double normalization [30], [31].
806
+ Such a scheme performs patch token re-coding to
807
+ reduce the noise of patch representations, leading to
808
+
809
+ 7
810
+ IEEE TRANSACTIONS ON MULTIMEDIA
811
+ Fig. 5: The detailed module design of the Identity-
812
+ Aware Proxy (IAP) embedding module. The IAP em-
813
+ bedding denotes the learnable matrix used to calculate
814
+ the key or value of the attention operation. Here
815
+ we only show the single-head version of the IAP
816
+ embedding module and omit the scaling operation.
817
+ In such a scheme, The output token sequence can
818
+ be considered as reconstruction by a group of IAPs,
819
+ which tend to reserve the most discriminative identity
820
+ features.
821
+ robust identification results. Specifically, the learnable
822
+ matrix PK matches the input tokens through the double
823
+ normalization operation to generate the affinity map
824
+ A. Then these input tokens are thereupon re-coded
825
+ through a projection of PV along A. Since the numbers
826
+ of learnable vectors in PK and PV are much smaller
827
+ than the number of input tokens, the above operation
828
+ has been able to represent each token in a more
829
+ compact space (i.e. linear combination of the vectors
830
+ in PV ), effectively suppressing irrelevant information
831
+ for re-ID. Moreover, IAPp¨q has OpNq computational
832
+ complexity since the number of identity prototypes M
833
+ is fixed and is usually much less than the total number
834
+ of patch tokens of a specific video tracklet (e.g., 64
835
+ in our experiments). So, the proposed IAP embedding
836
+ module allows all spatio-temporal patch tokens to be
837
+ processed in parallel for effective and efficient feature
838
+ extraction.
839
+ E. Temporal Patch Shuffling
840
+ To improve the robustness of the model, we propose
841
+ a novel data augmentation scheme termed Temporal
842
+ Patch Shuffling (TPS). Suppose we have one patch
843
+ sequences Ri “ tri1, ..., rit, ..., riT u from the same
844
+ video clip, where the sub-index i denotes specific
845
+ spatial locations. As shown in Fig. 6, the proposed
846
+ TPS randomly permutes the patch tokens in Ri and
847
+ refill the shuffled sequence ˆ
848
+ Ri to form the new video
849
+ clip for training. As illustrated in Fig. 6, we could
850
+ simultaneously select multiple spatial regions in one
851
+ video clip for shuffling. While in the inference phase,
852
+ the original video clip is directly fed into the model
853
+ for identification. TPS brings firm appearance shifts
854
+ and motion changes from which the network learns
855
+ to extract generalizable and invariant visual clues. In
856
+ addition, the scale of available training data can be
857
+ f1
858
+ f2
859
+ f3
860
+ f4
861
+ f5
862
+ r21
863
+ r22
864
+ r23
865
+ r24
866
+ r25
867
+ r11
868
+ r12
869
+ r13
870
+ r14
871
+ r15
872
+ r15
873
+ r14
874
+ r11
875
+ r12
876
+ r13
877
+ r24
878
+ r23
879
+ r25
880
+ r22
881
+ r21
882
+ X
883
+ x’
884
+ shuffling
885
+ f1
886
+ f2
887
+ f3
888
+ f4
889
+ f5
890
+ Fig. 6: Visualization of Temporal Patch Shuffling
891
+ (TPS). ft represents tth frame, rit the patch in spatial
892
+ position i and tth frame. TPS is a built-in data aug-
893
+ mentation scheme that randomizes the order of a patch
894
+ sequence sampled from spatial position i. As a result,
895
+ for example, the patch in the red box is transferred
896
+ from the 5th frame to the 1st frame.
897
+ greatly extended based on such a scheme, which helps
898
+ to prevent the network from overfitting.
899
+ In our experiments, we treat TPS as a plug-and-play
900
+ operation and implement it at the stem of the network
901
+ to promote the entire network for the best performance.
902
+ The following section will conduct ablation studies to
903
+ explore where to insert TPS and to what extent TPS
904
+ should be for optimal training results.
905
+ IV. EXPERIMENT
906
+ A. Datasets and evaluation protocols
907
+ In this paper, we evaluate our proposed MSTAT
908
+ on three widely-used video-based person re-ID bench-
909
+ marks:
910
+ iLIDS-VID
911
+ [69],
912
+ DukeMTMC-VideoReID
913
+ (DukeV) [59], and MARS [102].
914
+ 1) iLIDS-VID [69] is comprised of 600 video track-
915
+ lets of 300 persons captured from two cameras. In
916
+ these video tracklets, frame numbers range from 23
917
+ and 192. The test set shares 150 identities with the
918
+ training set.
919
+ 2) DukeMTMC-VideoReID [59] is a large-scale
920
+ video-based benchmark which contains 4, 832 videos
921
+ sharing 1, 404 identities. In the following sections, we
922
+ use the abbreviation “DukeV” for the DukeMTMC-
923
+ VideoReID dataset. The video sequences in the DukeV
924
+ dataset are commonly longer than videos in other
925
+ datasets, which contain 168 frames on average.
926
+ 3) MARS [102] is one of the largest video re-
927
+ ID benchmarks which collects 1, 261 identities exist-
928
+ ing in around 20, 000 video tracklets captured by 6
929
+ cameras. Frames within a video tracklet are relatively
930
+ more misaligned since they are obtained by a DPM
931
+ detector [27] and a GMMCP tracker [22] rather than
932
+ hand drawing. Furthermore, around 3, 200 distractor
933
+ tracklets are mixed into the dataset to simulate real-
934
+ world scenarios.
935
+ For evaluation on MARS and DukeV datasets, we
936
+ use two metrics: the Cumulative Matching Character-
937
+ istic (CMC) curves [8] and mean Average Precision
938
+ (mAP) following previous works [16], [51], [94], [99].
939
+ However, in the gallery set of iLIDS-VID, there is
940
+ merely one correct match for each query. For this
941
+ benchmark, only cumulative accuracy is reported.
942
+
943
+ 00000000
944
+ Identity-Aware
945
+ : Proxy Embedding
946
+ i Module
947
+ Softmax
948
+ L1Norm
949
+ K
950
+ V
951
+ Identity-Aware
952
+ Identity-Aware
953
+ Linear
954
+ Proxy Embeddings
955
+ Proxy Embeddings
956
+ Class
957
+ Patch
958
+ Token
959
+ TokensXXTANG et al.: MULTI-STAGE SPATIO-TEMPORAL AGGREGATION TRANSFORMER FOR VIDEO PERSON RE-IDENTIFICATION
960
+ 8
961
+ Method
962
+ Source
963
+ Backbone
964
+ MARS
965
+ Duke-V
966
+ iLIDS-VID
967
+ Rank-1
968
+ Rank-5
969
+ mAP
970
+ Rank-1
971
+ Rank-5
972
+ mAP
973
+ Rank-1
974
+ Rank-5
975
+ SCAN [94]
976
+ TIP19
977
+ Pure-CNN
978
+ 87.2
979
+ 95.2
980
+ 77.2
981
+ -
982
+ -
983
+ -
984
+ 88.0
985
+ 96.7
986
+ VRSTC [39]
987
+ CVPR19
988
+ Pure-CNN
989
+ -
990
+ 89.8
991
+ 85.1
992
+ 96.9
993
+ -
994
+ 96.2
995
+ 86.6
996
+ -
997
+ M3D [39]
998
+ AAAI19
999
+ Pure-CNN
1000
+ -
1001
+ -
1002
+ -
1003
+ 96.9
1004
+ -
1005
+ 96.2
1006
+ 74.0
1007
+ 94.3
1008
+ MG-RAFA [99]
1009
+ CVPR20
1010
+ Pure-CNN
1011
+ 88.8
1012
+ 97.0
1013
+ 85.9
1014
+ -
1015
+ -
1016
+ -
1017
+ 88.6
1018
+ 98.0
1019
+ AFA [16]
1020
+ ECCV20
1021
+ Pure-CNN
1022
+ 90.2
1023
+ 96.6
1024
+ 82.9
1025
+ -
1026
+ -
1027
+ -
1028
+ 88.5
1029
+ 96.8
1030
+ AP3D [29]
1031
+ ECCV20
1032
+ Pure-CNN
1033
+ 90.7
1034
+ -
1035
+ 85.6
1036
+ 97.2
1037
+ -
1038
+ 96.1
1039
+ 88.7
1040
+ -
1041
+ TCLNet [16]
1042
+ ECCV20
1043
+ Pure-CNN
1044
+ 89.8
1045
+ -
1046
+ 85.1
1047
+ 96.9
1048
+ -
1049
+ 96.2
1050
+ 86.6
1051
+ -
1052
+ A3D [15]
1053
+ TIP20
1054
+ Pure-CNN
1055
+ 86.3
1056
+ 95.5
1057
+ 80.4
1058
+ -
1059
+ -
1060
+ -
1061
+ 86.7
1062
+ 98.6
1063
+ GRL [52]
1064
+ CVPR21
1065
+ Pure-CNN
1066
+ 90.4
1067
+ 96.7
1068
+ 84.8
1069
+ 95.0
1070
+ 98.7
1071
+ 93.8
1072
+ 90.4
1073
+ 98.3
1074
+ STRF [3]
1075
+ ICCV21
1076
+ Pure-CNN
1077
+ 90.3
1078
+ -
1079
+ 86.1
1080
+ 97.4
1081
+ -
1082
+ 96.4
1083
+ 89.3
1084
+ -
1085
+ Fang et al. [25]
1086
+ WACV21
1087
+ Pure-CNN
1088
+ 87.9
1089
+ 97.2
1090
+ 83.2
1091
+ -
1092
+ -
1093
+ -
1094
+ 88.6
1095
+ 98.6
1096
+ TMT [51]
1097
+ Arxiv21
1098
+ CNN-Transformer
1099
+ 91.2
1100
+ 97.3
1101
+ 85.8
1102
+ -
1103
+ -
1104
+ -
1105
+ 91.3
1106
+ 98.6
1107
+ Liu et al. [47]
1108
+ CVPR21*
1109
+ CNN-Transformer
1110
+ 91.3
1111
+ -
1112
+ 86.5
1113
+ 96.7
1114
+ -
1115
+ 96.2
1116
+ -
1117
+ -
1118
+ STT [95]
1119
+ Arxiv21
1120
+ CNN-Transformer
1121
+ 88.7
1122
+ -
1123
+ 86.3
1124
+ 97.6
1125
+ -
1126
+ 97.4
1127
+ 87.5
1128
+ 95.0
1129
+ ASANet [10]
1130
+ TCSVT22
1131
+ Pure-CNN
1132
+ 91.1
1133
+ 97.0
1134
+ 86.0
1135
+ 97.6
1136
+ 99.9
1137
+ 97.1
1138
+ -
1139
+ -
1140
+ MSTAT(ours)
1141
+ -
1142
+ Pure-Transformer
1143
+ 91.8
1144
+ 97.4
1145
+ 85.3
1146
+ 97.4
1147
+ 99.3
1148
+ 96.4
1149
+ 93.3
1150
+ 99.3
1151
+ TABLE I: Result comparison with state-of-the-art video-based person re-ID methods on MARS, DukeMTMC-
1152
+ VideoReID, and iLIDS-VID. * denotes the workshop of the conference.
1153
+ B. Implementation details
1154
+ Our proposed MSTAT framework is built based on
1155
+ Pytorch toolbox [58]. In our experiments, it is running
1156
+ on a single NVIDIA A100 GPU (40G memory). We
1157
+ resize each video frame to 224 ˆ 112 for the above
1158
+ benchmarks. Typical data augmentation schemes are
1159
+ involved in training, including horizontal flipping, ran-
1160
+ dom cropping, and random erasing. For all stages,
1161
+ STA modules are pretrained on an action recognition
1162
+ dataset, K600 [9], while other aforementioned modules
1163
+ are randomly initialized.
1164
+ In the training phase, if not specified, we sample
1165
+ L “ 8 frames each time for a video tracklet and
1166
+ set the batch size as 24. In each mini-batch, we
1167
+ randomly sample two video tracklets from different
1168
+ cameras for each person. We supervise the network
1169
+ by cross-entropy loss with label smoothing [64] asso-
1170
+ ciated with widely used BatchHard triplet loss [36].
1171
+ Specifically, we impose supervision signals separately
1172
+ on the concatenated attribute representation from the
1173
+ AAP embedding module in Stage I, the output class
1174
+ tokens from Stage II, and Stage III. The learning
1175
+ rate is initially set to 1e-3, which would be multiplied
1176
+ by 0.75 after every 25 epochs. The entire network is
1177
+ updated by an SGD optimizer in which the weight
1178
+ decay and Nesterov momentum are set to 5 ˆ 10´5
1179
+ and 0.9, respectively.
1180
+ In the test phase, following [29], [95], we randomly
1181
+ sample 32 frames as a sequence from each original
1182
+ tracklet in either query or gallery. For each sequence,
1183
+ The attribute representation from Stage I, the output
1184
+ class tokens from stage Stage II and Stage III are
1185
+ concatenated as the overall representation. Following
1186
+ the widely-used protocol, we compute the cosine sim-
1187
+ ilarity between each query-gallery pair using their
1188
+ overall representations. Then, the CMC curves and the
1189
+ mAP can be calculated based on the predicted ranking
1190
+ list and the ground truth identity of each query. Note
1191
+ that we do not use any re-ranking technique.
1192
+ C. Compared with the state of the arts
1193
+ In Table I, we make a comparison on three bench-
1194
+ mark datasets between our method and video-based
1195
+ person re-ID methods from 2019 to 2021, including
1196
+ M3D [39], GRL [52], STRF [3], Fang et al. [25],
1197
+ TMT [51], Liu et al. [47], ASANet [10]. According to
1198
+ their backbones, these re-ID methods can be roughly
1199
+ divided into the following types: Pure-CNN, CNN-
1200
+ Transformer Hybrid, and Pure-Transformer methods.
1201
+ In real-world applications, rank-1 accuracy [8] re-
1202
+ flects what extent a method can find the most confident
1203
+ positive sample [85], and relatively high rank-1 accu-
1204
+ racy can save time in confirmation. As the first method
1205
+ based on Pure-Transformer for video-based re-ID so
1206
+ far, we achieve state-of-the-art results in rank-1 ac-
1207
+ curacy on three benchmarks. Our approach especially
1208
+ attains rank-1 accuracy of 91.8% and rank-5 accuracy
1209
+ of 97.4% on the largest-scale benchmark, MARS. It
1210
+ is noteworthy that our MSTAT outperforms the best
1211
+ pure CNN-based methods using ID annotations only
1212
+ by a margin of 1.1% and a CNN-Transformer hybrid
1213
+ method, TMT, by 0.6% in MARS rank-1 accuracy.
1214
+ Compared to our proposed method, TCLNet [16]
1215
+ explicitly captures complementary features over dif-
1216
+ ferent frames, and GRL [52] devises a guiding mech-
1217
+ anism for reciprocating feature learning. However, the
1218
+ designed modules in these methods commonly take
1219
+ as input the deep spatial feature maps extracted by
1220
+ a CNN backbone (e.g. ResNet50) that may overlook
1221
+ attribute-associated or identity-associated information
1222
+ without explicit modeling. Similar to ours, TMT [51]
1223
+ and M3D [3] process video tracklets in multiple
1224
+ views to extract and fuse multi-view features. No-
1225
+ tably, in all stages of MSTAT, intermediate features
1226
+ are spatio-temporal and can be iteratively updated to
1227
+ capture spatio-temporal cues with different emphases.
1228
+ ASANet [10] exploits explicit ID-relevant attributes
1229
+ (e.g., gender, clothes, and hair) and ID-irrelevant at-
1230
+ tributes (e.g., pose and motion) on a multi-branch net-
1231
+
1232
+ 9
1233
+ IEEE TRANSACTIONS ON MULTIMEDIA
1234
+ Method
1235
+ Test Protocol
1236
+ Rank-1
1237
+ Rank-5
1238
+ mAP
1239
+ MSTAT
1240
+ Stage I
1241
+ 89.2
1242
+ 96.7
1243
+ 82.4
1244
+ Stage II
1245
+ 89.2
1246
+ 96.5
1247
+ 83.0
1248
+ Stage III
1249
+ 89.8
1250
+ 96.5
1251
+ 83.0
1252
+ Stage I & II
1253
+ 91.2
1254
+ 97.3
1255
+ 85.0
1256
+ Stage I & III
1257
+ 90.5
1258
+ 97.2
1259
+ 83.9
1260
+ Stage II & III
1261
+ 90.6
1262
+ 96.9
1263
+ 84.6
1264
+ Stage I, II, & III
1265
+ 91.8
1266
+ 97.4
1267
+ 85.3
1268
+ TABLE II: Ablation study on three stages of MSTAT
1269
+ on MARS. Test Protocol means the final feature rep-
1270
+ resentation used for similarity measurement. The net-
1271
+ work architecture and training hyper-parameter setting
1272
+ remain the same for each experiment.
1273
+ work. Despite the performance growth, the demand for
1274
+ attribute annotations may limit its applications in large-
1275
+ scale scenarios. In comparison with existing methods,
1276
+ our method aggregates spatio-temporal information in
1277
+ a unified manner and explicitly capitalizes on implicit
1278
+ attribute information to improve recognizability un-
1279
+ der challenging scenarios. Conclusively, our method
1280
+ achieves the state-of-the-art performance of 91.8% and
1281
+ 93.3% rank-1 accuracy, respectively, on MARS and
1282
+ iLIDS-VID.
1283
+ D. Effectiveness of Multi-Stage Framework Architec-
1284
+ ture
1285
+ To evaluate the effectiveness of the three stages
1286
+ in our proposed MSTAT, we carry out a series of
1287
+ ablation experiments whose results are displayed in
1288
+ Table II. After the three stages are jointly trained, we
1289
+ first separately evaluate each stage using its output
1290
+ feature representation. Then, we concatenate two or
1291
+ more stages to evaluate whether each is effective.
1292
+ For three single stages, each has rank-1 accuracy
1293
+ ranging from 89.2 to 89.8. However, their combina-
1294
+ tions result in a significant increase of over 0.8%.
1295
+ Remarkably, while Stage I and Stage II secure only
1296
+ 89.2 rank-1 accuracy, their integration attains up to
1297
+ 91.2%, surpassing them by a 2% margin. One can
1298
+ attribute such a result to their emphases: one stage on
1299
+ attribute-associated features and the other on identity-
1300
+ associated features. Eventually, when all three stages
1301
+ are used, MSTAT reaches a 91.8% rank-1 accuracy,
1302
+ higher than all two-stage combinations. Overall, these
1303
+ experiments demonstrate that the three stages have dif-
1304
+ ferent preferences toward features and can complement
1305
+ each other by simple concatenation.
1306
+ E. Effectiveness of Key Components
1307
+ To demonstrate the effectiveness of our proposed
1308
+ MSTAT, we conduct a range of ablative experiments
1309
+ on the largest public benchmark MARS.
1310
+ 1) Effectiveness of Attribute-Aware Proxy Embed-
1311
+ ding Module: As shown in Fig. 7, we evaluate MSTAT
1312
+ with different AAP numbers (i.e. Na in Sec. III-C) in
1313
+ the AAP embedding module in the last layer of Stage
1314
+ Fig. 7: Ablation study on the attribute-aware proxy
1315
+ (AAP) embedding module for attribute extraction in
1316
+ MARS. ”Base” is the network without attribute ex-
1317
+ traction using AAP in training and testing. AAP-
1318
+ k indicates the network where the AAP embedding
1319
+ module in Stage I has k AAPs.
1320
+ Fig. 8: Ablation study on A-STA. ”Base” is the net-
1321
+ work that consists of STA only. A-STA-k represents
1322
+ the network in which Stage III is equipped with A-
1323
+ STA layers each of k AAPs.
1324
+ I. The figure reveals that 24 proxies are optimal for
1325
+ attributive information extraction as it attains the best
1326
+ performance in terms of rank-1 and rank-5 accuracy.
1327
+ In contrast to the baseline, MSTAT has seen over 2%
1328
+ growth in rank-1 accuracy and around 1% in rank-5
1329
+ accuracy. However, a redundant or insufficient number
1330
+ of AAPs may cause a minor performance drop since
1331
+ they may pay attention to noisy or useless attributes.
1332
+ In summary, the AAP embedding module for clue
1333
+ extraction gives a boost to the performance in rank-
1334
+ 1 and rank-5 accuracy, with negligible computational
1335
+ overhead.
1336
+ Attribute-Aware Proxy (AAP) embedding modules
1337
+ are also used for A-STA, a variant of STA for attribute-
1338
+ aware temporal feature fusion in Stage III. As shown
1339
+ in Fig. 8, we conduct a series of experiments to explore
1340
+ whether A-STA is effective and how many AAPs for
1341
+ A-STA are appropriate (also corresponding to Na in
1342
+ III-C)). The experiment results reveal that the baseline
1343
+ model fails to reach 90% rank-1 accuracy or 97% rank-
1344
+ 5 accuracy. As the number of AAPs increases, these
1345
+ two metrics grow to 91.8% and 97.4%.
1346
+ Therefore, we can attribute the performance soar
1347
+ to A-STA, allowing for attribute-aware temporal in-
1348
+ teraction. A-STA offers a different viewpoint from
1349
+ that of Stage II on videos. Moreover, due to the
1350
+ redundancy of temporal information in many video re-
1351
+ ID scenarios discussed in [16], A-STA with too many
1352
+ AAPs incurs meaningless attributes. This can be why
1353
+ the performance descends once A-STA has too many
1354
+ AAPs.
1355
+
1356
+ Rank-1 accuracy
1357
+ Rank-5 accuracy
1358
+ 9160
1359
+ 0.93
1360
+ 0.974
1361
+ 0.92
1362
+ 0.918
1363
+ 0.972
1364
+ 0.908
1365
+ 0.971
1366
+ 0.91
1367
+ 0.907
1368
+ 0.906
1369
+ 0L60
1370
+ 0.969
1371
+ 0.90
1372
+ 0.968
1373
+ 0.968
1374
+ 0.892
1375
+ 0.967
1376
+ 0.B9
1377
+ 0.966
1378
+ Bese
1379
+ AAP-BAAP-16 AAP-24 AAP-32
1380
+ Bease
1381
+ AAP-BAAP-16 AAP-24 AAP-32Rank-1 accuracy
1382
+ Rank-5 accuracy
1383
+ 0.976
1384
+ 0.93
1385
+ 0.974
1386
+ 0.92
1387
+ 0.918
1388
+ 0.910
1389
+ 0.912
1390
+ 0.972
1391
+ 0.971
1392
+ 0.91
1393
+ 0.906
1394
+ 0.970
1395
+ 0.970
1396
+ 0.90
1397
+ 0.968
1398
+ 0.968
1399
+ 0.892
1400
+ 0.B9
1401
+ 0.566
1402
+ 0.966
1403
+ BaBBASTA-16 ASTA-32 ASTA4B ASTA-64
1404
+ Baiga
1405
+ ASTA-16 ASTA-32 ASTA-4B ASTA-64TANG et al.: MULTI-STAGE SPATIO-TEMPORAL AGGREGATION TRANSFORMER FOR VIDEO PERSON RE-IDENTIFICATION
1406
+ 10
1407
+ Fig. 9: Study on the effect of training video sequence
1408
+ length on MARS.
1409
+ In conclusion, our proposed AAP embedding mod-
1410
+ ule can be used for: (1) the extraction of informative
1411
+ attributes as plugged into any Transformer layer and
1412
+ (2) attribute-aware temporal interaction when a tempo-
1413
+ ral attention module is sandwiched between two. Both
1414
+ of the two functionalities cause a significant increase
1415
+ in performance, demonstrating their effectiveness.
1416
+ 2) Effectiveness of Identity-Aware Proxy Embedding
1417
+ Module: In Table III, MSTAT that discards IAP em-
1418
+ bedding modules leads to only 88.2% rank-1 accuracy
1419
+ and 96.4% rank-5 accuracy. However, it boosts rank-1
1420
+ performance by 2.8% or 2.2% by taking the place of
1421
+ STA in Stage II or Stage III. Finally, IAP embedding
1422
+ modules in the last layers in both Stage II and
1423
+ Stage III further improve 0.8% rank-1 accuracy and
1424
+ 0.4% rank-5 accuracy. The IAP embedding module’s
1425
+ ablation results demonstrate its ability to generate
1426
+ discriminative representations efficiently. Intuitively,
1427
+ we place the IAP embedding module only in the last
1428
+ few depths because it may discard non-discriminative
1429
+ features that should be preserved in shallow layers.
1430
+ 3) Effectiveness of Temporal Patch Shuffling: To
1431
+ evaluate the effectiveness of Temporal Patch Shuffling
1432
+ (TPS), we assign different probabilities to implement
1433
+ TPS for each training video sample. Note that in the
1434
+ following experiments, the number of spatial positions
1435
+ to shuffle is set to 5 if we implement TPS on this sam-
1436
+ ple. As shown in Table IV, 20% probability provides
1437
+ the best result over others, which leads to a growth of
1438
+ 0.3% in rank-1 accuracy. However, the 60% or 80%
1439
+ probability results in a 0.1% or 0.2% rank-1 accuracy
1440
+ drop mainly due to heavy noise. In summary, a proper
1441
+ level of TPS would be an effective data augmentation
1442
+ method for the Transformer for video-based person
1443
+ re-ID. Further, rather than reserving temporal motion
1444
+ (an ordered sequence of patches), TPS stimulates re-
1445
+ identification accuracy by learning temporal coherence
1446
+ from shuffled patch tokens.
1447
+ F. Effect of video sequence length
1448
+ To investigate how temporal noise influences the
1449
+ training of MSTAT, we conduct experiments on videos
1450
+ with varied lengths. In Fig. 9, experiments provide
1451
+ length-varying video tracklets for training, while all
1452
+ experiments are implemented under the identical eval-
1453
+ uation setting with a fixed video length of 32. All
1454
+ Method
1455
+ Position
1456
+ Rank-1
1457
+ Rank-5
1458
+ w/o IAP embedding module
1459
+ -
1460
+ 88.2
1461
+ 96.4
1462
+ w/ IAP embedding module
1463
+ Stage II
1464
+ 91.0
1465
+ 97.0
1466
+ Stage III
1467
+ 90.4
1468
+ 97.0
1469
+ Stage II&III
1470
+ 91.8
1471
+ 97.4
1472
+ TABLE III: Ablation study on the IAP embedding
1473
+ module. Stage II and Stage III in this table means that
1474
+ an IAP embedding module is appended to the last layer
1475
+ of Stage II and Stage III respectively. This table shows
1476
+ that the IAP embedding module brings improvements
1477
+ to every single stage. When it is placed on both two
1478
+ stages, MSTAT shows the best performance.
1479
+ Methods
1480
+ Prob.
1481
+ Rank-1
1482
+ Rank-5
1483
+ mAP
1484
+ MSTAT w/o TPS
1485
+ 0%
1486
+ 91.5
1487
+ 97.5
1488
+ 85.2
1489
+ MSTAT w/ TPS
1490
+ 20%
1491
+ 91.8
1492
+ 97.4
1493
+ 85.3
1494
+ 40%
1495
+ 91.7
1496
+ 97.3
1497
+ 85.2
1498
+ 60%
1499
+ 91.4
1500
+ 97.5
1501
+ 85.1
1502
+ 80%
1503
+ 91.3
1504
+ 97.1
1505
+ 85.1
1506
+ TABLE IV: Ablation study on Temporal Patch Shuf-
1507
+ fling. The table shows that the proper level of shuffling
1508
+ can bring slight improvement. However, it may de-
1509
+ grade the learning while the shuffling degree becomes
1510
+ increasingly overwhelming.
1511
+ experiments shut down until the loss stops decreasing
1512
+ for ten epochs.
1513
+ On the one hand, rank-1 accuracy shows an upward
1514
+ trend as temporal noise gradually decreases, reach-
1515
+ ing a peak at 8. On the other hand, temporal noise
1516
+ shows no apparent correlation with rank-5 accuracy
1517
+ and mAP. These results show that our model gains
1518
+ up to 0.6% rank-1 accuracy through learning better
1519
+ temporal features from data. However, rank-5 accuracy
1520
+ and mAP benefit little from noise reduction, from
1521
+ which we can speculate that in most cases in video
1522
+ re-ID, learning temporal features is less important than
1523
+ learning appearance features as they only account for
1524
+ 0.6% of rank-1 and 0.2% of rank-5 accuracy. Similar
1525
+ results can be found in [51].
1526
+ G. Comparison among metric learning methods
1527
+ Metric learning aims to regularize the sample distri-
1528
+ bution on feature space. Usually, metric learning losses
1529
+ constrain the compactness of intra-class distribution
1530
+ and sparsity of the overall distribution. To explore
1531
+ which strategy cooperates with our framework better,
1532
+ we compare a range of classic metric learning loss
1533
+ functions on iLIDS-VID, as shown in Table V. Note
1534
+ that these losses are scaled to the same magnitude
1535
+ to ensure fairness. Significantly, OIM loss [78] and
1536
+ BatchHard triplet loss [36], widely used in re-ID,
1537
+ outperform Arcface [23] and SphereFace [50] losses
1538
+ by a large margin since the latter two loss functions
1539
+ suffer from untimely overfitting in our experiments.
1540
+
1541
+ Rank-l accuracy
1542
+ Rank-5 accuracy
1543
+ 0.920
1544
+ 0.980
1545
+ 0.918
1546
+ 0.918
1547
+ 0.916
1548
+ 0.976
1549
+ 0.975
1550
+ 0.975
1551
+ 0.914 -
1552
+ 0.914
1553
+ 160
1554
+ 0.974
1555
+ 0.913
1556
+ 0.973
1557
+ 0.912
1558
+ 0.912
1559
+ 0.972
1560
+ 0.91
1561
+ 6
1562
+ 0.970
1563
+ 4
1564
+ 8
1565
+ 4
1566
+ 6
1567
+ 1
1568
+ training video sequence length
1569
+ training video sequence length11
1570
+ IEEE TRANSACTIONS ON MULTIMEDIA
1571
+ Metric learning loss
1572
+ Rank-1
1573
+ Rank-5
1574
+ w/o Metric learning
1575
+ 66.0
1576
+ 90.0
1577
+ Arcface [23]
1578
+ 73.3
1579
+ 90.7
1580
+ SphereFace [50]
1581
+ 66.7
1582
+ 89.3
1583
+ OIM [78]
1584
+ 89.3
1585
+ 98.3
1586
+ BatchHard* [36]
1587
+ 93.3
1588
+ 99.3
1589
+ TABLE V: Comparison among metric learning loss
1590
+ functions
1591
+ on
1592
+ iLIDS-VID,
1593
+ where
1594
+ *
1595
+ denotes
1596
+ the
1597
+ method used in our implementation. For Arcface and
1598
+ SphereFace, we test three margins and report the best
1599
+ result: (1) by default, (2) 20% larger than the default,
1600
+ (3) 20% smaller than the default.
1601
+ Fig. 10: Visualization of the similarity matrix of
1602
+ attribute-aware proxies trained on MARS. The maxi-
1603
+ mal similarity between all pairs is around 0.2, demon-
1604
+ strating that AAPs learn to capture diverse attributes.
1605
+ H. Visualization
1606
+ To better understand how the proposed framework
1607
+ works, we conduct visualization on the AAP embed-
1608
+ ding module. In Fig. 10, we show the diversity of
1609
+ implicit attributes by the similarity matrix of 24 AAPs.
1610
+ This figure implies that AAPs are anisotropic, covering
1611
+ different attribute features that appear in the given
1612
+ training dataset.
1613
+ Specifically, as shown in Fig. 11, we randomly
1614
+ select two pedestrians’ tracklets. Attention map visu-
1615
+ alization is adopted as a sign of each AAP’s concen-
1616
+ tration. In practice, we process the raw attention maps
1617
+ first by several average filters and then by thresholding
1618
+ to deliver smooth visual effects instead of grid-like
1619
+ maps. In these heap maps, the brighter color denotes
1620
+ the higher attention value. Despite the absence of
1621
+ attribute-level supervision, Fig.11 shows that some
1622
+ AAPs learn to pay attention to a local region with
1623
+ special meanings as an identity cue. For example, the
1624
+ AAP in white color in video clips (a) automatically
1625
+ learns to cover the logo in the T-shirt, while the one
1626
+ in (b) captures the head of the woman.
1627
+ Moreover, we display the t-SNE visualization result
1628
+ on iLIDS-VID in Fig. 12. It only contains the first 1/3
1629
+ of the IDs in the test set for a better visual effect.
1630
+ We also provide the corresponding quantitative evalu-
1631
+ Methods
1632
+ IntraÓ
1633
+ IntraÓ
1634
+ InterÒ
1635
+ Rank-1Ò
1636
+ Baseline [7]
1637
+ 0.4572
1638
+ 0.4495
1639
+ 0.4704
1640
+ 0.873
1641
+ MSTAT w/o attr.
1642
+ 0.4517
1643
+ 0.4469
1644
+ 0.4644
1645
+ 0.913
1646
+ MSTAT (ours)
1647
+ 0.4410
1648
+ 0.4389
1649
+ 0.5012
1650
+ 0.933
1651
+ TABLE VI: Quantitative evaluation on iLIDS-VID.
1652
+ ”Intra” denotes the averaged normalized intra-class
1653
+ distance, and ”Inter” is the minimum inter-class dis-
1654
+ tance. Here, * means that the metric is computed on
1655
+ samples with the correct rank-1 match.
1656
+
1657
+
1658
+ (a)
1659
+ (b)
1660
+ Fig. 11: Visualization of attribute-aware proxies for
1661
+ two different pedestrians on MARS. Attention heat
1662
+ maps of four consecutive frames from the AAP em-
1663
+ bedding module on Stage I are displayed.
1664
+ ation results in Table VI measured by the normalized
1665
+ averaged intra-class distance and the minimum inter-
1666
+ class distance (0-2) on the entire test set. As a result,
1667
+ MSTAT drops the average intra-class distance from
1668
+ 0.4572 of the baseline to 0.4410 and enlarges the
1669
+ minimum inter-class distance from 0.4704 to 0.5012.
1670
+ Further, to eliminate the influence of accuracy, we
1671
+ measure the intra-class distance between correctly
1672
+ matched samples, from which we witness a similar
1673
+ result. These results explain why MSTAT’s t-SNE
1674
+ visualization seems sparser.
1675
+ V. CONCLUSION
1676
+ This paper proposes a novel framework for video-
1677
+ based person re-ID, referred to as Spatial-Temporal
1678
+ Aggregation Transformer (MSTAT). To tackle simulta-
1679
+ neous extraction for local attributes and global identity
1680
+ information, MSTAT adopts a multi-stage architecture
1681
+ to extract (1) attribute-associated, (2) the identity-
1682
+ associated, and (3) the attribute-identity-associated in-
1683
+ formation from video clips, with all layers inherited
1684
+ from the vanilla Transformer. Further, for reserving
1685
+ informative attribute features and aggregating discrim-
1686
+ inative identity features, we introduce two proxy em-
1687
+ bedding modules (Attribute-Aware Proxy embedding
1688
+ module and Identity-Aware Proxy embedding module)
1689
+ into different stages. In addition, a patch-based data
1690
+ augmentation scheme, Temporal Patch Shuffling, is
1691
+ proposed to force the network to learn invariance
1692
+ to appearance shifts while enriching training data.
1693
+ Massive experiments show that MSTAT can extract
1694
+ attribute-aware features consistent across frames while
1695
+ reserving discriminative global identity information on
1696
+
1697
+ 0
1698
+ 1.0
1699
+ 2
1700
+ 3
1701
+ 4-
1702
+ 0.8
1703
+ 5
1704
+ 6
1705
+ 7
1706
+ 8-
1707
+ - 0.6
1708
+ 9-
1709
+ 10
1710
+ 11
1711
+ 12
1712
+ 13
1713
+ 0.4
1714
+ 14
1715
+ 15
1716
+ 16
1717
+ 17
1718
+ 0.2
1719
+ 18-
1720
+ 19
1721
+ 20
1722
+ 21
1723
+ 22
1724
+ -
1725
+ 0.0
1726
+ 23
1727
+ 456780TANG et al.: MULTI-STAGE SPATIO-TEMPORAL AGGREGATION TRANSFORMER FOR VIDEO PERSON RE-IDENTIFICATION
1728
+ 12
1729
+ Fig. 12: T-SNE Visualization of the iLIDS-VID test
1730
+ set. The numbers on the plots indicate person IDs.
1731
+ MSTAT shows an increase in intra-class compactness
1732
+ and the minimum inter-class distance over the entire
1733
+ test set compared to the baseline.
1734
+ different stages to attain high performance. Finally,
1735
+ MSTAT outperforms most existing state-of-the-arts on
1736
+ three public video-based re-ID benchmarks.
1737
+ Future work may focus on mining the hard instances
1738
+ or local informative attribute locations to conduct con-
1739
+ trastive learning to promote the model’s accuracy fur-
1740
+ ther. Moreover, leveraging more unlabeled and multi-
1741
+ modal data to improve the model’s effectiveness is also
1742
+ a potential research direction.
1743
+ ACKNOWLEDGMENT
1744
+ The work is supported in part by the Young Sci-
1745
+ entists Fund of the National Natural Science Foun-
1746
+ dation of China under grant No. 62106154, by Na-
1747
+ tional Key R&D Program of China under Grant No.
1748
+ 2021ZD0111600, by Natural Science Foundation of
1749
+ Guangdong Province, China (General Program) un-
1750
+ der grant No.2022A1515011524, by Guangdong Ba-
1751
+ sic and Applied Basic Research Foundation under
1752
+ Grant No. 2017A030312006, by CCF-Tencent Open
1753
+ Fund, by Shenzhen Science and Technology Program
1754
+ ZDSYS20211021111415025, and by the Guangdong
1755
+ Provincial Key Laboratory of Big Data Computing,
1756
+ The Chinese Univeristy of Hong Kong (Shenzhen).
1757
+ REFERENCES
1758
+ [1]
1759
+ [2]
1760
+ [3] A. Aich, M. Zheng, S. Karanam, T. Chen, A. K. Roy-
1761
+ Chowdhury, and Z. Wu.
1762
+ Spatio-temporal representation
1763
+ factorization for video-based person re-identification.
1764
+ In
1765
+ Proceedings of the IEEE/CVF International Conference on
1766
+ Computer Vision, pages 152–162, 2021.
1767
+ [4] A. Arnab, M. Dehghani, G. Heigold, C. Sun, M. Luˇci´c, and
1768
+ C. Schmid. Vivit: A video vision transformer. arXiv preprint
1769
+ arXiv:2103.15691, 2021.
1770
+ [5] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization.
1771
+ arXiv preprint arXiv:1607.06450, 2016.
1772
+ [6] S. Bak and P. Carr.
1773
+ One-shot metric learning for person
1774
+ re-identification. In Proceedings of the IEEE conference on
1775
+ computer vision and pattern recognition, pages 2990–2999,
1776
+ 2017.
1777
+ [7] G. Bertasius, H. Wang, and L. Torresani.
1778
+ Is space-time
1779
+ attention all you need for video understanding? arXiv preprint
1780
+ arXiv:2102.05095, 2021.
1781
+ [8] R. M. Bolle, J. H. Connell, S. Pankanti, N. K. Ratha, and
1782
+ A. W. Senior. The relation between the roc curve and the
1783
+ cmc.
1784
+ In Fourth IEEE workshop on automatic identifica-
1785
+ tion advanced technologies (AutoID’05), pages 15–20. IEEE,
1786
+ 2005.
1787
+ [9] J. Carreira, E. Noland, A. Banki-Horvath, C. Hillier, and
1788
+ A. Zisserman. A short note about kinetics-600. arXiv preprint
1789
+ arXiv:1808.01340, 2018.
1790
+ [10] T. Chai, Z. Chen, A. Li, J. Chen, X. Mei, and Y. Wang.
1791
+ Video person re-identification using attribute-enhanced fea-
1792
+ tures. IEEE Transactions on Circuits and Systems for Video
1793
+ Technology, 2022.
1794
+ [11] Z. Chang, Z. Yang, Y. Chen, Q. Zhou, and S. Zheng.
1795
+ Seq-masks: Bridging the gap between appearance and gait
1796
+ modeling for video-based person re-identification. In 2021
1797
+ International Conference on Visual Communications and
1798
+ Image Processing (VCIP), pages 1–5. IEEE, 2021.
1799
+ [12] C. Chen, M. Ye, M. Qi, J. Wu, Y. Liu, and J. Jiang. Saliency
1800
+ and granularity: Discovering temporal coherence for video-
1801
+ based person re-identification. IEEE Transactions on Circuits
1802
+ and Systems for Video Technology, 2022.
1803
+ [13] D. Chen, H. Li, T. Xiao, S. Yi, and X. Wang. Video person re-
1804
+ identification with competitive snippet-similarity aggregation
1805
+ and co-attentive snippet embedding. In Proceedings of the
1806
+ IEEE Conference on Computer Vision and Pattern Recogni-
1807
+ tion, pages 1169–1178, 2018.
1808
+ [14] G.
1809
+ Chen,
1810
+ J.
1811
+ Lu,
1812
+ M.
1813
+ Yang,
1814
+ and
1815
+ J.
1816
+ Zhou.
1817
+ Spatial-
1818
+ temporal attention-aware learning for video-based person
1819
+ re-identification.
1820
+ IEEE Transactions on Image Processing,
1821
+ 28(9):4192–4205, 2019.
1822
+ [15] G. Chen, J. Lu, M. Yang, and J. Zhou. Learning recurrent
1823
+ 3d attention for video-based person re-identification. IEEE
1824
+ Transactions on Image Processing, 29:6963–6976, 2020.
1825
+ [16] G. Chen, Y. Rao, J. Lu, and J. Zhou. Temporal coherence or
1826
+ temporal motion: Which is more critical for video-based per-
1827
+ son re-identification? In European Conference on Computer
1828
+ Vision, pages 660–676. Springer, 2020.
1829
+ [17] T. Chen, L. Lin, R. Chen, X. Hui, and H. Wu. Knowledge-
1830
+ guided multi-label few-shot learning for general image recog-
1831
+ nition. IEEE Transactions on Pattern Analysis & Machine
1832
+ Intelligence, 44(03):1371–1384, 2022.
1833
+ [18] T. Chen, T. Pu, H. Wu, Y. Xie, L. Liu, and L. Lin. Cross-
1834
+ domain facial expression recognition: A unified evaluation
1835
+ benchmark and adversarial graph learning. IEEE transactions
1836
+ on pattern analysis and machine intelligence, 2021.
1837
+ [19] X. Chen, J. Xu, J. Xu, and S. Gao.
1838
+ Oh-former: Omni-
1839
+ relational high-order transformer for person re-identification.
1840
+ arXiv preprint arXiv:2109.11159, 2021.
1841
+ [20] D. Cheng, Y. Gong, S. Zhou, J. Wang, and N. Zheng. Per-
1842
+ son re-identification by multi-channel parts-based cnn with
1843
+ improved triplet loss function. In Proceedings of the iEEE
1844
+ conference on computer vision and pattern recognition, pages
1845
+ 1335–1344, 2016.
1846
+ [21] D. Chung, K. Tahboub, and E. J. Delp. A two stream siamese
1847
+ convolutional neural network for person re-identification. In
1848
+ Proceedings of the IEEE international conference on com-
1849
+ puter vision, pages 1983–1991, 2017.
1850
+ [22] A. Dehghan, S. Modiri Assari, and M. Shah. Gmmcp tracker:
1851
+ Globally optimal generalized maximum multi clique problem
1852
+ for multiple object tracking.
1853
+ In Proceedings of the IEEE
1854
+ conference on computer vision and pattern recognition, pages
1855
+ 4091–4099, 2015.
1856
+ [23] J. Deng, J. Guo, N. Xue, and S. Zafeiriou. Arcface: Additive
1857
+ angular margin loss for deep face recognition. In Proceedings
1858
+ of the IEEE/CVF conference on computer vision and pattern
1859
+ recognition, pages 4690–4699, 2019.
1860
+ [24] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn,
1861
+ X.
1862
+ Zhai,
1863
+ T.
1864
+ Unterthiner,
1865
+ M.
1866
+ Dehghani,
1867
+ M.
1868
+ Minderer,
1869
+ G. Heigold, S. Gelly, et al. An image is worth 16x16 words:
1870
+ Transformers for image recognition at scale. arXiv preprint
1871
+ arXiv:2010.11929, 2020.
1872
+ [25] P. Fang, P. Ji, L. Petersson, and M. Harandi. Set augmented
1873
+ triplet loss for video person re-identification. In Proceedings
1874
+ of the IEEE/CVF Winter Conference on Applications of
1875
+ Computer Vision, pages 464–473, 2021.
1876
+ [26] M. Farenzena, L. Bazzani, A. Perina, V. Murino, and
1877
+ M. Cristani. Person re-identification by symmetry-driven ac-
1878
+ cumulation of local features. In 2010 IEEE computer society
1879
+ conference on computer vision and pattern recognition, pages
1880
+
1881
+ 1.0
1882
+ 1.0
1883
+ 55
1884
+ 66
1885
+ 0
1886
+ 6
1887
+ 9
1888
+ 10
1889
+ 3
1890
+ 10
1891
+ 11
1892
+ 444
1893
+ 437
1894
+ 0.8
1895
+ 1313
1896
+ 3强26
1897
+ 0.8
1898
+ 33
1899
+ 11
1900
+ 112 41
1901
+ 4646
1902
+ 15
1903
+ 2
1904
+ 4
1905
+ 4
1906
+ 3333
1907
+ 41
1908
+ 45
1909
+ 36
1910
+ 449
1911
+ 402
1912
+ 29
1913
+ 31
1914
+ 0.6
1915
+ 22
1916
+ 2121
1917
+ 1818
1918
+ 45
1919
+ 30
1920
+ 36
1921
+ 28
1922
+ 0.6
1923
+ 22
1924
+ 24
1925
+ 35
1926
+ 34
1927
+ 30
1928
+ 437
1929
+ 28
1930
+ 1g19
1931
+ 295
1932
+ 37 342
1933
+
1934
+ 3232
1935
+ 2929
1936
+ 46
1937
+ 1办
1938
+ VE
1939
+ 48
1940
+ 34
1941
+ 338
1942
+ 492
1943
+ 25
1944
+ 37
1945
+ 3535
1946
+
1947
+ 66
1948
+ 0.4
1949
+ 49%9
1950
+ 0.4
1951
+ 190
1952
+
1953
+ 66
1954
+ 3939
1955
+ 37
1956
+ 16
1957
+ 388
1958
+ 188
1959
+ 20
1960
+ 47
1961
+ 20
1962
+ 26
1963
+ 6E
1964
+
1965
+ 111
1966
+ 27
1967
+ 396
1968
+ 1414
1969
+ 27
1970
+ 480
1971
+ 0.2
1972
+ 2
1973
+ 1313
1974
+ 0.2
1975
+ 36
1976
+ 448
1977
+ 2
1978
+ 4343
1979
+ 332
1980
+ EEE
1981
+ 221
1982
+ 1515
1983
+ 28
1984
+ 12
1985
+ 0.0 +
1986
+ 0.0
1987
+ 0.0
1988
+ 0.2
1989
+ 0.4
1990
+ 0.6
1991
+ 0.8
1992
+ 1.0
1993
+ 0.0
1994
+ 0.2
1995
+ 0.4
1996
+ 0.6
1997
+ 0.8
1998
+ 1.0
1999
+ (a) Baseline
2000
+ (b) MSTAT13
2001
+ IEEE TRANSACTIONS ON MULTIMEDIA
2002
+ 2360–2367. IEEE, 2010.
2003
+ [27] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and
2004
+ D. Ramanan. Object detection with discriminatively trained
2005
+ part-based models.
2006
+ IEEE transactions on pattern analysis
2007
+ and machine intelligence, 32(9):1627–1645, 2009.
2008
+ [28] D. Gray and H. Tao. Viewpoint invariant pedestrian recogni-
2009
+ tion with an ensemble of localized features.
2010
+ In European
2011
+ conference on computer vision, pages 262–275. Springer,
2012
+ 2008.
2013
+ [29] X. Gu, H. Chang, B. Ma, H. Zhang, and X. Chen.
2014
+ Appearance-preserving 3d convolution for video-based per-
2015
+ son re-identification. In European Conference on Computer
2016
+ Vision, pages 228–243. Springer, 2020.
2017
+ [30] M.-H. Guo, J.-X. Cai, Z.-N. Liu, T.-J. Mu, R. R. Martin,
2018
+ and S.-M. Hu. Pct: Point cloud transformer. Computational
2019
+ Visual Media, 7(2):187–199, 2021.
2020
+ [31] M.-H. Guo, Z.-N. Liu, T.-J. Mu, and S.-M. Hu. Beyond self-
2021
+ attention: External attention using two linear layers for visual
2022
+ tasks. arXiv preprint arXiv:2105.02358, 2021.
2023
+ [32] K. Han, A. Xiao, E. Wu, J. Guo, C. Xu, and Y. Wang. Trans-
2024
+ former in transformer.
2025
+ arXiv preprint arXiv:2103.00112,
2026
+ 2021.
2027
+ [33] X. Hao, S. Zhao, M. Ye, and J. Shen.
2028
+ Cross-modality
2029
+ person re-identification via modality confusion and center
2030
+ aggregation. In Proceedings of the IEEE/CVF International
2031
+ Conference on Computer Vision, pages 16403–16412, 2021.
2032
+ [34] S. He, H. Luo, P. Wang, F. Wang, H. Li, and W. Jiang.
2033
+ Transreid: Transformer-based object re-identification. arXiv
2034
+ preprint arXiv:2102.04378, 2021.
2035
+ [35] T. He, X. Jin, X. Shen, J. Huang, Z. Chen, and X.-S.
2036
+ Hua. Dense interaction learning for video-based person re-
2037
+ identification. arXiv preprint arXiv:2103.09013, 2021.
2038
+ [36] A. Hermans, L. Beyer, and B. Leibe.
2039
+ In defense of
2040
+ the triplet loss for person re-identification.
2041
+ arXiv preprint
2042
+ arXiv:1703.07737, 2017.
2043
+ [37] S. Hochreiter and J. Schmidhuber. Long short-term memory.
2044
+ Neural computation, 9(8):1735–1780, 1997.
2045
+ [38] R. Hou, H. Chang, B. Ma, S. Shan, and X. Chen. Temporal
2046
+ complementary learning for video person re-identification. In
2047
+ European conference on computer vision, pages 388–405.
2048
+ Springer, 2020.
2049
+ [39] R. Hou, B. Ma, H. Chang, X. Gu, S. Shan, and X. Chen.
2050
+ Vrstc: Occlusion-free video person re-identification. In Pro-
2051
+ ceedings of the IEEE/CVF Conference on Computer Vision
2052
+ and Pattern Recognition, pages 7183–7192, 2019.
2053
+ [40] S. Karanam, Y. Li, and R. J. Radke. Person re-identification
2054
+ with discriminatively trained viewpoint invariant dictionaries.
2055
+ In Proceedings of the IEEE international conference on
2056
+ computer vision, pages 4516–4524, 2015.
2057
+ [41] J. Li, S. Zhang, and T. Huang. Multi-scale 3d convolution net-
2058
+ work for video based person re-identification. In Proceedings
2059
+ of the AAAI Conference on Artificial Intelligence, volume 33,
2060
+ pages 8618–8625, 2019.
2061
+ [42] M. Li, X. Zhu, and S. Gong.
2062
+ Unsupervised person re-
2063
+ identification by deep learning tracklet association. In Pro-
2064
+ ceedings of the European conference on computer vision
2065
+ (ECCV), pages 737–753, 2018.
2066
+ [43] W. Li, R. Zhao, T. Xiao, and X. Wang.
2067
+ Deepreid: Deep
2068
+ filter pairing neural network for person re-identification. In
2069
+ Proceedings of the IEEE conference on computer vision and
2070
+ pattern recognition, pages 152–159, 2014.
2071
+ [44] S. Liao, Y. Hu, X. Zhu, and S. Z. Li. Person re-identification
2072
+ by local maximal occurrence representation and metric learn-
2073
+ ing.
2074
+ In Proceedings of the IEEE conference on computer
2075
+ vision and pattern recognition, pages 2197–2206, 2015.
2076
+ [45] X. Liao, L. He, Z. Yang, and C. Zhang. Video-based person
2077
+ re-identification via 3d convolutional networks and non-local
2078
+ attention. In Asian Conference on Computer Vision, pages
2079
+ 620–634. Springer, 2018.
2080
+ [46] C. Liu, S. Gong, C. C. Loy, and X. Lin.
2081
+ Person re-
2082
+ identification: What features are important?
2083
+ In European
2084
+ Conference on Computer Vision, pages 391–401. Springer,
2085
+ 2012.
2086
+ [47] C.-T. Liu, J.-C. Chen, C.-S. Chen, and S.-Y. Chien. Video-
2087
+ based person re-identification without bells and whistles.
2088
+ In Proceedings of the IEEE/CVF Conference on Computer
2089
+ Vision and Pattern Recognition, pages 1491–1500, 2021.
2090
+ [48] C.-T. Liu, C.-W. Wu, Y.-C. F. Wang, and S.-Y. Chien.
2091
+ Spatially and temporally efficient non-local attention net-
2092
+ work for video-based person re-identification. arXiv preprint
2093
+ arXiv:1908.01683, 2019.
2094
+ [49] H. Liu, Z. Jie, K. Jayashree, M. Qi, J. Jiang, S. Yan, and
2095
+ J. Feng. Video-based person re-identification with accumu-
2096
+ lative motion context.
2097
+ IEEE transactions on circuits and
2098
+ systems for video technology, 28(10):2788–2802, 2017.
2099
+ [50] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song.
2100
+ Sphereface: Deep hypersphere embedding for face recogni-
2101
+ tion. In Proceedings of the IEEE conference on computer
2102
+ vision and pattern recognition, pages 212–220, 2017.
2103
+ [51] X. Liu, P. Zhang, C. Yu, H. Lu, X. Qian, and X. Yang.
2104
+ A video is worth three views: Trigeminal transformers
2105
+ for video-based person re-identification.
2106
+ arXiv preprint
2107
+ arXiv:2104.01745, 2021.
2108
+ [52] X. Liu, P. Zhang, C. Yu, H. Lu, and X. Yang. Watching you:
2109
+ Global-guided reciprocal learning for video-based person re-
2110
+ identification. In Proceedings of the IEEE/CVF Conference
2111
+ on Computer Vision and Pattern Recognition, pages 13334–
2112
+ 13343, 2021.
2113
+ [53] Y. Liu, Z. Yuan, W. Zhou, and H. Li. Spatial and temporal
2114
+ mutual promotion for video-based person re-identification.
2115
+ In Proceedings of the AAAI Conference on Artificial Intel-
2116
+ ligence, volume 33, pages 8786–8793, 2019.
2117
+ [54] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
2118
+ B. Guo. Swin transformer: Hierarchical vision transformer
2119
+ using shifted windows.
2120
+ arXiv preprint arXiv:2103.14030,
2121
+ 2021.
2122
+ [55] N. McLaughlin, J. M. Del Rincon, and P. Miller.
2123
+ Re-
2124
+ current convolutional network for video-based person re-
2125
+ identification.
2126
+ In Proceedings of the IEEE conference on
2127
+ computer vision and pattern recognition, pages 1325–1334,
2128
+ 2016.
2129
+ [56] T. Mikolov, M. Karafi´at, L. Burget, J. Cernock`y, and S. Khu-
2130
+ danpur. Recurrent neural network based language model. In
2131
+ Interspeech, volume 2, pages 1045–1048. Makuhari, 2010.
2132
+ [57] A. Nambiar, A. Bernardino, and J. C. Nascimento. Gait-based
2133
+ person re-identification: A survey. ACM Computing Surveys
2134
+ (CSUR), 52(2):1–34, 2019.
2135
+ [58] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
2136
+ G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
2137
+ et al. Pytorch: An imperative style, high-performance deep
2138
+ learning library. Advances in neural information processing
2139
+ systems, 32:8026–8037, 2019.
2140
+ [59] E. Ristani, F. Solera, R. Zou, R. Cucchiara, and C. Tomasi.
2141
+ Performance measures and a data set for multi-target, multi-
2142
+ camera tracking. In European conference on computer vision,
2143
+ pages 17–35. Springer, 2016.
2144
+ [60] Y. Shi, Z. Wei, H. Ling, Z. Wang, J. Shen, and P. Li. Person
2145
+ retrieval in surveillance videos via deep attribute mining and
2146
+ reasoning. IEEE Transactions on Multimedia, 23:4376–4387,
2147
+ 2020.
2148
+ [61] W. Song, J. Zheng, Y. Wu, C. Chen, and F. Liu. A two-
2149
+ stage attribute-constraint network for video-based person re-
2150
+ identification. IEEE Access, 7:8508–8518, 2019.
2151
+ [62] A. Subramaniam, A. Nambiar, and A. Mittal.
2152
+ Co-
2153
+ segmentation inspired attention networks for video-based
2154
+ person re-identification.
2155
+ In Proceedings of the IEEE/CVF
2156
+ International Conference on Computer Vision, pages 562–
2157
+ 572, 2019.
2158
+ [63] Y. Suh, J. Wang, S. Tang, T. Mei, and K. M. Lee.
2159
+ Part-
2160
+ aligned bilinear representations for person re-identification.
2161
+ In Proceedings of the European Conference on Computer
2162
+ Vision (ECCV), pages 402–419, 2018.
2163
+ [64] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.
2164
+ Rethinking the inception architecture for computer vision. In
2165
+ Proceedings of the IEEE conference on computer vision and
2166
+ pattern recognition, pages 2818–2826, 2016.
2167
+ [65] R. R. Varior, M. Haloi, and G. Wang. Gated siamese convolu-
2168
+ tional neural network architecture for human re-identification.
2169
+ In European conference on computer vision, pages 791–808.
2170
+ Springer, 2016.
2171
+ [66] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
2172
+ A. N. Gomez, Ł. Kaiser, and I. Polosukhin.
2173
+ Attention is
2174
+ all you need. In Advances in neural information processing
2175
+ systems, pages 5998–6008, 2017.
2176
+ [67] C. Wan, Y. Wu, X. Tian, J. Huang, and X.-S. Hua. Con-
2177
+ centrated local part discovery with fine-grained part repre-
2178
+ sentation for person re-identification. IEEE Transactions on
2179
+ Multimedia, 22(6):1605–1618, 2019.
2180
+
2181
+ TANG et al.: MULTI-STAGE SPATIO-TEMPORAL AGGREGATION TRANSFORMER FOR VIDEO PERSON RE-IDENTIFICATION
2182
+ 14
2183
+ [68] S. Wang, B. Z. Li, M. Khabsa, H. Fang, and H. Ma.
2184
+ Linformer: Self-attention with linear complexity. 2020.
2185
+ [69] T. Wang, S. Gong, X. Zhu, and S. Wang.
2186
+ Person re-
2187
+ identification by video ranking. In European conference on
2188
+ computer vision, pages 688–703. Springer, 2014.
2189
+ [70] W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu,
2190
+ P. Luo, and L. Shao. Pyramid vision transformer: A versatile
2191
+ backbone for dense prediction without convolutions. arXiv
2192
+ preprint arXiv:2102.12122, 2021.
2193
+ [71] A. Wu, W.-S. Zheng, and J.-H. Lai.
2194
+ Robust depth-based
2195
+ person re-identification. IEEE Transactions on Image Pro-
2196
+ cessing, 26(6):2588–2603, 2017.
2197
+ [72] D. Wu, M. Ye, G. Lin, X. Gao, and J. Shen.
2198
+ Person re-
2199
+ identification by context-aware part attention and multi-head
2200
+ collaborative learning.
2201
+ IEEE Transactions on Information
2202
+ Forensics and Security, 17:115–126, 2021.
2203
+ [73] L. Wu, Y. Wang, J. Gao, and X. Li.
2204
+ Where-and-when
2205
+ to look: Deep siamese attention networks for video-based
2206
+ person re-identification. IEEE Transactions on Multimedia,
2207
+ 21(6):1412–1424, 2018.
2208
+ [74] S. Wu, Y.-C. Chen, X. Li, A.-C. Wu, J.-J. You, and W.-
2209
+ S. Zheng.
2210
+ An enhanced deep feature representation for
2211
+ person re-identification. In 2016 IEEE winter conference on
2212
+ applications of computer vision (WACV), pages 1–8. IEEE,
2213
+ 2016.
2214
+ [75] Y. Wu, Y. Lin, X. Dong, Y. Yan, W. Ouyang, and Y. Yang.
2215
+ Exploit the unknown gradually: One-shot video-based person
2216
+ re-identification by stepwise learning. In Proceedings of the
2217
+ IEEE Conference on Computer Vision and Pattern Recogni-
2218
+ tion, pages 5177–5186, 2018.
2219
+ [76] B. N. Xia, Y. Gong, Y. Zhang, and C. Poellabauer.
2220
+ Second-order non-local attention networks for person re-
2221
+ identification. In Proceedings of the IEEE/CVF International
2222
+ Conference on Computer Vision, pages 3760–3769, 2019.
2223
+ [77] T. Xiao, H. Li, W. Ouyang, and X. Wang. Learning deep fea-
2224
+ ture representations with domain guided dropout for person
2225
+ re-identification. In Proceedings of the IEEE conference on
2226
+ computer vision and pattern recognition, pages 1249–1258,
2227
+ 2016.
2228
+ [78] T. Xiao, S. Li, B. Wang, L. Lin, and X. Wang. Joint detection
2229
+ and identification feature learning for person search.
2230
+ In
2231
+ Proceedings of the IEEE conference on computer vision and
2232
+ pattern recognition, pages 3415–3424, 2017.
2233
+ [79] R. Xiong, Y. Yang, D. He, K. Zheng, S. Zheng, C. Xing,
2234
+ H. Zhang, Y. Lan, L. Wang, and T. Liu. On layer normal-
2235
+ ization in the transformer architecture. In International Con-
2236
+ ference on Machine Learning, pages 10524–10533. PMLR,
2237
+ 2020.
2238
+ [80] S. Xu, Y. Cheng, K. Gu, Y. Yang, S. Chang, and P. Zhou.
2239
+ Jointly attentive spatial-temporal pooling networks for video-
2240
+ based person re-identification. In Proceedings of the IEEE
2241
+ international conference on computer vision, pages 4733–
2242
+ 4742, 2017.
2243
+ [81] M. Ye, C. Chen, J. Shen, and L. Shao. Dynamic tri-level
2244
+ relation mining with attentive graph for visible infrared re-
2245
+ identification. IEEE Transactions on Information Forensics
2246
+ and Security, 17:386–398, 2021.
2247
+ [82] M. Ye, X. Lan, Q. Leng, and J. Shen. Cross-modality person
2248
+ re-identification via modality-aware collaborative ensemble
2249
+ learning. IEEE Transactions on Image Processing, 29:9387–
2250
+ 9399, 2020.
2251
+ [83] M. Ye, H. Li, B. Du, J. Shen, L. Shao, and S. C. Hoi.
2252
+ Collaborative refining for person re-identification with label
2253
+ noise. IEEE Transactions on Image Processing, 31:379–391,
2254
+ 2021.
2255
+ [84] M. Ye, J. Shen, D. J Crandall, L. Shao, and J. Luo. Dynamic
2256
+ dual-attentive aggregation learning for visible-infrared person
2257
+ re-identification.
2258
+ In European Conference on Computer
2259
+ Vision, pages 229–247. Springer, 2020.
2260
+ [85] M. Ye, J. Shen, G. Lin, T. Xiang, L. Shao, and S. C. Hoi.
2261
+ Deep learning for person re-identification: A survey and
2262
+ outlook. IEEE Transactions on Pattern Analysis and Machine
2263
+ Intelligence, 2021.
2264
+ [86] M. Ye, J. Shen, and L. Shao.
2265
+ Visible-infrared person re-
2266
+ identification via homogeneous augmented tri-modal learn-
2267
+ ing. IEEE Transactions on Information Forensics and Secu-
2268
+ rity, 16:728–739, 2020.
2269
+ [87] F. Yu, X. Jiang, Y. Gong, S. Zhao, X. Guo, W.-S. Zheng,
2270
+ F. Zheng, and X. Sun. Devil’s in the details: Aligning visual
2271
+ clues for conditional embedding in person re-identification.
2272
+ arXiv preprint arXiv:2009.05250, 2020.
2273
+ [88] Z. Yu, Y. Zhao, B. Hong, Z. Jin, J. Huang, D. Cai, X. He,
2274
+ and X.-S. Hua. Apparel-invariant feature learning for person
2275
+ re-identification. IEEE Transactions on Multimedia, 2021.
2276
+ [89] L. Yuan, Y. Chen, T. Wang, W. Yu, Y. Shi, F. E. Tay, J. Feng,
2277
+ and S. Yan. Tokens-to-token vit: Training vision transformers
2278
+ from scratch on imagenet. arXiv preprint arXiv:2101.11986,
2279
+ 2021.
2280
+ [90] D. Zhang, H. Zhang, J. Tang, M. Wang, X. Hua, and Q. Sun.
2281
+ Feature pyramid transformer.
2282
+ In European Conference on
2283
+ Computer Vision, pages 323–339. Springer, 2020.
2284
+ [91] J. Zhang, N. Wang, and L. Zhang. Multi-shot pedestrian re-
2285
+ identification via sequential decision making. In Proceedings
2286
+ of the IEEE conference on computer vision and pattern
2287
+ recognition, pages 6781–6789, 2018.
2288
+ [92] L. Zhang, Z. Shi, J. T. Zhou, M.-M. Cheng, Y. Liu, J.-W.
2289
+ Bian, Z. Zeng, and C. Shen. Ordered or orderless: A revisit
2290
+ for video based person re-identification. IEEE transactions on
2291
+ pattern analysis and machine intelligence, 43(4):1460–1466,
2292
+ 2020.
2293
+ [93] P. Zhang, J. Xu, Q. Wu, Y. Huang, and X. Ben.
2294
+ Learn-
2295
+ ing spatial-temporal representations over walking tracklet
2296
+ for long-term person re-identification in the wild.
2297
+ IEEE
2298
+ Transactions on Multimedia, 23:3562–3576, 2020.
2299
+ [94] R. Zhang, J. Li, H. Sun, Y. Ge, P. Luo, X. Wang, and
2300
+ L. Lin.
2301
+ Scan: Self-and-collaborative attention network for
2302
+ video person re-identification. IEEE Transactions on Image
2303
+ Processing, 28(10):4870–4882, 2019.
2304
+ [95] T. Zhang, L. Wei, L. Xie, Z. Zhuang, Y. Zhang, B. Li, and
2305
+ Q. Tian. Spatiotemporal transformer for video-based person
2306
+ re-identification. arXiv preprint arXiv:2103.16469, 2021.
2307
+ [96] Y. Zhang, X. Li, C. Liu, B. Shuai, Y. Zhu, B. Brattoli,
2308
+ H. Chen, I. Marsic, and J. Tighe. Vidtr: Video transformer
2309
+ without convolutions.
2310
+ In Proceedings of the IEEE/CVF
2311
+ International Conference on Computer Vision, pages 13577–
2312
+ 13587, 2021.
2313
+ [97] Y. Zhang, S. Zhao, Y. Kang, and J. Shen. Modality synergy
2314
+ complement learning with cascaded aggregation for visible-
2315
+ infrared person re-identification. In European Conference on
2316
+ Computer Vision, pages 462–479. Springer, 2022.
2317
+ [98] Z. Zhang, C. Lan, W. Zeng, and Z. Chen. Densely seman-
2318
+ tically aligned person re-identification.
2319
+ In Proceedings of
2320
+ the IEEE/CVF Conference on Computer Vision and Pattern
2321
+ Recognition, pages 667–676, 2019.
2322
+ [99] Z. Zhang, C. Lan, W. Zeng, and Z. Chen. Multi-granularity
2323
+ reference-aided attentive feature aggregation for video-based
2324
+ person re-identification.
2325
+ In Proceedings of the IEEE/CVF
2326
+ Conference on Computer Vision and Pattern Recognition,
2327
+ pages 10407–10416, 2020.
2328
+ [100] H. Zhao, M. Tian, S. Sun, J. Shao, J. Yan, S. Yi, X. Wang,
2329
+ and X. Tang. Spindle net: Person re-identification with human
2330
+ body region guided feature decomposition and fusion.
2331
+ In
2332
+ Proceedings of the IEEE conference on computer vision and
2333
+ pattern recognition, pages 1077–1085, 2017.
2334
+ [101] Y. Zhao, X. Shen, Z. Jin, H. Lu, and X.-s. Hua. Attribute-
2335
+ driven feature disentangling and temporal aggregation for
2336
+ video person re-identification.
2337
+ In Proceedings of the
2338
+ IEEE/CVF conference on computer vision and pattern recog-
2339
+ nition, pages 4913–4922, 2019.
2340
+ [102] L. Zheng, Z. Bie, Y. Sun, J. Wang, C. Su, S. Wang, and
2341
+ Q. Tian. Mars: A video benchmark for large-scale person re-
2342
+ identification. In European Conference on Computer Vision,
2343
+ pages 868–884. Springer, 2016.
2344
+ [103] W.-S. Zheng, S. Gong, and T. Xiang. Towards open-world
2345
+ person re-identification by one-shot group-based verification.
2346
+ IEEE transactions on pattern analysis and machine intelli-
2347
+ gence, 38(3):591–606, 2015.
2348
+ [104] K. Zhou, Y. Yang, A. Cavallaro, and T. Xiang. Omni-scale
2349
+ feature learning for person re-identification. In Proceedings of
2350
+ the IEEE/CVF International Conference on Computer Vision,
2351
+ pages 3702–3712, 2019.
2352
+ [105] Z. Zhou, Y. Huang, W. Wang, L. Wang, and T. Tan. See
2353
+ the forest for the trees: Joint spatial and temporal recurrent
2354
+ neural networks for video-based person re-identification. In
2355
+ Proceedings of the IEEE Conference on Computer Vision and
2356
+ Pattern Recognition, pages 4747–4756, 2017.
2357
+
2358
+ 15
2359
+ IEEE TRANSACTIONS ON MULTIMEDIA
2360
+ Ziyi Tang is now pursuing his Ph.D.
2361
+ degree at Sun Yat-Sen University. Before
2362
+ that, he was a research assistant at The
2363
+ Chinese University of Hong Kong, Shen-
2364
+ zhen (CUHK-SZ), China. He received the
2365
+ B.E. degree from South China Agriculture
2366
+ University (SCAU), Guangzhou, China in
2367
+ 2019 and M.S. degree from The Univer-
2368
+ sity of Southampton, Southampton, U.K.
2369
+ in 2020. He has won top places in data
2370
+ science competitions hosted by Kaggle and
2371
+ Huawei respectively. His research interests include Computer Vision,
2372
+ Vision-Language Joint Modeling, and Casual Inference.
2373
+ Ruimao Zhang is currently a Research
2374
+ Assistant Professor in the School of Data
2375
+ Science, The Chinese University of Hong
2376
+ Kong, Shenzhen (CUHK-SZ), China. He
2377
+ is also a Research Scientist at Shenzhen
2378
+ Research Institute of Big Data. He received
2379
+ the B.E. and Ph.D. degrees from Sun Yat-
2380
+ sen University, Guangzhou, China in 2011
2381
+ and 2016, respectively. From 2017 to 2019,
2382
+ he was a Post-doctoral Research Fellow in
2383
+ the Multimedia Lab, The Chinese Univer-
2384
+ sity of Hong Kong (CUHK), Hong Kong. After that, he joined at
2385
+ SenseTime Research as a Senior Researcher until 2021. His research
2386
+ interests include computer vision, deep learning and related multi-
2387
+ media applications. He has published about 40 peer-reviewed articles
2388
+ in top-tier conferences and journals such as TPAMI, IJCV, ICML,
2389
+ ICLR, CVPR, and ICCV. He has won a number of competitions and
2390
+ awards such as Gold medal in 2017 Youtube 8M Video Classification
2391
+ Challenge, the first place in 2020 AIM Challenge on Learned Image
2392
+ Signal Processing Pipeline. He was rated as Outstanding Reviewer
2393
+ of NeurIPS in 2021. He is a member of IEEE.
2394
+ Zhanglin Peng is now pursuing her Ph.D.
2395
+ degree with the Department of Computer
2396
+ Science, The University of Hong Kong,
2397
+ Hong Kong, China. She received her B.E.
2398
+ and M.S. degrees from Sun Yat-Sen Uni-
2399
+ versity, Guangzhou, China in 2013 and
2400
+ 2016, respectively. From 2016 to 2020, she
2401
+ was a researcher at SenseTime Research.
2402
+ Her research interests are computer vision
2403
+ and machine learning.
2404
+ Jinrui Chen is currently pursuing the B.A.
2405
+ degree in Financial Engineering conferred
2406
+ jointly by the School of Data Science,
2407
+ the School of Science and Engineering,
2408
+ and the School of Management and Eco-
2409
+ nomics, The Chinese University of Hong
2410
+ Kong, Shenzhen (CUHK-SZ), China. His
2411
+ research interests include deep learning
2412
+ and financial technology.
2413
+ Liang Lin (M’09, SM’15) is a Full Pro-
2414
+ fessor of computer science at Sun Yat-
2415
+ sen University. He served as the Exec-
2416
+ utive Director and Distinguished Scien-
2417
+ tist of SenseTime Group from 2016 to
2418
+ 2018, leading the R&D teams for cutting-
2419
+ edge technology transferring. He has au-
2420
+ thored or co-authored more than 200 pa-
2421
+ pers in leading academic journals and con-
2422
+ ferences, and his papers have been cited by
2423
+ more than 22,000 times. He is an associate
2424
+ editor of IEEE Trans. Multimedia and IEEE Trans. Neural Networks
2425
+ and Learning Systems, and served as Area Chairs for numerous
2426
+ conferences such as CVPR, ICCV, SIGKDD and AAAI. He is the
2427
+ recipient of numerous awards and honors including Wu Wen-Jun
2428
+ Artificial Intelligence Award, the First Prize of China Society of
2429
+ Image and Graphics, ICCV Best Paper Nomination in 2019, Annual
2430
+ Best Paper Award by Pattern Recognition (Elsevier) in 2018, Best
2431
+ Paper Dimond Award in IEEE ICME 2017, Google Faculty Award
2432
+ in 2012. His supervised PhD students received ACM China Doctoral
2433
+ Dissertation Award, CCF Best Doctoral Dissertation and CAAI Best
2434
+ Doctoral Dissertation. He is a Fellow of IET and IAPR.
2435
+
7NAyT4oBgHgl3EQfpviE/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
7tAyT4oBgHgl3EQfc_c0/content/tmp_files/2301.00292v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
7tAyT4oBgHgl3EQfc_c0/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
8tAzT4oBgHgl3EQfE_rp/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e1b2134c19af104598571ef29f06fa1dac045a9603acb2bd278a933665043f21
3
+ size 167585
8tFLT4oBgHgl3EQfBi4b/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e017831d540c2daf80cc088b38d9e37f9a83218c84782b08e17848fd970865b0
3
+ size 3997741
8tFLT4oBgHgl3EQfBi4b/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ad9a8de4c9a3fb16282e3c904697081e90e1e052d481f704d181975758ce0a7
3
+ size 154530
99E3T4oBgHgl3EQfrQpl/content/tmp_files/2301.04658v1.pdf.txt ADDED
@@ -0,0 +1,1246 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Many-body resonances in the avalanche instability of many-body localization
2
+ Hyunsoo Ha,1 Alan Morningstar,1, 2 and David A. Huse1
3
+ 1Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
4
+ 2Department of Physics, Stanford University, Stanford, California 94305, USA
5
+ (Dated: January 13, 2023)
6
+ Many-body localized (MBL) systems fail to reach thermal equilibrium under their own dynamics,
7
+ even though they are interacting, nonintegrable, and in an extensively excited state. One instability
8
+ towards thermalization of MBL systems is the so-called “avalanche”, where a locally thermalizing
9
+ rare region is able to spread thermalization through the full system. The spreading of the avalanche
10
+ may be modeled and numerically studied in finite one-dimensional MBL systems by weakly coupling
11
+ an infinite-temperature bath to one end of the system. We find that the avalanche spreads primarily
12
+ via strong many-body resonances between rare near-resonant eigenstates of the closed system. Thus
13
+ we find and explore a detailed connection between many-body resonances and avalanches in MBL
14
+ systems.
15
+ Introduction— Many-body localized (MBL) systems
16
+ are a class of isolated many-body quantum systems that
17
+ fail to thermalize due to their own unitary dynamics,
18
+ even though they are interacting, nonintegrable and ex-
19
+ tensively excited [1–7]. This happens for one-dimensional
20
+ systems with short-range interactions in the presence
21
+ of strong enough quenched randomness, which yields a
22
+ thermal-to-MBL phase transition of the dynamics.
23
+ In
24
+ the MBL phase, there are an extensive number of emer-
25
+ gent localized conserved operators [8–11].
26
+ One instability of the MBL phase which is believed to
27
+ play a central role in the asymptotic, long-time, infinite-
28
+ system MBL phase transition is the avalanche [12–14].
29
+ Rare locally thermalizing regions necessarily exist, how-
30
+ ever sparse they may be, due to the randomness. Starting
31
+ from such a local thermalizing region, this “thermal bub-
32
+ ble” spreads through the adjacent typical MBL regions
33
+ until the relaxation rate of the adjacent spins becomes
34
+ smaller than the many-body level spacing of the ther-
35
+ mal bubble, in which case the spreading of this avalanche
36
+ halts. If the strength of the randomness is insufficient,
37
+ the relaxation rate remains larger than the level spacing
38
+ and the avalanche does not stop: the full system then
39
+ slowly thermalizes and is no longer in the MBL phase (al-
40
+ though it is likely in a prethermal MBL regime [15, 16]).
41
+ The avalanche has been numerically simulated in
42
+ small-sized
43
+ systems
44
+ [15,
45
+ 17–21]
46
+ and
47
+ experimentally
48
+ probed [22]. Recent work shows that the instability of
49
+ MBL to avalanches occurs at much stronger randomness
50
+ than had been previously thought [15, 20]. This leaves a
51
+ large intermediate prethermal-MBL regime in the phase
52
+ diagram between the onset of MBL-like behavior in small
53
+ samples (or correspondingly short times) and the asymp-
54
+ totic MBL phase transition.
55
+ Clear numerical evidence
56
+ has been obtained for many-body resonances being an
57
+ important part of the physics in the near-thermal part
58
+ of this regime [15, 16, 23–29], while no such evidence for
59
+ the expected thermalizing rare regions has been found
60
+ yet. In the part of this intermediate prethermal MBL
61
+ regime that is farther from the thermal regime, it re-
62
+ Bath (T=
63
+ )
64
+ 0
65
+ After Long time
66
+ (a)
67
+ (c)
68
+ (b)
69
+ n
70
+ n
71
+ n
72
+ Slowest Mode (
73
+ )
74
+ near-resonance
75
+ dominant decay
76
+ B
77
+ A
78
+ B
79
+ A
80
+ 1
81
+ 2
82
+ . . .
83
+ . . .
84
+ . . .
85
+ . . .
86
+ . . .
87
+ . . .
88
+ . . .
89
+ L
90
+ Figure 1.
91
+ Schematic illustrations showing (a) the avalanche
92
+ model, (b) the long time dynamics governed by the slowest
93
+ mode, and (c) the dominant decay processes involving four
94
+ eigenstates with a near-resonance. (a) We connect the bath
95
+ in the weak-coupling limit with the one-dimensional MBL sys-
96
+ tem. Specifically, we analyze the decay of the slowest mode
97
+ (ˆτS), which is localized near the end of the system farthest
98
+ from the bath; ˆτS is a “localized integral of motion” in the
99
+ MBL phase. (b) Thermalization at the latest times is gov-
100
+ erned by ˆτS. (c) Schematic decay of ˆτS. A large fraction of
101
+ the probability current in the decay of ˆτS passes through four
102
+ eigenstates associated with a rare near-resonance.
103
+ mains unclear what is the primary mechanism that leads
104
+ to thermalization for samples larger than those that can
105
+ be diagonalized.
106
+ In this work, we explore how an avalanche spreads
107
+ through typical MBL regions for systems that are near
108
+ the avalanche instability. We do not simulate the rare
109
+ region that initiates the avalanche. Instead, we assume
110
+ a large avalanche is spreading and we model that as an
111
+ infinite-temperature bath (see Fig. 1) weakly coupled to
112
+ one end of our MBL spin chain [15, 20]. We find that
113
+ particular many-body near-resonances of the closed sys-
114
+ tem play a key role in facilitating the spreading of the
115
+ avalanche.
116
+ These many-body near-resonances are the
117
+ arXiv:2301.04658v1 [cond-mat.stat-mech] 11 Jan 2023
118
+
119
+ 2
120
+ dominant process by which the bath at one end of the
121
+ chain thermalizes the spins at the other end of the chain
122
+ and thus propagates the avalanche.
123
+ Model— Our model consists of a chain of L spin-
124
+ 1/2 degrees of freedom (or qubits).
125
+ The dynamics of
126
+ the closed system is given by the random-circuit Floquet
127
+ MBL model studied in Ref. [15], which has unitary Flo-
128
+ quet operator ˆUF . The disorder strength in this model
129
+ is given by the parameter α, with the MBL regime be-
130
+ ing at large α, while the thermal regime is at small α
131
+ (see the Appendix for the full description of this model).
132
+ To investigate avalanche spreading, we weakly connect
133
+ an infinite-temperature Markovian bath to spin L at the
134
+ right end of the system [15, 20]. The quantum state of
135
+ this open system is the density matrix ˆρ(t).
136
+ In our open-system Floquet model, the bath is repre-
137
+ sented by the super-operator Sbath that acts once each
138
+ time period:
139
+ Sbath[ˆρ] =
140
+ ˆρ
141
+ 1 + 3γ +
142
+ γ
143
+ 1 + 3γ
144
+ 3
145
+
146
+ j=1
147
+ ˆEj ˆρ ˆE†
148
+ j ,
149
+ (1)
150
+ where ( ˆE1, ˆE2, ˆE3) = ( ˆXL, ˆYL, ˆZL) are the jump opera-
151
+ tors acting on the last spin at site L (connected to the
152
+ bath). We will take the weak coupling limit γ → 0. The
153
+ open-system Floquet super-operator Speriod that takes
154
+ our system through one full time-period is
155
+ Speriod[ˆρ(t)] = Sbath[ ˆUF ˆρ(t) ˆU †
156
+ F ] = ˆρ(t + 1) .
157
+ (2)
158
+ The time evolution of the system’s state is given by
159
+ ˆρ(t) = ˆI/2L + p1e−r1tˆτ1 +
160
+
161
+ k≥2
162
+ pke−rktˆτk,
163
+ (3)
164
+ where e−rk is the kth largest eigenvalue of Speriod with
165
+ eigenoperator ˆτk. Note that the largest (0th) eigenvalue
166
+ is 1 and is nondegenerate when γ > 0, with eigenoper-
167
+ ator proportional to the identity, which is the long-time
168
+ steady state of this system. The mode with the slowest
169
+ relaxation for γ > 0 is ˆτS := ˆτ1, which relaxes with rate
170
+ rS := Re(r1). The relaxation rate rS is proportional to
171
+ γ, and we work to first order in γ [20].
172
+ Relaxation of the slowest mode— In the weak-
173
+ coupling limit, one can obtain ˆτS as a superposition of
174
+ the diagonal terms |n⟩ ⟨n|, where |n⟩ are the eigenstates
175
+ of the closed system such that ˆUF |n⟩ = eiθn |n⟩. When
176
+ γ = 0, then |m⟩ ⟨n| are eigenoperators of Speriod with
177
+ eigenvalues ei(θm−θn), so all diagonal terms |n⟩ ⟨n| are
178
+ degenerate, with rk = 0. Therefore, in the γ ≪ 1 limit,
179
+ one can obtain ˆτS in degenerate perturbation theory by
180
+ diagonalizing the (super)operator S[ˆρ] := 1
181
+ 3
182
+ �3
183
+ j=1 ˆEj ˆρ ˆE†
184
+ j
185
+ in this degenerate subspace [20], where the matrix ele-
186
+ ments are
187
+ Smn = ⟨m| S[|n⟩ ⟨n|] |m⟩ = 1
188
+ 3
189
+ 3
190
+
191
+ j=1
192
+ | ⟨m| ˆEj |n⟩ |2.
193
+ (4)
194
+ 0.5
195
+ Probability Density (a.u.)
196
+ 4
197
+ L=
198
+ MBL
199
+ 12
200
+ Thermal
201
+ Figure 2.
202
+ Probability distribution over samples of the ratio
203
+ R = Dµν/(2LΓ) (see text). In the thermal regime (dark red to
204
+ yellow), the ratio exponentially decays with increasing L. In
205
+ comparison, R barely drifts with L for the MBL case (blue).
206
+ We observe that R never exceeds the value 0.5 (gray dashed
207
+ line), which is explained with the minimal model in the main
208
+ text. In this figure, we used α = 30 and α = 1 for MBL and
209
+ thermal regimes, respectively.
210
+ Note that in the degenerate subspace, S is a symmet-
211
+ ric stochastic matrix with real eigenvalues.
212
+ In partic-
213
+ ular, ˆτS = �
214
+ n cn |n⟩ ⟨n| where ⃗c is the eigenvector of
215
+ S with the smallest spectral gap Γ from the steady
216
+ state (�
217
+ m Snmcm = (1 − Γ)cn). The relaxation rate is
218
+ rS = 3γΓ. We normalize ˆτS so Tr{ˆτ 2
219
+ S} = �
220
+ n |cn|2 = 2L.
221
+ Naively, the slowest mode is the local integral of motion
222
+ (LIOM) that is farthest from the bath. More precisely,
223
+ as we show in the Appendix, the slowest mode, ˆτS, is
224
+ a traceless superposition of projectors on to the eigen-
225
+ states of the closed system. Among such operators it is
226
+ the one with the smallest weight of Pauli strings with
227
+ non-identity at site L (connected to the bath). It is a
228
+ LIOM that is indeed localized far from the bath, but it
229
+ is different in detail from the ℓ-bits and LIOMs discussed
230
+ in Refs. [8–10, 30].
231
+ As illustrated in Fig. 1(b), the latest time dynamics
232
+ are determined by ˆτS, with ˆρ(t) ≃ ˆI/2L + pSe−rStˆτS for
233
+ any initial conditions that contain ˆτS. This assumes a
234
+ nonzero gap between (r1/γ) and (r2/γ), which is indeed
235
+ the case for all samples examined. We can view the slow
236
+ relaxation of ˆτS in terms of probability currents that flow
237
+ between the eigenstates of the isolated system, leading to
238
+ the final ˆρ = ˆI/2L equilibrium where all eigenstates have
239
+ equal weight. Specifically, we may quantify the contribu-
240
+ tion Dmn of the pair of eigenstates m, n to the relaxation
241
+ of ˆτS as
242
+ Dmn := Smn(cm − cn)2 ≥ 0 .
243
+ (5)
244
+ One can show (see Appendix) that the relaxation rate of
245
+ ˆτS is given by the sum of the contributions from all pairs
246
+
247
+ 3
248
+ of eigenstates of the closed system:
249
+
250
+ m<n
251
+ Dmn = Γ Tr{ˆτ 2
252
+ S} = 2LΓ.
253
+ (6)
254
+ We find the pair of eigenstates |µ⟩, |ν⟩ of the closed sys-
255
+ tem that gives the strongest contribution to the relax-
256
+ ation of ˆτS by finding the pair with the largest Dmn. We
257
+ quantify the fraction of the full relaxation that is due
258
+ to this pair by the ratio R ≡ Dµν/(2LΓ). The distribu-
259
+ tion of R over disorder realizations and for different sys-
260
+ tem sizes is shown in Fig. 2, both for the thermal regime
261
+ and for the MBL regime near the avalanche instability.
262
+ In the thermal regime, R decreases exponentially with
263
+ increasing L, indicating that many pairs of eigenstates
264
+ are contributing similar amounts to the relaxation of the
265
+ slowest mode, which is as should be expected for this
266
+ thermal regime.
267
+ In the MBL regime, on the other hand, we find that
268
+ this pair of eigenstates contributes an order-one fraction
269
+ of the relaxation of ˆτS, and this fraction does not decrease
270
+ substantially with increasing system length L. This is
271
+ consistent with previous works [15, 16, 31, 32] that found
272
+ extremely broad distributions for the matrix elements of
273
+ local operators among eigenstates of the closed system
274
+ within the MBL regime. On looking at the relaxation
275
+ more thoroughly, we find that in this MBL regime the
276
+ strongest contribution to the relaxation actually involves
277
+ a set of 4 eigenstates of the closed system, at least two
278
+ of which are involved in a many-body near-resonance, as
279
+ we will now describe in more detail.
280
+ Near-resonant eigenstate set— Deep in the MBL
281
+ regime, at inverse interaction α near the estimated
282
+ avalanche instability, we typically find that the strongest
283
+ contributions to the relaxation of the slow mode ˆτS come
284
+ from a set of 4 eigenstates of the closed system, which
285
+ include a near-resonant pair of eigenstates |A⟩, |B⟩ (we
286
+ explain what “near-resonant” means below). The other
287
+ two eigenstates involved are obtained by “flipping” the
288
+ ℓ-bit ˆτL adjacent to the bath:
289
+ |A′⟩ = ˆτ x
290
+ L |A⟩ ,
291
+ |B′⟩ = ˆτ x
292
+ L |B⟩ .
293
+ (7)
294
+ In some cases, |A′⟩ and |B′⟩ are also near-resonant, as we
295
+ discuss in the Appendix with details. The polarization
296
+ cA = ⟨A|ˆτS |A⟩ of the slow mode differs substantially
297
+ between the “A” eigenstates (|A⟩ and |A′⟩) and the “B”
298
+ eigenstates, while it is essentially unchanged by flipping
299
+ ˆτL, so cA ∼= cA′ and cB ∼= cB′. Thus it is the transitions
300
+ between {A, A′} eigenstates and {B, B′} eigenstates that
301
+ relax ˆτS. If we “de-mix” [15] the near-resonance to make
302
+ a more localized pair of orthonormal states |a⟩, |b⟩, we
303
+ obtain:
304
+ |A⟩ ∼= |a⟩ − ϵ |b⟩ ,
305
+ |B⟩ ∼= |b⟩ + ϵ |a⟩ ,
306
+ (8)
307
+ where |a⟩ and |b⟩ differ by spin flips at a nonzero fraction
308
+ of all sites, including the sites that are most polarized in
309
+ (a)
310
+ (b)
311
+ Z
312
+ A
313
+ B
314
+ B
315
+ A
316
+ XY
317
+ A
318
+ B
319
+ B
320
+ A
321
+ XY case
322
+ Z case
323
+ (2/3)
324
+ XY
325
+ (2/3)
326
+ (4/3)
327
+ Figure 3.
328
+ Two distinct cases for the set of 4 important
329
+ eigenstates of ˆUF that are most important for the avalanche
330
+ to propagate. The near-resonant pair {A, B} are coupled with
331
+ ˆ
332
+ XL and ˆYL jump operators to B′ and A′, respectively, i.e.,
333
+ they have anomalously large matrix elements. In what we call
334
+ the “Z case” (b), the near-resonant pair involves a spin flip
335
+ next to the bath (site L), and the bath can additionally couple
336
+ the resonant pair with the ˆZL jump operator with matrix
337
+ element SAB twice as large as SA′B and SAB′. The two states
338
+ with the largest Dµν are colored red. In the XY case (a), this
339
+ pair is not the near-resonant pair, and {µ, ν} = {A, B′}; while
340
+ they are the same in the Z case, so {µ, ν} = {A, B}. In some
341
+ samples that are of the XY case, eigenstates |A′⟩ and |B′⟩
342
+ are also near-resonant (not shown).
343
+ ˆτS, so this is a long-range many-body resonance, in that
344
+ sense, and it includes a “flip” of ˆτS. The spin that is
345
+ flipped between |a⟩ and |b⟩ that is closest to the bath is
346
+ at site x. As we show in the Appendix, for the largest
347
+ L that we can access, the most probable location of x is
348
+ near x/L = 0.8.
349
+ In the regime near the estimated avalanche instability,
350
+ the “mixing” ϵ in the near-resonance is typically exponen-
351
+ tially small in L, although it is exponentially larger than
352
+ the mixing between other typical pairs of eigenstates that
353
+ differ over a similar distance range. This is why we call
354
+ this a “near-resonance”: the mixing is relatively strong,
355
+ partly due to the two eigenstates being near degeneracy
356
+ in the spectrum of UF , but it is not fully resonant, since
357
+ ϵ ≪ 1.
358
+ In many samples, |A′⟩ and |B′⟩ are not near-resonant
359
+ and are well-approximated by |A′⟩ ∼= ˆXL |a⟩ and |B′⟩ ∼=
360
+ ˆXL |b⟩. As a consequence of the near-resonance between
361
+ |A⟩ and |B⟩, i.e., the relatively large ϵ compared to other
362
+ pairs of states, there are anomalously large matrix ele-
363
+ ments | ⟨A| ˆXL |B′⟩ |2 ∼= | ⟨B| ˆYL |A′⟩ |2 ∼= ϵ2 of the two
364
+ jump operators ˆE1 = ˆXL and ˆE2 = ˆYL. These drive two
365
+ particularly large contributions, DAB′ and DBA′ (and
366
+ their transposes), to the total relaxation rate of ˆτS be-
367
+ cause SAB′ ∼= SBA′ ∼= 2ϵ2/3.
368
+ In addition, when the near-resonance involves flipping
369
+ the polarization of site L next to the bath (so x = L),
370
+ there is another anomalously large matrix element. This
371
+ time it is the matrix element | ⟨A| ˆZL |B⟩ |2 ∼= 4ϵ2 of the
372
+ jump operator ˆE3 = ˆZL between the two near-resonant
373
+
374
+ 4
375
+ eigenstates themselves. This results in SAB ∼= 4ϵ2/3 and
376
+ another large contribution DAB ∼= 2DAB′ ∼= 2DBA′ (and
377
+ its transpose) to the total relaxation rate of ˆτS.
378
+ Thus there are two cases for Dµν, the largest contribu-
379
+ tion to Eq. 6, corresponding to whether or not the reso-
380
+ nance involves flipping the spin nearest to the bath. The
381
+ bath can drive relaxation of the slowest mode through
382
+ a resonance indirectly (with X and Y jump operators),
383
+ i.e., the pairs of eigenstates involved are not the near-
384
+ resonant pair, and sometimes directly (with Z jump op-
385
+ erator). We depict the two cases in Fig. 3(a,b) and call
386
+ them the “XY ” and “Z” cases. Our claim is that the
387
+ relaxation of the slowest mode, and thus the spread of
388
+ the avalanche, proceeds via these dominant processes in-
389
+ volving 4 eigenstates that include a particularly strong
390
+ near-resonance, as explained in this section. This struc-
391
+ ture implies that the largest contribution Dµν comes from
392
+ either the Z jump operator or the X and Y jump op-
393
+ erators of the bath, depending on which of the above
394
+ cases is relevant.
395
+ In the Z case, which is x = L, the
396
+ largest contribution (A-B pair) is accompanied by two
397
+ XY contributions of half the magnitude (A-B′ and B-A′
398
+ pairs). In the XY case, which is x < L, there are two
399
+ roughly equal largest contributions (A-B′ and B-A′). In
400
+ both cases, the largest contribution Dµν doesn’t exceed
401
+ half of the total relaxation. The phenomenology of the
402
+ near-resonant eigenstate set explained in this section is
403
+ corroborated by numerical observations in the next sec-
404
+ tion. An extension of this simple description is discussed
405
+ in the Appendix.
406
+ Numerical Observations— We numerically deter-
407
+ mine the eigenstates of ˆUF , the slowest mode of S, and
408
+ the contributions Dmn to its relaxation rate associated
409
+ with probability currents between eigenstates. We exam-
410
+ ine the pairs of eigenstates that contribute the most (|µ⟩
411
+ and |ν⟩), identify the 4 important eigenstates discussed
412
+ earlier, and quantify how they are related to each other
413
+ to verify that the near-resonant set of eigenstates does
414
+ indeed have that structure.
415
+ Recall that in our model, the polarization has a pre-
416
+ ferred spin direction: Z. Deep in the MBL regime, the
417
+ local ℓ-bit operators typically are very close to the lo-
418
+ cal single-spin Pauli operators.
419
+ Therefore, we identify
420
+ |γ′⟩ ≡ τ x
421
+ L |γ⟩ for γ ∈ {µ, ν} simply by finding the eigen-
422
+ state with largest |⟨γ| ˆXL |n⟩| among all eigenstates |n⟩.
423
+ To determine which jump operator from the bath dom-
424
+ inantly couples |µ⟩ and |ν⟩ we define a tool
425
+ Zjump(m, n) :=
426
+ | ⟨m| ˆZL |n⟩ |2
427
+ �3
428
+ j=1 | ⟨m| ˆEj |n⟩ |2 .
429
+ (9)
430
+ Note that ˆE3 = ˆZL.
431
+ We find that Zjump(µ, ν) is ex-
432
+ tremely close to 0 or 1 in any one sample, as shown in
433
+ the inset of Fig. 4(a,b). This separation is captured by
434
+ the minimal model since Zjump(µ, ν) ∼= 0 (or 1) is asso-
435
+ ciated to the XY (or Z) case where the pair {µ, ν} isn’t
436
+ (a)
437
+ (b)
438
+ (c)
439
+ (d)
440
+ 0
441
+ 0.5
442
+ 1
443
+ 0
444
+ 0.5
445
+ 1
446
+ 0
447
+ 1
448
+ 0
449
+ 1
450
+ XY and Z
451
+ AB’ and A’B
452
+ AB
453
+ only Z
454
+ XY case
455
+ system size (L)
456
+ system size (L)
457
+ Z case
458
+ jump
459
+ jump
460
+ Figure 4.
461
+ Consistency with the near-resonant eigenstate
462
+ set. All data here are for α = 30. (a) The near-resonance
463
+ between {A, B} causes the AB′ and A′B matrix elements to
464
+ be roughly equal, as described in the minimal model. The
465
+ distribution of the ratio of SAB′ and SA′B is indeed peaked
466
+ near 1. The inset shows Zjump of AB′ and A′B are peaked at
467
+ zero, implying that these pairs are coupled with the ˆ
468
+ XL and
469
+ ˆYL jump operators. (b) When the near-resonant pair involves
470
+ the spin flip of the last site (Z case), the bath can directly
471
+ couple |A⟩ and |B⟩. The distribution of the shown ratio of
472
+ matrix elements demonstrates that SAB ≃ 2SAB′ ≃ 2SA′B.
473
+ The inset shows Zjump of AB is peaked at 1, implying A and
474
+ B are coupled with ˆZL.
475
+ The bottom two panels show the
476
+ demixing angles for (c) the XY case and (d) the Z case. The
477
+ points correspond to AB (red dot), A′B (gray ×), AB′ (gray
478
+ dot), and A′B′ (blue dot). The near-resonant pair identified
479
+ as in the main text (AB) has the largest demixing angles for
480
+ all cases. The calculations in (a) and (b) are done with L = 11
481
+ and 104 disorder realizations.
482
+ (or is) the near-resonant pair {A, B}. We therefore iden-
483
+ tify the near-resonant pair for each sample based on the
484
+ minimal model as follows. In the case that |µ⟩ and |ν⟩—
485
+ the pair with the largest Dmn—are “connected” with Z
486
+ (Zjump ∼= 1), these states are identified as |A⟩ and |B⟩.
487
+ Otherwise, if they are connected with X and Y instead
488
+ (Zjump ∼= 0), we associate {|A⟩ , |B⟩)} to {|µ′⟩ , |ν⟩} or
489
+ {|µ⟩ , |ν′⟩}, whichever pair has the smaller quasienergy
490
+ splitting.
491
+ We first checked that cγ ∼= cγ′ indeed holds for γ ∈
492
+ {A, B}. This relation is satisfied because Sγ′γ is of or-
493
+ der one, so the slow mode ˆτS contains negligible pop-
494
+ ulation difference between γ and γ′. Also, we checked
495
+ that |cµ − cν| is of order one, which should be true as
496
+
497
+ 5
498
+ we picked the pair with the largest Dµν = Sµν(cµ − cν)2.
499
+ Therefore, the matrix elements Smn (Eq. 4) are a good
500
+ proxy for Dmn (Eq. 5) within this set of important eigen-
501
+ states, so we compare the matrix elements going forward.
502
+ We compare these matrix elements to confirm the re-
503
+ sults are consistent with the minimal model described
504
+ in Fig. 3(a,b). As we show in Fig. 4(a), SAB′ ∼= SBA′
505
+ holds (and their transposes), and XY jump operators
506
+ couple them (inset). Furthermore, in the case that spin
507
+ L is flipped between |A⟩ and |B⟩, we additionally observe
508
+ SAB ∼= 2SAB′ ∼= 2SBA′ as presented in Fig. 4(b). In this
509
+ case |A⟩ and |B⟩ are coupled with ˆZL (inset).
510
+ We note that the near-resonant eigenstate set of the
511
+ previous section explains why R < 1/2. When the near-
512
+ resonance doesn’t involve a spin flip next to the bath,
513
+ SAB′ = SA′B, so DAB′ = DA′B and no single pair con-
514
+ tributes more than 1/2 of the total.
515
+ If the resonance
516
+ flips the last spin, DAB = 2DAB′ = 2DA′B, so again the
517
+ maximum contribution can’t be greater than half of the
518
+ total.
519
+ We finally tested our picture using the “demixing” pro-
520
+ cedure introduced in Ref. [15]. In that procedure, one
521
+ calculates the most localized basis of a subspace spanned
522
+ by two eigenstates, and thus also the corresponding ba-
523
+ sis rotation. The basis rotation corresponds to a location
524
+ on a Bloch sphere; the polar angle, called the “demixing
525
+ angle”, is a measure of the resonance strength between
526
+ the two eigenstates (ϵ in Eq. 8). As shown in Fig. 4(c,d),
527
+ the demixing angle between the eigenstates we identified
528
+ as |A⟩ and |B⟩ is by far the largest among other pairs in
529
+ our eigenstate set, consistent with the idea that that pair
530
+ is indeed a near-resonance that enables the bath to relax
531
+ the slowest mode, i.e., the avalanche to propagate.
532
+ Conclusion— Assuming the avalanche has proceeded
533
+ for a sufficiently large distance, we model the putative
534
+ thermal bubble as an infinite Markovian bath with infi-
535
+ nite temperature. In this model, we discovered the exis-
536
+ tence of dominant processes in the avalanche, involving
537
+ only a few pairs of eigenstates of the closed system, in-
538
+ cluding a strong near-resonance. The avalanche proceeds
539
+ through these rare eigenstate pairs, leveraging many-
540
+ body near-resonances to relax the spins some distance
541
+ away along the chain. The inner structure of the domi-
542
+ nant set of eigenstates is dictated by whether or not the
543
+ associated resonance involves flipping a spin at the site
544
+ next to the bath. This sets what jump operators effec-
545
+ tively use the resonance present in the closed system to
546
+ spread the avalanche. We presented a minimal model in-
547
+ volving two near-resonant eigenstates and two additional
548
+ auxiliary states to explain how this works in detail, and
549
+ verified our picture with numerical observations.
550
+ Our
551
+ work advances the understanding of the avalanche in-
552
+ stability of many-body localization and provides a de-
553
+ tailed connection to rare many-body resonances present
554
+ in MBL systems.
555
+ Acknowledgements— We thank Sarang Gopalakr-
556
+ ishnan, Vedika Khemani and Jacob Lin for discussions.
557
+ The work at Princeton was supported in part by NSF
558
+ QLCI grant OMA-2120757. A.M. was supported in part
559
+ by the Stanford Q-FARM Bloch Postdoctoral Fellowship
560
+ in Quantum Science and Engineering and the Gordon
561
+ and Betty Moore Foundation’s EPiQS Initiative through
562
+ Grant GBMF8686. Simulations presented in this work
563
+ were performed on computational resources managed and
564
+ supported by Princeton Research Computing.
565
+ Appendix
566
+ Random Floquet Model
567
+ 1
568
+ 2
569
+ L
570
+ L-1
571
+ ...
572
+ Figure 5.
573
+ Random Floquet Model introduced in Ref. [15].
574
+ Details of the model are described in the Appendix.
575
+ We use the Floquet circuit model of Morningstar, et
576
+ al. [15] and depicted in Fig. 5.
577
+ The Floquet unitary
578
+ operator UF is obtained by applying a layer of one-site
579
+ gates Ud followed by L−1 two-site gates—one per bond—
580
+ denoted by Uu. The onsite gates are first sampled from
581
+ the 2 × 2 circular unitary ensemble (CUE) and then di-
582
+ agonalized, so the localizing disorder of the model is in
583
+ the Z direction. The two-site gates ui act on sites i and
584
+ i + 1 and can be written as
585
+ ui = exp
586
+ � i
587
+ αMi
588
+
589
+ (10)
590
+ where Mi are sampled from the 4 × 4 Guassian unitary
591
+ ensemble (GUE). 1/α controls the interaction strength so
592
+ that the effect of the disorder gets stronger as α increases.
593
+ The order of applying the ui’s is determined randomly for
594
+ each sample.
595
+ Slowest Mode
596
+ As explained in the main text, one can obtain the slow-
597
+ est mode ˆτS in the weak-coupling limit by diagonalizing
598
+
599
+ 6
600
+ (a)
601
+ (b)
602
+ (c)
603
+ Disorder
604
+ Strength
605
+ site ( )
606
+ site ( )
607
+ site ( )
608
+ Pauli string weight (
609
+ )
610
+ Figure 6.
611
+ Pauli String weight wn for (a) τ1, (b) ¯τ1, and (c) the slowest mode τS, averaged (after taking the logarithm) for 103
612
+ samples with system size L = 10.
613
+ the superoperator S[ˆρ] :=
614
+ 1
615
+ 3
616
+
617
+ µ ˆEµˆρ ˆE†
618
+ µ, in the degen-
619
+ erate subspace of Floquet eigenstates |n⟩ ⟨n|, where the
620
+ matrix elements are
621
+ Snm = ⟨m| S[|n⟩ ⟨n|] |m⟩ = 1
622
+ 3
623
+
624
+ µ
625
+ | ⟨m| ˆEµ |n⟩ |2
626
+ (11)
627
+ and ˆEµ = ( ˆXL, ˆYL, ˆZL) are the jump operators at the
628
+ spin next to the bath. In particular, ˆτS = �
629
+ n cn |n⟩ ⟨n|
630
+ where ⃗cn is the eigenvector of Snm with the smallest spec-
631
+ tral gap Γ. As the slowest mode is constructed from the
632
+ degenerate subspace of |n⟩ ⟨n|, it is a conserved quantity
633
+ (a LIOM) of the purely unitary dynamics given by UF .
634
+ We derive useful features of the slowest mode ˆτS below.
635
+ Lemma 1. For any Pauli-string operator P ′ acting
636
+ on the (L − 1) spins away from the bath, and ˆEµ =
637
+ ( ˆXL, ˆYL, ˆZL) acting on the last spin next to the bath, the
638
+ following holds:
639
+ S[P ′ ⊗ IL] = P ′ ⊗ IL,
640
+ S[P ′ ⊗ ˆEµ] = −1
641
+ 3P ′ ⊗ ˆEµ.
642
+ (12)
643
+ Proof. The super-operator S only acts on site L, such
644
+ that for an arbitrary matrix M ∈ M(2,2), S[P ′ ⊗ M] =
645
+ P ′ ⊗
646
+
647
+ 1
648
+ 3
649
+
650
+ µ ˆEµM ˆE†
651
+ µ
652
+
653
+ . Eq. 12 follows by substituting IL
654
+ and ˆEµ in M.
655
+ Theorem 2. The slowest mode is the conserved quantity
656
+ of the closed system (which is not an identity) with the
657
+ smallest weight from the Pauli strings with non-identity
658
+ at site L (connected to the bath).
659
+ Proof. Consider a conserved quantity written as ˆτ =
660
+
661
+ n cn |n⟩ ⟨n| where cn ∈ R. The normalization condi-
662
+ tion is �
663
+ n c2
664
+ n = 2L as we defined in the main text. We
665
+ can write the slowest mode in the Pauli-string basis like
666
+ ˆτS = �
667
+ P ¯cP P with P being the Pauli-strings. The coef-
668
+ ficients are ¯cP = Tr(ˆτSP)/2L. In the Pauli-string basis,
669
+ the normalization condition is rewritten as �
670
+ P ¯c2
671
+ P = 1.
672
+ The total weight of the Pauli-strings with non-identity at
673
+ site L is
674
+ wL =
675
+
676
+ P ′
677
+ ¯c2
678
+ P ′⊗ ˆ
679
+ XL +
680
+
681
+ P ′
682
+ ¯c2
683
+ P ′⊗ ˆYL +
684
+
685
+ P ′
686
+ ¯c2
687
+ P ′⊗ ˆ
688
+ ZL
689
+ =
690
+
691
+ µ
692
+
693
+ P ′
694
+ ¯c2
695
+ P ′⊗ ˆ
696
+
697
+ (13)
698
+ where P ′ is a Pauli-string defined on L-1 sites and ˆEµ =
699
+ ( ˆXL, ˆYL, ˆZL) are the Pauli operators from site L.
700
+ Next, we define a functional R(⃗c) := �
701
+ n,m cnSnmcm.
702
+ Below, we show how the functional R is related to wL.
703
+ Tr (ˆτS[ˆτ])) = Tr
704
+ ��
705
+ l
706
+ cl |l⟩ ⟨l|
707
+
708
+ n
709
+ cnS[|n⟩ ⟨n|]
710
+
711
+ = Tr
712
+ ��
713
+ l
714
+ cl |l⟩ ⟨l|
715
+
716
+ n,m
717
+ cnSnm |m⟩ ⟨m|
718
+
719
+ =
720
+
721
+ n,m
722
+ cnSnmcm = R
723
+ (14)
724
+ We can rewrite the same equation under the Pauli-string
725
+ basis, ˆτ = �
726
+ P ¯cP P. Here, we use Lemma 1 introduced
727
+ earlier.
728
+ Tr (ˆτS[ˆτ])) =
729
+
730
+ P ′
731
+ ¯c2
732
+ P ′⊗I − 1
733
+ 3
734
+
735
+ µ
736
+
737
+ P ′
738
+ ¯c2
739
+ P ′⊗ ˆ
740
+
741
+ = 1 − 4
742
+ 3
743
+
744
+ µ
745
+
746
+ P ′
747
+ ¯c2
748
+ P ′⊗ ˆ
749
+
750
+ = 1 − 4
751
+ 3wL
752
+ (15)
753
+ From the above two equations, we derive the relation
754
+ R = 1 − (4/3)wL.
755
+
756
+ 7
757
+ In the final step, let’s define f := �
758
+ n c2
759
+ n. Using the
760
+ Lagrange multiplier method, functional R is local ex-
761
+ tremum under the constraint f = 2L when ∇R−λ∇f = 0
762
+ holds, which is equivalent to the eigenvalue problem:
763
+ ∀n,
764
+
765
+ m Snmcm = λcn. In this condition, we obtain
766
+ R = λ, and the weight of the Pauli-strings with non-
767
+ identity at site L is wL = (3/4)(1−λ). Therefore, finding
768
+ ˆτ which minimizes wL is equivalent to finding the eigen-
769
+ vector of the super-operator S with the second largest
770
+ eigenvalue (largest eigenvalue is one which corresponds
771
+ simply to an identity matrix).
772
+ Hence, the conserved
773
+ quantity with the smallest wL except the identity is the
774
+ slowest mode ˆτS.
775
+ Theorem 3. The slowest mode is traceless.
776
+ Proof. From the definition of the slowest mode, it is
777
+ an eigenmatrix of superoperator S with an eigenvalue
778
+ 1 − Γ.
779
+ Therefore, Tr(ˆτS)
780
+ =
781
+ Tr(S[ˆτS])/(1 − Γ)
782
+ =
783
+ Tr( 1
784
+ 3
785
+
786
+ µ ˆEµˆτS ˆE†
787
+ µ)/(1 − Γ) = Tr(ˆτS)/(1 − Γ).
788
+ As 0 <
789
+ Γ < 1, it should be traceless Tr(ˆτS) = 0.
790
+ We numerically compared the slowest mode ˆτS with
791
+ the LIOM (τ1) and ℓ-bit (¯τ1) introduced in Refs. [8–10].
792
+ The explicit forms of τ1 and ¯τ1 are
793
+ τ1 ≡
794
+
795
+ n
796
+ ⟨n| ˆZ1 |n⟩ |n⟩ ⟨n|
797
+ (16)
798
+ ¯τ1 ≡
799
+
800
+ n
801
+ sgn(⟨n| ˆZ1 |n⟩) |n⟩ ⟨n| ,
802
+ (17)
803
+ where |n⟩s are the eigenfunctions of the closed system.
804
+ Note that τ1 and ¯τ1 are the conserved quantities that
805
+ are localized near site 1, farthest from the bath. In par-
806
+ ticular, we calculate the Pauli string weight wi(ˆτ) for
807
+ ˆτ ∈ {τ1, ¯τ1, ˆτS}, which is the total weight of the Pauli
808
+ string bases with the last non-identity matrix placed at
809
+ i-th site. These Pauli bases are products of identity ma-
810
+ trices for sites farther than i.
811
+ We compare the Pauli string weight in Fig. 6. For suf-
812
+ ficiently large disorder strength α, all three operators are
813
+ localized far from the bath. It is clear that the slowest
814
+ mode is different from τ1 and ¯τ1. Compared to the other
815
+ two quantities, the slowest mode has the least weight at
816
+ the last site, as we proved in Theorem 2.
817
+ The differ-
818
+ ence manifests when we compare the three operators for
819
+ a single sample. While τ1 and ¯τ1 always have maximum
820
+ weight on the first site, the slowest mode often has max-
821
+ imum weight other than the first site but is still far away
822
+ from the bath. What constrains the slowest mode is not
823
+ the first site to have the maximum weight but to have
824
+ the least weight on the last site next to the bath, which
825
+ was indeed true for every sample.
826
+ Derivation of Equation 6
827
+ As explained in the main text, the slowest mode is
828
+ ˆτS = �
829
+ n cn |n⟩ ⟨n| where ⃗cn is the eigenvector of a sym-
830
+ metric Markovian matrix Snm with the smallest spec-
831
+ tral gap Γ (�
832
+ m Snmcm = (1 − Γ)cn).
833
+ The operator
834
+ ˆτS is normalized such that ∥ˆτS∥2
835
+ 1 = �
836
+ n c2
837
+ n = 2L.
838
+ In
839
+ our model, the relaxation rate of the slowest mode is
840
+ rS = 3γΓ. We assume a gap between the smallest and
841
+ second-smallest spectral gaps.
842
+ With this assumption,
843
+ the density matrix at the latest time is asymptotically
844
+ ˆρ(t) ≃ I/2L + ϵe−rStˆτS. Therefore, ˆρ(t) thermalizes and
845
+ converges to ˆρ(∞) = I/2L asymptotically at the latest
846
+ time with the rate:
847
+ d
848
+ dt (∥ˆρ(t) − ˆρ(∞)∥1)2
849
+ ≃ d
850
+ dt
851
+
852
+ ∥ϵe−rStˆτS∥1
853
+ �2
854
+ = d
855
+ dt
856
+
857
+ |ϵ|2 e−2rSt ∥ˆτS∥2
858
+ 1
859
+
860
+ = d
861
+ dt
862
+
863
+ |ϵ|2 e−2rSt 2L�
864
+ = −2rS |ϵ|2 e−2rSt 2L
865
+ = −3γ |ϵ|2 e−2rSt 2L+1 Γ
866
+ (18)
867
+ Also, one can view ˆτS as specifying a structure of
868
+ probability currents that flow between eigenstates of the
869
+ isolated system during the late-time approach to equi-
870
+ librium.
871
+ Specifically, if we define a current jnm :=
872
+ Snm(cn − cm), then
873
+ d
874
+ dt ˆρmm(t) = 3ϵγe−rSt �
875
+ n jnm holds
876
+ at late times, which implies that jnm obtained from ˆτS
877
+ determines the structure of the late time thermalization.
878
+ One can estimate how ˆρ(t) converges to ˆρ(∞) with the
879
+ inner structure of ˆτS:
880
+ d
881
+ dt (∥ˆρ(t) − ˆρ(∞)∥1)2
882
+ ≃ d
883
+ dt
884
+ ��
885
+ m
886
+ |ˆρmm(t) − 1/2L|2
887
+
888
+ = 6γ|ϵ|2 �
889
+ m
890
+ e−rStcn
891
+
892
+ e−rSt �
893
+ n
894
+ jnm
895
+
896
+ = 3γ|ϵ|2e−2rSt �
897
+ n,m
898
+ (cn − cm)jmn
899
+ = −3γ|ϵ|2e−2rSt �
900
+ n,m
901
+ (cn − cm)2Snm
902
+ = −3γ|ϵ|2e−2rSt �
903
+ n,m
904
+ Dnm
905
+ (19)
906
+ Here, we used the fact that at the latest time, only the
907
+ diagonal terms in ˆρ(t) remain (under the weak coupling
908
+ limit γ ≪ 1, the slowest mode consists of only the diago-
909
+ nal terms). Dnm quantifies the contribution of a pair |n⟩
910
+ and |m⟩ to the relaxation of the slowest mode.
911
+
912
+ 8
913
+ Comparing the two equations above, one can derive
914
+ the following:
915
+
916
+ n,m
917
+ Dnm =
918
+
919
+ n,m
920
+ (cn − cm)2Snm = 2L+1Γ.
921
+ (20)
922
+ This can also be directly derived by:
923
+
924
+ n,m
925
+ Dnm =
926
+
927
+ n,m
928
+ (cn − cm)2Snm
929
+ =
930
+
931
+ n,m
932
+ (c2
933
+ n + c2
934
+ m)Snm − 2
935
+
936
+ n
937
+ cn
938
+ ��
939
+ m
940
+ Snmcm
941
+
942
+ = 2L+1 − 2L+1(1 − Γ)
943
+ = 2L+1Γ.
944
+ (21)
945
+ From the above derivations, the largest contribution
946
+ Dµν is related with Γ by
947
+ Dµν = R
948
+
949
+ n<m
950
+ Dnm = 2LRΓ.
951
+ (22)
952
+ Therefore, one can naively derive the relation between
953
+ the thermalization rate and the matrix element Sµν be-
954
+ tween the most important pair of states with an effective
955
+ O(1) value of R as follows.
956
+ rS = 3γΓ = 3γ(cµ − cν)2
957
+ R
958
+ 2−LSµν
959
+ (23)
960
+ As the observed ratio R and cµ −cν are both O(1) values
961
+ for MBL regimes, we estimate a relation rS ∼ 2−LSµν.
962
+ Detuning of near-resonance by flipping ˆτL
963
+ In this section, we examine to what extent there is
964
+ also a near-resonance between eigenstates |A′⟩ and |B′⟩.
965
+ These two eigenstates differ from the near-resonant states
966
+ |A⟩ and |B⟩ by the flipping of ℓ-bit ˆτL.
967
+ This change
968
+ may strongly detune the near-resonance, which is what
969
+ happens for samples where the near-resonance involves
970
+ flipping spins that are close to or include spin L. But
971
+ in other samples, the near-resonance only involves spin
972
+ flips that are rather far from spin L, so flipping ˆτL has a
973
+ rather small effect on the near-resonance. We denote the
974
+ location of the spin-flip that is closest to L as x.
975
+ The minimal wavefunction model introduced in the
976
+ main text (Eq. 8) neglected the possibility of a near-
977
+ resonance between (A′, B′). Revising our minimal model
978
+ by including and “de-mixing” the possible near-resonance
979
+ between (A′, B′), one can write:
980
+ |A⟩ = |a⟩ − ϵ |b⟩
981
+ |B⟩ = |b⟩ + ϵ |a⟩
982
+ |A′⟩ = |a′⟩ − ϵ′ |b′⟩
983
+ |B′⟩ = |b′⟩ + ϵ′ |a′⟩ .
984
+ (24)
985
+ The quasi-energy splittings of these two near-resonances
986
+ are ∆ = |θA − θB| and ∆′ = |θA′ − θB′|; we have labelled
987
+ them so that ∆ < ∆′. We can partially quantify how
988
+ much flipping ˆτL alters the near-resonance by comparing
989
+ ϵ′ and ∆′ to ϵ and ∆.
990
+ The distributions of ϵ′/ϵ and ∆′/∆ for different system
991
+ sizes are shown in Fig. 7(a,b). Both distributions show
992
+ long tails to |ϵ′| ≪ |ϵ| and ∆′ ≫ ∆. This shows that in a
993
+ substantial fraction of the samples the near-resonance is
994
+ strongly detuned by flipping ˆτL. Fig. 7(d,e) shows that
995
+ this mostly happens due to the near-resonance extending
996
+ to near site L, so x/L is close to or equal to one.
997
+ There are also many samples that have |ϵ|, |ϵ′|, and
998
+ |ϵ − ϵ′| all of the same order, as indicated by the peaks
999
+ near ϵ′/ϵ ∼= ∆′/∆ ∼= 1 in Fig. 7(a,b). These are the cases
1000
+ where flipping ˆτL does alter the near-resonance, but not
1001
+ by a particularly large or small amount, which mostly
1002
+ happens for smaller x/L [see Fig. 7(d,e)].
1003
+ The cases where flipping ˆτL has very little effect on
1004
+ the near resonance should have ϵ′/ϵ and ∆′/∆ very close
1005
+ to one, so would make a very sharp peak in those distri-
1006
+ butions, which is not seen in Fig. 7(a,b). This suggests
1007
+ that only a small fraction of samples are in this category.
1008
+ For such samples SAB′ is small due to a near cancella-
1009
+ tion between the contribution from |a⟩ coupling to |a′⟩
1010
+ and that from |b⟩ coupling to |b′⟩. This near-cancellation
1011
+ will not happen if we replace |A⟩ with |a⟩ and look in-
1012
+ stead at SaB′. Thus in Fig. 7(c) we show the distribu-
1013
+ tion of SAB′/SaB′ (∼ |(ϵ − ϵ′)/ϵ′|2). The much weaker
1014
+ tail in this distribution to very small SAB′/SaB′ are the
1015
+ samples where the near-resonance is only very weakly af-
1016
+ fected by flipping ˆτL, while the much stronger tail to very
1017
+ large SAB′/SaB′ are those more common samples where
1018
+ this flip strongly detunes the near-resonance. Fig. 7(f)
1019
+ shows the median SAB′/SaB′, with the expected trend of
1020
+ stronger detuning (larger SAB′/SaB′) as x/L increases
1021
+ and the near-resonance thus extends closer to the flipped
1022
+ ˆτL.
1023
+ Range of Near-Resonance
1024
+ The previous sections described how the bath uses
1025
+ near-resonances to flip the spins at the other end of an
1026
+ MBL chain and thermalize the system. Therefore, it is
1027
+ perhaps natural to expect the near-resonance involved to
1028
+ be an end-to-end resonance such that the last spin-flip
1029
+ between |A⟩ and |B⟩ should not be far away from the
1030
+ bath. Strikingly, however, the distance from the bath to
1031
+ the last spin-flip appears to increase in proportion to the
1032
+ system length L. In particular, we compare the spin po-
1033
+ larization on every site for the near-resonant eigenstate
1034
+ pair (A, B) and find the location x ≤ L where the last
1035
+ spin flip occurs. These two eigenstates are directly cou-
1036
+ pled with the ˆZx operator (| ⟨A| ˆZx |B⟩ |2 ∼= 4ϵ2), and in
1037
+ the special case when x = L, the jump operator from the
1038
+ bath can directly couple the near-resonant pair (which
1039
+ we defined as the Z case).
1040
+
1041
+ 9
1042
+ Distribution (a.u.)
1043
+ Distribution (a.u.)
1044
+ Distribution (a.u.)
1045
+ (a)
1046
+ (b)
1047
+ (d)
1048
+ (e)
1049
+ (c)
1050
+ (f)
1051
+ 4
1052
+ L=
1053
+ 13
1054
+ median (
1055
+ )
1056
+ median (
1057
+ )
1058
+ median (
1059
+ )
1060
+ Figure 7. Comparing (A, B) and (A′, B′). All data here are for α = 30 and L ∈ [4, 13]. Distributions of (a) ϵ′/ϵ, (b) ∆′/∆,
1061
+ and (c) SAB′/SaB′ show there are many samples satisfying |ϵ′| ≪ |ϵ| or |ϵ| ∼ |ϵ′| ∼ |ϵ − ϵ′|, but cases with |ϵ − ϵ′| ≪ |ϵ| are
1062
+ less common (see text of the Appendix). The median of (d) ϵ′/ϵ, (e) ∆′/∆, and (f) SAB′/SaB′ vs. the location of the last
1063
+ spin-flip (x/L) of the near-resonance are illustrated. The detuning due to flipping ˆτL gets more significant as the last spin-flip
1064
+ gets closer to the bath.
1065
+ L= 4
1066
+ Normalized Last Spin-Flip Position (x/L)
1067
+ 13
1068
+ Distribution (a.u.)
1069
+ Figure 8.
1070
+ Distribution of the last spin flip location.
1071
+ We
1072
+ normalized the location with system size (x/L).
1073
+ The normalized position of the last spin flip (x/L) is
1074
+ illustrated in Fig. 8 with different colors for different sys-
1075
+ tem sizes (L ∈ [4, 13]). It is clear that as the system size
1076
+ gets larger, the curve peaks when it is smaller than 1 (the
1077
+ peak is near x/L ≈ 0.8 < 1), indicating that an extensive
1078
+ number of sites are in between the bath and the last spin
1079
+ flip.
1080
+ As we explained in the previous section, the min-
1081
+ imal model including the possible near-resonance be-
1082
+ tween (A′, B′) predicts the matrix element proportional
1083
+ to |ϵ−ϵ′|2. The value of x that yields the largest matrix el-
1084
+ ement is determined by two competing factors: First, as x
1085
+ becomes smaller, the resonance’s range becomes shorter
1086
+ and fewer degrees of freedom are involved.
1087
+ Therefore
1088
+ the resonance becomes stronger, with a typically larger
1089
+ ϵ. However, decreasing x by too much also causes the
1090
+ resonance to decouple from the bath: flipping the ℓ-bit
1091
+ beside the bath may then produce a near copy of the res-
1092
+ onance and result in small |ϵ − ϵ′| even though |ϵ| and
1093
+ |ϵ′| are large, which will result in that resonance not be-
1094
+ ing useful to the bath in relaxing the slowest mode. In
1095
+ the other direction, as x becomes larger the resonance
1096
+ becomes longer-ranged and thus weaker (|ϵ| and |ϵ|′ be-
1097
+ come smaller), but it also couples more strongly to the
1098
+ bath so that |ϵ − ϵ′| ∼= |ϵ| ≫ |ϵ′|.
1099
+
1100
+ 10
1101
+ Therefore, in most samples for large L the bath uses
1102
+ near-resonances with x/L < 1. The range of the optimal
1103
+ near-resonance is determined by a balance between the
1104
+ two considerations mentioned above.
1105
+ [1] P. W. Anderson, “Absence of diffusion in certain random
1106
+ lattices,” Phys. Rev. 109, 1492–1505 (1958).
1107
+ [2] D.M.
1108
+ Basko,
1109
+ I.L.
1110
+ Aleiner,
1111
+ and
1112
+ B.L.
1113
+ Altshuler,
1114
+ “Metal–insulator
1115
+ transition
1116
+ in
1117
+ a
1118
+ weakly
1119
+ interacting
1120
+ many-electron
1121
+ system
1122
+ with
1123
+ localized
1124
+ single-particle
1125
+ states,” Annals of Physics 321, 1126–1205 (2006).
1126
+ [3] Vadim Oganesyan and David A. Huse, “Localization of
1127
+ interacting fermions at high temperature,” Phys. Rev. B
1128
+ 75, 155111 (2007).
1129
+ [4] Rahul Nandkishore and David A. Huse, “Many-body lo-
1130
+ calization and thermalization in quantum statistical me-
1131
+ chanics,” Annual Review of Condensed Matter Physics
1132
+ 6, 15–38 (2015).
1133
+ [5] Wojciech De Roeck and John Z Imbrie, “Many-body lo-
1134
+ calization: stability and instability,” Philosophical Trans-
1135
+ actions of the Royal Society A: Mathematical, Physical
1136
+ and Engineering Sciences 375, 20160422 (2017).
1137
+ [6] Fabien Alet and Nicolas Laflorencie, “Many-body local-
1138
+ ization: An introduction and selected topics,” Comptes
1139
+ Rendus Physique 19, 498–525 (2018).
1140
+ [7] Dmitry A. Abanin, Ehud Altman, Immanuel Bloch, and
1141
+ Maksym Serbyn, “Colloquium: Many-body localization,
1142
+ thermalization, and entanglement,” Rev. Mod. Phys. 91,
1143
+ 021001 (2019).
1144
+ [8] Maksym Serbyn, Z. Papi´c, and Dmitry A. Abanin, “Lo-
1145
+ cal conservation laws and the structure of the many-body
1146
+ localized states,” Phys. Rev. Lett. 111, 127201 (2013).
1147
+ [9] David
1148
+ A.
1149
+ Huse,
1150
+ Rahul
1151
+ Nandkishore,
1152
+ and
1153
+ Vadim
1154
+ Oganesyan,
1155
+ “Phenomenology
1156
+ of
1157
+ fully
1158
+ many-body-
1159
+ localized systems,” Phys. Rev. B 90, 174202 (2014).
1160
+ [10] Anushya Chandran, Isaac H. Kim, Guifre Vidal,
1161
+ and
1162
+ Dmitry A. Abanin, “Constructing local integrals of mo-
1163
+ tion in the many-body localized phase,” Phys. Rev. B
1164
+ 91, 085425 (2015).
1165
+ [11] John Z. Imbrie, Valentina Ros,
1166
+ and Antonello Scardic-
1167
+ chio, “Local integrals of motion in many-body localized
1168
+ systems,” Annalen der Physik 529, 1600278 (2017).
1169
+ [12] Wojciech De Roeck and Fran¸cois Huveneers, “Stability
1170
+ and instability towards delocalization in many-body lo-
1171
+ calization systems,” Phys. Rev. B 95, 155129 (2017).
1172
+ [13] Thimoth´ee Thiery, Fran¸cois Huveneers, Markus M¨uller,
1173
+ and Wojciech De Roeck, “Many-body delocalization as
1174
+ a quantum avalanche,” Phys. Rev. Lett. 121, 140601
1175
+ (2018).
1176
+ [14] Alan Morningstar, David A. Huse, and John Z. Imbrie,
1177
+ “Many-body localization near the critical point,” Phys.
1178
+ Rev. B 102, 125134 (2020).
1179
+ [15] Alan Morningstar, Luis Colmenarez, Vedika Khemani,
1180
+ David J. Luitz,
1181
+ and David A. Huse, “Avalanches and
1182
+ many-body resonances in many-body localized systems,”
1183
+ Phys. Rev. B 105, 174205 (2022).
1184
+ [16] David M. Long, Philip J. D. Crowley, Vedika Khemani,
1185
+ and Anushya Chandran, “Phenomenology of the prether-
1186
+ mal many-body localized regime,” arxiv:2207.05761 .
1187
+ [17] David J. Luitz, Fran¸cois Huveneers,
1188
+ and Wojciech
1189
+ De Roeck, “How a small quantum bath can thermal-
1190
+ ize long localized chains,” Phys. Rev. Lett. 119, 150602
1191
+ (2017).
1192
+ [18] Marcel Goihl, Jens Eisert, and Christian Krumnow, “Ex-
1193
+ ploration of the stability of many-body localized systems
1194
+ in the presence of a small bath,” Phys. Rev. B 99, 195145
1195
+ (2019).
1196
+ [19] P. J. D. Crowley and A. Chandran, “Avalanche induced
1197
+ coexisting localized and thermal regions in disordered
1198
+ chains,” Phys. Rev. Research 2, 033262 (2020).
1199
+ [20] Dries Sels, “Bath-induced delocalization in interacting
1200
+ disordered spin chains,” Phys. Rev. B 106, L020202
1201
+ (2022).
1202
+ [21] Yi-Ting Tu, DinhDuy Vu, and Sankar Das Sarma, “Ex-
1203
+ istence or not of many body localization in interacting
1204
+ quasiperiodic systems,” arxiv:2207.05051 .
1205
+ [22] Julian L´eonard, Sooshin Kim, Matthew Rispoli, Alexan-
1206
+ der Lukin, Robert Schittko, Joyce Kwan, Eugene Demler,
1207
+ Dries Sels,
1208
+ and Markus Greiner, “Signatures of bath-
1209
+ induced quantum avalanches in a many-body–localized
1210
+ system,” arxiv:2012.15270 .
1211
+ [23] Sarang Gopalakrishnan, Markus M¨uller, Vedika Khe-
1212
+ mani, Michael Knap, Eugene Demler,
1213
+ and David A.
1214
+ Huse, “Low-frequency conductivity in many-body local-
1215
+ ized systems,” Phys. Rev. B 92, 104202 (2015).
1216
+ [24] Philip J D Crowley and Anushya Chandran, “A con-
1217
+ structive theory of the numerically accessible many-body
1218
+ localized to thermal crossover,” SciPost Phys. 12, 201
1219
+ (2022).
1220
+ [25] Vedika Khemani, S. P. Lim, D. N. Sheng, and David A.
1221
+ Huse, “Critical properties of the many-body localization
1222
+ transition,” Phys. Rev. X 7, 021013 (2017).
1223
+ [26] Vedika Khemani, D. N. Sheng, and David A. Huse, “Two
1224
+ universality classes for the many-body localization tran-
1225
+ sition,” Phys. Rev. Lett. 119, 075702 (2017).
1226
+ [27] Scott D. Geraedts, Rahul Nandkishore, and Nicolas Reg-
1227
+ nault, “Many-body localization and thermalization: In-
1228
+ sights from the entanglement spectrum,” Phys. Rev. B
1229
+ 93, 174202 (2016).
1230
+ [28] Benjamin Villalonga and Bryan K. Clark, “Eigenstates
1231
+ hybridize on all length scales at the many-body localiza-
1232
+ tion transition,” arxiv:2005.13558 .
1233
+ [29] S. J. Garratt, Sthitadhi Roy, and J. T. Chalker, “Local
1234
+ resonances and parametric level dynamics in the many-
1235
+ body localized phase,” Phys. Rev. B 104, 184203 (2021).
1236
+ [30] David Pekker, Bryan K. Clark, Vadim Oganesyan, and
1237
+ Gil Refael, “Fixed points of wegner-wilson flows and
1238
+ many-body localization,” Phys. Rev. Lett. 119, 075701
1239
+ (2017).
1240
+ [31] Maksym Serbyn, Z. Papi´c, and Dmitry A. Abanin, “Cri-
1241
+ terion for many-body localization-delocalization phase
1242
+ transition,” Phys. Rev. X 5, 041047 (2015).
1243
+ [32] Samuel J. Garratt and Sthitadhi Roy, “Resonant energy
1244
+ scales and local observables in the many-body localized
1245
+ phase,” Phys. Rev. B 106, 054309 (2022).
1246
+
99E3T4oBgHgl3EQfrQpl/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
9tE1T4oBgHgl3EQfoARp/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d43d630392e1796da573f5d8252f3f2cea1378f4887e6116e7deca5f0d4e1ac3
3
+ size 9306157
CNFJT4oBgHgl3EQftC1e/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fbc0ed92066ddb4571dc81f17d8fb3a5ae5274a082388b1020c75709e0e4a0c1
3
+ size 238679
EtFRT4oBgHgl3EQfyjjm/content/tmp_files/2301.13646v1.pdf.txt ADDED
@@ -0,0 +1,1964 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Nonlinear Optimization Filters for Stochastic Time-Varying Convex
2
+ Optimization
3
+ Andrea Simonetto a
4
+ Paolo Massioni b
5
+ February 1, 2023
6
+ Abstract
7
+ We look at a stochastic time-varying optimization problem and we formulate online algorithms to
8
+ find and track its optimizers in expectation. The algorithms are derived from the intuition that standard
9
+ prediction and correction steps can be seen as a nonlinear dynamical system and a measurement equation,
10
+ respectively, yielding the notion of nonlinear filter design. The optimization algorithms are then based
11
+ on an extended Kalman filter in the unconstrained case, and on a bilinear matrix inequality condition
12
+ in the constrained case. Some special cases and variations are discussed, notably the case of parametric
13
+ filters, yielding certificates based on LPV analysis and, if one wishes, matrix sum-of-squares relaxations.
14
+ Supporting numerical results are presented from real data sets in ride-hailing scenarios. The results are
15
+ encouraging, especially when predictions are accurate, a case which is often encountered in practice when
16
+ historical data is abundant.
17
+ 1
18
+ Introduction
19
+ We look at time-varying optimization problems of the form
20
+ min
21
+ xPRn fpx; yptqq ` gpxq,
22
+ t ě 0,
23
+ (1)
24
+ where f : RnˆRd Ñ R is a smooth strongly convex function in x (for all y), parametrized over a time-varying
25
+ data stream yptq P Rd (t represents the continuous time), and g is a closed convex and proper function (such
26
+ as the indicator function, or an ℓ1 regularization).
27
+ Problem (1) appears naturally in a number of application scenarios, where optimal decisions have to be
28
+ taken online and they change as new data arrive. Examples stem from video processing [1] to robot control [2],
29
+ and to large-scale optimal management of smart infrastructures [3].
30
+ Solving Problem (1) means to find and track the optimizer trajectory x‹ptq, as yptq changes and it is
31
+ revealed. In order to accomplish this, in the standard time-varying literature, one can sample Problem (1)
32
+ at discrete time instant tk, k “ 0, 1, . . ., with h :“ tk ´ tk´1 being the sampling time, and solve the sequence
33
+ of time-invariant problems
34
+ x‹ptkq “ arg min
35
+ xPRn fpx; yptkqq ` gpxq,
36
+ k P N,
37
+ (2)
38
+ as they are revealed in time. Then one can set up online algorithms that find approximate x‹ptkq’s, say
39
+ xk’s, that eventually converge to1 the solution trajectory, within an error bound. The reader is referred to
40
+ the surveys [4, 5] for an ample treatment of the methods in both discrete and continuous time. One of the
41
+ important aspects to keep in mind is that online algorithms are sought that are computationally frugal, so
42
+ that one can approximate the solution of x‹ptkq within the sampling time h, and the key performance metric
43
+ is how good the algorithms are with respect to an algorithm that has infinite computational time.
44
+ A tacit assumption in the above methods is that one wants to converge to the solution trajectory generated
45
+ by the evolution of the data stream yptq. However, this may be not the best course of action, since the data
46
+ aUMA, ENSTA Paris, Institut Polytechnique de Paris, 91120 Palaiseau, France; [email protected].
47
+ bUniv Lyon, INSA Lyon, Universit´e Claude Bernard Lyon 1, Ecole Centrale de Lyon, CNRS, Amp`ere, UMR5505, 69621
48
+ Villeurbanne, France; [email protected]
49
+ 1Somebody could rather say: “track”.
50
+ 1
51
+ arXiv:2301.13646v1 [math.OC] 31 Jan 2023
52
+
53
+ are often noisy and convergence to a noisy optimizer may be not advisable. A better angle is to ask whether
54
+ we can set up algorithms to converge to a filtered version of the trajectory.
55
+ In this context, we re-interpret Problem (1) as a stochastic problem, where we would like to find and
56
+ track the filtered solution trajectory as
57
+ ˆx‹ptq “ arg min
58
+ xPRn EyPYptqrfpx; yqs ` gpxq,
59
+ (3)
60
+ where the expectation EyPYptqr¨s is with respect to the random variable y, which is drawn from a time-varying
61
+ probability distribution Yptq.
62
+ Were the probability distribution time-invariant, Formulation (3) would be common in stochastic opti-
63
+ mization. With our setting, we are considering instead a gradual distribution shift of an unknown distribution,
64
+ which renders the formulation less common and more challenging. Recent papers have started to look into
65
+ this formulation [6–8]; especially the third one is the closest to our goal, however the authors “just” adapt
66
+ the standard prediction-correction algorithms to the stochastic setting by properly tuning the prediction and
67
+ the correction step sizes. Also they do not consider a non-smooth component as our function gpxq.
68
+ In this paper, we look from a different angle and ask whether we can use a perturbed version of the
69
+ optimality condition as a suitable dynamical model to do filtering. This will have the advantage to combine
70
+ prediction and correction in novel and more performant ways. To fix the ideas on this novel angle, consider
71
+ the unconstrained problem:
72
+ x‹ptq “ arg min
73
+ xPRn fpx; yptqq,
74
+ (4)
75
+ with a strongly convex, doubly differentiable, and smooth function f in x. By perturbing the optimality
76
+ condition ∇xfpx‹ptq; yptqq “ 0n, we can derive the ordinary differential equation that describes how the
77
+ optimizer evolves as [9]:
78
+ d
79
+ dtx‹ptq
80
+
81
+ ´r∇xxfpx‹ptq; yptqqs´1∇yxfpx‹ptq; yptqq d
82
+ dtyptq
83
+ “:
84
+ Fpx‹ptq, yptq, 9yptqq.
85
+ (5)
86
+ This is a nonlinear dynamical system. To derive a filter, we need to couple this model with a measurement
87
+ equation, which tells us how far from the optimizer trajectory we are. We can thus use,
88
+ zptq “ ∇xfpx‹ptq; yptqq,
89
+ (6)
90
+ as a measurement equation (i.e., it will be different from zero at any point but on the optimizer trajectory,
91
+ where zptq “ 0n).
92
+ Armed with (5) and (6), we could design a dynamical filter to reconstruct x‹ptq based on a noisy data
93
+ stream yptq.
94
+ 1.1
95
+ Contributions
96
+ Starting from the continuous-time intuition from (5) and (6), we develop discrete-time filters for unconstrained
97
+ and constrained time-varying problems. In particular,
98
+ ‚ We derive an extended Kalman filter for unconstrained and differentiable convex problems in the discrete-
99
+ time setting starting from an algorithmic viewpoint;
100
+ ‚ We generalize the filtering procedure for constrained and non-differentiable problems leveraging the non-
101
+ linear dynamical systems and nonlinear measurement equations coming from forward-backward algorithms
102
+ and fixed-point residuals. We are then able to derive the optimal “Kalman-style” gain via both a worst-case
103
+ approach and via dissipativity theory. We also present a possibly less conservative linear parameter-varying
104
+ (LPV) methodology.
105
+ ‚ We showcase the benefit of the approach with respect to state-of-the-art prediction-correction methods
106
+ (which our filters generalize), in numerical simulations stemming from a ride-hailing example with multiple
107
+ companies in New York City.
108
+ 2
109
+
110
+ 1.2
111
+ Related work
112
+ Time-varying and stochastic optimization are vibrant research fields, and we do not plan to give an exhaustive
113
+ account here. The reader is referred to [4,5,10] for the first and [11–14] for a sub-sample of the second, and
114
+ the many references therein. Jointly Stochastic and time-varying optimization is a less studied area, and as
115
+ we have mentioned [6–8] scratch the surface in this direction. The celebrated [15] paper is also somewhat in
116
+ the general area of interest, though their approach does not include prediction, it uses restart and is more
117
+ directed at finding optimal regret rates for non-stationary objectives rather than noise.
118
+ We will build on techniques from dissipativity theory for analyzing and designing optimization algorithms.
119
+ This is a recent and fertile area brought to fame by L. Lessard and collaborators’ seminal paper [16], and
120
+ now gaining momentum [17–22]. Our novel insight in this direction is to use the techniques to determine
121
+ Kalman-style gains for optimization algorithms with errors. Finally, we use LPV techniques from [23–25],
122
+ especially in the context of matrix sum-of-squares relaxations.
123
+ Organization. The remaining of the paper is organized as follows. Section 2 discusses formulation and
124
+ main assumptions. We focus on the unconstrained case in Section 3, and on the general case in Section 4.
125
+ Section 5 describes our gain design. We then conclude with some numerical simulations in Section 6. All
126
+ proofs are given in the Appendix.
127
+ Notation. Notation is wherever possible standard. For a differentiable function f, we define a step of
128
+ the gradient method starting from a point xk as xk`1 “ rI ´ α∇xfp‚qsxk ” xk ´ α∇xfpxkq, where α ą 0 is
129
+ the step size and I is the identity operator. Then, s steps are indicated as,
130
+ xk`1 “ xs
131
+ k “ rI ´ α∇xfp‚qs˝sxk.
132
+ (7)
133
+ We let also x0
134
+ k “ xk when needed.
135
+ We further indicate with proxαgpxq the proximal operator,
136
+ proxαgpxq “ arg min
137
+ vPRn
138
+ !
139
+ gpvq ` 1
140
+ 2α}v ´ x}2)
141
+ .
142
+ (8)
143
+ Finally, spaces are indicated as R, N, probability distributions are calligraphic, i.e., Y, matrices and vectors
144
+ are boldfaced, e.g., x P Rn, A P Rnˆm, operators are in sans-serif, e.g., I, J, constants are in standard roman.
145
+ 2
146
+ Problem formulation and assumptions
147
+ Let us now consider the sequence of problems,
148
+ ˆx‹ptkq “ arg min
149
+ xPRn EyPYptkqrfpx; yqs ` gpxq,
150
+ k P N,
151
+ (9)
152
+ with a strongly convex, doubly differentiable and smooth cost function f uniformly in x and a generic convex
153
+ function g. Let us also introduce the shorthand notation ˆx‹
154
+ k “ ˆx‹ptkq, yk “ yptkq, and Yk “ Yptkq. Notice
155
+ that, as done in stochastic optimization, the data point yk “ yptkq is supposed to be a random vector drawn
156
+ from the distribution Yk “ Yptkq.
157
+ First, let us derive a discrete-time dynamical system on how the optimizers evolve in time. Quite naturally,
158
+ one could be attempted at discretizing (5), but the presence of the inverse of the Hessian and the derivative of
159
+ the data stream makes it quite cumbersome, especially if one has then to linearize it for an extended Kalman
160
+ filter.
161
+ Instead we use a Bayesian approach, assuming that we have a (noisy) prior on how the data stream
162
+ evolves, and we start from what we can be computed algorithmically. Let us denote with Jk`1pxq : Rn Ñ Rn
163
+ an approximation at time tk of EyPYk`1r∇xfpx; yqs.
164
+ Noisy prior on how the data evolves and how the
165
+ gradient evolves can come from linear filters, or more sophisticated neural network models, or kernel models
166
+ (see also [26] for what they call predictable sequences). For now think about one of the simplest model:
167
+ Jk`1pxq “ 2∇xfpx; ykq ´ ∇xfpx; yk´1q (obtained via an extrapolation technique [27]).
168
+ Then, we use an algorithmic view. At time k, we would like to solve
169
+ ˆx‹
170
+ k`1 “ arg min
171
+ xPRn EyPYk`1rfpx; yqs ` gpxq,
172
+ (10)
173
+ 3
174
+
175
+ yet it is not possible with data up to time tk. So, we introduce the noisy dynamical system
176
+ ˆx‹
177
+ k`1 “ rproxαgpI ´ αJk`1p‚qqs˝P ˆx‹
178
+ k ` qk “: Φk,gpˆx‹
179
+ kq ` qk,
180
+ (11)
181
+ where rproxαgpI ´ αJk`1p‚qqs˝P means the application of the proximal gradient method of step size α ą 0
182
+ for P times, and qk is the process error. The error comes both from a modelling error (truncating after P
183
+ iterations), and from the noisy predicted gradient Jk`1pxq. We will see how to characterize the error later,
184
+ but for now it is useful to keep in mind that qk is not-zero mean in general. If the gradient were exact and
185
+ P Ñ 8, then Equation (11) would solve (10) with no noise (qk “ 0).
186
+ The “pseudo”-dynamical system (11) will be our computationally affordable nonlinear dynamical model.
187
+ In par with (11), we introduce a measurement equation,
188
+ zk`1
189
+
190
+ ´ˆx‹
191
+ k ` rproxβgpI ´ β∇xfp‚; yk`1qqs˝C ˆx‹
192
+ k ` rk
193
+ “:
194
+ Ψgpˆx‹
195
+ k, yk`1q ` rk,
196
+ (12)
197
+ where C is the number proximal gradient steps, β ą 0 is the correction step size, and rk is a noise term
198
+ coming from the noisy character of yk`1 and it is in general not zero-mean.
199
+ Again, zk`1 “ 0n on the
200
+ optimizer trajectory.
201
+ The right-hand side of (12) represents the fixed-point residual of our C-steps proximal gradient method,
202
+ that we use to compute the measurement.
203
+ 2.1
204
+ Properties, requirements of the gradient approximators
205
+ Before going further, it is useful to understand a bit better the properties of the gradient approximations
206
+ Jk`1pxq and ∇xfpx; yk`1q. Both are attempting at approximating EyPYk`1r∇xfpx; yqs, but there are a few
207
+ differences.
208
+ The first is based on data available up to time tk and it is in general a biased estimator. This is not a
209
+ problem per se, since even in deterministic prediction-correction methods, the predicted gradient is in general
210
+ a biased prediction.
211
+ Example 1 (Recurring stochastic example) Consider the case in which ∇xfpx; yq is linear in y (e.g.,
212
+ for linear models and Least-Squares estimators, for example when fpx; yq :“ 1
213
+ 2}x ´ Ay}2 for a given matrix
214
+ A), and more generally the case in which:
215
+ fpx; yq “ f 1pxq ` yTAx,
216
+ with f 1pxq strongly convex and smooth. In this case, let }∇yxfpx; yq} “ }A} ď C0.
217
+ Further, suppose yptq is generated by a nominal (doubly differentiable in t) trajectory to which we add
218
+ a Gaussian zero-mean noise at each sampling time tk.
219
+ And in particular, set yptkq “ ¯yptkq ` ek, with
220
+ ek „ Np0, Σkq for a given time-varying covariance matrix Σk. We also know that Er}ek}s ď
221
+ a
222
+ trpΣkq, and
223
+ we set
224
+ a
225
+ trpΣkq ď Σ.
226
+ Choose the extrapolation prediction: Jk`1pxq “ 2∇xfpx; ykq ´ ∇xfpx; yk´1q “ ∇xfpx; 2yk ´ yk´1q.
227
+ Consider a nominal trajectory ¯yptq for which we assume the bounds:
228
+ maxt}∇t ¯yptq} , }∇tt ¯yptq}u ď C,
229
+ @x, t.
230
+ (13)
231
+ Then, in the Appendix we show that:
232
+ Er}Jk`1pˆx‹
233
+ k`1q ´ EyPYk`1r∇xfpˆx‹
234
+ k`1; yqs}s
235
+
236
+ EwPYk,zPYk´1r}∇xfpˆx‹
237
+ k`1; 2w ´ zq `
238
+ ´EyPYk`1r∇xfpˆx‹
239
+ k`1; yqs}s
240
+ ď
241
+ C0Ch2 ` 3C0Σ,
242
+ EyPYk`1r}∇xfpx; yq ´ EyPYk`1r∇xfpx; yqs}s
243
+ ď
244
+ C0Σ.
245
+
246
+ The second estimator, meaning using ∇xfpx; yk`1q instead of EyPYk`1r∇xfpx; yqs, is evaluated with data
247
+ coming at time tk`1 and it is unbiased [11].
248
+ For the two approximations we require the following.
249
+ 4
250
+
251
+ Assumption 1 Let the cost function fpx; yq be µ-strongly convex and L-smooth in x uniformly in y (i.e.,
252
+ for all y). The chosen gradient predictor Jk`1pxq is then µ-strongly monotone and L-Lipschitz in x for all
253
+ k’s.
254
+ Assumption 2 The noise processes and gradient prediction errors are bounded as follows:
255
+ paq
256
+ Er}Jk`1pˆx‹
257
+ k`1q ´ EyPYk`1r∇xfpˆx‹
258
+ k`1; yqs}s ď τ,
259
+ pbq
260
+ EyPYk`1r}∇xfpx; yq ´ EyPYk`1r∇xfpx; yqs}s ď σ,
261
+ for finite scalars τ and σ, for all k P N, and (b) for all x P Rn.
262
+ Assumption 1 is often required for time-varying optimization [5].
263
+ The assumption on the predictor
264
+ is also reasonable, for instance is verified in Example 1, and with Taylor-based and extrapolation-based
265
+ predictions [27].
266
+ For Assumption 2: Property paq is in par with some deterministic and stochastic assumptions appeared
267
+ in past years. For example, it can be seen in parallel with the quality of the hint or predictable sequences
268
+ in [26,28]. In Example 1, Property paq is verified with τ “ C0Ch2 ` 3C0Σ. Stochastic versions of Property
269
+ paq have appeared, e.g., in [8], with example-based constructions for determining a suitable Jk`1. Property
270
+ pbq is also commonly asked in stochastic frameworks [6].
271
+ Usually, one asks that EyPYk`1r}∇xfpx; yq ´
272
+ EyPYk`1r∇xfpx; yqs}2s ď σ2, but due to the convexity of p¨q2 and Jensen’s inequality, Property pbq is implied
273
+ by the squared one (in fact pEr} ¨ }sq2 ď Er} ¨ }2s). For us Property pbq can be time-varying. In Example 1,
274
+ Property pbq is verified with σ “ C0Σ. Finally, Property pbq can be tightened to be valid only on the algorithm
275
+ iterates pxkqkPN, and interpret it as gradient noise with a small theoretical effort [7].
276
+ 3
277
+ An extended Kalman filter
278
+ We are now ready to derive a filter to track the filtered optimizer trajectory ˆx‹ptkq. Since the linear system
279
+ and the measurement equations are nonlinear, we will use an extended Kalman filter. For it, we require
280
+ that both ∇xfpx; yq and Jk`1pxq are differentiable with respect to x, and we will require knowledge of the
281
+ covariance of the noise processes qk, rk at all time instances. We will also assume that g ” 0, to be able to
282
+ differentiate, which puts us in an unconstrained differentiable problem setting, where we use gradient (the
283
+ proximal operator is the identity in this case).
284
+ Recall the notation xs
285
+ k “ rI ´ α∇xfp‚, yk`1qs˝sxk defined in (7), indicating the effect of s steps of the
286
+ gradient method, or an approximate gradient if fp‚, yk`1q is substituted with Jk`1p‚q. Define the derivative
287
+ quantities (we drop the mention to g, since it does not exist in this case),
288
+ Fk
289
+
290
+ ∇xΦkpxkq “
291
+ P
292
+ ź
293
+ p“1
294
+ ´
295
+ In ´ α∇xJk`1pxP ´p
296
+ k
297
+ q
298
+ ¯
299
+ (14)
300
+ Hk`1
301
+
302
+ ∇xΨpxk`1|k, yk`1q “ In ´
303
+ C
304
+ ź
305
+ c“1
306
+ ´
307
+ In ´ β∇xxfpxC´c
308
+ k`1|k; yk`1q
309
+ ¯
310
+ .
311
+ (15)
312
+ We also let Rk P Rnˆn and Qk P Rnˆn be the covariance matrices of the noise processes rk and qk,
313
+ respectively.
314
+ With this in place, the extended Kalman filter (TV-EKF) represented in Algorithm 1 is able to filter and
315
+ track the optimizer trajectory ˆx‹ptq. We notice that we have presented the filter with correction first, to
316
+ highlight the standard workflow within a sampling period. We notice also that the filter can be extended to
317
+ include a filtering process for the data stream yptq, if a dynamical model for it is available.
318
+ Algorithmically, the presented TV-EKF requires several computations. In the correction step, it comprises
319
+ the computation of the Hessian of f at various points for determining Hk and taking a matrix inverse for
320
+ determining Kk. The update for xk requires also C gradient steps. In the prediction pass, the filter includes
321
+ a process to determine any prediction Jk`1, computing its derivatives, and P gradient steps. Considering
322
+ a n-dimensional state, and letting g, h, j, dj be the computational effort to determine the gradient, Hessian,
323
+ predicted gradient, and its derivatives, then the overall computational complexity of TV-EKF is OpCph `
324
+ gq ` Ppdj ` gq ` n3q.
325
+ We will study the empirical performance of TV-EKF in Section 6, but we close here with some remarks.
326
+ 5
327
+
328
+ Algorithm 1 An extended Kalman filter (TV-EKF)
329
+ Input: Initialize: x1|0 “ 0, P1|0 “ In. Number of prediction and correction steps P, C, sampling time h,
330
+ step sizes α, β, covariance matrices Rk, Qk for all k, as well as prediction strategy J.
331
+ Output: A sequence pxkqkPN
332
+ 1: for k P N, k ě 1 do
333
+ 2:
334
+ Receive yk
335
+ 3:
336
+ Compute Hk as in Eq. (15).
337
+ 4:
338
+ Correction step:
339
+ Kk
340
+
341
+ Pk|k´1HkpHkPk|k´1HT
342
+ k ` Rkq´1
343
+ xk
344
+
345
+ xk|k´1 ` KkpΨpxk|k´1, ykqq
346
+ Pk
347
+
348
+ pI ´ KkHkqPk|k´1
349
+ 5:
350
+ Compute Fk as in Eq. (14).
351
+ 6:
352
+ Prediction step:
353
+ xk`1|k “ Φkpxkq,
354
+ Pk`1|k “ FkPkFT
355
+ k ` Qk
356
+ 7: end for
357
+ Remark 1 (Prediction-Correction methods) We can see how xk is updated as
358
+ xk “ Φkpxk´1q ` KkpΨpΦkpxk´1q; ykqq “ pIn ´ Kkq rI ´ αJkp‚qs˝P xk´1
359
+ looooooooooomooooooooooon
360
+ prediction
361
+ `
362
+ ` Kk rI ´ β∇xfp‚; ykqs˝C ˝ rI ´ αJkp‚qs˝P xk´1
363
+ looooooooooooooooooooooooooomooooooooooooooooooooooooooon
364
+ correcting the prediction
365
+ ,
366
+ (16)
367
+ and if we let Kk ” In, then we obtain back the standard prediction-correction methods.
368
+ Remark 2 The TV-EKF algorithms that is presented here could be extended to equality-constrained opti-
369
+ mization problems, once formulated as saddle-points, but we leave this for future endeavors.
370
+ The TV-EKF algorithm that we have presented offers several advantages, and above all the ease of
371
+ implementation. However, from an optimization perspective, it is lacking in good convergence guarantees2,
372
+ and from a noise perspective, we do not have a good intuition or recipe on how to set the covariances Rk, Qk
373
+ in meaningful ways.
374
+ This, combined with the fact that TV-EKF will not work for non-smooth costs, pushes us to look beyond
375
+ to a more general setting. However, before moving on, we give some intuition on why the TV-EKF does
376
+ perform well empirically in the numerical settings that are presented in Section 6.
377
+ Proposition 1 (Equivalence to a damped Newton’s step) When the noise on the measurement is neg-
378
+ ligible, i.e., Rk « 0, and we take only one step of correction C “ 1, then TV-EKF is a damped Newton’s
379
+ method, with update
380
+ xk “ xk|k´1 ´ βr∇xxfpxk|k´1; ykqs´1∇xfpxk|k´1; ykq.
381
+
382
+ Proposition 1 implies that TV-EKF includes second-order information and could be thought of as a
383
+ stochastic quasi-Newton method. In this sense, if the noise covariances are well estimated, or small, then
384
+ TV-EKF is expected to do better than standard prediction-correction methods that only use first-order
385
+ information. This is not surprising, but the connection Kalman-Newton in optimization is interesting.
386
+ 2Besides the fact that the prediction and correction steps represent contractive operators for α ă 2µ{L2, β ă 2{L.
387
+ 6
388
+
389
+ 4
390
+ The general case
391
+ The standard extended Kalman filter can be easily derived when the cost is differentiable. We generalize
392
+ now our filter design to the case in which one has also the term gpxq in the cost, modeling constraints and
393
+ non-smooth regularizations.
394
+ Reconsider the dynamical system (11) in par with the measurement equation (12). Under Assumption 1,
395
+ from standard operator theory, we know that if α and β are chosen small enough, and in particular3 α ă
396
+ 2µ{L2, β ă 2{L, both the prediction and the correction represent contraction operators, which converge to
397
+ their respectives unique fixed points. In particular, their contraction factors are [29]:
398
+ ρp “
399
+ a
400
+ 1 ´ 2αµ ` α2L2,
401
+ ρc “ maxt|1 ´ βµ|, |1 ´ βL|u.
402
+ (17)
403
+ for prediction and correction operators, respectively.
404
+ 4.1
405
+ A static gain filter
406
+ With our dynamical model (11) and measurement equation (12), we are now ready to build our filter. Here,
407
+ since the model and the measurements are non-differentiable equations, we will focus on static gain filters,
408
+ that can be computed off-line, before running the time-varying algorithm. We let Ψ1
409
+ gpx, yq “ Ψgpx, yq ` x.
410
+ Therefore, we start by considering the update equation
411
+ xk`1 “ Φk,gpxkq´KpΦk,gpxkq´Ψ1
412
+ gpΦk,gpxkq, yk`1qq “ pIn´KqΦk,gpxkq`KΨ1
413
+ gpΦk,gpxkq, yk`1q,
414
+ k P N
415
+ (18)
416
+ consisting of running a prediction Φk,gpxkq and then correcting it via the correction Ψ1
417
+ gpΦk,gpxkq, yk`1q. As
418
+ mentioned in Remark 1, by setting K ” In, we obtain back the standard prediction-correction methods.
419
+ Algorithm 2 makes the update explicit along with all the involved computations, for a generic choice of
420
+ J and K. As we can see the computational complexity here does not involve matrix inversions, but it adds
421
+ proximal mapping computations. If the proximal step is easy to perform compared to the other computations,
422
+ then the complexity is OpCph ` gq ` Ppdj ` gqq, which is better than TV-EKF, as expected.
423
+ Algorithm 2 A static contractive filter (TV-CONTRACT)
424
+ Input: Initialize: x1|0 “ 0. Number of prediction and correction steps P, C, sampling time h, step sizes
425
+ α, β, prediction strategy J, as well as a filter gain K.
426
+ Output: A sequence pxkqkPN
427
+ 1: for k P N, k ě 1 do
428
+ 2:
429
+ Receive yk
430
+ 3:
431
+ Correction step: xk “ pIn ´ Kqxk|k´1 ` KΨ1
432
+ gpxk|k´1, ykq
433
+ 4:
434
+ Compute Jk`1pxkq
435
+ 5:
436
+ Prediction step: Compute xk`1|k “ Φk,gpxkq
437
+ 6: end for
438
+ As mentioned before, in this paper, we are interested in designing K in such a way to reduce the tracking
439
+ error of the sequence txkukPN, and in particular: which K would deliver the smallest lim supkÑ8 Er}xk´ˆx‹
440
+ k}s?
441
+ 4.2
442
+ Scalar, worst-case convergence results
443
+ We start by analyzing the easier case of determining the best scalar gain χ P r0, 1s, for the update,
444
+ xk`1 “ p1 ´ χqΦk,gpxkq ` χΨ1
445
+ gpΦk,gpxkq, yk`1q,
446
+ k P N.
447
+ (19)
448
+ While this is restrictive in practice, it will give us some intuition on the general problem. Also, by restricting
449
+ χ in r0, 1s, we are considering all convex combinations of prediction and correction phases. The latter is
450
+ important if g represents a feasible set and we want the sequence txkukPN to be feasible for every k. We have
451
+ the following Theorem.
452
+ 3This is due to the fact that Jk is µ-strongly monotone and L-Lipschitz, but not a gradient per se. Sharper conditions can
453
+ be derived if Jk would be a gradient, like in the correction case, for which we can choose α ă 2{L.
454
+ 7
455
+
456
+ Theorem 1 Let Assumptions 1-2 hold. Assume furthermore that the optimizer trajectory is bounded as,
457
+ }ˆx‹
458
+ k`1 ´ ˆx‹
459
+ k} ď ∆ ă 8,
460
+ @k P N.
461
+ (20)
462
+ Choose α ă 2µ{L2, β ă 2{L. Consider Algorithm 2 with the selection of K “ χIn, χ P r0, 1s, leading to the
463
+ update (19), and its sequence txkukPN. Define functions ζ and ξ as:
464
+ ζℓ,ρ “ t1 if ℓ “ 0;
465
+ ρℓ otherwise u,
466
+ ξℓ,ρ “ t0 if ℓ “ 0;
467
+ 1 ` ρℓ otherwise u.
468
+ Recall the contraction parameters (17) and choose the number of prediction and correction steps P and C
469
+ such that ζC,ρcζP,ρp ă 1. Then, by calling ϱχ “ p1 ´ χqζP,ρp ` χζC,ρcζP,ρp, the asymptotic error is upper
470
+ bounded as,
471
+ lim sup
472
+ kÑ8
473
+ Er}xk ´ ˆx‹
474
+ k}s “
475
+ 1
476
+ 1 ´ ϱχ
477
+
478
+ p1 ´ χq
479
+
480
+ ζP,ρp∆ ` ξP,ρpτµ
481
+
482
+ ` χ
483
+
484
+ ζC,ρcrζP,ρp∆ ` ξP,ρpτµs ` σc
485
+ ‰ ı
486
+ ,
487
+ (21)
488
+ with τµ “ τ{µ, and σc “ βσ{p1 ´ ρcq
489
+ Finally, under the setting of Example 1, ∆ “ C0h{µ, τµ “ pC0Ch2 ` 3C0Σq{µ and σ “ C0Σ.
490
+
491
+ Theorem 1 captures the asymptotic tracking error of the proposed TV-CONTRACT algorithm, when
492
+ K “ χIn. The requirement (20) is standard, assuring that the trajectory is regular enough to be tracked,
493
+ see [5]. The condition ζC,ρcζP,ρp ă 1 is verified, whenever P ` C ě 1, since ρp, ρc P r0, 1q with the choice of
494
+ α, β.
495
+ For χ “ 1, Theorem 1 extends [27, Proposition 5.1] to stochastic settings and [8, Theorem 2.7] to f ` g
496
+ settings with multiple prediction and correction steps.
497
+ The question we have for filter design is how to tune χ to lower the asymptotical error, given all
498
+ the rest fixed?
499
+ 4.3
500
+ Tuning χ
501
+ The filter design problem can be now formulated as,
502
+ min
503
+ χPr0,1s (21)
504
+ (22)
505
+ Problem (22) is a linear-fractional programming, that can be solved by transforming it into a linear program,
506
+ once all the coefficients are fixed. We do not give the details of this, since easily found in standard books [30,
507
+ Ch. 4.3.2]. Nonetheless we report an interesting fact on the nature of the solution.
508
+ Proposition 2 The solution of the tuning problem (22) is either χ‹ “ 1, χ‹ “ 0, or in a special case, any
509
+ χ P r0, 1s.
510
+
511
+ What Proposition 2 says is that from a worst-case perspective (i.e., from an asymptotic tracking error)
512
+ we are better off to either just do predictions, or just do prediction-correction (and in a very special case, we
513
+ can take any choice). The choice is made a priori, from the size of the prediction or correction errors (see the
514
+ proof for exact conditions).
515
+ This is hardly satisfactory.
516
+ We see next how to extend the above to a generic matrix gain K, via
517
+ dissipativity theory, which has a richer behavior.
518
+ 5
519
+ Dissipativity theory and filter design
520
+ We move now to the general case of designing a matrix K in an optimal fashion. We will be using recent
521
+ tools from dissipativity theory applied to optimization algorithm design, and we were particularly inspired
522
+ by [18,19].
523
+ 8
524
+
525
+
526
+ ��� 0 B
527
+ I 0
528
+
529
+ ���
530
+ ΦΦg
531
+ ΨΨ′
532
+ g
533
+ xx
534
+ ww
535
+ uu
536
+
537
+ ��� 0 B
538
+ I 0
539
+
540
+ ���
541
+ T 1
542
+ T 2
543
+ Qqq
544
+ Rrr
545
+ abstraction
546
+ xx
547
+ ww
548
+ uu
549
+ Figure 1: The algorithmic choice (26) is an abstraction of Algorithm 2. The matrix block indicates the
550
+ algorithmic update.
551
+ 5.1
552
+ Filter design
553
+ To start our filter design, we need to recast Algorithm 2 as a block diagram, where the optimization algorith-
554
+ mic updates are interpreted as nonlinear blocks and modeled as quadratic constraints. Consider then noisy
555
+ algorithmic update,
556
+ $
557
+ &
558
+ %
559
+ wk`1 “ ¯wk`1 ` Qqk`1,
560
+ ¯wk`1 “ T 1
561
+ k`1pxkq
562
+ uk`1 “ ¯uk`1 ` Rrk`1,
563
+ ¯uk`1 “ T 2
564
+ k`1p ¯wk`1q
565
+ xk`1 “ pI ´ Kqwk`1 ` Kuk`1
566
+ (23)
567
+ where qk`1 and rk`1 are noise terms, whose expected norm is bounded, as we will see shortly, and Q, R are
568
+ tuning matrices that can model the relative amount of error or correlations.
569
+ The algorithmic choice (26) is an abstraction of Algorithm 2, as we can see in Figure 1, where T 1
570
+ k`1 and
571
+ T 2
572
+ k`1 are the ideal operators representing the ideal prediction and correction steps, respectively, and both
573
+ with fixed point ˆx‹
574
+ k`1 “ ¯w‹
575
+ k`1 “ ¯u‹
576
+ k`1. The fact that, technically, one should consider ¯uk`1 “ T 2
577
+ k`1pwk`1q,
578
+ and the noise terms qk`1 and rk`1 are in fact correlated, since rk`1 should depend on a noisy prediction,
579
+ can be ignored here, since we will only look at worst-case performance guarantees, from bounded errors to
580
+ bounded output.
581
+ Under Assumptions 1 and 2, with the same notation of Theorem 1 and from the proof of [27, Proposition
582
+ 5.1] with Er}τk}s ď τµ, we can bound,
583
+ }wk`1 ´ ¯w‹
584
+ k`1} “ }xk`1|k ´ ˆx‹
585
+ k`1} ď ζP,ρp}xk ´ ˆx‹
586
+ k`1} ` ξP,ρpτk.
587
+ (24)
588
+ On the other hand,
589
+ }wk`1 ´ ¯w‹
590
+ k`1} “ } ¯wk`1 ´ ¯w‹
591
+ k`1 ` Qqk`1} ď ζP,ρp}xk ´ ˆx‹
592
+ k`1} ` }Qqk`1},
593
+ (25)
594
+ so we can look at bounded errors as }Qqk`1} ď ξP,ρpτk and Er}Qqk`1}s ď ξP,ρpτµ.
595
+ Similarly for the error term Rrk, we can look only for bounded errors as Er}Rrk}s ď ζC,ρcξP,ρpτµ ` σc.
596
+ In particular, we consider Er}qk}s ď 1{
597
+ ?
598
+ 2, Er}rk}s ď 1{
599
+ ?
600
+ 2 and model the matrices Q, R to have their
601
+ largest singular value at
602
+ ?
603
+ 2pξP,ρpτµq and
604
+ ?
605
+ 2pζC,ρcξP,ρpτµ ` σcq, respectively.
606
+ For the sake of ease of notation, in (26), we define matrices B, Be, and the nominal input and error signal
607
+ ¯z, e as,
608
+ B “ rpIn ´ Kq, Ks,
609
+ Be “ rpIn ´ KqQ, KRs,
610
+ (26)
611
+ ¯z “ r ¯wT, ¯uTsT,
612
+ e “ rqT, rTsT,
613
+ xk`1 “ B¯zk`1 ` Beek`1,
614
+ (27)
615
+ and Er}ek}s ď 1. We also introduce point-wise-in-time quadratic constraints for T 1 and T 2 as,
616
+
617
+ xk ´ ˆx‹
618
+ k`1
619
+ ¯wk`1 ´ ¯w‹
620
+ k`1
621
+ ȷT„
622
+ ω2
623
+ 1In
624
+ 0
625
+ 0
626
+ ´In
627
+ ȷ„
628
+ xk ´ ˆx‹
629
+ k`1
630
+ ¯wk`1 ´ ¯w‹
631
+ k`1
632
+ ȷ
633
+ ě 0,
634
+ (28)
635
+
636
+ xk ´ ˆx‹
637
+ k`1
638
+ ¯uk`1 ´ ¯u‹
639
+ k`1
640
+ ȷT„
641
+ ω2
642
+ 1ω2
643
+ 2In
644
+ 0
645
+ 0
646
+ ´In
647
+ ȷ„
648
+ xk ´ ˆx‹
649
+ k`1
650
+ ¯uk`1 ´ ¯u‹
651
+ k`1
652
+ ȷ
653
+ ě 0,
654
+ (29)
655
+ with ω1 “ ζP,ρp and ω2 “ ζC,ρcζP,ρp, which are due to the contracting properties of T 1 and T 2, respectively.
656
+ With this in place, convergence and asymptotic tracking error performance can be formulated as follows.
657
+ 9
658
+
659
+ Theorem 2 Consider Algorithm 2 and its abstraction (27), to find and track the filtered optimizer trajectory
660
+ ˆx‹ptq of the time-varying stochastic optimization problem minxPRn Erfpx; yptqqs ` gpxq. Assume that the
661
+ optimizer trajectory varies in a bounded way as }ˆx‹ptk`1q ´ ˆx‹ptkq} ď ∆, for all k P N and ∆ ă 8. Let
662
+ Assumptions 1-2 hold as well.
663
+ Introduce matrix W P Rnˆn and X P Rnˆn, X ą 0, scalars λ1 ě 0, λ2 ě 0, in addition to supporting
664
+ scalars γ1, γ2, and consider the tuning matrix K.
665
+ For any fixed scalar ρ P p0, 1q, by solving the convex
666
+ problem4
667
+ minimize
668
+ X ą 0, λ1 ě 0, λ2 ě 0,
669
+ W, γ2
670
+ 1, γ2
671
+ 2
672
+ γ2
673
+ 1ρ2∆2 ` γ2
674
+ 2
675
+ (30a)
676
+ subject to
677
+ ρ2X ľ pλ1ω2
678
+ 1 ` λ2ω2
679
+ 1ω2
680
+ 2qIn,
681
+ (30b)
682
+ X ľ In,
683
+ X ĺ γ2
684
+ 1In
685
+ (30c)
686
+ »
687
+ ————–
688
+ ´λ1In
689
+ 0
690
+ ´λ2In
691
+ 02nˆ2n
692
+ X ´ WT
693
+ WT
694
+ ´γ2
695
+ 2I2n
696
+ QpX ´ WTq
697
+ RWT
698
+
699
+ ´X
700
+
701
+ ffiffiffiffifl
702
+ ĺ 0,
703
+ (30d)
704
+ then Algorithm 2 with K “ WX´1 generates a sequence txkukPN that converges as,
705
+ AE :“ lim sup
706
+ kÑ8
707
+ Er}xk ´ ˆx‹
708
+ k}s ď
709
+ 1
710
+ 1 ´ ρ pγ1ρ∆ ` γ2q .
711
+ (31)
712
+ Furthermore, for any fixed ρ, solving Problem (30) diminishes the asymptotical error AE.
713
+
714
+ Theorem 2 describes how to best tune the matrix K to minimize the asymptotic tracking error.
715
+ In
716
+ particular, doing a grid search on ρ P p0, 1q, one can identify the best K that minimizes the worst-case
717
+ asymptotical error bound. Two remarks are in order.
718
+ First the convex problem (30) grows linearly in the dimension of the problem n. However, if the matrices
719
+ R and Q have some particular structure (i.e., diagonal, block diagonal), we can reduce the problem size
720
+ considerably. In the case of Q “ qIn, R “ rIn, then choosing X “ pIn, W “ wIn, the problem becomes
721
+ independent of the problem size n, as it happens in other examples [22].
722
+ Second, the matrices R and Q are gateways through which one can include variable correlations and
723
+ dependency, which is not present in a standard prediction-correction algorithm, nor in the scalar worst-case
724
+ convergence tuning χ.
725
+ 5.2
726
+ LPV filter design
727
+ The presented filter design, captured by the conditions in Theorem 2, could suffer from conservatism, since
728
+ the matrices Q and R are selected as worst cases. For example, we have modeled Q at having its largest
729
+ singular value at
730
+ ?
731
+ 2pξP,ρpτµq. In practice, one could wish to model these matrices as parameter-varying, and
732
+ directly dependent on how the data changes in time.
733
+ We propose here an LPV filter design that accomplishes this task and reduce conservatism of the design
734
+ process. We focus on a simplified setting to convey the basic ideas, and the reader is left to generalize the
735
+ approach.
736
+ Consider the change in time of the data ∇typtq, and let θ P r0, 1s be a normalized parameter that capture
737
+ this change.
738
+ For example, we let θ “ p}∇typtq}8q{pmaxt }∇typtq}8q.
739
+ We then consider Q as an affine
740
+ parameter-varying matrix: Qpθq “ Q0 ` θQ1 . We consider here a static R for simplicity, thereby assuming
741
+ that the change in the data only affects the prediction accuracy, which is reasonable to assume (and easy to
742
+ lift if needed).
743
+ In parallel, we will be looking for an affine parameter-varying Lyapunov matrix Xpθq “ X0 ` θX1, and a
744
+ parameter-varying filter gain matrix Kpθq. The following theorem is then in place.
745
+ 4For readability, we indicate in blue the decision variables.
746
+ 10
747
+
748
+ Theorem 3 Consider Algorithm 2 and its abstraction (27), to find and track the filtered optimizer trajectory
749
+ ˆx‹ptq of the time-varying stochastic optimization problem minxPRn Erfpx; yptqqs ` gpxq. Assume that the
750
+ optimizer trajectory varies in a bounded way as }ˆx‹ptk`1q ´ ˆx‹ptkq} ď ∆, for all k P N and ∆ ă 8. Let
751
+ Assumptions 1-2 hold as well.
752
+ Introduce matrix function Wpθq : r0, 1s Ñ Rnˆn “ W0 ` θW1 and Xpθq : r0, 1s Ñ Rnˆn “ X0 `
753
+ θX1, Xpθq ą 0, scalars λ1 ě 0, λ2 ě 0, in addition to supporting scalars γ1, γ2, and consider the tuning
754
+ matrix function Kpθq. Assume that Qpθq “ Q0 ` θQ1 and that the value of θ at subsequent time step is
755
+ upper bounded as |θs`1 ´ θs| ď ν. For any fixed scalar ρ P p0, 1q, by solving the problem
756
+ minimize
757
+ X0, X1, λ1 ě 0, λ2 ě 0,
758
+ W0, W1, γ2
759
+ 1, γ2
760
+ 2
761
+ γ2
762
+ 1ρ2∆2 ` γ2
763
+ 2
764
+ (32a)
765
+ subject to
766
+ ρ2rX0 ` X1s ľ pλ1ω2
767
+ 1 ` λ2ω2
768
+ 1ω2
769
+ 2qIn,
770
+ (32b)
771
+ rX0 ` X1s ľ In,
772
+ X0 ĺ γ2
773
+ 1In
774
+ (32c)
775
+ X1 ĺ 0
776
+ (32d)
777
+ »
778
+ ————–
779
+ ´λ1In
780
+ 0
781
+ ´λ2In
782
+ 02nˆ2n
783
+ Ypθq ´ WpθqT
784
+ WT
785
+ ´γ2
786
+ 2I2n
787
+ QpθqpYpθq ´ WpθqTq
788
+ RWpθqT
789
+
790
+ ´Ypθq
791
+
792
+ ffiffiffiffifl
793
+ ĺ 0,
794
+ Ypθq “ X0 ´ νX1 ` θX1
795
+ ,
796
+ /
797
+ /
798
+ /
799
+ /
800
+ /
801
+ /
802
+ /
803
+ /
804
+ .
805
+ /
806
+ /
807
+ /
808
+ /
809
+ /
810
+ /
811
+ /
812
+ /
813
+ -
814
+ @θ P r0, 1s(32e)
815
+ then Algorithm 2 with Kpθq “ WpθqYpθq´1 generates a sequence txkukPN that converges as,
816
+ AE :“ lim sup
817
+ kÑ8
818
+ Er}xk ´ ˆx‹
819
+ k}s ď
820
+ 1
821
+ 1 ´ ρ pγ1ρ∆ ` γ2q .
822
+ (33)
823
+ Furthermore, for any fixed ρ, solving Problem (30) diminishes the asymptotical error AE.
824
+
825
+ Theorem 3 describes parametric conditions for Algortihm 2 to converge to the optimizer trajectory in
826
+ expectation and within an error ball. We remark here the extra constraint X1 ĺ 0, which requires some
827
+ explanation.
828
+ As one can see in the proof of Theorem 3, the key step in proving convergence of the algorithm is to
829
+ ensure that a Lyapunov function decreases at subsequent times. The Lyapunov function that we consider is
830
+ Lkpθkq “ pxk ´ ˆx‹
831
+ kqJXpθkqpxk ´ ˆx‹
832
+ kq, and therefore we have to deal with matrices Xpθq at subsequent times.
833
+ By imposing X1 ĺ 0, we can write however,
834
+ Xpθs`1q “ Xpθsq ` pθs`1 ´ θsqX1 ĺ Xpθsq ´ |θs`1 ´ θs|X1 “ Ypθsq,
835
+ from which we can derive Theorem 3 and this renders the derivation of a solvable program easier.
836
+ The constraint X1 ĺ 0 induces conservatism in the design, but in all our numerical simulations we found
837
+ it to be redundant (meaning that the optimal X‹
838
+ 1 was ĺ 0 with or without the constraint), and therefore not
839
+ conservative in our application. We remark that a more correct approach would be to consider both extremes
840
+ (`ν and ´ν) as done in [25] and remove X1 ĺ 0, but this would lead to an ambiguous definition of Kpθq
841
+ and an harder problem to solve.
842
+ Another possible approach is to remove X1 ĺ 0 and to consider only slowly changing parameters, for
843
+ which ν ! 1. Since in our simulations ν « 0.4, we have preferred to focus on the former approach. Finally,
844
+ note that considering a X1 ĺ 0 is not totally unreasonable, since we can assume that increasing θ, the
845
+ convergence performance would be negatively affected.
846
+ For fixed ρ, the problem to be solved is infinite dimensional (yet convex once θ is fixed). We recall that
847
+ the constraints in (32e) are quadratic in θ, due to the product with Qpθq.
848
+ A possible way to solve problem (32) is to discretize the domain with a uniform grid Θ :“ t0, θ1, . . . , θq, 1u
849
+ and impose (32e) for all the points of the grid.
850
+ Another possible way is to introduce another variable
851
+ η “ θ2 P r0, 1s, and render affine (32e).
852
+ A more sophisticated way to proceed is to introduce a more
853
+ conservative yet convex condition in θ, hinging on the concept of matrix sum of squares.
854
+ 11
855
+
856
+ Definition 1 Let Ppθq be a symmetric matrix of polynomials of degree up to 2d P N in the variable θ P R.
857
+ A matrix is sum of squares (MSOS) if there exists a finite number l of symmetric matrices of polynomials
858
+ Πipθq such that
859
+ Ppθq “
860
+ lÿ
861
+ i“1
862
+ ΠipθqTΠipθq.
863
+ The decomposition implies that Ppθq ľ 0 for all θ. The constraint “Ppθq is MSOS” is convex.
864
+ We are now ready for the following result.
865
+ Theorem 4 Consider the matrix multiplicator Λ P R5nˆ5n, Λ ľ 0. In Theorem 3, condition (32e) can be
866
+ substituted with the more conservative, yet convex and finite dimensional condition:
867
+ ´
868
+ »
869
+ ————–
870
+ ´λ1In
871
+ 0
872
+ ´λ2In
873
+ 02nˆ2n
874
+ Ypθq ´ WpθqT
875
+ WT
876
+ ´γ2
877
+ 2I2n
878
+ QpθqpYpθq ´ WpθqTq
879
+ RWpθqT
880
+
881
+ ´Ypθq
882
+
883
+ ffiffiffiffifl
884
+ ´ Λθp1 ´ θq
885
+ is MSOS,
886
+ (34a)
887
+ Λ ľ 0,
888
+ Ypθq “ X0 ´ νX1 ` θX1
889
+ (34b)
890
+ where Λ is now a new decision variable in the optimization problem.
891
+
892
+ Theorems 3 and 4 describe an LPV design strategy for our filter gain design. This is a particular choice
893
+ due to the affine parameter-varying Qpθq and static R.
894
+ More complex choices can be made (relatively)
895
+ straightforwardly following the same pattern of the presented theorems. We now look at some numerical
896
+ simulations.
897
+ 6
898
+ Numerical simulations
899
+ We focus now on showcasing the performance of the proposed algorithms on a real dataset and problem
900
+ stemming from ride-hailing. We obtain trips data from the New York City dataset5 for the yellow taxi cab
901
+ in the month of November 2019, totalling over 6.8 millions trips. We group the trips in 5 minutes intervals
902
+ and divide the trip requests among n “ 5 different ride-hailing companies (such as taxi cab, Uber, Lyft, etc.).
903
+ The trip requests are divided randomly among the companies in a way that different companies do not have
904
+ the same number of requests.
905
+ In the modern context of mobility as a service with ride-hailing orchestration [31], it makes sense for the
906
+ city to provide software platforms to decide caps on the number of vehicles that each company can put on the
907
+ streets depending on trading-off satisfying the demand and limiting traffic. A natural optimization problem
908
+ that a city can formulate is
909
+ ˆx‹ptq “ arg
910
+ min
911
+ xPrx,xsn
912
+ n
913
+ ÿ
914
+ i“1
915
+ ´
916
+ E
917
+ ”1
918
+ 2}xi ´ ciyiptq}2ı
919
+ ` logp1 ` κ exppxiqq ` ς
920
+ 2
921
+ n
922
+ ÿ
923
+ j“1
924
+ }xi ´ xj}2¯
925
+ ,
926
+ (35)
927
+ where xi for each i represents the upper limit on vehicles on the roads for company i. The constraint rx, xsn
928
+ represents box constraints on the number of allowed vehicles. The term ci ą 0 multiplies the trip requests for
929
+ company i at time t, yiptq to be able to match most of the requests as possible. The logistic term with κ ą 0
930
+ is a regularization to make the cost non-quadratic but still convex and favor a smaller number of vehicles on
931
+ the roads. Finally, the coupling term }xi ´xj}2 is set to have a similar regulation among different companies.
932
+ For the sake of the simulations, we take ci “ 1, κ “ 0.02, ς “ 0.1, and we sample Problem (35) at every 5
933
+ minutes. We simulate also the ground truth considering a smoothed version of the data.
934
+ 5Open data from the NYC Taxi and Limousine Commission Data Hub.
935
+ 12
936
+
937
+ 6.1
938
+ Unconstrained case
939
+ We start by considering the unconstrained case, where x P R5, and we look at different noise regimes and
940
+ algorithms.
941
+ As for the algorithms, we consider our TV-EKF (Algorithm 1), a standard prediction-correction [27], and
942
+ the stochastic prediction-correction version of [8]. For the latter, with their optimal choice of window size
943
+ and weights for two-point evaluation, we can see that it is equivalent to the AGT algorithm of [32], i.e., exact
944
+ prediction with Hessian inversion, but with a finite difference evaluation of ∇txf.
945
+ For the three algorithms, we consider different choices of prediction steps P and correction steps C. For
946
+ the stochastic prediction-correction version of [8], prediction is exact, so P is not a free parameter. We
947
+ simulate three noise regimes:
948
+ ‚ The case of very good prediction Q{R « 0. For this, J generates as predictive signal a random signal
949
+ around the ground truth with variance 10.
950
+ We use for the correction the true data stream.
951
+ This case
952
+ represents a realistic scenario of having a very good predictor (based on accurate historical data and, e.g.,
953
+ on a periodic Kernel method). This could be typical in ride-hailing systems.
954
+ ‚ The case of poor prediction R{Q « 0. For this, J generates as predictive signal a random signal around
955
+ the ground truth with variance 200. We use for the correction a convex combination of the true data stream
956
+ and the ground truth (weighting the true data 0.05). This case represents a potential scenario of situation in
957
+ which the system transitions (e.g., a lock-down happens) and we have poor prediction. This is in general less
958
+ typical, since prediction can be built online on current data, based, e.g., on extrapolation, but still interesting
959
+ to analyze.
960
+ ‚ The case of J generated by the true data based on an extrapolation-based prediction [27], and correction
961
+ also based on true data. We label this case Q « R. The error between the true data and the ground truth
962
+ has variance « 50, and the prediction « 200. We design Qk and Rk accordingly, also taking into account
963
+ that the data streams are correlated, and therefore Qk, Rk are full.
964
+ Table 1 displays the results obtained in these settings. As we can see, Algorithm 1 performs the best
965
+ by a significant margin, when prediction is accurate (Q{R « 0).
966
+ When prediction is poor (R{Q « 0),
967
+ then Algorithm 1 behaves close to a damped Newton’s method, which significantly outperforms a standard
968
+ prediction-correction algorithm, but it is in par with its stochastic version (since the latter still uses the very
969
+ accurate data stream to built its exact prediction).
970
+ Finally, for the setting of Q « R, then all the three methods perform very similarly, which is almost
971
+ expected since taking prediction, or prediction and then correction incur the same “error”, so any combination
972
+ could achieve similar results. In this case, Algorithm 1 chooses a Kk « In.
973
+ The results in Table 1 support Algorithm 1 as an algorithm that can automatically tune prediction and
974
+ correction; based on this tuning it can be significantly better than the competitors; and in the worst case it
975
+ performs as state-of-the-art methods. We finally remark that the good prediction case is considered to be
976
+ typical in this application scenario, and that the method from [8] could also be updated by designing an EKF
977
+ for it, in the same way we did for the standard prediction-correction.
978
+ 6.2
979
+ Constrained case
980
+ We analyze now the constrained case, for which we set x “ 100 and x “ 1000. These constraints are not
981
+ overly restrictive, but the point here is to see how our BMI-based method performs with respect to a standard
982
+ prediction-correction method in different scenarios. Here, the stochastic variant [8] cannot be applied, but
983
+ one could use the methods in [5] with exact prediction and finite-difference computations for ∇txf. We do
984
+ not look into that, since typically these methods are more computationally demanding.
985
+ The settings we investigate are similar to the unconstrained case, with the difference that we use our
986
+ second algorithm TV-CONTRACT with a static K generated via Problem (30), and uniform grid-search on
987
+ ρ. We also consider two cases for Q « R, the first has Q « 200In and R « 50In, the second Q « 67In and
988
+ R « 50In. In both cases, as before, Q, R are full.
989
+ In Table 2, we displays the results obtained in these settings. As we can see, Algorithm 2 has the best
990
+ advantage when prediction is accurate and K can be chosen different from In. In general, the performance
991
+ of Algorithm 2 is comparable with the competition, unless there is a clear advantage to choose a different
992
+ from In gain. In this latter case, the performance gain can be significant. In Table 2, we have also added
993
+ the selected best K, which is full whenever we use the « sign, with diagonal elements close to the indicated
994
+ values.
995
+ 13
996
+
997
+ Table 1: Performance of the considered algorithm in an unconstrained setting. For each row, the first line
998
+ represents the average error }xk ´ ˆx‹
999
+ k}, the second line the 25% percentile, and the third line the 75%
1000
+ percentile. In bold, the smallest error for the selected case and parameter choice. With ˚ we indicate a
1001
+ ą 10% error reduction with respect to the closest competitor.
1002
+ Regime
1003
+ Algorithm
1004
+ Extrap. P-C, [27], pP, Cq
1005
+ Stoch. P-C [8], C
1006
+ TV-EKF: Algortihm 1, pP, Cq
1007
+ p1, 1q
1008
+ p5, 1q
1009
+ p1, 5q
1010
+ p5, 5q
1011
+ 1
1012
+ 5
1013
+ p1, 1q
1014
+ p5, 1q
1015
+ p1, 5q
1016
+ p5, 5q
1017
+ Q
1018
+ R « 0
1019
+ 80.0
1020
+ 47.2
1021
+ 134.0
1022
+ 118.9
1023
+ 160.1
1024
+ 151.1
1025
+ 70.1˚
1026
+ 10.8˚
1027
+ 61.2˚
1028
+ 14.0˚
1029
+ 26.3
1030
+ 17.0
1031
+ 49.7
1032
+ 44.7
1033
+ 59.9
1034
+ 56.0
1035
+ 20.2
1036
+ 3.8
1037
+ 17.7
1038
+ 4.6
1039
+ 111.3
1040
+ 64.7
1041
+ 183.9
1042
+ 163.5
1043
+ 219.1
1044
+ 206.6
1045
+ 107.1
1046
+ 14.9
1047
+ 90.8
1048
+ 19.3
1049
+ R
1050
+ Q « 0
1051
+ 90.5
1052
+ 195.7
1053
+ 19.4
1054
+ 48.6
1055
+ 11.2
1056
+ 8.0
1057
+ 7.5
1058
+ 7.6
1059
+ 7.5
1060
+ 7.5
1061
+ 66.3
1062
+ 148.7
1063
+ 12.7
1064
+ 32.2
1065
+ 4.1
1066
+ 2.9
1067
+ 2.8
1068
+ 2.9
1069
+ 2.8
1070
+ 2.8
1071
+ 109.3
1072
+ 236.4
1073
+ 23.8
1074
+ 60.6
1075
+ 14.3
1076
+ 10.6
1077
+ 10.4
1078
+ 10.4
1079
+ 10.5
1080
+ 10.5
1081
+ Q « R
1082
+ 135.0
1083
+ 162.4
1084
+ 144.7
1085
+ 149.5
1086
+ 160.1
1087
+ 151.1
1088
+ 141.7
1089
+ 152.4
1090
+ 149.5
1091
+ 150.2
1092
+ 47.8
1093
+ 60.9
1094
+ 53.6
1095
+ 55.5
1096
+ 59.9
1097
+ 56.0
1098
+ 52.0
1099
+ 56.4
1100
+ 56.4
1101
+ 56.4
1102
+ 185.7
1103
+ 225.9
1104
+ 198.0
1105
+ 204.3
1106
+ 219.1
1107
+ 206.6
1108
+ 193.4
1109
+ 210.6
1110
+ 205.0
1111
+ 206.0
1112
+ Su. 25
1113
+ Mo. 26
1114
+ Tu. 27
1115
+ We. 28
1116
+ Th. 28
1117
+ Fr. 29
1118
+ Sa. 30
1119
+ 0
1120
+ 200
1121
+ 400
1122
+ 600
1123
+ 800
1124
+ 1000
1125
+ Allowed Vehicles
1126
+ Solutions for a week in November 2019
1127
+ Trip count
1128
+ P-C method
1129
+ TV-Contract
1130
+ True solution
1131
+ Figure 2: Display of selected trajectories in Thanksgiving week of 2019.
1132
+ The setting is Q « Rp2q and
1133
+ P “ C “ 5, and the trajectories are for one of the five companies.
1134
+ The results in Table 2 support Algorithm 2 as an algorithm that can automatically tune prediction and
1135
+ correction; based on this tuning it can be better than the competitors; and in the worst case it performs
1136
+ in par with state-of-the-art methods. We finally remark that the good prediction case is considered to be
1137
+ typical in this application scenario.
1138
+ For display purposes, Figure 2 illustrates the different trajectories for one of the five companies during
1139
+ Thanksgiving week of the selected month of November 2019, for the case Q « Rp2q and P “ C “ 5.
1140
+ 6.3
1141
+ Variable K case
1142
+ We finish the simulation assessment showing the tracking results obtained solving Problem (32) for an affine
1143
+ parametric-varying Q. In particular, we let Q0 “ Q{5 and Q1 “ 4Q{5, where Q is numerically defined as
1144
+ before, and run Algorithm 2 on all the four cases that we have looked at in Table 2. We solve Problem (32)
1145
+ by uniform gridding with 4 points. As mentioned, in our case ν « 0.4.
1146
+ In Table 3, we report the results for the Q « R cases, since we do not observe any substantial difference
1147
+ for the other cases of Table 2. We indicate in bold if we have a gain w.r.t. a static gain, and with a dagger,
1148
+ if we have also a gain w.r.t. the state of the art. We also report how the maximal element of the diagonal of
1149
+ K changes in time in a selected week.
1150
+ As we can see, the results are very similar to the static results, but the gains can be important in some
1151
+ cases. As we see, the filter gain does not change over a wide range. However, it appears that even these
1152
+ small changes are enough to reduce the asymptotical error in selected scenarios, and behaving in par with
1153
+ the static approach in the others. As one can infer, parametric-varying gain design does depend on the
1154
+ modelling choices for Qpθq and Xpθq, and one could expect possibly more performant results in the case of
1155
+ more complex dependencies on θ. We leave this analysis for future endeavors.
1156
+ 14
1157
+
1158
+ Table 2: Performance of the considered algorithm in a constrained setting.
1159
+ For each row, the first line
1160
+ represents the average error }xk ´ ˆx‹
1161
+ k}, the second line the 25% percentile, and the third line the 75%
1162
+ percentile. In bold, the smallest error for the selected case and parameter choice. With ˚ we indicate a
1163
+ ą 10% error reduction with respect to the closest competitor.
1164
+ Regime
1165
+ Algorithm
1166
+ Kp5,5q
1167
+ Extrapolation P-C, [27], pP, Cq
1168
+ TV-CONTRACT: Algorithm 2, pP, Cq
1169
+ p1, 1q
1170
+ p5, 1q
1171
+ p1, 5q
1172
+ p5, 5q
1173
+ p1, 1q
1174
+ p5, 1q
1175
+ p1, 5q
1176
+ p5, 5q
1177
+ Q
1178
+ R « 0
1179
+ 68.7
1180
+ 58.2
1181
+ 84.3
1182
+ 79.7
1183
+ 71.1
1184
+ 51.3˚
1185
+ 73.0˚
1186
+ 54.6˚
1187
+ 25.3
1188
+ 20.3
1189
+ 33.5
1190
+ 32.6
1191
+ 32.8
1192
+ 9.0
1193
+ 28.9
1194
+ 15.5
1195
+ K « 0.24In
1196
+ 102.4
1197
+ 93.1
1198
+ 122.1
1199
+ 117.1
1200
+ 103.1
1201
+ 94.4
1202
+ 106.3
1203
+ 92.4
1204
+ R
1205
+ Q « 0
1206
+ 88.6
1207
+ 143.2
1208
+ 54.5
1209
+ 66.9
1210
+ 88.6
1211
+ 143.2
1212
+ 54.5
1213
+ 66.9
1214
+ 58.1
1215
+ 80.3
1216
+ 16.4
1217
+ 34.1
1218
+ 58.1
1219
+ 80.3
1220
+ 16.4
1221
+ 34.1
1222
+ K “ In
1223
+ 119.6
1224
+ 200.2
1225
+ 95.5
1226
+ 99.1
1227
+ 119.6
1228
+ 200.2
1229
+ 95.5
1230
+ 99.1
1231
+ Q « R
1232
+ 85.4
1233
+ 93.3
1234
+ 87.7
1235
+ 89.2
1236
+ 85.3
1237
+ 94.2
1238
+ 87.7
1239
+ 89.2
1240
+ p1q
1241
+ 32.5
1242
+ 34.4
1243
+ 34.2
1244
+ 34.9
1245
+ 32.3
1246
+ 34.4
1247
+ 34.2
1248
+ 34.9
1249
+ K « In
1250
+ 118.8
1251
+ 135.6
1252
+ 126.3
1253
+ 128.8
1254
+ 118.7
1255
+ 137.7
1256
+ 126.3
1257
+ 128.8
1258
+ Q « R
1259
+ 68.3
1260
+ 58.9
1261
+ 84.1
1262
+ 79.3
1263
+ 68.3
1264
+ 56.8
1265
+ 84.1
1266
+ 68.7˚
1267
+ p2q
1268
+ 25.3
1269
+ 23.0
1270
+ 33.3
1271
+ 32.2
1272
+ 27.1
1273
+ 22.1
1274
+ 33.3
1275
+ 28.1
1276
+ K « 0.86In
1277
+ 101.5
1278
+ 92.2
1279
+ 122.0
1280
+ 116.7
1281
+ 101.3
1282
+ 91.6
1283
+ 122.0
1284
+ 103.1
1285
+ Table 3: Performance of the considered algorithm in a constrained setting.
1286
+ For each row, the first line
1287
+ represents the average error }xk ´ ˆx‹
1288
+ k}, the second line the 25% percentile, and the third line the 75%
1289
+ percentile. We indicate in bold if we have a gain w.r.t. a static gain of Table 2, and with a dagger, if we have
1290
+ also a gain w.r.t. the state of the art of Table 2. Finally, with ˚ we indicate a ą 10% error reduction with
1291
+ respect to the closest competitor.
1292
+ Regime
1293
+ Algorithm
1294
+ TV-CONTRACT-LPV: Algorithm 2, pP, Cq
1295
+ p1, 1q
1296
+ p5, 1q
1297
+ p1, 5q
1298
+ p5, 5q
1299
+ Q « R
1300
+ 85.5
1301
+ 93.9
1302
+ 87.3:
1303
+ 89.8
1304
+ Su. 25 Mo. 26Tu. 27We. 28Th. 28 Fr. 29 Sa. 30
1305
+ 0.94
1306
+ 0.96
1307
+ 0.98
1308
+ 1.00
1309
+ Max ( Diag (K) )
1310
+ K (1,5)
1311
+ K (5,5)
1312
+ p1q
1313
+ 32.0
1314
+ 34.3
1315
+ 33.7
1316
+ 35.1
1317
+ 118.6
1318
+ 136.7
1319
+ 125.4
1320
+ 129.2
1321
+ Q « R
1322
+ 70.9
1323
+ 56.9
1324
+ 74.4:˚
1325
+ 65.3:
1326
+ Su. 25 Mo. 26Tu. 27We. 28Th. 28 Fr. 29 Sa. 30
1327
+ 0.82
1328
+ 0.86
1329
+ 0.90
1330
+ Max ( Diag (K) )
1331
+ K (1,5)
1332
+ K (5,5)
1333
+ p2q
1334
+ 32.7
1335
+ 22.5
1336
+ 29.3
1337
+ 26.6
1338
+ 102.7
1339
+ 94.2
1340
+ 108.9
1341
+ 99.5
1342
+ 15
1343
+
1344
+ 7
1345
+ Conclusions
1346
+ We have discussed several methods to generalize time-varying optimization algorithms to the case of noisy
1347
+ data streams. The methods are rooted in the intuition that prediction and correction can be seen as a nonlin-
1348
+ ear dynamical system and a nonlinear measurement equation, respectively. This leads to extended Kalman
1349
+ filter formulations as well as contractive filters based on bilinear matrix inequalities (BMI’s). Numerical
1350
+ results are promising, even when using possibly conservative BMI conditions.
1351
+ A
1352
+ Proofs
1353
+ A.1
1354
+ An additional example
1355
+ Example 2 (Deterministic example) Consider a deterministic method with an extrapolation predictor [27],
1356
+ meaning: Jk`1pxq “ 2∇xfpx; ykq ´ ∇xfpx; yk´1q, where now yptq is deterministic. Assume fpx; yptqq is
1357
+ strongly convex and smooth, uniformly in y, assume that the Hessian of fpx; yptqq does not depend on y,
1358
+ and assume the following bounds on data and mixed derivatives:
1359
+ maxt}∇typtq} , }∇ttyptq} , }∇yxfpx; yptqq} , }∇yyxfpx; yptqq}u ď C,
1360
+ @x, t.
1361
+ (36)
1362
+ Then we have that
1363
+ }Jk`1px‹
1364
+ k`1q ´ ∇xfpx‹
1365
+ k`1; yk`1q} ď pC2 ` C3qh2.
1366
+
1367
+ Proof:
1368
+ From [27, Lemma 4.5], we know that there exists a τ P rtk´1, tk`1s such that
1369
+ ››Jk`1px‹
1370
+ k`1q ´ ∇xfpx‹
1371
+ k`1; yk`1q
1372
+ ›› ď
1373
+ ››∇tt∇xfpx‹
1374
+ k`1; ypτqq
1375
+ ›› h2.
1376
+ (37)
1377
+ Let the i-th component of ∇xfpx; yptqq be Dipx; yptqq.
1378
+ By using the higher-derivatives Fa`a di Bruno’s chain rule:
1379
+ r∇tt∇xfpx; yptqqsi “ B2
1380
+ Bt2 Dipx; yptqq “
1381
+ ÿ
1382
+ j
1383
+ ˆ B
1384
+ Byj
1385
+ Dipx; yptqq B2yjptq
1386
+ Bt2
1387
+ ˙
1388
+ `
1389
+ ÿ
1390
+ j,ℓ
1391
+ ˆ
1392
+ B2
1393
+ ByjByℓ
1394
+ Dipx; yptqq Byjptq
1395
+ Bt
1396
+ Byℓptq
1397
+ Bt
1398
+ ˙
1399
+ ,
1400
+ (38)
1401
+ from which the thesis follows.
1402
+
1403
+ A.2
1404
+ Derivations for Example 1
1405
+ We choose to write x‹ “ x‹
1406
+ k`1 as a short-hand notation, in this proof only.
1407
+ By linearity of ∇xfpx‹; yptqq with respect to the parameter yptq, and the linearity of the expectation, we
1408
+ can write
1409
+ EwPYk,zPYk´1r}∇xfpx‹; 2w ´ zq ´ EyPYk`1r∇xfpx‹; yqs}s “ EwPYk,zPYk´1r}∇xfpx‹; 2w ´ z ´ EyPYk`1rysq}s
1410
+ “ EwPYk,zPYk´1r}∇xfpx‹; 2w ´ z ´ ¯yk`1q}s
1411
+ “ Ee1PN p0,Σkq,e2PN p0,Σk´1qr}∇xfpx‹; 2¯yk ´ ¯yk´1 ´ ¯yk`1q ` ∇xfpx‹; 2e1 ´ e2q}s.
1412
+ We now use the Triangle inequality, the result (38), and the mean value theorem for the nominal trajectory,
1413
+ to upper bound the last inequality as
1414
+ Ee1PN p0,Σkq,e2PN p0,Σk´1qr}∇xfpx‹; 2¯yk ´ ¯yk´1 ´ ¯yk`1q} ` }∇xfpx‹; 2e1 ´ e2q}s
1415
+ “ }∇xfpx‹; 2¯yk ´ ¯yk´1 ´ ¯yk`1q} ` Ee1PN p0,Σkq,e2PN p0,Σk´1qr}∇xfpx‹; 2e1 ´ e2q}s
1416
+ ď C0Ch2 ` C0 Ee1PN p0,Σkq,e2PN p0,Σk´1qr}2e1 ´ e2}s ď C0Ch2 ` 3C0Σ,
1417
+ from which the first claim is proven.
1418
+ 16
1419
+
1420
+ For the second,
1421
+ EyPYk`1r}∇xfpx; yq ´ EyPYk`1r∇xfpx; yqs}s “ EyPYk`1r}∇xfpx; yq ´ ∇xfpx; ¯yk`1qs}s
1422
+ “ EePN p0,Σk`1qr}∇xfpx; eqs}s
1423
+ ď C0 EePN p0,Σk`1qr}e}s ď C0Σ,
1424
+ as claimed.
1425
+
1426
+ A.3
1427
+ Proof of Proposition 1
1428
+ Consider C “ 1 in Algorithm 1, as well as a negligible Rk. Then, we can simplify the Kalman gain as:
1429
+ Kk
1430
+
1431
+ Pk|k´1HkrHkPk|k´1HT
1432
+ ks´1 “ H´1
1433
+ k .
1434
+ Therefore, the state update reads
1435
+ xk
1436
+
1437
+ xk|k´1 ` KkpΨpxk|k´1, ykqq “ xk|k´1 ` H´1
1438
+ k p´xk|k´1 ` xk|k´1 ´ β∇xfpxk|k´1; ykqq
1439
+
1440
+ xk|k´1 ´ βr∇xxfpx; ykqs´1∇xfpxk|k´1; ykq,
1441
+ from which the thesis is proven.
1442
+
1443
+ A.4
1444
+ Supporting results for Theorem 1
1445
+ Lemma 1 Let Assumptions 1-2 hold. Choose α ă 2µ{L2. Let xf
1446
+ k`1 be the fixed point of the prediction
1447
+ “pseudo”-dynamical model: xf
1448
+ k`1 “ Φk,gpxf
1449
+ k`1q. Then the distance between xf
1450
+ k`1 and the optimizer trajectory
1451
+ is bounded in expectation as,
1452
+ Er}xf
1453
+ k`1 ´ ˆx‹
1454
+ k`1}s ď 1
1455
+ µEr}Jk`1pˆx‹
1456
+ k`1q ´ EyPYk`1r∇xfpˆx‹
1457
+ k`1; yqs}s ď τ
1458
+ µ “: τµ.
1459
+ Furthermore, let the setting of Example 1 hold. Then,
1460
+ Er}xf
1461
+ k`1 ´ ˆx‹
1462
+ k`1}s ď C0Ch2{µ ` 3C0Σ{µ.
1463
+
1464
+ Proof:
1465
+ Choosing α ă 2µ{L2 and under Assumption 1, we know that the prediction is a contractive operator
1466
+ and its fixed point exists and it is unique. By implicit function theorems, see for instance [33, Theorem 2F.9]
1467
+ and [27, Theorem B.1 and Lemma 4.1], being careful to J being strongly monotone and not generally the
1468
+ gradient of a strongly convex function, then,
1469
+ }xf
1470
+ k`1 ´ ˆx‹
1471
+ k`1} ď 1
1472
+ µ }Jk`1pˆx‹
1473
+ k`1q ´ EyPYk`1r∇xfpˆx‹
1474
+ k`1; yqs}
1475
+ loooooooooooooooooooooooooomoooooooooooooooooooooooooon
1476
+ p˛q
1477
+ .
1478
+ (39)
1479
+ Passing in expectations, and by using Assumption 2, the first thesis follows.
1480
+ As for the second statement, it follows from the derivations of Example 1.
1481
+
1482
+ Lemma 2 Let Assumptions 1-2 hold. Choose α ă 2µ{L2, β ă 2{L. Consider the prediction update xk`1|k “
1483
+ Φk,gpxkq with P prediction steps, and the correction update x1
1484
+ k “ Ψ1
1485
+ gpxk`1|k, yk`1q with C correction steps.
1486
+ Let the contraction factors ρp, ρc be defined as in (17). Then, the following error bounds are in place.
1487
+ Er}xk`1|k ´ ˆx‹
1488
+ k`1}s
1489
+ ď
1490
+ ρP
1491
+ p Er}xk ´ xf
1492
+ k`1}s ` τµ
1493
+ (40)
1494
+ Er}x1
1495
+ k ´ ˆx‹
1496
+ k`1}s
1497
+ ď
1498
+ ρC
1499
+ c Er}xk`1|k ´ ˆx‹
1500
+ k`1}s ` σc,
1501
+ (41)
1502
+ where σc “
1503
+ β σ
1504
+ 1´ρc .
1505
+ Furthermore, under the setting of Example 1, τµ “ pC0Ch2 ` 3C0Σq{µ and σ “ C0Σ.
1506
+
1507
+ 17
1508
+
1509
+ Proof:
1510
+ Choosing α ă 2µ{L2, β ă 2{L and under Assumption 1, we know that the prediction and correction
1511
+ are contractive operators and their fixed points are unique.
1512
+ For the prediction part, by using Equation (39), we obtain,
1513
+ }xk`1|k ´ ˆx‹
1514
+ k`1}
1515
+
1516
+ }xk`1|k ˘ xf
1517
+ k`1 ´ ˆx‹
1518
+ k`1}
1519
+ ď
1520
+ }rproxαgpI ´ αJk`1p‚qqs˝P xk ´ xf
1521
+ k`1} ` 1
1522
+ µp˛q ď ρP
1523
+ p }xk ´ xf
1524
+ k`1} ` 1
1525
+ µp˛q,
1526
+ (42)
1527
+ and passing in expectation with Assumption 2 the claim is proven.
1528
+ For the second claim, we can write
1529
+ }x1
1530
+ k ´ ˆx‹
1531
+ k`1} ď }rproxβgpI ´ β∇xfp‚; yk`1q ˘ βEyPYk`1r∇xfp‚; yqsqs˝Cxk`1|k ´ ˆx‹
1532
+ k`1}.
1533
+ (43)
1534
+ Call ϵk`1pxq :“ ∇xfpx; yk`1q ´ EyPYk`1r∇xfpx; yqs. Then each proximal gradient step will incur in an
1535
+ additive }ϵk`1pxq} error, where x will be different at each step:
1536
+ }x1
1537
+ k ´ ˆx‹
1538
+ k`1} ď ρc}xC´1
1539
+ k`1|k ´ ˆx‹
1540
+ k`1} ` β}ϵk`1pxC´1
1541
+ k`1|kq} ď ρC
1542
+ c }xk`1|k ´ ˆx‹
1543
+ k`1} ` β
1544
+ C
1545
+ ÿ
1546
+ c“1
1547
+ ρC´c
1548
+ c
1549
+ }ϵk`1pxC´c
1550
+ k`1|kq}
1551
+ looooooooooooooomooooooooooooooon
1552
+ p˛˛q
1553
+ . (44)
1554
+ Passing in expectation, with Assumption 2 and the sum of geometric series, the second claim is also proven.
1555
+
1556
+ A.5
1557
+ Proof of Theorem 1
1558
+ The proof follows the one of [27, Proposition 5.1], combining Lemma 1 and Lemma 2. Start by considering
1559
+ χ “ 1, so a classical prediction-correction method. We can use [27, Proposition 5.1], with Erτks “ τµ, and
1560
+ the correction with an additional error term to say,
1561
+ }xk`1 ´ ˆx‹
1562
+ k`1} ď ζC,ρc
1563
+ ´
1564
+ ζP,ρp}xk ´ ˆx‹
1565
+ k} ` ζP,ρp∆ ` ξP,ρpτk
1566
+ ¯
1567
+ ` p˛˛q “: E1.
1568
+ (45)
1569
+ Looking at prediction only, χ “ 0, we obtain instead,
1570
+ }xk`1 ´ ˆx‹
1571
+ k`1} ď
1572
+ ´
1573
+ ζP,ρp}xk ´ ˆx‹
1574
+ k} ` ζP,ρp∆ ` ξP,ρpτk
1575
+ ¯
1576
+ “: E2.
1577
+ (46)
1578
+ For a generic χ P r0, 1s, we can combine the errors as
1579
+ }xk`1 ´ ˆx‹
1580
+ k`1} ď p1 ´ χqE2 ` χE1.
1581
+ (47)
1582
+ Then, we can recursively compute the error via geometric series summation. By passing through expectations,
1583
+ the claim follows.
1584
+ For Example 1, with ∇yxf bounded, by implicit function theorems [5], we have that ∆ “ C0h{µ, from
1585
+ which the thesis.
1586
+
1587
+ A.6
1588
+ Proof of Proposition 2
1589
+ For Problem (22), we look at the minimum of the curve,
1590
+ min
1591
+ χPr0,1s
1592
+ aχ ` b
1593
+ cχ ` d “: Fpχq.
1594
+ (48)
1595
+ For our problem cχ ` d “ 1 ´ ζP,ρp ` χpζP,ρp ´ ζP,ρpζC,ρcq ą 0, b “ ζP,ρp∆ ` ξP,ρpτµ ą 0, while a “
1596
+ pζC,ρc ´ 1qpζP,ρp∆ ` ξP,ρpτµq ` ζC,ρcσc can be positive, negative, or zero. Since function Fpχq is a linear-
1597
+ fractional function in one dimension, for χ ě 0, function Fpχq is monotone. In particular, for a{c ă pąqb{d
1598
+ the function is decreasing (increasing), leading to the optimal choices of χ‹ “ 1p0q. The condition means,
1599
+ pζC,ρc ´ 1qpζP,ρp∆ ` ξP,ρpτµq ` ζC,ρcσc
1600
+ ζP,ρp ´ ζP,ρpζC,ρc
1601
+ ă pąqζP,ρp∆ ` ξP,ρpτµ
1602
+ 1 ´ ζP,ρp
1603
+ .
1604
+ For the special case a{c “ b{d, Fpχq ” 1 and any χ is optimal.
1605
+
1606
+ 18
1607
+
1608
+ A.7
1609
+ Proof of Theorem 2
1610
+ To impose convergence and performance, we look at the following matrix condition, featuring semidefinite
1611
+ matrix X, the scalar ρ, λ1, λ2, γ2, and matrix K which is implicit in B, Be:
1612
+ p‚qT
1613
+
1614
+ X
1615
+ 0
1616
+ 0
1617
+ ´X
1618
+ ȷ „
1619
+ 0
1620
+ B
1621
+ Be
1622
+ ρIn
1623
+ 012
1624
+ 012
1625
+ ȷ
1626
+ ` λ1p‚qT
1627
+
1628
+ ω2
1629
+ 1In
1630
+ 0
1631
+ 0
1632
+ ´In
1633
+ ȷ „
1634
+ In
1635
+ 0
1636
+ 0
1637
+ 012
1638
+ 0
1639
+ In
1640
+ 0
1641
+ 012
1642
+ ȷ
1643
+ `
1644
+ ` λ2p‚qT
1645
+
1646
+ ω2
1647
+ 1ω2
1648
+ 2In
1649
+ 0
1650
+ 0
1651
+ ´In
1652
+ ȷ „
1653
+ In
1654
+ 0
1655
+ 0
1656
+ 012
1657
+ 0
1658
+ 0
1659
+ In
1660
+ 012
1661
+ ȷ
1662
+ `
1663
+ »
1664
+
1665
+ 0
1666
+ 022
1667
+ ´γ2
1668
+ 2In
1669
+
1670
+ fl ĺ 0,
1671
+ (49)
1672
+ where p‚qT means that what is post-multiplied is also pre-multiplied transposed and 0 “ 0nˆn, 0ij “ 0inˆjn.
1673
+ Condition (49) combines the system, the quadratic constraints (i.e., the contractivity) via an S-procedure,
1674
+ and the performance criterion.
1675
+ We now develop the multiplications, we let } ¨ }2
1676
+ X :“ p¨qTXp¨q, and pre and post multiply with the vector
1677
+ rpxk ´ ˆx‹
1678
+ k`1qT, p ¯wk`1 ´ ˆx‹
1679
+ k`1qT, p¯uk`1 ´ ˆx‹
1680
+ k`1qT, eT
1681
+ k`1sT and we obtain,
1682
+ ´ ρ2}xk ´ ˆx‹
1683
+ k`1}2
1684
+ X ` }xk`1 ´ ˆx‹
1685
+ k`1}2
1686
+ X ď ´ λ1
1687
+
1688
+ ω2
1689
+ 1}xk ´ ˆx‹
1690
+ k`1}2 ´ } ¯wk`1 ´ ˆx‹
1691
+ k`1}2‰
1692
+ loooooooooooooooooooooooooomoooooooooooooooooooooooooon
1693
+ ě0
1694
+ `
1695
+ ´ λ2
1696
+
1697
+ ω2
1698
+ 1ω2
1699
+ 2}xk ´ ˆx‹
1700
+ k`1}2 ´ }¯uk`1 ´ ˆx‹
1701
+ k`1}2‰
1702
+ looooooooooooooooooooooooooomooooooooooooooooooooooooooon
1703
+ ě0
1704
+ `γ2}ek`1}2 ď γ2}ek`1}2.
1705
+ (50)
1706
+ Define the error Ei :“ xi ´ ˆx‹
1707
+ i and the drift δk “ ˆx‹
1708
+ k`1 ´ ˆx‹
1709
+ k, then
1710
+ }Ek`1}2
1711
+ X ď ρ2}Ek ´ δk}2
1712
+ X ` γ2}ek`1}2.
1713
+ (51)
1714
+ Taking the square root of both sides, since ě 0
1715
+ }Ek`1}X ď
1716
+ b
1717
+ ρ2}Ek ´ δk}2
1718
+ X ` γ2}ek`1}2 ď ρ}Ek}X ` ρ}δk}X ` γ}ek`1}.
1719
+ (52)
1720
+ Let }δk} ď ∆, also note that Er}ek`1}s ď 1 since Er}qk`1}s ď 1{
1721
+ ?
1722
+ 2, Er}rk`1}s ď 1{
1723
+ ?
1724
+ 2. Since we impose X ľ
1725
+ In without loss of generality (since the problem remains unchanged for any scalar scaling), then }Ek`1}X ě
1726
+ }Ek`1} and }Ek}X ď }X1{2}}Ek} “ γ1}Ek}. Here the equality sign is due to the fact that we minimize over
1727
+ γ1.
1728
+ Similarly, ρ}δk}X ď ργ1}δk}. Then, iterating on k, and taking the expectations, we obtain,
1729
+ Er}Ek}s ď γ1ρkEr}E0}s `
1730
+ 1
1731
+ 1 ´ ρ pγ1ρ∆ ` γ2q ,
1732
+ (53)
1733
+ lim sup
1734
+ kÑ8
1735
+ Er}Ek}s ď
1736
+ 1
1737
+ 1 ´ ρ pγ1ρ∆ ` γ2q .
1738
+ (54)
1739
+ As such, for any fixed ρ, minimizing γ1ρ∆ ` γ2 minimizes the asymptotic tracking error. Furthermore,
1740
+ since }x}1 ď ?n}x}2 for x P Rn, we know that
1741
+ a
1742
+ γ2
1743
+ 1ρ2∆2 ` γ2
1744
+ 2 ě pγ1ρ∆ ` γ2q{
1745
+ ?
1746
+ 2. So our cost majorizes the
1747
+ asymptotical error γ1ρ∆`γ2 and therefore by minimizing our cost, we diminish the latter (notice, we do not
1748
+ minimize the latter, in general, since we have a constrained problem).
1749
+ To finish the proof, we need to transform (49) into (30d). We develop the matrix multiplications, and we
1750
+ observe that the resulting matrix is block diagonal. The first block is ρ2X ľ pλ1ω2
1751
+ 1 `λ2ω2
1752
+ 1ω2
1753
+ 2qIn. The second
1754
+ block is
1755
+ p‚qTX rB
1756
+ Bes ` λ1
1757
+ »
1758
+
1759
+ ´In
1760
+ 0
1761
+ 012
1762
+ 0
1763
+ 012
1764
+ 022
1765
+
1766
+ fl ` λ2
1767
+ »
1768
+
1769
+ 0
1770
+ 0
1771
+ 012
1772
+ ´In
1773
+ 012
1774
+ 022
1775
+
1776
+ fl `
1777
+ »
1778
+
1779
+ 0
1780
+ 0
1781
+ 012
1782
+ 0
1783
+ 012
1784
+ ´γ2I2n
1785
+
1786
+ fl ĺ 0.
1787
+ (55)
1788
+ Expand X into XX´1X and introduce the variable W “ KX. Then, taking the Schur’s complement, we
1789
+ obtain (30d), from which the thesis.
1790
+
1791
+ 19
1792
+
1793
+ A.8
1794
+ Proof of Theorem 3
1795
+ The proof follows the proof of Theorem 2. We focus here on the different parts.
1796
+ Starting from Eq. (49), we adapt the first term to:
1797
+ p‚qT
1798
+
1799
+ Xpθs`1q
1800
+ 0
1801
+ 0
1802
+ ´Xpθsq
1803
+ ȷ „
1804
+ 0
1805
+ Bpθsq
1806
+ Bepθsq
1807
+ ρIn
1808
+ 012
1809
+ 012
1810
+ ȷ
1811
+ .
1812
+ (56)
1813
+ The bottom diagonal leads to conditions
1814
+ ρ2rX0 ` θsX1s ľ pλ1ω2
1815
+ 1 ` λ2ω2
1816
+ 1ω2
1817
+ 2qIn,
1818
+ (57)
1819
+ rX0 ` θsX1s ľ In,
1820
+ rX0 ` θsX1s ĺ γ2
1821
+ 1In
1822
+ (58)
1823
+ which needs to be valid for the extreme points θs “ 0, 1, since affine in θs. However, given the constraint
1824
+ X1 ĺ 0, the above simplify into (32b) and (32c), respectively.
1825
+ Bu using again the constraint X1 ĺ 0, the upper diagonal can be upper bounded as,
1826
+ p‚qTXpθs`1qrBpθsq
1827
+ Bepθsqs “ p‚qTrX0 ` θs`1X1srBpθsq
1828
+ Bepθsqs ĺ
1829
+ p‚qTrX0 ´ νX1 ` θsX1srBpθsq
1830
+ Bepθsqs “ p‚qTYpθsqrBpθsq
1831
+ Bepθsqs,
1832
+ (59)
1833
+ so imposing a ĺ condition on the latter, would imply a condition on the former. In particular, adapting (55),
1834
+ the condition
1835
+ p‚qTYpθsqrBpθsq
1836
+ Bepθsqs`λ1
1837
+ »
1838
+
1839
+ ´In
1840
+ 0
1841
+ 012
1842
+ 0
1843
+ 012
1844
+ 022
1845
+
1846
+ fl`λ2
1847
+ »
1848
+
1849
+ 0
1850
+ 0
1851
+ 012
1852
+ ´In
1853
+ 012
1854
+ 022
1855
+
1856
+ fl`
1857
+ »
1858
+
1859
+ 0
1860
+ 0
1861
+ 012
1862
+ 0
1863
+ 012
1864
+ ´γ2I2n
1865
+
1866
+ fl ĺ 0 (60)
1867
+ would imply a similar condition on Xpθs`1q, thus the upper diagonal of (56), and for proof of Theorem 2,
1868
+ convergence of the algorithm as indicated in Theorem 3.
1869
+ Condition (60) leads to condition (32e), by Schur complement and dropping the now-redundant subscript
1870
+ s.
1871
+ We remark here the importance of the constraint X1 ĺ 0, without which we would need two upper bounds
1872
+ in (59), one for ´ν and one for `ν, which would render the substitution Wpθq “ KpθqYpθq ambiguous, and
1873
+ determining Kpθq harder.
1874
+
1875
+ A.9
1876
+ Proof of Theorem 4
1877
+ The condition θ P r0, 1s is equivalent to θp1 ´ θq ě 0. Then we apply the generalized S-procedure as in [25].
1878
+
1879
+ References
1880
+ [1] T. H. Hamam and J. Romberg, “Streaming solutions for time-varying optimization problems,” IEEE
1881
+ Transactions on Signal Processing, vol. 70, pp. 3582–3597, 2022.
1882
+ [2] M. M. Zavlanos, A. Ribeiro, and G. J. Pappas, “Network Integrity in Mobile Robotic Networks,” IEEE
1883
+ Transactions on Automatic Control, vol. 58, no. 1, pp. 3 – 18, 2013.
1884
+ [3] E. Dall’Anese and A. Simonetto, “Optimal Power Flow Pursuit,” IEEE Transactions on Smart Grid,
1885
+ vol. 9, no. 2, pp. 942 – 952, 2018.
1886
+ [4] E. Dall’Anese, A. Simonetto, S. Becker, and L. Madden, “Optimization and learning with information
1887
+ streams: Time-varying algorithms and applications,” IEEE Signal Processing Magazine, vol. 37, pp.
1888
+ 71–83, 2020.
1889
+ [5] A. Simonetto, E. Dall’Anese, S. Paternain, G. Leus, and G. B. Giannakis, “Time-Varying Convex
1890
+ Optimization: Time-Structured Algorithms and Applications,” Proceedings of the IEEE, vol. 108, no. 11,
1891
+ 2020.
1892
+ 20
1893
+
1894
+ [6] J. Zhang, H. Lin, S. Das, S. Sra, and A. Jadbabaie, “Stochastic optimization with non-stationary noise,”
1895
+ arXiv:2006.04429v2, 2020.
1896
+ [7] J. Cutler, D. Drusvyatskiy, and Z. Harchaoui, “Stochastic optimization under time drift: iterate av-
1897
+ eraging, step-decay schedules, and high probability guarantees,” in Advances in Neural Information
1898
+ Processing Systems.
1899
+ Advances in Neural Information Processing Systems, 2021.
1900
+ [8] S. Maity, D. Mukherjee, M. Banerjee, and Y. Sun, “Predictor-Corrector Algorithms for Stochastic Op-
1901
+ timization under Gradual Distribution Shift,” arXiv:2205.13575, 2022.
1902
+ [9] B. T. Polyak, Introduction to Optimization.
1903
+ Optimization Software, Inc., 1987.
1904
+ [10] M. Fazlyab, S. Paternain, V. Preciado, and A. Ribeiro, “Prediction-Correction Interior-Point Method
1905
+ for Time-Varying Convex Optimization,” IEEE Transactions on Automatic Control, vol. 63, no. 7, 2018.
1906
+ [11] A. Flaxman, A. Kalai, and H. McMahan, “Online Convex Optimization in the Bandit Setting: Gradi-
1907
+ ent Descent without Gradient,” in Proceedings of the ACM-SIAM Symposium on Discrete Algorithms.
1908
+ Vancouver, Canada: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, January 2005,
1909
+ pp. 385 – 394.
1910
+ [12] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and stochastic
1911
+ optimization,” J. Mach. Learn. Res., vol. 12, p. 2121–2159, 2011.
1912
+ [13] M. Schmidt, N. Le Roux, and F. Bach, “Minimizing finite sums with the stochastic average gradient,”
1913
+ Mathematical Programming, vol. 162, no. 1, pp. 83–112, 2017.
1914
+ [14] J. Duchi, Introductory lectures on stochastic optimization.
1915
+ The mathematics of data, 2018.
1916
+ [15] O. Besbes, Y. Gur, and A. Zeevi, “Non-stationary Stochastic Optimization,” Operations research, vol. 63,
1917
+ no. 5, pp. 1227 – 1244, 2015.
1918
+ [16] L. Lessard, B. Recht, and A. Packard, “Analysis and design of optimization algorithms via integral
1919
+ quadratic constraints,” SIAM Journal on Optimization, vol. 26, no. 1, pp. 57–95, 2016.
1920
+ [17] Z. E. Nelson and E. Mallada, “An integral quadratic constraint framework for real-time steady-state
1921
+ optimization of linear time-invariant systems,” in 2018 Annual American Control Conference (ACC).
1922
+ 2018 Annual American Control Conference (ACC), 2018, pp. 597–603.
1923
+ [18] M. Colombino, E. Dall’Anese, and A. Bernstein, “Online optimization as a feedback controller: Stability
1924
+ and tracking,” IEEE Transactions on Control of Network Systems, 2019.
1925
+ [19] S. Hassan-Moghaddam and M. R. Jovanovi´c, “Proximal gradient flow and Douglas–Rachford splitting
1926
+ dynamics: Global exponential stability via integral quadratic constraints,” Automatica, vol. 123, p.
1927
+ 109311, 2021.
1928
+ [20] C. Scherer and C. Ebenbauer, “Convex synthesis of accelerated gradient algorithms,” SIAM Journal on
1929
+ Control and Optimization, vol. 59, no. 6, pp. 4615–4645, 2021.
1930
+ [21] S. Michalowsky, C. Scherer, and C. Ebenbauer, “Robust and structure exploiting optimisation algo-
1931
+ rithms: an integral quadratic constraint approach,” International Journal of Control, vol. 94, no. 11,
1932
+ pp. 2956–2979, 2021.
1933
+ [22] L. Lessard, “The analysis of optimization algorithms: A dissipativity approach,” IEEE Control Systems
1934
+ Magazine, vol. 42, no. 3, pp. 58–72, 2022.
1935
+ [23] F. Wu and S. Prajna, “SOS-based solution approach to polynomial LPV system analysis and synthesis
1936
+ problems,” International Journal of Control, vol. 78, no. 8, pp. 600–611, 2005.
1937
+ [24] C. W. Scherer and C. W. J. Hol, “Matrix Sum-of-Squares Relaxations for Robust Semi-Definite Pro-
1938
+ grams,” Mathematical Programming, vol. 107, no. 1, pp. 189–211, 2006.
1939
+ [25] P. Massioni, L. Bako, and G. Scorletti, “Stability of uncertain piecewise-affine systems with parametric
1940
+ dependence,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 1998–2003, 2020, 21st IFAC World Congress.
1941
+ 21
1942
+
1943
+ [26] A. Rakhlin and K. Sridharan, “Online learning with predictable sequences,” in COLT, PMLR.
1944
+ COLT,
1945
+ PMLR, 2013.
1946
+ [27] N. Bastianello, A. Simonetto, and R. Carli, “Primal and dual prediction-correction methods for time-
1947
+ varying convex optimization,” arXiv:2004.11709, 2020.
1948
+ [28] A. Jadbabaie, A. Rakhlin, S. Shahrampour, and K. Sridharan, “Online Optimization: Competing with
1949
+ Dynamic Comparators,” in Proceedings of the Eighteenth International Conference on Artificial Intelli-
1950
+ gence and Statistics, PMLR, no. 38. Proceedings of the Eighteenth International Conference on Artificial
1951
+ Intelligence and Statistics, PMLR, 2015, pp. 398 – 406.
1952
+ [29] Y. Nesterov, Introductory Lectures on Convex Optimization, ser. Applied Optimization. Springer, 2004.
1953
+ [30] S. Boyd and L. Vandenberghe, Convex Optimization.
1954
+ Cambridge University Press, 2004.
1955
+ [31] V. Pandey, J. Monteil, C. Gambella, and A. Simonetto, “On the needs for MaaS platforms to handle
1956
+ competition in ridesharing mobility,” Transportation Research Part C: Emerging Technologies, vol. 108,
1957
+ pp. 269–288, 2019.
1958
+ [32] A. Simonetto, A. Mokhtari, A. Koppel, G. Leus, and A. Ribeiro, “A Class of Prediction-Correction
1959
+ Methods for Time-Varying Convex Optimization,” IEEE Transactions on Signal Processing, vol. 64,
1960
+ no. 17, pp. 4576 – 4591, 2016.
1961
+ [33] A. L. Dontchev and R. T. Rockafellar, Implicit Functions and Solution Mappings.
1962
+ Springer, 2009.
1963
+ 22
1964
+
EtFRT4oBgHgl3EQfyjjm/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
FNAyT4oBgHgl3EQfe_gi/content/tmp_files/2301.00330v1.pdf.txt ADDED
@@ -0,0 +1,3503 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Efficient On-device Training via Gradient Filtering
2
+ Yuedong Yang
3
+ Guihong Li
4
+ Radu Marculescu
5
+ The University of Texas at Austin
6
+ {albertyoung, lgh, radum}@utexas.edu
7
+ Abstract
8
+ Despite its importance for federated learning, continu-
9
+ ous learning and many other applications, on-device train-
10
+ ing remains an open problem for EdgeAI. The problem
11
+ stems from the large number of operations (e.g., floating
12
+ point multiplications and additions) and memory consump-
13
+ tion required during training by the back-propagation al-
14
+ gorithm. Consequently, in this paper, we propose a new
15
+ gradient filtering approach which enables on-device DNN
16
+ model training.
17
+ More precisely, our approach creates a
18
+ special structure with fewer unique elements in the gradi-
19
+ ent map, thus significantly reducing the computational com-
20
+ plexity and memory consumption of back propagation dur-
21
+ ing training. Extensive experiments on image classification
22
+ and semantic segmentation with multiple DNN models (e.g.,
23
+ MobileNet, DeepLabV3, UPerNet) and devices (e.g., Rasp-
24
+ berry Pi and Jetson Nano) demonstrate the effectiveness
25
+ and wide applicability of our approach. For example, com-
26
+ pared to SOTA, we achieve up to 19× speedup and 77.1%
27
+ memory savings on ImageNet classification with only 0.1%
28
+ accuracy loss. Finally, our method is easy to implement and
29
+ deploy; over 20× speedup and 90% energy savings have
30
+ been observed compared to highly optimized baselines in
31
+ MKLDNN and CUDNN on NVIDIA Jetson Nano. Conse-
32
+ quently, our approach opens up a new direction of research
33
+ with a huge potential for on-device training.
34
+ 1. Introduction
35
+ Existing approaches for on-device training are neither
36
+ efficient nor practical enough to satisfy the resource con-
37
+ straints of edge devices (Figure 1). This is because these
38
+ methods do not properly address a fundamental problem in
39
+ on-device training, namely the computational and memory
40
+ complexity of the back-propagation (BP) algorithm. More
41
+ precisely, although the architecture modification [6] and
42
+ layer freezing [19, 21] can help skipping the BP for some
43
+ layers, for other layers, the complexity remains high. Gra-
44
+ dient quantization [4, 7] can reduce the cost of arithmetic
45
+ operations but cannot reduce the number of operations (e.g.,
46
+ multiplications); thus, the speedup in training remains lim-
47
+ ited.
48
+ Moreover, gradient quantization is not supported
49
+ by existing deep-learning frameworks (e.g., CUDNN [9],
50
+ MKLDNN [1], PyTorch [26] and Tensorflow [2]). To en-
51
+ able on-device training, there are two important questions
52
+ must be addressed:
53
+ • How can we reduce the computational complexity of
54
+ back propagation through the convolution layers?
55
+ • How can we reduce the data required by the gradient
56
+ computation during back propagation?
57
+ In this paper, we propose gradient filtering, a new research
58
+ direction, to address both questions. By addressing the first
59
+ question, we reduce the computational complexity of train-
60
+ ing; by addressing the second question, we reduce the mem-
61
+ ory consumption.
62
+ In general, the gradient propagation through a convolu-
63
+ tion layer involves multiplying the gradient of the output
64
+ variable with a Jacobian matrix constructed with data from
65
+ either the input feature map or the convolution kernel. We
66
+ aim at simplifying this process with the new gradient filter-
67
+ ing approach proposed in Section 3. Intuitively, if the gradi-
68
+ ent map w.r.t. the output has the same value for all entries,
69
+ then the computation-intensive matrix multiplication can be
70
+ greatly simplified, and the data required to construct the Ja-
71
+ cobian matrix can be significantly reduced. Thus, our gra-
72
+ dient filtering can approximate the gradient w.r.t. the output
73
+ by creating a new gradient map with a special (i.e., spatial)
74
+ structure and fewer unique elements. By doing so, the gra-
75
+ dient propagation through the convolution layers reduces to
76
+ cheaper operations, while the data required (hence memory)
77
+ for the forward propagation also lessens. Through this fil-
78
+ tering process, we trade off the gradient precision against
79
+ the computation complexity during BP. We note that gradi-
80
+ ent filtering does not necessarily lead to a worse precision,
81
+ i.e., models sometimes perform better with filtered gradi-
82
+ ents when compared against models trained with vanilla BP.
83
+ In summary, our contributions are as follows:
84
+ • We propose gradient filtering, which reduces the com-
85
+ putation and memory required for BP by more than
86
+ 1
87
+ arXiv:2301.00330v1 [cs.CV] 1 Jan 2023
88
+
89
+ two orders of magnitude compared to the exact gradi-
90
+ ent calculation.
91
+ • We provide a rigorous error analysis which shows that
92
+ the errors introduced by the gradient filtering have only
93
+ a limited influence on model accuracy.
94
+ • Our experiments with multiple DNN models and com-
95
+ puter vision tasks show that we can train a neural net-
96
+ work with significantly less computation and memory
97
+ costs, with only a marginal accuracy loss compared to
98
+ baseline methods. Side-by-side comparisons against
99
+ other training acceleration techniques also suggest the
100
+ effectiveness of our method.
101
+ • Our method is easy to deploy with highly optimized
102
+ deep learning frameworks (e.g., MKLDNN [1] and
103
+ CUDNN [9]).
104
+ Evaluations on resource-constrained
105
+ edge (Raspberry Pi and Jetson Nano) and high-
106
+ performance devices (CPU/GPU) show that our
107
+ method is highly suitable for real life deployment.
108
+ The paper is organized as follows. Section 2 reviews rel-
109
+ evant work. Section 3 presents our method in detail. Sec-
110
+ tion 4 discusses error analysis, computation and memory
111
+ consumption. Experimental results are presented in Section
112
+ 5. Finally, Section 6 summarizes our main contributions.
113
+ 2. Related Work
114
+ Architecture Modification: Authors of [6] propose to at-
115
+ tach small branches to the original neural network. Dur-
116
+ ing training, the attached branches and biases in the orig-
117
+ inal model are updated. Though memory consumption is
118
+ reduced, updating these branches still needs gradient prop-
119
+ agation through the entire network; moreover, a large com-
120
+ putational overhead for inference is introduced.
121
+ Layer Freezing: Authors of [19, 21] propose to only train
122
+ parts of the model. [19] makes layer selection based on layer
123
+ importance metrics, while [21] uses evolutionary search.
124
+ However, the layers selected by all these methods are typ-
125
+ ically computationally heavy layers (e.g., the last few lay-
126
+ ers in ResNet [15]) which consume most of the resources.
127
+ Thus, the speedup achieved by these approaches is limited.
128
+ Gradient Quantization: [3,5] quantize gradient after back-
129
+ propagation, which means these methods cannot accelerate
130
+ the training on a single device. Work in [4, 7, 16, 18, 29,
131
+ 30, 34] accelerates training by reducing the cost for every
132
+ arithmetic operation. However, these methods do not re-
133
+ duce the number of operations, which is typically huge for
134
+ SOTA CNNs, so their achievable speedup is limited. Also,
135
+ all these methods are not supported by the popular deep
136
+ learning frameworks [1,2,9,26].
137
+ In contrast to the prior work, our method opens up a new
138
+ research direction. More precisely, we reduce the number of
139
+ Arch. Modification
140
+ Example: [6]
141
+ Drawbacks:
142
+ Large overhead;
143
+ Limited to specific model
144
+ Layer/Channel Freezing
145
+ Example: [19, 21]
146
+ Drawbacks:
147
+ High search cost;
148
+ Limited to simple models.
149
+ Gradient Quantization
150
+ Example: [4, 7, 16]
151
+ Drawbacks:
152
+ Not supported by
153
+ existing DL frameworks
154
+ Gradient Filtering [Ours]
155
+ Advantages:
156
+ Very fast and accurate;
157
+ Well supported by
158
+ existing DL frameworks
159
+ Efficiency
160
+ Applicability
161
+ Orthogonal Research Directions for On-device Training
162
+ Figure 1. Matrix of orthogonal directions for on-device training.
163
+ “Arch” is short for “architecture”. Our approach opens up a new
164
+ direction of research for on-device training for EdgeAI.
165
+ computations and memory consumption required for train-
166
+ ing a single layer via gradient filtering. Thus, our method
167
+ can be combined with any of the methods mentioned above.
168
+ For example, in Section G in the Supplementary, we illus-
169
+ trate how our method can work together with the gradient
170
+ quantization methods to enable a higher speedup.
171
+ 3. Proposed Method
172
+ In this section, we introduce our gradient filtering ap-
173
+ proach to accelerate BP. To this end, we target the most
174
+ computation and memory heavy operation, i.e., convolution
175
+ (Figure 2(a)). Table 1 lists some symbols we use.
176
+ Cx
177
+ Number of channels of x
178
+ Wx, Hx
179
+ Width and height of x
180
+ θ
181
+ Convolution kernel
182
+ θ′
183
+ Rotated θ, i.e., θ′ = rot180(θ)
184
+ r
185
+ Patch size (r × r )
186
+ gx, gy, gθ
187
+ Gradients w.r.t. x, y, θ
188
+ ˜gy
189
+ Approximated gradient gy
190
+ ˜x, ˜θ′
191
+ Sum of x and θ′ over
192
+ spatial dimensions (height and width)
193
+ x[n, ci, h, w]
194
+ Element for feature map x
195
+ at batch n, channel ci, pixel (h, w)
196
+ θ[co, ci, u, v]
197
+ Element for convolution kernel θ
198
+ at output channel co, input channel ci,
199
+ position (u, v)
200
+ Table 1. Table of symbols we use.
201
+ 2
202
+
203
+ Loss
204
+ Loss
205
+ Gradient Filter
206
+ 1.0 -1.0 -0.2 0.0
207
+ 0.0 4.0 2.0 3.0
208
+ 0.2 0.4 2.0 -1.0
209
+ 0.5 4.1 -1.4 -4.0
210
+ 4.0
211
+ 4.8
212
+ 5.2
213
+ -4.4
214
+ 0.1 0.1 -0.2 0.5
215
+ 0.0 0.2 0.1 0.4
216
+ 0.5 0.2 0.2 -0.9
217
+ 0.4 0.1 -0.1 0.4
218
+ 0.1
219
+ 0.2
220
+ 0.3
221
+ -0.1
222
+ 3.36
223
+ ������������
224
+ �������������
225
+ ������������������������
226
+ �������������������������
227
+ �������������������������
228
+ 0.1
229
+ 0.3
230
+ 0.4
231
+ 0.1
232
+ 0.2
233
+ 0.1
234
+ -0.4
235
+ -0.2
236
+ -0.5
237
+ ������������𝜃
238
+ 0.1
239
+ �������������𝜃
240
+ 0.01
241
+ 0.02
242
+ 0.03
243
+ -0.01
244
+ �������������������������
245
+
246
+
247
+ ������������
248
+ ������������������������
249
+ ������������𝜃
250
+
251
+ ������������
252
+ ������������������������
253
+ Memory
254
+
255
+ ������������
256
+ �������������������������
257
+ Memory
258
+ ��������������
259
+
260
+ ������������
261
+ �������������������������
262
+ ������������𝜃
263
+ �������������𝜃 ⊙
264
+ ������������
265
+ ������������
266
+ �������������������������
267
+ ������������������������
268
+
269
+ ������������
270
+ ������������
271
+ ������������������������
272
+
273
+ Vanilla Conv.
274
+ Our Conv.
275
+
276
+ (a)
277
+ (b)
278
+
279
+ Spatial Sum
280
+ =
281
+ ������������. ������������ × ������������. ������������ + ������������. ������������ × ������������. ������������ +
282
+ ������������. ������������ × ������������. ������������ + −������������. ������������ × (−������������. ������������)
283
+ Patch size ������������ × ������������ = 2 × 2
284
+ Forward Propagation
285
+ Backward Propagation
286
+ Average Filter
287
+
288
+ ������������ Spatial Sum
289
+ ⊛Convolution
290
+ ⒻFrobenius Inner Product
291
+ ⊙Element-wise Product
292
+ ������������
293
+ ������������
294
+ ������������
295
+ ������������
296
+ Average Value
297
+ Other Layers
298
+ Other Layers
299
+ Height
300
+ Width
301
+ Figure 2. (a) Computation procedures for vanilla training method (upper) and our method (lower). (b) Example of gradient propagation
302
+ with gradient filtering. Numbers in this example are chosen randomly for illustration purposes. In this case, the patch size selected for the
303
+ gradient filter is 2 × 2. Thus, the 4 × 4 gradient map gy is approximated by ˜gy, which has four 2 × 2 patches with one unique value for
304
+ each patch. Also, input feature map x and mirrored convolution kernel θ′ are spatial summed to ˜x and ˜θ′. Since ˜x has fewer unique values
305
+ than x, memory consumption is reduced. Finally, with ˜gy, ˜x and ˜θ, we compute the gradient w.r.t. kernel and input feature map with much
306
+ fewer operations than the standard back propagation method.
307
+ 3.1. Problem Setup
308
+ The computations for both forward and backward paths
309
+ are shown in Figure 2(a). For the standard (vanilla) ap-
310
+ proach (upper Figure 2(a)), starting with input x, the for-
311
+ ward propagation convolves the input feature map x with
312
+ kernel θ and returns output y, which is further processed
313
+ by the other layers in the neural network (dotted arrow) un-
314
+ til the loss value l is calculated. As shown in Figure 2(a),
315
+ the BP of the convolution layer starts with the gradient map
316
+ w.r.t. output y (gy). The gradient w.r.t. input (gx) is calcu-
317
+ lated by convolving gy with the rotated convolution kernel
318
+ θ′, i.e., gx = gy ⊛ rot180(θ) = gy ⊛ θ′. The gradient w.r.t.
319
+ convolution kernel, namely gθ, is calculated with the Frobe-
320
+ nius inner product [17] between x and gy, i.e., gθ = gy
321
+ F x.
322
+ The lower half of Figure 2(a) shows our method, where
323
+ several changes are made: We introduce the gradient filter
324
+ “ A ” after gy to generate the approximate gradient for BP.
325
+ Also, instead of using the accurate x and θ′ values for gra-
326
+ dient computation, we sum over spatial dimensions (height
327
+ and width dimensions), i.e., ˜x and ˜θ′, respectively. Finally,
328
+ the convolution layer now multiplies the approximate gra-
329
+ dient ˜gy with spatial kernel ˜θ′ instead of convolving with it
330
+ to calculate ˜gx. Figure 2(b) shows an example of gradient
331
+ propagation with our gradient filter.
332
+ 3.2. Preliminary Analysis
333
+ Consider the vanilla BP for convolution in Figure 2(a).
334
+ Equation (1) shows the number of computations (#FLOPs)
335
+ required to calculate gx given gy:
336
+ #FLOPs = 2CxCy · WyHy · WθHθ
337
+ (1)
338
+ The computation requirements in Equation (1) belong to
339
+ three categories: number of channels, number of unique el-
340
+ ements per channel in the gradient map, and kernel size. Our
341
+ method focuses on the last two categories.
342
+ i. Unique elements: (WyHy) represents the number of
343
+ unique elements per channel in the gradient w.r.t. output
344
+ variable y (gy). Given the high-resolution images we use,
345
+ this term is huge, so if we manage to reduce the number
346
+ of unique elements in the spatial dimensions (height and
347
+ width), the computations required are greatly reduced too.
348
+ ii.
349
+ Kernel size: (WθHθ) represents the number of
350
+ unique elements in the convolution kernel. If the gradient gy
351
+ has some special structure, for example gy = 1Hy×Wy · v
352
+ (i.e., every element in gy has the same value v), then the
353
+ convolution can be simplified to (� θ′)v1Hy×Wy (with
354
+ boundary elements ignored). With such a special structure,
355
+ only one multiplication and (WθHθ − 1) additions are re-
356
+ quired. Moreover, � θ′ is independent of data so the result
357
+ can be shared across multiple images until θ gets updated.
358
+ 3.3. Gradient Filtering
359
+ To reduce the number of unique elements and create the
360
+ special structure in the gradient map, we apply the gradi-
361
+ ent filter after the gradient w.r.t. output (gy) is provided.
362
+ During the backward propagation, the gradient filter A ap-
363
+ proximates the gradient gy by spatially cutting the gradient
364
+ map into r×r-pixel patches and then replacing all elements
365
+ in each patch with their average value (Figure 2(b)):
366
+ ˜gy[n, co, h, w] = 1
367
+ r2
368
+ ⌈h/r⌉r
369
+
370
+ i=⌊h/r⌋r
371
+ ⌈w/r⌉r
372
+
373
+ j=⌊w/r⌋r
374
+ gy[n, co, i, j]
375
+ (2)
376
+ 3
377
+
378
+ For instance in Figure 2(b), we replace the 16 distinct values
379
+ in the gradient map gy with 4 average values in ˜gy. So given
380
+ a gradient map gy with N images per batch, C channels,
381
+ and H × W pixels per channel, the gradient filter returns
382
+ a structured approximation of the gradient map containing
383
+ only N × C × ⌈ H
384
+ r ⌉ × ⌈ W
385
+ r ⌉ blocks, with one unique value
386
+ per patch. We use this matrix of unique values to represent
387
+ the approximate gradient map ˜gy, as shown in Figure 2(b).
388
+ 3.4. Back Propagation with Gradient Filtering
389
+ We describe now the computation procedure used after
390
+ applying the gradient filter. Detailed derivations are pro-
391
+ vided in Supplementary Section A.
392
+ Gradient w.r.t. input: The gradient w.r.t. input is cal-
393
+ culated by convolving θ′ with gy (Figure 2(a)). With the
394
+ approximate gradient ˜gy, this convolution simplifies to:
395
+ ˜gx[n, ci, h, w] =
396
+
397
+ co
398
+ ˜gy[n, co, h, w] ⊙ ˜θ′[co, ci]
399
+ (3)
400
+ where ˜θ′[co, ci] = �
401
+ u,v θ′[co, ci, u, v] is the spatial sum of
402
+ convolution kernel θ, as shown in Figure 2(b).
403
+ Gradient w.r.t. kernel: The gradient w.r.t. the kernel is
404
+ calculated by taking the Frobenius inner product between x
405
+ and gy, i.e., gθ[co, ci, u, v] = x F gy, namely:
406
+ gθ[co, ci, u, v] =
407
+
408
+ n,i,j
409
+ x[n, ci, i+u, j +v]gy[n, co, i, j] (4)
410
+ With the approximate gradient ˜gy, the operation can be sim-
411
+ plified to:
412
+ ˜gθ[co, ci, u, v] =
413
+
414
+ n,i,j
415
+ ˜x[n, ci, i, j]˜gy[n, co, i, j]
416
+ (5)
417
+ with ˜x[n, ci, i, j] = �⌈i/r⌉r
418
+ h=⌊i/r⌋r
419
+ �⌈j/r⌉r
420
+ w=⌊j/r⌋r x[n, ci, h, w].
421
+ As shown in Figure 2(b), ˜x[n, ci, i, j] is the spatial sum of
422
+ x elements in the same patch containing pixel (i, j).
423
+ 4. Analyses of Proposed Approach
424
+ In this section, we analyze our method from three per-
425
+ spectives: gradient filtering approximation error, computa-
426
+ tion reduction, and memory cost reduction.
427
+ 4.1. Error Analysis of Gradient Filtering
428
+ We prove that the approximation error introduced by our
429
+ gradient filtering is bounded during the gradient propaga-
430
+ tion. Without losing generality, we consider that all vari-
431
+ ables have only one channel, i.e., Cx0 = Cx1 = 1.
432
+ Proposition 1: For any input-output channel pair (co, ci)
433
+ in the convolution kernel θ, assuming the DC component
434
+ has the largest energy value compared to all components in
435
+ the spectrum1, then the signal-to-noise-ratio (SNR) of ˜gx is
436
+ greater than SNR of ˜gy.
437
+ Proof:
438
+ We use Gx, Gy and Θ to denote the gradients
439
+ gx, gy and the convolution kernel θ in the frequency domain;
440
+ Gx[u, v] is the spectrum value at frequency (u, v) and δ is
441
+ the 2D discrete Dirichlet function. To simplify the discus-
442
+ sion, we consider only one patch of size r × r.
443
+ The gradient returned by the gradient filtering can be
444
+ written as:
445
+ ˜gy = 1
446
+ r2 1r×r ⊛ gy
447
+ (6)
448
+ where ⊛ denotes convolution.
449
+ By applying the discrete
450
+ Fourier transformation, Equation (6) can be rewritten in the
451
+ frequency domain as:
452
+ ˜Gy[u, v] = 1
453
+ r2 δ[u, v]Gy[u, v]
454
+ (7)
455
+ ˜gy is the approximation of gy (i.e., the ground truth for ˜gy
456
+ is gy), and the SNR of ˜gy equals to:
457
+ SNR˜gy =
458
+
459
+ (u,v) G2
460
+ y[u, v]
461
+
462
+ (u,v)(Gy[u, v] − 1
463
+ r2 δ[u, v]Gy[u, v])2
464
+ = (1 − 2r2 − 1
465
+ r4
466
+ G2
467
+ y[0, 0]
468
+
469
+ (u,v) G2y[u, v])−1
470
+ (8)
471
+ For the convolution layer, the gradient w.r.t. the approxi-
472
+ mate variable ˜x in the frequency domain is2:
473
+ ˜Gx[u, v] = Θ[−u, −v] ˜Gy[u, v]
474
+ = 1
475
+ r2 Θ[−u, −v]δ[u, v]Gy[u, v]
476
+ (9)
477
+ and its ground truth is:
478
+ Gx[u, v] = Θ[−u, −v]Gy[u, v]
479
+ (10)
480
+ Similar to Equation (8), the SNR of g˜x is:
481
+ SNR˜gx = (1 − 2r2 − 1
482
+ r4
483
+ (Θ[0, 0]Gy[0, 0])2
484
+
485
+ (u,v) (Θ[u, v]Gy[u, v])2 )−1
486
+ (11)
487
+ Equation (11) can be rewritten as:
488
+ r4(1 − SNR−1
489
+ ˜gx )
490
+ 2r2 − 1
491
+ =
492
+ (Θ[0, 0]Gy[0, 0])2
493
+
494
+ (u,v)(Θ[−u, −v]Gy[u, v])2
495
+ =
496
+ G2
497
+ y[0, 0]
498
+
499
+ (u,v)( Θ[−u,−v]
500
+ Θ[0,0] Gy[u, v])2
501
+ (12)
502
+ Furthermore, the main assumption (i.e., the DC component
503
+ dominates the frequency spectrum of Θ) can be written as:
504
+ Θ2[0, 0]/max(u,v)̸=(0,0)Θ2[u, v] ≥ 1
505
+ (13)
506
+ 1As a reminder, the energy of a signal is the sum of energy of the DC
507
+ component and the energy of its AC components.
508
+ 2Because gy is convolved with the rotated kernel θ′, in the frequency
509
+ domain, we use Θ[−u, −v] instead of Θ[u, v].
510
+ 4
511
+
512
+ 1 × 1
513
+ 10 × 10
514
+ 20 × 20
515
+ 30 × 30
516
+ Patch Size r × r
517
+ 1M
518
+ 10M
519
+ 100M
520
+ 1G
521
+ #FLOPs
522
+ Baseline
523
+ Reduced
524
+ Unique
525
+ Elements
526
+ Reduced
527
+ Unique
528
+ Elements
529
+ +Structured
530
+ Gradient
531
+ Actual
532
+ Minimum
533
+ Achievable Computation
534
+ Figure 3. Computation analysis for a specific convolution layer3.
535
+ Minimum achievable computation is given in Equation (16). By
536
+ reducing the number of unique elements, computations required
537
+ by our approach drop to about 1/r2 compared with the standard
538
+ BP method. By combining it with structured gradient map, com-
539
+ putations required by our approach drop further, getting very close
540
+ to the theoretical limit.
541
+ that is, ∀(u, v), Θ2[−u,−v]
542
+ Θ2[0,0]
543
+ ≤ 1; thus, by combining Equa-
544
+ tion (12) and Equation (13), we have:
545
+ G2
546
+ y[0, 0]
547
+
548
+ (u,v)( Θ[−u,−v]
549
+ Θ[0,0] Gy[u, v])2 ≥
550
+ G2
551
+ y[0, 0]
552
+
553
+ (u,v)(Gy[u, v])2
554
+
555
+ r4(1 − SNR−1
556
+ ˜gx )
557
+ 2r2 − 1
558
+
559
+ r4(1 − SNR−1
560
+ ˜gy )
561
+ 2r2 − 1
562
+ (14)
563
+ which means that: SNR˜gx ≥ SNR˜gy. This completes our
564
+ proof for error analysis. ■
565
+ In conclusion, as the gradient propagates through the net-
566
+ work, the noise introduced by our gradient filter becomes
567
+ weaker compared to the real gradient signal. This property
568
+ ensures that the error in gradient has only a limited influ-
569
+ ence on the quality of BP. We validate Proposition 1 later in
570
+ the experimental section.
571
+ 4.2. Computation and Overhead Analysis
572
+ In this section, we analyse the computation required to
573
+ compute gx, the gradient w.r.t. input x. Figure 3 compares
574
+ the computation required to propagate the gradient through
575
+ this convolution layer under different patch sizes r × r. A
576
+ patch size 1 × 1 means the vanilla BP algorithm which we
577
+ use as the baseline. As discussed in the preliminary analysis
578
+ section (Section 3.2), two terms contribute to the computa-
579
+ tion savings: fewer unique elements in the gradient map and
580
+ the structured gradient map.
581
+ Fewer unique elements: In vanilla BP, there are HyWy
582
+ unique elements in the gradient map. After applying gradi-
583
+ ent filtering with a patch size r × r, the number of unique
584
+ 3The layer is from U-Net [27]. The size of the input is assumed to be
585
+ 120 × 160 pixels with 192 channels; the output has the same resolution,
586
+ but with only 64 channels. The kernel size of the convolution layer is 3×3.
587
+ Analysis for ResNet is included in the supplementary material.
588
+ elements reduces to only ⌈ Hy
589
+ r ⌉⌈ Wy
590
+ r ⌉. This reduction con-
591
+ tributes the most to the savings in computation (orange line
592
+ in Figure 3).
593
+ Structured Gradient Map: By creating the structured gra-
594
+ dient map, the convolution over the gradient map ˜gy is sim-
595
+ plified to the element-wise multiplication and channel-wise
596
+ addition. Computation is thus reduced to (HθWθ)−1 of its
597
+ original value. For instance, the example convolution layer
598
+ in Figure 3 uses a 3 × 3 convolution kernel so around 89%
599
+ computations are removed. The blue line in Figure 3 shows
600
+ the #FLOPs after combining both methods. Greater reduc-
601
+ tion is expected when applying our method with larger con-
602
+ volution kernels. For instance, FastDepth [31] uses 5 × 5
603
+ convolution kernel so as much as 96% reduction in compu-
604
+ tation can be achieved, in principle.
605
+ Minimum Achievable Computation: With the two reduc-
606
+ tions mentioned above, the computation required to propa-
607
+ gate the gradient through the convolution layer is:
608
+ #FLOPs(r) = ⌈Hy
609
+ r ⌉⌈Wy
610
+ r ⌉Cx(2Cy −1)+o(HyWy) (15)
611
+ where o(HyWy) is a constant term which is independent of
612
+ r and negligible compared to HyWy. When the patch is as
613
+ large as the feature map, our method reaches the minimum
614
+ achievable computation (blue dashed line in Figure 3):
615
+ minr #FLOPs(r) = 2CxCy − Cx + o(HyWy)
616
+ (16)
617
+ In this case, each channel of the gradient map is represented
618
+ with a single value, so the computation is controlled by the
619
+ number of input and output channels.
620
+ Overhead: The overhead of our approach comes from ap-
621
+ proximating the feature map x, gradient gy, and kernel θ.
622
+ As the lower part of Figure 2(a) shows, the approximation
623
+ for x is considered as part of forward propagation, while
624
+ the other two as back propagation. Indeed, with the patch
625
+ size r, the ratio of forward propagation overhead is about
626
+ 1/(2CoWθHθ), while the ratio of backward propagation
627
+ overhead is about (r2 − 1)/(2Cx).
628
+ Given the large number of channels and spatial dimen-
629
+ sions in typical neural networks, both overhead values take
630
+ less than 1% computation in the U-Net example above.
631
+ 4.3. Memory Analysis
632
+ As Figure 2(a) shows, the standard back propagation for
633
+ a convolution layer relies on the input feature map x, which
634
+ needs to be stored in memory during forward propagation.
635
+ Since every convolution layer requiring gradient for its ker-
636
+ nel needs to save a copy of feature map x, the memory
637
+ consumption for storing x is huge. With our method, we
638
+ simplify the feature map x to approximated ˜x, which has
639
+ only ⌈ Hx
640
+ r ⌉⌈ Wx
641
+ r ⌉ unique elements for every channel. Thus,
642
+ by saving only these unique values, our method achieves
643
+ around (1 − 1
644
+ r2 ) memory savings, overall.
645
+ 5
646
+
647
+ MobileNetV2 [28]
648
+ #Layers
649
+ Accuracy
650
+ FLOPs
651
+ Mem
652
+ ResNet-18 [15]
653
+ #Layers
654
+ Accuracy
655
+ FLOPs
656
+ Mem
657
+ No Finetuning
658
+ 0
659
+ 4.2
660
+ 0
661
+ 0
662
+ No Finetuning
663
+ 0
664
+ 4.7
665
+ 0
666
+ 0
667
+ Vanilla
668
+ BP
669
+ All
670
+ 75.1
671
+ 1.13G
672
+ 24.33MB
673
+ Vanilla
674
+ BP
675
+ All
676
+ 73.1
677
+ 5.42G
678
+ 8.33MB
679
+ 2
680
+ 63.1
681
+ 113.68M
682
+ 245.00KB
683
+ 2
684
+ 70.4
685
+ 489.20M
686
+ 196.00KB
687
+ 4
688
+ 62.2
689
+ 160.00M
690
+ 459.38KB
691
+ 4
692
+ 72.3
693
+ 1.14G
694
+ 490.00KB
695
+ TinyTL [6]
696
+ N/A
697
+ 60.2
698
+ 663.51M
699
+ 683.00KB
700
+ TinyTL [6]
701
+ N/A
702
+ 69.2
703
+ 3.88G
704
+ 1.76MB
705
+ Ours
706
+ 2
707
+ 63.1
708
+ 39.27M
709
+ 80.00KB
710
+ Ours
711
+ 2
712
+ 68.6
713
+ 28.32M
714
+ 64.00KB
715
+ 4
716
+ 63.4
717
+ 53.96M
718
+ 150.00KB
719
+ 4
720
+ 68.5
721
+ 61.53M
722
+ 112.00KB
723
+ MCUNet [20]
724
+ #Layers
725
+ Accuracy
726
+ FLOPs
727
+ Mem
728
+ ResNet-34 [15]
729
+ #Layers
730
+ Accuracy
731
+ FLOPs
732
+ Mem
733
+ No Finetune
734
+ 0
735
+ 4.1
736
+ 0
737
+ 0
738
+ No Finetune
739
+ 0
740
+ 0
741
+ 0
742
+ Vanilla
743
+ BP
744
+ All
745
+ 68.5
746
+ 231.67M
747
+ 9.17MB
748
+ Vanilla
749
+ BP
750
+ All
751
+ 70.8
752
+ 11.17G
753
+ 13.11MB
754
+ 2
755
+ 62.1
756
+ 18.80M
757
+ 220.50KB
758
+ 2
759
+ 69.6
760
+ 489.20M
761
+ 196.00KB
762
+ 4
763
+ 64.9
764
+ 33.71M
765
+ 312.38KB
766
+ 4
767
+ 72.3
768
+ 1.21G
769
+ 392.00KB
770
+ TinyTL [6]
771
+ N/A
772
+ 53.1
773
+ 148.01M
774
+ 571.5KB
775
+ TinyTL [6]
776
+ N/A
777
+ 72.9
778
+ 8.03G
779
+ 2.95MB
780
+ Ours
781
+ 2
782
+ 61.8
783
+ 6.34M
784
+ 72.00KB
785
+ Ours
786
+ 2
787
+ 68.6
788
+ 28.32M
789
+ 64.00KB
790
+ 4
791
+ 64.4
792
+ 11.01M
793
+ 102.00KB
794
+ 4
795
+ 70.6
796
+ 64.07M
797
+ 128.00KB
798
+ Table 2. Experimental results for ImageNet classification with four neural networks (MobileNet-V2, ResNet18/34, MCUNet). “#Layers”
799
+ is short for “the number of active convolutional layers”. For example, #Layers equals to 2 means that only the last two convolutional layers
800
+ are trained. For memory consumption, we only consider the memory for input feature x. Strategy “No Finetuning” shows the accuracy on
801
+ new datasets without finetuning the pretrained model. Since TinyTL [6] changes the architecture, “#Layers” is not applicable (N/A).
802
+ PSPNet [33]
803
+ #Layers
804
+ GFLOPs
805
+ mIoU
806
+ mAcc
807
+ PSPNet-M [33]
808
+ #Layers
809
+ GFLOPs
810
+ mIoU
811
+ mAcc
812
+ FCN [22]
813
+ #Layers
814
+ GFLOPs
815
+ mIoU
816
+ mAcc
817
+ Calibration
818
+ 0
819
+ 0
820
+ 12.86
821
+ 19.74
822
+ Calibration
823
+ 0
824
+ 0
825
+ 14.20
826
+ 20.46
827
+ Calibration
828
+ 0
829
+ 0
830
+ 10.95
831
+ 15.69
832
+ Vanilla
833
+ BP
834
+ All
835
+ 166.5
836
+ 55.01
837
+ 68.02
838
+ Vanilla
839
+ BP
840
+ All
841
+ 42.4
842
+ 48.48
843
+ 61.48
844
+ Vanilla
845
+ BP
846
+ All
847
+ 170.3
848
+ 45.22
849
+ 58.80
850
+ 5
851
+ 15.0
852
+ 39.54
853
+ 51.86
854
+ 5
855
+ 12.22
856
+ 36.35
857
+ 47.09
858
+ 5
859
+ 59.5
860
+ 27.41
861
+ 37.90
862
+ 10
863
+ 110.6
864
+ 53.15
865
+ 67.10
866
+ 10
867
+ 22.46
868
+ 46.01
869
+ 58.70
870
+ 10
871
+ 100.9
872
+ 43.87
873
+ 57.58
874
+ Ours
875
+ 5
876
+ 0.14
877
+ 39.34
878
+ 51.86
879
+ Ours
880
+ 5
881
+ 0.11
882
+ 36.14
883
+ 46.86
884
+ Ours
885
+ 5
886
+ 0.58
887
+ 27.42
888
+ 37.88
889
+ 10
890
+ 0.79
891
+ 50.88
892
+ 64.73
893
+ 10
894
+ 0.76
895
+ 44.90
896
+ 57.50
897
+ 10
898
+ 0.96
899
+ 36.30
900
+ 48.82
901
+ DLV3 [8]
902
+ #Layers
903
+ GFLOPs
904
+ mIoU
905
+ mAcc
906
+ DLV3-M [8]
907
+ #Layers
908
+ GFLOPs
909
+ mIoU
910
+ mAcc
911
+ UPerNet [32]
912
+ #Layers
913
+ GFLOPs
914
+ mIoU
915
+ mAcc
916
+ Calibration
917
+ 0
918
+ 0
919
+ 13.95
920
+ 20.62
921
+ Calibration
922
+ 0
923
+ 0
924
+ 21.96
925
+ 36.15
926
+ Calibration
927
+ 0
928
+ 0
929
+ 14.71
930
+ 21.82
931
+ Vanilla
932
+ BP
933
+ All
934
+ 151.2
935
+ 58.32
936
+ 71.72
937
+ Vanilla
938
+ BP
939
+ All
940
+ 54.4
941
+ 55.66
942
+ 68.95
943
+ Vanilla
944
+ BP
945
+ All
946
+ 541.0
947
+ 64.88
948
+ 77.13
949
+ 5
950
+ 18.0
951
+ 40.85
952
+ 53.16
953
+ 5
954
+ 14.8
955
+ 38.21
956
+ 49.35
957
+ 5
958
+ 503.9
959
+ 47.93
960
+ 61.67
961
+ 10
962
+ 102.0
963
+ 54.65
964
+ 68.64
965
+ 10
966
+ 33.1
967
+ 47.95
968
+ 61.49
969
+ 10
970
+ 507.6
971
+ 48.83
972
+ 63.02
973
+ Ours
974
+ 5
975
+ 0.31
976
+ 33.09
977
+ 44.33
978
+ Ours
979
+ 5
980
+ 0.26
981
+ 35.47
982
+ 46.35
983
+ Ours
984
+ 5
985
+ 1.97
986
+ 47.04
987
+ 60.44
988
+ 10
989
+ 2.96
990
+ 47.11
991
+ 60.28
992
+ 10
993
+ 1.40
994
+ 45.53
995
+ 58.99
996
+ 10
997
+ 2.22
998
+ 48.00
999
+ 62.07
1000
+ Table 3. Experimental results for semantic segmentation task on augmented Pascal VOC12 dataset [8]. Model name with postfix “M”
1001
+ means the model uses MobileNetV2 as backbone, otherwise ResNet18 is used. “#Layers” is short for “the number of active convolutional
1002
+ layers” that are trained. All models are pretrained on Cityscapes dataset [11]. Strategy “Calibration” shows the accuracy when only the
1003
+ classifier and normalization statistics are updated to adapt different numbers of classes between augmented Pascal VOC12 and Cityscapes.
1004
+ 5. Experiments
1005
+ In this section, we first present our experimental results
1006
+ on ImageNet classification [12] and semantic segmentation.
1007
+ Then, we study the impact of different hyper-parameter se-
1008
+ lections. Furthermore, we present the evaluation result run-
1009
+ ning our method on real hardware. Lastly, we empirically
1010
+ validate the assumption in Section 4.1.
1011
+ 5.1. Experimental Setup
1012
+ Classification: Following [25], we split every dataset into
1013
+ two highly non-i.i.d. partitions with the same size. Then,
1014
+ we pretrain our models on the first partition with a vanilla
1015
+ training strategy, and finetune the model on the other par-
1016
+ tition with different configurations for the training strat-
1017
+ egy (i.e., with/without gradient filtering, hyper-parameters,
1018
+ number of convolution layers to be trained). More details
1019
+ (e.g., hyper-parameters) are in the Supplementary.
1020
+ Segmentation: Models are pretrained on Cityscapes [11]
1021
+ by MMSegmentation [10]. Then, we calibrate and finetune
1022
+ these models with different training strategies on the aug-
1023
+ mented Pascal-VOC12 dataset following [8], which is the
1024
+ combination of Pascal-VOC12 [13] and SBD [14]. More
1025
+ details are included in the supplementary material.
1026
+ On-device Performance Evaluation:
1027
+ For CPU per-
1028
+ formance evaluation, we implement our method with
1029
+ MKLDNN [1] (a.k.a. OneDNN) v2.6.0 and compare it with
1030
+ the convolution BP method provided by MKLDNN. We test
1031
+ on three CPUs, namely Intel 11900KF, Quad-core Cortex-
1032
+ A72 (Jetson Nano) and Quad-core Cortex-A53 (Raspberry
1033
+ Pi 3b). For GPU performance evaluation, we implement
1034
+ our method on CUDNN v8.2 [9] and compare with the BP
1035
+ method provided by CUDNN. We test on two GPUs, RTX
1036
+ 3090Ti and the edge GPU on Jetson Nano.
1037
+ Since both
1038
+ 6
1039
+
1040
+ MKLDNN and CUDNN only support float32 BP, we test
1041
+ float32 BP only. Additionally, for the experiments on Jet-
1042
+ son Nano, we record the energy consumption for CPU and
1043
+ GPU with the embedded power meter. More details (e.g.,
1044
+ frequency) are included in the supplementary material.
1045
+ 5.2. ImageNet Classification
1046
+ Table 2 shows our evaluation results on the ImageNet
1047
+ classification task. As shown, our method significantly re-
1048
+ duces the FLOPs and memory required for BP, with very
1049
+ little accuracy loss. For example, for ResNet34, our method
1050
+ achieves 18.9× speedup with 1.7% accuracy loss when
1051
+ training four layers; for MobileNetV2, we get a 1.2% bet-
1052
+ ter accuracy with 3.0× speedup and 3.1× memory savings.
1053
+ These results illustrate the effectiveness of our method. On
1054
+ most networks, TinyTL has a lower accuracy while consum-
1055
+ ing more resources compared to the baselines methods.
1056
+ 5.3. Semantic Segmentation
1057
+ Table 3 shows our evaluation results on the augmented
1058
+ Pascal-VOC12 dataset.
1059
+ On a wide range of networks,
1060
+ our method constantly achieves significant speedup with
1061
+ marginal accuracy loss. For the large network UPerNet, our
1062
+ method achieves 229× speedup with only 1% mIoU loss.
1063
+ For the small network PSPNet, our method speedups train-
1064
+ ing by 140× with only 2.27% mIoU loss. This shows the
1065
+ effectiveness of our method on a dense prediction task.
1066
+ 5.4. Hyper-Parameter Selection
1067
+ Figure 4 shows our experimental results for ResNets un-
1068
+ der different hyper-parameter selection, i.e. number of con-
1069
+ volution layers and patch size of gradient filter r × r. Of
1070
+ note, the y-axis (MFLOPs) in Figure 4 is log scale. More
1071
+ results are included in Supplementary Section F. We high-
1072
+ light three qualitative findings in Figure 4:
1073
+ a. For a similar accuracy, our method greatly reduces
1074
+ the number of operations (1 to 2 orders of magni-
1075
+ tude), while for a similar number of computations, our
1076
+ method achieves a higher accuracy (2% to 5% better).
1077
+ This finding proves the effectiveness of our method.
1078
+ b. Given the number of convolution layers to be trained,
1079
+ the more accurate method returns a better accuracy.
1080
+ Baseline (i.e., standard BP) uses the most accurate gra-
1081
+ dient, Ours-R4 (BP with gradient filter with patch size
1082
+ 4 × 4) uses the least accurate gradient; thus, Baseline
1083
+ > Ours-R2 > Ours-R4.
1084
+ This finding is intuitive since the more accurate method
1085
+ should introduce smaller noise to the BP, e.g., the gradi-
1086
+ ent filtering with patch size 2 × 2 (Ours-R2) introduces less
1087
+ noise than with patch size 4 × 4 (Ours-R4). In Figure 5, we
1088
+ 92
1089
+ 93
1090
+ 94
1091
+ Accuracy [%]
1092
+ ResNet18-CIFAR10
1093
+ 101
1094
+ 102
1095
+ 103
1096
+ #MFLOPs
1097
+ 14.1x OPs
1098
+ 2.1x OPs
1099
+ 2.2% Acc
1100
+ 68.3x
1101
+ OPs
1102
+ Baseline
1103
+ Ours-R2
1104
+ Ours-R4
1105
+ 78
1106
+ 80
1107
+ 82
1108
+ Accuracy [%]
1109
+ ResNet34-CIFAR100
1110
+ 101
1111
+ 102
1112
+ 103
1113
+ 18.8x OPs
1114
+ 1% Acc
1115
+ 7.6x OPs
1116
+ 2.0x OPs
1117
+ 5.1% Acc
1118
+ 63.6x OPs
1119
+ Baseline
1120
+ Ours-R2
1121
+ Ours-R4
1122
+ Figure 4. Computation (#MFLOPs, log scale) and model accuracy
1123
+ [%] under different hyper-parameter selection. “Baseline” means
1124
+ vanilla BP; “Ours-R2/4” uses gradient filtering with patch size 2×
1125
+ 2/4 × 4 during BP.
1126
+ evaluate the relationship between accuracy and noise level
1127
+ introduced by gradient filtering. With a higher SNR (i.e., a
1128
+ lower noise level), a better accuracy is achieved.
1129
+ 0.050
1130
+ 0.075
1131
+ 0.100
1132
+ 0.125
1133
+ 0.150
1134
+ 0.175
1135
+ 0.200
1136
+ 0.225
1137
+ SNR [db]
1138
+ 71.6
1139
+ 71.8
1140
+ Top 1 Accuracy [%]
1141
+ Figure 5. Relationship between accuracy and noise level intro-
1142
+ duced by the gradient filtering. As shown, accuracy increases as
1143
+ the SNR increases, i.e., noise level decreases.
1144
+ c. Given the number of computations, the less accurate
1145
+ method returns the better accuracy by training more
1146
+ layers, i.e., Ours-R4 > Ours-R2 > baseline.
1147
+ This finding suggests that for neural network training with
1148
+ relatively low computational resources, training more layers
1149
+ with less accurate gradients is preferable than training fewer
1150
+ layers with more accurate gradients.
1151
+ 5.5. On-device Performance Evaluation
1152
+ Figure 6 and Table 4 show our evaluation results on real
1153
+ devices. More results are included in the Supplementary
1154
+ Section H. As Figure 6 shows, on CPU, most convolution
1155
+ layers achieve speedups over 20× with less than 50% mem-
1156
+ ory consumption for gradient filtering with patch sizes 2×2;
1157
+ for gradient filtering with patch size 4 × 4, the speedups are
1158
+ much higher, namely over 60×. On GPU, the speedup is
1159
+ a little bit lower, but still over 10× and 25×, respectively.
1160
+ Furthermore, as Table 4 shows, our method saves over 95%
1161
+ 7
1162
+
1163
+ 0
1164
+ 1
1165
+ 2
1166
+ 3
1167
+ 4
1168
+ 5
1169
+ 6
1170
+
1171
+ 20×
1172
+ 40×
1173
+ 60×
1174
+ 80×
1175
+ 100×
1176
+ Speedup (×times)
1177
+ 114×
1178
+ CPU Speedup
1179
+ Jetson-R2
1180
+ Jetson-R4
1181
+ 11900KF-R2
1182
+ 11900KF-R4
1183
+ RPi3-R2
1184
+ RPi3-R4
1185
+ 0
1186
+ 1
1187
+ 2
1188
+ 3
1189
+ 4
1190
+ 5
1191
+ 6
1192
+
1193
+ 10×
1194
+ 20×
1195
+ 30×
1196
+ 40×
1197
+ 50×
1198
+ 60×
1199
+ GPU Speedup
1200
+ Jetson-R2
1201
+ Jetson-R4
1202
+ RTX3090Ti-R2
1203
+ RTX3090Ti-R4
1204
+ 0
1205
+ 1
1206
+ 2
1207
+ 3
1208
+ 4
1209
+ 5
1210
+ 6
1211
+ Test Case - Baseline: MKLDNN
1212
+ 0
1213
+ 20
1214
+ 40
1215
+ 60
1216
+ 80
1217
+ 100
1218
+ Percentage [%]
1219
+ Baseline: MKLDNN
1220
+ 50% Memory Cost
1221
+ Normalized CPU Memory Cost
1222
+ Jetson-R2
1223
+ Jetson-R4
1224
+ 11900KF-R2
1225
+ 11900KF-R4
1226
+ RPi3-R2
1227
+ RPi3-R4
1228
+ 0
1229
+ 1
1230
+ 2
1231
+ 3
1232
+ 4
1233
+ 5
1234
+ 6
1235
+ Test Case - Baseline: CUDNN
1236
+ 0
1237
+ 20
1238
+ 40
1239
+ 60
1240
+ 80
1241
+ 100
1242
+ Baseline: CUDNN
1243
+ 50% Memory Cost
1244
+ Normalized GPU Memory Cost
1245
+ Jetson-R2
1246
+ Jetson-R4
1247
+ RTX3090Ti-R2
1248
+ RTX3090Ti-R4
1249
+ Figure 6. Speedup and normalized memory consumption results on multiple CPUs and GPUs under different test cases (i.e. different
1250
+ input sizes, numbers of channels, etc.) Detailed configuration of these test cases are included in the supplementary material. “R2”, “R4”
1251
+ mean using gradient filtering with 2 × 2 and 4 × 4 patch sizes, respectively. Our method achieves significant speedup with low memory
1252
+ consumption compared to all baseline methods. For example, on Jetson CPU with patch size 4 × 4 (“Jetson-R4” in left top figure), our
1253
+ method achieves 114× speedup with only 33% memory consumption for most test cases.
1254
+ Device
1255
+ Patch Size
1256
+ Normalized Energy Cost [STD]
1257
+ Edge
1258
+ CPU
1259
+ 2 × 2
1260
+ 4.13% [0.61%]
1261
+ 4 × 4
1262
+ 1.15% [0.18%]
1263
+ Edge
1264
+ GPU
1265
+ 2 × 2
1266
+ 3.80% [0.73%]
1267
+ 4 × 4
1268
+ 1.22% [1.10%]
1269
+ Table 4. Normalized energy consumption for BP with gradient
1270
+ filtering for different patch sizes. Results are normalized w.r.t. the
1271
+ energy cost of standard BP methods. For instance, for edge CPU
1272
+ with a 4 × 4 patch, only 1.15% of energy in standard BP is used.
1273
+ Standard deviations are shown within brackets.
1274
+ energy for both CPU and GPU scenarios, which largely re-
1275
+ solves one of the most important constraints on edge de-
1276
+ vices. All these experiments on real devices show that our
1277
+ method is practical for the real deployment of both high-
1278
+ performance and IoT applications.
1279
+ Model
1280
+ Ratio
1281
+ Model
1282
+ Ratio
1283
+ (Wide)ResNet18-152
1284
+ 1.462
1285
+ VGG(bn)11-19
1286
+ 1.497
1287
+ DenseNet121-201
1288
+ 2.278
1289
+ EfficientNet b0-b7
1290
+ 1.240
1291
+ Table 5. Evaluation of energy ratio defined in Equation (13) on
1292
+ models published on Torchvision. The ratio greater than 1 empiri-
1293
+ cally verifies our assumption.
1294
+ 5.6. Main Assumption Verification
1295
+ We now empirically verify the assumption that the DC
1296
+ component dominates the frequency spectrum of the convo-
1297
+ lution kernel (Section 4.1). To this end, we collect the en-
1298
+ ergy ratio shown in Equation (13) from trained models pub-
1299
+ lished in Torchvision [24]. As Table 5 shows, for the con-
1300
+ volution kernels in all these networks, we get a ratio greater
1301
+ than one, which means that the energy of DC components
1302
+ is larger than energy of all AC components. Thus, our as-
1303
+ sumption in Section 4.1 empirically holds true in practice.
1304
+ 6. Conclusions
1305
+ In this paper, we have addressed the on-device model
1306
+ training for resource-constrained edge devices. To this end,
1307
+ a new gradient filtering method has been proposed to sys-
1308
+ tematically reduce the computation and memory consump-
1309
+ tion for the back-propagation algorithm, which is the key
1310
+ bottleneck for efficient model training.
1311
+ In Section 3, a new gradient filtering approach has been
1312
+ proposed to reduce the computation required for propagat-
1313
+ ing gradients through the convolutional layers. The gradient
1314
+ filtering creates an approximate gradient feature map with
1315
+ fewer unique elements and a special structure; this reduces
1316
+ the computation by more than two orders of magnitude.
1317
+ Furthermore, we proved that the error introduced during
1318
+ back-propagation by our gradient filter is bounded so the
1319
+ influence of gradient approximation is limited.
1320
+ Extensive experiments in Section 5 have demonstrated
1321
+ the efficiency and wide applicability of our method. Indeed,
1322
+ models can be finetuned with orders of magnitudes fewer
1323
+ computations, while having only a marginal accuracy loss
1324
+ compared to popular baseline methods.
1325
+ 8
1326
+
1327
+ References
1328
+ [1] Intel® oneapi deep neural network library (onednn).
1329
+ https://www.intel.com/content/www/us/en/
1330
+ developer/tools/oneapi/onednn.html. 1, 2, 6
1331
+ [2] Mart´ın Abadi, Ashish Agarwal, Paul Barham, Eugene
1332
+ Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy
1333
+ Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian
1334
+ Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
1335
+ Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
1336
+ Kudlur, Josh Levenberg, Dandelion Man´e, Rajat Monga,
1337
+ Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
1338
+ Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-
1339
+ war, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fer-
1340
+ nanda Vi´egas, Oriol Vinyals, Pete Warden, Martin Watten-
1341
+ berg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensor-
1342
+ Flow: Large-scale machine learning on heterogeneous sys-
1343
+ tems, 2015. Software available from tensorflow.org. 1, 2
1344
+ [3] Dan Alistarh, Demjan Grubic, Jerry Z. Li, Ryota Tomioka,
1345
+ and Milan Vojnovic. Qsgd: Communication-efficient sgd via
1346
+ gradient quantization and encoding. In Proceedings of the
1347
+ 31st International Conference on Neural Information Pro-
1348
+ cessing Systems, NIPS’17, page 1707–1718, Red Hook, NY,
1349
+ USA, 2017. Curran Associates Inc. 2
1350
+ [4] Ron Banner, Itay Hubara, Elad Hoffer, and Daniel Soudry.
1351
+ Scalable methods for 8-bit training of neural networks. In
1352
+ Proceedings of the 32nd International Conference on Neural
1353
+ Information Processing Systems, NIPS’18, page 5151–5159,
1354
+ Red Hook, NY, USA, 2018. Curran Associates Inc. 1, 2, 11,
1355
+ 17, 19
1356
+ [5] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzade-
1357
+ nesheli, and Animashree Anandkumar.
1358
+ signsgd:
1359
+ Com-
1360
+ pressed optimisation for non-convex problems.
1361
+ In Inter-
1362
+ national Conference on Machine Learning, pages 560–569.
1363
+ PMLR, 2018. 2
1364
+ [6] Han Cai, Chuang Gan, Ligeng Zhu, and Song Han. Tinytl:
1365
+ Reduce activations, not trainable parameters for efficient on-
1366
+ device learning. arXiv preprint arXiv:2007.11622, 2020. 1,
1367
+ 2, 6
1368
+ [7] Jianfei Chen, Yu Gai, Zhewei Yao, Michael W Mahoney, and
1369
+ Joseph E Gonzalez. A statistical framework for low-bitwidth
1370
+ training of deep neural networks. In H. Larochelle, M. Ran-
1371
+ zato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances
1372
+ in Neural Information Processing Systems, volume 33, pages
1373
+ 883–894. Curran Associates, Inc., 2020. 1, 2, 11, 15, 17, 19
1374
+ [8] Liang-Chieh Chen, George Papandreou, Florian Schroff, and
1375
+ Hartwig Adam. Rethinking atrous convolution for seman-
1376
+ tic image segmentation. arXiv preprint arXiv:1706.05587,
1377
+ 2017. 6
1378
+ [9] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch,
1379
+ Jonathan Cohen, John Tran, Bryan Catanzaro, and Evan
1380
+ Shelhamer. cudnn: Efficient primitives for deep learning.
1381
+ arXiv preprint arXiv:1410.0759, 2014. 1, 2, 6
1382
+ [10] MMSegmentation
1383
+ Contributors.
1384
+ MMSegmentation:
1385
+ Openmmlab
1386
+ semantic
1387
+ segmentation
1388
+ toolbox
1389
+ and
1390
+ benchmark.
1391
+ https : / / github . com / open -
1392
+ mmlab/mmsegmentation, 2020. 6
1393
+ [11] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
1394
+ Rehfeld,
1395
+ Markus Enzweiler,
1396
+ Rodrigo Benenson,
1397
+ Uwe
1398
+ Franke, Stefan Roth, and Bernt Schiele.
1399
+ The cityscapes
1400
+ dataset for semantic urban scene understanding.
1401
+ In Proc.
1402
+ of the IEEE Conference on Computer Vision and Pattern
1403
+ Recognition (CVPR), 2016. 6
1404
+ [12] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
1405
+ ImageNet: A Large-Scale Hierarchical Image Database. In
1406
+ CVPR09, 2009. 6
1407
+ [13] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
1408
+ A. Zisserman. The pascal visual object classes (voc) chal-
1409
+ lenge. International Journal of Computer Vision, 88(2):303–
1410
+ 338, June 2010. 6
1411
+ [14] Bharath Hariharan, Pablo Arbelaez, Lubomir Bourdev,
1412
+ Subhransu Maji, and Jitendra Malik. Semantic contours from
1413
+ inverse detectors. In International Conference on Computer
1414
+ Vision (ICCV), 2011. 6
1415
+ [15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
1416
+ Deep residual learning for image recognition. In Proceed-
1417
+ ings of the IEEE conference on computer vision and pattern
1418
+ recognition, pages 770–778, 2016. 2, 6
1419
+ [16] Ziyang Hong and C. Patrick Yue. Efficient-grad: Efficient
1420
+ training deep convolutional neural networks on edge devices
1421
+ with gradient optimizations. ACM Trans. Embed. Comput.
1422
+ Syst., 21(2), feb 2022. 2
1423
+ [17] Roger A Horn and Charles R Johnson.
1424
+ Matrix analysis.
1425
+ Cambridge university press, 2012. 3
1426
+ [18] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-
1427
+ Yaniv, and Yoshua Bengio.
1428
+ Quantized neural networks:
1429
+ Training neural networks with low precision weights and ac-
1430
+ tivations. J. Mach. Learn. Res., 18(1):6869–6898, jan 2017.
1431
+ 2
1432
+ [19] Yoonho Lee, Annie S Chen, Fahim Tajwar, Ananya Ku-
1433
+ mar, Huaxiu Yao, Percy Liang, and Chelsea Finn. Surgical
1434
+ fine-tuning improves adaptation to distribution shifts. arXiv
1435
+ preprint arXiv:2210.11466, 2022. 1, 2
1436
+ [20] Ji Lin, Wei-Ming Chen, John Cohn, Chuang Gan, and Song
1437
+ Han. Mcunet: Tiny deep learning on iot devices. In An-
1438
+ nual Conference on Neural Information Processing Systems
1439
+ (NeurIPS), 2020. 6
1440
+ [21] Ji Lin, Ligeng Zhu, Wei-Ming Chen, Wei-Chen Wang,
1441
+ Chuang Gan, and Song Han. On-device training under 256kb
1442
+ memory. arXiv preprint arXiv:2206.15472, 2022. 1, 2
1443
+ [22] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
1444
+ convolutional networks for semantic segmentation. In Pro-
1445
+ ceedings of the IEEE conference on computer vision and pat-
1446
+ tern recognition, pages 3431–3440, 2015. 6
1447
+ [23] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradi-
1448
+ ent descent with warm restarts. In International Conference
1449
+ on Learning Representations, 2017. 15
1450
+ [24] S´ebastien Marcel and Yann Rodriguez.
1451
+ Torchvision the
1452
+ machine-vision package of torch. In Proceedings of the 18th
1453
+ ACM international conference on Multimedia, pages 1485–
1454
+ 1488, 2010. 8
1455
+ [25] Brendan McMahan, Eider Moore, Daniel Ramage, Seth
1456
+ Hampson, and Blaise Aguera y Arcas.
1457
+ Communication-
1458
+ efficient learning of deep networks from decentralized data.
1459
+ 9
1460
+
1461
+ In Artificial intelligence and statistics, pages 1273–1282.
1462
+ PMLR, 2017. 6, 14
1463
+ [26] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
1464
+ James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
1465
+ ing Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
1466
+ son, Andreas Kopf, Edward Yang, Zachary DeVito, Mar-
1467
+ tin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
1468
+ Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch:
1469
+ An imperative style, high-performance deep learning library.
1470
+ In Advances in Neural Information Processing Systems 32,
1471
+ pages 8024–8035. Curran Associates, Inc., 2019. 1, 2
1472
+ [27] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
1473
+ net: Convolutional networks for biomedical image segmen-
1474
+ tation. In International Conference on Medical image com-
1475
+ puting and computer-assisted intervention, pages 234–241.
1476
+ Springer, 2015. 5
1477
+ [28] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
1478
+ moginov, and Liang-Chieh Chen.
1479
+ Mobilenetv2: Inverted
1480
+ residuals and linear bottlenecks.
1481
+ In Proceedings of the
1482
+ IEEE conference on computer vision and pattern recogni-
1483
+ tion, pages 4510–4520, 2018. 6
1484
+ [29] Xiao Sun, Naigang Wang, Chia-Yu Chen, Jiamin Ni, Ankur
1485
+ Agrawal, Xiaodong Cui, Swagath Venkataramani, Kaoutar
1486
+ El Maghraoui, Vijayalakshmi (Viji) Srinivasan, and Kailash
1487
+ Gopalakrishnan. Ultra-low precision 4-bit training of deep
1488
+ neural networks. In H. Larochelle, M. Ranzato, R. Hadsell,
1489
+ M.F. Balcan, and H. Lin, editors, Advances in Neural Infor-
1490
+ mation Processing Systems, volume 33, pages 1796–1807.
1491
+ Curran Associates, Inc., 2020. 2
1492
+ [30] Yue Wang, Ziyu Jiang, Xiaohan Chen, Pengfei Xu, Yang
1493
+ Zhao, Yingyan Lin, and Zhangyang Wang. E2-train: Train-
1494
+ ing state-of-the-art cnns with over 80% energy savings. Ad-
1495
+ vances in Neural Information Processing Systems, 32, 2019.
1496
+ 2
1497
+ [31] Diana Wofk, Fangchang Ma, Tien-Ju Yang, Sertac Karaman,
1498
+ and Vivienne Sze.
1499
+ Fastdepth: Fast monocular depth esti-
1500
+ mation on embedded systems. In 2019 International Confer-
1501
+ ence on Robotics and Automation (ICRA), pages 6101–6108.
1502
+ IEEE, 2019. 5
1503
+ [32] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and
1504
+ Jian Sun. Unified perceptual parsing for scene understand-
1505
+ ing. In Proceedings of the European conference on computer
1506
+ vision (ECCV), pages 418–434, 2018. 6
1507
+ [33] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang
1508
+ Wang, and Jiaya Jia. Pyramid scene parsing network. In
1509
+ Proceedings of the IEEE conference on computer vision and
1510
+ pattern recognition, pages 2881–2890, 2017. 6
1511
+ [34] Kang Zhao, Sida Huang, Pan Pan, Yinghan Li, Yingya
1512
+ Zhang, Zhenyu Gu, and Yinghui Xu. Distribution adaptive
1513
+ int8 quantization for training cnns. In Proceedings of the
1514
+ AAAI Conference on Artificial Intelligence, volume 35, pages
1515
+ 3483–3491, 2021. 2
1516
+ 10
1517
+
1518
+ In this supplementary material, we present:
1519
+ • A: Detailed derivation for gradient filtering described
1520
+ in Section 3.
1521
+ • B: Detailed proof for Proposition 1 in Section 4.1.
1522
+ • C: Visualized computation analysis for ResNet18.
1523
+ • D: Detailed experimental setup for Section 5.1.
1524
+ • E: More experimental results for Semantic Segmenta-
1525
+ tion in Section 5.3.
1526
+ • F: More experimental results for hyper-parameter ex-
1527
+ ploration on CIFAR datasets in Section 5.4.
1528
+ • G: Experimental results for combining gradient filter-
1529
+ ing (our method) with existing INT8 gradient quanti-
1530
+ zation approaches [4,7].
1531
+ • H: More experimental results for on-device perfor-
1532
+ mance evaluation in Section 5.5.
1533
+ A. Gradient Filtering Derivation
1534
+ In this section, we present the complete derivations for
1535
+ Equation (3) and Equation (5) in Section 3, namely the back
1536
+ propagation with gradient filtering. For convenience, Ta-
1537
+ ble 6 (reproduced from Table 1 in paper) lists commonly
1538
+ used symbols.
1539
+ A.1. Gradient Filtering
1540
+ We have:
1541
+ ˜gy[n, co, h, w] = 1
1542
+ r2
1543
+ ⌈i/r⌉r
1544
+
1545
+ h=⌊i/r⌋r
1546
+ ⌈j/r⌉r
1547
+
1548
+ w=⌊j/r⌋r
1549
+ gy[n, co, i, j] (17)
1550
+ Cx
1551
+ Number of channels of x
1552
+ Wx, Hx
1553
+ Width and height of x
1554
+ θ
1555
+ Convolution kernel
1556
+ θ′
1557
+ Rotated θ, i.e., θ′ = rot180(θ)
1558
+ r
1559
+ Patch size (r × r)
1560
+ gx, gy, gθ
1561
+ Gradients w.r.t. x, y, θ
1562
+ ˜gy
1563
+ Approximated gradient gy
1564
+ ˜x, ˜θ′
1565
+ Sum of x and θ′ over
1566
+ spatial dimensions (height and width)
1567
+ x[n, ci, h, w]
1568
+ Element for feature map x
1569
+ at batch n, channel ci, pixel (h, w)
1570
+ θ[co, ci, u, v]
1571
+ Element for convolution kernel θ
1572
+ at output channel co, input channel ci,
1573
+ position (u, v)
1574
+ Table 6. Table of symbols we use.
1575
+ Thus, for any entry in the approximated gradient ˜gy, the
1576
+ value equals to the average of all neighboring elements
1577
+ within the same r × r patch, as shown in the Figure 2 in the
1578
+ main manuscript. For the approximated gradient ˜gy with
1579
+ batch size n, channel c, resolution (Hy, Wy), there will be
1580
+ (n × c × ⌈ Hy
1581
+ r ⌉ × ⌈ Wy
1582
+ r ⌉) unique numbers in ˜gy. To simplify
1583
+ the following derivations, we rewrite the approximated gra-
1584
+ dient ˜gy as follows:
1585
+ ˜gp
1586
+ y[n, co, hp, wp, i, j] = ˜gy[n, co, hp∗r+i, wp∗r+j] (18)
1587
+ where (hp, wp) is the position of the patch and (i, j) is the
1588
+ offset within the patch. Since every element in the same
1589
+ patch has the exact same value, we denote this unique value
1590
+ with ˜gu
1591
+ y , i.e.,
1592
+ ˜gu
1593
+ y [n, co, hp, wp] = ˜gp
1594
+ y[n, co, hp, wp, i, j], ∀0 ≤ i, j < r
1595
+ (19)
1596
+ A.2. Approximation for Rotated Convolution Ker-
1597
+ nel θ′
1598
+ ˜θ′[co, ci] =
1599
+
1600
+ u,v
1601
+ θ′[co, ci, u, v]
1602
+ =
1603
+
1604
+ u,v
1605
+ rot180(θ)[co, ci, u, v]
1606
+ =
1607
+
1608
+ u,v
1609
+ θ[co, ci, u, v]
1610
+ (20)
1611
+ A.3. Approximation for Input Feature x
1612
+ ˜x[n, ci, h, w] =
1613
+ ⌈i/r⌉r
1614
+
1615
+ h=⌊i/r⌋r
1616
+ ⌈j/r⌉r
1617
+
1618
+ w=⌊j/r⌋r
1619
+ x[n, ci, i, j]
1620
+ (21)
1621
+ Thus for every entry in approximated feature map ˜x, the
1622
+ value equal to the sum of all neighboring elements within
1623
+ the same r × r patch. Following the definition of the gra-
1624
+ dient filter in Section A.1, we use the following symbols to
1625
+ simplify the derivation:
1626
+ ˜xp[n, ci, hp, wp, i, j] = ˜x[n, ci, hp ∗r +i, wp ∗r +j] (22)
1627
+ and
1628
+ ˜xu[n, ci, hp, wp] = ˜xp[n, ci, hp, wp, i, j], ∀0 ≤ i, j < r
1629
+ (23)
1630
+ A.4. Boundary Elements
1631
+ As mentioned in Section 3, given the structure created
1632
+ by the gradient filters, the gradient propagation in a con-
1633
+ volution layer can be simplified to weights summation and
1634
+ multiplication with few unique gradient values. This is true
1635
+ 11
1636
+
1637
+ for all elements far away from the patch boundary because
1638
+ for these elements, the rotated kernel θ′ only covers the ele-
1639
+ ments from the same patch, which have the same value, thus
1640
+ the computation can be saved. However, for the elements
1641
+ close to the boundary, this is not true, since when convolv-
1642
+ ing with boundary gradient elements, the kernel may cover
1643
+ multiple patches with multiple unique values instead of just
1644
+ one. To eliminate the extra computation introduced by the
1645
+ boundary elements, we pad each patch sufficiently such that
1646
+ every element is far away from boundary:
1647
+ ˜gp
1648
+ y[n, ci, hp, wp, i, j] = ˜gu
1649
+ y [n, ci, hp, wp], ∀i, j ∈ Z
1650
+ (24)
1651
+ For example, with the patch size 4 × 4, the element at the
1652
+ spatial position (3, 3) is on the boundary, so when we calcu-
1653
+ late ˜gx[n, ci, 3, 3] by convolving the rotated kernel θ′ with
1654
+ the approximated gradient ˜gy:
1655
+ ˜gx[n, ci, 3, 3] =
1656
+
1657
+ i,j
1658
+ θ′[co, ci, i, j]˜gy[n, co, 3+i, 3+j] (25)
1659
+ values of ˜gy are from multiple patches and have differ-
1660
+ ent values (e.g., ˜gy[n, co, 3, 3] is from patch (0, 0) while
1661
+ ˜gy[n, co, 4, 4] is from patch (1, 1); they have different val-
1662
+ ues).
1663
+ In our method, we simplify the Equation (25) by
1664
+ rewriting it in the following way:
1665
+ ˜gx[n, ci, 3, 3]
1666
+
1667
+ 1
1668
+
1669
+ i,j=−1
1670
+ θ′[co, ci, i, j]˜gp
1671
+ y[n, co, ⌊3
1672
+ 4⌋, ⌊3
1673
+ 4⌋, 3 + i, 3 + j]
1674
+ (26)
1675
+ =
1676
+ 1
1677
+
1678
+ i,j=−1
1679
+ θ′[co, ci, i, j]˜gu
1680
+ y [n, co, ⌊3
1681
+ 4⌋, ⌊3
1682
+ 4⌋]
1683
+ (27)
1684
+ =
1685
+ 1
1686
+
1687
+ i,j=−1
1688
+ θ′[co, ci, i, j]˜gu
1689
+ y [n, co, 0, 0]
1690
+ (28)
1691
+ where Equation (26) is derived from Equation (25) by con-
1692
+ sidering that patch (0, 0) is sufficiently padded so that for
1693
+ elements with all offsets (3 + i, 3 + j), they have the same
1694
+ value, which is the unique value gu
1695
+ y [n, co, 0, 0].
1696
+ For approximated input feature map ˜x, we apply the
1697
+ same approximation for the boundary elements.
1698
+ A.5. Gradient w.r.t. Input (Equation (3) in the Pa-
1699
+ per)
1700
+ ˜gx[n, ci, h, w]
1701
+ (29)
1702
+ =
1703
+
1704
+ co,u,v
1705
+ θ[co, ci, −u, −v]˜gy[n, co, h + u, w + v]
1706
+ (30)
1707
+
1708
+
1709
+ co,u,v
1710
+ θ[co, ci, −u, −v]·
1711
+ ˜gp
1712
+ y[n, co, ⌊h
1713
+ r ⌋, ⌊w
1714
+ r ⌋, (h mod r) + u, (w mod r) + v]
1715
+ (31)
1716
+ =
1717
+
1718
+ co,u,v
1719
+ θ[co, ci, −u, −v]˜gu
1720
+ y [n, co, ⌊h
1721
+ r ⌋, ⌊w
1722
+ r ⌋]
1723
+ (32)
1724
+ =
1725
+
1726
+ co
1727
+ ˜gu
1728
+ y [n, co, ⌊h
1729
+ r ⌋, ⌊w
1730
+ r ⌋]
1731
+
1732
+ u,v
1733
+ θ[co, ci, −u, −v]
1734
+ (33)
1735
+ =
1736
+
1737
+ co
1738
+ ˜gu
1739
+ y [n, co, ⌊h
1740
+ r ⌋, ⌊w
1741
+ r ⌋]˜θ′[co, ci]
1742
+ (34)
1743
+ By expanding ˜gu
1744
+ y to ˜gy, we have:
1745
+ ˜gx[n, ci, h, w] =
1746
+
1747
+ co
1748
+ ˜gy[n, co, h, w] ⊙ ˜θ′[co, ci]
1749
+ (35)
1750
+ which is the Equation (3) in Section 3 in the paper.
1751
+ From Equation (30) to Equation (32), we consider that
1752
+ the patch in the approximated gradient ˜gy is padded suffi-
1753
+ ciently so they have the same value for all possible offsets
1754
+ ((h mod r) + u, (w mod r) + v). If there is only one in-
1755
+ put channel and output channel for the convolutional layer
1756
+ as the Figure 2 in the paper shows, then Equation (34)
1757
+ become an element-wise multiplication, which is Equa-
1758
+ tion (35) (also the Equation (3) in the paper).
1759
+ A.6. Gradient w.r.t. Convolution Kernel (Equation
1760
+ (5) in the Paper)
1761
+ ˜gθ[co, ci, u, v]
1762
+ (36)
1763
+ =
1764
+
1765
+ n,h,w
1766
+ x[n, ci, h + u, w + v]˜gy[n, co, h, w]
1767
+ (37)
1768
+
1769
+
1770
+ n,h,w
1771
+ ˜xp[n, ci, ⌊h
1772
+ r ⌋, ⌊w
1773
+ r ⌋, (h mod r) + u, (w mod r) + v]·
1774
+ ˜gu
1775
+ y [n, co, ⌊h
1776
+ r ⌋, ⌊w
1777
+ r ⌋]
1778
+ (38)
1779
+ =
1780
+
1781
+ n,h,w
1782
+ ˜xu[n, ci, ⌊h
1783
+ r ⌋, ⌊w
1784
+ r ⌋]˜gu
1785
+ y [n, co, ⌊h
1786
+ r ⌋, ⌊w
1787
+ r ⌋]
1788
+ (39)
1789
+ =
1790
+
1791
+ n,h,w
1792
+ ˜xu[n, ci, ⌊h
1793
+ r ⌋, ⌊w
1794
+ r ⌋]˜gu
1795
+ y [n, co, ⌊h
1796
+ r ⌋, ⌊w
1797
+ r ⌋]
1798
+ (40)
1799
+ 12
1800
+
1801
+ By expanding ˜xu and ˜gu
1802
+ y to ˜x and ˜gy, respectively, we have:
1803
+ ˜gθ[co, ci, u, v] =
1804
+
1805
+ n,i,j
1806
+ ˜x[n, ci, i, j]˜gy[n, co, i, j]
1807
+ (41)
1808
+ which is precisely Equation (5) in Section 3.
1809
+ From Equation (37) to Equation (39), we consider that
1810
+ the patch in the approximated input feature map ˜x is padded
1811
+ sufficiently thus they have the same value for all possible
1812
+ offsets ((h mod r) + u, (w mod r) + v). For every given
1813
+ input/output channel pair (co, ci), Equation (40) represents
1814
+ the Frobenius inner product between ˜xu and ˜gu
1815
+ y .
1816
+ B. Detailed Proof for Proposition 1
1817
+ In this section, we provide more details to the proof in
1818
+ Section 4.1. We use Gx, Gy and Θ to denote the gradients
1819
+ gx, gy and the convolution kernel θ in the frequency domain,
1820
+ respectively. Gx[u, v] is the spectrum value at frequency
1821
+ (u, v) and δ is the 2D discrete Dirichlet function. Without
1822
+ losing generality and to simplify the proof, we consider the
1823
+ batch size is 1, the number of input/output channels is 1,
1824
+ namely Cx = Cy = 1, and there is only one patch in ˜gy.
1825
+ The gradient returned by the gradient filtering can be
1826
+ written as:
1827
+ ˜gy = 1
1828
+ r2 1r×r ⊛ gy
1829
+ (42)
1830
+ where ⊛ denotes convolution.
1831
+ By applying the discrete
1832
+ Fourier transformation, Equation (42) can be rewritten in
1833
+ the frequency domain as:
1834
+ ˜Gy[u, v] = 1
1835
+ r2 δ[u, v]Gy[u, v]
1836
+ (43)
1837
+ ˜gy is the approximation for gy(so the ground truth for ˜gy is
1838
+ gy), and the SNR of ˜gy equals to:
1839
+ SNR˜gy = (
1840
+
1841
+ (u,v)(Gy[u, v], − ˜Gy[u, v])2
1842
+
1843
+ (u,v) G2y[u, v]
1844
+ )−1
1845
+ = (
1846
+
1847
+ (u,v)(Gy[u, v] − 1
1848
+ r2 δ[u, v]Gy[u, v])2
1849
+
1850
+ (u,v) G2y[u, v]
1851
+ )−1
1852
+ (44)
1853
+ where the numerator can be written as:
1854
+
1855
+ (u,v)
1856
+ (Gy[u, v] − 1
1857
+ r2 δ[u, v]Gy[u, v])2
1858
+ =
1859
+
1860
+ (u,v)̸=(0,0)
1861
+ (Gy[u, v] − 1
1862
+ r2 δ[u, v]Gy[u, v])2
1863
+ + (Gy[0, 0] − 1
1864
+ r2 δ[0, 0]Gy[0, 0])2
1865
+ (45)
1866
+ Because δ[u, v] =
1867
+
1868
+ 1
1869
+ (u, v) = (0, 0)
1870
+ 0
1871
+ (u, v) ̸= (0, 0), Equation (45) can
1872
+ be written as:
1873
+
1874
+ (u,v)̸=(0,0)
1875
+ G2
1876
+ y[u, v] + (r2 − 1)2
1877
+ r4
1878
+ G2
1879
+ y[0, 0]
1880
+ =
1881
+
1882
+ (u,v)̸=(0,0)
1883
+ G2
1884
+ y[u, v] + G2
1885
+ y[0, 0] − G2
1886
+ y[0, 0]
1887
+ + (r2 − 1)2
1888
+ r4
1889
+ G2
1890
+ y[0, 0]
1891
+ =
1892
+
1893
+ (u,v)
1894
+ G2
1895
+ y[u, v] − 2r2 − 1
1896
+ r4
1897
+ G2
1898
+ y[0, 0]
1899
+ (46)
1900
+ By substituting the numerator in Equation (44) with Equa-
1901
+ tion (46), we have:
1902
+ SNR˜gy = (
1903
+
1904
+ (u,v) G2
1905
+ y[u, v] − 2r2−1
1906
+ r4
1907
+ G2
1908
+ y[0, 0]
1909
+
1910
+ (u,v) G2y[u, v]
1911
+ )−1
1912
+ = (1 − 2r2 − 1
1913
+ r4
1914
+ G2
1915
+ y[0, 0]
1916
+
1917
+ (u,v) G2y[u, v])−1
1918
+ = (1 − 2r2 − 1
1919
+ r4
1920
+ Energy of DC Component in Gy
1921
+ Total Energy4in Gy
1922
+ )−1
1923
+ (47)
1924
+ For the convolution layer, the gradient w.r.t. approximated
1925
+ variable ˜x in the frequency domain is:
1926
+ ˜Gx[u, v] = Θ[−u, −v] ˜Gy[u, v]
1927
+ = 1
1928
+ r2 Θ[−u, −v]δ[u, v]Gy[u, v]
1929
+ (48)
1930
+ and its ground truth is:
1931
+ Gx[u, v] = Θ[−u, −v]Gy[u, v]
1932
+ (49)
1933
+ Similar to Equation (47), the SNR of g˜x is:
1934
+ SNR˜gx = (1 − 2r2 − 1
1935
+ r4
1936
+ Θ2[0, 0]G2
1937
+ y[0, 0]
1938
+
1939
+ (u,v) Θ2[u, v]G2y[u, v])−1
1940
+ = (1 − 2r2 − 1
1941
+ r4
1942
+ G2
1943
+ x[0, 0]
1944
+
1945
+ (u,v) G2x[u, v])−1
1946
+ = (1 − 2r2 − 1
1947
+ r4
1948
+ Energy of DC Component in Gx
1949
+ Total Energy5in Gx
1950
+ )−1
1951
+ (50)
1952
+ Equation (50) can be rewritten as:
1953
+ r4(1 − SNR−1
1954
+ ˜gx )
1955
+ 2r2 − 1
1956
+ =
1957
+ (Θ[0, 0]Gy[0, 0])2
1958
+
1959
+ (u,v)(Θ[−u, −v]Gy[u, v])2
1960
+ =
1961
+ G2
1962
+ y[0, 0]
1963
+
1964
+ (u,v)( Θ[−u,−v]
1965
+ Θ[0,0] Gy[u, v])2
1966
+ (51)
1967
+ 4As reminder, the total energy of a signal is the sum of energy in DC
1968
+ component and energy in AC components.
1969
+ 13
1970
+
1971
+ Besides, the proposition’s assumption (the DC component
1972
+ dominates the frequency spectrum of Θ) can be written as:
1973
+ Θ2[0, 0]
1974
+ max(u,v)̸=(0,0)Θ2[u, v] ≥ 1
1975
+ (52)
1976
+ which is:
1977
+ ∀(u, v), Θ2[−u, −v]
1978
+ Θ2[0, 0]
1979
+ ≤ 1
1980
+ (53)
1981
+ thus, by combining Equation (51) and Equation (53), we
1982
+ have:
1983
+ r4(1 − SNR−1
1984
+ ˜gx )
1985
+ 2r2 − 1
1986
+ =
1987
+ G2
1988
+ y[0, 0]
1989
+
1990
+ (u,v)( Θ[−u,−v]
1991
+ Θ[0,0] Gy[u, v])2
1992
+
1993
+ G2
1994
+ y[0, 0]
1995
+
1996
+ (u,v)(Gy[u, v])2
1997
+ =
1998
+ r4(1 − SNR−1
1999
+ ˜gy )
2000
+ 2r2 − 1
2001
+ (54)
2002
+ which means that: SNR˜gx ≥ SNR˜gy. This completes our
2003
+ proof for error analysis.■
2004
+ In conclusion, as the gradient propagates, the noise in-
2005
+ troduced by the gradient filter becomes weaker and weaker
2006
+ compared to the real gradient signal. This property ensures
2007
+ that the error in gradient has only a limited influence on the
2008
+ quality of BP.
2009
+ This proof can be extended to the more general case
2010
+ where batch size and the number of channels are greater
2011
+ than 1 by introducing more dimensions (i.e., batch dimen-
2012
+ sion, channel dimension) into all equations listed above.
2013
+ C. Computation Analysis for ResNet18
2014
+ In this section, we provide two more examples for com-
2015
+ putation analysis in Section 4.2. Figure 7 shows the com-
2016
+ putation required by the convolution layers from ResNet18
2017
+ with different patch sizes for gradient filtering. With re-
2018
+ duced unique elements, our approach reduces the num-
2019
+ ber of computations to 1/r2 of standard BP method; with
2020
+ structured gradient, our approach further reduces the num-
2021
+ ber of computations to about 1/(r2HθWθ) of standard BP
2022
+ method.
2023
+ D. Detailed Experimental Setup
2024
+ In this supplementary section, we extend the experimen-
2025
+ tal setup in Section 5.1.
2026
+ D.1. ImageNet Classification
2027
+ D.1.1
2028
+ Environment
2029
+ ImageNet related experiments are conducted on IBM Power
2030
+ System AC922, which is equipped with a 40-core IBM
2031
+ Power 9 CPU, 256 GB DRAM and 4 NVIDIA Tesla V100
2032
+ 16GB GPUs. We use PyTorch 1.9.0 compiled with CUDA
2033
+ 10.1 as the deep learning framework.
2034
+ 1 × 1
2035
+ 3 × 3
2036
+ 5 × 5
2037
+ 7 × 7
2038
+ Patch Size r × r
2039
+ 1M
2040
+ 10M
2041
+ 100M
2042
+ FLOPs
2043
+ Baseline
2044
+ Reduced
2045
+ Unique
2046
+ Elements
2047
+ +Structured
2048
+ Gradient
2049
+ Actual
2050
+ Minimum
2051
+ Achievable Computation
2052
+ (a) Last convolutional layer in block 4 of ResNet18 with 512 input/output
2053
+ channels; the resolution of input feature map is 7 × 7.
2054
+ 1 × 1
2055
+ 4 × 4
2056
+ 8 × 8
2057
+ 12 × 12
2058
+ Patch Size r × r
2059
+ 100K
2060
+ 1M
2061
+ 10M
2062
+ 100M
2063
+ FLOPs
2064
+ Baseline
2065
+ Reduced
2066
+ Unique
2067
+ Elements
2068
+ +Structured
2069
+ Gradient
2070
+ Actual
2071
+ Minimum
2072
+ Achievable Computation
2073
+ (b) Last convolutional layer in block 3 of ResNet18 with 256 input/output
2074
+ channels; the resolution of input feature map is 14 × 14.
2075
+ 1 × 1
2076
+ 10 × 10
2077
+ 20 × 20
2078
+ Patch Size r × r
2079
+ 100K
2080
+ 1M
2081
+ 10M
2082
+ 100M
2083
+ FLOPs
2084
+ Baseline
2085
+ Reduced
2086
+ Unique
2087
+ Elements
2088
+ +Structured
2089
+ Gradient
2090
+ Actual
2091
+ Minimum
2092
+ Achievable Computation
2093
+ (c) Last convolutional layer in block 2 of ResNet18 with 128 input/output
2094
+ channels; the resolution of input feature map is 28 × 28.
2095
+ Figure 7. Computation analysis for three convolution layers in
2096
+ of ResNet18 model. Since convolutional layers in every block
2097
+ of ResNet18 is similar, we use the last convolutional layer as the
2098
+ representative of all convolutional layers in the block. Minimum
2099
+ achievable computation is presented in Equation (16) in the pa-
2100
+ per. By reducing the number of unique elements, computations
2101
+ required by our approach drop to about 1/r2 compared with the
2102
+ standard BP method. By combining it (“+” in the figure) with
2103
+ structured gradient map, computations required by our approach
2104
+ drop further.
2105
+ D.1.2
2106
+ Dataset Split
2107
+ We split the dataset into two non-i.i.d. partitions following
2108
+ the FedAvg method [25]. The label distribution is shown
2109
+ in Figure 8.
2110
+ Among all 1000 classes for the ImageNet,
2111
+ pretrain and finetune partitions overlap on only 99 classes,
2112
+ which suggests that our method can efficiently adapt the
2113
+ 14
2114
+
2115
+ Model
2116
+ Accuracy
2117
+ Model
2118
+ Accuracy
2119
+ ResNet-18
2120
+ 73.5%
2121
+ MobileNet-V2
2122
+ 74.3%
2123
+ ResNet-34
2124
+ 76.4%
2125
+ MCUNet
2126
+ 71.4%
2127
+ Table 7. Model pretraining accuracy on ImageNet.
2128
+ DNN model to data collected from new environments. For
2129
+ each partition, we randomly select 80% data as training data
2130
+ and 20% as validation data.
2131
+ 0
2132
+ 200
2133
+ 400
2134
+ 600
2135
+ 800
2136
+ 1000
2137
+ Class Index
2138
+ 0
2139
+ 200
2140
+ 400
2141
+ 600
2142
+ 800
2143
+ 1000
2144
+ Image Count
2145
+ ImageNet Data Split
2146
+ Pretrain
2147
+ Finetune
2148
+ Figure 8. Label distribution for pretraining and finetuning datasets.
2149
+ Pretraining and finetuning partitions are split from ImageNet
2150
+ dataset.
2151
+ D.1.3
2152
+ Pretraining
2153
+ We pretrain ResNet 18, ResNet 34, MobileNet-V2 and
2154
+ MCUNet with the same configuration. We use SGD opti-
2155
+ mizer. The learning rate of the optimizer starts at 0.05 and
2156
+ decays according to cosine annealing method [23] during
2157
+ training. Additionally, weight decay is set to 1 × 10−4 and
2158
+ momentum is set to 0.9. We set batch size to 64. We ran-
2159
+ domly resize, randomly flip and normalize the image for
2160
+ data augmentation. We use cross entropy as loss function.
2161
+ Models are trained for 200 epochs and the model with the
2162
+ highest validation accuracy is kept for finetuning. Table 7
2163
+ shows the pretrain accuracy.
2164
+ D.1.4
2165
+ Finetuning
2166
+ We adopt the hyper-parameter (e.g., momentum, weight de-
2167
+ cay, etc.) from pretraining. Several changes are made: mod-
2168
+ els are finetuned for 90 epochs instead of 200; we apply
2169
+ L2 gradient clipping with threshold 2.0; linear learning rate
2170
+ warm-up for 4 epochs is introduced at the beginning of fine-
2171
+ tuning, i.e., for the first 4 epochs, the learning rate grows
2172
+ linearly up to 0.05, then the learning rate decays accord-
2173
+ ing to cosine annealing method in the following epochs. Of
2174
+ note, to ensure a fair comparison, we use the same hyper-
2175
+ parameters for all experiments, regardless of model type
2176
+ and training strategy.
2177
+ D.2. CIFAR Classification
2178
+ D.2.1
2179
+ Environment
2180
+ CIFAR related experiments are conducted on a GPU work-
2181
+ station with a 64-core AMD Ryzen Threadripper PRO
2182
+ 3995WX CPU, 512 GB DRAM and 4 NVIDIA RTX A6000
2183
+ GPUs. We use PyTorch 1.12.0 compiled with CUDA 11.6
2184
+ as the deep learning framework.
2185
+ D.2.2
2186
+ Dataset Split
2187
+ We split the dataset into two non-i.i.d. partitions following
2188
+ FedAvg method. The label distribution is shown in Figure
2189
+ 9. For CIFAR10, pretrain and finetune partitions overlap
2190
+ on 2 classes out of 10 classes in total. For CIFAR100, pre-
2191
+ train and finetune partitions overlap on 6 classes out of 100
2192
+ classes.
2193
+ 0
2194
+ 2
2195
+ 4
2196
+ 6
2197
+ 8
2198
+ Class Index
2199
+ 0
2200
+ 1000
2201
+ 2000
2202
+ 3000
2203
+ 4000
2204
+ Image Count
2205
+ CIFAR10 Data Split
2206
+ Pretrain
2207
+ Finetune
2208
+ 0
2209
+ 20
2210
+ 40
2211
+ 60
2212
+ 80
2213
+ 100
2214
+ Class Index
2215
+ 0
2216
+ 100
2217
+ 200
2218
+ 300
2219
+ 400
2220
+ Image Count
2221
+ CIFAR100 Data Split
2222
+ Pretrain
2223
+ Finetune
2224
+ Figure 9. Label distribution for pretraining and finetuning datasets
2225
+ on CIFAR10 and CIFAR100. Pretraining and finetuning partitions
2226
+ are split from CIFAR10/100, respectively.
2227
+ D.2.3
2228
+ Pretraining
2229
+ We pretrain ResNet18 and ResNet34 with the same config-
2230
+ uration. We use the ADAM optimizer with a learning rate
2231
+ of 3 × 10−4 and weight decay 1 × 10−4 with no learning
2232
+ rate scheduling method. We use cross entropy as loss func-
2233
+ tion. We set batch size to 128, and normalize the data be-
2234
+ fore feeding it to the model. Models are trained for 30 and
2235
+ 50 epochs for CIFAR10 and CIFAR100, respectively. Then,
2236
+ the model with the highest accuracy is kept for finetuning.
2237
+ Table 8 shows the pretrain accuracy.
2238
+ D.2.4
2239
+ Finetuning
2240
+ We adopt the training configuration from PSQ [7] with
2241
+ some changes. We use cross entropy loss with SGD opti-
2242
+ 15
2243
+
2244
+ ResNet18
2245
+ ResNet34
2246
+ CIFAR10
2247
+ 95.1%
2248
+ 97.6%
2249
+ CIFAR100
2250
+ 75.5%
2251
+ 83.5%
2252
+ Table 8. Model pretraining accuracy on CIFAR10/100.
2253
+ mizer for training. The learning rate of the optimizer starts
2254
+ at 0.05 and decays according to cosine annealing method
2255
+ during training. Momentum is set to 0 and weight decay
2256
+ is set to 1 × 10−4. We apply L2 gradient clipping with
2257
+ a threshold 2.0. Batch normalization layers are fused with
2258
+ convolution layers before training, which is a common tech-
2259
+ nique for inference acceleration.
2260
+ D.3. Semantic Segmentation
2261
+ D.3.1
2262
+ Environment
2263
+ ImageNet related experiments are conducted on IBM Power
2264
+ System AC922, which is equipped with a 40-core IBM
2265
+ Power 9 CPU, 256 GB DRAM and 4 NVIDIA Tesla V100
2266
+ 16GB GPUs. We use PyTorch 1.9.0 compiled with CUDA
2267
+ 10.1 as the deep learning framework. We implement our
2268
+ method based on MMSegmentation 0.27.0.
2269
+ D.3.2
2270
+ Pretraining
2271
+ We use models pretrained by MMSegmentation. Consider-
2272
+ ing that the numbers of classes, image statistics, and model
2273
+ hyper-parameters may be different when applying on dif-
2274
+ ferent datasets, we calibrate the model before finetuning.
2275
+ We use SGD optimizer. The learning rate of the optimizer
2276
+ starts at 0.01 and decays exponentially during training. Ad-
2277
+ ditionally, weight decay is set to 5 × 10−4 and momentum
2278
+ is set to 0.9. We set batch size to 8. We randomly crop, flip
2279
+ and photo-metric distort and normalize the image for data
2280
+ augmentation. We use cross entropy as loss function. For
2281
+ DeepLabV3, FCN, PSPNet and UPerNet, we calibrate the
2282
+ classifier (i.e., the last layer) and statistics in batch normal-
2283
+ ization layers for 1000 steps on the finetuning dataset. For
2284
+ DeepLabV3-MobileNetV2 and PSPNet-MobileNetV2, be-
2285
+ cause the number of channels for convolutional layers in
2286
+ the decoder are different for models applied on different
2287
+ datasets, we calibrate the decoder and statistics in batch nor-
2288
+ malization layers for 5000 steps on the finetuning dataset.
2289
+ D.3.3
2290
+ Finetuning
2291
+ We finetune all models with the same configuration. We use
2292
+ the SGD optimizer. The learning rate of the optimizer starts
2293
+ at 0.01 and decays according to cosine anneling method dur-
2294
+ ing training. Additionally, weight decay is set to 5 × 10−4
2295
+ and momentum is set to 0.9. We set batch size to 8. We
2296
+ randomly crop, flip and photo-metric distort and normalize
2297
+ the image for data augmentation. We use cross entropy as
2298
+ loss function. Models are finetuned for 20000 steps. Exper-
2299
+ iments are repeated three times with random seed 233, 234
2300
+ and 235.
2301
+ D.4. On-device Performance Evaluation
2302
+ D.4.1
2303
+ NVIDIA Jetson Nano
2304
+ We use NVIDIA Jetson Nano with quad-core Cortex-A57,
2305
+ 4 GB DRAM, 128-core Maxwell edge GPU for perfor-
2306
+ mance evaluation on both edge CPU and edge GPU. We
2307
+ use the aarch64-OS Ubuntu 18.04.6 provided by NVIDIA.
2308
+ During evaluation, the frequencies for CPU and GPU are
2309
+ 1.5 GHz and 921 MHz, respectively. Our code and library
2310
+ MKLDNN (a.k.a. OneDNN) are compiled on Jetson Nano
2311
+ with GCC 7.5.0, while libraries CUDA and CUDNN are
2312
+ compiled by NVIDIA. For CPU evaluations, our code and
2313
+ baseline are implemented with MKLDNN v2.6. For GPU
2314
+ evaluations, our code and baseline are implemented with
2315
+ CUDA 10.2 and CUDNN 8.2.1.
2316
+ Before the evaluation for every test case, we warm up
2317
+ the device by running the test once. Then we repeat the test
2318
+ 10 times and report the average value for latency, energy
2319
+ consumption, etc.
2320
+ Energy consumption is obtained by reading the embed-
2321
+ ded power meter in Jetson Nano every 20 ms.
2322
+ D.4.2
2323
+ Raspberry Pi 3b
2324
+ We use Raspberry Pi 3b with quad-core Cortex-A53, 1
2325
+ GB DRAM for performance evaluation on CPU. We use
2326
+ the aarch64-OS Raspberry Pi OS. During evaluation, the
2327
+ frequency for CPU is 1.2 GHz.
2328
+ Our code and library
2329
+ MKLDNN are compiled on Raspberry Pi with GCC 10.2.
2330
+ Our code and baseline are implemented with MKLDNN
2331
+ v2.6.
2332
+ Before the evaluation for every test case, we warm up the
2333
+ device by running the test once. Then we repeat the test 10
2334
+ times and report the average value for latency, etc.
2335
+ D.4.3
2336
+ Desktop
2337
+ We use a desktop PC with Intel 11900KF CPU, 32 GB
2338
+ DRAM and RTX 3090 Ti GPU for perforamce evaluation
2339
+ on both desktop CPU and desktop GPU. We use x86 64-
2340
+ OS Ubuntu 20.04. During evaluation, the frequencies for
2341
+ CPU and GPU are 4.7 GHz and 2.0 GHz respectively. Our
2342
+ code is compiled with GCC 9.4.0. MKLDNN is compiled
2343
+ by Anaconda (tag omp h13be974 0). CUDA and CUDNN
2344
+ are compiled by NVIDIA. For CPU evaluations, our code
2345
+ and baseline are implemented with MKLDNN v2.6. For
2346
+ GPU evaluations, our code and baseline are implemented
2347
+ with CUDA 11.7 and CUDNN 8.2.1.
2348
+ 16
2349
+
2350
+ Pretrain: ADE20K Finetune: VOC12Aug
2351
+ UPerNet
2352
+ #Layers
2353
+ GFLOPs
2354
+ mIoU
2355
+ mAcc
2356
+ PSPNet-M
2357
+ #Layers
2358
+ GFLOPs
2359
+ mIoU
2360
+ mAcc
2361
+ DLV3-M
2362
+ #Layers
2363
+ GFLOPs
2364
+ mIoU
2365
+ mAcc
2366
+ Calibration
2367
+ 0
2368
+ 0
2369
+ 37.66
2370
+ 50.03
2371
+ Calibration
2372
+ 0
2373
+ 0
2374
+ 30.93
2375
+ 52.01
2376
+ Calibration
2377
+ 0
2378
+ 0
2379
+ 35.28
2380
+ 56.98
2381
+ Vanilla BP
2382
+ All
2383
+ 541.0
2384
+ 67.23[0.24]
2385
+ 79.79[0.45]
2386
+ Vanilla BP
2387
+ All
2388
+ 42.41
2389
+ 53.51[0.27]
2390
+ 67.01[0.19]
2391
+ Vanilla BP
2392
+ All
2393
+ 54.35
2394
+ 60.78[0.21]
2395
+ 74.10[0.40]
2396
+ 5
2397
+ 503.9
2398
+ 72.01[0.09]
2399
+ 81.97[0.30]
2400
+ 5
2401
+ 12.22
2402
+ 48.88[0.11]
2403
+ 62.67[0.31]
2404
+ 5
2405
+ 14.77
2406
+ 51.51[0.09]
2407
+ 66.08[0.44]
2408
+ 10
2409
+ 507.6
2410
+ 72.01[0.19]
2411
+ 81.83[0.44]
2412
+ 10
2413
+ 22.46
2414
+ 53.71[0.29]
2415
+ 67.93[0.32]
2416
+ 10
2417
+ 33.10
2418
+ 57.63[0.10]
2419
+ 71.93[0.41]
2420
+ Ours
2421
+ 5
2422
+ 1.97
2423
+ 71.76[0.11]
2424
+ 81.57[0.07]
2425
+ Ours
2426
+ 5
2427
+ 0.11
2428
+ 48.59[0.08]
2429
+ 62.28[0.30]
2430
+ Ours
2431
+ 5
2432
+ 0.26
2433
+ 49.40[0.00]
2434
+ 64.13[0.54]
2435
+ 10
2436
+ 2.22
2437
+ 71.78[0.23]
2438
+ 81.55[0.38]
2439
+ 10
2440
+ 0.76
2441
+ 52.77[0.37]
2442
+ 66.82[0.47]
2443
+ 10
2444
+ 1.40
2445
+ 55.14[0.15]
2446
+ 69.48[0.26]
2447
+ Pretrain: ADE20K Finetune: Cityscapes
2448
+ UPerNet
2449
+ #Layers
2450
+ GFLOPs
2451
+ mIoU
2452
+ mAcc
2453
+ PSPNet-M
2454
+ #Layers
2455
+ GFLOPs
2456
+ mIoU
2457
+ mAcc
2458
+ DLV3-M
2459
+ #Layers
2460
+ GFLOPs
2461
+ mIoU
2462
+ mAcc
2463
+ Calibration
2464
+ 0
2465
+ 0
2466
+ 34.15
2467
+ 42.45
2468
+ Calibration
2469
+ 0
2470
+ 0
2471
+ 28.83
2472
+ 34.85
2473
+ Calibration
2474
+ 0
2475
+ 0
2476
+ 41.33
2477
+ 48.65
2478
+ Vanilla BP
2479
+ All
2480
+ 1082.1
2481
+ 73.02[0.14]
2482
+ 81.01[0.20]
2483
+ Vanilla BP
2484
+ All
2485
+ 84.82
2486
+ 60.21[0.40]
2487
+ 67.72[0.68]
2488
+ Vanilla BP
2489
+ All
2490
+ 108.7
2491
+ 71.12[0.14]
2492
+ 79.81[0.04]
2493
+ 5
2494
+ 1007.7
2495
+ 62.46[0.19]
2496
+ 72.62[0.27]
2497
+ 5
2498
+ 24.43
2499
+ 42.09[0.43]
2500
+ 48.70[0.49]
2501
+ 5
2502
+ 29.5
2503
+ 51.00[0.05]
2504
+ 59.20[0.03]
2505
+ 10
2506
+ 1015.3
2507
+ 64.01[0.21]
2508
+ 73.11[0.32]
2509
+ 10
2510
+ 44.90
2511
+ 54.03[0.24]
2512
+ 61.48[0.10]
2513
+ 10
2514
+ 66.2
2515
+ 61.02[0.14]
2516
+ 69.80[0.06]
2517
+ Ours
2518
+ 5
2519
+ 3.94
2520
+ 60.58[0.25]
2521
+ 70.67[0.32]
2522
+ Ours
2523
+ 5
2524
+ 0.22
2525
+ 41.59[0.38]
2526
+ 48.10[0.41]
2527
+ Ours
2528
+ 5
2529
+ 0.50
2530
+ 48.83[0.07]
2531
+ 56.87[0.08]
2532
+ 10
2533
+ 4.43
2534
+ 62.14[0.24]
2535
+ 71.41[0.27]
2536
+ 10
2537
+ 1.51
2538
+ 49.10[0.49]
2539
+ 56.93[1.43]
2540
+ 10
2541
+ 2.74
2542
+ 50.22[1.01]
2543
+ 59.99[0.31]
2544
+ Table 9.
2545
+ Experimental results for semantic segmentation task for UPerNet, DeepLabV3-MobileNetV2 (DLV3-M) and PSPNet-
2546
+ MobileNetV2 (PSPNet-M). Models are pretrained on ADE20K dataset and finetuned on augmentated Pascal VOC12 dataset and Cityscapes
2547
+ dataset respectively. “#Layers” is short for “the number of active convolutional layers” that are trained. Strategy “Calibration” shows the
2548
+ accuracy when only the classifier and normalization statistics are updated to adapt differences (e.g. different number of classes) between
2549
+ pretraining dataset and finetuning dataset.
2550
+ No.
2551
+ #Input Channel
2552
+ #Output Channel
2553
+ Input Width
2554
+ Input Height
2555
+ 0
2556
+ 128
2557
+ 128
2558
+ 120
2559
+ 160
2560
+ 1
2561
+ 256
2562
+ 256
2563
+ 60
2564
+ 80
2565
+ 2
2566
+ 512
2567
+ 512
2568
+ 30
2569
+ 40
2570
+ 3
2571
+ 512
2572
+ 512
2573
+ 14
2574
+ 14
2575
+ 4
2576
+ 256
2577
+ 256
2578
+ 14
2579
+ 14
2580
+ 5
2581
+ 128
2582
+ 128
2583
+ 28
2584
+ 28
2585
+ 6
2586
+ 64
2587
+ 64
2588
+ 56
2589
+ 56
2590
+ Table 10. Layer configuration for test cases in Figure 6 in Section
2591
+ 5.5 in the paper.
2592
+ Before the evaluation for every test case, we warm up the
2593
+ device by running the 10 times. Then we repeat the test 200
2594
+ times and report the average value for latency, etc.
2595
+ D.4.4
2596
+ Test Case Configurations
2597
+ Table 10 lists the configurations for test cases shown in Fig-
2598
+ ure 6 in the paper. In addition to the parameters shown in
2599
+ the table, for all test cases, we set the batch size to 32, kernel
2600
+ size to 3 × 3, padding and stride to 1.
2601
+ E. More Results for Semantic Segmentation
2602
+ In this section, we extend the experimental results shown
2603
+ in Section 5.3 (Table 3). Table 9 shows the experimental re-
2604
+ sults for UPerNet, PSPNet-MobileNetV2 (PSPNet-M) and
2605
+ DeepLabV3-MobileNetV2 (DLV3-M) on two pairs of pre-
2606
+ traing and finetuning datasets. These results further show
2607
+ the effectiveness of our method on a dense prediction task.
2608
+ F. More Results for CIFAR10/100 with Differ-
2609
+ ent Hyper-Parameter Selections
2610
+ In this section, we extend the experimental results shown
2611
+ in Section 5.4 (Figure 4). Table 11 (page 18) shows the ex-
2612
+ perimental results for ResNet18 and ResNet34 on CIFAR
2613
+ datasets. For every model, we test our method with differ-
2614
+ ent patch sizes for gradient filtering and different numbers
2615
+ of active convolutional layers (#Layers in Table 11, e.g., if
2616
+ #Layers equals to 2, the last two convolutional layers are
2617
+ trained while other layers are frozen). These results further
2618
+ support the qualitative findings in Section 5.4.
2619
+ G. Results for Combining Gradient Filtering
2620
+ with Gradient Quantization
2621
+ In this section, we provide experimental results for com-
2622
+ bining our method, i.e.
2623
+ gradient filtering, with gradient
2624
+ quantization. Table 12 (page 19) shows experimental re-
2625
+ sults for ResNet18 and ResNet32 with gradient quantiza-
2626
+ tion methods PTQ [4] and PSQ [7] and different hyper-
2627
+ parameters. Both forward propagation and backward prop-
2628
+ agation are quantized to INT8. These results support the
2629
+ wide applicability of our method.
2630
+ H. More Results for On-device Performance
2631
+ Evaluation
2632
+ In this section, we extend the experimental results shown
2633
+ in Section 5.5. Figure 10 shows the energy savings and
2634
+ overhead of our method. For most test cases with patch
2635
+ 4 × 4, we achieve over 80× energy savings with less than
2636
+ 20% overhead on both CPU and GPU. Moreover, for the
2637
+ test case 1 on Raspberry Pi CPU, the forward propagation
2638
+ is even faster when applied our method (which results in
2639
+ negtive overheads).
2640
+ These results further show that our
2641
+ method is practical for the real deployment of both high-
2642
+ performance and IoT applications.
2643
+ 17
2644
+
2645
+ CIFAR10
2646
+ CIFAR100
2647
+ ResNet18
2648
+ #Layers
2649
+ ACC[%]
2650
+ FLOPs
2651
+ ResNet34
2652
+ #Layers
2653
+ ACC[%]
2654
+ FLOPs
2655
+ ResNet18
2656
+ #Layers
2657
+ ACC[%]
2658
+ FLOPs
2659
+ ResNet34
2660
+ #Layers
2661
+ ACC[%]
2662
+ FLOPs
2663
+ Vanilla
2664
+ BP
2665
+ 1
2666
+ 91.7
2667
+ 128.25M
2668
+ Vanilla
2669
+ BP
2670
+ 1
2671
+ 94.2
2672
+ 128.25M
2673
+ Vanilla
2674
+ BP
2675
+ 1
2676
+ 73.8
2677
+ 128.39M
2678
+ Vanilla
2679
+ BP
2680
+ 1
2681
+ 76.9
2682
+ 128.39M
2683
+ 2
2684
+ 93.6
2685
+ 487.68M
2686
+ 2
2687
+ 96.6
2688
+ 487.68M
2689
+ 2
2690
+ 77.6
2691
+ 487.82M
2692
+ 2
2693
+ 82.0
2694
+ 487.82M
2695
+ 3
2696
+ 93.7
2697
+ 847.15M
2698
+ 3
2699
+ 96.6
2700
+ 847.13M
2701
+ 3
2702
+ 77.6
2703
+ 847.29M
2704
+ 3
2705
+ 82.1
2706
+ 847.27M
2707
+ 4
2708
+ 94.4
2709
+ 1.14G
2710
+ 4
2711
+ 96.8
2712
+ 1.21G
2713
+ 4
2714
+ 78.0
2715
+ 1.14G
2716
+ 4
2717
+ 83.0
2718
+ 1.21G
2719
+ +Gradient
2720
+ Filter
2721
+ R2
2722
+ 1
2723
+ 91.5
2724
+ 8.18M
2725
+ +Gradient
2726
+ Filter
2727
+ R2
2728
+ 1
2729
+ 94.2
2730
+ 8.18M
2731
+ +Gradient
2732
+ Filter
2733
+ R2
2734
+ 1
2735
+ 73.7
2736
+ 8.31M
2737
+ +Gradient
2738
+ Filter
2739
+ R2
2740
+ 1
2741
+ 77.0
2742
+ 8.31M
2743
+ 2
2744
+ 92.7
2745
+ 26.80M
2746
+ 2
2747
+ 96.6
2748
+ 26.80M
2749
+ 2
2750
+ 75.6
2751
+ 26.94M
2752
+ 2
2753
+ 81.1
2754
+ 26.94M
2755
+ 3
2756
+ 92.8
2757
+ 45.45M
2758
+ 3
2759
+ 96.5
2760
+ 45.44M
2761
+ 3
2762
+ 75.6
2763
+ 45.59M
2764
+ 3
2765
+ 81.1
2766
+ 45.58M
2767
+ 4
2768
+ 93.9
2769
+ 60.01M
2770
+ 4
2771
+ 96.6
2772
+ 64.07M
2773
+ 4
2774
+ 76.4
2775
+ 60.15M
2776
+ 4
2777
+ 82.0
2778
+ 64.21M
2779
+ +Gradient
2780
+ Filter
2781
+ R4
2782
+ 1
2783
+ 91.4
2784
+ 1.88M
2785
+ +Gradient
2786
+ Filter
2787
+ R4
2788
+ 1
2789
+ 94.3
2790
+ 1.88M
2791
+ +Gradient
2792
+ Filter
2793
+ R4
2794
+ 1
2795
+ 73.7
2796
+ 2.02M
2797
+ +Gradient
2798
+ Filter
2799
+ R4
2800
+ 1
2801
+ 76.9
2802
+ 2.02M
2803
+ 2
2804
+ 92.7
2805
+ 7.93M
2806
+ 2
2807
+ 96.4
2808
+ 7.93M
2809
+ 2
2810
+ 74.9
2811
+ 8.07M
2812
+ 2
2813
+ 80.4
2814
+ 8.07M
2815
+ 3
2816
+ 92.8
2817
+ 13.99M
2818
+ 3
2819
+ 96.4
2820
+ 13.98M
2821
+ 3
2822
+ 74.9
2823
+ 14.12M
2824
+ 3
2825
+ 80.4
2826
+ 14.12M
2827
+ 4
2828
+ 93.3
2829
+ 19.12M
2830
+ 4
2831
+ 96.1
2832
+ 20.04M
2833
+ 4
2834
+ 75.2
2835
+ 19.26M
2836
+ 4
2837
+ 80.5
2838
+ 20.17M
2839
+ +Gradient
2840
+ Filter
2841
+ R7
2842
+ 1
2843
+ 91.5
2844
+ 303.10K
2845
+ +Gradient
2846
+ Filter
2847
+ R7
2848
+ 1
2849
+ 94.2
2850
+ 303.10K
2851
+ +Gradient
2852
+ Filter
2853
+ R7
2854
+ 1
2855
+ 73.7
2856
+ 441.34K
2857
+ +Gradient
2858
+ Filter
2859
+ R7
2860
+ 1
2861
+ 76.9
2862
+ 441.34K
2863
+ 2
2864
+ 91.5
2865
+ 3.21M
2866
+ 2
2867
+ 95.8
2868
+ 3.21M
2869
+ 2
2870
+ 74.1
2871
+ 3.35M
2872
+ 2
2873
+ 80.4
2874
+ 3.35M
2875
+ 3
2876
+ 91.7
2877
+ 6.12M
2878
+ 3
2879
+ 96.0
2880
+ 6.12M
2881
+ 3
2882
+ 74.1
2883
+ 6.26M
2884
+ 3
2885
+ 80.3
2886
+ 6.26M
2887
+ 4
2888
+ 92.6
2889
+ 8.90M
2890
+ 4
2891
+ 96.0
2892
+ 9.03M
2893
+ 4
2894
+ 75.4
2895
+ 9.04M
2896
+ 4
2897
+ 80.3
2898
+ 9.17M
2899
+ Table 11. Experimental results on CIFAR10 and CIFAR100 datasets for ResNet18 and ResNet34 with different hyper-parameter selections.
2900
+ “ACC” is short for accuracy. “#Layers” is short for “the number of active convolution layers”. For example. #Layers equals to 2 means that
2901
+ only the last two convolutional layers are trained. “Gradient Filter R2/4/7” use proposed gradient filtering method with patch size 2 × 2,
2902
+ 4 × 4 and 7 × 7, respectively.
2903
+ 0
2904
+ 1
2905
+ 2
2906
+ 3
2907
+ 4
2908
+ 5
2909
+ 6
2910
+
2911
+ 20×
2912
+ 40×
2913
+ 60×
2914
+ 80×
2915
+ 100×
2916
+ 120×
2917
+ Energy Savings [×times]
2918
+ CPU Energy Savings
2919
+ Jetson-R2
2920
+ Jetson-R4
2921
+ 0
2922
+ 1
2923
+ 2
2924
+ 3
2925
+ 4
2926
+ 5
2927
+ 6
2928
+
2929
+ 20×
2930
+ 40×
2931
+ 60×
2932
+ 80×
2933
+ 100×
2934
+ GPU Energy Savings
2935
+ Jetson-R2
2936
+ Jetson-R4
2937
+ 0
2938
+ 1
2939
+ 2
2940
+ 3
2941
+ 4
2942
+ 5
2943
+ 6
2944
+ Test Case - Baseline: MKLDNN
2945
+ 0
2946
+ 25
2947
+ 50
2948
+ 75
2949
+ 100
2950
+ Percentage [%]
2951
+ Forward Cost
2952
+ 20% Overhead
2953
+ Normalized CPU Overhead
2954
+ Jetson-R2
2955
+ Jetson-R4
2956
+ 11900KF-R2
2957
+ 11900KF-R4
2958
+ RPi3-R2
2959
+ RPi3-R4
2960
+ 0
2961
+ 1
2962
+ 2
2963
+ 3
2964
+ 4
2965
+ 5
2966
+ 6
2967
+ Test Case - Baseline: CUDNN
2968
+ 0
2969
+ 20
2970
+ 40
2971
+ 60
2972
+ 80
2973
+ 100
2974
+ Forward Cost
2975
+ 20% Overhead
2976
+ Normalized GPU Overhead
2977
+ Jetson-R2
2978
+ Jetson-R4
2979
+ RTX3090Ti-R2
2980
+ RTX3090Ti-R4
2981
+ Figure 10. Energy savings and overhead resuls on multiple CPUs and GPUs under different test cases (i.e., different input sizes, number of
2982
+ channels, etc..). For test case 4 and 5 with patch size 4 × 4 (Jetson-R4) on GPU, the latency of our method is too small to be captured by
2983
+ the power meter with a 20 ms sample rate so the energy savings data is not available. For most test cases with patch size 4 × 4, our method
2984
+ achieves over 80× energy savings with less than 20% overhead.
2985
+ 18
2986
+
2987
+ CIFAR10
2988
+ CIFAR100
2989
+ ResNet18
2990
+ ResNet34
2991
+ ResNet18
2992
+ ResNet34
2993
+ Strategy
2994
+ #Layers
2995
+ ACC[%]
2996
+ #OPs
2997
+ Strategy
2998
+ #Layers
2999
+ ACC[%]
3000
+ #OPs
3001
+ Strategy
3002
+ #Layers
3003
+ ACC[%]
3004
+ #OPs
3005
+ Strategy
3006
+ #Layers
3007
+ ACC[%]
3008
+ #OPs
3009
+ PTQ
3010
+ 1
3011
+ 91.6
3012
+ 128.25M
3013
+ PTQ
3014
+ 1
3015
+ 93.6
3016
+ 128.25M
3017
+ PTQ
3018
+ 1
3019
+ 74.0
3020
+ 128.39M
3021
+ PTQ
3022
+ 1
3023
+ 76.4
3024
+ 128.39M
3025
+ 2
3026
+ 93.2
3027
+ 487.68M
3028
+ 2
3029
+ 96.2
3030
+ 487.68M
3031
+ 2
3032
+ 77.8
3033
+ 487.82M
3034
+ 2
3035
+ 80.3
3036
+ 487.82M
3037
+ 3
3038
+ 93.5
3039
+ 847.15M
3040
+ 3
3041
+ 96.2
3042
+ 847.13M
3043
+ 3
3044
+ 77.9
3045
+ 847.29M
3046
+ 3
3047
+ 80.5
3048
+ 847.27M
3049
+ 4
3050
+ 94.4
3051
+ 1.14G
3052
+ 4
3053
+ 96.5
3054
+ 1.21G
3055
+ 4
3056
+ 77.9
3057
+ 1.14G
3058
+ 4
3059
+ 82.2
3060
+ 1.21G
3061
+ PTQ
3062
+ +Gradient
3063
+ Filter
3064
+ R2
3065
+ 1
3066
+ 91.4
3067
+ 8.18M
3068
+ PTQ
3069
+ +Gradient
3070
+ Filter
3071
+ R2
3072
+ 1
3073
+ 93.5
3074
+ 8.18M
3075
+ PTQ
3076
+ +Gradient
3077
+ Filter
3078
+ R2
3079
+ 1
3080
+ 73.9
3081
+ 8.31M
3082
+ PTQ
3083
+ +Gradient
3084
+ Filter
3085
+ R2
3086
+ 1
3087
+ 76.5
3088
+ 8.31M
3089
+ 2
3090
+ 92.6
3091
+ 26.80M
3092
+ 2
3093
+ 95.9
3094
+ 26.80M
3095
+ 2
3096
+ 75.7
3097
+ 26.94M
3098
+ 2
3099
+ 80.0
3100
+ 26.94M
3101
+ 3
3102
+ 92.7
3103
+ 45.45M
3104
+ 3
3105
+ 96.0
3106
+ 45.44M
3107
+ 3
3108
+ 75.9
3109
+ 45.59M
3110
+ 3
3111
+ 80.1
3112
+ 45.58M
3113
+ 4
3114
+ 93.7
3115
+ 60.01M
3116
+ 4
3117
+ 96.2
3118
+ 64.07M
3119
+ 4
3120
+ 76.3
3121
+ 60.15M
3122
+ 4
3123
+ 80.9
3124
+ 64.21M
3125
+ PTQ
3126
+ +Gradient
3127
+ Filter
3128
+ R4
3129
+ 1
3130
+ 91.3
3131
+ 1.88M
3132
+ PTQ
3133
+ +Gradient
3134
+ Filter
3135
+ R4
3136
+ 1
3137
+ 93.6
3138
+ 1.88M
3139
+ PTQ
3140
+ +Gradient
3141
+ Filter
3142
+ R4
3143
+ 1
3144
+ 73.7
3145
+ 2.02M
3146
+ PTQ
3147
+ +Gradient
3148
+ Filter
3149
+ R4
3150
+ 1
3151
+ 76.5
3152
+ 2.02M
3153
+ 2
3154
+ 92.5
3155
+ 7.93M
3156
+ 2
3157
+ 95.6
3158
+ 7.93M
3159
+ 2
3160
+ 75.1
3161
+ 8.07M
3162
+ 2
3163
+ 79.5
3164
+ 8.07M
3165
+ 3
3166
+ 92.7
3167
+ 13.99M
3168
+ 3
3169
+ 95.6
3170
+ 13.98M
3171
+ 3
3172
+ 75.4
3173
+ 14.12M
3174
+ 3
3175
+ 79.5
3176
+ 14.12M
3177
+ 4
3178
+ 93.4
3179
+ 19.12M
3180
+ 4
3181
+ 95.6
3182
+ 20.04M
3183
+ 4
3184
+ 76.1
3185
+ 19.26M
3186
+ 4
3187
+ 80.5
3188
+ 20.17M
3189
+ PTQ
3190
+ +Gradient
3191
+ Filter
3192
+ R7
3193
+ 1
3194
+ 91.2
3195
+ 303.10K
3196
+ PTQ
3197
+ +Gradient
3198
+ Filter
3199
+ R7
3200
+ 1
3201
+ 93.6
3202
+ 303.10K
3203
+ PTQ
3204
+ +Gradient
3205
+ Filter
3206
+ R7
3207
+ 1
3208
+ 73.7
3209
+ 441.34K
3210
+ PTQ
3211
+ +Gradient
3212
+ Filter
3213
+ R7
3214
+ 1
3215
+ 76.5
3216
+ 441.34K
3217
+ 2
3218
+ 91.5
3219
+ 3.21M
3220
+ 2
3221
+ 95.5
3222
+ 3.21M
3223
+ 2
3224
+ 74.5
3225
+ 3.35M
3226
+ 2
3227
+ 79.4
3228
+ 3.35M
3229
+ 3
3230
+ 91.6
3231
+ 6.12M
3232
+ 3
3233
+ 95.4
3234
+ 6.12M
3235
+ 3
3236
+ 74.5
3237
+ 6.26M
3238
+ 3
3239
+ 79.5
3240
+ 6.26M
3241
+ 4
3242
+ 92.6
3243
+ 8.90M
3244
+ 4
3245
+ 95.5
3246
+ 9.03M
3247
+ 4
3248
+ 75.3
3249
+ 9.04M
3250
+ 4
3251
+ 79.6
3252
+ 9.17M
3253
+ PSQ
3254
+ 1
3255
+ 91.4
3256
+ 128.25M
3257
+ PSQ
3258
+ 1
3259
+ 93.6
3260
+ 128.25M
3261
+ PSQ
3262
+ 1
3263
+ 73.9
3264
+ 128.39M
3265
+ PSQ
3266
+ 1
3267
+ 76.4
3268
+ 128.39M
3269
+ 2
3270
+ 93.3
3271
+ 487.68M
3272
+ 2
3273
+ 96.1
3274
+ 487.68M
3275
+ 2
3276
+ 77.7
3277
+ 487.82M
3278
+ 2
3279
+ 80.3
3280
+ 487.82M
3281
+ 3
3282
+ 93.4
3283
+ 847.15M
3284
+ 3
3285
+ 96.2
3286
+ 847.13M
3287
+ 3
3288
+ 77.9
3289
+ 847.29M
3290
+ 3
3291
+ 80.5
3292
+ 847.27M
3293
+ 4
3294
+ 94.5
3295
+ 1.14G
3296
+ 4
3297
+ 96.4
3298
+ 1.21G
3299
+ 4
3300
+ 78.0
3301
+ 1.14G
3302
+ 4
3303
+ 82.2
3304
+ 1.21G
3305
+ PSQ
3306
+ +Gradient
3307
+ Filter
3308
+ R2
3309
+ 1
3310
+ 91.3
3311
+ 8.18M
3312
+ PSQ
3313
+ +Gradient
3314
+ Filter
3315
+ R2
3316
+ 1
3317
+ 93.5
3318
+ 8.18M
3319
+ PSQ
3320
+ +Gradient
3321
+ Filter
3322
+ R2
3323
+ 1
3324
+ 73.8
3325
+ 8.31M
3326
+ PSQ
3327
+ +Gradient
3328
+ Filter
3329
+ R2
3330
+ 1
3331
+ 76.4
3332
+ 8.31M
3333
+ 2
3334
+ 92.6
3335
+ 26.80M
3336
+ 2
3337
+ 96.0
3338
+ 26.80M
3339
+ 2
3340
+ 76.0
3341
+ 26.94M
3342
+ 2
3343
+ 80.1
3344
+ 26.94M
3345
+ 3
3346
+ 92.8
3347
+ 45.45M
3348
+ 3
3349
+ 96.1
3350
+ 45.44M
3351
+ 3
3352
+ 75.9
3353
+ 45.59M
3354
+ 3
3355
+ 80.0
3356
+ 45.58M
3357
+ 4
3358
+ 93.7
3359
+ 60.01M
3360
+ 4
3361
+ 96.1
3362
+ 64.07M
3363
+ 4
3364
+ 76.3
3365
+ 60.15M
3366
+ 4
3367
+ 80.9
3368
+ 64.21M
3369
+ PSQ
3370
+ +Gradient
3371
+ Filter
3372
+ R4
3373
+ 1
3374
+ 91.4
3375
+ 1.88M
3376
+ PSQ
3377
+ +Gradient
3378
+ Filter
3379
+ R4
3380
+ 1
3381
+ 93.6
3382
+ 1.88M
3383
+ PSQ
3384
+ +Gradient
3385
+ Filter
3386
+ R4
3387
+ 1
3388
+ 73.5
3389
+ 2.02M
3390
+ PSQ
3391
+ +Gradient
3392
+ Filter
3393
+ R4
3394
+ 1
3395
+ 76.5
3396
+ 2.02M
3397
+ 2
3398
+ 92.6
3399
+ 7.93M
3400
+ 2
3401
+ 95.6
3402
+ 7.93M
3403
+ 2
3404
+ 75.3
3405
+ 8.07M
3406
+ 2
3407
+ 79.5
3408
+ 8.07M
3409
+ 3
3410
+ 92.7
3411
+ 13.99M
3412
+ 3
3413
+ 95.6
3414
+ 13.98M
3415
+ 3
3416
+ 75.1
3417
+ 14.12M
3418
+ 3
3419
+ 79.6
3420
+ 14.12M
3421
+ 4
3422
+ 93.2
3423
+ 19.12M
3424
+ 4
3425
+ 95.5
3426
+ 20.04M
3427
+ 4
3428
+ 76.2
3429
+ 19.26M
3430
+ 4
3431
+ 80.2
3432
+ 20.17M
3433
+ PSQ
3434
+ +Gradient
3435
+ Filter
3436
+ R7
3437
+ 1
3438
+ 91.2
3439
+ 303.10K
3440
+ PSQ
3441
+ +Gradient
3442
+ Filter
3443
+ R7
3444
+ 1
3445
+ 93.6
3446
+ 303.10K
3447
+ PSQ
3448
+ +Gradient
3449
+ Filter
3450
+ R7
3451
+ 1
3452
+ 73.5
3453
+ 441.34K
3454
+ PSQ
3455
+ +Gradient
3456
+ Filter
3457
+ R7
3458
+ 1
3459
+ 76.5
3460
+ 441.34K
3461
+ 2
3462
+ 91.4
3463
+ 3.21M
3464
+ 2
3465
+ 95.5
3466
+ 3.21M
3467
+ 2
3468
+ 74.4
3469
+ 3.35M
3470
+ 2
3471
+ 79.5
3472
+ 3.35M
3473
+ 3
3474
+ 91.6
3475
+ 6.12M
3476
+ 3
3477
+ 95.4
3478
+ 6.12M
3479
+ 3
3480
+ 74.5
3481
+ 6.26M
3482
+ 3
3483
+ 79.6
3484
+ 6.26M
3485
+ 4
3486
+ 92.7
3487
+ 8.90M
3488
+ 4
3489
+ 95.5
3490
+ 9.03M
3491
+ 4
3492
+ 75.5
3493
+ 9.04M
3494
+ 4
3495
+ 79.6
3496
+ 9.17M
3497
+ Table 12. Experimental results for ResNet18 and ResNet34 with different gradient quantization methods (i.e., PTQ [4] and PSQ [7]) and
3498
+ hyper-parameter selections on CIFAR10/100. Feature map, activation, weight and gradient are quantized to INT8. “ACC” is short for
3499
+ accuracy. “#Layers” is short for “the number of active convolution layers”. For example. #Layers equals to 2 means that the last two
3500
+ convolutional layers are trained. “Gradient Filter R2/4/7” use proposed gradient filtering method with patch size 2 × 2, 4 × 4 and 7 × 7,
3501
+ respectively.
3502
+ 19
3503
+
FNAyT4oBgHgl3EQfe_gi/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
H9FKT4oBgHgl3EQfdS4O/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d0c24255f086e64642849d14acc3ce881f434c5e22edced3d38b932748017c7
3
+ size 4718637
HdE0T4oBgHgl3EQfhgHx/content/tmp_files/2301.02434v1.pdf.txt ADDED
@@ -0,0 +1,3387 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Asymptotic decay function of the stationary tail probabilities along
2
+ an arbitrary direction in a two-dimensional discrete-time QBD
3
+ process
4
+ Toshihisa Ozawa
5
+ Faculty of Business Administration, Komazawa University
6
+ 1-23-1 Komazawa, Setagaya-ku, Tokyo 154-8525, Japan
7
+ E-mail: [email protected]
8
+ Abstract
9
+ We deal with a discrete-time two-dimensional quasi-birth-and-death process (2d-QBD pro-
10
+ cess for short) on Z2
11
+ + ×S0, where S0 is a finite set, and consider a topic remaining unresolved in
12
+ our previous paper. In that paper, the asymptotic decay rate of the stationary tail probabilities
13
+ along an arbitrary direction has been obtained. It has also been clarified that if the asymptotic
14
+ decay rate ξc, where c is a direction vector in N2, is less than a certain value θmax
15
+ c
16
+ , the sequence
17
+ of the stationary tail probabilities along the direction c geometrically decays without power
18
+ terms, asymptotically. In this article, we give the function that the sequence asymptotically
19
+ decays according to when ξc = θmax
20
+ c
21
+ , but it contains an unknown parameter. To determine the
22
+ value of the parameter is a next challenge.
23
+ Keywards: quasi-birth-and-death process, Markov modulated reflecting random walk, Markov
24
+ additive process, asymptotic decay rate, asymptotic decay function, stationary distribution, ma-
25
+ trix analytic method
26
+ Mathematics Subject Classification: 60J10, 60K25
27
+ 1
28
+ Introduction
29
+ We deal with a discrete-time two-dimensional quasi-birth-and-death process (2d-QBD process for
30
+ short) {Y n} = {(Xn, Jn)} on Z2
31
+ + × S0, where S0 is a finite set. This model is a Markov modulated
32
+ reflecting random walk (MMRRW for short) whose transitions are skip free, and the MMRRW is
33
+ a kind of reflecting random walk (RRW for short) with a background process, where the transition
34
+ probabilities of the RRW vary depending on the state of the background process. One-dimensional
35
+ QBD processes have been introduced by Macel Neuts and studied in the literature as one of the
36
+ essential stochastic models in the queueing theory (see, for example, [1, 5, 7, 8]). The 2d-QBD
37
+ process is a two-dimensional version of one-dimensional QBD process, and it enable us to analyze,
38
+ for example, two-node queueing networks and two-node polling models.
39
+ Assume the 2d-QBD process {Y n} is positive recurrent and denote by ν = (ν(x,j); (x, j) ∈
40
+ Z2
41
+ + × S0) the stationary distribution, where ν(x,j) is the stationary probability that the process
42
+ is in the state (x, j). Our interest is asymptotics of the stationary distribution ν, especially, tail
43
+ asymptotics in an arbitrary direction. Let an integer vector c = (c1, c2) be nonzero and nonnegative.
44
+ Two typical objects of our study are the asymptotic decay rate ξc and asymptotic decay function
45
+ hc(k) defined as, for j ∈ S0,
46
+ ξc = − lim
47
+ k→∞
48
+ 1
49
+ k log ν(kc,j),
50
+ lim
51
+ k→∞
52
+ ν(kc,j)
53
+ hc(k) = gj,
54
+ 1
55
+ arXiv:2301.02434v1 [math.PR] 6 Jan 2023
56
+
57
+ where gj is a positive constant.
58
+ Under a certain condition, the asymptotic decay rate of the
59
+ probability sequence {νx+kc,j; k ≥ 0} does not depend on x and j if it exists, see Proposition 2.3
60
+ of Ozawa [14]. In the case where c = (1, 0) or c = (0, 1), the asymptotic decay rate ξc has been
61
+ obtained in Ozawa [10], see Corollary 4.3 of [14], and the asymptotic decay function hc(k) in Ozawa
62
+ and Kobayashi [11], see Theorem 2.1 of [11]. The results in the case where c = (c, 0) or c = (0, c)
63
+ for c ≥ 2 are automatically obtained from those in [10, 11]. In the case where c = (c1, c2) ≥ (1, 1),
64
+ the asymptotic decay rate ξc has been obtained in Ozawa [14], see Theorem 3.2 of [14]. A condition
65
+ ensuring the asymptotic decay function is given by hc(k) = e−ξck, an exponential function without
66
+ a power term, has also been given in the theorem.
67
+ In this article, we give the expression of the asymptotic decay function hc(k) when c = (c1, c2) ≥
68
+ (1, 1).
69
+ To this end, we clarify the analytic properties of the vector generating function of the
70
+ stationary probabilities along the direction c, ϕc(z).
71
+ The point z = eξc is a singular point of
72
+ the vector function ϕc(z), and if ξc is equal to a certain value θmax
73
+ c
74
+ , z = eθmax
75
+ c
76
+ is a branch point
77
+ of ϕc(z) with order one. From this result, we obtain the expression of hc(k), but it contains an
78
+ unknown parameter.
79
+ To determine the value of the parameter, it suffices to prove that ϕc(z)
80
+ diverges elementwise at z = eθmax
81
+ c
82
+ . It seems to be a hard work and we leave it as a next challenge.
83
+ We also generalize a part of existing results. One crucial point in analyzing the asymptotic decay
84
+ function is how to analytically extend the G-matrix function appeared in the vector generating
85
+ function of the stationary probabilities. In [11], it has been done under the assumption that all
86
+ the eigenvalues of the G-matrix function are distinct, see Assumption 4.1 and Lemma 4.5 of [11].
87
+ This assumption is not easy to verify in general. We, therefore, remove the assumption and give a
88
+ general formula of the Jordan decomposition of the G-matrix function, see Section 3.1.
89
+ The rest of the article is organized as follows. In Section 2, we describe the 2d-QBD process in
90
+ detail and state assumptions and main results. In Section 3, an analytic extension of the G-matrix
91
+ function is given in a general setting. The definition of G-matrix in the reverse direction and its
92
+ properties are also given in the same section. They are used in the following section. The proof
93
+ of the main results is given in Sections 4, where we demonstrate that the vector function ϕc(z)
94
+ is elementwise analytic in the open disk with radius eξc + ε for some ε > 0, except for the point
95
+ z = eξc, and clarify its singularity at the point z = eξc. The asymptotic decay function is obtained
96
+ from those results. The paper concludes with some remarks in Section 5.
97
+ 2
98
+ Model description and main results
99
+ 2.1
100
+ Model description
101
+ We consider the same model as that described in [14] and use the same notation.
102
+ Denote by I2 the set of all the subsets of {1, 2}, i.e., I2 = {∅, {1}, {2}, {1, 2}}, and we use it
103
+ as an index set. Divide Z2
104
+ + into 22 = 4 exclusive subsets defined as
105
+ Bα = {x = (x1, x2) ∈ Z2
106
+ +; xi > 0 for i ∈ α, xi = 0 for i ∈ {1, 2} \ α}, α ∈ I2.
107
+ Let {Y n} = {(Xn, Jn)} be a 2d-QBD process on S = Z2
108
+ + × S0, where S0 = {1, 2, ..., s0}. Let P be
109
+ the transition probability matrix of {Y n} and represent it in block form as P =
110
+
111
+ Px,x′; x, x′ ∈ Z2
112
+ +
113
+
114
+ ,
115
+ where Px,x′ = (p(x,j),(x′,j′); j, j′ ∈ S0) and p(x,j),(x′,j′) = P(Y 1 = (x′, j′) | Y 0 = (x, j)). For α ∈ I2
116
+ and i1, i2 ∈ {−1, 0, 1}, let Aα
117
+ i1,i2 be a one-step transition probability block from a state in Bα, where
118
+ we assume the blocks corresponding to impossible transitions are zero (see Fig. 1). Since the level
119
+ process is skip free, for every x, x′ ∈ Z2
120
+ +, Px,x′ is given by
121
+ Px,x′ =
122
+ � Aα
123
+ x′−x,
124
+ if x ∈ Bα for some α ∈ I2 and x′ − x ∈ {−1, 0, 1}2,
125
+ O,
126
+ otherwise.
127
+ (2.1)
128
+ We assume the following condition throughout the paper.
129
+ 2
130
+
131
+ Figure 1: Transition probability blocks
132
+ Assumption 2.1. The 2d-QBD process {Y n} is irreducible and aperiodic.
133
+ Next, we define several Markov chains derived from the 2d-QBD process. For a nonempty set
134
+ α ∈ I2, let {Y α
135
+ n} = {(Xα
136
+ n, Jα
137
+ n )} be a process derived from the 2d-QBD process {Y n} by removing
138
+ the boundaries that are orthogonal to the xi-axis for each i ∈ α. The process {Y {1}
139
+ n } is a Markov
140
+ chain on Z × Z+ × S0 whose transition probability matrix P {1} = (P {1}
141
+ x,x′; x, x′ ∈ Z × Z+) is given
142
+ as
143
+ P {1}
144
+ x,x′ =
145
+
146
+
147
+
148
+
149
+
150
+ A{1}
151
+ x′−x,
152
+ if x ∈ Z × {0} and x′ − x ∈ {−1, 0, 1} × {0, 1},
153
+ A{1,2}
154
+ x′−x,
155
+ if x ∈ Z × N and x′ − x ∈ {−1, 0, 1}2,
156
+ O,
157
+ otherwise,
158
+ (2.2)
159
+ where N is the set of all positive integers. The process {Y {2}
160
+ n } on Z+ × Z × S0 and its transition
161
+ probability matrix P {2} = (P {2}
162
+ x,x′; x, x′ ∈ Z+ × Z) are analogously defined. The process {Y {1,2}
163
+ n
164
+ }
165
+ is a Markov chain on Z2 × S0, whose transition probability matrix P {1,2} = (P {1,2}
166
+ x,x′ ; x, x′ ∈ Z2) is
167
+ given as
168
+ P {1,2}
169
+ x,x′ =
170
+
171
+ A{1,2}
172
+ x′−x,
173
+ if x′ − x ∈ {−1, 0, 1}2,
174
+ O,
175
+ otherwise.
176
+ (2.3)
177
+ Regarding X{1}
178
+ 1,n as the additive part, we see that the process {Y {1}
179
+ n } = {(X{1}
180
+ 1,n , (X{1}
181
+ 2,n , J{1}
182
+ n
183
+ ))} is
184
+ a Markov additive process (MA-process for short) with the background state (X{1}
185
+ 2,n , J{1}
186
+ n
187
+ ) (with
188
+ respect to MA-processes, see, for example, Ney and Nummelin [9]).
189
+ The process {Y {2}
190
+ n } =
191
+ {(X{2}
192
+ 2,n , (X{2}
193
+ 1,n , J{2}
194
+ n
195
+ ))} is also an MA-process, where X{2}
196
+ 2,n is the additive part and (X{2}
197
+ 1,n , J{2}
198
+ n
199
+ ) the
200
+ background state, and {Y {1,2}
201
+ n
202
+ } = {(X{1,2}
203
+ 1,n
204
+ , X{1,2}
205
+ 2,n
206
+ ), J{1,2}
207
+ n
208
+ )} an MA-process, where (X{1,2}
209
+ 1,n
210
+ , X{1,2}
211
+ 2,n
212
+ )
213
+ the additive part and J{1,2}
214
+ n
215
+ the background state. We call them the induced MA-processes de-
216
+ rived from the original 2d-QBD process. Let { ¯A{1}
217
+ i
218
+ ; i ∈ {−1, 0, 1}} be the Markov additive kernel
219
+ (MA-kernel for short) of the induced MA-process {Y {1}
220
+ n }, which is the set of transition probability
221
+ blocks and defined as, for i ∈ {−1, 0, 1},
222
+ ¯A{1}
223
+ i
224
+ =
225
+
226
+ ¯A{1}
227
+ i,(x2,x′
228
+ 2); x2, x′
229
+ 2 ∈ Z+
230
+
231
+ ,
232
+ ¯A{1}
233
+ i,(x2,x′
234
+ 2) =
235
+
236
+
237
+
238
+
239
+
240
+ A{1}
241
+ i,x′
242
+ 2−x2,
243
+ if x2 = 0 and x′
244
+ 2 − x2 ∈ {0, 1},
245
+ A{1,2}
246
+ i,x′
247
+ 2−x2,
248
+ if x2 ≥ 1 and x′
249
+ 2 − x2 ∈ {−1, 0, 1},
250
+ O,
251
+ otherwise.
252
+ 3
253
+
254
+ X2 ^
255
+ B(2]
256
+ B(1,2]
257
+ [2]
258
+ [1,2]
259
+ 12
260
+ i1,i2
261
+ 17
262
+ ,12
263
+ B(1)
264
+ Bo
265
+ 0
266
+ x1Let { ¯A{2}
267
+ i
268
+ ; i ∈ {−1, 0, 1}} be the MA-kernel of {Y {2}
269
+ n }, defined in the same manner. With respect to
270
+ {Y {1,2}
271
+ n
272
+ }, the MA-kernel is given by {A{1,2}
273
+ i1,i2 ; i1, i2 ∈ {−1, 0, 1}}. We assume the following condition
274
+ throughout the paper.
275
+ Assumption 2.2. The induced MA-processes {Y {1}
276
+ n }, {Y {2}
277
+ n } and {Y {1,2}
278
+ n
279
+ } are irreducible and
280
+ aperiodic.
281
+ According to [14], we assume several other technical conditions for the induced MA-process
282
+ {Y {1,2}
283
+ n
284
+ }, concerning irreducibility and aperiodicity on subspaces. Let {Y +
285
+ n } = {(X+
286
+ n , J+
287
+ n )} be a
288
+ lossy Markov chain derived from the induced MA-process {Y {1,2}
289
+ n
290
+ } by restricting the state space
291
+ of the additive part to N2. The process {Y +
292
+ n } is a Markov chain on N2 × S0 whose transition
293
+ probability matrix P + is given as P + = (P {1,2}
294
+ x,x′ ; x, x′ ∈ N2), where P + is strictly substochastic.
295
+ The process {Y +
296
+ n } is also a lossy Markov chain derived from the original 2d-QBD process {Y n}
297
+ by restricting the state space of the level to N2. We assume the following condition throughout the
298
+ paper.
299
+ Assumption 2.3. {Y +
300
+ n } is irreducible and aperiodic.
301
+ For k ∈ Z, let Z≤k and Z≥k be the set of integers less than or equal to k and that of integers
302
+ greater than or equal to k, respectively. We also assume the following condition throughout the
303
+ paper. For what this assumption implies, see Remark 3.1 of [14].
304
+ Assumption 2.4.
305
+ (i) The lossy Markov chain derived from the induced MA-process {Y {1,2}
306
+ n
307
+ } by
308
+ restricting the state space to Z≤0 × Z≥0 × S0 is irreducible and aperiodic.
309
+ (ii) The lossy Markov chain derived from {Y {1,2}
310
+ n
311
+ } by restricting the state space to Z≥0×Z≤0×S0
312
+ is irreducible and aperiodic.
313
+ The stability condition of the 2d-QBD process has already been obtained in [12]. Let a{1}, a{2}
314
+ and a{1,2} = (a{1,2}
315
+ 1
316
+ , a{1,2}
317
+ 2
318
+ ) be the mean drifts of the additive part in the induced MA-processes
319
+ {Y {1}
320
+ n }, {Y {2}
321
+ n } and {Y {1,2}
322
+ n
323
+ }, respectively. By Corollary 3.1 of [12], the stability condition of the
324
+ 2d-QBD process {Y n} is given as follows:
325
+ Lemma 2.1.
326
+ (i) In the case where a{1,2}
327
+ 1
328
+ < 0 and a{1,2}
329
+ 2
330
+ < 0, the 2d-QBD process {Y n} is
331
+ positive recurrent if a{1} < 0 and a{2} < 0, and it is transient if either a{1} > 0 or a{2} > 0.
332
+ (ii) In the case where a{1,2}
333
+ 1
334
+ ≥ 0 and a{1,2}
335
+ 2
336
+ < 0, {Y n} is positive recurrent if a{1} < 0, and it is
337
+ transient if a{1} > 0.
338
+ (iii) In the case where a{1,2}
339
+ 1
340
+ < 0 and a{1,2}
341
+ 2
342
+ ≥ 0, {Y n} is positive recurrent if a{2} < 0, and it is
343
+ transient if a{2} > 0.
344
+ (iv) If one of a{1,2}
345
+ 1
346
+ and a{1,2}
347
+ 2
348
+ is positive and the other is non-negative, then {Y n} is transient.
349
+ For the explicit expression of the mean drifts, see Section 3.1 of [12] and its related parts. We
350
+ assume the following condition throughout the paper.
351
+ Assumption 2.5. The condition in Lemma 2.1 that ensures the 2d-QBD process {Y n} is positive
352
+ recurrent holds.
353
+ Denote by ν the stationary distribution of {Y n}, where ν = (νx, x ∈ Z2
354
+ +), νx = (ν(x,j), j ∈ S0)
355
+ and ν(x,j) is the stationary probability that the 2d-QBD process is in the state (x, j).
356
+ 4
357
+
358
+ Figure 2: Domains Γ{1,2}, Γ{1} and Γ{2}
359
+ 2.2
360
+ Main results
361
+ Let ¯A{1}
362
+
363
+ (z) and ¯A{2}
364
+
365
+ (z) be the matrix generating functions of the MA-kernels of {Y {1}
366
+ n } and
367
+ {Y {2}
368
+ n }, respectively, defined as
369
+ ¯A{1}
370
+
371
+ (z) =
372
+
373
+ i∈{−1,0,1}
374
+ zi ¯A{1}
375
+ i
376
+ ,
377
+ ¯A{2}
378
+
379
+ (z) =
380
+
381
+ i∈{−1,0,1}
382
+ zi ¯A{2}
383
+ i
384
+ .
385
+ The matrix generating function of the MA-kernel of {Y {1,2}
386
+ n
387
+ } is given by A{1,2}
388
+ ∗,∗
389
+ (z1, z2), defined as
390
+ A{1,2}
391
+ ∗,∗
392
+ (z1, z2) =
393
+
394
+ i1,i2∈{−1,0,1}
395
+ zi1
396
+ 1 zi2
397
+ 2 A{1,2}
398
+ i1,i2 .
399
+ Let Γ{1}, Γ{2} and Γ{1,2} be regions in which the convergence parameters of ¯A{1}
400
+
401
+ (eθ1), ¯A{2}
402
+
403
+ (eθ2)
404
+ and A{1,2}
405
+ ∗,∗
406
+ (eθ1, eθ2) are greater than 1, respectively, i.e.,
407
+ Γ{1} = {(θ1, θ2) ∈ R2; cp( ¯A{1}
408
+
409
+ (eθ1)) > 1},
410
+ Γ{2} = {(θ1, θ2) ∈ R2; cp( ¯A{2}
411
+
412
+ (eθ2)) > 1},
413
+ Γ{1,2} = {(θ1, θ2) ∈ R2; cp(A{1,2}
414
+ ∗,∗
415
+ (eθ1, eθ2)) > 1},
416
+ where, for a nonnegative square matrix A with a finite or countable dimension, cp(A) denote the
417
+ convergence parameter of A, i.e., cp(A) = sup{r ∈ R+; �∞
418
+ n=0 rnAn < ∞, entry-wise}. We have
419
+ cp(A{1,2}
420
+ ∗,∗
421
+ (eθ1, eθ2)) = spr(A{1,2}
422
+ ∗,∗
423
+ (eθ1, eθ2))−1, where for a square complex matrix A, spr(A) is the
424
+ spectral radius of A. By Lemma A.1 of Ozawa [13], cp( ¯A{1}
425
+
426
+ (eθ))−1 and cp( ¯A{2}
427
+
428
+ (eθ))−1 are log-
429
+ convex in θ, and the closures of Γ{1} and Γ{2} are convex sets; spr( ¯A{1,2}
430
+
431
+ (eθ1, eθ2)) is also log-convex
432
+ in (θ1, θ2), and the closure of Γ{1,2} is a convex set. Furthermore, by Proposition B.1 of Ozawa
433
+ [13], Γ{1,2} is bounded under Assumption 2.2. We depict an example of the domains Γ{1,2}, Γ{1}
434
+ and Γ{2} in Fig. 2.
435
+ We define several extreme values and several functions with respect to the domains. For i ∈
436
+ {1, 2}, define θmin
437
+ i
438
+ and θmax
439
+ i
440
+ as
441
+ θmin
442
+ i
443
+ = inf{θi ∈ R : (θ1, θ2) ∈ Γ{1,2}},
444
+ θmax
445
+ i
446
+ = sup{θi ∈ R : (θ1, θ2) ∈ Γ{1,2}},
447
+ and for a direction vector c = (c1, c2) ∈ N2, θmax
448
+ c
449
+ as
450
+ θmax
451
+ c
452
+ = sup{c1θ1 + c2θ2 : (θ1, θ2) ∈ Γ{1,2}}.
453
+ For θ1 ∈ [θmin
454
+ 1
455
+ , θmax
456
+ 1
457
+ ], there exist two real solutions to equation spr(A{1,2}
458
+ ∗,∗
459
+ (eθ1, eθ2)) = 1, counting
460
+ multiplicity. Denote them by θ2 = η2(θ1) and θ2 = ¯η2(θ1), respectively, where η2(θ1) ≤ ¯η2(θ1). For
461
+ 5
462
+
463
+ C101 + C202 = 0max
464
+ 02 个
465
+ 01 = 0
466
+ 02 = 02
467
+ r(1)
468
+ spr
469
+ amax
470
+ n2 (0)
471
+ r(2]
472
+ r(1,2]
473
+ n2(0)
474
+ >
475
+ 0
476
+ 0
477
+ 1
478
+ 0
479
+ 01
480
+ 0Figure 3: Classification
481
+ θ2 ∈ [θmin
482
+ 2
483
+ , θmax
484
+ 2
485
+ ], also denote by θ1 = η1(θ2) and θ1 = ¯η1(θ2) the two real solutions to the equation
486
+ spr(A{1,2}
487
+ ∗,∗
488
+ (eθ1, eθ2)) = 1, where η1(θ2) ≤ ¯η1(θ2). For i ∈ {1, 2}, define θ∗
489
+ i as
490
+ θ∗
491
+ i = sup{θi ∈ R : (θ1, θ2) ∈ Γ{i}}.
492
+ For another characterization of θ∗
493
+ i , see Proposition 3.7 of Ozawa [10], where θ∗
494
+ i is denoted by z0.
495
+ In terms of these points and functions, we geometrically classify the model into four types
496
+ according to Section 4.1 of [14]. Define two points Q1 and Q2 as Q1 = (θ∗
497
+ 1, ¯η2(θ∗
498
+ 1)) and Q2 =
499
+ (¯η1(θ∗
500
+ 2), θ∗
501
+ 2), respectively. Using these points, we define the following classification (see Fig. 3).
502
+ Type 1: θ∗
503
+ 1 ≥ ¯η1(θ∗
504
+ 2) and ¯η2(θ∗
505
+ 1) ≤ θ∗
506
+ 2,
507
+ Type 2: θ∗
508
+ 1 < ¯η1(θ∗
509
+ 2) and ¯η2(θ∗
510
+ 1) > θ∗
511
+ 2,
512
+ Type 3: θ∗
513
+ 1 ≥ ¯η1(θ∗
514
+ 2) and ¯η2(θ∗
515
+ 1) > θ∗
516
+ 2,
517
+ Type 4: θ∗
518
+ 1 < ¯η1(θ∗
519
+ 2) and ¯η2(θ∗
520
+ 1) ≤ θ∗
521
+ 2.
522
+ By Proposition 2.3 of [14], for any direction vector c = (c1, c2) ∈ N2, the asymptotic decay
523
+ rate in the direction c is space homogeneous. Hence, we denote it by ξc, which satisfies, for any
524
+ (x, j) ∈ Z2
525
+ + × S0,
526
+ ξc = − lim
527
+ k→∞
528
+ 1
529
+ n log ν(x+kc.j).
530
+ (2.4)
531
+ The asymptotic decay rate ξc has already been obtained in [14], and as described in Section 4.1 of
532
+ [14], it is given as follows.
533
+ Theorem 2.1. Let c = (c1, c2) be an arbitrary direction vector in N2.
534
+ Type 1:
535
+ ξc =
536
+
537
+
538
+
539
+ c1θ∗
540
+ 1 + c2¯η2(θ∗
541
+ 1)
542
+ if − c1
543
+ c2 < ¯η′
544
+ 2(θ∗
545
+ 1),
546
+ θmax
547
+ c
548
+ if ¯η′
549
+ 2(θ∗
550
+ 1) ≤ − c1
551
+ c2 ≤ ¯η′
552
+ 1(θ∗
553
+ 2)−1,
554
+ c1¯η1(θ∗
555
+ 2) + c2θ∗
556
+ 2
557
+ if − c1
558
+ c2 > ¯η′
559
+ 1(θ∗
560
+ 2)−1,
561
+ where ¯η′
562
+ 2(x) =
563
+ d
564
+ dx ¯η2(x) and ¯η′
565
+ 1(x) =
566
+ d
567
+ dx ¯η1(x).
568
+ Type 2:
569
+ ξc =
570
+
571
+
572
+
573
+ c1θ∗
574
+ 1 + c2¯η2(θ∗
575
+ 1)
576
+ if − c1
577
+ c2 ≤ θ∗
578
+ 2−¯η2(θ∗
579
+ 1)
580
+ ¯η1(θ∗
581
+ 2)−θ∗
582
+ 1 ,
583
+ c1¯η1(θ∗
584
+ 2) + c2θ∗
585
+ 2
586
+ if − c1
587
+ c2 > θ∗
588
+ 2−¯η2(θ∗
589
+ 1)
590
+ ¯η1(θ∗
591
+ 2)−θ∗
592
+ 1 .
593
+ 6
594
+
595
+ A.
596
+ 0*
597
+ 02
598
+ r(1,2]
599
+ >
600
+ 01
601
+ 0* 1
602
+ 1
603
+ Type 1
604
+ Type 2
605
+ Type 3
606
+ Type 4Type 3: ξc = c1¯η1(θ∗
607
+ 2) + c2θ∗
608
+ 2.
609
+ Type 4: ξc = c1θ∗
610
+ 1 + c2¯η2(θ∗
611
+ 1).
612
+ The asymptotic decay function hc(k) in the direction c is defined as the function that satisfies,
613
+ for some positive vector gc,
614
+ lim
615
+ k→∞
616
+ νkc
617
+ hc(k) = gc.
618
+ (2.5)
619
+ It is given as follows.
620
+ Theorem 2.2. Let c be an arbitrary direction vector in N2.
621
+ hc(k) =
622
+
623
+ k− 1
624
+ 2 (2l−1)e−ξck
625
+ if ¯η′
626
+ 2(θ∗
627
+ 1) < − c1
628
+ c2 < ¯η′
629
+ 1(θ∗
630
+ 2)−1 in Type 1,
631
+ e−ξck
632
+ otherwise,
633
+ as k → ∞.
634
+ (2.6)
635
+ where l is some positive integer.
636
+ Except for the case where ¯η′
637
+ 2(θ∗
638
+ 1) ≤ − c1
639
+ c2 ≤ ¯η′
640
+ 1(θ∗
641
+ 2)−1 in Type 1, Theorem 2.2 has already been
642
+ proved in [14], see Theorem 3.2 of [14].
643
+ Hence, to this end, it suffices to prove the following
644
+ proposition.
645
+ Proposition 2.1. Assume Type 1 and set c = (c1, c2) = (1, 1).
646
+ Then, the asymptotic decay
647
+ function hc(k) is given as
648
+ hc(k) =
649
+
650
+ k− 1
651
+ 2 (2l−1)e−θmax
652
+ c
653
+ k
654
+ if ¯η′
655
+ 2(θ∗
656
+ 1) < − c1
657
+ c2 = −1 < ¯η′
658
+ 1(θ∗
659
+ 2)−1,
660
+ e−θmax
661
+ c
662
+ k
663
+ if ¯η′
664
+ 2(θ∗
665
+ 1) = −1 or ¯η′
666
+ 1(θ∗
667
+ 2) = −1,
668
+ (2.7)
669
+ where l is some positive integer.
670
+ From this proposition, we can obtain the same result for a general direction vector c ∈ N2, by
671
+ using the block state process derived from the original 2d-QBD process; See Section 3.3 of [14].
672
+ We, therefore, prove the proposition in Section 4.
673
+ Remark 2.1. From the corresponding results for a 2d-RRW without a background process obtained
674
+ in Malyshev [6], it is expected that the value of l in Theorem 2.2 is one, i.e., hc(k) = k− 1
675
+ 2 e−ξck.
676
+ 3
677
+ Preliminaries
678
+ Let z and w be complex valuables unless otherwise stated. For a positive number r, denote by ∆r
679
+ the open disk of center 0 and radius r on the complex plain, and ∂∆r the circle of the same center
680
+ and radius. We denote by ¯∆r the closure of ∆r. For a, b ∈ R+ such that a < b, let ∆a,b be an open
681
+ annular domain on C defined as ∆a,b = {z ∈ C : a < |z| < b}. We denote by ¯∆a,b the closure of
682
+ ∆a,b. For r > 0, ε > 0 and θ ∈ [0, π/2), define
683
+ ˜∆r(ε, θ) = {z ∈ C : |z| < r + ε, z ̸= r, | arg(z − r)| > θ}.
684
+ For r > 0, we denote by “ ˜∆r ∋ z → r” that ˜∆r(ε, θ) ∋ z → r for some ε > 0 and some θ ∈ [0, π/2).
685
+ In the rest of the paper, instead of proving that a function f(z) is analytic in ˜∆r(ε, θ) for some ε > 0
686
+ and θ ∈ [0, π/2), we often demonstrate that the function f(z) is analytic in ∆r and on ∂∆r \ {r}.
687
+ In order to give general results, this section is described independently from other parts of the
688
+ article.
689
+ 7
690
+
691
+ 3.1
692
+ Analytic extension of a G-matrix function
693
+ First, we define a G-matrix function according to Ozawa and Kobayashi [11]. For i, j ∈ {−1, 0, 1},
694
+ let Ai,j be a substochastic matrix with a finite dimension s0, and define the following matrix
695
+ functions:
696
+ A∗,j(z) =
697
+
698
+ i∈{−1,0,1}
699
+ ziAi,j, j = −1, 0, 1,
700
+ A∗,∗(z, w) =
701
+
702
+ i,j∈{−1,0,1}
703
+ ziwjAi,j.
704
+ We assume the following condition throughout this subsection.
705
+ Assumption 3.1. A∗,∗(1, 1) is stochastic.
706
+ Let χ(z, w) be the spectral radius of A∗.∗(z, w), i.e., χ(z, w) = spr(A∗,∗(z, w)), and Γ be a
707
+ domain on R2 defined as
708
+ Γ = {(θ1, θ2) ∈ R2 : χ(eθ1, eθ2) < 1}.
709
+ We assume the following condition throughout this subsection.
710
+ Assumption 3.2. The Markov modulated random walk on Z2 × {1, 2, ..., s0} that is governed by
711
+ {Ai,j; i, j ∈ {−1, 0, 1}} is irreducible and aperiodic.
712
+ Under this assumption, A∗,∗(1, 1) is also irreducible and aperiodic. Furthermore, by Lemma 2.2
713
+ of [11], Γ is bounded. Since χ(eθ1, eθ2) is convex in (θ1, θ2) ∈ R2, the closure of Γ is a convex set.
714
+ Define extreme points θmin
715
+ 1
716
+ and θmax
717
+ 2
718
+ as follows:
719
+ θmin
720
+ 1
721
+ =
722
+ inf
723
+ (θ1,θ2)∈Γ θ1,
724
+ θmax
725
+ 1
726
+ =
727
+ sup
728
+ (θ1,θ2)∈Γ
729
+ θ1.
730
+ For θ1 ∈ [θmin
731
+ 1
732
+ , θmax
733
+ 1
734
+ ], let θ2(θ1) and ¯θ2(θ1) be the two real solutions to equation χ(eθ1, eθ2) = 1,
735
+ counting multiplicity, where θ2(θ1) ≤ ¯θ2(θ1). We set zmin
736
+ 1
737
+ = eθmin
738
+ 1
739
+ and zmax
740
+ 1
741
+ = eθmax
742
+ 1
743
+ . For n ≥ 1,
744
+ define the following set of index sequences:
745
+ In =
746
+
747
+ i(n) ∈ {−1, 0, 1}n :
748
+ k
749
+
750
+ l=1
751
+ il ≥ 0 for k ∈ {1, 2, ..., n − 1} and
752
+ n
753
+
754
+ l=1
755
+ il = −1
756
+
757
+ ,
758
+ where i(n) = (i1, i2, ..., in), and define the following matrix function:
759
+ Dn(z) =
760
+
761
+ i(n)∈In
762
+ A∗,i1(z)A∗,i2(z) · · · A∗,in(z).
763
+ Define a matrix function G(z) as
764
+ G(z) =
765
+
766
+
767
+ n=1
768
+ Dn(z).
769
+ By Lemma 4.1 of [11], this matrix series absolutely converges entry-wise in z ∈ ¯∆zmin
770
+ 1
771
+ ,zmax
772
+ 1
773
+ . We call
774
+ this G(z) the G-matrix function generated from {Ai,j; i, j ∈ {−1, 0, 1}}. For z ∈ ¯∆zmin
775
+ 1
776
+ ,zmax
777
+ 1
778
+ , G(z)
779
+ satisfies the inequality |G(z)| ≤ G(|z|) and the following matrix quadratic equation:
780
+ A∗,−1(z) + A∗,0(z)G(z) + A∗,1(z)G(z)2 = G(z).
781
+ (3.1)
782
+ Furthermore, for z ∈ [zmin
783
+ 1
784
+ , zmax
785
+ 1
786
+ ], it is the minimum nonnegative solution to equation (3.1). Hence,
787
+ G(z) is an extension of a usual G-matrix in the queueing theory; see, for example, [7]. By Proposi-
788
+ tion 2.5 of [11], we see that, for z ∈ [zmin
789
+ 1
790
+ , zmax
791
+ 1
792
+ ], the Perron-Frobenius eigenvalue of G(z) is given
793
+ by eθ2(log z), i.e., spr(G(z)) = eθ2(log z). By Lemma 4.1 of [11], G(z) satisfies
794
+ I − A∗,∗(z, w) = w−1 (I − A∗,0(z) − wA∗,1(z) + A∗,1(z)G(z)) (wI − G(z)).
795
+ (3.2)
796
+ By Lemma 4.2 of [11], the following property holds true for G(z).
797
+ 8
798
+
799
+ Lemma 3.1. G(z) is entry-wise analytic in the open annular domain ∆zmin
800
+ 1
801
+ ,zmax
802
+ 1
803
+ .
804
+ We give the eigenvalues of G(z) according to [11]. Note that our final aim in this subsection is
805
+ to give an analytic extension of G(z) through its Jordan canonical form without assuming all the
806
+ eigenvalues of G(z) are distinct. On the other hand, in [11], the eigenvalues were assumed to be
807
+ distinct. Define a matrix function L(z, w) as
808
+ L(z, w) = zw(I − A∗,∗(z, w)).
809
+ Each entry of L(z, w) is a polynomial in z and w with at most degree 2 for each variable. We use
810
+ a notation Ξ, defined as follows. Let f(z, w) be an irreducible polynomial in z and w and assume
811
+ its degree with respect to w is m ≥ 1. Let a(z) be the coefficient of wm in f(z, w). Define a point
812
+ set Ξ(f) as
813
+ Ξ(f) = {z ∈ C : a(z) = 0 or (f(z, w) = 0 and fw(z, w) = 0 for some w ∈ C)},
814
+ where fw(z, w) = (∂/∂w)f(z, w). Each point in Ξ(f) is an algebraic singularity of the algebraic
815
+ function w = α(z) defined by polynomial equation f(z, w) = 0. For each point z ∈ C \ Ξ(f),
816
+ f(z, w) = 0 has just m distinct solutions, which correspond to the m branches of the algebraic
817
+ function. Let φ(z, w) be a polynomial in z and w defined as
818
+ φ(z, w) = det L(z, w)
819
+ and mφ its degree with respect to w, where s0 ≤ mφ ≤ 2s0. Let α1(z), α2(z), ..., αmφ(z) be the
820
+ mφ branches of the algebraic function w = α(z) defined by the polynomial equation φ(z, w) = 0,
821
+ counting multiplicity. We number the brunches so that they satisfy the following:
822
+ (1) For every z ∈ ¯∆zmin
823
+ 1
824
+ ,zmax
825
+ 1
826
+ and for every k ∈ {1, 2, ..., s0}, |αk(z)| ≤ eθ2(log |z|).
827
+ (2) For every z ∈ ¯∆zmin
828
+ 1
829
+ ,zmax
830
+ 1
831
+ and for every k ∈ {s0 + 1, s0 + 2, ..., mφ}, |αk(z)| ≥ e¯θ2(log |z|).
832
+ (3) For every z ∈ [zmin
833
+ 1
834
+ , zmax
835
+ 1
836
+ ], αs0(z) = eθ2(log z) and αs0+1(z) = e¯θ2(log z).
837
+ This is possible by Lemma 4.3 of [11]. By Lemmas 4.3 and 4.4 of [11], the G-matrix function of
838
+ G(z) satisfies the following property.
839
+ Lemma 3.2. For every z ∈ ¯∆zmin
840
+ 1
841
+ ,zmax
842
+ 1
843
+ , the eigenvalues of G(z) are given by α1(z), α2(z), ...,
844
+ αs0(z).
845
+ Without loss of generality, we assume that, for some nφ ∈ N and l1, l2, ..., lnφ ∈ N, the polynomial
846
+ φ(z, w) is factorized as
847
+ φ(z, w) = f1(z, w)l1f2(z, w)l2 · · · fnφ(z, w)lnφ,
848
+ (3.3)
849
+ where fk(z, w), k = 1, 2, ..., nφ, are irreducible polynomials in z and w and they are relatively
850
+ prime. Since the field of coefficients of polynomials is C, this factorization is unique. For every
851
+ k ∈ {1, 2, ..., mφ}, αk(z) is a branch of the algebraic function w = α(z) defined by the polynomial
852
+ equation fn(z, w) = 0 for some n ∈ {1, 2, ..., nφ}. We denote such n by q(k), i.e., fq(k)(z, αk(z)) = 0.
853
+ Since αs0(z) is the Perron-Frobenius eigenvalue of G(z) when z ∈ [zmin
854
+ 1
855
+ , zmax
856
+ 1
857
+ ], the multiplicity of
858
+ αs0(z) is one and we have lq(s0) = 1. Define a point set E1 as
859
+ E1 =
860
+
861
+
862
+ n=1
863
+ Ξ(fn).
864
+ 9
865
+
866
+ Since, for every n, the polynomial fn(z, w) is irreducible and not identically zero, the point set E1
867
+ is finite. Every branch αk(z) is analytic in C \ E1. Define a point set E2 as
868
+ E2 = {z ∈ C \ E1 : fn(z, w) = fn′(z, w) = 0
869
+ for some n, n′ ∈ {1, 2, ..., nφ} such that n ̸= n′ and for some w ∈ C}.
870
+ Since, for any n, n′ such that n ̸= n′, fn(z, w) and fn′(z, w) are relatively prime, the point set E2
871
+ is finite. Note that every branch αk(z) is analytic in a neighborhood of any z0 ∈ E2. For every
872
+ k ∈ {1, 2, ..., mφ} and for every z ∈ C \ (E1 ∪ E2), the multiplicity of αk(z) as a zero of det L(z, w)
873
+ is equal to lq(k). This means that, for every z ∈ ¯∆zmin
874
+ 1
875
+ ,zmax
876
+ 1
877
+ \ (E1 ∪ E2), the multiplicity of the
878
+ eigenvalue αk(z) of G(z) is lq(k), which does not depend on z. Define a positive integer m0 as
879
+ m0 =
880
+ s0
881
+
882
+ k=1
883
+ 1
884
+ lq(k)
885
+ .
886
+ This m0 is the number of different branches in {αi(z) : i = 1, 2, ..., s0} when z ∈ C \ (E1 ∪ E2).
887
+ Denote the different branches by ˇαk(z), k = 1, 2, ..., m0, so that ˇαm0(z) = αs0(z). Instead of using
888
+ q(k), we define a function ˇq(k) so that lˇq(k) indicates the multiplicity of ˇαk(z) when z ∈ C\(E1∪E2).
889
+ We always have lˇq(m0) = 1.
890
+ We give the Jordan normal form of G(z). Define a domain Ω as Ω = ∆zmin
891
+ 1
892
+ ,zmax
893
+ 1
894
+ \ (E1 ∪ E2). For
895
+ k ∈ {1, 2, ..., m0} and for i ∈ {1, 2, ..., lˇq(k)}, define a positive integer tk,i as
896
+ tk,i = min
897
+ z∈Ω dim Ker (ˇαk(z)I − G(z))i
898
+ and a point set Gk,i as
899
+ Gk,i = {z ∈ Ω : dim Ker (ˇαk(z)I − G(z))i > tk,i}.
900
+ Since ˇαk(z) and G(z) are analytic in Ω, we see from the proof of Theorem S6.1 of [3] that each Gk,i
901
+ is an empty set or a set of discrete complex numbers. For k ∈ {1, 2, ..., m0} and i ∈ {1, 2, ..., lˇq(k)},
902
+ define a nonnegative integer sk,i as
903
+ sk,i = 2tk,i − tk,i+1 − tk,i−1,
904
+ where tk,0 = 0 and tk,lˇq(k)+1 = lˇq(k). For k ∈ {1, 2, ..., m0}, define a positive integer mk,0 and point
905
+ set EG
906
+ k as
907
+ mk,0 = tk,1,
908
+ EG
909
+ k =
910
+ lˇq(k)
911
+
912
+ i=1
913
+ Gk,i.
914
+ When z ∈ Ω \ EG
915
+ k , this mk,0 is the number of Jordan blocks of G(z) with respect to the eigenvalue
916
+ ˇαk(z) and, for i ∈ {1, 2, ..., lˇq(k)}, sk,i is the number of Jordan blocks whose dimension is i. Hence,
917
+ the Jordan normal form of G(z) takes a common form in z ∈ Ω \ �m0
918
+ k=1 EG
919
+ k . For k ∈ {1, 2, ..., m0}
920
+ and for i ∈ {1, 2, ..., mk,0}, denote by mk,i the dimension of the i-th Jordan block of G(z) with
921
+ respect to the eigenvalue ˇαk(z), where we number the Jordan blocks so that if i ≤ i′, mk,i ≥ mk,i′.
922
+ For each k ∈ {1, 2, ..., m0}, they satisfy �mk,0
923
+ i=1 mk,i = lˇq(k). Denote by Jn(λ) the n-dimensional
924
+ Jordan block of eigenvalue λ. For z ∈ Ω \ �m0
925
+ k=1 EG
926
+ k , the Jordan normal form of G(z), JG(z), is
927
+ given by
928
+ JG(z) = diag(Jmk,i(ˇαk(z)), k = 1, 2, ..., m0, i = 1, 2, ..., mk,0),
929
+ (3.4)
930
+ where mm0,0 = 1 and Jmm0,1(ˇαm0(z)) = αs0(z). Note that the matrix function JG(z) is defined on
931
+ C and analytic in C \ E1. An analytic extension of G(z) is given by the following theorem.
932
+ 10
933
+
934
+ Theorem 3.1. There exist vector functions:
935
+ ˇvL
936
+ k,i,j(z), k = 1, 2, ..., m0, i = 1, 2, ..., mk,0, j = 1, 2, ..., mk,i,
937
+ such that they are analytic in C \ E1 and satisfy for every z ∈ ∆zmin
938
+ 1
939
+ ,zmax
940
+ 1
941
+ \ (E1 ∪ E0) that
942
+ G(z) = T L(z)JG(z)(T L(z))−1,
943
+ (3.5)
944
+ where E0 is a set of discrete complex numbers and matrix function T L(z) is defined as
945
+ T L(z) =
946
+ �ˇvL
947
+ k,i,j(z), k = 1, 2, ..., m0, i = 1, 2, ..., mk,0, j = 1, 2, ..., mk,i
948
+
949
+ .
950
+ Since the proof of Theorem 3.1 is elementary and very lengthy, we give it in Appendix A. In
951
+ Theorem 3.1, {ˇvL
952
+ k,i,j(z)} is the set of the generalized eigenvectors of G(z), but we denote them with
953
+ superscript L since they are generated from the matrix function L(z, w); see Appendix A. Define a
954
+ point set EL
955
+ T as
956
+ EL
957
+ T = {z ∈ C \ E1 : det T L(z) = 0},
958
+ which is an empty set or a set of discrete complex numbers since det T L(z) is not identically zero.
959
+ Define a matrix function ˇG(z) as
960
+ ˇG(z) = T L(z)JG(z)(T L(z))−1 = T L(z)JG(z) adj(T L(z))
961
+ det(T L(z))
962
+ .
963
+ (3.6)
964
+ Then, it is entry-wise analytic in C\(E1∪EL
965
+ T ). By Theorem 3.1 and the identity theorem for analytic
966
+ functions, this ˇG(z) is an analytic extension of the matrix function G(z). Hence, we denote ˇG(z)
967
+ by G(z). By Lemma 3.1, G(z) is entry-wise analytic in ∆zmin
968
+ 1
969
+ ,zmax
970
+ 1
971
+ . The following corollary asserts
972
+ that G(z) is also analytic on the outside boundary of ∆zmin
973
+ 1
974
+ ,zmax
975
+ 1
976
+ except for the point z = zmax
977
+ 1
978
+ .
979
+ Corollary 3.1. The extended G-matrix function G(z) is entry-wise analytic on ∂∆zmax
980
+ 1
981
+ \ {zmax
982
+ 1
983
+ }.
984
+ Since this corollary can be proved in a manner similar to that used in the proof of Lemma 4.7
985
+ of [11], we omit it.
986
+ Denote by ˇuL
987
+ m0,1,1(z) the last row of the matrix function (T L(z))−1, and define a diagonal
988
+ matrix function Js0(z) as Js0(z) = diag
989
+
990
+ 0
991
+ · · ·
992
+ 0
993
+ αs0(z)
994
+
995
+ , where αs0(z) = ˇαm0(z). Then, since
996
+ mm0,0 = 1 and mm0,1 = 1, we obtain the following decomposition of G(z) from (3.6):
997
+ G(z) = G†(z) + αs0(z)ˇvL
998
+ m0,1,1(z)ˇuL
999
+ m0,1,1(z),
1000
+ (3.7)
1001
+ where
1002
+ G†(z) = T L(z)(JG(z) − Js0(z))(T L(z))−1.
1003
+ By the definition, G(z) satisfies, for n ≥ 1,
1004
+ G(z)n = G†(z)n + αs0(z)nˇvL
1005
+ m0,1,1(z)ˇuL
1006
+ m0,1,1(z),
1007
+ (3.8)
1008
+ and G†(z), for z ∈ ¯∆zmin
1009
+ 1
1010
+ ,zmax
1011
+ 1
1012
+ , spr(G†(z)) ≤ spr(G†(|z|) < spr(G(|z|)) = αs0(|z|). Furthermore,
1013
+ in a neighborhood of z = zmax
1014
+ 1
1015
+ , we have spr(G†(z)) < αs0(zmax
1016
+ 1
1017
+ ). Since the point z = zmax
1018
+ 1
1019
+ is a
1020
+ branch point of ˇαm0(z) (= αs0(z)), there exists a function ˜αs0(ζ) being analytic in a neighborhood
1021
+ of ζ = 0 and satisfying
1022
+ ˇαm0(z) = αs0(z) = ˜αs0((zmax
1023
+ 1
1024
+ − z)
1025
+ 1
1026
+ 2 ).
1027
+ 11
1028
+
1029
+ Let ˜vs0(ζ) be a vector function satisfying
1030
+ L(zmax
1031
+ 1
1032
+ − ζ2, ˜αs0(ζ))˜vs0(ζ) = 0,
1033
+ where ˜vs0(ζ) is elementwise analytic in a neighborhood of ζ = 0.
1034
+ Denote by ˜T(ζ) the matrix
1035
+ function given by replacing the last column of T L(zmax
1036
+ 1
1037
+ − ζ2) with ˜vs0(ζ) and by ˜us0(ζ) the last
1038
+ row of ˜T(ζ)−1. By the definition, ˜T(ζ) as well as ˜us0(ζ) is entry-wise analytic in a neighborhood
1039
+ of ζ = 0. Define a diagonal matrix function ˜Js0(ζ) as ˜Js0(ζ) = diag
1040
+
1041
+ 0
1042
+ · · ·
1043
+ 0
1044
+ ˜αs0(ζ)
1045
+
1046
+ . For later
1047
+ use, we give the following lemma.
1048
+ Lemma 3.3. There exists a matrix function ˜G(ζ) being entry-wise analytic in a neighborhood of
1049
+ ζ = 0 and satisfying G(z) = ˜G((zmax
1050
+ 1
1051
+ −z)
1052
+ 1
1053
+ 2 ) in a neighborhood of z = zmax
1054
+ 1
1055
+ . This ˜G(ζ) is represented
1056
+ as
1057
+ ˜G(ζ) = ˜G†(ζ) + ˜αs0(ζ)˜vs0(ζ)˜us0(ζ),
1058
+ (3.9)
1059
+ where ˜G†(ζ) is a matrix function being entry-wise analytic in a neighborhood of ζ = 0 and satisfying
1060
+ G†(z) = ˜G†((zmax
1061
+ 1
1062
+ − z)
1063
+ 1
1064
+ 2 ) in a neighborhood of z = zmax
1065
+ 1
1066
+ . In a neighborhood of ζ = 0, spr( ˜G†(ζ)) <
1067
+ ˜αs0(0) = αs0(zmax
1068
+ 1
1069
+ ).
1070
+ Proof. Give ˜G†(ζ) as
1071
+ ˜G†(ζ) = ˜T(ζ)(JG(zmax
1072
+ 1
1073
+ − ζ2) − Js0(zmax
1074
+ 1
1075
+ − ζ2)) ˜T(ζ)−1.
1076
+ Then, by (3.7), we obtain the results of the lemma.
1077
+ The following limit with respect to αs0(z) (= ˇαm0(z)) is given by Proposition 5.5 of [11] (also
1078
+ see Lemma 10 of [4]).
1079
+ Lemma 3.4.
1080
+ lim
1081
+ ˜∆zmax
1082
+ 1
1083
+ ∋z→zmax
1084
+ 1
1085
+ αs0(zmax
1086
+ 1
1087
+ ) − αs0(z)
1088
+ (zmax
1089
+ 1
1090
+ − z)
1091
+ 1
1092
+ 2
1093
+ = −αs0,1 =
1094
+
1095
+ 2
1096
+
1097
+ −¯ζ1,w2(ζ2(zmax
1098
+ 1
1099
+ ))
1100
+ > 0,
1101
+ (3.10)
1102
+ where z = ¯ζ1(w) is the larger one of two real solutions to equation χ(z, w) = 1 and ¯ζ1,w2(w) =
1103
+ (d2/dw2) ¯ζ1(w).
1104
+ Let R(z) be the rate matrix function generated from {Ai,j; i, j = −1, 0, 1}; for the definition of
1105
+ R(z), see Section 4.1 of [11]. Define a matrix function N(z) as
1106
+ N(z) = (I − A∗,0(z) − A∗,1(z)G(z))−1.
1107
+ N(z) is well defined for every z ∈ ¯∆zmin
1108
+ 1
1109
+ ,zmax
1110
+ 1
1111
+ . The extended G(z) satisfies the following property.
1112
+ Lemma 3.5.
1113
+ lim
1114
+ ˜∆zmax
1115
+ 1
1116
+ ∋z→zmax
1117
+ 1
1118
+ G(zmax
1119
+ 1
1120
+ ) − G(z)
1121
+ (zmax
1122
+ 1
1123
+ − z)
1124
+ 1
1125
+ 2
1126
+ = −G1
1127
+ = −αs0,1N(zmax
1128
+ 1
1129
+ )vR(zmax
1130
+ 1
1131
+ )uG
1132
+ s0(zmax
1133
+ 1
1134
+ ) ≥ O, ̸= O,
1135
+ (3.11)
1136
+ where uG
1137
+ s0(zmax
1138
+ 1
1139
+ ) is the left eigenvector of G(zmax
1140
+ 1
1141
+ ) with respect to the eigenvalue eθ2(log zmax
1142
+ 1
1143
+ ) =
1144
+ αs0(zmax
1145
+ 1
1146
+ ), vR(zmax
1147
+ 1
1148
+ ) the right eigenvector of R(zmax
1149
+ 1
1150
+ ) with respect to the eigenvalue e−¯θ2(log zmax
1151
+ 1
1152
+ ) =
1153
+ e−θ2(log zmax
1154
+ 1
1155
+ ) and they satisfy uG
1156
+ s0(zmax
1157
+ 1
1158
+ )N(zmax
1159
+ 1
1160
+ )vR(zmax
1161
+ 1
1162
+ ) = 1.
1163
+ Since this lemma can be proved in a manner similar to that used in the proof of Proposition
1164
+ 5.6 of [11], we omit it.
1165
+ 12
1166
+
1167
+ 3.2
1168
+ G-matrix in the reverse direction and its properties
1169
+ Let A−1, A0 and A1 be square nonnegative matrices with a finite dimension. Define a matrix
1170
+ function A∗(z) and matrix Q as
1171
+ A∗(z) = z−1A−1 + A0 + zA1,
1172
+ (3.12)
1173
+ Q =
1174
+
1175
+
1176
+
1177
+
1178
+
1179
+ A0
1180
+ A1
1181
+ A−1
1182
+ A0
1183
+ A1
1184
+ A−1
1185
+ A0
1186
+ A1
1187
+ ...
1188
+ ...
1189
+ ...
1190
+
1191
+
1192
+
1193
+
1194
+ � .
1195
+ (3.13)
1196
+ We assume:
1197
+ (a1) Q is irreducible.
1198
+ (a2) The infimum of the maximum eigenvalue of A∗(eθ) in θ ∈ R is less than or equal to 1, i.e.,
1199
+ infθ∈R spr(A∗(eθ)) ≤ 1.
1200
+ Then, there are two real solutions to equation cp(A∗(eθ)) = 1, counting multiplicity, see comments
1201
+ to Condition 2.6 in [13]. We denote the solutions by θ and ¯θ, where θ ≤ ¯θ. The rate matrix
1202
+ and G-matrix generated from the triplet {A−1, A0, A1} also exist; we denote them by R and G,
1203
+ respectively. R and G are the minimal nonnegative solutions to the following matrix quadratic
1204
+ equations:
1205
+ R = R2A−1 + RA0 + A1,
1206
+ (3.14)
1207
+ G = A−1 + A0G + A1G2.
1208
+ (3.15)
1209
+ We have
1210
+ I − A∗(z) = (I − zR)(I − H)(I − z−1G),
1211
+ (3.16)
1212
+ spr(R) = e−¯θ,
1213
+ spr(G) = eθ,
1214
+ (3.17)
1215
+ where H = A0 + A1G; see, for example, Lemma 2.2 of [13]. We define a rate matrix and G-matrix
1216
+ in the reverse direction generated from the triplet {A−1, A0, A1}, denoted by Rr and Gr, as the
1217
+ minimal nonnegative solutions to the following matrix quadratic equations:
1218
+ Rr = (Rr)2A1 + RrA0 + A−1,
1219
+ (3.18)
1220
+ Gr = A1 + A0Gr + A−1(Gr)2.
1221
+ (3.19)
1222
+ In other words, Rr and Gr are, respectively, the rate matrix and G-matrix generated from the
1223
+ triplet by exchanging A−1 and A1. Since z−1A1 + A0 + zA−1 = A∗(z−1), we obtain by (3.16) and
1224
+ (3.17) that
1225
+ I − A∗(z−1) = (I − zRr)(I − Hr)(I − z−1Gr),
1226
+ (3.20)
1227
+ spr(Rr) = eθ,
1228
+ spr(Gr) = e−¯θ,
1229
+ (3.21)
1230
+ where Hr = A0 + A−1Gr. We use the following property in the proof of Proposition 4.5.
1231
+ Lemma 3.6. Let v be the right eigenvector of G with respect to the eigenvalue eθ and vr that of
1232
+ Gr with respect to the eigenvalue e−¯θ, i.e., Gv = eθv and Grvr = e−¯θvr. If θ = ¯θ, we have v = vr,
1233
+ up to multiplication by a positive constant.
1234
+ Proof. By (3.16) and (3.20), we obtain
1235
+ A∗(eθ)v = v,
1236
+ A∗(e
1237
+ ¯θ)vr = A∗(eθ)vr = vr.
1238
+ Since spr(A∗(eθ)) = 1 and A∗(eθ) is irreducible, the right eigenvector of A∗(eθ) with respect to the
1239
+ eigenvalue of 1 is unique, up to multiplication by a positive constant. This implies v = vr.
1240
+ 13
1241
+
1242
+ 4
1243
+ Proof of Proposition 2.1
1244
+ 4.1
1245
+ Methodology and outline of the proof
1246
+ Define the vector generating function of the stationary probabilities in direction c ∈ N2, ϕc(z), as
1247
+ ϕc(z) =
1248
+
1249
+
1250
+ k=0
1251
+ zkνkc.
1252
+ Also define zmin
1253
+ c
1254
+ and zmax
1255
+ c
1256
+ as zmin
1257
+ c
1258
+ = eθmin
1259
+ c
1260
+ and zmax
1261
+ c
1262
+ = eθmax
1263
+ c
1264
+ , respectively.
1265
+ Hereafter, we set
1266
+ c = (1, 1). In order to obtain the asymptotic function of the stationary tail probability in the
1267
+ direction c = (1, 1), we apply the following lemma to the vector generating function ϕc(z).
1268
+ Lemma 4.1 (Theorem VI.4 of Flajolet and Sedgewick [2]). Let f be a generating function of a
1269
+ sequence of real numbers {an, n ∈ Z+}, i.e., f(z) = �∞
1270
+ n=0 anzn. If f(z) is singular at z = z0 > 0
1271
+ and analytic in ˜∆z0(ε, θ) for some ε > 0 and some θ ∈ [0, π/2) and if it satisfies
1272
+ lim
1273
+ ˜∆z0∋z→z0
1274
+ (z0 − z)αf(z) = c0
1275
+ (4.1)
1276
+ for α ∈ R \ {0, −1, −2, ...} and some nonzero constant c0 ∈ R, then
1277
+ lim
1278
+ n→∞
1279
+ �nα−1
1280
+ Γ(α) z−n
1281
+ 0
1282
+ �−1
1283
+ an = c
1284
+ (4.2)
1285
+ for some real number c, where Γ(z) is the gamma function. This means that the asymptotic function
1286
+ of the sequence {an} is given by nα−1z−n
1287
+ 0 .
1288
+ For the purpose, we prove the following propositions in Section 4.2.
1289
+ Proposition 4.1. Assume Type 1. If ¯η′
1290
+ 1(θ∗
1291
+ 2) ≤ −c1/c2 = −1 ≤ 1/¯η′
1292
+ 2(θ∗
1293
+ 1), the vector function ϕc(z)
1294
+ is elementwise analytic in ˜∆zmax
1295
+ c
1296
+ (ε, θ) for some ε > 0 and some θ ∈ [0, π/2).
1297
+ Proposition 4.2. Assume Type 1. If ¯η′
1298
+ 1(θ∗
1299
+ 2) ≤ −c1/c2 = −1 ≤ 1/¯η′
1300
+ 2(θ∗
1301
+ 1), there exist a vector
1302
+ function ˜ϕc(ζ) being meromorphic in a neighborhood of ζ = 0 and satisfying ϕc(z) = ˜ϕc((zmax
1303
+ c
1304
+
1305
+ z)
1306
+ 1
1307
+ 2 ) in a neighborhood of z = zmax
1308
+ c
1309
+ . If ¯η′
1310
+ 1(θ∗
1311
+ 2) < −1 < 1/¯η′
1312
+ 2(θ∗
1313
+ 1), the point ζ = 0 is a pole of ˜ϕc(ζ)
1314
+ with at most order one; if ¯η′
1315
+ 1(θ∗
1316
+ 2) = −1 or ¯η′
1317
+ 2(θ∗
1318
+ 1) = −1, it is a pole of ˜ϕc(ζ) with at most order two.
1319
+ By Proposition 4.2, if ¯η′
1320
+ 1(θ∗
1321
+ 2) < −1 < 1/¯η′
1322
+ 2(θ∗
1323
+ 1), the Puiseux series of ϕc(z) is represented as
1324
+ ϕc(z) =
1325
+
1326
+
1327
+ k=−1
1328
+ ϕc
1329
+ 1,k(zmax
1330
+ c
1331
+ − z)
1332
+ k
1333
+ 2 ,
1334
+ (4.3)
1335
+ where {ϕc
1336
+ 1,k} is a series of coefficient vectors; if ¯η′
1337
+ 1(θ∗
1338
+ 2) = −1 or ¯η′
1339
+ 2(θ∗
1340
+ 1) = −1, it is represented as
1341
+ ϕc(z) =
1342
+
1343
+
1344
+ k=−2
1345
+ ϕc
1346
+ 2,k(zmax
1347
+ c
1348
+ − z)
1349
+ n
1350
+ 2 ,
1351
+ (4.4)
1352
+ where {ϕc
1353
+ 2,k} is a series of coefficient vectors. Let l be a positive integer such that ϕc
1354
+ 1,l−2 ̸= 0 and
1355
+ ϕc
1356
+ 1,k−2 = 0 for all positive integer k less than l. Then, applying Lemma 4.1 to (4.3), we obtain
1357
+ hc(k) = k− 1
1358
+ 2 (2l−1)(zmax
1359
+ c
1360
+ )−k = k− 1
1361
+ 2 (2l−1)e−θmax
1362
+ c
1363
+ k.
1364
+ This completes the former half of the proof of Proposition 2.1. If ¯η′
1365
+ 1(θ∗
1366
+ 2) = −1 or ¯η′
1367
+ 2(θ∗
1368
+ 1) = −1,
1369
+ ϕc(z) satisfies the following property, which will be proved in Section 4.2.
1370
+ 14
1371
+
1372
+ Proposition 4.3. Assume Type 1. Then, we have, for some positive vectors uc
1373
+ 1 and uc
1374
+ 2,
1375
+ lim
1376
+ ˜∆zmax
1377
+ c
1378
+ ∋z→zmax
1379
+ c
1380
+ (zmax
1381
+ c
1382
+ − z)ϕc(z) =
1383
+
1384
+
1385
+
1386
+ uc
1387
+ 1
1388
+ if ¯η′
1389
+ 1(θ∗
1390
+ 2) = −1 and ¯η′
1391
+ 2(θ∗
1392
+ 1) < −1,
1393
+ uc
1394
+ 2
1395
+ if ¯η′
1396
+ 1(θ∗
1397
+ 2) < −1 and ¯η′
1398
+ 2(θ∗
1399
+ 1) = −1,
1400
+ uc
1401
+ 1 + uc
1402
+ 2
1403
+ if ¯η′
1404
+ 1(θ∗
1405
+ 2) = ¯η′
1406
+ 2(θ∗
1407
+ 1) = −1.
1408
+ (4.5)
1409
+ Hence, ϕc
1410
+ 2,−2 is positive, and by Lemma 4.1, we obtain
1411
+ hc(k) = (zmax
1412
+ c
1413
+ )−k = e−θmax
1414
+ c
1415
+ k.
1416
+ This completes the latter half of the proof of Proposition 2.1.
1417
+ Remark 4.1. Assume Type 1 and ¯η′
1418
+ 1(θ∗
1419
+ 2) < −c1/c2 = −1 < 1/¯η′
1420
+ 2(θ∗
1421
+ 1). If the vector function ϕc(z)
1422
+ diverges at z = zmax
1423
+ c
1424
+ , the coefficient vector ϕc
1425
+ 1,−1 in (4.3) must be nonzero and , by Lemma 4.1, we
1426
+ have
1427
+ hc(k) = k− 1
1428
+ 2 (zmax
1429
+ c
1430
+ )−k = k− 1
1431
+ 2 e−θmax
1432
+ c
1433
+ k.
1434
+ 4.2
1435
+ Proof of Propositions 4.1, 4.2 and 4.3
1436
+ Recall that the direction vector c is set as c = (1, 1). Notation of this subsection follows [14].
1437
+ Denote by Φ{1,2} = (Φ{1,2}
1438
+ x,x′ ; x, x′ ∈ Z2) the fundamental matrix (potential matrix) of P {1,2}, i.e.,
1439
+ Φ{1,2} = �∞
1440
+ n=0(P {1,2})n, where P {1,2} = (P {1,2}
1441
+ x,x′ ; x, x′ ∈ Z2) is the transition probability matrix of
1442
+ the induced MA-process {Y {1,2}
1443
+ n
1444
+ }. For x ∈ Z2, define the matrix generating function of the blocks
1445
+ of Φ{1,2} in direction c, Φc
1446
+ x,∗(z), as
1447
+ Φc
1448
+ x,∗(z) =
1449
+
1450
+
1451
+ k=−∞
1452
+ zkΦ{1,2}
1453
+ x,kc .
1454
+ According to equation (3.3) of [14], we divide ϕc(z) into three parts as follows:
1455
+ ϕc(z) = ϕc
1456
+ 0(z) + ϕc
1457
+ 1(z) + ϕc
1458
+ 2(z),
1459
+ (4.6)
1460
+ where
1461
+ ϕc
1462
+ 0(z) =
1463
+
1464
+ i1,i2∈{−1,0,1}
1465
+ ν(0,0)(A∅
1466
+ i1,i2 − A{1,2}
1467
+ i1,i2 )Φc
1468
+ (i1,i2),∗(z),
1469
+ (4.7)
1470
+ ϕc
1471
+ 1(z) =
1472
+
1473
+
1474
+ k=1
1475
+
1476
+ i1,i2∈{−1,0,1}
1477
+ ν(k,0)(A{1}
1478
+ i1,i2 − A{1,2}
1479
+ i1,i2 )Φc
1480
+ (k+i1,i2),∗(z),
1481
+ (4.8)
1482
+ ϕc
1483
+ 2(z) =
1484
+
1485
+
1486
+ k=1
1487
+
1488
+ i1,i2∈{−1,0,1}
1489
+ ν(0,k)(A{2}
1490
+ i1,i2 − A{1,2}
1491
+ i1,i2 )Φc
1492
+ (i1,k+i2),∗(z).
1493
+ (4.9)
1494
+ According to [14], we focus on ϕc
1495
+ 2(z) and consider another skip-free MA-process generated from
1496
+ {Y {1,2}
1497
+ n
1498
+ }. The MA-process is { ˆY n} = {( ˆXn, ˆJn)} = {( ˆX1,n, ˆX2,n), ( ˆRn, ˆJn)}, where ˆX1,n = X{1,2}
1499
+ 1,n
1500
+ ,
1501
+ ˆX2,n and ˆRn are the quotient and remainder of X{1,2}
1502
+ 2,n
1503
+ − X{1,2}
1504
+ 1,n
1505
+ divided by 2, respectively, and
1506
+ ˆJn = J{1,2}
1507
+ n
1508
+ . The state space of { ˆY n} is Z2 × {0, 1} × S0 and the additive part { ˆXn} is skip
1509
+ free. From the definition, if ˆXn = (x1, x2) and ˆRn = r in the new MA-process, it follows that
1510
+ X{1,2}
1511
+ 1,n
1512
+ = x1, X{1,2}
1513
+ 2,n
1514
+ = x1 + 2x2 + r in the original MA-process. Hence, ˆY n = (k, 0, 0, j) means
1515
+ 15
1516
+
1517
+ Y {1,2}
1518
+ n
1519
+ = (k, k, j). Denote by ˆP = ( ˆPx,x′; x, x′ ∈ Z2) the transition probability matrix of { ˆY n},
1520
+ which is given as
1521
+ ˆPx,x′ =
1522
+
1523
+ ˆA{1,2}
1524
+ x′−x,
1525
+ if x′ − x ∈ {−1, 0, 1}2,
1526
+ O,
1527
+ otherwise,
1528
+ where
1529
+ ˆA{1,2}
1530
+ −1,1 =
1531
+
1532
+ A{1,2}
1533
+ −1,1
1534
+ O
1535
+ A{1,2}
1536
+ −1,0
1537
+ A{1,2}
1538
+ −1,1
1539
+
1540
+ ,
1541
+ ˆA{1,2}
1542
+ 0,1
1543
+ =
1544
+
1545
+ O
1546
+ O
1547
+ A{1,2}
1548
+ 0,1
1549
+ O
1550
+
1551
+ ,
1552
+ ˆA{1,2}
1553
+ 1,1
1554
+ =
1555
+ �O
1556
+ O
1557
+ O
1558
+ O
1559
+
1560
+ ,
1561
+ ˆA{1,2}
1562
+ −1,0 =
1563
+
1564
+ A{1,2}
1565
+ −1,−1
1566
+ A{1,2}
1567
+ −1,0
1568
+ O
1569
+ A{1,2}
1570
+ −1,−1
1571
+
1572
+ ,
1573
+ ˆA{1,2}
1574
+ 0,0
1575
+ =
1576
+
1577
+ A{1,2}
1578
+ 0,0
1579
+ A{1,2}
1580
+ 0,1
1581
+ A{1,2}
1582
+ 0,−1
1583
+ A{1,2}
1584
+ 0,0
1585
+
1586
+ ,
1587
+ ˆA{1,2}
1588
+ 1,0
1589
+ =
1590
+
1591
+ A{1,2}
1592
+ 1,1
1593
+ O
1594
+ A{1,2}
1595
+ 1,0
1596
+ A{1,2}
1597
+ 1,1
1598
+
1599
+ ,
1600
+ ˆA{1,2}
1601
+ −1,−1 =
1602
+ �O
1603
+ O
1604
+ O
1605
+ O
1606
+
1607
+ ,
1608
+ ˆA{1,2}
1609
+ 0,−1 =
1610
+
1611
+ O
1612
+ A{1,2}
1613
+ 0,−1
1614
+ O
1615
+ O
1616
+
1617
+ ,
1618
+ ˆA{1,2}
1619
+ 1,−1 =
1620
+
1621
+ A{1,2}
1622
+ 1,−1
1623
+ A{1,2}
1624
+ 1,0
1625
+ O
1626
+ A{1,2}
1627
+ 1,−1
1628
+
1629
+ .
1630
+ Denote by ˆΦ = (ˆΦx,x′; x, x′ ∈ Z2) the fundamental matrix of ˆP, i.e., ˆΦ = �∞
1631
+ n=0( ˆP)n, and for
1632
+ x = (x1, x2) ∈ Z2, define a matrix generating function ˆΦx,∗(z) as
1633
+ ˆΦx,∗(z) =
1634
+
1635
+
1636
+ k=−∞
1637
+ zk ˆΦx,(k,0) =
1638
+
1639
+ Φc
1640
+ (x1,x1+2x2),∗(z)
1641
+ Φc
1642
+ (x1,x1+2x2−1),∗(z)
1643
+ Φc
1644
+ (x1,x1+2x2+1),∗(z)
1645
+ Φc
1646
+ (x1,x1+2x2),∗(z)
1647
+
1648
+ .
1649
+ (4.10)
1650
+ We consider analytic properties of the matrix function Φc
1651
+ (x1,x1+2x2),∗(z) through ˆΦ(x1,x2),∗(z). Define
1652
+ blocks ˆA{2}
1653
+ i1,i2, i1, i2 ∈ {−1, 0, 1}, as ˆA{2}
1654
+ −1,1 = ˆA{2}
1655
+ −1,0 = ˆA{2}
1656
+ −1,−1 = O and
1657
+ ˆA{2}
1658
+ 0,1 =
1659
+
1660
+ O
1661
+ O
1662
+ A{2}
1663
+ 0,1
1664
+ O
1665
+
1666
+ ,
1667
+ ˆA{2}
1668
+ 0,0 =
1669
+
1670
+ A{2}
1671
+ 0,0
1672
+ A{2}
1673
+ 0,1
1674
+ A{2}
1675
+ 0,−1
1676
+ A{2}
1677
+ 0,0
1678
+
1679
+ ,
1680
+ ˆA{2}
1681
+ 0,−1 =
1682
+
1683
+ O
1684
+ A{2}
1685
+ 0,−1
1686
+ O
1687
+ O
1688
+
1689
+ ,
1690
+ ˆA{2}
1691
+ 1,1 =
1692
+ �O
1693
+ O
1694
+ O
1695
+ O
1696
+
1697
+ ,
1698
+ ˆA{2}
1699
+ 1,0 =
1700
+
1701
+ A{2}
1702
+ 1,1
1703
+ O
1704
+ A{2}
1705
+ 1,0
1706
+ A{2}
1707
+ 1,1
1708
+
1709
+ ,
1710
+ ˆA{2}
1711
+ 1,−1 =
1712
+
1713
+ A{2}
1714
+ 1,−1
1715
+ A{2}
1716
+ 1,0
1717
+ O
1718
+ A{2}
1719
+ 1,−1
1720
+
1721
+ .
1722
+ For i1, i2 ∈ {−1, 0, 1}, define the following matrix generating functions:
1723
+ ˆA{1,2}
1724
+ ∗,i2 (z) =
1725
+
1726
+ i∈{−1,0,1}
1727
+ zi ˆA{1,2}
1728
+ i,i2 ,
1729
+ ˆA{1,2}
1730
+ i1,∗ (z) =
1731
+
1732
+ i∈{−1,0,1}
1733
+ zi ˆA{1,2}
1734
+ i1,i ,
1735
+ ˆA{2}
1736
+ ∗,i2(z) =
1737
+
1738
+ i∈{0,1}
1739
+ zi ˆA{2}
1740
+ i,i2,
1741
+ ˆA{2}
1742
+ i1,∗(z) =
1743
+
1744
+ i∈{−1,0,1}
1745
+ zi ˆA{2}
1746
+ i1,i.
1747
+ Define a vector generating function ˆϕ2(z) as
1748
+ ˆϕ2(z) =
1749
+ �ˆϕ2,1(z)
1750
+ ˆϕ2,2(z)
1751
+
1752
+ =
1753
+
1754
+
1755
+ k=1
1756
+
1757
+ i1,i2∈{−1,0,1}
1758
+ ˆν(0,k)( ˆA{2}
1759
+ i1,i2 − ˆA{1,2}
1760
+ i1,i2 )ˆΦ(i1,k+i2),∗(z),
1761
+ (4.11)
1762
+ where, for x = (x1, x2) ∈ Z2
1763
+ +, ˆνx =
1764
+
1765
+ ν(x1,x1+2x2)
1766
+ ν(x1,x1+2x2+1)
1767
+
1768
+ and hence, for k ≥ 0,
1769
+ ˆν(0,k) =
1770
+
1771
+ ν(0,2k)
1772
+ ν(0,2k+1)
1773
+
1774
+ .
1775
+ By equation (3.9) of [14], ϕc
1776
+ 2(z) is represented as
1777
+ ϕc
1778
+ 2(z) = ˆϕ2,1(z) +
1779
+
1780
+ i1,i2∈{−1,0,1}
1781
+ ν(0,1)(A{2}
1782
+ i1,i2 − A{1,2}
1783
+ i1,i2 )Φc
1784
+ (i1,i2+1),∗(z).
1785
+ (4.12)
1786
+ 16
1787
+
1788
+ Hence, we consider analytic properties of the vector function ϕc
1789
+ 2(z) through ˆϕc
1790
+ 2(z) and ˆΦx,∗(z).
1791
+ Let ˆG0,∗(z) be the G-matrix function generated from the triplet { ˆA{1,2}
1792
+ ∗,−1 (z), ˆA{1,2}
1793
+ ∗,0
1794
+ (z), ˆA{1,2}
1795
+ ∗,1
1796
+ (z)}.
1797
+ By equations (3.11) and (3.13) of [14], we have, for x2 ≥ 0,
1798
+ ˆΦ(x1,x2),∗(z) = zx1 ˆG0,∗(z)x2 ˆΦ(0,0),∗(z),
1799
+ (4.13)
1800
+ and this leads us to
1801
+ ˆϕ2(z) =
1802
+
1803
+
1804
+ k=1
1805
+
1806
+ i2∈{−1,0,1}
1807
+ ˆν(0,k)( ˆA{2}
1808
+ ∗,i2(z) − ˆA{1,2}
1809
+ ∗,i2 (z)) ˆG0,∗(z)k+i2 ˆΦ(0,0),∗(z).
1810
+ (4.14)
1811
+ Hence, analytic properties of the vector function ˆϕ2(z) as well as the matrix function ˆΦx,∗(z) can
1812
+ be clarified through ˆG0,∗(z) and ˆΦ(0,0),∗(z).
1813
+ By (4.14), ˆϕ2(z) is represented as
1814
+ ˆϕ2(z) = ˆa(z, ˆG0,∗(z))ˆΦ(0,0),∗(z),
1815
+ (4.15)
1816
+ where
1817
+ ˆa(z, w) =
1818
+
1819
+
1820
+ k=1
1821
+ ˆν(0,k) ˆD(z, ˆG0,∗(z))wk−1,
1822
+ ˆD(z, w) = ˆA{2}
1823
+ ∗,−1(z) + ˆA{2}
1824
+ ∗,0 (z)w + ˆA{2}
1825
+ ∗,1 (z)w2 − Iw.
1826
+ First, we consider ˆΦ(0,0),∗(z). Let ˆGr
1827
+ 0,∗(z) be the G-matrix function in the reverse direction generated
1828
+ from the triplet { ˆA{1,2}
1829
+ ∗,−1 (z), ˆA{1,2}
1830
+ ∗,0
1831
+ (z), ˆA{1,2}
1832
+ ∗,1
1833
+ (z)}, which means that ˆGr
1834
+ 0,∗(z) is the G-matrix function
1835
+ generated from the triplet by exchanging ˆA{1,2}
1836
+ ∗,−1 (z) and ˆA{1,2}
1837
+ ∗,1
1838
+ (z); see Section 3.2. Define a matrix
1839
+ function ˆU(z) as
1840
+ ˆU(z) = ˆA{1,2}
1841
+ ∗,−1 (z) ˆGr
1842
+ 0,∗(z) + ˆA{1,2}
1843
+ ∗,0
1844
+ (z) + ˆA{1,2}
1845
+ ∗,1
1846
+ (z) ˆG0,∗(z).
1847
+ (4.16)
1848
+ Then, ˆΦ(0,0),∗(z) in (4.15) is given as
1849
+ ˆΦ(0,0),∗(z) =
1850
+
1851
+
1852
+ n=0
1853
+ ˆU(z)n = (I − ˆU(z))−1 = adj(I − ˆU(z))
1854
+ det(I − ˆU(z))
1855
+ .
1856
+ (4.17)
1857
+ Recall that zmin
1858
+ c
1859
+ = eθmin
1860
+ c
1861
+ and zmax
1862
+ c
1863
+ = eθmax
1864
+ c
1865
+ .
1866
+ For θ ∈ [θmin
1867
+ c
1868
+ , θmax
1869
+ c
1870
+ ], let (ηR
1871
+ c,1(θ), ηR
1872
+ c,2(θ)) and
1873
+ (ηL
1874
+ c,1(θ), ηL
1875
+ c,2(θ)) be the two real roots of the simultaneous equations:
1876
+ spr(A{1,2}
1877
+ ∗,∗
1878
+ (eθ1, eθ2)) = 1,
1879
+ θ1 + θ2 = θ,
1880
+ (4.18)
1881
+ counting multiplicity, where ηL
1882
+ c,1(θ) ≤ ηR
1883
+ c,1(θ) and ηL
1884
+ c,2(θ)) ≥ ηR
1885
+ c,2(θ).
1886
+ Note that ηL
1887
+ c,1(θmax
1888
+ c
1889
+ ) =
1890
+ ηR
1891
+ c,1(θmax
1892
+ c
1893
+ ) and ηL
1894
+ c,2(θmax
1895
+ c
1896
+ ) = ηR
1897
+ c,2(θmax
1898
+ c
1899
+ ). By equations (3.18) and (3.32) of [14], we have
1900
+ spr( ˆG0,∗(eθ)) = e2ηR
1901
+ c,2(θ).
1902
+ (4.19)
1903
+ Since the eigenvalues of ˆGr
1904
+ 0,∗(z) are coincide with those of the rate matrix function generated from
1905
+ the same triplet { ˆA{1,2}
1906
+ ∗,−1 (z), ˆA{1,2}
1907
+ ∗,0
1908
+ (z), ˆA{1,2}
1909
+ ∗,1
1910
+ (z)}, we have
1911
+ spr( ˆGr
1912
+ 0,∗(eθ)) = e−2ηL
1913
+ c,2(θ).
1914
+ (4.20)
1915
+ By Lemmas 3.1 and 3.3 and Corollary 3.1, ˆG0,∗(z) and ˆGr
1916
+ 0,∗(z) satisfy the following properties.
1917
+ 17
1918
+
1919
+ Proposition 4.4.
1920
+ (1) The extended G-matrix functions ˆG0,∗(z) and ˆGr
1921
+ 0,∗(z) are entry-wise an-
1922
+ alytic in ∆zmin
1923
+ c
1924
+ ,zmax
1925
+ c
1926
+ ∪ ∂∆zmax
1927
+ c
1928
+ \ {zmax
1929
+ c
1930
+ }. The point z = zmax
1931
+ c
1932
+ is a common branch point of
1933
+ ˆG0,∗(z) and ˆGr
1934
+ 0,∗(z) with order one.
1935
+ (2) There exist matrix functions ˜G0,∗(ζ) and ˜Gr
1936
+ 0,∗(ζ) being analytic in a neighborhood of ζ = 0
1937
+ and satisfying ˆG0,∗(z) = ˜G0,∗((zmax
1938
+ c
1939
+ − z)
1940
+ 1
1941
+ 2 ) and ˆGr
1942
+ 0,∗(z) = ˜Gr
1943
+ 0,∗((zmax
1944
+ c
1945
+ − z)
1946
+ 1
1947
+ 2 ), respectively, in
1948
+ a neighborhood of z = zmax
1949
+ c
1950
+ .
1951
+ In order to investigate singularity of ˆΦ(0,0),∗(z) at z = zmax
1952
+ c
1953
+ , we give the following proposition.
1954
+ Proposition 4.5. The maximum eigenvalue of ˆU(zmax
1955
+ c
1956
+ ) is 1, and it is simple.
1957
+ Proof. By equation (3.30) of [14], we have spr( ˆA{1,2}
1958
+ ∗,∗
1959
+ (zmax
1960
+ c
1961
+ , e2ηR
1962
+ c,2(θmax
1963
+ c
1964
+ ))) = 1. Let v be the right
1965
+ eigenvector of ˆA{1,2}
1966
+ ∗,∗
1967
+ (zmax
1968
+ c
1969
+ , e2ηR
1970
+ c,2(θmax
1971
+ c
1972
+ )) with respect to eigenvalue 1.
1973
+ Since spr( ˆG0,∗(zmax
1974
+ c
1975
+ )) =
1976
+ e2ηR
1977
+ c,2(θmax
1978
+ c
1979
+ ) and spr( ˆGr
1980
+ 0,∗(zmax
1981
+ c
1982
+ )) = e−2ηL
1983
+ c,2(θmax
1984
+ c
1985
+ ) = e−2ηR
1986
+ c,2(θmax
1987
+ c
1988
+ ), we have, by Lemma 3.6,
1989
+ ˆG0,∗(zmax
1990
+ c
1991
+ )v = e2ηR
1992
+ c,2(θmax
1993
+ c
1994
+ )v,
1995
+ ˆGr
1996
+ 0,∗(zmax
1997
+ c
1998
+ )v = e−2ηR
1999
+ c,2(θmax
2000
+ c
2001
+ )v,
2002
+ Hence,
2003
+ ˆU(zmax
2004
+ c
2005
+ )v = ˆA{1,2}
2006
+ ∗,∗
2007
+ (zmax
2008
+ c
2009
+ , e2ηR
2010
+ c,2(θmax
2011
+ c
2012
+ ))v = 1.
2013
+ This means that the value of 1 is an eigenvalue of ˆU(zmax
2014
+ c
2015
+ ), and we obtain spr( ˆU(zmax
2016
+ c
2017
+ )) ≥ 1.
2018
+ Suppose spr( ˆU(zmax
2019
+ c
2020
+ )) > 1. Then, since spr( ˆU(eθ)) is convex in θ ∈ R, there exist a positive
2021
+ θ0 < θmax
2022
+ c
2023
+ such that spr( ˆU(eθ0)) = 1. For this θ0, ˆΦ(0,0),∗(z) diverges at z = eθ0 < zmax
2024
+ c
2025
+ . This
2026
+ contradicts Proposition 3.1 of [14], which asserts that ˆΦ(0,0),∗(z) absolutely convergent in z ∈
2027
+ ∆zmin
2028
+ c
2029
+ ,zmax
2030
+ c
2031
+ . Hence, spr( ˆU(zmax
2032
+ c
2033
+ )) ≤ 1, and this implies the maximum eigenvalue of ˆU(zmax
2034
+ c
2035
+ ) is 1.
2036
+ Since ˆU(zmax
2037
+ c
2038
+ ) is irreducible, it is simple.
2039
+ Let ˆλU(z) be the eigenvalue of ˆU(z) satisfying ˆλU(z) = spr( ˆU(z)) for z ∈ [zmin
2040
+ c
2041
+ , zmax
2042
+ c
2043
+ ]. Let
2044
+ ˆuU(z) and ˆvU(z) be the left and right eigenvectors of ˆU(z) with respect to the eigenvalue ˆλU(z),
2045
+ respectively, satisfying ˆuU(z)ˆvU(z) = 1. Define a matrix function ˜U(ζ) as
2046
+ ˜U(ζ) = ˆA{1,2}
2047
+ ∗,−1 (zmax
2048
+ c
2049
+ − ζ2) ˜Gr
2050
+ 0,∗(ζ) + ˆA{1,2}
2051
+ ∗,0
2052
+ (zmax
2053
+ c
2054
+ − ζ2) + ˆA{1,2}
2055
+ ∗,1
2056
+ (zmax
2057
+ c
2058
+ − ζ2) ˜G0,∗(ζ).
2059
+ By Proposition 4.4, ˜U(ζ) is entry-wise analytic in a neighborhood of ζ = 0 and satisfies ˆU(z) =
2060
+ ˜U((zmax
2061
+ c
2062
+ − z)
2063
+ 1
2064
+ 2 ) in a neighborhood of z = zmax
2065
+ c
2066
+ . Define a matrix function ˜Φ(0,0),∗(ζ) as
2067
+ ˜Φ(0,0),∗(ζ) = (I − ˜U(ζ))−1 = adj(I − ˜U(ζ))
2068
+ det(I − ˜U(ζ))
2069
+ .
2070
+ (4.21)
2071
+ ˆΦ(0,0),∗(z) and ˜Φ(0,0),∗(ζ) satisfy the following properties.
2072
+ Proposition 4.6.
2073
+ (1) The matrix function ˆΦ(0,0),∗(z) is entry-wise analytic in ∆zmin
2074
+ c
2075
+ ,zmax
2076
+ c
2077
+ ∪∂∆zmax
2078
+ c
2079
+ \
2080
+ {zmax
2081
+ c
2082
+ }.
2083
+ (2) ˜Φ(0,0),∗(ζ) is entry-wise meromorphic in a neighborhood of ζ = 0, and the point ζ = 0 is a pole
2084
+ of ˜Φ(0,0),∗(ζ) with order one. ˆΦ(0,0),∗(z) is represented as ˆΦ(0,0),∗(z) = ˜Φ(0,0),∗((zmax
2085
+ c
2086
+ − z)
2087
+ 1
2088
+ 2 ) in
2089
+ a neighborhood of z = zmax
2090
+ c
2091
+ .
2092
+ 18
2093
+
2094
+ (3) ˆΦ(0,0),∗(z) satisfies
2095
+ lim
2096
+ ˜∆zmax
2097
+ c
2098
+ ∋z→zmax
2099
+ c
2100
+ (zmax
2101
+ c
2102
+ − z)
2103
+ 1
2104
+ 2 ˆΦ(0,0),∗(z) = ˆgΦˆvU(zmax
2105
+ c
2106
+ )ˆuU(zmax
2107
+ c
2108
+ ) > O,
2109
+ (4.22)
2110
+ where both ˆvU(zmax
2111
+ c
2112
+ ) and ˆuU(zmax
2113
+ c
2114
+ ) are positive,
2115
+ ˆgΦ = −
2116
+
2117
+ ˆuU(zmax
2118
+ c
2119
+ )( ˆA{1,2}
2120
+ ∗,−1 (zmax
2121
+ c
2122
+ ) ˆGr
2123
+ 0,∗,1 + ˆA{1,2}
2124
+ ∗,1
2125
+ (zmax
2126
+ c
2127
+ ) ˆG0,∗,1)ˆvU(zmax
2128
+ c
2129
+ )
2130
+ �−1
2131
+ > 0,
2132
+ (4.23)
2133
+ and ˆGr
2134
+ 0,∗,1 and ˆG0,∗,1 are the limits of ˆGr
2135
+ 0,∗(z) and ˆG0,∗(z), respectively, given by Lemma 3.5.
2136
+ Proof. By (4.16) and Proposition 4.4, ˆU(z) is entry-wise analytic in ∆zmin
2137
+ c
2138
+ ,zmax
2139
+ c
2140
+ ∪ ∂∆zmax
2141
+ c
2142
+ \ {zmax
2143
+ c
2144
+ }.
2145
+ Hence, by (4.17), ˆΦ(0,0),∗(z) is entry-wise meromorphic in the same domain. Recall that, under
2146
+ Assumption 2.2, the induced MA-process {Y {1,2}
2147
+ n
2148
+ } is irreducible and aperiodic. Hence, in a manner
2149
+ similar to that used in the proof of Proposition 5.2 of [11], we obtain by Proposition 4.5 that, for
2150
+ every z ∈ ∆zmin
2151
+ c
2152
+ ,zmax
2153
+ c
2154
+ ∪ ∂∆zmax
2155
+ c
2156
+ \ {zmax
2157
+ c
2158
+ },
2159
+ spr( ˆU(z)) < spr( ˆU(|z|)) < spr( ˆU(zmax
2160
+ c
2161
+ )) = 1,
2162
+ and this leads us to det(I − ˆU(z)) ̸= 0. This completes the proof of statement (1).
2163
+ By (4.21), ˜Φ(0,0),∗(ζ) is entry-wise meromorphic in a neighborhood of ζ = 0. Since ˜U(0) =
2164
+ ˆU(zmax
2165
+ c
2166
+ ), we see by Proposition 4.5 that det(I − ˜U(0)) = 0 and the multiplicity of zero of det(I −
2167
+ ˜U(ζ)) at ζ = 0 is one. Hence, by the identity theorem for analytic functions, det(I − ˜U(ζ)) is
2168
+ nonzero in a neighborhood of ζ = 0 except for the point ζ = 0 and the point ζ = 0 is a pole of
2169
+ ˜Φ(0,0),∗(ζ) with order one. This completes the proof of statement (2) since the representation of
2170
+ ˆΦ(0,0),∗(z) is obvious.
2171
+ Define a function f(λ, z) as
2172
+ f(λ, z) = det(λI − ˆU(z)).
2173
+ By Corollary 2 of Seneta [15] and Proposition 4.5 (also see Proposition 5.11 of [11]),
2174
+ adj(I − ˆU(zmax
2175
+ c
2176
+ )) = fλ(1, zmax
2177
+ c
2178
+ )ˆvU(zmax
2179
+ c
2180
+ )ˆuU(zmax
2181
+ c
2182
+ ),
2183
+ (4.24)
2184
+ where fλ(λ, z) =
2185
+
2186
+ ∂λf(λ, z) and both ˆvU(zmax
2187
+ c
2188
+ ) and ˆuU(zmax
2189
+ c
2190
+ ) are positive since ˆU(zmax
2191
+ c
2192
+ ) is irre-
2193
+ ducible. Furthermore, in a manner similar to that used in the proof of Proposition 5.9 of [11], we
2194
+ obtain
2195
+ lim
2196
+ ˜∆zmax
2197
+ c
2198
+ ∋z→zmax
2199
+ c
2200
+ (zmax
2201
+ c
2202
+ − z)− 1
2203
+ 2 f(1, z) = −c0fλ(1, zmax
2204
+ c
2205
+ ),
2206
+ (4.25)
2207
+ where c0 = ˆuU(zmax
2208
+ c
2209
+ )( ˆA{1,2}
2210
+ ∗,−1 (zmax
2211
+ c
2212
+ ) ˆGr
2213
+ 0,∗,1 + ˆA{1,2}
2214
+ ∗,1
2215
+ (zmax
2216
+ c
2217
+ ) ˆG0,∗,1)ˆvU(zmax
2218
+ c
2219
+ ) < 0 since, by Lemma 3.5,
2220
+ both ˆG0,∗,1 and ˆGr
2221
+ 0,∗,1 are nonzero and nonpositive. By (4.21), this completes the proof of statement
2222
+ (3).
2223
+ Let αs0(z) be the eigenvalue of ˆG0,∗(z) that satisfies, for z ∈ [zmin
2224
+ c
2225
+ , zmax
2226
+ c
2227
+ ], αs0(z) = spr( ˆG0,∗(z)) =
2228
+ e2ηR
2229
+ c,2(log z). Let ˆuG(z) and ˆvG(z) be the left and right eigenvectors of ˆG0,∗(z) with respect to the
2230
+ eigenvalue αs0(z), satisfying ˆuG(z)ˆvG(z) = 1. By Lemma 3.3, ˜G0,∗(ζ) in Proposition 4.4 satisfies
2231
+ the following property.
2232
+ 19
2233
+
2234
+ Proposition 4.7. There exists a matrix function ˜G†
2235
+ 0,∗(ζ) entry-wise analytic in a neighborhood of
2236
+ ζ = 0 such that ˜G0,∗(ζ) is represented as
2237
+ ˜G0,∗(ζ) = ˜G†
2238
+ 0,∗(ζ) + ˜αs0(ζ)˜vG(ζ)˜uG(ζ),
2239
+ (4.26)
2240
+ where function ˜αs0(ζ), row vector function ˜uG(ζ) and column vector ˜vG(ζ) are elementwise analytic
2241
+ in a neighborhood of ζ = 0 and satisfying αs0(z) = ˜αs0((zmax
2242
+ c
2243
+ − z)
2244
+ 1
2245
+ 2 ), ˆuG(z) = ˜uG((zmax
2246
+ c
2247
+ − z)
2248
+ 1
2249
+ 2 )
2250
+ and ˆvG(z) = ˜vG((zmax
2251
+ c
2252
+ − z)
2253
+ 1
2254
+ 2 ), respectively, in a neighborhood of z = zmax
2255
+ c
2256
+ . In a neighborhood of
2257
+ ζ = 0, ˜G†
2258
+ 0,∗(ζ) satisfies spr( ˜G†
2259
+ 0,∗(ζ)) < αs0(zmax
2260
+ c
2261
+ ) = e2ηR
2262
+ c,2(θmax
2263
+ c
2264
+ ). Furthermore, ˜G0,∗(ζ) satisfies, for
2265
+ n ≥ 1,
2266
+ ˜G0,∗(ζ)n = ˜G†
2267
+ 0,∗(ζ)n + ˜αs0(ζ)n˜vG(ζ)˜uG(ζ).
2268
+ (4.27)
2269
+ Let ˆν(0,∗)(z) be the generating function of {ˆν(0,k)} defined as ˆν(0,∗)(z) = �∞
2270
+ k=1 zkˆν(0,k). Define
2271
+ a matrix function ˆU2(z) as
2272
+ ˆU2(z) = ˆA{2}
2273
+ 0,∗ (z) + ˆA{2}
2274
+ 1,∗ (z) ˆG∗,0(z),
2275
+ and let ˆuU
2276
+ 2 (z) and ˆvU
2277
+ 2 (z) be the left and right eigenvectors of ˆU2(z) with respect to the maximum
2278
+ eigenvalue of ˆU2(z), satisfying ˆuU
2279
+ 2 (z)ˆvU
2280
+ 2 (z) = 1. By Lemma 5.3 of [11] (also see Proposition 3.5 of
2281
+ [14]), ˆν(0,∗)(z) satisfies the following properties.
2282
+ Proposition 4.8. Assume Type 1.
2283
+ (1) The vector function ˆν(0,∗)(z) is elementwise analytic in ¯∆e2θ∗
2284
+ 2 \ {e2θ∗
2285
+ 2}.
2286
+ (2) If θ∗
2287
+ 2 < θmax
2288
+ 2
2289
+ , ˆν(0,∗)(z) is elementwise meromorphic in a neighborhood of z = e2θ∗
2290
+ 2 and the
2291
+ point z = e2θ∗
2292
+ 2 is a pole of ˆν(0,∗)(z) with order one. It satisfies, for some positive constant ˆg2,
2293
+ lim
2294
+ ˜∆
2295
+ e2θ∗
2296
+ 2 ∋z→e2θ∗
2297
+ 2
2298
+ (e2θ∗
2299
+ 2 − z)ˆϕ2(z) = ˆg2ˆuU
2300
+ 2 (e2θ∗
2301
+ 2),
2302
+ (4.28)
2303
+ where ˆuU
2304
+ 2 (e2θ∗
2305
+ 2) is positive.
2306
+ Define a vector function ˜a(ζ, w) as
2307
+ ˜a(ζ, w) =
2308
+
2309
+
2310
+ k=1
2311
+ ˆν(0,k) ˆD(zmax
2312
+ c
2313
+ − ζ2, ˜G0,∗(ζ))wk−1.
2314
+ (4.29)
2315
+ Then, the vector functions ˆa(z, ˆG0,∗(z)) in (4.15) and ˜a(ζ, ˜G0,∗(ζ)) satisfy the following properties.
2316
+ Proposition 4.9. Assume Type 1.
2317
+ (1) If ¯η′
2318
+ 1(θ∗
2319
+ 2) ≤ −c1/c2 = −1, the vector function ˆa(z, ˆG0,∗(z)) is elementwise analytic in ∆zmin
2320
+ c
2321
+ ,zmax
2322
+ c
2323
+
2324
+ ∂∆zmax
2325
+ c
2326
+ \ {zmax
2327
+ c
2328
+ }.
2329
+ (2) If ¯η′
2330
+ 1(θ∗
2331
+ 2) < −1, ˜a(ζ, ˜G0,∗(ζ)) is elementwise analytic in a neighborhood of ζ = 0; if ¯η′
2332
+ 1(θ∗
2333
+ 2) =
2334
+ −1, it is elementwise meromorphic in a neighborhood of ζ = 0 and the point ζ = 0 is a
2335
+ pole of it with order one. The vector function ˆa(z, ˆG0,∗(z)) is represented as ˆa(z, ˜G0,∗(z)) =
2336
+ ˜a((zmax
2337
+ c
2338
+ − z)
2339
+ 1
2340
+ 2 , ˜G0,∗((zmax
2341
+ c
2342
+ − z)
2343
+ 1
2344
+ 2 )) in a neighborhood of z = zmax
2345
+ c
2346
+ .
2347
+ 20
2348
+
2349
+ (3) If ¯η′
2350
+ 1(θ∗
2351
+ 2) = −1, ˆa(z, ˆG0,∗(z)) satisfies, for a positive constant ˆga
2352
+ 2,
2353
+ lim
2354
+ ˜∆zmax
2355
+ c
2356
+ ∋z→zmax
2357
+ c
2358
+ (zmax
2359
+ c
2360
+ − z)
2361
+ 1
2362
+ 2 ˆa(z, ˆG0,∗(z)) = ˆga
2363
+ 2 ˆuG(zmax
2364
+ c
2365
+ ) ≥ 0⊤, ̸= 0⊤.
2366
+ (4.30)
2367
+ Proof. By Proposition 4.2 of [11], if ¯η′
2368
+ 1(θ∗
2369
+ 2) ≤ −1, we have for z ∈ ∆zmin
2370
+ c
2371
+ ,zmax
2372
+ c
2373
+ ∪ ∂∆zmax
2374
+ c
2375
+ \ {zmax
2376
+ c
2377
+ }
2378
+ that |αs0(z)| < αs0(zmax
2379
+ c
2380
+ ) = e2ηR
2381
+ c,2(θmax
2382
+ c
2383
+ ) ≤ e2θ∗
2384
+ 2, and this implies spr( ˆG0,∗(z)) < e2θ∗
2385
+ 2. Hence, by
2386
+ Lemma 3.2 of [11] and Proposition 4.8, vector series ˆa(z, ˆG0,∗(z)) elementwise converges absolutely
2387
+ in ∆zmin
2388
+ c
2389
+ ,zmax
2390
+ c
2391
+ ∪ ∂∆zmax
2392
+ c
2393
+ \ {zmax
2394
+ c
2395
+ }. This completes the proof of statement (1).
2396
+ By Proposition 4.7, we have
2397
+ ˜a(ζ, ˜G0,∗(ζ)) = ˜a(ζ, ˜G†
2398
+ 0,∗(ζ))
2399
+ + (˜αs0(ζ)−1ˆν(0,∗)(˜αs0(ζ)) − ˆν(0,1)) ˆD(zmax
2400
+ c
2401
+ − ζ2, ˜αs0(ζ))˜vG(ζ)˜uG(ζ).
2402
+ (4.31)
2403
+ If ¯η′
2404
+ 1(θ∗
2405
+ 2) ≤ −1, spr( ˜G†
2406
+ 0,∗(ζ)) < e2ηR
2407
+ c,2(θmax
2408
+ c
2409
+ ) ≤ e2θ∗
2410
+ 2 in a neighborhood of ζ = 0.
2411
+ Hence, vec-
2412
+ tor series ˜a(ζ, ˜G†
2413
+ 0,∗(ζ)) is elementwise convergent absolutely and analytic in a neighborhood of
2414
+ ζ = 0. If ¯η′
2415
+ 1(θ∗
2416
+ 2) < −1, ˜αs0(0) = αs0(zmax
2417
+ c
2418
+ ) = e2ηR
2419
+ c,2(θmax
2420
+ c
2421
+ ) < e2θ∗
2422
+ 2, and this implies |˜αs0(ζ)| < e2θ∗
2423
+ 2
2424
+ in a neighborhood of ζ = 0.
2425
+ Hence, by Proposition 4.8, the vector function ˜a(ζ, ˜G0,∗(ζ)) as
2426
+ well as ˆν(0,∗)(˜αs0(ζ)) is elementwise analytic in a neighborhood of ζ = 0.
2427
+ If ¯η′
2428
+ 1(θ∗
2429
+ 2) = −1,
2430
+ ˜αs0(0) = e2ηR
2431
+ c,2(θmax
2432
+ c
2433
+ ) = e2θ∗
2434
+ 2. Hence, by Proposition 4.8, the vector function ˜a(ζ, ˜G0,∗(ζ)) as well as
2435
+ ˆν(0,∗)(˜αs0(ζ)) is meromorphic in a neighborhood of ζ = 0 and the point ζ = 0 is a pole of it with
2436
+ order one. This completes the proof of statement (2).
2437
+ If ¯η′
2438
+ 1(θ∗
2439
+ 2) = −1, αs0(zmax
2440
+ c
2441
+ ) = e2ηR
2442
+ c,2(θmax
2443
+ c
2444
+ ) = e2θ∗
2445
+ 2. Hence, by Lemma 3.4 and Proposition 4.8, we
2446
+ have
2447
+ lim
2448
+ ˜∆zmax
2449
+ c
2450
+ ∋z→zmax
2451
+ c
2452
+ (zmax
2453
+ c
2454
+ − z)
2455
+ 1
2456
+ 2 ˆν(0,∗)(αs0(z))
2457
+ =
2458
+ lim
2459
+ ˜∆zmax
2460
+ c
2461
+ ∋z→zmax
2462
+ c
2463
+ (zmax
2464
+ c
2465
+ − z)
2466
+ 1
2467
+ 2
2468
+ αs0(zmax
2469
+ c
2470
+ ) − αs0(z)(αs0(zmax
2471
+ c
2472
+ ) − αs0(z))ˆν(0,∗)(αs0(z))
2473
+ = (−αs0,1)−1ˆg2ˆuU
2474
+ 2 (e2θ∗
2475
+ 2),
2476
+ where αs0,1 is the limit of αs0(z) given by (3.10) and it is negative. This leads us to
2477
+ lim
2478
+ ˜∆zmax
2479
+ c
2480
+ ∋z→zmax
2481
+ c
2482
+ (zmax
2483
+ c
2484
+ − z)
2485
+ 1
2486
+ 2 ˆa(z, ˆG0,∗(z))
2487
+ = (−αs0,1)−1ˆg2e−2θ∗
2488
+ 2 ˆuU
2489
+ 2 (e2θ∗
2490
+ 2)D(zmax
2491
+ c
2492
+ , e2θ∗
2493
+ 2)ˆvG(zmax
2494
+ c
2495
+ )ˆuG(zmax
2496
+ c
2497
+ ).
2498
+ (4.32)
2499
+ From this, we see that ˆga
2500
+ 2 ˆuG(zmax
2501
+ c
2502
+ ) in (4.30) is given by the right-hand side of (4.32). Since ˆuU
2503
+ 2 (e2θ∗
2504
+ 2)
2505
+ is positive, ˆga
2506
+ 2 is also positive. This completes the proof of statement (3).
2507
+ Finally, we give the proof of Propositions 4.1, 4.2 and 4.3.
2508
+ Proof of Proposition 4.1. Assume Type 1 and ¯η′
2509
+ 1(θ∗
2510
+ 2) ≤ −c1/c2 = −1 ≤ 1/¯η′
2511
+ 2(θ∗
2512
+ 1). Since ϕc(z) is a
2513
+ probability vector generating function, it is automatically analytic elementwise in ∆zmax
2514
+ c
2515
+ . Hence,
2516
+ we prove it is elementwise analytic on ∂∆zmax
2517
+ c
2518
+ \ {zmax
2519
+ c
2520
+ }. For the purpose, we use equations (4.6),
2521
+ (4.7), (4.10), (4.12), (4.13) and (4.15).
2522
+ By Propositions 4.4, 4.6 and 4.9, ˆG0,∗(z), ˆa(z, ˆG0,∗(z)) and ˆΦ(0,0),∗(z) are elementwise analytic
2523
+ on ∂∆zmax
2524
+ c
2525
+ \ {zmax
2526
+ c
2527
+ }. Hence, by (4.13) and (4.15), ˆΦx,∗(z) and ˆϕ2(z) are also analytic elementwise
2528
+ on ∂∆zmax
2529
+ c
2530
+ \ {zmax
2531
+ c
2532
+ }. By (4.10), the analytic property of ˆΦx,∗(z) implies that Φc
2533
+ x,∗(z) is entry-wise
2534
+ 21
2535
+
2536
+ analytic on ∂∆zmax
2537
+ c
2538
+ \{zmax
2539
+ c
2540
+ }. Hence, by (4.12), ϕc
2541
+ 2(z) is elementwise analytic on ∂∆zmax
2542
+ c
2543
+ \{zmax
2544
+ c
2545
+ }. In
2546
+ the same way, we can see that if ¯η′
2547
+ 2(θ∗
2548
+ 1) ≤ −1, ϕc
2549
+ 1(z) is elementwise analytic on ∂∆zmax
2550
+ c
2551
+ \{zmax
2552
+ c
2553
+ }. By
2554
+ (4.7), the analytic property of Φc
2555
+ x,∗(z) implies that ϕc
2556
+ 0(z) is elementwise analytic on ∂∆zmax
2557
+ c
2558
+ \{zmax
2559
+ c
2560
+ }.
2561
+ As a result, we see by (4.6) that ϕc(z) is elementwise analytic on ∂∆zmax
2562
+ c
2563
+ \ {zmax
2564
+ c
2565
+ }. This completes
2566
+ the proof.
2567
+ Proof of Proposition 4.2. Assuming Type 1 and ¯η′
2568
+ 1(θ∗
2569
+ 2) ≤ −c1/c2 = −1 ≤ 1/¯η′
2570
+ 2(θ∗
2571
+ 1), we also use
2572
+ equations (4.6), (4.7), (4.10),(4.12), (4.13) and (4.15).
2573
+ First, we consider about Φc
2574
+ x,∗(z) and ϕc
2575
+ 0(z), where x = (x1, x2) ∈ Z2. Define ˜Φ(x1,x2),∗(ζ) as
2576
+ ˜Φ(x1,x2),∗(ζ) = (zmax
2577
+ c
2578
+ − ζ2)x1 ˜G0,∗(ζ)x2 ˜Φ(0,0),∗(ζ).
2579
+ Then, by Propositions 4.4 and 4.6, the matrix function ˜Φx,∗(ζ) is entry-wise meromorphic in a
2580
+ neighborhood of ζ = 0 and satisfies ˆΦx,∗(z) = ˜Φ(x1,x2),∗((zmax
2581
+ c
2582
+ − z)
2583
+ 1
2584
+ 2 ) in a neighborhood of z =
2585
+ zmax
2586
+ c
2587
+ .
2588
+ The point ζ = 0 is a pole of ˜Φx,∗(ζ) with order one.
2589
+ Hence, by (4.10), there exists a
2590
+ matrix function ˜Φc
2591
+ x,∗(ζ) being entry-wise meromorphic in a neighborhood of ζ = 0 and satisfying
2592
+ Φc
2593
+ x,∗(z) = ˜Φc
2594
+ x,∗((zmax
2595
+ c
2596
+ − z)
2597
+ 1
2598
+ 2 ) in a neighborhood of z = zmax
2599
+ c
2600
+ . The point ζ = 0 is a pole of ˜Φc
2601
+ x,∗(ζ)
2602
+ with order one. Define ˜ϕc
2603
+ 0(z) as
2604
+ ˜ϕc
2605
+ 0(ζ) =
2606
+
2607
+ i1,i2∈{−1,0,1}
2608
+ ν(0,0)(A∅
2609
+ i1,i2 − A{1,2}
2610
+ i1,i2 )˜Φc
2611
+ (i1,i2),∗(ζ),
2612
+ which satisfies the same analytic property as ˜Φc
2613
+ x,∗(ζ). It also satisfies ϕc
2614
+ 0(z) = ˜ϕc
2615
+ 0((zmax
2616
+ c
2617
+ − z)
2618
+ 1
2619
+ 2 ) in
2620
+ a neighborhood of z = zmax
2621
+ c
2622
+ .
2623
+ Next, we consider about ϕc
2624
+ 2(z). Define ˜ϕ2(ζ) as
2625
+ ˜ϕ2(ζ) = ˜a(ζ, ˜G0,∗(ζ))˜Φ(0,0),∗(ζ)
2626
+ By Propositions 4.6 and 4.9 and (4.15), ˜ϕ2(ζ) is entry-wise meromorphic in a neighborhood of
2627
+ ζ = 0 and satisfying ˆϕ2(z) = ˜ϕ2((zmax
2628
+ c
2629
+ − z)
2630
+ 1
2631
+ 2 ) in a neighborhood of z = zmax
2632
+ c
2633
+ . If ¯η′
2634
+ 1(θ∗
2635
+ 2) < −1, the
2636
+ point ζ = 0 is a pole of ˜ϕ2(ζ) with at most order one; if ¯η′
2637
+ 1(θ∗
2638
+ 2) = −1, it is a pole of ˜ϕ2(ζ) with at
2639
+ most order two. Represent ˜ϕ2(ζ) in block form as ˜ϕ2(ζ) =
2640
+ �˜ϕ2,1(ζ)
2641
+ ˜ϕ2,2(ζ)
2642
+
2643
+ and define ˜ϕc
2644
+ 2(ζ) as
2645
+ ˜ϕc
2646
+ 2(ζ) = ˜ϕ2,1(ζ) +
2647
+
2648
+ i1,i2∈{−1,0,1}
2649
+ ν(0,1)(A{2}
2650
+ i1,i2 − A{1,2}
2651
+ i1,i2 )˜Φc
2652
+ (i1,i2+1),∗(ζ).
2653
+ Then, the vector function ˜ϕc
2654
+ 2(ζ) is elementwise meromorphic in a neighborhood of ζ = 0, and by
2655
+ (4.12), it satisfies ϕc
2656
+ 2(z) = ˜ϕc
2657
+ 2((zmax
2658
+ c
2659
+ − z)
2660
+ 1
2661
+ 2 ) in a neighborhood of z = zmax
2662
+ c
2663
+ . If ¯η′
2664
+ 1(θ∗
2665
+ 2) < −1, the
2666
+ point ζ = 0 is a pole of ˜ϕc
2667
+ 2(ζ) with at most order one; if ¯η′
2668
+ 1(θ∗
2669
+ 2) = −1, it is a pole of ˜ϕc
2670
+ 2(ζ) with at
2671
+ most order two.
2672
+ Finally, we consider about ϕc(z). In the same way as that used for ϕc
2673
+ 2(z), we can see that
2674
+ there exists a vector function ˜ϕc
2675
+ 1(ζ) being elementwise meromorphic in a neighborhood of ζ = 0
2676
+ and satisfying ϕc
2677
+ 1(z) = ˜ϕc
2678
+ 1((zmax
2679
+ c
2680
+ − z)
2681
+ 1
2682
+ 2 ) in a neighborhood of z = zmax
2683
+ c
2684
+ . If ¯η′
2685
+ 2(θ∗
2686
+ 1) < −1, the point
2687
+ ζ = 0 is a pole of ˜ϕc
2688
+ 1(ζ) with at most order one; if ¯η′
2689
+ 2(θ∗
2690
+ 1) = −1, it is a pole of ˜ϕc
2691
+ 1(ζ) with at most
2692
+ order two. Define ˜ϕc(ζ) as
2693
+ ˜ϕc(ζ) = ˜ϕc
2694
+ 0(ζ) + ˜ϕc
2695
+ 1(ζ) + ˜ϕc
2696
+ 2(ζ).
2697
+ Then, the vector function ˜ϕc(ζ) is elementwise meromorphic in a neighborhood of ζ = 0, and by
2698
+ (4.6), it satisfies ϕc(z) = ˜ϕc((zmax
2699
+ c
2700
+ − z)
2701
+ 1
2702
+ 2 ) in a neighborhood of z = zmax
2703
+ c
2704
+ . If ˜η′
2705
+ 1(θ∗
2706
+ 2) < −c1/c2 =
2707
+ −1 < 1/˜η′
2708
+ 2(θ∗
2709
+ 1), the point ζ = 0 is a pole of ˜ϕc(ζ) with at most order one; if ˜η′
2710
+ 1(θ∗
2711
+ 2) = −1 or
2712
+ ˜η′
2713
+ 2(θ∗
2714
+ 1) = −1, it is a pole of ˜ϕc(ζ) with at most order two. This completes the proof.
2715
+ 22
2716
+
2717
+ Proof of Proposition 4.3. Assume Type 1. By Proposition 4.6 and equations (4.10) and (4.13),
2718
+ lim
2719
+ ˜∆zmax
2720
+ c
2721
+ ∋z→zmax
2722
+ c
2723
+ (zmax
2724
+ c
2725
+ − z)Φc
2726
+ x,∗(z) = O.
2727
+ (4.33)
2728
+ Hence, by (4.7),
2729
+ lim
2730
+ ˜∆zmax
2731
+ c
2732
+ ∋z→zmax
2733
+ c
2734
+ (zmax
2735
+ c
2736
+ − z)ϕc
2737
+ 0(z) = 0⊤.
2738
+ (4.34)
2739
+ If ¯η′
2740
+ 1(θ∗
2741
+ 2) = −1, by Propositions 4.6 and 4.9 and equations (4.12) and (4.34), representing ˆuU(zmax
2742
+ c
2743
+ )
2744
+ in block form as ˆuU(zmax
2745
+ c
2746
+ ) =
2747
+
2748
+ ˆuU
2749
+ 1 (zmax
2750
+ c
2751
+ )
2752
+ ˆuU
2753
+ 2 (zmax
2754
+ c
2755
+ )
2756
+
2757
+ , we obtain
2758
+ lim
2759
+ ˜∆zmax
2760
+ c
2761
+ ∋z→zmax
2762
+ c
2763
+ (zmax
2764
+ c
2765
+ − z)ϕc
2766
+ 2(z) = uc
2767
+ 2 = ˆga
2768
+ 2ˆgΦˆuG(zmax
2769
+ c
2770
+ )ˆvU(zmax
2771
+ c
2772
+ )ˆuU
2773
+ 1 (zmax
2774
+ c
2775
+ ) > 0⊤,
2776
+ (4.35)
2777
+ where ˆuG(zmax
2778
+ c
2779
+ ) is nonzero and nonnegative and other terms on the right-hand side of the equation
2780
+ are positive; if ¯η′
2781
+ 1(θ∗
2782
+ 2) < −1, we have
2783
+ lim
2784
+ ˜∆zmax
2785
+ c
2786
+ ∋z→zmax
2787
+ c
2788
+ (zmax
2789
+ c
2790
+ − z)ϕc
2791
+ 2(z) = 0⊤.
2792
+ (4.36)
2793
+ In a manner similar to that used for ϕc
2794
+ 2(z), we can see that if ¯η′
2795
+ 2(θ∗
2796
+ 1) = −1, then for some positive
2797
+ vector uc
2798
+ 1,
2799
+ lim
2800
+ ˜∆zmax
2801
+ c
2802
+ ∋z→zmax
2803
+ c
2804
+ (zmax
2805
+ c
2806
+ − z)ϕc
2807
+ 1(z) = uc
2808
+ 1,
2809
+ (4.37)
2810
+ and if ¯η′
2811
+ 1(θ∗
2812
+ 2) < −1,
2813
+ lim
2814
+ ˜∆zmax
2815
+ c
2816
+ ∋z→zmax
2817
+ c
2818
+ (zmax
2819
+ c
2820
+ − z)ϕc
2821
+ 1(z) = 0⊤.
2822
+ (4.38)
2823
+ As a result, by (4.6), (4.35), (4.36), (4.37) and (4.38), we obtain (4.5) in Proposition 4.3.
2824
+ 5
2825
+ Concluding remarks
2826
+ We consider another topic, which relates to the singularity of the vector generating function ϕc(z)
2827
+ at z = zmax
2828
+ c
2829
+ = eθmax
2830
+ c
2831
+ , where c ∈ N2.
2832
+ Recall that P {1,2} = (P {1,2}
2833
+ x,x′ ; x, x′ ∈ Z2) is the transition probability matrix of the induced
2834
+ MA-process {Y {1,2}
2835
+ n
2836
+ } and Φ{1,2} = (Φ{1,2}
2837
+ x,x′ ; x, x′ ∈ Z2) the fundamental matrix (potential matrix)
2838
+ of P {1,2}. Let hΦ
2839
+ c (k) be the asymptotic decay function of the matrix sequence {Φ{1,2}
2840
+ x,kc ; k ∈ N}, i.e.,
2841
+ for some positive matrix C,
2842
+ lim
2843
+ k→∞ Φ{1,2}
2844
+ x,kc /hΦ
2845
+ c (k) = C.
2846
+ (5.1)
2847
+ By Proposition 4.6, we obtain
2848
+
2849
+ c (k) = k− 1
2850
+ 2 e−θmax
2851
+ c
2852
+ k.
2853
+ (5.2)
2854
+ Furthermore, recall that P + is a partial matrix of P {1,2} given by restricting the state space of
2855
+ the level to the positive quadrant, i.e., P + = (P {1,2}
2856
+ x,x′ ; x, x′ ∈ N2). P + is also a partial matrix of
2857
+ the transition probability matrix of the original 2d-QBD process, P = (Px,x′; x, x′ ∈ Z2
2858
+ +), i.e.,
2859
+ P + = (Px,x′; x, x′ ∈ N2). Let ˜Q = ( ˜Qx,x′; x, x′ ∈ N2) be the fundamental matrix of P +, i.e.,
2860
+ 23
2861
+
2862
+ ˜Q = �∞
2863
+ n=0(P +)n. For j, j′ ∈ S0, denote by ˜q(x,j),(x′,j′) the (j, j′)-entry of ˜Qx,x′. The entries of ˜Q
2864
+ are called an occupation measure in [13]. By Theorem 5.1 of [13], the asymptotic decay rate of the
2865
+ matrix sequence { ˜Qx,kc; k ∈ N} is given by eθmax
2866
+ c
2867
+ , i.e.,
2868
+ − lim
2869
+ k→∞
2870
+ 1
2871
+ k log ˜q(x,j),(kc,j′) = θmax
2872
+ c
2873
+ ,
2874
+ (5.3)
2875
+ which coincides with that of the matrix sequence {Φ{1,2}
2876
+ x,kc ; k ∈ N}. One question, therefore, arises:
2877
+ Does the asymptotic decay function of the matrix sequence { ˜Qx,kc; k ∈ N} coincide with that of
2878
+ the matrix sequence {Φ{1,2}
2879
+ x,kc ; k ∈ N}? If the answer to the question is yes, we can indicate that the
2880
+ vector generating function ϕc(z) diverges at z = eθmax
2881
+ c
2882
+ .
2883
+ References
2884
+ [1] Bini, D.A., Latouche, G. and Meini, B., Oxford University Press, Oxford (2005).
2885
+ [2] Flajolet, P. and Sedgewick, R., Analytic Combinatorics, Cambridge University Press, Cam-
2886
+ bridge (2009).
2887
+ [3] Gohberg, I., Lancaster, P. and Rodman, L., Matrix Polynomials, SIAM, Philadelphia (2009).
2888
+ [4] Kobayashi, M. and Miyazawa, M., Revisit to the tail asymptotics of the double QBD process:
2889
+ Refinement and complete solutions for the coordinate and diagonal directions, Matrix-Analytic
2890
+ Methods in Stochastic Models (2013), 145-185.
2891
+ [5] Latouche, G. and Ramaswami, V., Introduction to Matrix Analytic Methods in Stochastic
2892
+ Modeling, SIAM, Philadelphia (1999).
2893
+ [6] Malyshev, V.A., Asymptotic behavior of the stationary probabilities for two-dimensional pos-
2894
+ itive random walks, Siberian Mathematical Journal 14(1) (1973), 109–118.
2895
+ [7] Neuts, M.F., Matrix-Geometric Solutions in Stochastic Models, Dover Publications, New York
2896
+ (1994).
2897
+ [8] Neuts, M.F., Structured stochastic matrices of M/G/1 type and their applications, Marcel
2898
+ Dekker, New York (1989).
2899
+ [9] Ney, P. and Nummelin, E., Markov additive processes I. Eigenvalue properties and limit the-
2900
+ orems, The Annals of Probability 15(2) (1987), 561–592.
2901
+ [10] Ozawa, T., Asymptotics for the stationary distribution in a discrete-time two-dimensional
2902
+ quasi-birth-and-death process, Queueing Systems 74 (2013), 109–149.
2903
+ [11] Ozawa, T. and Kobayashi, M., Exact asymptotic formulae of the stationary distribution of a
2904
+ discrete-time two-dimensional QBD process, Queueing Systems 90 (2018), 351-403.
2905
+ [12] Ozawa, T., Stability condition of a two-dimensional QBD process and its application to esti-
2906
+ mation of efficiency for two-queue models, Performance Evaluation 130 (2019), 101–118.
2907
+ [13] Ozawa,
2908
+ T.,
2909
+ Asymptotic properties of the occupation measure in a multidimensional
2910
+ skip-free
2911
+ Markov
2912
+ modulated
2913
+ random
2914
+ walk,
2915
+ Queueing
2916
+ Systems
2917
+ 97
2918
+ (2021),
2919
+ 125–161.
2920
+ (DOI:10.1007/s11134-020-09673-9)
2921
+ 24
2922
+
2923
+ [14] Ozawa,
2924
+ T.,
2925
+ Tail
2926
+ Asymptotics
2927
+ in
2928
+ any
2929
+ direction
2930
+ of
2931
+ the
2932
+ stationary
2933
+ distribution
2934
+ in
2935
+ a
2936
+ two-dimensional discrete-time QBD process,
2937
+ Queueing Systems
2938
+ 102 (2022),
2939
+ 227–267.
2940
+ (DOI:10.1007/s11134-022-09860-w)
2941
+ [15] E. Seneta: Non-negative Matrices and Markov Chains, revised printing. Springer-Verlag, New
2942
+ York (2006).
2943
+ A
2944
+ Proof of Theorem 3.1
2945
+ First, we give the generalized eigenvectors of G(z) for z ∈ ∆zmain
2946
+ 1
2947
+ ,zmax
2948
+ 1
2949
+ \E1, then analytically extend
2950
+ them to z ∈ C \ E1.
2951
+ For each k ∈ {1, 2, ..., m0} and for each z ∈ Ω \ �m0
2952
+ k=1 EG
2953
+ k , since the Jordan normal form of G(z)
2954
+ is given by (3.4), there exist linearly independent vectors called the generalized eigenvectors of G(z)
2955
+ with respect to the eigenvalue ˇαk(z), ˇvk,i,j(z), i = 1, 2, ..., mk,0, j = 1, 2, ..., mk,i, satisfying
2956
+ (ˇαk(z)I − G(z))ˇvk,i,j(z) = ˇvk,i,j+1(z),
2957
+ (A.1)
2958
+ where ˇvk,i,mk,i+1(z) = 0.
2959
+ For each i, ˇvk,i,j(z), j = 1, 2, ..., mk,i, are called a Jordan sequence
2960
+ of the generalized eigenvectors.
2961
+ Using the Jordan sequences, we define lˇq(k) × 1 block vectors,
2962
+ vk,i,j(z), i = 1, 2, ..., mk,0, j = 1, 2, ..., mk,i, as
2963
+ vk,i,j(z) = vec
2964
+ �ˇvk,i,j(z)
2965
+ ˇvk,i,j+1(z)
2966
+ · · ·
2967
+ ˇvk,i,mk,i(z)
2968
+ 0
2969
+ · · ·
2970
+ 0�
2971
+ ,
2972
+ where, for a matrix A =
2973
+
2974
+ a1
2975
+ a2
2976
+ · · ·
2977
+ an
2978
+
2979
+ , vec(A) is the column vector given by
2980
+ vec(A) =
2981
+
2982
+
2983
+
2984
+
2985
+
2986
+ a1
2987
+ a2
2988
+ ...
2989
+ an
2990
+
2991
+
2992
+
2993
+
2994
+ � .
2995
+ We also define a vector space VG
2996
+ k (z) as
2997
+ VG
2998
+ k (z) = span {vk,i,j(z) : i = 1, 2, ..., mk,0, j = 1, 2, ..., mk,i}.
2999
+ Note that the generalized eigenvectors ˇvk,i,j(z) are not unique but VG
3000
+ k (z) is. Since the generalized
3001
+ eigenvectors are linearly independent, vk,i,j(z) are also linearly independent and we have
3002
+ dim VG
3003
+ k (z) =
3004
+ mk,0
3005
+
3006
+ i=1
3007
+ mk,i = lˇq(k).
3008
+ For k ∈ {1, 2, ..., m0}, define an lˇq(k) × lˇq(k) block matrix function ΛG
3009
+ k (z) as
3010
+ ΛG
3011
+ k (z) =
3012
+
3013
+
3014
+
3015
+
3016
+
3017
+
3018
+
3019
+ ˇαk(z)I − G(z)
3020
+ −I
3021
+ ˇαk(z)I − G(z)
3022
+ −I
3023
+ ...
3024
+ ...
3025
+ ˇαk(z)I − G(z)
3026
+ −I
3027
+ ˇαk(z)I − G(z)
3028
+
3029
+
3030
+
3031
+
3032
+
3033
+
3034
+
3035
+ .
3036
+ We give the following proposition.
3037
+ Proposition A.1. For each k ∈ {1, 2, ..., m0} and for each z ∈ Ω \ �m0
3038
+ k=1 EG
3039
+ k ,
3040
+ Ker ΛG
3041
+ k (z) = VG
3042
+ k (z).
3043
+ (A.2)
3044
+ 25
3045
+
3046
+ Proof. Assume v ∈ VG
3047
+ k (z).
3048
+ Then, by the definition of VG
3049
+ k (z), we have ΛG
3050
+ k (z)v = 0 and v ∈
3051
+ Ker ΛG
3052
+ k (z). For v = vec
3053
+ �v1
3054
+ v2
3055
+ · · ·
3056
+ vlˇq(k)
3057
+
3058
+ , assume ΛG
3059
+ k (z)v = 0. If there exists an index i such
3060
+ that vi = 0, then by the assumption, for every j such that i ≤ j ≤ lˇq(k), we have vj = 0, and this
3061
+ implies v ∈ VG
3062
+ k (z).
3063
+ By Theorem S6.1 of [3], since the matrix function ΛG
3064
+ k (z) is entry-wise analytic in ∆zmin
3065
+ 1
3066
+ ,zmax
3067
+ 1
3068
+ \E1,
3069
+ there exist lˇq(k) vector functions vG
3070
+ k,i(z), i = 1, 2, ..., lˇq(k), that are elementwise analytic and linearly
3071
+ independent in ∆zmin
3072
+ 1
3073
+ ,zmax
3074
+ 1
3075
+ \ E1 and satisfy
3076
+ ΛG
3077
+ k (z)vG
3078
+ k,i(z) = 0, i = 1, 2, ..., lˇq(k).
3079
+ Hence, for each z ∈ Ω \ �m0
3080
+ k=1 EG
3081
+ k , vG
3082
+ k,i(z) ∈ VG
3083
+ k (z). We select the vectors composed of the Jordan
3084
+ sequences from {vG
3085
+ k,i(z), i = 1, 2, ..., lˇq(k)}. Represent each vG
3086
+ k,i(z) in block form as
3087
+ vG
3088
+ k,i(z) = vec
3089
+
3090
+ vG
3091
+ k,i,1(z)
3092
+ vG
3093
+ k,i,2(z)
3094
+ · · ·
3095
+ vG
3096
+ k,i,lˇq(k)(z)
3097
+
3098
+ .
3099
+ From the proof of Proposition A.1, we see that, for every i ∈ {1, 2, ..., lˇq(k)}, there exists a positive
3100
+ integer µk,i such that vG
3101
+ k,i,j(z) ̸= 0 for every j ∈ {1, 2, ..., µk,i} and vG
3102
+ k,i,j(z) = 0 for every j ∈
3103
+ {µk,i + 1, µk,i + 2, ..., lˇq(k)}. Renumber the elements of {vG
3104
+ k,i(z)} so that if i ≤ i′, then µk,i ≥ µk,i′.
3105
+ Define a set of vector functions, ˇVk, according to the following procedure.
3106
+ (S1) Set ˇVk = ∅ and i = 1.
3107
+ (S2) If vG
3108
+ k,i,µk,i(z) is linearly independent of {vG
3109
+ k,i′,µk,i′(z) : vG
3110
+ k,i′(z) ∈ ˇVk}, append vG
3111
+ k,i(z) to ˇVk.
3112
+ (S3) If i = lˇq(k), stop the procedure; otherwise add 1 to i and go to (S2).
3113
+ Proposition A.2. For k ∈ {1, 2, ..., m0}, the number of elements of ˇVk is mk,0.
3114
+ Proof. Since, for every i ∈ {1, 2, ..., lˇq(k)}, (ˇαk(z)I−G(z))vG
3115
+ k,i,µk,i = 0 and dim Ker (ˇαk(z)I−G(z)) =
3116
+ mk,0, the number of elements of ˇVk is less than or equal to mk,0. If it is strictly less than mk,0, we
3117
+ have
3118
+ dim Ker ΛG
3119
+ k (z) = dim span {vG
3120
+ k,i(z), i = 1, 2, ..., lˇq(k)} < dim VG
3121
+ k (z).
3122
+ This contradicts (A.2), and we see that the number of elements of ˇVk is just mk,0.
3123
+ Denote by ˇvG
3124
+ k,1(z), ˇvG
3125
+ k,2(z), ..., ˇvG
3126
+ k,mk,0(z) the elements of ˇVk. For i ∈ {1, 2, ...mk,0}, define ˇµk,i in
3127
+ a manner similar to that used for defining µk,i. We assume ˇvG
3128
+ k,i(z), i = 1, 2, ..., mk,0, are numbered
3129
+ so that if i ≤ i′, then ˇµk,i ≥ ˇµk,i′.
3130
+ Proposition A.3. For k ∈ {1, 2, ..., m0} and for i ∈ {1, 2, ..., mk,0}, ˇµk,i = mk,i
3131
+ Proof. For each i ∈ {1, 2, ..., mk,0}, {ˇvG
3132
+ k,i,1(z), ˇvG
3133
+ k,i,2(z), ..., ˇvG
3134
+ k,i,µk,i(z)} is a Jordan sequence of the
3135
+ generalized eigenvectors of G(z) with respect to the eigenvalue ˇαk(z).
3136
+ Hence, considering the
3137
+ procedure defining ˇvG
3138
+ k,i(z), we see that, for every i ∈ {1, 2, ..., mk,0}, ˇµk,i ≤ mk,i. Suppose there
3139
+ exists some i0 ∈ {1, 2, ..., mk,0} such that ˇµk,i = mk,i for every i ∈ {1, 2, ..., i0 −1} and ˇµk,i0 < mk,i0.
3140
+ Then, there exists a vector v = vec
3141
+ �v1
3142
+ v2
3143
+ · · ·
3144
+ vmk,i0
3145
+ 0
3146
+ · · ·
3147
+ 0�
3148
+ in VG
3149
+ k (z) such that vi ̸= 0
3150
+ for every i ∈ {1, 2, ..., mk,i0} and v is linearly independent of {vG
3151
+ k,i(z), i = 1, 2, ..., lˇq(k)}. By the
3152
+ same reason as that used in the proof of Proposition A.2, this contradicts (A.2) and, for every
3153
+ i ∈ {1, 2, ..., mk,0}, ˇµk,i must be mk,i.
3154
+ 26
3155
+
3156
+ From this proposition, we see that, for z ∈ Ω \ �m0
3157
+ k=1 EG
3158
+ k , {ˇvG
3159
+ k,i,j(z) : k = 1, 2, ..., m0, i =
3160
+ 1, 2, ..., mk,0, j = 1, 2, ..., mk,i} is the set of generalized eigenvectors corresponding to the Jordan
3161
+ normal form (3.4). Define a matrix function T G(z) as
3162
+ T G(z) =
3163
+ �ˇvG
3164
+ k,i,j(z), k = 1, 2, ..., m0, i = 1, 2, ..., mk,0, j = 1, 2, ..., mk,i
3165
+
3166
+ ,
3167
+ which is entry-wise analytic in ∆zmin
3168
+ 1
3169
+ ,zmax
3170
+ 2
3171
+ \ E1. Define a point set EG
3172
+ T as
3173
+ EG
3174
+ T = {z ∈ ∆zmin
3175
+ 1
3176
+ ,zmax
3177
+ 2
3178
+ \ E1 : det T G(z) = 0},
3179
+ which is an empty set or a set of discrete complex numbers. Then, for z ∈ Ω \ (�m0
3180
+ k=1 EG
3181
+ k ∪ EG
3182
+ T ), we
3183
+ obtain the Jordan decomposition of G(z) as
3184
+ G(z) = T G(z)JG(z)(T G(z))−1.
3185
+ (A.3)
3186
+ Since G(z) is entry-wise analytic in ∆zmin
3187
+ 1
3188
+ ,zmax
3189
+ 1
3190
+ , we see by the identity theorem for analytic functions
3191
+ that the right hand side of (A.3) is also entry-wise analytic in the same domain.
3192
+ Next, we analytically extend ˇvG
3193
+ k,i,j(z), k = 1, 2, ..., m0, i = 1, 2, ..., mk,0, j = 1, 2, ..., mk,i. Define
3194
+ matrix functions F1(z, w) and F2(z) as
3195
+ F1(z, w) = z(I − A∗,0(z) − 2wA∗,1(z)),
3196
+ F2(z) = zA∗,1(z),
3197
+ where F1(z, w) is entry-wise analytic on C2 and F2(z) on C. By (3.2), we have
3198
+ L(z, w) = F1(z, w)(wI − G(z)) + F2(z)(wI − G(z))2.
3199
+ (A.4)
3200
+ For k ∈ {1, 2, ..., m0}, define a lˇq(k) × lˇq(k) block matrix function ΛL
3201
+ k,n(z) as
3202
+ ΛL
3203
+ k (z) =
3204
+
3205
+
3206
+
3207
+
3208
+
3209
+
3210
+
3211
+
3212
+
3213
+ L(z, ˇαk(z))
3214
+ −F1(z, ˇαk(z))
3215
+ −F2(z)
3216
+ L(z, ˇαk(z))
3217
+ −F1(z, ˇαk(z))
3218
+ −F2(z)
3219
+ ...
3220
+ ...
3221
+ ...
3222
+ L(z, ˇαk(z))
3223
+ −F1(z, ˇαk(z))
3224
+ −F2(z)
3225
+ L(z, ˇαk(z))
3226
+ −F1(z, ˇαk(z))
3227
+ L(z, ˇαk(z))
3228
+
3229
+
3230
+
3231
+
3232
+
3233
+
3234
+
3235
+
3236
+
3237
+ ,
3238
+ which is entry-wise analytic in C \ E1.
3239
+ Proposition A.4. For every k ∈ {1, 2, ..., m0} and for every z ∈ ¯∆zmin
3240
+ 1
3241
+ ,zmax
3242
+ 1
3243
+ ,
3244
+ Ker ΛL
3245
+ k (z) = Ker ΛG
3246
+ k (z).
3247
+ (A.5)
3248
+ Before proving this proposition, we give another one.
3249
+ Proposition A.5. For every k ∈ {1, 2, ..., s0} and z ∈ ∆zmin
3250
+ 1
3251
+ ,zmax
3252
+ 1
3253
+ ,
3254
+ F1(z, αk(z)) + F2(z)(αk(z)I − G(z)) = z (I − A∗,0(z) − αk(z)A∗,1(z) + A∗,1(z)G(z))
3255
+ is regular (invertible).
3256
+ Proof. Let R(z) be the rate matrix function generated from {Ai,j; i, j = −1, 0, 1}; for the definition
3257
+ of R(z), see Subsection 4.1 of [11]. By Lemma 4.3 of [11], nonzero eigenvalues of R(z) are given by
3258
+ αk(z)−1, k = s0 + 1, s0 + 2, ..., mφ. Since, for every k ∈ {1, 2, ..., s0}, k′ ∈ {s0 + 1, s0 + 2, ..., mφ}
3259
+ and z ∈ ∆zmin
3260
+ 1
3261
+ ,zmax
3262
+ 1
3263
+ , |αk(z)| ≤ αs0(|z|) < |αk′(z)|, I − αk(z)R(z) is regular.
3264
+ Define a matrix
3265
+ function H(z) as H(z) = A∗,0(z) + A∗,1(z)G(z), then by Corollary 4.1 of [11], I − H(z) is regular
3266
+ in ∆zmin
3267
+ 1
3268
+ ,zmax
3269
+ 1
3270
+ . By Lemma 4.1 of [11], we have
3271
+ I − A∗,0(z) − αk(z)A∗,1(z) − A∗,1(z)G(z) = (I − αk(z)R(z))(I − H(z)),
3272
+ (A.6)
3273
+ and this implies the assertion of the proposition.
3274
+ 27
3275
+
3276
+ Proof of Proposition A.4. Assume a vector v = vec
3277
+ �v1
3278
+ v2
3279
+ · · ·
3280
+ vlˇq(k)
3281
+
3282
+ satisfies ΛL
3283
+ k (z)v = 0.
3284
+ Then, we have for i ∈ {1, 2, ..., lˇq(k)} that
3285
+ L(z, ˇαk(z))vi = F1(z, ˇαk(z))vi+1 + F2(z)vi+2,
3286
+ (A.7)
3287
+ where vlˇq(k)+1 = vlˇq(k)+2 = 0. We prove by induction that this v satisfies, for every i ∈ {1, 2, ..., lˇq(k)},
3288
+ (ˇαk(z)I − G(z))vi = vi+1. Let i0 be the maximum integer less than or equal to lˇq(k) that satisfies,
3289
+ for every i ∈ {i0 + 1, i0 + 2, ..., lˇq(k)}, vi = 0. Then, we have L(z, ˇαk(z))vi0 = 0. By (A.4), we have
3290
+ L(z, ˇαk(z)) = (F1(z, ˇαk(z)) + F2(z)(ˇαk(z)I − G(z)))(ˇαk(z)I − G(z)).
3291
+ (A.8)
3292
+ Hence, by Proposition A.5, we obtain (ˇαk(z)I − G(z))vi0 = 0 = vi0+1. Assume the assumption of
3293
+ induction holds for a positive integer i less than or equal to i0. Then,
3294
+ L(z, ˇαk(z))vi−1 = F1(z, ˇαk(z))vi + F2(z)vi+1
3295
+ = (F1(z, ˇαk(z)) + F2(z)(ˇαk(z)I − G(z)))vi,
3296
+ (A.9)
3297
+ and by (A.8), (A.9) and Proposition A.5, we obtain (ˇαk(z)I − G(z))vi−1 = vi. Hence, v satisfies,
3298
+ for every i ∈ {1, 2, ..., lˇq(k)}, (ˇαk(z)I − G(z))vi = vi+1, and this leads us to ΛG
3299
+ k (z)v = 0.
3300
+ Next, assume a vector v = vec
3301
+ �v1
3302
+ v2
3303
+ · · ·
3304
+ vlˇq(k)
3305
+
3306
+ satisfies ΛG
3307
+ k (z)v = 0. Then, we have for
3308
+ i ∈ {1, 2, ..., lˇq(k)} that (ˇαk(z)I − G(z))vi = vi+1, where vlˇq(k)+1 = 0. By (A.8), this v satisfies, for
3309
+ every i ∈ {1, 2, ..., lˇq(k)},
3310
+ L(z, ˇαk(z))vi = F1(z, ˇαk(z))vi+1 + F2(z)(ˇαk(z)I − G(z))vi+1
3311
+ = F1(z, ˇαk(z))vi+1 + F2(z)vi+2,
3312
+ (A.10)
3313
+ and this implies ΛL
3314
+ k (z)v = 0.
3315
+ Let k be an arbitrary integer in {1, 2, ..., m0}. By Propositions A.1 and A.4, we have
3316
+ dim Ker ΛL
3317
+ k (z) = lˇq(k),
3318
+ except for some discrete points in C. Hence, by Theorem S6.1 of [3], since the matrix function
3319
+ ΛL
3320
+ k (z) is entry-wise analytic in C\E1, there exist lˇq(k) vector functions vL
3321
+ k,i(z), i = 1, 2, ..., lˇq(k), that
3322
+ are elementwise analytic and linearly independent in C \ E1 and satisfy
3323
+ ΛL
3324
+ k (z)vL
3325
+ k,i(z) = 0, i = 1, 2, ..., lˇq(k).
3326
+ By Proposition A.4, for each i, vL
3327
+ k,i(z) also satisfies ΛG
3328
+ k (z)vL
3329
+ k,i(z) = 0 for every z ∈ ∆zmin
3330
+ 1
3331
+ ,zmax
3332
+ 1
3333
+ \ E1.
3334
+ Hence, by the identity theorem, we see that vL
3335
+ k,i(z) is an analytic extension of vG
3336
+ k,i(z). By the same
3337
+ procedure as that used for selecting {ˇvG
3338
+ k,i(z), i = 1, 2, ..., mk,0} from {vG
3339
+ k,i(z), i = 1, 2, ..., lˇq(k)}, we
3340
+ select mk,0 vectors from {vL
3341
+ k,i(z), i = 1, 2, ..., lˇq(k)} and denote them by {ˇvL
3342
+ k,i(z), i = 1, 2, ..., mk,0}.
3343
+ For each i, ˇvL
3344
+ k,i(z) is represented in block form as
3345
+ ˇvL
3346
+ k,i(z) = vec
3347
+
3348
+ ˇvL
3349
+ k,i,1(z)
3350
+ ˇvL
3351
+ k,i,2(z)
3352
+ · · ·
3353
+ ˇvL
3354
+ k,i,mk,i(z)
3355
+ 0
3356
+ · · ·
3357
+ 0
3358
+
3359
+ .
3360
+ Define a matrix function T L(z) as
3361
+ T L(z) =
3362
+ �ˇvL
3363
+ k,i,j(z), k = 1, 2, ..., m0, i = 1, 2, ..., mk,0, j = 1, 2, ..., mk,i
3364
+
3365
+ ,
3366
+ which is entry-wise analytic in C \ E1. Since each ˇvL
3367
+ k,i,j(z) is an analytic extension of ˇvG
3368
+ k,i,j(z), we
3369
+ have for z ∈ Ω \ (�m0
3370
+ k=1 EG
3371
+ k ∪ EG
3372
+ T ) that
3373
+ G(z) = T L(z)JG(z)(T L(z))−1,
3374
+ which is (3.5). Set E0 as E0 = E2 ∪ (�m0
3375
+ k=1 EG
3376
+ k ) ∪ EG
3377
+ T , then E0 is a set of discrete complex numbers
3378
+ and we have Ω\(�m0
3379
+ k=1 EG
3380
+ k ∪EG
3381
+ T ) = ∆zmin
3382
+ 1
3383
+ ,zmax
3384
+ 1
3385
+ \(E1 ∪E0). This completes the proof of Theorem 3.1.
3386
+ 28
3387
+
HdE0T4oBgHgl3EQfhgHx/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
INE1T4oBgHgl3EQf_wYq/content/tmp_files/2301.03583v1.pdf.txt ADDED
@@ -0,0 +1,1020 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Reversal of quantised Hall drifts at non-interacting and interacting topological
2
+ boundaries
3
+ Zijie Zhu,∗ Marius G¨achter,∗ Anne-Sophie Walter, Konrad Viebahn,† and Tilman Esslinger
4
+ Institute for Quantum Electronics & Quantum Center, ETH Zurich, 8093 Zurich, Switzerland
5
+ The transport properties of gapless edge modes at boundaries between topologically distinct
6
+ domains are of fundamental and technological importance. Therefore, it is crucial to gain a better
7
+ understanding of topological edge states and their response to interparticle interactions.
8
+ Here,
9
+ we experimentally study long-distance quantised Hall drifts in a harmonically confined topological
10
+ pump of non-interacting and interacting ultracold fermionic atoms. We find that quantised drifts
11
+ halt and reverse their direction when the atoms reach a critical slope of the confining potential,
12
+ revealing the presence of a topological boundary. The drift reversal corresponds to a band transfer
13
+ between a band with Chern number C = +1 and a band with C = −1 via a gapless edge mode,
14
+ in agreement with the bulk-edge correspondence for non-interacting particles. We establish that a
15
+ non-zero repulsive Hubbard interaction leads to the emergence of an additional edge in the system,
16
+ relying on a purely interaction-induced mechanism, in which pairs of fermions are split.
17
+ The existence of individual edge modes at topo-
18
+ logical boundaries plays a crucial role in quantum Hall
19
+ physics. More specifically, a non-trivial topology in the
20
+ bulk of a material ensures that its edge modes are gapless
21
+ and chiral. Gaplessness is related to the bulk-edge corre-
22
+ spondence, stating that the number of topological edge
23
+ modes is equal to the difference in Chern number across
24
+ an interface [1].
25
+ Consequently, a gapless mode should
26
+ allow an adiabatic transfer from one band to another,
27
+ resulting in a reflection of transverse bulk currents in
28
+ the opposite direction if the two bands feature opposite
29
+ Chern numbers. However, the coherence time in most
30
+ electronic materials is not sufficient to observe this effect,
31
+ and edges are generally probed spectroscopically [1–4].
32
+ Moreover, studies of edge physics in engineered quantum
33
+ systems, such as ultracold atoms and photonics, have so
34
+ far been focussed on chirality [5–9] and localisation [10–
35
+ 13]. A boundary reflection has not been detected [14, 15],
36
+ or it was disregarded [16, 17], and to our knowledge it
37
+ has never been studied for variable interaction strength.
38
+ Here, we observe the reversal of quantised bulk drifts due
39
+ to harmonic trapping in a topological Thouless pump,
40
+ the temporal analogue of the quantum Hall effect [18–
41
+ 20].
42
+ The reflection is a fundamental manifestation of
43
+ confined topological matter and directly shows the gap-
44
+ less nature of topological edge modes. Going beyond the
45
+ non-interacting regime, we discover the emergence of a
46
+ second edge for repulsive Hubbard U.
47
+ The experiments are performed
48
+ with
49
+ ultracold
50
+ fermionic potassium-40 atoms, which are loaded into the
51
+ potential of a generalised optical lattice formed by a com-
52
+ bination of standing and running waves of wavelength
53
+ λ = 1064 nm [22]. This creates an array of decoupled,
54
+ one-dimensional tubes.
55
+ Along the tube direction, the
56
+ periodically modulated Rice-Mele-Hubbard Hamiltonian
57
+ with harmonic confinement is realised,
58
+ ˆH(τ) = −
59
+
60
+ j,σ
61
+
62
+ t + (−1)jδ(τ)
63
+ � �
64
+ ˆc†
65
+ jσˆcj+1σ + h.c.
66
+
67
+ (1)
68
+ + ∆(τ)
69
+
70
+ j,σ
71
+ (−1)jˆc†
72
+ jσˆcjσ + U
73
+
74
+ j
75
+ ˆc†
76
+ j↑ˆcj↑ˆc†
77
+ j↓ˆcj↓
78
+ +
79
+
80
+ j,σ
81
+ Vjˆc†
82
+ jσˆcjσ ,
83
+ where ˆcjσ is the fermionic annihilation operator for spin
84
+ σ ∈ {↑, ↓} on site j, and t denotes the average tun-
85
+ nelling.
86
+ An adiabatic modulation of bond dimerisa-
87
+ tion δ(τ) = δ0 cos(2πτ/T) and sublattice offset ∆(τ) =
88
+ ∆0 sin(2πτ/T) traces a closed trajectory in the δ–∆ plane
89
+ around the origin, referred to as critical point. There-
90
+ fore, an insulator or homogeneously filled band at U = 0
91
+ describes a topological pump [18, 20] with T being the
92
+ pump period.
93
+ Experimentally, the topological pump
94
+ manifests itself as a quantised drift of the atom position
95
+ by one unit cell per pump cycle [23–27].
96
+ The harmonic confinement is characterised by the
97
+ trap frequency ν, entering Eq. 1 as Vj = 1
98
+ 2m(2πνaj)2 ≡
99
+ V0j2 (a = λ/2, lattice spacing; m, atomic mass). Due to
100
+ the confinement, the atoms are initially localised at the
101
+ centre of the trap. Topological pumping then leads to a
102
+ quantised drift of atoms against the confining potential
103
+ (Fig. 1A). Our measurements show that the quantised
104
+ drift changes its direction at a certain distance from the
105
+ trap centre. We will demonstrate that this happens when
106
+ the gradient of the confinement overcomes the band gap
107
+ and a boundary between topological and trivial regions
108
+ emerges. For repulsive interactions, we observe another
109
+ reflection, closer to the trap centre, while a part of the
110
+ atoms keeps drifting in the original direction (Fig. 1A).
111
+ In the following, we develop a description of the re-
112
+ flection in terms of gapless edge modes and the bulk-
113
+ edge correspondence within the framework of the Harper-
114
+ Hofstadter-Hatsugai (HHH) model with one real (x) and
115
+ one synthetic (n) dimension. The model features bulk
116
+ arXiv:2301.03583v1 [cond-mat.quant-gas] 9 Jan 2023
117
+
118
+ 2
119
+ Floquet
120
+ Energy
121
+ 0
122
+
123
+ π
124
+ Quasimomentum
125
+ Gradient
126
+ Interactions
127
+ A
128
+ B
129
+ C
130
+ FIG. 1. Reflection of quantised Hall drifts off a topo-
131
+ logical interface. (A) Topological Thouless pumping in the
132
+ presence of confining potentials. In the non-interacting case
133
+ (top), a harmonic trap gives rise to topological trivial (C = 0)
134
+ and non-trivial (C ̸= 0) regions, separated by a topological
135
+ interface. The atoms exhibit a quantised drift until they are
136
+ reflected at the interface. With repulsive on-site interactions
137
+ (bottom), the reflection happens closer to the centre, accom-
138
+ panied by atoms still drifting in the original direction. (B)
139
+ Using Floquet theory, the 1D Rice-Mele pump can be mapped
140
+ to a 2D Harper-Hofstadter-Hatsugai model with a linear gra-
141
+ dient along the synthetic dimension n which represents the
142
+ photon number. The magnetic flux per plaquette is Φ = 1/2
143
+ in units of the magnetic flux quantum [21]. The gradient along
144
+ n leads to a transverse Hall drift along x (red arrows) due to
145
+ the nontrivial topology of the bands.
146
+ (C) Schematic spec-
147
+ trum of the mapped 2D Hofstadter model in a semi-infinite
148
+ geometry. The lowest two bands have C = ±1, respectively.
149
+ The linear gradient induces Bloch oscillations in the synthetic
150
+ reciprocal space (dashed arrows). A gapless edge mode (solid
151
+ arrow) appears at the topological interface. The reflection of
152
+ the Hall drift can be understood as atoms being transported
153
+ from the lower band (C = 1) to the higher band (C = −1)
154
+ via the topological edge mode.
155
+ Chern bands with C = +1 and C = −1.
156
+ An ex-
157
+ act mapping between the non-interacting 1D Rice-Mele
158
+ Hamiltonian (Eq. 1) and the two-dimensional (2D) HHH
159
+ model can be obtained using Floquet theory, illustrated
160
+ in Fig. 1B (for derivation see, e.g., refs. [19] and [21]). A
161
+ linear gradient along the synthetic dimension n appears
162
+ in the mapping since the state with n photons acquires
163
+ an energy of −nℏω, where ω = 2π/T is the pump fre-
164
+ quency. The gradient along n or, equivalently, an exter-
165
+ nal force causes Bloch oscillations along the synthetic re-
166
+ ciprocal dimension kn which, in turn, lead to a Hall drift
167
+ or ‘anomalous velocity’ along the transverse real direc-
168
+ tion x [14, 15]. The bulk Hall drift along x corresponds
169
+ exactly to the quantised displacement measured in the
170
+ topological pump. The trap induces a boundary between
171
+ topological (Ccentre = 1) and trivial (Cright = 0) regions
172
+ and a single gapless edge mode emerges, according to the
173
+ bulk-edge correspondence: Ccentre −Cright = 1. The edge
174
+ modes connects two bands of opposite Chern invariant,
175
+ as shown in Fig. 1C. Thus, a Bloch oscillation transfers
176
+ the atoms from the ground to the first excited band via
177
+ that edge mode. Since the first excited band has Chern
178
+ number −1 the atoms are now moving ‘backwards’, re-
179
+ sulting in a reversal of the quantised Hall drift.
180
+ Fig. 2 shows experimental in-situ images of the
181
+ atomic cloud as a function of time τ at U = 0.
182
+ The
183
+ data shows a quantised drift of 1.00(1) × 2a/T up to
184
+ about 60 T, which confirms the long coherence time of
185
+ Bloch oscillations which induce the transverse drift. At
186
+ τ ≃ 75 T the atoms change their drift direction, which
187
+ is a key observation of this work. The expected topo-
188
+ logical boundary (red dashed line) represents the posi-
189
+ tion at which the local tilt from the external harmonic
190
+ potential ∆ext (j) ≡
191
+ 1
192
+ 2 |Vj − Vj−1| = V0
193
+ ��j − 1
194
+ 2
195
+ �� equals
196
+ the maximum sublattice offset ∆0, thus, xedge/ (2a) ≃
197
+ 1
198
+ 2∆0/V0 = 92(7).
199
+ Beyond this position the total sub-
200
+ lattice offset ceases to change sign, rendering the region
201
+ outside xedge topologically trivial. The boundary caused
202
+ by the harmonic confinement is not infinitely sharp, but
203
+ smoothened over several lattice sites.
204
+ This leads to a
205
+ small T–dependence of the reflection position (Fig. S1),
206
+ compared to its absolute value, and the calculation above
207
+ should be understood as the outermost point of the re-
208
+ flective region. The reflected atoms exhibit a quantised
209
+ drift of −0.99(3) × 2a/T in the opposite direction, in
210
+ agreement with a transfer to the first excited band with
211
+ C = −1.
212
+ The linear relation between the position of
213
+ topological boundary xedge and the maximum sublattice
214
+ offset ∆0 is further confirmed by measuring the reflection
215
+ in different lattices (Fig. S1). The reflection is observed
216
+ under all parameter settings tested in this work, high-
217
+ lighting that the existence of the topological boundary is
218
+ robust.
219
+ In addition to the reflection, we also observe a cloud
220
+ of atoms temporarily remaining at the boundary before
221
+ gradually dissolving. This process can be understood via
222
+ the presence of topologically trivial edge states, which
223
+ hybridise with the gapless edge modes. To simplify the
224
+ picture, let us consider a sharp domain wall between
225
+ C = 1 and C = 0 (Fig. 2C). According to the bulk-
226
+ edge correspondence, the topologically nontrivial region
227
+ contributes exactly one gapless mode whereas the trivial
228
+ region can contribute gapped edge modes. Due to tunnel
229
+ coupling at the interface, hybridisation takes place [34]
230
+ and gaps on the order of the pump frequency 2π/T
231
+ emerge. Bloch oscillations along kn can now lead to non-
232
+ adiabatic ‘Landau-Zener’ transfers between topological
233
+ and trivial edge modes, causing an incomplete transfer
234
+ to the higher band, and atoms remaining at the bound-
235
+ ary.
236
+ Subsequent Bloch oscillations will transfer atoms
237
+ back into the topological domain, leading to the dissolu-
238
+
239
+ 3
240
+ quasimomentum
241
+ energy
242
+ trivial
243
+ nontrivial
244
+ 0
245
+ 36
246
+ 108
247
+ 72
248
+ 144
249
+ time τ (T)
250
+ 1st
251
+ 2nd
252
+ 2nd
253
+ 2nd
254
+ 2nd
255
+ Brillouin zone
256
+ Dimerisation
257
+ Site ofset
258
+ A
259
+ C
260
+ B
261
+ FIG. 2. Measuring the reversal of a quantised Hall drift. (A) The time-trace of atomic in-situ images shows a quantised
262
+ drift along x before the atoms are reflected at the topological boundary. Each density image is averaged over three individual
263
+ measurements with the parameters V0 = 0.0148(9)t, ∆0 = 2.7(1)t, and T = 3 ms = 12.8(2)ℏ/t. The red dashed line indicates
264
+ the topological boundary xedge/ (2a) ≈
265
+ 1
266
+ 2∆0/V0. The white dashed lines are linear fits to the atom drift, yielding slopes of
267
+ 1.00(1) × 2a/T before, and −0.99(3) × 2a/T after the reflection. Cloud positions, averaged over the transverse direction, are
268
+ fitted using Gaussians. The experimental Chern marker (lower panel, points) is determined by the velocity of the right-moving
269
+ cloud at different positions. The theoretical Chern marker (line) is calculated in a staggered potential Vj = V0 (−1)j j which
270
+ has the same local tilt ∆ext(j) = V0
271
+ ��j − 1
272
+ 2
273
+ �� as the harmonic trap [21]. In a local density approximation picture, the local tilt
274
+ ∆ext shifts the δ–∆ pump trajectory upwards. Depending on whether or not the trajectory encloses the critical point, the pump
275
+ is rendered topological or trivial. (B) Measured band populations as a function of time τ. Each density image is averaged over
276
+ six individual measurements with the parameters V0 = 0.0191(6)t, ∆0 = 3.2(2)t and T = 3 ms = 10.7(2)ℏ/t. The total atom
277
+ number remains constant, within error bars, throughout the experiment. Due to the underlying honeycomb lattice geometry
278
+ in the x–z plane, the first Brillouin zone has a diamond shape [21]. The band population is inverted when the bulk current
279
+ is reflected off the topological interface, manifesting the gapless nature of the topological edge mode. (C) Hybridisation of
280
+ the edge modes at the topological interface due to tunnelling. Bloch oscillations along kn can lead to Landau-Zener transfers
281
+ between topologically trivial and nontrivial edge modes. The population of trivial edge modes explains the atoms being left at
282
+ the boundary. Hybridisation never changes the total number of gapless edge modes at the boundary.
283
+ tion of the cloud at the boundary. While the harmonic
284
+ confinement leads to a more complex level structure [21],
285
+ the underlying process remains qualitatively the same.
286
+ We support the in-situ images with measurements
287
+ of band population before, during, and after the reflec-
288
+ tion, as shown in Fig. 2B [21]. Before the reflection, we
289
+ find a filled ground band, which is consistent with the
290
+ observation of a quantised Hall drift. At the reflection
291
+ (τ ≃ 72 T), we observe an inversion of the population to
292
+ the first excited band. After the reflection, the inverted
293
+ population remains almost unchanged while the atoms
294
+ are travelling back, highlighting the absence of incoher-
295
+ ent relaxation to the ground band, even after more than
296
+ a hundred Bloch oscillations.
297
+ We further explore the effect of attractive and repul-
298
+ sive interactions on the topological boundary. For attrac-
299
+ tive Hubbard U = −3.48(7)t = 1.27(7)∆0 (Fig. 3A), the
300
+ quantised Hall drift is reversed at the same position as
301
+ in the non-interacting situation. This can be explained
302
+ in terms of the Rice-Mele model in which fermions in the
303
+ strongly attractive regime approach the limit of hard-core
304
+ bosons
305
+ [22], and the condition for the emergence of a
306
+ topological boundary ∆ext (j) = ∆0 remains unchanged.
307
+ For repulsive Hubbard U = 3.48(7)t (Fig. 3B), we
308
+ observe a second reflection in addition to the original one.
309
+ Compared to the non-interacting case, this reflection ap-
310
+ pears much closer to the trap centre.
311
+ The zoomed-in
312
+ image (Fig. 3C) shows that a proportion of the atoms
313
+ start to move backwards after about 12 cycles. In con-
314
+
315
+ 4
316
+ Dimerisation
317
+ Site ofset
318
+ OD
319
+ time т (T)
320
+ B
321
+ D
322
+ E
323
+ C
324
+ A
325
+ Time τ ( )
326
+ T
327
+ τ0
328
+ τ0 + 0.5
329
+ τ0 + 1
330
+ FIG. 3.
331
+ Reflection of quantised Hall drifts from an interacting topological edge.
332
+ (A) An attractive Hubbard
333
+ interaction of U = −3.48(7)t leads to the same reflection behaviour as observed for U = 0 (measurement parameters otherwise
334
+ identical to Fig. 2A). (B) Repulsive Hubbard interactions of U = 3.48(7)t lead to the emergence of a second reflection, closer
335
+ to the trap centre, which we attribute to an interacting topological boundary. A zoom-in (C) shows that the early reflection
336
+ happens after about twelve cycles. The white dashed lines are guides to the eye, calculated as linear fits to the cloud position,
337
+ extracted as the sum of a skewed and a regular Gaussian. (D) Microscopic description of the interaction-induced reflection for
338
+ repulsive Hubbard U. When the maximum energy offset between two neighbouring sites 2 (∆0 − ∆ext) becomes smaller than
339
+ the Hubbard interaction, formation of double occupancies is prohibited and one atom is left in the higher-energy site of a unit
340
+ cell, which then drifts in the opposite direction. (E) The critical point in the δ–∆ plane is split into two in the presence of
341
+ repulsive Hubbard U [35]. When the pump trajectory encloses both critical points, a quantised drift is expected, as in the
342
+ non-interacting system. The local tilt given by the external potential ∆ext shifts the trajectory along the ∆–axis, eventually
343
+ enclosing just one critical point. Since a single split critical point features half the topological charge of the orignal one, the
344
+ material’s topology changes and a boundary emerges.
345
+ trast to the drift reversal in the non-interacting system, a
346
+ large fraction of the atom cloud still undergoes quantised
347
+ drifting in the original direction.
348
+ In the following, we
349
+ develop a microscopic picture of the interaction-induced
350
+ partial reflection in the limiting case of two isolated spins
351
+ (↑, ↓), which approximates our initial state in a unit cell
352
+ (Fig. 3D). As long as the maximum energy offset between
353
+ two neighbouring sites 2 (∆0 − ∆ext) is larger than the
354
+ Hubbard U, the formation of a double occupancy is en-
355
+ ergetically allowed and the quantised drift persists [22],
356
+ even in the presence of an external potential. However,
357
+ when ∆ext becomes larger, the energy offset between two
358
+ neighbouring sites remains always smaller than U, dou-
359
+ ble occupancy formation becomes prohibited. In the lat-
360
+ ter case, one atom of a singlet pair is transferred to the
361
+ energetically excited site of a unit cell, which will subse-
362
+ quently drift in the opposite direction. The other atom,
363
+ in the lower-energy site, will move onwards because on-
364
+ site interactions become irrelevant if there is only one
365
+ atom per unit cell.
366
+ Since the underlying Hamiltonian
367
+ (Eq. 1) is SU(2)–symmetric, spin–↑ and spin–↓ have equal
368
+ probability of being reflected and they should remain cor-
369
+ related after the splitting process.
370
+ The full many-body description of the interaction-
371
+ induced reversal requires the development of suitable
372
+ topological invariants for smooth confinements and
373
+ strong interactions, which goes beyond the scope of this
374
+ work. Nevertheless, we obtain an intuition of the bound-
375
+ ary’s topological origins using again the idea of shifted
376
+ pump trajectories in the δ–∆ plane with a staggered po-
377
+ tential (c.f. Fig. 2A). Numerical simulations have shown
378
+ that a repulsive Hubbard U can split the critical point at
379
+ the origin into two separate ones [35], each retaining half
380
+ the original topological charge.
381
+ The distance between
382
+ the new critical points is approximately U up to a cor-
383
+ rection on the order of the tunnelling t [36]. When the
384
+ trajectory encloses both critical points, quantised drift of
385
+ two spins (↑, ↓) is expected, as in the non-interacting sys-
386
+ tem. As the position-dependent local tilt ∆ext(j) shifts
387
+ the trajectory upwards, it will enclose only one of the
388
+ critical points beyond certain position along x (Fig. 3E).
389
+ This indicates a transition of topological properties and
390
+ the emergence of an interacting topological edge in real
391
+ space.
392
+ The estimation of the interacting boundary at
393
+ ∆ext(j) ≃ ∆0 − U/2 lies close to the centre and agrees
394
+ with the microscopic picture discussed above. Similar to
395
+ the non-interacting case, this boundary should be con-
396
+ sidered as the outermost position of the reflective region.
397
+ In conclusion, we have experimentally observed a re-
398
+ versal of quantised Hall drifts at a topological boundary
399
+ in a harmonic potential. The reflection is a direct mani-
400
+ festation of the gapless nature of topological edge modes
401
+ between Chern bands of opposite sign. We explore the
402
+ effect of Hubbard interactions, both attractive and re-
403
+
404
+ 5
405
+ pulsive, and find an asymmetric behavior with respect
406
+ to U = 0. While on the attractive side the topological
407
+ boundary is unaffected, repulsive interactions lead to the
408
+ emergence of a second interface, featuring a splitting of
409
+ quantised drifts. As a result, our experiments could en-
410
+ able the realisation of circular current patterns for con-
411
+ structing novel many-body phases [37].
412
+ More broadly,
413
+ our work allows the exploration of the bulk-edge corre-
414
+ spondence in the presence of interactions [38], as well as
415
+ the investigation of edge reconstruction [39] in the quan-
416
+ tum Hall effect and in interacting topological insulators.
417
+ ACKNOWLEDGMENTS
418
+ We would like to thank Jason Ho, Gian-Michele Graf,
419
+ Thomas Ihn, Fabian Grusdt, Fabian Heidrich-Meisner,
420
+ Armando Aligia, and Eric Bertok for valuable discus-
421
+ sions. We also thank Julian L´eonard and Nur ¨Unal for
422
+ comments on an earlier version of the manuscript. We
423
+ would like to thank Alexander Frank for his contribu-
424
+ tions to the electronic part of the experimental setup.
425
+ We acknowledge funding by the Swiss National Science
426
+ Foundation (Grant Nos. 182650, 212168, NCCR-QSIT,
427
+ and TMAG-2 209376) and European Research Council
428
+ advanced grant TransQ (Grant No. 742579).
429
+ ∗ These authors contributed equally.
430
431
+ [1] M. Z. Hasan and C. L. Kane, Colloquium: Topological
432
+ insulators, Rev. Mod. Phys. 82, 3045 (2010).
433
+ [2] M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. M. Tay-
434
+ lor, Imaging topological edge states in silicon photonics,
435
+ Nature Photon 7, 1001 (2013).
436
+ [3] K.
437
+ Yatsugi,
438
+ T.
439
+ Yoshida,
440
+ T.
441
+ Mizoguchi,
442
+ Y.
443
+ Kuno,
444
+ H. Iizuka, Y. Tadokoro, and Y. Hatsugai, Observation of
445
+ bulk-edge correspondence in topological pumping based
446
+ on a tunable electric circuit, Commun Phys 5, 180 (2022).
447
+ [4] Z.-C. Xiang, K. Huang, Y.-R. Zhang, T. Liu, Y.-H.
448
+ Shi, C.-L. Deng, T. Liu, H. Li, G.-H. Liang, Z.-Y. Mei,
449
+ H. Yu, G. Xue, Y. Tian, X. Song, Z.-B. Liu, K. Xu,
450
+ D. Zheng, F. Nori, and H. Fan, Simulating quantum Hall
451
+ effects on a superconducting quantum processor (2022),
452
+ arXiv:2207.11797.
453
+ [5] M. Atala, M. Aidelsburger, M. Lohse, J. T. Barreiro,
454
+ B. Paredes, and I. Bloch, Observation of chiral cur-
455
+ rents with ultracold atoms in bosonic ladders, Nat Phys
456
+ (2014).
457
+ [6] B. K. Stuhl, H.-I. Lu, L. M. Aycock, D. Genkina, and
458
+ I. B. Spielman, Visualizing edge states with an atomic
459
+ Bose gas in the quantum Hall regime, Science 349, 1514
460
+ (2015).
461
+ [7] M. Mancini, G. Pagano, G. Cappellini, L. Livi, M. Rider,
462
+ J. Catani, C. Sias, P. Zoller, M. Inguscio, M. Dalmonte,
463
+ and L. Fallani, Observation of chiral edge states with
464
+ neutral fermions in synthetic Hall ribbons, Science 349,
465
+ 1510 (2015).
466
+ [8] T. Chalopin, T. Satoor, A. Evrard, V. Makhalov, J. Dal-
467
+ ibard, R. Lopes, and S. Nascimbene, Probing chiral edge
468
+ dynamics and bulk topology of a synthetic Hall system,
469
+ Nat. Phys. 16, 1017 (2020).
470
+ [9] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi,
471
+ L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zil-
472
+ berberg, and I. Carusotto, Topological photonics, Re-
473
+ views of Modern Physics 91, 015006 (2019).
474
+ [10] Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and O. Zil-
475
+ berberg, Topological States and Adiabatic Pumping in
476
+ Quasicrystals, Phys. Rev. Lett. 109, 106402 (2012).
477
+ [11] M. Leder, C. Grossert, L. Sitta, M. Genske, A. Rosch,
478
+ and M. Weitz, Real-space imaging of a topologically pro-
479
+ tected edge state with ultracold atoms in an amplitude-
480
+ chirped optical lattice, Nat Commun 7, 13112 (2016).
481
+ [12] E. J. Meier, F. A. An, and B. Gadway, Observation of
482
+ the topological soliton state in the Su–Schrieffer–Heeger
483
+ model, Nat Commun 7, 13986 (2016).
484
+ [13] F. A. An, E. J. Meier, and B. Gadway, Direct observation
485
+ of chiral currents and magnetic reflection in atomic flux
486
+ lattices, Sci. Adv. 3, e1602685 (2017).
487
+ [14] G. Jotzu,
488
+ M. Messer,
489
+ R. Desbuquois,
490
+ M. Lebrat,
491
+ T. Uehlinger, D. Greif, and T. Esslinger, Experimental
492
+ realization of the topological Haldane model with ultra-
493
+ cold fermions, Nature 515, 237 (2014).
494
+ [15] M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J. T.
495
+ Barreiro, S. Nascimb`ene, N. R. Cooper, I. Bloch, and
496
+ N. Goldman, Measuring the Chern number of Hofstadter
497
+ bands with ultracold bosonic atoms, Nature Physics 11,
498
+ 162 (2015).
499
+ [16] Y. Qian, M. Gong, and C. Zhang, Quantum transport of
500
+ bosonic cold atoms in double-well optical lattices, Phys.
501
+ Rev. A 84, 013608 (2011).
502
+ [17] M. Bellec, C. Michel, H. Zhang, S. Tzortzakis, and
503
+ P. Delplace, Non-diffracting states in one-dimensional
504
+ Floquet photonic topological insulators, EPL 119, 14003
505
+ (2017).
506
+ [18] N. R. Cooper, J. Dalibard, and I. B. Spielman, Topologi-
507
+ cal bands for ultracold atoms, Reviews of Modern Physics
508
+ 91, 015005 (2019).
509
+ [19] T. Oka and S. Kitamura, Floquet Engineering of Quan-
510
+ tum Materials, Annu. Rev. Condens. Matter Phys. 10,
511
+ 387 (2019).
512
+ [20] R. Citro and M. Aidelsburger, Thouless pumping and
513
+ topology (2022), arXiv:2210.02050.
514
+ [21] See supplemental materials, which include refs. [28–33].
515
+ [22] A.-S.
516
+ Walter,
517
+ Z.
518
+ Zhu,
519
+ M.
520
+ G¨achter,
521
+ J.
522
+ Minguzzi,
523
+ S.
524
+ Roschinski,
525
+ K.
526
+ Sandholzer,
527
+ K.
528
+ Viebahn,
529
+ and
530
+ T.
531
+ Esslinger,
532
+ Quantisation
533
+ and
534
+ its
535
+ breakdown
536
+ in
537
+ a Hubbard-Thouless pump (2022), arXiv:2204.06561
538
+ [cond-mat, physics:physics].
539
+ [23] L. Wang, M. Troyer, and X. Dai, Topological Charge
540
+ Pumping in a One-Dimensional Optical Lattice, Phys.
541
+ Rev. Lett. 111, 026802 (2013).
542
+ [24] M. Lohse, C. Schweizer, O. Zilberberg, M. Aidelsburger,
543
+ and I. Bloch, A Thouless quantum pump with ultracold
544
+ bosonic atoms in an optical superlattice, Nature Physics
545
+ 12, 350 (2016).
546
+ [25] S. Nakajima, T. Tomita, S. Taie, T. Ichinose, H. Ozawa,
547
+ L. Wang, M. Troyer, and Y. Takahashi, Topological
548
+ Thouless pumping of ultracold fermions, Nature Physics
549
+ 12, 296 (2016).
550
+ [26] S. Nakajima, N. Takei, K. Sakuma, Y. Kuno, P. Marra,
551
+ and Y. Takahashi, Competition and interplay between
552
+
553
+ 6
554
+ topology and quasi-periodic disorder in Thouless pump-
555
+ ing of ultracold atoms, Nat. Phys. 17, 844 (2021).
556
+ [27] J. Minguzzi,
557
+ Z. Zhu,
558
+ K. Sandholzer,
559
+ A.-S. Walter,
560
+ K. Viebahn, and T. Esslinger, Topological Pumping in
561
+ a Floquet-Bloch Band, Phys. Rev. Lett. 129, 053201
562
+ (2022).
563
+ [28] J. K. Asb´oth, L. Oroszl´any, and A. P´alyi, A short course
564
+ on topological insulators: band structure and edge states
565
+ in one and two dimensions, Lecture notes in physics Vol-
566
+ ume 919 (Springer, Cham, 2016).
567
+ [29] T. D. Stanescu, V. Galitski, and S. Das Sarma, Topolog-
568
+ ical states in two-dimensional optical lattices, Phys. Rev.
569
+ A 82, 013608 (2010).
570
+ [30] M. Buchhold, D. Cocks, and W. Hofstetter, Effects of
571
+ smooth boundaries on topological edge modes in optical
572
+ lattices, Phys. Rev. A 85, 063614 (2012).
573
+ [31] A. R. Kolovsky, F. Grusdt, and M. Fleischhauer, Quan-
574
+ tum particle in a parabolic lattice in the presence of a
575
+ gauge field, Phys. Rev. A 89, 033607 (2014).
576
+ [32] N. Goldman, G. Jotzu, M. Messer, F. G¨org, R. Des-
577
+ buquois, and T. Esslinger, Creating topological interfaces
578
+ and detecting chiral edge modes in a two-dimensional op-
579
+ tical lattice, Phys. Rev. A 94, 043611 (2016).
580
+ [33] R. Bianco and R. Resta, Mapping topological order in
581
+ coordinate space, Phys. Rev. B 84, 241106 (2011).
582
+ [34] A. Mook, J. Henk, and I. Mertig, Edge states in topolog-
583
+ ical magnon insulators, Phys. Rev. B 90, 024412 (2014).
584
+ [35] E. Bertok, F. Heidrich-Meisner, and A. A. Aligia, Split-
585
+ ting of topological charge pumping in an interacting two-
586
+ component fermionic Rice-Mele Hubbard model, Phys.
587
+ Rev. B 106, 045141 (2022).
588
+ [36] M. E. Torio, A. A. Aligia, and H. A. Ceccatto, Phase
589
+ diagram of the Hubbard chain with two atoms per cell,
590
+ Phys. Rev. B 64, 121105 (2001).
591
+ [37] F. Letscher, F. Grusdt, and M. Fleischhauer, Growing
592
+ quantum states with topological order, Phys. Rev. B 91,
593
+ 184302 (2015).
594
+ [38] B. Irsigler, J.-H. Zheng, and W. Hofstetter, Interact-
595
+ ing Hofstadter Interface, Phys. Rev. Lett. 122, 010406
596
+ (2019).
597
+ [39] D. B. Chklovskii, B. I. Shklovskii, and L. I. Glazman,
598
+ Electrostatics of edge channels, Phys. Rev. B 46, 4026
599
+ (1992).
600
+
601
+ 7
602
+ SUPPLEMENTAL MATERIALS
603
+ Dependence of the drift reversal on experimental
604
+ parameters
605
+ The expected drift reversal happens when the maxi-
606
+ mum local site offset over one pump-cycle ∆0 is equal
607
+ to the local tilt given by the harmonic trap. This po-
608
+ sition given by xedge ≃ ∆0a/V0 with a = λ/2 and
609
+ V0 = 1
610
+ 2m(2πνa)2. By measuring the reflection point in
611
+ lattices with different ∆0, we verify the relevant scaling
612
+ xedge ∝ ∆0, as shown in Fig. S1. The blue line in Fig.
613
+ S1A marks the theoretically expected xedge with the un-
614
+ certainty propagated from the uncertainty of the trap
615
+ frequency ν. The disagreement between theory and ex-
616
+ periment for larger values of ∆0 can be explained by the
617
+ finite waist of the lattice beams. In order to explore the
618
+ edge in our system, the atoms are pumped by almost 100
619
+ unit cells (∼ 100 µm). Due to the Gaussian envelope of
620
+ the transverse beams, which are essential to realise the
621
+ pump, the lattice is effectively shallower far away from
622
+ the centre.
623
+ Thus, ∆0 decreases towards the edge and
624
+ atoms are reflected sooner.
625
+ We also find a small dependence of the reflection point
626
+ on the pump period, compared to its absolute value,
627
+ which spans roughly 10 unit cells when changing T from
628
+ 2 ms to 10 ms (Fig. S1B). This can be understood by con-
629
+ sidering the energy spectrum of the Harper-Hofstadter-
630
+ Hatsugai (HHH) model in a harmonic potential, which
631
+ will be discussed below.
632
+ Experimental sequence
633
+ We start by preparing a degenerate cloud of fermionic
634
+ 40K in a crossed dipole trap. We have a spin mixture
635
+ of mF = {−9/2, −7/2} except for the measurements in
636
+ Fig. 2B and Fig. S1, where a spin-polarised cloud in the
637
+ magnetic state F = 9/2, mF = −9/2 is used. The spin-
638
+ polarised cloud is directly loaded into the pumping lat-
639
+ tice, while the spin mixture is first loaded into an inter-
640
+ mediate chequerboard lattice with strongly attractive in-
641
+ teractions. The two-step loading precludes the presence
642
+ of atoms in the higher band and gives a larger fraction
643
+ of atoms in doubly occupied unit cells [22].
644
+ After pumping the system for varying times, we either
645
+ take a in-situ absorption image to measure the density
646
+ or detect the band population with band-mapping. The
647
+ latter is implemented with an exponential ramp to switch
648
+ off the lattice beam in 500 µs, followed by a time-of-flight
649
+ expansion of 25 ms before absorption imaging.
650
+ A
651
+ B
652
+ FIG. S1.
653
+ Experimental dependence of the reflection
654
+ position. The reflection point is expected to depend linearly
655
+ on the maximal site-offset per pump cycle ∆0 which is experi-
656
+ mentally verified in (A). Deviations for large values of ∆0 can
657
+ be explained by the finite waist of the laser beams forming
658
+ the lattice. (B) shows the period dependence of the reflec-
659
+ tion position. Changing the pump period T over an order of
660
+ magnitude only changes the reflection point by about 10 unit
661
+ cells, which is a result of the smooth boundary of a harmonic
662
+ potential.
663
+ Realisation of a Thouless pump in the Rice-Mele
664
+ model
665
+ The lattice setup is comprised of non-interfering stand-
666
+ ing waves in x, y, and z directions, together with in-
667
+ terfering laser beams in the x–z plane. All the lattice
668
+ beams come from a single laser source at wavelength
669
+ λ = 1064 nm. These potential combine to form a honey-
670
+ comb lattice in the x–z plane, which can be considered
671
+ as isolated tubes of one-dimensional superlattices along
672
+ x in the limit of deep transverse lattices.
673
+ In each 1D
674
+ tube the potential can be modeled by a one-dimensional
675
+ superlattice with two sites per unit cell. With this setup,
676
+ we realise the Rice-Mele model [22]. In the tight-binding
677
+ limit, the Rice-Mele model can be described with three
678
+ numbers: the offset energy ∆ between the two sites of
679
+ a unit cell, the averaged nearest-neighbour tunneling t
680
+ and the bond dimerisation δ which gives half the differ-
681
+ ence between the inter- and intra-dimer tunnellings. By
682
+ having a dynamical control of the relative phase ϕ be-
683
+ tween the laser beams generating the interfering and the
684
+ non-interfering lattice, we manage to shift the two with
685
+ respect to each other. This shift modulates ∆ and δ pe-
686
+ riodically, which can be depicted as a closed trajectory
687
+ in the ∆-δ coordinate (Fig. S2). In the adiabatic limit,
688
+ this realises a Thouless pump with its hallmark quan-
689
+
690
+ 8
691
+ tised transport. In this case, the atomic displacement is
692
+ given by the number of revolutions around the origin of
693
+ the ∆-δ plane.
694
+ φ = 0
695
+ φ = ∏/2
696
+ φ = ∏
697
+ φ = 3∏/2
698
+ x
699
+ E
700
+ x
701
+ E
702
+ x
703
+ E
704
+ x
705
+ E
706
+ FIG. S2. Realisation of a Thouless pump in the Rice-
707
+ Mele model. In our system the 1D lattice potential can be
708
+ modelled by a superlattice with two sites per unit cell, which
709
+ is depicted in the bottom part of this figure as a function of
710
+ relative phase ϕ. The local site offset ∆ as well as the bond
711
+ dimerisation δ is depicted in the ∆-δ plots corresponding to
712
+ the respective potentials. The resulting pump displacement
713
+ corresponds to the number of revolutions around the origin
714
+ in the ∆-δ plane.
715
+ Mapping a 1D Thouless pump to a 2D Hofstadter
716
+ Model with quantum Hall response
717
+ A 1D Thouless pump with a period of T, as realised
718
+ in our experiment, can be mapped to a 2D topological
719
+ tight-binding (HHH) model with an applied electric field
720
+ E = 2πℏ
721
+ qT where q can be thought of as a fictitious charge
722
+ of netural atoms. Due to the topological bandstructure,
723
+ this electric field leads to a transverse current Itrans = q
724
+ T
725
+ of one atom per period, when considering a fully occupied
726
+ band. The 2D model therefore has a quantised transverse
727
+ conductance σtrans = Itrans/E =
728
+ q2
729
+ 2πℏ analogous to the
730
+ Hall conductance in the Quantum Hall Effect (QHE).
731
+ The time-periodicity of the Hamiltonian in Eq. 1 with
732
+ ˆH(τ) = ˆH(τ + T) allows us to use Floquet’s theorem.
733
+ Solutions of the time-dependent Schr¨odinger equation
734
+ iℏ∂τ |Ψ(τ)⟩ = H(τ) |Ψ(τ)⟩
735
+ (S1)
736
+ can thus be written as
737
+ |Ψ(τ)⟩ = e−iϵτ/ℏ |u(τ)⟩
738
+ (S2)
739
+ with |u(τ + T)⟩ = |u(τ)⟩ and ϵ ∈ R. Due to the time-
740
+ periodicity of u(τ) we expand it as a Fourier series,
741
+ |u(τ)⟩ =
742
+
743
+ n
744
+ e−iωnτ |un⟩ ,
745
+ (S3)
746
+ where ω = 2π/T is the pump frequency.
747
+ The change
748
+ from the time-domain into the Fourier-domain is the key
749
+ ingredient to map the 1D Thouless pump to a 2D tight-
750
+ binding model.
751
+ The index n is also called the photon
752
+ number of the mode |un⟩.
753
+ Using a multi-index α = (j, σ) we write the T-periodic
754
+ 1D Hamiltonian for U = 0 in the Fourier-basis:
755
+ ˆH(τ) =
756
+
757
+ α,β
758
+ hαβ(τ) |α⟩ ⟨β|
759
+ (S4)
760
+ =
761
+
762
+ α,β,m
763
+ e−imωτhm
764
+ αβ |α⟩ ⟨β|
765
+ with hm
766
+ αβ =
767
+ 1
768
+ T
769
+ � T
770
+ 0 eimωτhαβ(τ)dτ and |α⟩ corresponding
771
+ to an atom localised on site j with spin σ.
772
+ Likewise,
773
+ we use Fourier decomposition to express the solutions to
774
+ Eq. S1 as
775
+ |Ψ(τ)⟩ = e−iϵτ/ℏ �
776
+ n,α
777
+ e−inωτun,α |α⟩ .
778
+ (S5)
779
+ where un,α = ⟨α|un⟩. As a result, we obtain an eigen-
780
+ value equation for un,α:
781
+ ϵun,α = −nℏωun,α +
782
+
783
+ β,m
784
+ hm
785
+ αβun−m,β ∀n, α
786
+ (S6)
787
+ which
788
+ can
789
+ be
790
+ understood
791
+ as
792
+ a
793
+ time
794
+ independent
795
+ Schr¨odinger equation of a 2D tight-binding model with
796
+ a tilted potential energy along one axis.
797
+ By explicitly
798
+ evaluating the hm
799
+ αβ, we get
800
+ H2D = Hreal + Hsynth + Hdiag + HV + Htilt,
801
+ (S7)
802
+ with
803
+ Hreal = −t
804
+
805
+ j,n,σ
806
+ (ˆc†
807
+ j,n,σˆcj+1,n,σ + h.c.),
808
+ (S8)
809
+ Hdiag = −δ0
810
+ 2
811
+
812
+ j,n,σ
813
+ e−iπj(ˆc†
814
+ j,n,σˆcj+1,n+1,σ
815
+ + ˆc†
816
+ j,n,σˆcj+1,n−1,σ + h.c.),
817
+ Hsynth = −∆0
818
+ 2
819
+
820
+ j,n,σ
821
+ e−iπj(iˆc†
822
+ j,n,σˆcj,n+1,σ + h.c.),
823
+ HV =
824
+
825
+ j,n,σ
826
+ V (j)ˆc†
827
+ j,n,σˆcj,n,σ,
828
+ Htilt = −
829
+
830
+ j,n,σ
831
+ ℏωnˆc†
832
+ j,n,σˆcj,n,σ .
833
+ Hreal and Hsynth describe tunneling along the real (x)
834
+ and synthetic (n) dimension, respectively.
835
+ The diagonal tunnelling terms in Hdiag are crucial be-
836
+ cause they open a bandgap between the ground band and
837
+ the first excited band, characterised by the topological
838
+ Chern number C which is further related to the quantised
839
+ Hall conductance via σtrans =
840
+ q2
841
+ 2πℏC. The terms in HV
842
+
843
+ 9
844
+ describe the external potential along the real-space direc-
845
+ tion. Htilt corresponds to a linear tilt in potential energy
846
+ along the synthetic dimension which can be thought of as
847
+ originating from an electric field E = 2πℏ
848
+ qT pointing along
849
+ n.
850
+ Edge modes and their reflection properties
851
+ To illustrate the topological edge modes in the presence
852
+ of an external potential, we evaluate the spectrum of H2D
853
+ in the adiabatic limit (ω → 0) for different potentials
854
+ V (j) = 1
855
+ 2m(2πνa)2jκ
856
+ (S9)
857
+ with m being the mass of 40K, trap frequency ν = 134 Hz,
858
+ lattice spacing a = 532 nm, and lattice site j. The pa-
859
+ rameter κ, an even integer, characterises steepness of the
860
+ trap; the limit κ → ∞ corresponds to the textbook case
861
+ of infinitely sharp walls [28]. Fig. S3A-C shows the nu-
862
+ merically calculated energy spectra, omitting states on
863
+ localised to the left edge for clarity.
864
+ Fig. S3A shows the spectrum for a box-like potential
865
+ with κ = 24. In this case there is a family of topologi-
866
+ cal edge states, marked in red, which connect the lower
867
+ and the upper band (black), separated from topologically
868
+ trivial states above 5 kHz (also in black). All red states
869
+ are localised along the right edge in x-direction.
870
+ The
871
+ lower and upper band have Chern number 1 and −1, re-
872
+ spectively. Considering the dynamics in this model, an
873
+ applied electric field along n as defined in Htilt leads to
874
+ Bloch oscillations with a period T along kn. At the same
875
+ time, the center-of-mass of the atoms moves by one unit
876
+ cell per Bloch oscillation period along x, which corre-
877
+ sponds to the quantised bulk Hall drift [14, 15]. This drift
878
+ can be evaluated in the numerics by following the eigen-
879
+ states in Fig. S3A in real space. Since the red edge states
880
+ are gapped from the next higher-lying trivial (black)
881
+ states, the atoms ‘Bloch-oscillate’ from the ground to
882
+ the excited band via the red-marked edge modes over
883
+ several periods. Once they are in the excited band they
884
+ are transported backwards along x.
885
+ Fig. S3B shows the situation for κ = 10. It behaves
886
+ similarly to Fig. S3A, except that there are more lo-
887
+ calised states marked in red, compared to κ = 2. Like-
888
+ wise, these states are transported along x as they undergo
889
+ Bloch oscillations. As before, this family of edge states
890
+ is gapped from trivial states and connects right-moving
891
+ to left-moving states, which leads to the reflection phe-
892
+ nomenon.
893
+ The experimentally relevant case is a harmonic trap
894
+ with κ = 2 (see also refs. [23, 29–31]). Fig. S3C shows
895
+ that for κ = 2 the number of localised sates outside of
896
+ the bands is even larger than for κ = 10.
897
+ As before,
898
+ we adiabatically follow these localised states along kn
899
+ A
900
+ B
901
+ C
902
+ D
903
+ FIG. S3. Energy spectra for different confining poten-
904
+ tials. States localised to the left edge are omitted for clarity.
905
+ Energy spectra of H2D in the limit ω → 0 for κ = 24 (A),
906
+ κ = 10 (B), and κ = 2 (C). Topological edge modes which
907
+ connect the two bands with Chern number 1 and −1 in (A)
908
+ and (B) are marked in red. The upper inset in (C) marks
909
+ the topological boundary where the reflection is observed as
910
+ described in the main text. The inset in the center of (C)
911
+ shows the tiny avoided crossings which can lead to a slight
912
+ period dependence of the observed reflection point (Fig. S1).
913
+ (D) Energy spectrum for a linearly increasing staggered po-
914
+ tential. The gapless, topological edge mode is marked in red.
915
+
916
+ 10
917
+ and evaluate their centre-of-mass along x.
918
+ By numer-
919
+ ically observing these drifts we confirm that the states
920
+ describe quantised drifting in a large region, which man-
921
+ ifests their nontrivial topological nature. Thus, the κ = 2
922
+ case is ideal to observe the reflection after long-distance
923
+ quantised Hall drifts. However, the gaps between topo-
924
+ logical (right-moving and left-moving) and trivial (sta-
925
+ tionary) states become smaller, compared to the κ = 24
926
+ and κ = 10 cases, as shown in the insets of Fig. S3C
927
+ (κ = 2). As a result, the reflection point for κ = 2 is
928
+ spread out over several unit cells but the reflection itself
929
+ remains intact. Faster pumping leads to non-adiabatic
930
+ crossings of the energy gaps between right-moving and
931
+ left-moving states, causing the reflection to happen later
932
+ in time and further up in energy. We confirm this depen-
933
+ dence experimentally in Fig. S1B, which shows a later
934
+ reversal for smaller pump periods.
935
+ Fig. S3D shows the spectrum for the linearly increasing
936
+ staggered potential, described in the following sections.
937
+ This potential allows a straightforward identification of
938
+ the gapless edge mode (red line). The states correspond-
939
+ ing to this gapless edge mode are localised around the
940
+ topological boundary.
941
+ x
942
+ E
943
+ FIG. S4. Linearly increasing staggered potential. To
944
+ elucidate the topology in our system, a linearly increasing
945
+ staggered potential is considered (blue): V (j) = jV0(−1)j
946
+ with V0 = 1/2 × m(2πνa)2, as before. It is chosen such that
947
+ the local tilt always equals the tilt from the harmonic poten-
948
+ tial (orange), but alternates in sign. The staggered potential
949
+ allows a simple pictorial representation of the emergence of
950
+ the topological boundary. In a local density approximation
951
+ the trap linearly shifts the pump trajectory upwards in the
952
+ ∆-δ plane, as depicted in the upper part of the figure. As
953
+ soon as the trajectory ceases to enclose the critical point, a
954
+ topological–trivial boundary develops.
955
+ Staggered potential
956
+ Another possibility to identify the topological bound-
957
+ ary in our system makes use of a staggered potential.
958
+ First, we consider a potential with uniform staggering,
959
+ given by Vc(j) = V (−1)j, where j indexes the lattice-site
960
+ and 2V corresponds to the energy difference between ad-
961
+ jacent sites. Adding such a potential to the Rice-Mele
962
+ Hamiltonian (Eq. 1) changes its trajectory in the ∆-δ
963
+ plane. The onsite energy in such a system is given by
964
+ (∆(τ) + V )(−1)j, which ranges from −∆ + V to ∆ + V .
965
+ The tunnellings are unchanged. Therefore, the trajectory
966
+ remains circular and it is simply shifted upwards by an
967
+ amount V .
968
+ A topological boundary emerges for a linearly increas-
969
+ ing staggered potential, given by V (j) = jV0(−1)j, with
970
+ V0 =
971
+ 1
972
+ 2m(2πνa)2 as before.
973
+ V (j) is chosen such that
974
+ it has the same local tilt as the harmonic trap in the
975
+ experiment. Within the local density approximation we
976
+ assign a ∆-δ trajectory locally to each unit cell.
977
+ The
978
+ trajectories are thus linearly shifted upwards as func-
979
+ tion of j (Fig. S4), describing a change of topology in
980
+ real space. We expect the local density approximation
981
+ to be valid since the atomic eigenstates in the exper-
982
+ iment are strongly localised.
983
+ Similar models with lin-
984
+ early increasing staggered potential have been studied in
985
+ refs. [29, 32, 38].
986
+ Local Chern marker
987
+ The mathematical formulation of the Chern number as
988
+ a topological invariant requires translational invariance,
989
+ which does not apply to realistic experiments. Instead,
990
+ we use a local quantity, known as Chern marker [8, 33].
991
+ The local Chern marker depends on the real-space posi-
992
+ tion and it is defined by:
993
+ c(rγ) = −4π
994
+ Ac
995
+ Im
996
+
997
+ s=A,B
998
+ ⟨rγs| ˆP ˆx ˆQˆy ˆP |rγs⟩ ,
999
+ (S10)
1000
+ where rγ is the position of the unit cell γ with sub-lattice-
1001
+ sites at positions rγA and rγB, |rγs⟩ = c†
1002
+ γs |0⟩ is the state
1003
+ localised on the corresponding lattice site , Ac is the area
1004
+ of a real-space unit cell, ˆQ = 1− ˆP and ˆP is the projector
1005
+ onto the ground band. Defining ˆP is not unambiguously
1006
+ possible in our system (Eq. S7) because of the energy
1007
+ shift from the harmonic confinement.
1008
+ Instead, we use
1009
+ a linearly increasing staggered potential, as described in
1010
+ the previous paragraph. This model leaves the bands in-
1011
+ tact and a ground band can be unambiguously defined.
1012
+ Experimentally, a local probe of the band topology is the
1013
+ velocity of the Hall drift, plotted in Fig. 2A. Theory and
1014
+ experiment agree approximately with one another. The
1015
+ local velocity is extracted from the atomic positions by
1016
+ fitting linear functions to groups of three adjacent dat-
1017
+ apoints in ten pump cycles. The resulting velocities are
1018
+ plotted against position and smoothed through a running
1019
+ average of width three (ten cycles).
1020
+
INE1T4oBgHgl3EQf_wYq/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
IdE2T4oBgHgl3EQfUQce/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:04a1ed9a029d36b42ddbcd02733929db4d341e874e8781f550239f227fe90056
3
+ size 8585261
JNE0T4oBgHgl3EQfiAH8/content/tmp_files/2301.02441v1.pdf.txt ADDED
@@ -0,0 +1,4576 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+
3
+ Theory of Edge Effects and Conductunce for Applications in Graphene-
4
+ based Nanoantennas
5
+ Tomer Berghau , Touvia Milo , Oded Gottlie and Gregory Ya. Slepya
6
+
7
+ 1
8
+ 1School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978, Israel
9
+ 2 Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
10
+ 3 School of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel
11
+ *Correspondence: [email protected] (T.B); [email protected] (G.S.)
12
+
13
+ Abstract: In this paper, we develop a theory of edge effects in graphene for its applications
14
+ to nanoantennas in the THz, infrared, and visible frequency ranges. Its characteristic feature
15
+ is self-consistence reached due the formulation in terms of dynamical conductance instead of
16
+ ordinary used surface conductivity. The physical model of edge effects is based on using the
17
+ concept of Dirac fermions. The surface conductance is considered as a general susceptibility
18
+ and is calculated via the Kubo approach. In contrast with earlier models, the surface
19
+ conductance becomes non-homogeneous and non-local. The spatial behavior of the surface
20
+ conductance depends on the length of the sheet and the electrochemical potential. Results of
21
+ numerical simulations are presented for lengths in the range of 2.1 - 800nm and
22
+ electrochemical potentials ranging between 0.1 – 1.0 eV. It is shown that if the length
23
+ exceeded 800 nm, our model agrees with the classical Drude conductivity model with a
24
+ relatively high degree of accuracy. For rather short lengths, the conductance usually exhibits
25
+ spatial oscillations, which absent in conductivity and strongly affect the properties of
26
+ graphene based antennas. The period and amplitude of such spatial oscillations, strongly
27
+ depend on the electrochemical potential. The new theory opens the way for realizing
28
+ electrically controlled nanoantennas by changing the electrochemical potential may of the
29
+ gate voltage. The obtained results may be applicable for the design of carbon based
30
+ nanodevices in modern quantum technologies.
31
+
32
+ Keywords: graphene; edge effects; optical conductance; nanoantennas
33
+
34
+
35
+
36
+ 1. Introduction
37
+
38
+ Innovative electromagnetic nanoantennas, which generally function at wide range of
39
+ frequencies (from THz until video frequencies), play a vital role in the emerging field of
40
+ photonics and plasmonics [1-6]. These antennas can be used as promising tools for
41
+ transforming near-field light into far-field and vice versa. Their excellent capabilities are
42
+ usually utilized in a wide scope of applications. Among them, are traditional applications for
43
+ basic elements in electronics, high-speed communications, informatics, and quantum
44
+ computing [7] (in particular quantum nanomechanical qubit on carbon nanotube [8]). As far
45
+ as commercial applications of carbon-based nanostructures [9], one can list some novel
46
+ applications such as: i) high-resolved spectroscopy [10]; ii) high-speed communication [11];
47
+ iii) light emission and detection; iv) identification of biomolecules and medical diagnostic
48
+ applications [12,13]. The design of the devices mentioned above, requires taking into account
49
+ edge effects and their correct physical description. It should cover a wide frequency range
50
+ from microwave until optical. These recent innovations have stimulated huge interest in the
51
+ theory of nanoantennas. Microwave standards become invalid starting from the THz region,
52
+ as the size of the antennas is miniaturized to micrometer scale [6]. Therefore, the common
53
+
54
+ 2
55
+
56
+ model of perfect electric conductor, which is widely used in microwaves, is not suitable in
57
+ the range from THz to optical frequencies. By manipulating the different types of finite-size
58
+ (edge) effects [14-16], the conventional antenna configurations can be also used in the range
59
+ from microwave to optical frequencies [1-6]. However, antenna devices which operate in the
60
+ terahertz range (0.1–10 THz), have some fundamental limitations on their applicability in
61
+ practical devices [6]. Recent studies have pointed out that graphene is one of the best
62
+ candidates for overcoming the limitations mentioned above [6].
63
+ A nanoantenna in its theoretical analysis, is generally considered as a system
64
+ terminated by a well-defined edge. The edge geometry is one of the widely used idealizations
65
+ in modern physics. For example, in all branches of classical mechanics and physics (e.g.,
66
+ elasticity, hydrodynamics, acoustics, electrodynamics), the edge has a configurational
67
+ character. It corresponds to a point or contour at the surface of the body on which the normal
68
+ vector is usually undefined (half-plane, wedge, cone, etc.). Taking the edge position into
69
+ consideration, allows us to simplify the boundary conditions and employ certain analytical
70
+ techniques such as separation of variables, using for example special orthogonal coordinate
71
+ systems [17] or the Wiener-Hopf method [18]. Such analytical solutions are especially
72
+ attractive for the qualitative analysis of novel types of problems involving interacting fields
73
+ of different physical origin (for example, plasmonics and optoelectrofluidics [19]). However,
74
+ such idealization may lead to the loss of uniqueness of the problem statement. The reason for
75
+ it is that the placement of an arbitrary point singularity at the edge, generally does not violate
76
+ the governing wave equation as well as the boundary and radiation conditions. The analytic
77
+ solutions thus obtained, are correct from the mathematical point of view. However, they may
78
+ turn to be physically incorrect because due to lack of uniqueness, they may correspond to
79
+ another source of the field. In order to obtain the corresponding of unique solution, one must
80
+ enforce the condition of finite (bounded) energy over an arbitrary area (finite extend) of
81
+ space (Meixner condition) [20]. Such an approach usually leads to the creation of field
82
+ singularities at the vicinity of the edge. Note, that the edge-like configuration does not change
83
+ the constitutive properties of the medium (for example, such as a perfect conductor or a
84
+ perfect insulator in classical electrodynamics).
85
+
86
+ The extensive recent progress in nanotechnologies, lead to the discovery of novel
87
+ artificial types of condensed matter, such as graphene [21], carbon nanotubes (CNTs) [22],
88
+ Weyl and Dirac semimetals [23] and topological insulators [24,25]. Consequently, a great
89
+ number of fundamental physical problems were reconsidered and in particular, but
90
+ nevertheless most of them failed to consider the important edge concept. The edge for the
91
+ different types of nanostructures corresponds to the spatial area in the vicinity of the sample
92
+ boundary which size is rather large compared with the inter-atomic distance. However, the
93
+ mechanism of electronic transport at the edge is dramatically different from the
94
+ corresponding properties of the bulk region. One of the reasons for this disparity is the
95
+ existence of new types of quantum states strongly confined to the vicinity of the edge, which
96
+ are able to produce novel physical properties such as topological order (so called, edge states
97
+ [16,21,25]). Such transport mechanisms manifest themselves in the special optical and
98
+ optomechanical properties of different types of metamaterials (e.g., carbon based
99
+ nanostructures).
100
+
101
+ The electrical properties of macroscopic structures may be described both in terms of
102
+ conductivity and conductance [16], which are equivalent and coupled via the simple constant
103
+ coefficient defined by the size values of the sample. As it was noted in [16], the conductivity
104
+ for nanomaterials (including graphene) is a well-defined value only when the sample is
105
+ enough large. It is clear from intuitive point of view, that the electric current becomes
106
+ homogeneous and insensitive to boundaries of the sample. When the sample’s size is
107
+ reduced, the current becomes non-homogeneous and non-local with respect to the field
108
+
109
+ 3
110
+
111
+ variations in the material. Then, the concept of conductivity loses its meaning. The behavior
112
+ of the electrons in nanoantennas becomes sensitive to the feeding lines, detectors, modulators
113
+ and the edges due to the quantum-mechanical interference. As we will show, exactly optical
114
+ conductance will be suitable parameter for formulation of the effective boundary conditions
115
+ for electromagnetic field in nanoantennas. In contrast with conductivity, it is non-
116
+ homogeneous and not coupled via simple relation with optical conductivity (which is
117
+ homogeneous value). It is described by the Kubo approach instead of Boltzmann’s transport
118
+ equation.
119
+ The edge areas play the main role in forming the emission in classical radio-frequency
120
+ antennas [26] and optical nanoantennas [27]. One of the promising types of nanoantennas that
121
+ operate in the THz and optical frequency range, are based on carbon-based nanostructures
122
+ (graphene, CNTs) [28-31]. The physical mechanism of their radiation, is based on the
123
+ existence of a strongly retarded surface plasmon predicted in [28, 32], experimentally
124
+ observed in [33] and used for interpretation of the intriguing measurements of the THz
125
+ conductivity peak [34]. These works use different models for the charge transport [28, 32, 34,
126
+ 35], but all of them are not self-consistent. In another words, the boundary-value problem for
127
+ the Maxwell equations is formulated for the real geometry of the object, while the value of
128
+ conductivity is introduced as a phenomenological parameter which is determined by using a
129
+ model corresponding to an infinitely large structure. Of course, such an approach appears to
130
+ be attractive since it allows to reach, simplification due to the separation of the EM-field and
131
+ charge transport equations. Such an approach keeps the self-consistent requirement for planar
132
+ structures with the Fresnel transmission-reflection condition of EM-fields (graphene films,
133
+ semitransparent mirrors, etc.) [37-40]. However, it may not be adequate for the detailed
134
+ description of EM-field scattering and antenna emission in the general case. One can clearly
135
+ expect that the error of such a non-consistent approach may be ignored as being very small,
136
+ providing the size of the system is rather large. However, it means, that the effect of the
137
+ Fresnel transmission-reflection dominates the field forming, whereas the antenna efficiency
138
+ decreases. Nevertheless, it is impossible to say a priori what is the validity bound of such a
139
+ simplification.
140
+ This problem becomes especially relevant for graphene-based structures, because of
141
+ the corresponding large geometrical size disparity for applications in different graphene
142
+ devices. The advanced graphene synthesis methods make it possible to grow graphene
143
+ samples from 2.1nm to few centimeters [6,41-46]. The detail description of optical graphene
144
+ conductivity requires a self-consistent analysis. Such a self-consistent approach determines
145
+ the field acting on electrons produced over their motion, by taking into consideration the
146
+ finite-size configuration and using an appropriate microscopic model for the edge. The
147
+ formulation of such a self-consistent analysis is one of the main contributions of this paper.
148
+ One of the important results of this paper, is analyzing the effect of the edges (shape of finite
149
+ extend) and determine the corresponding error when self-consistency is not prevailed. It is
150
+ important to note; that edge effects do not only add up to the quantitative differences in the
151
+ value of conductivity. Edge effects are also able to dramatically affect the special physical
152
+ mechanism of charge transport. It makes required the formulation of the theory in terms of
153
+ optical conductance, which is important for applications in antenna design.
154
+
155
+ The paper is organized as follows: models of the edge of a graphene ribbon based on
156
+ the Dirac-fermion concept, are first discussed in Section 2. Thereafter, based on using the
157
+ Kubo approach and the concept of general susceptibility [47], we analytically obtain an
158
+ expression for the surface conductance of a terminated (finite) graphene sheet. Results of
159
+ numerical simulations together with a discussion are presented in Section 3. Conclusion and
160
+ outlook are finally given in Section 4.
161
+
162
+ 4
163
+
164
+ 2. Optical conductance of a terminated graphene sheet.
165
+
166
+
167
+
168
+
169
+
170
+
171
+
172
+
173
+
174
+
175
+
176
+
177
+
178
+
179
+
180
+
181
+
182
+
183
+
184
+ Figure 1. Problem statement: (a) Geometry of a graphene sheet with zigzag edge configuration; (b)
185
+ Fermi-Dirac cones for the model of pseudospin dispersion.
186
+
187
+ 2.1 Kubo approach for optical conductance of graphene
188
+
189
+ In the following we will use the Kubo approach for conductance calculation as a universal
190
+ technique which couples the generalized forces of arbitrary physical origin with the responses
191
+ of correspondent origin via general susceptibilities [47]. Towards this goal it is convenient to
192
+ define the forces as tangential components of electric field and responses as components of
193
+ current densities. Thus, the general susceptibilities are defined by a 2
194
+ 2
195
+
196
+ matrix where
197
+
198
+  
199
+
200
+
201
+  
202
+ ,
203
+ ,
204
+ 1,2
205
+ ; ,
206
+ a
207
+ ab
208
+ b
209
+ b
210
+ j
211
+ K
212
+ E
213
+ d
214
+
215
+
216
+
217
+
218
+
219
+
220
+
221
+   
222
+ x
223
+ x x
224
+ x
225
+ x (1)
226
+ and
227
+
228
+
229
+
230
+
231
+
232
+
233
+
234
+
235
+
236
+
237
+ 2
238
+ 0
239
+ ; ,
240
+ ˆ
241
+ ˆ
242
+ ˆ
243
+ ˆ
244
+ ,
245
+ 0,
246
+ 0,
247
+ ,
248
+ ab
249
+ i t
250
+ a
251
+ b
252
+ b
253
+ a
254
+ K
255
+ e
256
+ e
257
+ x
258
+ t
259
+ x
260
+ x
261
+ x
262
+ t
263
+ dt
264
+
265
+
266
+
267
+
268
+  
269
+
270
+
271
+
272
+
273
+ x x
274
+ x
275
+ x
276
+ x
277
+ x
278
+ (2)
279
+
280
+
281
+ Here
282
+  
283
+  
284
+ ˆ
285
+ a
286
+ a
287
+ j
288
+ j
289
+
290
+ x
291
+ x
292
+ ,
293
+
294
+
295
+
296
+
297
+ ˆ
298
+ ˆ
299
+ ,
300
+ ,
301
+ a
302
+ a
303
+ j
304
+ t
305
+ i ex
306
+ t
307
+
308
+
309
+ x
310
+ x ,
311
+  
312
+ ˆ
313
+ aj
314
+ x
315
+ represents the observable current
316
+ density,
317
+
318
+
319
+ ˆ
320
+ ,
321
+ ax
322
+ t x is an operator of charge displacement per unit area. The general
323
+ susceptibility tensor
324
+
325
+
326
+ ; ,
327
+ ab
328
+ K
329
+
330
+
331
+ x x depends on the geometry of the sample as well as the
332
+ electronic properties of the medium. Therefore, exactly it has a physical meaning of non-local
333
+ optical conductance (in the units
334
+ 2 /
335
+ e
336
+ ) similar to the dc conductance of graphene in [16] .
337
+
338
+ The next step is the transformation of Equation (2) to a form that is convenient for
339
+ applications in graphene electrodynamics. Thus one can write
340
+ (b)
341
+ (a)
342
+
343
+ Energy
344
+ Valley K'
345
+ Valley KA-atoms
346
+ B-atomsremoved
347
+ B-atoms
348
+ 1
349
+ A-atoms removed5
350
+
351
+
352
+
353
+
354
+
355
+ 0
356
+ ˆ
357
+ ˆ
358
+ ; ,
359
+ i t
360
+ ab
361
+ ab
362
+ ab
363
+ ie
364
+ K
365
+ e
366
+ A
367
+ B
368
+ dt
369
+
370
+
371
+
372
+   
373
+
374
+
375
+ x x
376
+ (3)
377
+
378
+ where
379
+
380
+
381
+
382
+
383
+
384
+
385
+
386
+
387
+ ˆ
388
+ ˆ
389
+ ˆ
390
+ ˆ
391
+ ˆ
392
+ ˆ
393
+ ,
394
+ 0,
395
+ ,
396
+ 0,
397
+ ,
398
+ ab
399
+ ab
400
+ a
401
+ b
402
+ b
403
+ a
404
+ A
405
+ j
406
+ t
407
+ x
408
+ B
409
+ x
410
+ j
411
+ t
412
+
413
+
414
+
415
+
416
+ x
417
+ x
418
+ x
419
+ x
420
+ and
421
+
422
+
423
+
424
+
425
+ 0
426
+ 0
427
+ ˆ
428
+ ˆ
429
+ ˆ
430
+ ˆ
431
+ ab
432
+ ab
433
+ ab
434
+ ss
435
+ s
436
+ ss
437
+ A
438
+ Tr A
439
+ A
440
+
441
+
442
+
443
+  
444
+ (4)
445
+ where
446
+ 0ˆ is the density matrix of free motion.
447
+ The diagonal matrix elements of the operator ˆ ab
448
+ A are defined by
449
+
450
+
451
+
452
+
453
+
454
+
455
+
456
+
457
+
458
+
459
+
460
+ ˆ
461
+ ˆ
462
+ ˆ
463
+ ,
464
+ 0,
465
+ ab
466
+ a
467
+ b
468
+ s s
469
+ ss
470
+ s
471
+ ss
472
+ A
473
+ j
474
+ t
475
+ x
476
+
477
+
478
+
479
+
480
+  
481
+ x
482
+ x
483
+ (5)
484
+
485
+ and following Equation (4) one gets
486
+
487
+
488
+
489
+
490
+
491
+
492
+
493
+
494
+
495
+ 0
496
+ ˆ
497
+ ˆ
498
+ ˆ
499
+ ,
500
+ 0,
501
+ ab
502
+ a
503
+ b
504
+ ss
505
+ s s
506
+ s
507
+ s
508
+ ss
509
+ A
510
+ j
511
+ t
512
+ x
513
+
514
+
515
+
516
+
517
+
518
+
519
+
520
+ 
521
+ x
522
+ x
523
+ (6)
524
+ Here
525
+
526
+
527
+ ,
528
+ y
529
+ s
530
+ p k
531
+
532
+ denotes the combinative discrete-continuous index (p is the discrete number
533
+ of the state and
534
+ yk is its continuous wave-number over the y-axis).
535
+
536
+ The temporal behavior in the linear approximation can be expressed as
537
+
538
+
539
+
540
+
541
+
542
+
543
+
544
+
545
+
546
+  /
547
+ ˆ
548
+ ˆ
549
+ ,
550
+ 0,
551
+ s
552
+ s
553
+ i
554
+ t
555
+ a
556
+ a
557
+ ss
558
+ ss
559
+ j
560
+ t
561
+ j
562
+ e
563
+
564
+  
565
+
566
+
567
+
568
+
569
+
570
+ x
571
+ x
572
+ and as a result we obtain
573
+
574
+
575
+
576
+
577
+
578
+
579
+
580
+
581
+
582
+
583
+ 0
584
+ ˆ
585
+ ˆ
586
+ ˆ
587
+ 0,
588
+ 0,
589
+ s
590
+ s
591
+ i
592
+ t
593
+ ab
594
+ a
595
+ b
596
+ ss
597
+ s s
598
+ s
599
+ s
600
+ ss
601
+ A
602
+ j
603
+ x
604
+ e
605
+
606
+
607
+
608
+
609
+
610
+
611
+
612
+
613
+
614
+
615
+
616
+
617
+ 
618
+ x
619
+ x
620
+ (7)
621
+ A similar relation may be also obtained for ˆ ab
622
+ B , namely
623
+
624
+
625
+
626
+
627
+
628
+
629
+
630
+
631
+
632
+
633
+ 0
634
+ ˆ
635
+ ˆ
636
+ ˆ
637
+ 0,
638
+ 0,
639
+ s
640
+ s
641
+ i
642
+ t
643
+ ab
644
+ b
645
+ a
646
+ ss
647
+ s s
648
+ s
649
+ s
650
+ ss
651
+ B
652
+ x
653
+ j
654
+ e
655
+
656
+
657
+
658
+
659
+
660
+
661
+
662
+
663
+
664
+
665
+
666
+ 
667
+ x
668
+ x
669
+ (8)
670
+ Combining Equations (7) and (8) with Equation (3) lead to
671
+
672
+
673
+
674
+
675
+
676
+
677
+
678
+
679
+
680
+
681
+
682
+
683
+
684
+
685
+
686
+
687
+
688
+
689
+
690
+
691
+
692
+
693
+ 0
694
+ 0
695
+ ; ,
696
+ 4
697
+ ˆ
698
+ ˆ
699
+ ˆ
700
+ ˆ
701
+ 0,
702
+ 0,
703
+ 0,
704
+ 0,
705
+ s
706
+ s
707
+ s
708
+ s
709
+ ab
710
+ s
711
+ s
712
+ i
713
+ i
714
+ t
715
+ t
716
+ i t
717
+ a
718
+ b
719
+ b
720
+ a
721
+ ss
722
+ s s
723
+ ss
724
+ ss
725
+ s s
726
+ i
727
+ K
728
+ e
729
+ j
730
+ x
731
+ e
732
+ x
733
+ j
734
+ e
735
+ dt
736
+
737
+
738
+
739
+
740
+
741
+
742
+
743
+
744
+
745
+
746
+
747
+
748
+
749
+
750
+
751
+
752
+
753
+
754
+
755
+  
756
+
757
+
758
+
759
+
760
+
761
+
762
+
763
+
764
+
765
+
766
+ 
767
+
768
+ x x
769
+ x
770
+ x
771
+ x
772
+ x
773
+
774
+
775
+ (9)
776
+ For shortness, we will omit the initial value at time t=0 in the matrix elements of
777
+ (
778
+
779
+
780
+
781
+
782
+  
783
+
784
+
785
+ '
786
+ '
787
+ ˆ
788
+ ˆ
789
+ 0,
790
+ a
791
+ a
792
+ ss
793
+ ss
794
+ j
795
+ j
796
+
797
+ x
798
+ x
799
+
800
+ , etc.). Using elementary integration yields
801
+
802
+ 6
803
+
804
+
805
+
806
+  
807
+
808
+
809
+  
810
+
811
+
812
+
813
+
814
+
815
+
816
+  
817
+
818
+
819
+  
820
+
821
+
822
+
823
+
824
+
825
+
826
+ 0
827
+ ˆ
828
+ ˆ
829
+ ˆ
830
+ ˆ
831
+ ; ,
832
+ a
833
+ b
834
+ b
835
+ a
836
+ s s
837
+ ss
838
+ ss
839
+ s s
840
+ ab
841
+ ss
842
+ s
843
+ s
844
+ s
845
+ s
846
+ s
847
+ s
848
+ j
849
+ x
850
+ x
851
+ j
852
+ ie
853
+ K
854
+
855
+
856
+
857
+
858
+
859
+
860
+
861
+
862
+
863
+
864
+
865
+
866
+
867
+
868
+
869
+
870
+
871
+
872
+
873
+
874
+
875
+   
876
+
877
+
878
+
879
+
880
+
881
+
882
+
883
+
884
+
885
+
886
+
887
+ 
888
+ x
889
+ x
890
+ x
891
+ x
892
+ x x
893
+
894
+ (10)
895
+
896
+ Introducing the following change
897
+ ,
898
+ s
899
+ s s
900
+ s
901
+  
902
+
903
+  in the second term of Equation (10) and
904
+ using the relation
905
+  
906
+
907
+
908
+
909
+
910
+  
911
+
912
+
913
+ '
914
+ '
915
+ '
916
+ ˆ
917
+ ˆ
918
+ /
919
+ a
920
+ s
921
+ s
922
+ a
923
+ ss
924
+ ss
925
+ j
926
+ ie
927
+ x
928
+
929
+
930
+
931
+
932
+ x
933
+ x
934
+ , the latter can be written as
935
+
936
+
937
+  
938
+
939
+
940
+  
941
+
942
+
943
+
944
+
945
+
946
+  
947
+  
948
+
949
+ 0
950
+ 0
951
+ ˆ
952
+ ˆ
953
+ 1
954
+ ; ,
955
+ a
956
+ b
957
+ ss
958
+ s s
959
+ ab
960
+ ss
961
+ s s
962
+ s
963
+ s
964
+ s
965
+ s
966
+ s
967
+ s
968
+ j
969
+ j
970
+ K
971
+ i
972
+
973
+
974
+
975
+
976
+
977
+
978
+
979
+
980
+
981
+
982
+  
983
+
984
+
985
+
986
+
987
+   
988
+
989
+
990
+
991
+
992
+ 
993
+ x
994
+ x
995
+ x x
996
+
997
+ (11)
998
+ where
999
+
1000
+
1001
+
1002
+
1003
+ /
1004
+ 0
1005
+ ( )
1006
+ 1/
1007
+ 1
1008
+ B
1009
+ k T
1010
+ ss
1011
+ f
1012
+ e
1013
+  
1014
+
1015
+
1016
+
1017
+
1018
+
1019
+
1020
+ denotes the Fermi-distribution and  is the
1021
+ electrochemical potential. The electrochemical potential is defined here by the concentration
1022
+ of electrons/holes according to the following relation;
1023
+
1024
+
1025
+ 2
1026
+ 1
1027
+ 0
1028
+ /
1029
+ F
1030
+ n
1031
+ v
1032
+
1033
+
1034
+
1035
+
1036
+ [37-40]. This
1037
+ potential vanishes for a perfectly clean graphene at zero temperature [16] and may be
1038
+ effectively controlled via the gate voltage [37-40].
1039
+
1040
+ Because of the Hermittivity nature of the current operator, we have
1041
+  
1042
+
1043
+
1044
+  
1045
+
1046
+
1047
+ ˆ
1048
+ ˆ
1049
+ b
1050
+ b
1051
+ s s
1052
+ ss
1053
+ j
1054
+ j
1055
+
1056
+
1057
+
1058
+ x
1059
+ x
1060
+ where the upper asterisk denotes complex conjugate. Therefore, one
1061
+ can also write Equation (11) in the . compact form
1062
+
1063
+
1064
+  
1065
+  
1066
+
1067
+
1068
+ ; , '
1069
+ 0
1070
+ ab
1071
+ ab
1072
+ ab
1073
+ i
1074
+ K
1075
+
1076
+
1077
+
1078
+  
1079
+
1080
+  
1081
+ x x
1082
+ (12)
1083
+ where
1084
+  
1085
+  
1086
+
1087
+
1088
+  
1089
+
1090
+
1091
+
1092
+
1093
+
1094
+
1095
+
1096
+
1097
+
1098
+
1099
+
1100
+
1101
+ '
1102
+ ˆ
1103
+ ˆ
1104
+ .
1105
+ a
1106
+ b
1107
+ ss
1108
+ s s
1109
+ ab
1110
+ s
1111
+ s
1112
+ s
1113
+ s
1114
+ s
1115
+ s
1116
+ j
1117
+ j
1118
+ f
1119
+ f
1120
+
1121
+
1122
+
1123
+
1124
+
1125
+
1126
+
1127
+
1128
+
1129
+
1130
+
1131
+
1132
+
1133
+
1134
+
1135
+
1136
+ 
1137
+ x
1138
+ x
1139
+
1140
+ (13)
1141
+
1142
+
1143
+ 2.2. Zigzag edges
1144
+
1145
+ In this Subsection we will apply the general result to the edge of a zigzag type. The electronic
1146
+ properties of the ribbon are described by the model of Dirac fermions corresponding to a
1147
+ tight-binding model on a two-dimensional honeycomb lattice [16,25,48]. We will use the
1148
+ zigzag-type of boundary conditions for Dirac fermions on a terminated (finite) lattice derived
1149
+ in [16,25,48], since it was demonstrated that this type of boundary condition can be generally
1150
+ applied to a terminated honeycomb lattice in the case of electron-hole symmetry [25]).
1151
+ The A and B atoms are coupled in every spinor modes. From physical point of view,
1152
+ the interpretation of electronic transport may be considered as a motion from A atoms to B
1153
+ ones and vice versa, while A-A and B-B motions are forbidden. The electron transport for a
1154
+ zigzag edge in valleys K and K’ is independent and will be considered separately. The wave
1155
+ function is expressed as a linear combination of the eigen 4D spinors
1156
+
1157
+
1158
+ 7
1159
+
1160
+ The pseudo-spinor modes for valley K have the following form;
1161
+
1162
+
1163
+
1164
+
1165
+
1166
+
1167
+
1168
+  
1169
+  
1170
+ ,
1171
+ (
1172
+ )
1173
+ ,
1174
+ ,
1175
+ ,
1176
+ ,
1177
+ 0
1178
+ 0
1179
+ 0
1180
+ 0
1181
+ y
1182
+ s
1183
+ A s
1184
+ s
1185
+ i k y
1186
+ t
1187
+ B s
1188
+ s
1189
+ Ks
1190
+ t
1191
+ u
1192
+ x
1193
+ t
1194
+ v
1195
+ x
1196
+ t
1197
+ e
1198
+
1199
+
1200
+
1201
+
1202
+
1203
+
1204
+
1205
+
1206
+
1207
+
1208
+
1209
+
1210
+
1211
+
1212
+
1213
+
1214
+
1215
+
1216
+
1217
+
1218
+
1219
+
1220
+
1221
+
1222
+
1223
+
1224
+
1225
+
1226
+
1227
+
1228
+
1229
+
1230
+
1231
+
1232
+ x
1233
+ x
1234
+ Ψ
1235
+ x
1236
+ (14a)
1237
+
1238
+
1239
+
1240
+
1241
+
1242
+
1243
+  
1244
+  
1245
+ (
1246
+ )
1247
+ ,
1248
+ ,
1249
+ 0
1250
+ 0
1251
+ 0
1252
+ 0
1253
+ ,
1254
+ ,
1255
+ ,
1256
+ y
1257
+ s
1258
+ i k y
1259
+ t
1260
+ K s
1261
+ A s
1262
+ s
1263
+ B s
1264
+ s
1265
+ t
1266
+ e
1267
+ t
1268
+ u
1269
+ x
1270
+ t
1271
+ v
1272
+ x
1273
+
1274
+
1275
+
1276
+
1277
+
1278
+
1279
+
1280
+
1281
+
1282
+
1283
+
1284
+
1285
+
1286
+
1287
+
1288
+
1289
+
1290
+
1291
+
1292
+
1293
+
1294
+ 
1295
+
1296
+
1297
+
1298
+
1299
+
1300
+
1301
+
1302
+
1303
+
1304
+ 
1305
+
1306
+
1307
+
1308
+
1309
+
1310
+ Ψ
1311
+ x
1312
+ x
1313
+ x
1314
+
1315
+ (14b)
1316
+
1317
+
1318
+
1319
+ The functions  
1320
+  
1321
+ ,
1322
+ u x
1323
+ v x in the valley K (and in K’ respectively) take the following form for
1324
+ bulk and edge states
1325
+
1326
+  
1327
+  
1328
+  
1329
+  
1330
+  
1331
+  
1332
+  
1333
+  
1334
+ 1
1335
+ sin
1336
+ 2
1337
+ 2
1338
+ 1
1339
+ sinh
1340
+ 2
1341
+ 2
1342
+ 1
1343
+ sin
1344
+ 2
1345
+ 2
1346
+ 1
1347
+ sinh
1348
+ 2
1349
+ 2
1350
+ Bulk
1351
+ b
1352
+ s
1353
+ s
1354
+ p
1355
+ px
1356
+ Edge
1357
+ e
1358
+ s
1359
+ s
1360
+ p
1361
+ Bulk
1362
+ b
1363
+ s
1364
+ s
1365
+ p
1366
+ px
1367
+ Edge
1368
+ e
1369
+ s
1370
+ s
1371
+ p
1372
+ L
1373
+ u
1374
+ x
1375
+ u
1376
+ x
1377
+ i
1378
+ B
1379
+ x
1380
+ lL
1381
+ L
1382
+ u
1383
+ x
1384
+ u
1385
+ x
1386
+ B
1387
+ x
1388
+ lL
1389
+ L
1390
+ v
1391
+ x
1392
+ v
1393
+ x
1394
+ B
1395
+ x
1396
+ lL
1397
+ L
1398
+ v
1399
+ x
1400
+ v
1401
+ x
1402
+ i
1403
+ B
1404
+ x
1405
+ lL
1406
+
1407
+
1408
+
1409
+
1410
+
1411
+
1412
+
1413
+
1414
+
1415
+
1416
+
1417
+
1418
+
1419
+
1420
+
1421
+
1422
+
1423
+
1424
+
1425
+
1426
+  
1427
+
1428
+
1429
+
1430
+
1431
+  
1432
+
1433
+  
1434
+
1435
+
1436
+
1437
+
1438
+
1439
+
1440
+  
1441
+
1442
+  
1443
+
1444
+
1445
+
1446
+  
1447
+
1448
+  
1449
+
1450
+
1451
+
1452
+
1453
+ 
1454
+
1455
+
1456
+
1457
+ 
1458
+
1459
+
1460
+
1461
+
1462
+
1463
+
1464
+  
1465
+
1466
+
1467
+
1468
+
1469
+
1470
+
1471
+
1472
+  
1473
+
1474
+ 
1475
+
1476
+ (14c)
1477
+
1478
+
1479
+
1480
+ where,
1481
+
1482
+
1483
+
1484
+ 1
1485
+ sin 2
1486
+ 1
1487
+ 2
1488
+ px
1489
+ b
1490
+ s
1491
+ px
1492
+ L
1493
+ B
1494
+ L
1495
+
1496
+
1497
+
1498
+
1499
+
1500
+
1501
+
1502
+
1503
+
1504
+
1505
+
1506
+
1507
+  (14d)
1508
+
1509
+
1510
+
1511
+
1512
+ 1
1513
+ 1
1514
+ 2
1515
+ sinh 2
1516
+ 1
1517
+ 2
1518
+ L
1519
+ e
1520
+ s
1521
+ L
1522
+ B
1523
+ e
1524
+ L
1525
+
1526
+
1527
+
1528
+
1529
+
1530
+
1531
+
1532
+
1533
+
1534
+
1535
+
1536
+
1537
+ (14e)
1538
+
1539
+
1540
+
1541
+
1542
+ where l represents the normalization length in the y-direction (which goes to infinity in the
1543
+ final result),
1544
+ sA is a normalization constant,
1545
+ ,
1546
+ y
1547
+ xp
1548
+ k k
1549
+ are the wavenumbers which are defined
1550
+ by the dispersive relation
1551
+
1552
+
1553
+ 2
1554
+ xp
1555
+ ik L
1556
+ y
1557
+ xp
1558
+ y
1559
+ xp
1560
+ k
1561
+ ik
1562
+ k
1563
+ ik
1564
+ e
1565
+
1566
+
1567
+
1568
+
1569
+ and
1570
+
1571
+
1572
+ ,
1573
+ y
1574
+ s
1575
+ p k
1576
+
1577
+ is the combinative
1578
+ discrete-continuous index (p is the discrete number with respect to the x-axis and
1579
+ yk is the
1580
+
1581
+ 8
1582
+
1583
+ continuous wave-number over the y-axis). This dispersion relation has an infinite number of
1584
+ real roots with a single point of concentration at infinity (confined modes) and one imaginary
1585
+ root that corresponds to the edge state [16]. Transformation to the edge state from confined
1586
+ modes in Equations (14a)-(14e) and characteristic equation may be done via exchange
1587
+ px
1588
+
1589
+
1590
+
1591
+ .The two signs in (14) correspond to electrons and holes respectively. As one can see
1592
+ Eq. (14) satisfies the Dirac equation and is subject to the following boundary conditions;
1593
+
1594
+
1595
+
1596
+
1597
+ /2
1598
+ /2
1599
+ 0
1600
+ s
1601
+ s
1602
+ u
1603
+ L
1604
+ v
1605
+ L
1606
+
1607
+
1608
+
1609
+ [48].The components u(x) and v(x) are separately orthogonal, while
1610
+ non-orthogonal mutually due to their coupling over electron motion between the atoms of A
1611
+ and B sub-lattices. Since the expression for the ac-conductivity with a zigzag edge is
1612
+ isotropic, we have
1613
+
1614
+
1615
+
1616
+
1617
+ ; ,
1618
+ ; ,
1619
+ ab
1620
+ ab
1621
+ K
1622
+ K
1623
+
1624
+
1625
+
1626
+
1627
+
1628
+
1629
+ x x
1630
+ x x ,where the general susceptibility is
1631
+
1632
+
1633
+
1634
+  
1635
+  
1636
+
1637
+
1638
+ 1
1639
+ ; , '
1640
+ 0
1641
+ K
1642
+ i
1643
+
1644
+
1645
+
1646
+
1647
+  
1648
+
1649
+  
1650
+ x x
1651
+ ,
1652
+
1653
+
1654
+ with
1655
+  
1656
+  
1657
+
1658
+
1659
+  
1660
+
1661
+
1662
+
1663
+
1664
+
1665
+
1666
+
1667
+
1668
+
1669
+
1670
+
1671
+
1672
+ '
1673
+ ˆ
1674
+ ˆ
1675
+ ss
1676
+ s s
1677
+ s
1678
+ s
1679
+ s
1680
+ s
1681
+ s
1682
+ s
1683
+ f
1684
+ f
1685
+
1686
+
1687
+
1688
+
1689
+
1690
+
1691
+
1692
+
1693
+
1694
+
1695
+
1696
+
1697
+
1698
+
1699
+
1700
+
1701
+ 
1702
+ j x
1703
+ j x
1704
+ (15)
1705
+ Here represents the matrix element of the current operator, σ denotes the xy-vector of the Pauli
1706
+ matrices,
1707
+ 2
1708
+ 2
1709
+ s
1710
+ F
1711
+ xp
1712
+ y
1713
+ v
1714
+ k
1715
+ k
1716
+   
1717
+
1718
+ is the energy of the s-th state and ,
1719
+ F
1720
+ e v correspond to the
1721
+ electron charge and Fermi velocity respectively.
1722
+
1723
+ The general susceptibility may be presented here as the sum of two components of
1724
+ different
1725
+ origin
1726
+
1727
+
1728
+
1729
+
1730
+
1731
+
1732
+ ; , '
1733
+ ; , '
1734
+ ; , '
1735
+ Inter
1736
+ Intra
1737
+ K
1738
+ K
1739
+ K
1740
+
1741
+
1742
+
1743
+
1744
+
1745
+ x x
1746
+ x x
1747
+ x x
1748
+ ,
1749
+ where
1750
+
1751
+
1752
+  
1753
+ 1
1754
+ ; , '
1755
+ Inter
1756
+ K
1757
+ i
1758
+
1759
+
1760
+
1761
+
1762
+  
1763
+
1764
+ x x
1765
+ corresponds to the interband motion which may be ignored
1766
+ omitted for rather low (THz) frequencies. The second term
1767
+
1768
+
1769
+  
1770
+ 1
1771
+ ; , '
1772
+ 0
1773
+ Intra
1774
+ K
1775
+ i
1776
+
1777
+ 
1778
+
1779
+
1780
+ x x
1781
+ corresponds to the intraband motion and leads to the common conductivity law
1782
+  
1783
+    
1784
+ Intra
1785
+ i
1786
+ x
1787
+
1788
+  
1789
+ j x
1790
+ E x , where the surface conductance is found by substituting the
1791
+ pseudospinor modes (14) into (15), which renders
1792
+  
1793
+
1794
+
1795
+
1796
+
1797
+  
1798
+  
1799
+
1800
+
1801
+ 2
1802
+ 2
1803
+ 2
1804
+ 2
1805
+ ( )
1806
+ 2
1807
+ 0
1808
+ s
1809
+ n
1810
+ y
1811
+ Intra
1812
+ F
1813
+ s
1814
+ s
1815
+ y
1816
+ n
1817
+ k
1818
+ ie v
1819
+ f
1820
+ x
1821
+ u
1822
+ x
1823
+ v
1824
+ x
1825
+ dk
1826
+ i
1827
+  
1828
+
1829
+
1830
+
1831
+
1832
+
1833
+
1834
+
1835
+
1836
+
1837
+ 
1838
+
1839
+  
1840
+
1841
+
1842
+
1843
+
1844
+
1845
+
1846
+
1847
+ (16)
1848
+
1849
+ (for details of deriving Equation (16) see Appendix A). The explicit expression for the
1850
+ conductivity given in (16) is spatially inhomogeneous (x-depended) and is a manifestation of
1851
+ edge effect and incorporating a self-consistent description.
1852
+ 2.3. Approximation for zero temperature.
1853
+ Let us next consider the important case of the conductance at zero temperature, which opens
1854
+ the way for further simplification of Equation (16). In this case the Fermi distribution may be
1855
+ replaced by a step function and its derivative in (16) can be transformed into a Dirac delta
1856
+ function
1857
+
1858
+
1859
+ /
1860
+ f
1861
+
1862
+  
1863
+
1864
+
1865
+   
1866
+
1867
+ , which allows an integration of (16). Performing the integration
1868
+ in
1869
+
1870
+
1871
+ 9
1872
+
1873
+
1874
+
1875
+
1876
+
1877
+
1878
+
1879
+
1880
+
1881
+
1882
+
1883
+ Figure 2. Illustration with respect to the zero-temperature approximation. Black lines correspond to
1884
+ confined modes, red line corresponds to the edge mode, and blue line corresponds to the first confined
1885
+ mode. The black point corresponds to the critical wavenumber in which the mutual transformation of
1886
+ edge mode to the first confined mode takes place. Dotted horizontal line corresponds to the given
1887
+ electrochemical potential. The values
1888
+ yn
1889
+ k
1890
+ denote the roots of Equation (17).
1891
+
1892
+ possible in terms of the discrete number of roots of the following transcendental equation
1893
+
1894
+
1895
+ yk
1896
+
1897
+
1898
+
1899
+ ( qualitatively depicted in Figure 2), which may be also written as
1900
+
1901
+
1902
+ 2
1903
+ 2
1904
+ 2
1905
+ 2
1906
+ tg
1907
+ yn
1908
+ yn
1909
+ yn
1910
+ k
1911
+ k
1912
+ L
1913
+ k
1914
+
1915
+
1916
+
1917
+
1918
+
1919
+ (17)
1920
+ The value
1921
+ /
1922
+ F
1923
+ v
1924
+
1925
+
1926
+
1927
+ means normalizing the electrochemical potential by the electron energy.
1928
+ The corresponding edge mode may be obtained by the formal exchange
1929
+ yn
1930
+ k
1931
+ ik
1932
+
1933
+ (such root
1934
+ exists only under special conditions). For the integration over
1935
+ yk we use the following
1936
+ property of the Dirac delta-function
1937
+
1938
+
1939
+
1940
+  
1941
+
1942
+
1943
+
1944
+
1945
+
1946
+ yn
1947
+ y
1948
+ y
1949
+ y
1950
+ n
1951
+ yn
1952
+ F k
1953
+ k
1954
+ F k
1955
+ dk
1956
+ k
1957
+  
1958
+
1959
+
1960
+
1961
+ 
1962
+
1963
+
1964
+
1965
+
1966
+
1967
+
1968
+ (18)
1969
+
1970
+ where
1971
+
1972
+
1973
+ yk
1974
+ 
1975
+ denotes the y-component of the group velocity of pseudospin (prime means the
1976
+ derivative). The final explicit result for the conductivity can be written as
1977
+  
1978
+
1979
+
1980
+
1981
+
1982
+ 2
1983
+ 1
1984
+ 2
1985
+ 2
1986
+ 2
1987
+ 2
1988
+ 2
1989
+ 2
1990
+ 1
1991
+ 2
1992
+ 2
1993
+ sin
1994
+ sin
1995
+ 2
1996
+ 2
1997
+ 0
1998
+ N
1999
+ n
2000
+ yn
2001
+ yn
2002
+ n
2003
+ yn
2004
+ Intra
2005
+ B
2006
+ L
2007
+ L
2008
+ k
2009
+ x
2010
+ k
2011
+ x
2012
+ L
2013
+ k
2014
+ e
2015
+ x
2016
+ i
2017
+ i
2018
+
2019
+
2020
+
2021
+
2022
+
2023
+
2024
+
2025
+
2026
+
2027
+
2028
+
2029
+
2030
+
2031
+
2032
+
2033
+
2034
+
2035
+
2036
+
2037
+
2038
+
2039
+
2040
+
2041
+
2042
+
2043
+
2044
+
2045
+
2046
+
2047
+
2048
+
2049
+
2050
+
2051
+
2052
+
2053
+
2054
+
2055
+
2056
+
2057
+
2058
+
2059
+
2060
+
2061
+
2062
+
2063
+
2064
+
2065
+
2066
+
2067
+ (19)
2068
+
2069
+ kynL
2070
+ kynL
2071
+
2072
+
2073
+
2074
+ 20
2075
+ 18
2076
+ 16
2077
+ 14
2078
+ 12
2079
+ 10
2080
+ 8
2081
+ 6
2082
+ 4
2083
+ 2
2084
+ 0
2085
+ -25
2086
+ -20
2087
+ -15
2088
+ -10
2089
+ -5
2090
+ 0
2091
+ 5
2092
+ 10
2093
+ 15
2094
+ 20
2095
+ 25
2096
+ k,L10
2097
+
2098
+ The values of
2099
+ yn
2100
+ k depend on the electrochemical potential and satisfy the characteristic
2101
+ Equation (17). The normalized coefficients
2102
+ n
2103
+ B in (19) are defined by
2104
+
2105
+
2106
+
2107
+
2108
+ 1
2109
+ 2
2110
+ 2
2111
+ 2
2112
+ 2
2113
+ 2
2114
+ 2
2115
+ sin 2
2116
+ 1
2117
+ 2
2118
+ 2
2119
+ yn
2120
+ n
2121
+ n
2122
+ n
2123
+ yn
2124
+ yn
2125
+ k L
2126
+ B
2127
+ L
2128
+ k
2129
+ k L
2130
+
2131
+
2132
+
2133
+
2134
+
2135
+
2136
+
2137
+
2138
+
2139
+
2140
+
2141
+
2142
+
2143
+
2144
+
2145
+
2146
+
2147
+
2148
+
2149
+
2150
+
2151
+
2152
+ (20)
2153
+ Equation (19) may be finally transformed to
2154
+  
2155
+
2156
+
2157
+  
2158
+
2159
+
2160
+ 2
2161
+ 1
2162
+ 2
2163
+ 2
2164
+ 2
2165
+ 2
2166
+ 2
2167
+ 2
2168
+ 1
2169
+ 2
2170
+ 2
2171
+ 1
2172
+ sin
2173
+ sin
2174
+ 2
2175
+ 2
2176
+ 1
2177
+ 2
2178
+ 0
2179
+ N
2180
+ yn
2181
+ yn
2182
+ n
2183
+ yn
2184
+ Intra
2185
+ L
2186
+ L
2187
+ L
2188
+ k
2189
+ x
2190
+ k
2191
+ x
2192
+ k
2193
+ L
2194
+ e
2195
+ x
2196
+ i
2197
+ i
2198
+
2199
+
2200
+
2201
+
2202
+
2203
+
2204
+
2205
+
2206
+
2207
+
2208
+
2209
+
2210
+
2211
+
2212
+
2213
+
2214
+
2215
+
2216
+
2217
+
2218
+
2219
+
2220
+
2221
+
2222
+
2223
+
2224
+
2225
+
2226
+
2227
+
2228
+
2229
+
2230
+
2231
+
2232
+
2233
+
2234
+
2235
+
2236
+
2237
+
2238
+
2239
+
2240
+
2241
+
2242
+
2243
+
2244
+
2245
+
2246
+
2247
+
2248
+ (21)
2249
+ (for details see Appendix B).
2250
+ 2.4. The limit of an infinite sheet.
2251
+ In this Subsection we show that our model reduces to the familiar Drude relation for the
2252
+ conductivity in infinitely wide sheet. Taking the limit L   , and using the following
2253
+ transformation
2254
+
2255
+  
2256
+
2257
+
2258
+  
2259
+ 1
2260
+ 1
2261
+ 2
2262
+ ...
2263
+ 2
2264
+ ...
2265
+ x
2266
+ n
2267
+ L
2268
+ dk
2269
+
2270
+
2271
+
2272
+
2273
+ 
2274
+
2275
+
2276
+
2277
+ . Equation (16) yields
2278
+  
2279
+
2280
+
2281
+
2282
+
2283
+
2284
+
2285
+
2286
+
2287
+
2288
+
2289
+
2290
+
2291
+ 2
2292
+ 2
2293
+ 2
2294
+ 0
2295
+ ( )
2296
+ 1
2297
+ 1
2298
+ 1
2299
+ cos
2300
+ 2
2301
+ cos
2302
+ 2
2303
+ 2
2304
+ 2
2305
+ s
2306
+ n
2307
+ y
2308
+ Intra
2309
+ F
2310
+ x
2311
+ x
2312
+ x
2313
+ y
2314
+ k
2315
+ ie v
2316
+ x
2317
+ i
2318
+ f
2319
+ k
2320
+ x
2321
+ L
2322
+ k
2323
+ x
2324
+ L
2325
+ dk dk
2326
+  
2327
+
2328
+
2329
+
2330
+
2331
+
2332
+
2333
+
2334
+
2335
+
2336
+
2337
+  
2338
+  
2339
+
2340
+
2341
+
2342
+
2343
+
2344
+
2345
+
2346
+
2347
+
2348
+
2349
+
2350
+
2351
+
2352
+
2353
+  
2354
+
2355
+ (22)
2356
+ Introducing the polar variables
2357
+ sin
2358
+ xk
2359
+
2360
+
2361
+ ,
2362
+ cos
2363
+ yk
2364
+
2365
+
2366
+ , we obtain
2367
+ x
2368
+ y
2369
+ dk dk
2370
+ d d
2371
+  
2372
+
2373
+  . Using the
2374
+ zero temperature approximation, we exchange the Fermi-distribution derivative by the Dirac
2375
+ delta-function and integrate over  , so that Equation (22) becomes
2376
+  
2377
+
2378
+
2379
+
2380
+
2381
+
2382
+
2383
+
2384
+
2385
+
2386
+
2387
+ 2
2388
+ 2
2389
+ 2
2390
+ 2
2391
+ 0
2392
+ 2
2393
+ 0
2394
+ 1
2395
+ 1
2396
+ 1
2397
+ cos
2398
+ 2
2399
+ cos
2400
+ cos
2401
+ 2
2402
+ cos
2403
+ 2
2404
+ 2
2405
+ Intra
2406
+ ie
2407
+ x
2408
+ i
2409
+ x
2410
+ L
2411
+ x
2412
+ L
2413
+ d
2414
+
2415
+
2416
+
2417
+
2418
+
2419
+
2420
+
2421
+
2422
+
2423
+
2424
+
2425
+
2426
+
2427
+
2428
+  
2429
+
2430
+
2431
+
2432
+
2433
+
2434
+
2435
+
2436
+
2437
+ (23)
2438
+ Furthermore, using the addtion theorem for Bessel functions [49]
2439
+  
2440
+ cos
2441
+ i
2442
+ m
2443
+ im
2444
+ m
2445
+ m
2446
+ e
2447
+ i
2448
+ J
2449
+ e
2450
+
2451
+
2452
+
2453
+
2454
+
2455
+
2456
+ 
2457
+  
2458
+ (24)
2459
+ we integrate (23) and obtain
2460
+
2461
+ 11
2462
+
2463
+  
2464
+
2465
+
2466
+
2467
+
2468
+
2469
+
2470
+
2471
+
2472
+
2473
+
2474
+ 2
2475
+ 0
2476
+ 0
2477
+ 2
2478
+ 1
2479
+ 1
2480
+ 1
2481
+ 2
2482
+ 2
2483
+ 0
2484
+ 2
2485
+ 2
2486
+ Intra
2487
+ ie
2488
+ x
2489
+ J
2490
+ x
2491
+ L
2492
+ J
2493
+ x
2494
+ L
2495
+ i
2496
+
2497
+
2498
+
2499
+
2500
+
2501
+
2502
+
2503
+
2504
+
2505
+
2506
+
2507
+
2508
+
2509
+
2510
+
2511
+
2512
+
2513
+  (25)
2514
+ If the observation point x (of under the assumption of large L), is placed rather far from the
2515
+ edges, the arguments of Bessel functions become large, so that the asymptotic relations [49] .
2516
+ In this case, the last two terms in (25) become indefinitely small. The first term, which is
2517
+ exactly equal to the Drude conductivity
2518
+
2519
+
2520
+ 2
2521
+ 2
2522
+ /
2523
+ 0
2524
+ Drude
2525
+ G
2526
+ ie
2527
+ i
2528
+  
2529
+
2530
+
2531
+
2532
+ , becomes dominate over the
2533
+ whole area of the ribbon excluding the narrow vicinities of the edges. Thus, it is
2534
+ demonstrated that in this limit our model asymptotically reduces to the classical expression
2535
+ for the Drude conductivity.
2536
+ 2.5. Optical conductance for the edge with infinite-mass boundary condition
2537
+
2538
+ This problem is of special interest in connection with a suspended sheet. The interaction
2539
+ between the edges of the sheet with the electrodes, results in the creation of electrostatic
2540
+ potential. Following [13], the electron-hole symmetry, which is generally restricted for
2541
+ boundary conditions of a zigzag or armchair types is broken. It may be considered as a
2542
+ manifestation of a staggered potential at zigzag boundaries, which may change the nature of
2543
+ the boundary condition. For, infinitely large value of potential it leads to an “infinite-mass”
2544
+ boundary condition, which may be written as
2545
+
2546
+
2547
+
2548
+
2549
+ /2
2550
+ /2
2551
+ s
2552
+ s
2553
+ u
2554
+ L
2555
+ v
2556
+ L
2557
+
2558
+  
2559
+
2560
+ . The corresponding
2561
+ eigen pseudospins are then given by Equation (14) with
2562
+
2563
+  
2564
+
2565
+
2566
+ 2
2567
+ 2
2568
+ 1
2569
+ 1
2570
+ 2 2
2571
+ s
2572
+ s
2573
+ xn
2574
+ xn
2575
+ i k
2576
+ x
2577
+ i k
2578
+ x
2579
+ n
2580
+ su
2581
+ x
2582
+ e
2583
+ e
2584
+ L
2585
+
2586
+
2587
+
2588
+
2589
+
2590
+
2591
+
2592
+
2593
+
2594
+
2595
+
2596
+
2597
+
2598
+
2599
+
2600
+
2601
+
2602
+
2603
+
2604
+
2605
+  
2606
+
2607
+
2608
+
2609
+
2610
+
2611
+
2612
+ (26)
2613
+  
2614
+
2615
+
2616
+ 2
2617
+ 2
2618
+ 1
2619
+ 1
2620
+ 2 2
2621
+ s
2622
+ s
2623
+ xn
2624
+ xn
2625
+ i k
2626
+ x
2627
+ i k
2628
+ x
2629
+ n
2630
+ sv
2631
+ x
2632
+ e
2633
+ e
2634
+ L
2635
+
2636
+
2637
+
2638
+
2639
+
2640
+
2641
+
2642
+
2643
+
2644
+
2645
+
2646
+
2647
+
2648
+
2649
+
2650
+
2651
+
2652
+
2653
+
2654
+
2655
+  
2656
+
2657
+
2658
+
2659
+
2660
+
2661
+
2662
+ (27)
2663
+ where
2664
+ /
2665
+ xn
2666
+ k
2667
+ n
2668
+ L
2669
+
2670
+
2671
+ and
2672
+ 2
2673
+ 2
2674
+ s
2675
+ y
2676
+ xn
2677
+ i
2678
+ y
2679
+ xn
2680
+ k
2681
+ ik
2682
+ e
2683
+ k
2684
+ k
2685
+
2686
+
2687
+
2688
+
2689
+ .
2690
+ In order to calculate the conductance, we use the Kubo approach with the pseudo spinors
2691
+ defined in (26) and (27). The difference from the zigzag edge formulation, is due to the lack
2692
+ of orthogonality inf (26) and (27), which leads to a non-local conductance (spatial
2693
+ dispersion). The conductance operator does not add up to the convolution form because of the
2694
+ non-homogeneity of the finite-length structure. In the case of a rather wide sheet the non-
2695
+ local component becomes relatively small and may be usually ignored. In this particular case
2696
+ the conductance relates to Equation (16) with the pseudospins given given in (26) and (27).
2697
+
2698
+ 3. Numerical results and discussion
2699
+ The optical properties of graphene are generally defined by the geometrical size of the sample
2700
+ and the value of the electrochemical potential. These parameters may vary over a wide range
2701
+ and thus are of practical interest to nanoantenna design. The recent advances in graphene
2702
+ technology make it possible to produce graphene samples from few nanometers to few
2703
+ centimeters [6,7,21]. The electrochemical potential may also vary over the interval 0
2704
+ 1.0
2705
+
2706
+
2707
+
2708
+ eV, by doping the sample or by applying gate voltage [6,7,21]. In this Section we will
2709
+
2710
+ 12
2711
+
2712
+ present some numerical results of conductivity simulations for a wide range of physical
2713
+ parameters, based on the theory developed above.
2714
+
2715
+ One of the main results of the present study according to Equations (16) and (19), is
2716
+ that the non-homogeneity of conductance is mainly due to the edge effects. The conductance
2717
+ distribution is controlled by the parameter
2718
+ /
2719
+ F
2720
+ L
2721
+ L
2722
+ v
2723
+
2724
+
2725
+
2726
+ , which defines the number of modes
2727
+ supported by the conductance value. Figures 3-5 present the normalized conductance
2728
+ distribution for a rather large length
2729
+ 800
2730
+ L 
2731
+ nm and for different values of the
2732
+ electrochemical potential (increasing  corresponds to increasing number of modes). The
2733
+ qualitative behavior of the conductance is the same in all these Figures. The conductance
2734
+ oscillates with respect to the spatial variable and decreases near the edges. The amplitude and
2735
+ period of oscillations decrease with increasing of the electrochemical potential  . The
2736
+ average value of the conductance (to a high degree of accuracy), corresponds to the classical
2737
+ Drude model of conductivity, as discussed in Section 2.4. One can anticipate that such small
2738
+ oscillations are unable to manifest themselves in the scattering of electromagnetic waves, due
2739
+ to the smallness of their period compared with the wavelength. Thus, we may conclude that
2740
+ the Drude model can be applied for this range of parameters.
2741
+ The considered scenario changes dramatically with shortening of the sheet, as shown
2742
+ in Figures 6-8 (each Figure corresponds to a different value of the length for the same value
2743
+ of electrochemical potential). One can clearly see the enhancement of oscillations, which
2744
+ makes the Drude model invalid for such values of parameters. In fact, it becomes impossible
2745
+ to introduce the conductivity concept in its ordinary meaning. As it was mentioned above, the
2746
+ value defined by Equation (16) has the meaning of optical conductance, which strongly
2747
+ depend on the geometrical size of the sheet. It may be coupled with Drude conductivity by
2748
+ the Relation
2749
+
2750
+
2751
+  
2752
+  
2753
+ 1
2754
+ Drude
2755
+ Intra
2756
+ x
2757
+ L
2758
+ x
2759
+ G
2760
+
2761
+
2762
+
2763
+
2764
+ (28)
2765
+ where
2766
+
2767
+  
2768
+  
2769
+
2770
+
2771
+ 2
2772
+ 1
2773
+ 2
2774
+ 2
2775
+ 2
2776
+ 2
2777
+ 2
2778
+ 2
2779
+ 1
2780
+ 1
2781
+ sin
2782
+ sin
2783
+ 2
2784
+ 2
2785
+ 1
2786
+ N
2787
+ yn
2788
+ yn
2789
+ n
2790
+ yn
2791
+ L
2792
+ L
2793
+ x
2794
+ k
2795
+ x
2796
+ k
2797
+ x
2798
+ k
2799
+ L
2800
+
2801
+
2802
+
2803
+
2804
+
2805
+
2806
+
2807
+
2808
+
2809
+
2810
+
2811
+
2812
+
2813
+
2814
+
2815
+
2816
+
2817
+
2818
+
2819
+
2820
+
2821
+
2822
+
2823
+
2824
+
2825
+
2826
+
2827
+
2828
+
2829
+
2830
+
2831
+
2832
+
2833
+
2834
+
2835
+
2836
+
2837
+
2838
+
2839
+
2840
+
2841
+
2842
+
2843
+
2844
+
2845
+ (29)
2846
+
2847
+
2848
+ is x-dependent coefficient, in which the configuration of the sample manifests itself. The
2849
+ situation is rather similar to the electron transport in graphene in dc field (the concepts of
2850
+ conductance and conductivity discussed and compared in [16,50]).
2851
+ The physical mechanism for the conductivity oscillations is the interference between
2852
+ the pseudospin modes due to the reflection from the sheet boundaries. The important features
2853
+ are demonstrated in the single-mode conductance (Figures 6 (a),(b)). For the rather small
2854
+ electrochemical potential the active mode is an edge type. The sign of the conductance is
2855
+ negative, which corresponds to its inductive origin. The increase in the electrochemical
2856
+ potential leads to the transformation from inductive to capacitive one (sign exchange) due to
2857
+ the transformation from the edge mode to the bulk one.
2858
+ As one can see, the conductivity of a graphene sheet changes its qualitative behavior
2859
+ for rather small values of length. However, graphene antennas generally exhibit a resonate
2860
+ behavior at much lower frequencies as well as their metallic counterparts, which is
2861
+ experimentally implemented in the THz range [43,45,46,51]. Thus one can effectively exploit
2862
+ the electrically tunable conductance of graphene exactly for such small sizes, where the
2863
+ conventional models of conductivity become invalid due to the importance of edge effects. In
2864
+
2865
+ 13
2866
+
2867
+ summary, it is important to note that including edge effects in the physical modeling, opens a
2868
+ new way for electrical controlling of resonant graphene antennas via the overturned
2869
+ electrochemical potential by means of the gate voltage. In some cases where the
2870
+ electrochemical potential varies adiabatically slow in time, it will also produce a modulation
2871
+ of the THz emission.
2872
+
2873
+
2874
+
2875
+
2876
+
2877
+
2878
+
2879
+
2880
+
2881
+
2882
+
2883
+
2884
+ Figure 3. The spatial distribution of the conductance in the units
2885
+ /
2886
+ Drude
2887
+ G
2888
+ Ll . L=800nm,  =0.1eV.
2889
+
2890
+ The concept of the optical conductance developed in this paper allows formulating the
2891
+ effective boundary conditions for electromagnetic field at the surface of graphene sheet in the
2892
+ form
2893
+
2894
+
2895
+
2896
+  
2897
+
2898
+ 0
2899
+ 0
2900
+ ,
2901
+ ,
2902
+ ,
2903
+ Drude
2904
+ z
2905
+ z
2906
+ G
2907
+ x
2908
+ 
2909
+ 
2910
+
2911
+
2912
+
2913
+
2914
+
2915
+
2916
+
2917
+ n H
2918
+ H
2919
+ n
2920
+ n E (30)
2921
+
2922
+ Their using leads to modification of integral equations of antenna theory and methods of their
2923
+ solution.
2924
+
2925
+
2926
+
2927
+
2928
+
2929
+
2930
+
2931
+
2932
+
2933
+
2934
+
2935
+
2936
+
2937
+
2938
+
2939
+
2940
+ ?10~3
2941
+ 2.5
2942
+ www
2943
+ 2
2944
+ 0.5
2945
+ o.Drudemodel
2946
+ 0
2947
+ 0.5
2948
+ -0.4
2949
+ 0.3
2950
+ -0.2
2951
+ -0.1
2952
+ 0.1
2953
+ 0.2
2954
+ 0.3
2955
+ 0.4
2956
+ 0.5
2957
+ X/L14
2958
+
2959
+
2960
+
2961
+
2962
+
2963
+
2964
+
2965
+
2966
+
2967
+
2968
+ Figure 4. The spatial distribution of the conductance in the units
2969
+ /
2970
+ Drude
2971
+ G
2972
+ Ll . L=800nm,  =0.5eV.
2973
+
2974
+
2975
+
2976
+
2977
+
2978
+
2979
+
2980
+
2981
+ Figure 5. The spatial distribution of the conductance in the units
2982
+ /
2983
+ Drude
2984
+ G
2985
+ Ll . L=800nm,  =1.0eV.
2986
+
2987
+ The considered scenario changes dramatically with shortening of the sheet, as shown
2988
+ in Figures 6-8 (each Figure corresponds to a different value of the length for the same value
2989
+ of electrochemical potential). One can clearly see the enhancement of oscillations, which
2990
+ makes the Drude model invalid for such values of parameters. In fact, it becomes impossible
2991
+ to introduce the conductivity concept in its ordinary meaning. The value defined by Equation
2992
+ (16), has the meaning of an “effective” conductivity, which strongly depend on the
2993
+ geometrical size of the sheet. The situation is rather similar to attempt to describe the optical
2994
+ properties of semiconductor quantum dots via the dielectric function in the limit of weak
2995
+ conferment [50] (the “effective” dielectric function strongly depends on the sample
2996
+ configuration). The physical mechanism for the conductivity oscillations, is the interference
2997
+ between the pseudospin modes due to the reflection from the sheet boundaries. The important
2998
+ features are demonstrated in the single- mode conductivity (Figures 6 (a), (b)). For the rather
2999
+ small electrochemical potential the active mode is an edge type. The sign of the conductivity
3000
+ is negative, which corresponds to its inductive origin. The increase in the electrochemical
3001
+ potential leads to the transformation from inductive to capacitive one (sign exchange), due to
3002
+ the transformation from the edge mode to the bulk one.
3003
+
3004
+ 12 ×10-3
3005
+ 10
3006
+ 6
3007
+ Drudemodel
3008
+ 5
3009
+ 3
3010
+ -0.4
3011
+ -0.3
3012
+ -0.2
3013
+ -0.1
3014
+ 0
3015
+ 0.1
3016
+ 0.2
3017
+ 0.3
3018
+ 0.4
3019
+ 0.5
3020
+ x/ L2.02
3021
+ 0.018
3022
+ 0.016
3023
+ 0.012
3024
+ 0.01
3025
+ 0.008
3026
+ 0.006
3027
+ 0.004
3028
+ .0.5
3029
+ -0.4
3030
+ -0.3
3031
+ -0.2
3032
+ -0.1
3033
+ 0.1
3034
+ 0.2
3035
+ 0.3
3036
+ 0.4
3037
+ 0.5
3038
+ x/L15
3039
+
3040
+
3041
+
3042
+
3043
+
3044
+
3045
+
3046
+
3047
+
3048
+
3049
+
3050
+
3051
+
3052
+
3053
+
3054
+
3055
+
3056
+
3057
+
3058
+
3059
+
3060
+
3061
+
3062
+
3063
+
3064
+
3065
+
3066
+
3067
+ Figure 6. The spatial distribution of the conductance in the units
3068
+ /
3069
+ Drude
3070
+ G
3071
+ Ll for different values of
3072
+ length and  =0.1 eV; (a) L=2nm (single-mode regime; edge mode); (b) L=10nm (single-mode
3073
+ regime; bulk mode); (c) L=50nm (three-mode regime; all modes are of bulk type).
3074
+ (a)
3075
+ (b)
3076
+ (c)
3077
+
3078
+ 2.5×10-3
3079
+ XX
3080
+ Drude model
3081
+ 2
3082
+ 1.5
3083
+ 0.5
3084
+ -0.5
3085
+ -0.4
3086
+ -0.3
3087
+ -0.2
3088
+ 0.1
3089
+ 0
3090
+ 0.1
3091
+ 0.2
3092
+ 0.3
3093
+ 0.4
3094
+ 0.5
3095
+ X/L0.005
3096
+ 0
3097
+ -0.005
3098
+ -0.01
3099
+ -0.015
3100
+ -0.02
3101
+ XX
3102
+ o.- Drude model
3103
+ -0.025
3104
+ -0.03
3105
+ -0.5
3106
+ -0.4
3107
+ -0.3
3108
+ -0.2
3109
+ -0.1
3110
+ 0
3111
+ 0.1
3112
+ 0.2
3113
+ 0.3
3114
+ 0.4
3115
+ 0.5
3116
+ x/L2.7×10~3
3117
+ 2.6
3118
+ 2.5
3119
+ 2.4
3120
+ 2.3
3121
+ 2.2
3122
+ xX
3123
+ 2.1
3124
+ e--Drude model
3125
+ 2
3126
+ 1.9
3127
+ 1.8
3128
+ -0.5
3129
+ -0.4
3130
+ -0.3
3131
+ -0.2
3132
+ -0.1
3133
+ 0
3134
+ 0.1
3135
+ 0.2
3136
+ 0.3
3137
+ 0.4
3138
+ 0.5
3139
+ X/L16
3140
+
3141
+
3142
+
3143
+
3144
+
3145
+
3146
+
3147
+
3148
+
3149
+
3150
+
3151
+
3152
+
3153
+
3154
+
3155
+
3156
+
3157
+
3158
+
3159
+
3160
+
3161
+
3162
+
3163
+
3164
+
3165
+
3166
+
3167
+
3168
+ Figure 7. The spatial distribution of the conductance in the units
3169
+ /
3170
+ Drude
3171
+ G
3172
+ Ll for different values of
3173
+ length.  =0.3 eV; (a) L=2nm; (b) L=10nm; (c) L=50nm.
3174
+
3175
+ (a)
3176
+ (b)
3177
+ (c)
3178
+
3179
+ 0.015
3180
+ 0.014
3181
+ Drude model
3182
+ 0.013
3183
+ 0.012
3184
+ 0.011
3185
+ 0.01
3186
+ 0.009
3187
+ 0.008
3188
+ 0.007
3189
+ 0.006
3190
+ 0.005
3191
+ -0.5
3192
+ -0.4
3193
+ -0.3
3194
+ -0.2
3195
+ -0.1
3196
+ 0
3197
+ 0.1
3198
+ 0.2
3199
+ 0.3
3200
+ 0.4
3201
+ 0.5
3202
+ x/ L9×10-3
3203
+ 8
3204
+ e--Drudemodel
3205
+ 7
3206
+ 6
3207
+ 5
3208
+ 4
3209
+ 3
3210
+ 1
3211
+ -0.5
3212
+ -0.4
3213
+ -0.3
3214
+ -0.2
3215
+ -0.1
3216
+ 0
3217
+ 0.1
3218
+ 0.2
3219
+ 0.3
3220
+ 0.4
3221
+ 0.5
3222
+ X/ L8
3223
+ 6
3224
+ 5
3225
+ 3
3226
+ 2
3227
+ model
3228
+ -0.4
3229
+ -0.3
3230
+ -0.2
3231
+ -0.1
3232
+ 0
3233
+ 0.1
3234
+ 0.2
3235
+ 0.3
3236
+ 0.4
3237
+ 0.5
3238
+ X/L17
3239
+
3240
+
3241
+
3242
+
3243
+
3244
+
3245
+
3246
+
3247
+
3248
+
3249
+
3250
+
3251
+
3252
+
3253
+
3254
+
3255
+
3256
+
3257
+
3258
+
3259
+
3260
+
3261
+
3262
+
3263
+
3264
+
3265
+
3266
+
3267
+ Figure 8. The spatial distribution of the conductance in the units
3268
+ /
3269
+ Drude
3270
+ G
3271
+ Ll for different values of
3272
+ length.  =1.0 eV; (a) L=2nm; (b) L=10nm; (c) L=50nm.
3273
+
3274
+ (a)
3275
+ (b)
3276
+ (c)
3277
+
3278
+ 0.12
3279
+ Drude model
3280
+ 0.1
3281
+ 0.08
3282
+ 0.06
3283
+ 0.04
3284
+ 0.02.
3285
+ 0.5
3286
+ -0.4
3287
+ -0.3
3288
+ -0.2
3289
+ -0.1
3290
+ 0
3291
+ 0.1
3292
+ 0.2
3293
+ 0.3
3294
+ 0.4
3295
+ 0.5
3296
+ X/ L0.03
3297
+ 0.025
3298
+ 0.02
3299
+ 0.01
3300
+ 0.005
3301
+ Drude model
3302
+ 0.
3303
+ -0.5
3304
+ -0.4
3305
+ -0.3
3306
+ -0.2
3307
+ -0.1
3308
+ 0
3309
+ 0.1
3310
+ 0.2
3311
+ 0.3
3312
+ 0.4
3313
+ 0.5
3314
+ X/L0.03
3315
+ 0.025
3316
+ 0.02
3317
+ 0.015
3318
+ 0.01
3319
+ 0.005
3320
+ Drude
3321
+ %.5
3322
+ -0.4
3323
+ -0.3
3324
+ -0.2
3325
+ -0.1
3326
+ 0
3327
+ 0.1
3328
+ 0.2
3329
+ 0.3
3330
+ 0.4
3331
+ 0.5
3332
+ X/ L18
3333
+
3334
+ 4. Conclusion and outlook
3335
+ The main results of the paper can be summarized as follows:
3336
+
3337
+ 1) We have developed a new theory of interaction of electromagnetic field with graphene
3338
+ sheet for nanoantenna applications in the THz, infrared and optical frequency ranges. The
3339
+ main characteristic feature of our theory is accounting for edge effects in a self-consistent
3340
+ manner. It is based on the concept of optical conductance considered as a general
3341
+ susceptibility and calculated by Kubo approach. The model is based on the concept of
3342
+ Dirac pseudo-spins founded via solving the boundary-value problem for the Dirac
3343
+ equation with the appropriate boundary conditions satisfying the physical model,
3344
+ including edge effects of the sheet;
3345
+ 2) The main manifestation of the importance of edge effects is demonstrated by the
3346
+ inhomogeneity of the optical conductance. The amplitude and period of its oscillations
3347
+ depend on the length of the sheet and on the electrochemical potential. It is defined by the
3348
+ number of pseudo-spin modes supporting the conductance;
3349
+ 3) The developed theory is applied for the simulation of the sheet conductance in a wide
3350
+ range of sample parameters ( length 2.1nm – 800nm and electrochemical potential 0.1 –
3351
+ 1.0 eV). It is shown, that for a length exceeding 800nm our model and the widely used
3352
+ Drude model of conductivity agree to a high degree of accuracy. However, for small
3353
+ geometric sizes (i.e., smaller than 50nm), the physical picture of conductivity with respect
3354
+ to the Drude model changes dramatically due to the influence of edge effects. This
3355
+ circumstance should be accounted for in the design of graphene-based resonant THz
3356
+ antennas and other types of photonic and plasmonic nanodevices;
3357
+ 4) It is shown, that the qualitative distribution of the conductivity along the sheet strongly
3358
+ depends on the electrochemical potential. Thus, it is possible to control the conductivity
3359
+ and performance of graphene nanoantennas, by means of varying the gate voltage;
3360
+ Our theory allows reformulation of the effective boundary conditions for the electromagnetic
3361
+ field at the surface of the graphene sheet with accounting of the edge effects. It requires the
3362
+ modification of integral equations of antenna theory and the methods of their solution. This
3363
+ should be one of the subjects of future research activity as well as their application to
3364
+ nanoantennas and other nanodevices.
3365
+ Author Contributions: Developments of the physical models, derivation of the basis equations,
3366
+ interpretation of the physical results and righting the paper have been done by T.B., T.M., O.G. and
3367
+ G.S. jointly. The numerical simulations were produced by T.B.
3368
+ Funding: This research was funded by NATO grant number NATO SPS-G5860 and by
3369
+ H2020,project TERASSE 823878.
3370
+ Institutional Review Board Statement: Not applicable.
3371
+ Informed Consent Statement: Not applicable.
3372
+ Data Availability Statement: Not applicable.
3373
+ Conflicts of Interest: The authors declare no conflict of interest
3374
+
3375
+
3376
+
3377
+
3378
+
3379
+ 19
3380
+
3381
+ Appendix A. Derivation of Equation (16)
3382
+
3383
+ In this Appendix we discuss the boundary-value problem for pseudo-spin defined by
3384
+ Equation (14). As it was mentioned above, the pseudo-spin satisfies the Dirac equation with
3385
+ the following boundary conditions;
3386
+
3387
+
3388
+
3389
+
3390
+ /2
3391
+ /2
3392
+ 0
3393
+ s
3394
+ s
3395
+ u
3396
+ L
3397
+ v
3398
+ L
3399
+
3400
+
3401
+
3402
+ [25]. It may be also
3403
+ transformed into the Helmholtz equation with two special sets of boundary conditions. We
3404
+ have the Dirichlet condition at the left-hand side and the impedance condition
3405
+
3406
+
3407
+ /2
3408
+ 0
3409
+ y
3410
+ x
3411
+ x L
3412
+ k
3413
+ u
3414
+
3415
+  
3416
+
3417
+ at the right-hand side for the components u(x)(determined by the Dirac
3418
+ Equation). The situation is precisely inverted for the second type, namely a Dirichlet
3419
+ condition at the right-hand side and an impedance condition 
3420
+
3421
+ /2
3422
+ 0
3423
+ y
3424
+ x
3425
+ x
3426
+ L
3427
+ k
3428
+ v
3429
+ 
3430
+  
3431
+
3432
+ at the left-
3433
+ hand side. These problems are Hermitian, whereby the eigenmodes form a complete basis.
3434
+ The components u(x) and v(x) are both separately orthogonal, but are mutually non-
3435
+ orthogonal, due to their coupling over the electron motion between the atoms of A and B
3436
+ sublattices. The property of orthogonality is shown at Appendix C. Using completeness,
3437
+ orthogonality and normalization conditions
3438
+  
3439
+  
3440
+ /2
3441
+ /2
3442
+ 2
3443
+ 2
3444
+ /2
3445
+ /2
3446
+ 1
3447
+ L
3448
+ L
3449
+ p
3450
+ p
3451
+ L
3452
+ L
3453
+ u
3454
+ x
3455
+ dx
3456
+ v
3457
+ x
3458
+ dx
3459
+
3460
+
3461
+
3462
+
3463
+
3464
+
3465
+ , we obtain
3466
+  
3467
+  
3468
+
3469
+
3470
+ 2
3471
+ p
3472
+ p
3473
+ p
3474
+ u
3475
+ x u
3476
+ x
3477
+ x
3478
+ x
3479
+
3480
+
3481
+
3482
+
3483
+
3484
+
3485
+
3486
+
3487
+
3488
+
3489
+
3490
+ (A.1)
3491
+  
3492
+  
3493
+
3494
+
3495
+ 2
3496
+ p
3497
+ p
3498
+ p
3499
+ v
3500
+ x v
3501
+ x
3502
+ x
3503
+ x
3504
+
3505
+
3506
+
3507
+
3508
+
3509
+
3510
+
3511
+
3512
+
3513
+
3514
+
3515
+ (A.2)
3516
+ Starting from the xx-component and using the basis relation (11) for a=x, b=x, the matrix
3517
+ element of the current density operator, one gets
3518
+
3519
+
3520
+
3521
+
3522
+
3523
+
3524
+  
3525
+  
3526
+  
3527
+  
3528
+
3529
+
3530
+
3531
+
3532
+ 1
3533
+ ˆ
3534
+ ,0
3535
+ y
3536
+ y
3537
+ i k
3538
+ k
3539
+ y
3540
+ x
3541
+ F
3542
+ n
3543
+ n
3544
+ n
3545
+ n
3546
+ ss
3547
+ j
3548
+ ev
3549
+ u
3550
+ x v
3551
+ x
3552
+ v
3553
+ x u
3554
+ x
3555
+ e
3556
+ l
3557
+
3558
+
3559
+
3560
+
3561
+  
3562
+
3563
+ x
3564
+
3565
+ (A.3)
3566
+ Next we examine the limit of
3567
+
3568
+ l  by making the exchange
3569
+
3570
+
3571
+ 1
3572
+ 1
3573
+ 2
3574
+ s
3575
+ n
3576
+ l
3577
+
3578
+
3579
+
3580
+
3581
+ 
3582
+
3583
+
3584
+
3585
+
3586
+
3587
+ and
3588
+ the same for
3589
+ ,
3590
+ s n
3591
+
3592
+  . Summing over s,s’ and taking into account both electrons and holes
3593
+  
3594
+
3595
+
3596
+ in
3597
+
3598
+ nv
3599
+ x
3600
+
3601
+ as well and the charge carriers in two valleys K and K’, leads to.
3602
+
3603
+
3604
+
3605
+
3606
+ 
3607
+
3608
+
3609
+
3610
+
3611
+  
3612
+
3613
+ 2
3614
+ 2
3615
+ 2
3616
+ ( ,
3617
+ ; )
3618
+ 4
3619
+ 0
3620
+ ( )
3621
+ ;
3622
+ y
3623
+ y
3624
+ n
3625
+ y
3626
+ i k
3627
+ k
3628
+ y y
3629
+ F
3630
+ xx
3631
+ y
3632
+ y
3633
+ xx
3634
+ nn
3635
+ y
3636
+ n
3637
+ n
3638
+ k
3639
+ ie v
3640
+ K
3641
+ dk dk
3642
+ e
3643
+ i
3644
+ f
3645
+ k
3646
+  
3647
+
3648
+
3649
+
3650
+
3651
+
3652
+
3653
+
3654
+
3655
+
3656
+
3657
+
3658
+  
3659
+
3660
+
3661
+
3662
+
3663
+
3664
+  
3665
+
3666
+
3667
+
3668
+
3669
+
3670
+
3671
+
3672
+
3673
+  
3674
+
3675
+
3676
+ x x
3677
+ x,x
3678
+
3679
+
3680
+ (A.4)
3681
+ where
3682
+
3683
+
3684
+ 20
3685
+
3686
+
3687
+  
3688
+
3689
+  
3690
+  
3691
+  
3692
+  
3693
+  
3694
+  
3695
+  
3696
+  
3697
+  
3698
+  
3699
+  
3700
+  
3701
+  
3702
+  
3703
+  
3704
+  
3705
+ ,
3706
+ ;
3707
+ xx
3708
+ pp
3709
+ y
3710
+ p
3711
+ p
3712
+ p
3713
+ p
3714
+ p
3715
+ p
3716
+ p
3717
+ p
3718
+ p
3719
+ p
3720
+ p
3721
+ p
3722
+ p
3723
+ p
3724
+ p
3725
+ p
3726
+ p
3727
+ p
3728
+ p
3729
+ p
3730
+ p
3731
+ x x k
3732
+ v
3733
+ x v
3734
+ x
3735
+ u
3736
+ x u
3737
+ x
3738
+ u
3739
+ x u
3740
+ x
3741
+ v
3742
+ x v
3743
+ x
3744
+ u
3745
+ x v
3746
+ x
3747
+ v
3748
+ x u
3749
+ x
3750
+ v
3751
+ x u
3752
+ x
3753
+ u
3754
+ x v
3755
+ x
3756
+
3757
+
3758
+
3759
+
3760
+
3761
+
3762
+
3763
+
3764
+
3765
+
3766
+
3767
+
3768
+
3769
+
3770
+
3771
+
3772
+
3773
+
3774
+  
3775
+
3776
+  
3777
+
3778
+  
3779
+
3780
+
3781
+
3782
+
3783
+
3784
+
3785
+
3786
+
3787
+ (A.5)
3788
+
3789
+ Note, that the summation in (A.5), means including the contribution from both electrons and
3790
+ holes and the valleys K, K’. The sum over electrons and holes may be transformed to the sum
3791
+ over the electron states by means of their doubling. The sum of the two other terms is zero
3792
+ due to the opposite sign of
3793
+  
3794
+ nv
3795
+ x (subject to the same
3796
+  
3797
+ nu
3798
+ x ). The sums over the electron
3799
+ states are decomposed into the components over the two valleys, implying that
3800
+  
3801
+  
3802
+  
3803
+  
3804
+ ...
3805
+ ...
3806
+ ...
3807
+ 2
3808
+ ...
3809
+ K
3810
+ K
3811
+ K
3812
+ n
3813
+ n
3814
+ n
3815
+ n
3816
+
3817
+
3818
+
3819
+
3820
+
3821
+
3822
+
3823
+
3824
+ (A.6)
3825
+ Finally
3826
+ invoking
3827
+ these
3828
+ transformations
3829
+ and
3830
+ using
3831
+ the
3832
+ well-known
3833
+ identity
3834
+
3835
+
3836
+  
3837
+ 1
3838
+ 2
3839
+ ihy
3840
+ e dh
3841
+ y
3842
+
3843
+
3844
+
3845
+
3846
+ 
3847
+
3848
+
3849
+ , we obtain
3850
+
3851
+
3852
+
3853
+  
3854
+
3855
+
3856
+
3857
+  
3858
+  
3859
+
3860
+
3861
+ 2
3862
+ 2
3863
+ 2
3864
+ 2
3865
+ 0( )
3866
+ ;
3867
+ '
3868
+ '
3869
+ 2
3870
+ 0
3871
+ n
3872
+ y
3873
+ F
3874
+ xx
3875
+ y
3876
+ n
3877
+ n
3878
+ n
3879
+ k
3880
+ f
3881
+ ie v
3882
+ K
3883
+ dk
3884
+ u
3885
+ x
3886
+ v
3887
+ x
3888
+ i
3889
+  
3890
+
3891
+
3892
+
3893
+  
3894
+
3895
+
3896
+
3897
+ 
3898
+
3899
+  
3900
+
3901
+
3902
+
3903
+
3904
+
3905
+
3906
+
3907
+ x,x
3908
+ x
3909
+ x
3910
+
3911
+ (A.7)
3912
+ The above equation relates to the only existing spin-state (a real physical spin rather than a
3913
+ pseudospin). Therefore, the total conductivity must be doubled, which corresponds to the
3914
+ value of the conductivity given by Equation (16). Other components of the conductivity
3915
+ tensor may be obtained in a similar way. For example, we have
3916
+
3917
+
3918
+
3919
+
3920
+ ; ,
3921
+ ; ,
3922
+ yy
3923
+ xx
3924
+ K
3925
+ K
3926
+
3927
+
3928
+
3929
+
3930
+
3931
+ x x
3932
+ x x and
3933
+
3934
+
3935
+
3936
+
3937
+ ; ,
3938
+ ; ,
3939
+ 0
3940
+ xy
3941
+ yx
3942
+ K
3943
+ K
3944
+
3945
+
3946
+
3947
+
3948
+
3949
+
3950
+ x x
3951
+ x x
3952
+ .
3953
+
3954
+ Appendix B: Group velocity of pseudospins in graphene sheet
3955
+
3956
+ Here we calculate the normalized group velocity of the pseudospins defined as
3957
+
3958
+
3959
+ /
3960
+ g
3961
+ y
3962
+ y
3963
+ v
3964
+ k
3965
+ k
3966
+
3967
+
3968
+
3969
+
3970
+  
3971
+
3972
+ ,based on the characteristic equation
3973
+
3974
+
3975
+
3976
+
3977
+ 1
3978
+ tg
3979
+ =
3980
+ x
3981
+ x
3982
+ y
3983
+ x
3984
+ k L
3985
+ f k
3986
+ k
3987
+ k
3988
+
3989
+
3990
+ . The y-
3991
+ component of the wavevector is considered as an independent variable . By taking derivative
3992
+ with respect to
3993
+ yk , one gets
3994
+
3995
+ 21
3996
+
3997
+
3998
+ 2
3999
+ 1
4000
+ x
4001
+ y
4002
+ x
4003
+ y
4004
+ y
4005
+ f
4006
+ f
4007
+ k
4008
+ k
4009
+ k
4010
+ k
4011
+ k
4012
+
4013
+
4014
+
4015
+
4016
+
4017
+  
4018
+
4019
+
4020
+
4021
+ (A.8)
4022
+
4023
+ And by using the relation
4024
+
4025
+
4026
+ 2
4027
+ 2
4028
+ x
4029
+ y
4030
+ y
4031
+ k
4032
+ k
4033
+ k
4034
+
4035
+
4036
+
4037
+ , we obtain
4038
+
4039
+
4040
+
4041
+
4042
+ 2
4043
+ 2
4044
+ 2
4045
+ 2
4046
+ y
4047
+ y
4048
+ g
4049
+ y
4050
+ x
4051
+ y
4052
+ y
4053
+ y
4054
+ y
4055
+ y
4056
+ k
4057
+ k
4058
+ v
4059
+ k
4060
+ k
4061
+ k
4062
+ k
4063
+ k
4064
+ k
4065
+ k
4066
+
4067
+
4068
+
4069
+
4070
+
4071
+
4072
+
4073
+
4074
+
4075
+
4076
+
4077
+
4078
+
4079
+
4080
+
4081
+ (A.9)
4082
+ For the derivative
4083
+ /
4084
+ x
4085
+ f
4086
+ k
4087
+
4088
+
4089
+ we have
4090
+
4091
+
4092
+
4093
+
4094
+ 2
4095
+ 2
4096
+ tg
4097
+ cos
4098
+ x
4099
+ x
4100
+ x
4101
+ x
4102
+ x
4103
+ k L
4104
+ k L
4105
+ k L
4106
+ f
4107
+ k
4108
+ k
4109
+
4110
+
4111
+
4112
+
4113
+ (A.10)
4114
+ The trigonometric functions may be expressed through the algebraic ones using the
4115
+ characteristic equation which gives
4116
+
4117
+
4118
+ 2
4119
+ 2
4120
+ y
4121
+ y
4122
+ x
4123
+ y
4124
+ x
4125
+ k
4126
+ L
4127
+ k
4128
+ f
4129
+ k
4130
+ k k
4131
+
4132
+
4133
+
4134
+
4135
+
4136
+ (A.11)
4137
+ Expressing the group velocity from (A.9) and using (A.10), (A.11), we obtain
4138
+
4139
+
4140
+
4141
+ 
4142
+
4143
+
4144
+
4145
+
4146
+
4147
+ 2
4148
+ 1
4149
+ y
4150
+ y
4151
+ g
4152
+ y
4153
+ y
4154
+ y
4155
+ k
4156
+ k L
4157
+ v
4158
+ k
4159
+ k
4160
+ L
4161
+ k
4162
+
4163
+
4164
+
4165
+
4166
+
4167
+ (A.12)
4168
+
4169
+ In order to determine the renormalization coefficient
4170
+ n
4171
+ B , we can make a similar
4172
+ transformation: express
4173
+
4174
+
4175
+ sin 2
4176
+ xk L thought
4177
+
4178
+
4179
+ tg
4180
+ xk L and apply the characteristic Equation (17),
4181
+ which renders by virtue of Equation (20),
4182
+
4183
+
4184
+
4185
+
4186
+ 1
4187
+ 2
4188
+ 1
4189
+ y
4190
+ yn
4191
+ yn
4192
+ n
4193
+ y
4194
+ yn
4195
+ k
4196
+ k
4197
+ k
4198
+ B
4199
+ k
4200
+ k L
4201
+
4202
+
4203
+
4204
+
4205
+
4206
+
4207
+
4208
+
4209
+
4210
+
4211
+
4212
+
4213
+
4214
+
4215
+
4216
+
4217
+ (A.13)
4218
+ with the conductivity given explicitly in Equation (21).
4219
+ Appendix C: Orthogonality of pseudo-spin modes
4220
+ The Equations for pseudo-spin mode with number s has the form
4221
+ ,
4222
+ s
4223
+ y
4224
+ s
4225
+ s
4226
+ s
4227
+ s
4228
+ y
4229
+ s
4230
+ s
4231
+ s
4232
+ v
4233
+ k v
4234
+ u
4235
+ x
4236
+ u
4237
+ k u
4238
+ v
4239
+ x
4240
+
4241
+
4242
+
4243
+
4244
+  
4245
+
4246
+ 
4247
+
4248
+
4249
+
4250
+
4251
+
4252
+
4253
+
4254
+
4255
+
4256
+ , (A.14)
4257
+ The similar Relation may be formulated for another mode with the number s:
4258
+
4259
+ 22
4260
+
4261
+ ,
4262
+ s
4263
+ y
4264
+ s
4265
+ s
4266
+ s
4267
+ s
4268
+ y
4269
+ s
4270
+ s
4271
+ s
4272
+ v
4273
+ k v
4274
+ u
4275
+ x
4276
+ u
4277
+ k u
4278
+ v
4279
+ x
4280
+
4281
+
4282
+
4283
+
4284
+
4285
+
4286
+
4287
+
4288
+
4289
+
4290
+
4291
+
4292
+  
4293
+
4294
+ 
4295
+
4296
+
4297
+
4298
+
4299
+
4300
+
4301
+
4302
+
4303
+
4304
+ (A.15)
4305
+ Let us multiply first Equation (A.14) to
4306
+ su and second Equation multiply to
4307
+ sv  . Summarize
4308
+ them and integrate over the interval
4309
+ /2
4310
+ /2
4311
+ L
4312
+ x
4313
+ L
4314
+
4315
+
4316
+
4317
+ . Using the boundary conditions, we
4318
+ obtain
4319
+  
4320
+  
4321
+  
4322
+  
4323
+ / 2
4324
+ / 2
4325
+ / 2
4326
+ / 2
4327
+ 0
4328
+ L
4329
+ L
4330
+ s
4331
+ s
4332
+ s
4333
+ s
4334
+ s
4335
+ s
4336
+ L
4337
+ L
4338
+ u
4339
+ x u
4340
+ x dx
4341
+ v
4342
+ x v
4343
+ x dx
4344
+
4345
+
4346
+
4347
+
4348
+
4349
+
4350
+
4351
+
4352
+
4353
+
4354
+
4355
+ (A.16)
4356
+ The similar Relation may be obtained from (A.16) by rearranging the indexes s and s. We
4357
+ have
4358
+  
4359
+  
4360
+  
4361
+  
4362
+ / 2
4363
+ / 2
4364
+ / 2
4365
+ / 2
4366
+ 0
4367
+ L
4368
+ L
4369
+ s
4370
+ s
4371
+ s
4372
+ s
4373
+ s
4374
+ s
4375
+ L
4376
+ L
4377
+ u
4378
+ x u
4379
+ x dx
4380
+ v
4381
+ x v
4382
+ x dx
4383
+
4384
+
4385
+
4386
+
4387
+
4388
+
4389
+
4390
+
4391
+
4392
+
4393
+
4394
+ (A.17)
4395
+ The eigenvalues with the different indexes are non-degenerate. The pair of Equations
4396
+ (A.16),(A.17) may be considered as a system of linear algebraic equations with respect to the
4397
+ integrals. The determinant of this system
4398
+ s
4399
+ s
4400
+ s
4401
+ s
4402
+
4403
+
4404
+
4405
+
4406
+
4407
+
4408
+
4409
+
4410
+ is non-zero. It means, that for s
4411
+ s
4412
+
4413
+
4414
+  
4415
+  
4416
+  
4417
+  
4418
+ / 2
4419
+ / 2
4420
+ / 2
4421
+ / 2
4422
+ 0
4423
+ L
4424
+ L
4425
+ s
4426
+ s
4427
+ s
4428
+ s
4429
+ L
4430
+ L
4431
+ u
4432
+ x u
4433
+ x dx
4434
+ v
4435
+ x v
4436
+ x dx
4437
+
4438
+
4439
+
4440
+
4441
+
4442
+
4443
+
4444
+
4445
+ (A.18)
4446
+ which gives the orthogonality relation in the required form.
4447
+ References
4448
+ 1. Novotny, L.; van Hulst, N. F. Antennas for light, Nat. Photonics, 2011, 5,83 – 90.
4449
+ 2. Giannini, V.; Fernandez-Domínguez, A.I.; Heck, S.C.; Maier,S.A. Plasmonic nanoantennas:
4450
+ fundamentals and their use in controlling the radiative properties of nanoemitters,
4451
+ Chem.Rev.2011, 111,3888–3912.
4452
+ 3. Bharadwaj, P.; Deutsch, B.; Novotny, L. Optical antennas, Advances in Optics and Photonics
4453
+ ,2009, 438–483.
4454
+ 4. Parzefall, M.; Novotny, L. Optical antennas driven by quantum tunneling: a key issues
4455
+ review, Rep. Prog. Phys., 2019,82 ,112401.
4456
+ 5. Slepyan, G.Y.; Vlasenko, S.; Mogilevtsev, D. Quantum Antennas. Adv. Quantum
4457
+ Technol.2020, 3, 1900120. [Cross Ref]
4458
+ 6. Ullah, Z.; Witjaksono, G.; Nawi, I.; Tansu, N.; Khattak, M. I.; Junaid, M. A review on the
4459
+ development of tunable graphene nanoantennas for terahertz optoelectronic and plasmonic
4460
+ applications, Sensors, 2020 ,20,1401.
4461
+ 7. Baydin, A.; Tay, F.; Fan, J.; Manjappa, M.; Gao, W.; Kono, J. Carbon nanotube devices for
4462
+ quantum technology, Materials,2022,15, 1535.
4463
+ 8. Pistolesi, F.; Cleland, A. N.; Bachtold, A. Proposal for a nanomechanical qubit, Phys. Rev. X
4464
+ ,2021, 11,031027.
4465
+ 9. De Volder, M.F.L.; Tawfick,S.H.; Baughman, R.H.;Hart,J.H. Carbon nanotubes: present and
4466
+ future commercial applications, Science, 2013,V 3391.
4467
+ 10. Basov, D.N.; Fogler, M.M.; Lanzara A.; Feng Wang; Yuanbo Zhang. Colloquium: Graphene
4468
+ spectroscopy, Rev. Mod. Phys.,2014,86,959.
4469
+
4470
+ 23
4471
+
4472
+ 11. Kavitha, S.; Sairam, K. V. S. S. S. S.; Singh, A. Graphene plasmonic nano-antenna for
4473
+ terahertz communication, Springer Nature, Applied Sciences,2022, 4114.
4474
+ 12. Hofferber, E.M.; Stapleton, J.A.; Iverson, N.M. Single walled carbon nanotubes as optical
4475
+ sensors for biological applications, Journal of The Electrochemical Society, 2020,
4476
+ 167,037530.
4477
+ 13. Nadeem, S.; Ijaz, S. Single wall carbon nanotube (SWCNT) examination on blood flow
4478
+ through a multiple stenosed artery with variable nanofluid viscosity, AIP Advances,2015,
4479
+ 107217,5.
4480
+ 14. Margetis, D.; Stauber, T. Theory of plasmonic edge states in chiral bilayer systems, Phys.
4481
+ Rev. B, 2021, 104,115422.
4482
+ 15. Yao, W.; Shengyuan, A. Y.; Niu,Q. Edge states in graphene: from gapped flat-band to gapless
4483
+ chiral modes, Phys. Rev. Lett.,2009, 102,096801.
4484
+ 16. Katsnelson, M. I. The physics of graphene, 2nd ed. Cambridge University Press, Cambridge,
4485
+ 2020.
4486
+ 17. Felsen, L. B.; Marcuvitz, N.; Radiation and scattering of waves, IEEE Press series on
4487
+ electromagnetic waves, originally published, Prentice-Hall, Englewood Cliffs, N.J.,1972.
4488
+ 18. Noble, B, The Wiener-Hopf technique. 2nd edition, Chelsea Pub. Co. 1988.
4489
+ 19. Miloh,T. Opto-electro-fluidics and tip coax conical surface plasmons, Phys. Rev. Fluids,
4490
+ ,2016, 1, 044105 .
4491
+ 20. Meixner, J. The behavior of electromagnetic fields at edges, IEEE Trans. Antennas Propag.,
4492
+ 1972, 20, 442-446.
4493
+ 21. Castro Neto, A.H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic
4494
+ properties of graphene, Rev. Mod. Phys.2009, 81, 109-135.
4495
+
4496
+ 22. Armitage, N. P.; Mele, E. J.; Vishwanath,V. Weyl and Dirac semimetals in three-dimensional
4497
+ solids, Rev. Mod. Phys. 2018, 90, 015001.
4498
+ 23. Qi, X.L,; Zhang,S.C. Topological insulators and superconductors, Rev. Mod. Phys., 2011,
4499
+ 83,1057.
4500
+ 24. Hasan, M. Z.; Kane, C. L. Topological insulators, Rev. Mod. Phys. 2010, 82, 3045.
4501
+ 25. Akhmerov, A. R.; Beenakker, C. W. J. Boundary conditions for Dirac fermions on a
4502
+ terminated honeycomb lattice, Phys. Rev. B, 2008, 77, 085423.
4503
+ 26. Balanis,C.A. Antenna Theory-Analysis and Design, Third Edition, A John Wiley & Sons,
4504
+ Inc., Publication, 2005.
4505
+ 27. Agio, M.; Alu, A. Optical Antennas, Cambridge University Press, Cambridge, 2013.
4506
+ 28. Slepyan, G.Y.; Shuba, M.V.; Maksimenko, S.A.; Lakhtakia, A. Theory of optical scattering
4507
+ by achiral carbon nanotubes and their potential as optical nanoantennas, Phys. Rev. B. 2006,
4508
+ 73,195416.
4509
+ 29. Shuba, M.V.; Slepyan, G.Y.; Maksimenko, S.A.; Thomsen, C.; Lakhtakia, A. Theory of
4510
+ multiwall carbon nanotubes as waveguides and antennas in the infrared and the visible
4511
+ regimes, Phys. Rev. B. 2009, 79,155403.
4512
+ 30. Hanson, G.W.; Radiation efficiency of nano-radius dipole antennas in the microwave and far-
4513
+ infrared regimes, IEEE Antennas Propag. Mag. 2008,50, 66–77.
4514
+ 31. Hao, J.; Hanson, G.W. Infrared and Optical Properties of CarbonNanotube Dipole Antennas,
4515
+ IEEE Transactions on Nanotechnology 2006, 5, 6, 766.
4516
+ 32. Slepyan,
4517
+ G.Y.;
4518
+ Maksimenko,
4519
+ S.A.;
4520
+ Lakhtakia,
4521
+ A.;
4522
+ Yevtushenko,V;
4523
+ Gusakov,V.
4524
+ Electrodynamics of carbon nanotubes: Dynamics conductivity, impedance boundary
4525
+ conditions and surface wave propagation Phys. Rev. B, 1999, 60, 17136–17149.
4526
+ 33. Shuba, M.V.; Paddubskaya, A.G.; Plyushch, A.O.; Kuzhir, P.P.; Slepyan, G.Y.; Maksimenko,
4527
+ S.A.; Ksenevich, V.K.; Buka, P.; Seliuta, D.; Kasalynas, I.; Macutkevic, J.; Valusis, G. L;
4528
+ Thomsen, C.; Lakhtakia, A. Experimental evidence of localized plasmon resonance in
4529
+ composite materials containing single-wall carbon nanotubes, Phys. Rev. B. 2012, 85
4530
+ ,165435.
4531
+ 34. Slepyan, G.Y.; Shuba, M.V.; Maksimenko, S.A.; Thomsen, C.; Lakhtakia, A. Terahertz
4532
+ conductivity peak in composite materials containing carbon nanotubes: theory and
4533
+ interpretation of experiment, Phys. Rev. B.2010, 81,205423.
4534
+
4535
+ 24
4536
+
4537
+ 35. Hanson, G.W. Fundamental transmitting properties of carbon nanotube antennas, IEEE Trans.
4538
+ Antennas Propag. 2005,53,3426–3435.
4539
+ 36. Hanson, G.W. Dyadic Green’s functions and guided surface waves for a surface conductivity
4540
+ model of graphene, Journal of Applied Physics, 2008, 103, 064302.
4541
+ 37. Falkovsky, L.A. Optical properties of graphene, Journal of Physics: Conference Series,
4542
+ 2008,129, 012004.
4543
+ 38. Falkovsky, L.A.; Varlamov, A.A. Space-time dispersion of graphene conductivity, Eur. Phys.
4544
+ J. B, 2007, 56, 281.
4545
+ 39. Falkovsky, L.A.; Pershoguba, S.S. Optical Far-Infrared Properties of a Graphene Monolayer
4546
+ and Multilayer, Phys. Rev.B,2007, 76, 153410
4547
+ 40. Falkovsky, L.A. Optical properties of graphene and IV±VI semiconductors, Uspekhi
4548
+ Fizicheskikh Nauk,2008, 178-9, 923-934.
4549
+ 41. Vorobev, A.S.; Bianco,G.V.; Bruno,G.; D’Orazio,A.; O’Faolain,L.;Grande,M. Tuning of
4550
+ Graphene-Based Optical Devices Operating in the Near-Infrared, Appl. Sci.,2021,11, 8367.
4551
+ 42. Gosciniak,J.; Tan, D.T.H. Graphene-based waveguide integrated dielectric-loaded plasmonic
4552
+ electro-absorption modulators, Nanotechnology,2013, 24,185202, 9.
4553
+ 43. Kosik,M.; Müller,M.M.; Słowik,K.; Bryant,G.; Ayuela,A.;Rockstuhl,C; Pelc,M. Revising
4554
+ quantum optical phenomena in adatoms coupled to graphene nanoantennas, Nanophotonics,
4555
+ 2022, 11(14), 3281–3298.
4556
+ 44. Calafel,A.; Cox, J.D.;Radonjić,M.; Saavedra, J. R. M. ; García de Abajo, F. J.; Rozema, L. A.
4557
+ ; Walther, P. Quantum computing with graphene plasmons, Quantum Information, 2019, 37.
4558
+ 45. Ye, M.; Crozier, K.B. Metasurface with Metallic Nanoantennas and Graphene Nanoslits for
4559
+ Sensing of Protein Monolayers and Sub-Monolayers, Optics Express, 2020,18479, 28, 12.
4560
+ 46. Singh,A.; Andrello, A.; Thawdar,N.; Jornet, J.M. Design and Operation of a Graphene-Based
4561
+ Plasmonic Nano-Antenna Array for Communication in the Terahertz Band, IEEE Journal on
4562
+ Selected Areas in Communications, 2020, 2104, 38, 9.
4563
+ 47. Landau, L. D.; Lifshitz, E. M.; Statistical Physics (Course of Theoretical Physics), Pergamon,
4564
+ New York, Vol. 5, 1980.
4565
+ 48. Brey, L.; Fertig, H.A. Electronic States of Graphene Nanoribbons Studied with the Dirac
4566
+ Equation, Phys. Rev. B, 2006, 73, 235411.
4567
+ 49. Abramowitz, M.; Stegan, I. A.; Romer, R. H. Handbook of Mathematical Functions with
4568
+ Formulas, Graphs, and Mathematical Tables (National Bureau of Standards, Applied
4569
+ Mathematics Series, Washington, 1972.
4570
+ 50. Peres, N.M.R. Colloquium: The transport properties of graphene: An introduction. Rev. Mod.
4571
+ Phys., 2010, 82, No. 3, 2673.
4572
+ 51. Sarabalis, C. J.; Van Laer,v; Hill, J. T.; Safavi-Naeini, A. H. Optomechanical antennas for on-
4573
+ chip beam-steering, Optics Express, 2018, 26, 17 | 20
4574
+
4575
+
4576
+
JNE0T4oBgHgl3EQfiAH8/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
JNE3T4oBgHgl3EQfuwvk/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f88b878b4f81e03bf817a9906296284649e67e98cfbc8c08930993f11fff6051
3
+ size 182711
LNFRT4oBgHgl3EQfEjcG/content/tmp_files/2301.13476v1.pdf.txt ADDED
@@ -0,0 +1,841 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ An investigation of challenges encountered when
2
+ specifying training data and runtime monitors
3
+ for safety critical ML applications⋆.
4
+ Hans-Martin Heyn1,2[0000−0002−2427−6875], Eric Knauss1,2[0000−0002−6631−872X],
5
+ Iswarya Malleswaran1, and Shruthi Dinakaran1
6
+ 1 Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
7
+ 2 University of Gothenburg, SE-405 30 Gothenburg, Sweden
8
+ Abstract. [Context and motivation] The development and opera-
9
+ tion of critical software that contains machine learning (ML) models
10
+ requires diligence and established processes. Especially the training data
11
+ used during the development of ML models have major influences on
12
+ the later behaviour of the system. Runtime monitors are used to pro-
13
+ vide guarantees for that behaviour. [Question / problem] We see ma-
14
+ jor uncertainty in how to specify training data and runtime monitoring
15
+ for critical ML models and by this specifying the final functionality of
16
+ the system. In this interview-based study we investigate the underlying
17
+ challenges for these difficulties. [Principal ideas/results] Based on ten
18
+ interviews with practitioners who develop ML models for critical appli-
19
+ cations in the automotive and telecommunication sector, we identified 17
20
+ underlying challenges in 6 challenge groups that relate to the challenge of
21
+ specifying training data and runtime monitoring. [Contribution] The
22
+ article provides a list of the identified underlying challenges related to
23
+ the difficulties practitioners experience when specifying training data
24
+ and runtime monitoring for ML models. Furthermore, interconnection
25
+ between the challenges were found and based on these connections rec-
26
+ ommendation proposed to overcome the root causes for the challenges.
27
+ Keywords: artificial intelligence · context · data requirements · machine
28
+ learning · requirements engineering · runtime monitoring
29
+ 1
30
+ Introduction
31
+ With constant regularity, unexpected and undesirable behaviour of machine
32
+ learning (ML) models are reported in academia [9,24,26,51,52], the press, and
33
+ by NGOs3. These problems become especially apparent, and reported upon,
34
+ when ML models violate ethical principles. Racial, religious, or gender biases
35
+ are introduced through a lack of insight into the (sometimes immensely large
36
+ ⋆ This project has received funding from the European Union’s Horizon 2020 research
37
+ and innovation program under grant agreement No 957197.
38
+ 3 non-governmental organisations, e.g., https://algorithmwatch.org/en/stories/
39
+ arXiv:2301.13476v1 [cs.SE] 31 Jan 2023
40
+
41
+ 2
42
+ H.-M. Heyn et al.
43
+ set of) training data and missing runtime checks for example in large language
44
+ models such as GPT-3 [1], or facial recognition software based on deep learn-
45
+ ing [36]. Unfortunately, improving the performance of deep learning models often
46
+ requires an exponential growth in training data [3]. Data requirements can help
47
+ in preventing unnecessarily large and biased datasets [48]. Due to changes in the
48
+ environment, ML models can become “stale”, i.e., the context changes so signif-
49
+ icantly that the performance of the model decreases below acceptable levels [5].
50
+ Runtime monitors collect performance data and indicate the need for re-training
51
+ of the model with updated training data. However, these monitors need to be
52
+ specified at design time. Data requirements can support the specification of run-
53
+ time monitor [7]. The lack of specifications becomes specifically apparent with
54
+ ML models that are part of critical software 4 because it is not possible to estab-
55
+ lish traceability from system requirements (e.g., functional safety requirements)
56
+ to requirements set on the training data and the runtime monitoring [35].
57
+ Challenges of specifying 
58
+ training data (RQ 1)
59
+ 5 Unclear design
60
+ domain
61
+ 3 Missing guidelines for
62
+ data selection
63
+ 6 Unsuitable safety
64
+ standards
65
+ Challenges of specifying 
66
+ runtime monitoring (RQ 2)
67
+ 1 Lack of explainability
68
+ about ML decisions
69
+ 2 Missing conditions for
70
+ runtime checks
71
+ 4 Overhead for
72
+ monitoring solution
73
+ Fig. 1: Overview of identified challenge categories
74
+ Scope and research questions
75
+ The purpose of this study is to highlight current challenges experienced by prac-
76
+ titioners in specifying training data and runtime monitoring for ML in safety
77
+ critical software.
78
+ The paper contributes a practitioner’s point of view on the challenges re-
79
+ ported in academic literature. The aim is to identify starting-points for a future
80
+ engineering research on the use of runtime monitors for critical ML systems. The
81
+ following research questions guided this study:
82
+ RQ1: What are challenges encountered by practitioners when specifying train-
83
+ ing data for ML models in safety critical software?
84
+ RQ2: What are challenges encountered by practitioners when specifying run-
85
+ time monitors especially in relation to fulfilling safety requirements?
86
+ 4 We define critical software as software that is safety, privacy, ethically, and/or mission
87
+ critical, i.e., a failure in the software can cause significant injury or the loss of life,
88
+ invasion of personal privacy, violation of human rights, and/or significant economic
89
+ or environmental consequences [31].
90
+
91
+ Challenges when specifying data and runtime monitors
92
+ 3
93
+ Figure 1 shows the main themes we found in answering the research ques-
94
+ tions. Concerning RQ1, the interviewees reported on several problems: the data
95
+ selection process is nontransparent and guidelines especially towards defining
96
+ suitable measures for data variety are missing. There are no clear context def-
97
+ initions that help in defining data needs, and current safety standards provide
98
+ little guidance. Concerning RQ2, we found that the problem of defining suitable
99
+ metrics and the lack of guidance from safety standards also inhibits the ability to
100
+ specify runtime monitors. Furthermore, practitioners reported on challenges re-
101
+ garding explainability of ML decisions, and the processing and memory overhead
102
+ caused by runtime monitors in safety critical embedded systems.
103
+ The remaining sections of this paper are structured as follows: Section 2
104
+ outlines and argues for the research methods of this study; Section 3 presents the
105
+ results amd answers to the research questions; Section 4 discusses the findings,
106
+ provides recommendations to practitioners and for further research, identifies
107
+ related literature, elaborates on threats to validity, and provides a conclusion.
108
+ 2
109
+ Research Method
110
+ We applied a qualitative interview-based survey with open-ended semi-structured
111
+ interviews for data collection. Following the suggestions of Creswell and Creswell
112
+ [13] the qualitative study was conducted in four steps: Preparation of interviews,
113
+ data collection through interviews, data analysis, and result validation.
114
+ Preparations of interviews Based on the a-priori formulated research ques-
115
+ tions, two of the researchers of this study created an interview guide5 which was
116
+ validated and improved by the remaining two researchers. The interview guide
117
+ contains four sections of questions: the first section includes questions about
118
+ the interviewees’ current role, background and previous experiences. The second
119
+ section focuses on questions that try to understand challenges when specifying
120
+ and selecting training data for ML models and how training data affect the per-
121
+ formance of these models. The third section investigates challenges when ML
122
+ models are incorporated in critical systems and how they affect the ability to
123
+ specify training data. The fourth section concentrates on the run time monitor-
124
+ ing aspect of the ML model and contains questions on challenges when specifying
125
+ runtime monitors.
126
+ Sampling strategy: We chose the participants for this study purposefully using
127
+ a maximum variation strategy [14]. We were able to recruit interviewees from
128
+ five different companies, ranging from a local start-up to a multinational world
129
+ leading communication company. An overview is given in Table 1.
130
+ A selection criteria for the company was that they must work with safety-critical
131
+ systems and ML. Within the companies we tried to find interview candidates
132
+ with different roles and work experiences to obtain a view beyond the developers’
133
+ perspective. Besides function developers and ML model developers, we were
134
+ 5 The interview guide is available at https://doi.org/10.7910/DVN/WJ8TKY.
135
+
136
+ 4
137
+ H.-M. Heyn et al.
138
+ Table 1: Companies participating in the study
139
+ Company
140
+ Area of operations
141
+ Employees Countries
142
+ 1
143
+ Telecommunication networks
144
+ > 10.000
145
+ World
146
+ 2
147
+ Automotive OEM
148
+ > 10.000
149
+ World
150
+ 3
151
+ Automatic Driving
152
+ > 1.000
153
+ Europe
154
+ 4
155
+ Industrial camera systems
156
+ > 1000
157
+ USA
158
+ 5
159
+ Deep Learning optimisation for IoT > 100
160
+ Sweden
161
+ Table 2: Participants of the study
162
+ Inter-
163
+ viewee
164
+ Role
165
+ Experience
166
+ A
167
+ Researcher (Academic)
168
+ Functional Safety for ADAS
169
+ B
170
+ Function developer
171
+ Sensor and perception systems
172
+ C
173
+ Principal engineer
174
+ ML model integration
175
+ D
176
+ ML model developer
177
+ Distributed and edge systems
178
+ E
179
+ Function owner
180
+ ADAS perception functions
181
+ F
182
+ Function developers
183
+ and test engineer
184
+ Automatic driving systems
185
+ G
186
+ Data Scientist
187
+ Distributed systems
188
+ H
189
+ Requirement Engineer
190
+ Perception systems
191
+ I
192
+ Researcher (Academic)
193
+ Neural Network development
194
+ J
195
+ Functional Safety Manager Sensor systems
196
+ ADAS: Advanced Driver Assistance Systems
197
+ interested in interviewing requirement engineers and product / function owners
198
+ because they represent key roles in deriving system or function specifications.
199
+ We provided the companies with a list of roles that we identified beforehand as
200
+ interesting for interviewing6. Additionally, we interviewed two researchers from
201
+ academia who participate in a joint industry EU Horizon 2020 project called
202
+ VEDLIoT7. Both researchers worked also with ML models in industry before.
203
+ Therefore, they could provide insights into both the academic and the industry
204
+ perspective. A list of the ten interviewees for this study is provided in Table 2.
205
+ Data collection through interviews All interviews were conducted remotely
206
+ using either the conference software Zoom or Microsoft Teams and took between
207
+ 60 - 90 minutes. The a-priori defined interview guide was only available to the
208
+ interviewers and was not distributed to the participants beforehand. Each par-
209
+ ticipant was interviewed by two interviewers who alternated in asking questions
210
+ and observing. At the start of each interview, the interviewers provided some
211
+ background information about the study’s purpose. Then, the interview guide
212
+ was followed. However, as we encouraged discussions with the interviewees, we
213
+ allowed deviations from the interview guide by asking additional questions, or
214
+ changing the order of the questions when it was appropriate [30]. All interviews
215
+ were recorded and semi-automatically transcribed. The interviewers manually
216
+ checked and anonymised the results.
217
+ 6 The list included functional safety experts, requirement engineers, product owners
218
+ or function owners, function or model developers, and data engineers.
219
+ 7 Very efficient deep learning in the Internet of Things
220
+
221
+ Challenges when specifying data and runtime monitors
222
+ 5
223
+ Data analysis The data analysis followed suggestions by Saldana [41] and
224
+ consisted of two cycles of coding and validation of the themes through a workshop
225
+ and member checking.
226
+ First coding cycle: Attribute coding was used to extract information about the
227
+ participants’ role and previous experiences. Afterwards, the two interviewers
228
+ independently applied structural coding to collect phrases in the interviews that
229
+ represent topics relevant to answering the research questions. The researchers
230
+ compared the individually assigned codes and applied descriptive coding with the
231
+ aim of identifying phrases that describe common themes across the interviews.
232
+ Theme validation: In a focus group, the identified themes were presented and dis-
233
+ cussed. Thirteen researchers from both industry and academia in the VEDLIoT
234
+ project participated. Three of the participants also were interviewed for this
235
+ study. The aim of the focus group was to reduce bias in the selection of themes
236
+ and to identify any additional themes that the researchers might have missed.
237
+ Second coding cycle: After the themes were identified and validated, the second
238
+ coding cycle was used to map the statements of the interviewees to the themes,
239
+ and consequently identify the answers to the research questions. The second
240
+ cycle was conducted by the two researchers who did not conduct the first cycle
241
+ coding in order to reduce confirmation bias. The mapping was then confirmed
242
+ and agreed upon by all involved researchers.
243
+ Result validation Member checking, as described in [14, Ch. 9] was used to
244
+ validate the identified themes that answer RQ 1 and RQ 2. Additionally, we
245
+ presented the results in a 60 minute focus group to an industry partner and
246
+ allowed for feedback and comments on the conclusions we drew from the data.
247
+ 3
248
+ Results
249
+ During the first coding cycle, structural coding resulted in 117 statements for
250
+ RQ1 and 77 statements for RQ2. Through descriptive coding preliminary themes
251
+ were found. The statements and preliminary themes were discussed during a
252
+ workshop. Based on the feedback from the workshop, 117 statements for RQ1
253
+ were categorised into eight final challenge themes and three challenge categories
254
+ relating to the challenge of specifying training data. Similar, the 77 original
255
+ statements for RQ2 were categorised into 13 final challenge themes in five chal-
256
+ lenge categories relating to the challenge of specifying runtime monitoring. A
257
+ total of six challenge categories emerged for both RQs, out of which two cate-
258
+ gories contain challenges relating to both training data and runtime monitoring
259
+ specification, and three challenge themes base on statements from both RQs.
260
+ The categories and final challenge themes are listed in Table 3.
261
+ 3.1
262
+ Answer to RQ1: Challenges practitioners experience when
263
+ specifying training data
264
+ The interviewees were asked to share their experiences in selecting training data,
265
+ the influence of the selection of training data on the system’s performance and
266
+
267
+ 6
268
+ H.-M. Heyn et al.
269
+ Table 3: Challenge groups (bold) and themes found in the interview data. Data.:
270
+ Challenges related to specifying training data (RQ1). Monitor.: Challenges re-
271
+ lated to specifying runtime monitoring (RQ2).
272
+ Relates to
273
+ Related
274
+ ID
275
+ Challenge Theme
276
+ Data. Monitor. Literature
277
+ 1
278
+ Lack of explainability about ML decisions
279
+
280
+ 1.1 No access to inner states of ML models
281
+
282
+ [18]
283
+ 1.2 No failure models for ML models
284
+
285
+ [51]
286
+ 1.3 IP protection
287
+
288
+ 2
289
+ Missing conditions for runtime checks
290
+
291
+ 2.1 Unclear metrics and/or boundary conditions
292
+
293
+ [11,21,43]
294
+ 2.2 Unclear measure of confidence
295
+
296
+ [17,34]
297
+ 3
298
+ Missing guidelines for data selection
299
+
300
+
301
+ 3.1 Disconnection from requirements
302
+
303
+ [16,42]
304
+ 3.2 Grown data selection habits
305
+
306
+ [20,33]
307
+ 3.3 Unclear completeness criteria
308
+
309
+ [49]
310
+ 3.4 Unclear measure of variety
311
+
312
+
313
+ [45,50]
314
+ 4
315
+ Overhead for monitoring solution
316
+
317
+ 4.1 Limited resources in embedded systems
318
+
319
+ [38]
320
+ 4.2 Meeting timing requirements
321
+
322
+ 4.3 Reduction of true positive rate
323
+
324
+ 5
325
+ Unclear design domain
326
+
327
+ 5.1 Design domain depends on available data
328
+
329
+ [6]
330
+ 5.2 Uncertainty in context
331
+
332
+ [22]
333
+ 6
334
+ Unsuitable safety standards
335
+
336
+
337
+ 6.1 Focus on processes instead of technical solution
338
+
339
+
340
+ [10]
341
+ 6.2 No guidelines for probabilistic effects in software
342
+
343
+ [28,43]
344
+ 6.3 Safety case only through monitoring solution
345
+
346
+ [31,46]
347
+ safety, and any experiences and thoughts on defining specifications for training
348
+ data for ML. Based on the interview data, we identified three challenge groups
349
+ related to specifying training data: missing guidelines for data selection, unclear
350
+ design domain, and unsuitable safety standards
351
+ Missing guidelines for data selection Four interviewees reported on a lack
352
+ of guidelines and processes related to the selection of training data. A reason
353
+ can be that data selection bases on “grown habits” that are not properly doc-
354
+ umented. Unlike conventional software development, the training of ML is an
355
+ iterative process of discovering the necessary training data based on experience
356
+ and experimentation. Requirements set on the data are described as discon-
357
+ nected and unclear for the data selection process. For example, one interviewee
358
+ stated that if a requirements is set that images shall contain a road, it remains
359
+ unclear what specific properties this road should have. Six interviewees described
360
+ missing requirements on the data variety and missing completeness criteria as a
361
+ reason for the disconnection of requirements from data selection.
362
+ “How much of it (the data) should be in darkness? How much in rainy conditions,
363
+ and how much should be in snowy situations?” - Interview F
364
+ “For example, we said that we shall collect data under varying weather conditions.
365
+ What does that mean?” - Interview B
366
+ Another interviewee stated that it is not clear how to measure variety, which
367
+ could be a reason why it is difficult to define requirements on data variety.
368
+
369
+ Challenges when specifying data and runtime monitors
370
+ 7
371
+ “What [is] include[d] in variety of data? Is there a good measure of variety?” -
372
+ Interview A
373
+ Unclear design domain Three interviewees describe uncertainty in the design
374
+ domain as a reason for why it is difficult to specify training data. If the design
375
+ domain is unclear, it will be challenging to specify the necessary training data.
376
+ “We need to understand for what context the training data can be used.” - Interview J
377
+ “ODD [(Operational Design Domain)]? Yes, of course it translates into data require-
378
+ ments.” - Interview F
379
+ Unsuitable safety standards Because we were specifically investigating ML
380
+ in safety critical applications, we asked the participants if they find guidance in
381
+ safety standards towards specifying training data. Five interviewees stated that
382
+ current safety standards used in their companies do not provide suitable guid-
383
+ ance for the development of ML models. While for example ISO 26262 provides
384
+ guidance on how to handle probabilistic effects in hardware, no such guidance is
385
+ provided for software related probabilistic faults.
386
+ “The ISO 26262 gives guidance on the hardware design; [...] how many faults per
387
+ hour [are acceptable] and how you achieve that. For the software side, it doesn’t
388
+ give any failure rates or anything like that. It takes a completely process oriented
389
+ approach [...].” - Interview C
390
+ One interviewee mentioned that safety standards should emphasise more the
391
+ data selection to prevent faults in the ML model due to insufficient training.
392
+ “To understand that you have the right data and that the data is representative,
393
+ ISO 26262 is not covering that right now which is a challenge.” - Interview H
394
+ 3.2
395
+ Answer to RQ2: Challenges practitioners experience when
396
+ specifying runtime monitors
397
+ We asked the interviewees on the role of runtime monitoring for the systems they
398
+ develop, their experience with specifying runtime monitoring, and the relation of
399
+ runtime monitoring to fulfilling safety requirements on the system. We identified
400
+ five challenge groups related to runtime monitoring: lack of explainability about
401
+ ML decisions, missing conditions for runtime checks, missing guidelines for data
402
+ selection, overhead for monitoring solution, and unsuitable safety standards.
403
+ Lack of explainability about ML A reason why it is difficult to specify
404
+ runtime monitors for ML models is the inability to produce failure models for
405
+ ML. In normal software development, causal cascades describe how a fault in a
406
+ software components propagates trough the systems and eventually leads to a
407
+ failure. This requires the ability to break down the ML model into smaller com-
408
+ ponents and analyse their potential failure behaviour. Four interviewees however
409
+ reported that they can only see the ML model as a “black-box” with no access
410
+ to the inner states of the ML model. As a consequence, there is no insight into
411
+ the failure behaviour of the ML model.
412
+
413
+ 8
414
+ H.-M. Heyn et al.
415
+ “[Our insight is] limited because it’s a black box. We can only see what goes in
416
+ and then what comes out to the other side. And so if there is some error in the
417
+ behavior, then we don’t know if it’s because [of a] classification error, planning
418
+ error, execution error?” - Interview F
419
+ The reason for opacity of ML models is not necessarily due to technology limita-
420
+ tions, but also due to constraints from protection of intellectual property (IP).
421
+ “Why is it a black box? That’s not our choice. That’s because we have a supplier
422
+ and they don’t want to tell us [all details].” - Interview F
423
+ Missing conditions for runtime checks A problem of specifying runtime
424
+ monitors is the need for finding suitable monitoring conditions. This requires
425
+ the definition of metrics, goals and boundary conditions. Five interviewees report
426
+ that they face challenges when defining these metrics for ML models.
427
+ “What is like a confidence score, accuracy score, something like that? Which score
428
+ do you need to ensure [that you] classified [correctly]?” - Interview F
429
+ Especially the relation between correct behaviour of the ML model and measure
430
+ of confidence is unclear, and therefore impede runtime monitoring specification.
431
+ “We say confidence, that’s really important. But what can actually go wrong here?”
432
+ - Interview J
433
+ Missing guidelines for data selection The inability to specify the meaning
434
+ of data variety also relates to missing conditions for runtime checks. For example,
435
+ runtime monitors can be used to collect additional training data, but without a
436
+ measure of data variety it is difficult to find the required data points.
437
+ Overhead for monitoring solution An often overlooked problem seems to
438
+ be the induced (processing) overhead from a monitoring solution. Especially in
439
+ the automotive sector, many software components run on embedded computer
440
+ devices with limited resources.
441
+ “You don’t have that much compute power in the car, so the monitoring needs to
442
+ be very light in its memory and compute footprint on the device, maybe even a
443
+ separate device that sits next to the device.” - Interview F
444
+ And due to the limited resources in embedded systems, monitoring solutions can
445
+ compromise timing requirements of the system. Additionally, one interviewee
446
+ reported concerns regarding the reduction of the ML model’s performance.
447
+ “[. . . ] the true positive rate is actually decreasing when you have to pass it through
448
+ this second opinion goal. It’s good from a coverage and safety point of view, but it
449
+ reduces the overall system performance.” - Interview F
450
+
451
+ Challenges when specifying data and runtime monitors
452
+ 9
453
+ Unsuitable safety standards Safety standards are mostly not suitable for be-
454
+ ing applied to ML model development. Therefore, safety is often ensured through
455
+ non-ML monitoring solutions. Interviewees reported that it is not a good solution
456
+ to rely only on the monitors for safety criticality:
457
+ “[. . . ] so the safety is now moved from the model to the monitor instead, and it
458
+ shouldn’t be. It should be the combination of the two that makes up safety.” -
459
+ Interview B
460
+ One reason is that freedom of inference between a non-safety critical component
461
+ (the ML model), and a safety critical component (the monitor) must be ensured
462
+ which can complicate the system design.
463
+ “And then especially if you have mixed critical systems [it] means you have ASIL
464
+ [(Automotive Safety Integrity Level)] and QM [(Quality Management)] components
465
+ in your design [and] you want to achieve freedom from interference in your system.
466
+ You have to think about safe communication and memory protection.” - Interview J
467
+ 4
468
+ Discussion and Conclusion
469
+ The results reveal connections between the challenges. Not all theme groups re-
470
+ late exclusively to one of the two challenges. For example, themes in the groups
471
+ unsuitable safety standards and missing guidelines for data selection relate to
472
+ both challenges of specifying training data and runtime monitoring. Further-
473
+ more, we identified cause-effect relations between different themes and across
474
+ different group of themes. For example IP protection is a cause for the inability
475
+ of accessing the inner states and for creating failure models for ML model. We
476
+ based this assessment on a semantic analyses of the words used in the statements
477
+ relating to these themes. For example, Interviewee F stated that:
478
+ “That neural network is something [of a] black box in itself. You don’t know why it
479
+ do[es] things. Well, you cannot say anything about its inner behavior” - Interview F
480
+ Later in the interview, the same participants states:
481
+ “Why is it a black box? That’s not our choice. That’s because we have a supplier
482
+ and they don’t want to tell us [all details].” - Interview F
483
+ Figure 2 illustrates the identified cause-effect relations, relations between the
484
+ themes, and how the different themes relate to the challenges.
485
+ Recommendations to practitioners and for further research The iden-
486
+ tified root causes of the challenges described by the participants allowed us to
487
+ formulate recommendations listed in Table 4. Because these recommendations
488
+ try to solve root causes described by the participants of the interview study,
489
+ we think they are a useful first step towards solving the challenges related to
490
+ specifying training data and runtime monitoring.
491
+
492
+ 10
493
+ H.-M. Heyn et al.
494
+ 5 Unclear design
495
+ domain
496
+ 3 Missing guidelines for
497
+ data selection
498
+ 2 Missing conditions for
499
+ runtime checks
500
+ 2.2 Unclear mea-
501
+ sure of confidence
502
+ 6 Unsuitable safety
503
+ standards
504
+ Challenges of
505
+ specifying
506
+ runtime
507
+ monitoring
508
+ Challenges of
509
+ specifying
510
+ training data
511
+ 3.1 Disconnection
512
+ from requirements
513
+ 3.3 Unclear comple-
514
+ teness criteria
515
+ 5.1 Data require-
516
+ ments depend on
517
+ design domain
518
+ 5.2 Uncertainty in
519
+ context
520
+ 1 Lack of explainability
521
+ about ML decisions
522
+ 1.1 No access to
523
+ inner states
524
+ 6.1 Focus on
525
+ processes instead of
526
+ technical solutions
527
+ 6.2 No guidelines for
528
+ probabilistic effects
529
+ in software
530
+ 6.3 Safety case only
531
+ through monitoring
532
+ solution
533
+ 2.1 Unclear
534
+ metrics / bound-
535
+ ary conditions
536
+ 4 Overhead for
537
+ monitoring solution
538
+ 4.2 Meeting timing
539
+ requirements
540
+ 4.1 Limited
541
+ resources in
542
+ embedded
543
+ systems
544
+ 3.2 Grown data
545
+ selection habits
546
+ 1.2 No failure
547
+ models
548
+ 1.3 IP protection
549
+ 4.3 Reduction of
550
+ true positive rate
551
+ 3.4 Unclear
552
+ measure of variety
553
+ Fig. 2: Connection between the identified challenge themes. Enclosed themes
554
+ have been identified as causes for the surrounding themes. Furthermore, dotted
555
+ lines indicate relations between different themes.
556
+ 4.1
557
+ Related Literature
558
+ The problem of finding the “right” data: For acquiring data, data scientists have
559
+ to rely on data mining with little to no quality checking and potential biases [4].
560
+ Biased datasets are a common cause for erroneous or unexpected behaviour of
561
+ ML models in critical environments, such as in medical diagnostic [8], in the
562
+ juridical system [19,37], or in safety-critical applications [15,46].
563
+ There are attempts to create “unbiased” datasets. One approach is to curate
564
+ manually the dataset, such as in the FairFace dataset [29], the CASIA-SURF
565
+ CeFaA dataset [32], or Fairbatch [40]. An alternative road is to use data augmen-
566
+ tation techniques to “rebalance” the dataset [27,45]. However, it was discovered
567
+ that it is not sufficient for avoiding bias to use an assumed balanced datasets
568
+ during training [20,49,50] because it is often unclear which features in the data
569
+ need to be balanced. Approaches for curating or manipulating the dataset re-
570
+ quire information on the target domain, i.e., one needs to set requirements on
571
+ the dataset depending on the desired operational context [6,16,22]. But deriving
572
+ a data specification for ML is not common practise [25,33,42].
573
+
574
+ Challenges when specifying data and runtime monitors
575
+ 11
576
+ Table 4: Recommendations for practitioners and suggestions for further research
577
+ ID
578
+ Recommendation
579
+ I
580
+ Avoid restrictive IP protection. IP protection is a cause for the inability of accessing the
581
+ inner states of the ML models (black-box model). This causes a nontransparent measure of
582
+ confidence, and an inability to formulate failure models. To our knowledge, no studies have yet
583
+ been performed on the consequences of IP protection of ML models on the ability to monitor
584
+ and reason (e.g., in a safety case) for the correctness of ML model decisions.
585
+ II Relate measures of confidence to actual performance metrics. For runtime monitoring,
586
+ the measure of confidence is often used to evaluate the reliability of the ML model’s results.
587
+ But without understanding and relating that measure to clearly defined performance metrics of
588
+ the ML model first, the measure of confidence provides little insight for runtime monitoring. In
589
+ general, defining suitable metrics and boundary conditions should become an integral part of
590
+ RE for machine learning as it affects both the ability to define data requirements and runtime
591
+ monitoring requirements.
592
+ III Overcome grown data selection habits. Grown data selection habits have been mentioned
593
+ as a reason for a lack of clear completeness criteria and a disconnection from requirements.
594
+ Based on our results, we argue that more systematic data selection processes need to be es-
595
+ tablished in companies. This would allow for a better connection of the data selection process
596
+ to requirement engineering and it creates a traceability between system requirements, com-
597
+ pleteness criteria and data requirements. Additionally, it might also reduce the amount of data
598
+ needed for training, and therefore cost of development.
599
+ IV Balance hardware limitation in embedded systems. Runtime monitoring causes a pro-
600
+ cessing and memory overhead that can compromise timing requirements and reduce the ML
601
+ model’s performance. Today, safety criticality of systems with ML is mostly ensured through
602
+ monitoring solutions. By decomposing the safety requirements instead onto both the monitor-
603
+ ing and the ML model, the monitors might become more resource efficient, faster, and less
604
+ constraining in regards to the decisions of the ML model. However, safety requirements on the
605
+ ML models might trigger requirements on the training data.
606
+ The problem of finding the “right” runtime monitor: Through clever test strate-
607
+ gies, some uncertainty can be eliminated in regards to the behaviour of the
608
+ model [11]. However, ML components are often part of systems of systems and
609
+ their behaviour is hard to predict and analyse at design time [47]. DevOps prin-
610
+ ciples from software engineering give promising ideas on how to tackle remaining
611
+ uncertainty at runtime [34]. As part of the operation of the model, runtime mod-
612
+ els that “augment information available at design-time with information moni-
613
+ tored at runtime” help in detecting deviations from the expected behaviour [17].
614
+ These runtime models for ML can take the form of model assertions, i.e., check-
615
+ ing of explicitly defined attributes of the model at runtime [28]. However, the
616
+ authors state that “bias in training sets are out of scope for model assertion”. An-
617
+ other model based approach can be the creation of neuron activation patterns for
618
+ runtime monitoring [12]. Other approaches treat the ML model as “black-box”,
619
+ and only check for anomalies and drifts in the input data [39] the output [43],
620
+ or both [18]. However, similar to the aforementioned challenges when specifying
621
+ data for ML, runtime monitoring needs an understanding on how to “define, re-
622
+ fine, and measure quality of ML solutions” [23], i.e., in relation to non-functional
623
+ requirements one needs to understand which quality aspects are relevant, and
624
+ how to measure them [21]. Most commonly applied safety standards emphasise
625
+ processes and traceability to mitigate systematic mistakes during the develop-
626
+ ment of critical systems. Therefore, if the training data and runtime monitoring
627
+ cannot be specified, a traceability between safety goals and the deployed system
628
+ cannot be established [10].
629
+
630
+ 12
631
+ H.-M. Heyn et al.
632
+ For many researchers and practitioners, runtime verification and monitoring
633
+ is a promising road to assuring safety and robustness for ML in critical soft-
634
+ ware [2,11]. However, runtime monitoring also creates a processing and memory
635
+ overhead that needs to be considered especially in resource-limited environments
636
+ such as embedded devices [38].
637
+ The related work has been mapped to the challenges identified in the inter-
638
+ view study in Table 3.
639
+ 4.2
640
+ Threats to validity
641
+ A lack of rigour (i.e., degree of control) in the study design can cause confound-
642
+ ing which can manifest bias in the results [44]. The following mechanisms in this
643
+ study tried to reduce confounding: The interview guide was peer-reviewed by an
644
+ independent researcher, and a test session of the interview was conducted. To
645
+ reduce personal bias, at least two authors were present during all interviews, and
646
+ the authors took turn in leading the interviews. To confirm the initial findings
647
+ from the interview study and reduce the risk of researchers’ bias, a workshop was
648
+ organised which was also visited by participants who were not part of the inter-
649
+ view study. Another potential bias can arise from the sampling of participants.
650
+ Although we applied purposeful sampling, we still had to rely on the contact
651
+ persons of the companies to provide us with suitable interview candidates. We
652
+ could not directly see a list of employees and choose the candidates ourselves.
653
+ Regarding generalisability of the findings, the limited number of companies in-
654
+ volved in the study can pose a threat to external validity. However, two of the
655
+ companies are world-leading companies in their fields, which, in our opinion,
656
+ gives them a deep understanding and experience of the discussed problems. Fur-
657
+ thermore, we included companies from a variety of different fields to establish
658
+ better generalisability. Furthermore, our data includes only results valid for the
659
+ development of safety-critical ML models. We assume that the findings are ap-
660
+ plicable also to other forms of criticality, such as privacy-critical, but we cannot
661
+ conclude on that generalisability based on the available data.
662
+ 4.3
663
+ Conclusion
664
+ This paper reported on a interview-based study that identified challenges related
665
+ to specifying training data needs and runtime monitoring for safety critical ML
666
+ models. Through interviews conducted at five companies we identified 17 chal-
667
+ lenges in six groups. Furthermore, we performed a semantic analysis to identify
668
+ the underlying root-causes. We saw that several underlying challenges affect
669
+ both the ability to specify training data and runtime monitoring. For example,
670
+ we concluded that restrictive IP protection can cause an inability to access and
671
+ understand the inner states of a ML model. Without insight into the ML model’s
672
+ state, the measure of confidence cannot be related to actual performance metrics.
673
+ Without clear performance metrics, it is difficult to define the necessary degree of
674
+ variety in the training data. Furthermore, grown data selection impedes proper
675
+ requirement engineering for training data. Finally, safety requirements should be
676
+
677
+ Challenges when specifying data and runtime monitors
678
+ 13
679
+ distributed on both the ML model which can cause requirements on the training
680
+ data, and on runtime monitors which can reduce the overhead by the moni-
681
+ toring solution. These recommendations will serve as starting point for further
682
+ engineering research.
683
+ References
684
+ 1. Abid, A., Farooqi, M., Zou, J.: Persistent anti-muslim bias in large language mod-
685
+ els. In: Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society.
686
+ pp. 298–306 (2021)
687
+ 2. Ashmore, R., Calinescu, R., Paterson, C.: Assuring the machine learning lifecycle:
688
+ Desiderata, methods, and challenges. ACM Computing Surveys 54(5), 1–39 (2021)
689
+ 3. Banko, M., Brill, E.: Scaling to very very large corpora for natural language dis-
690
+ ambiguation. In: Proceedings of the 39th annual meeting of the Association for
691
+ Computational Linguistics. pp. 26–33 (2001)
692
+ 4. Barocas, S., Selbst, A.D.: Big data’s disparate impact. Calif. L. Rev. 104,
693
+ 671
694
+ (2016)
695
+ 5. Bayram, F., Ahmed, B.S., Kassler, A.: From concept drift to model degradation:
696
+ An overview on performance-aware drift detectors. Knowledge-Based Systems p.
697
+ 108632 (2022)
698
+ 6. Bencomo, N., Guo, J.L., Harrison, R., Heyn, H.M., Menzies, T.: The secret to
699
+ better ai and better software (is requirements engineering). IEEE Software 39(1),
700
+ 105–110 (2021)
701
+ 7. Bencomo, N., Whittle, J., Sawyer, P., Finkelstein, A., Letier, E.: Requirements re-
702
+ flection: requirements as runtime entities. In: Proceedings of the 32nd ACM/IEEE
703
+ International Conference on Software Engineering-Volume 2. pp. 199–202 (2010)
704
+ 8. Bernhardt, M., Jones, C., Glocker, B.: Potential sources of dataset bias complicate
705
+ investigation of underdiagnosis by machine learning algorithms. Nature Medicine
706
+ pp. 1–2 (2022)
707
+ 9. Blodgett, S.L., Barocas, S., Daum’e, H., Wallach, H.M.: Language (technology) is
708
+ power: A critical survey of “bias” in nlp. In: ACL (2020)
709
+ 10. Borg, M., Englund, C., Wnuk, K., Duran, B., Levandowski, C., Gao, S., Tan, Y.,
710
+ Kaijser, H., L¨onn, H., T¨ornqvist, J.: Safely entering the deep: A review of verifi-
711
+ cation and validation for machine learning and a challenge elicitation in the auto-
712
+ motive industry. Journal of Automotive Software Engineering 1(1), 1–19 (2018)
713
+ 11. Breck, E., Cai, S., Nielsen, E., Salib, M., Sculley, D.: The ml test score: A rubric for
714
+ ml production readiness and technical debt reduction. In: 2017 IEEE International
715
+ Conference on Big Data. pp. 1123–1132. IEEE (2017)
716
+ 12. Cheng, C.H., N¨uhrenberg, G., Yasuoka, H.: Runtime monitoring neuron activation
717
+ patterns. In: 2019 Design, Automation & Test in Europe Conference & Exhibition.
718
+ pp. 300–303. IEEE (2019)
719
+ 13. Creswell, J.W., Creswell, J.D.: Research design: Qualitative, quantitative, and
720
+ mixed methods approaches. Sage publications (2017)
721
+ 14. Creswell, John W.; Poth, C.N.: Qualitative Inquiry and Research Design: Choosing
722
+ Among Five Approaches. Sage Publishing, fourth edn. (2017)
723
+ 15. Fabbrizzi, S., Papadopoulos, S., Ntoutsi, E., Kompatsiaris, I.: A survey on bias in
724
+ visual datasets. arXiv preprint arXiv:2107.07919 (2021)
725
+ 16. Fauri, D., Dos Santos, D.R., Costante, E., den Hartog, J., Etalle, S., Tonetta, S.:
726
+ From system specification to anomaly detection (and back). In: Proceedings of the
727
+ 2017 Workshop on Cyber-Physical Systems Security and PrivaCy. pp. 13–24 (2017)
728
+
729
+ 14
730
+ H.-M. Heyn et al.
731
+ 17. Giese, H., Bencomo, N., Pasquale, L., Ramirez, A.J., Inverardi, P., W¨atzoldt, S.,
732
+ Clarke, S.: Living with uncertainty in the age of runtime models. In: Models@ run.
733
+ time, pp. 47–100. Springer (2014)
734
+ 18. Ginart, T., Zhang, M.J., Zou, J.: Mldemon: Deployment monitoring for machine
735
+ learning systems. In: International Conference on Artificial Intelligence and Statis-
736
+ tics. pp. 3962–3997. PMLR (2022)
737
+ 19. Goodman, B., Flaxman, S.: European union regulations on algorithmic decision-
738
+ making and a “right to explanation”. AI magazine 38(3), 50–57 (2017)
739
+ 20. Gwilliam, M., Hegde, S., Tinubu, L., Hanson, A.: Rethinking common assumptions
740
+ to mitigate racial bias in face recognition datasets. In: Proceedings of the IEEE
741
+ CVF. pp. 4123–4132 (2021)
742
+ 21. Habibullah, K.M., Horkoff, J.: Non-functional requirements for machine learning:
743
+ understanding current use and challenges in industry. In: 2021 IEEE 29th RE
744
+ Conference. pp. 13–23. IEEE (2021)
745
+ 22. Heyn, H.M., Subbiah, P., Linder, J., Knauss, E., Eriksson, O.: Setting ai in context:
746
+ A case study on defining the context and operational design domain for automated
747
+ driving. In: International Working Conference on Requirements Engineering: Foun-
748
+ dation for Software Quality. pp. 199–215. Springer (2022)
749
+ 23. Horkoff, J.: Non-functional requirements for machine learning: Challenges and new
750
+ directions. In: 2019 IEEE 27th RE Conference. pp. 386–391. IEEE (2019)
751
+ 24. Humbatova, N., Jahangirova, G., Bavota, G., Riccio, V., Stocco, A., Tonella, P.:
752
+ Taxonomy of real faults in deep learning systems. In: 2020 IEEE/ACM 42nd In-
753
+ ternational Conference on Software Engineering. pp. 1110–1121 (2020)
754
+ 25. Ishikawa, F., Yoshioka, N.: How do engineers perceive difficulties in engineering
755
+ of machine-learning systems?-questionnaire survey. In: 2019 IEEE/ACM Joint 7th
756
+ International Workshop on Conducting Empirical Studies in Industry. pp. 2–9.
757
+ IEEE (2019)
758
+ 26. Islam, M.J., Nguyen, G., Pan, R., Rajan, H.: A comprehensive study on deep
759
+ learning bug characteristics. In: 2019 ACM 27th European Software Engineering
760
+ Conference. pp. 510–520 (2019)
761
+ 27. Jaipuria, N., Zhang, X., Bhasin, R., Arafa, M., Chakravarty, P., Shrivastava, S.,
762
+ Manglani, S., Murali, V.N.: Deflating dataset bias using synthetic data augmenta-
763
+ tion. In: Proceedings of the IEEE CVF. pp. 772–773 (2020)
764
+ 28. Kang, D., Raghavan, D., Bailis, P., Zaharia, M.: Model assertions for monitoring
765
+ and improving ml models. Proceedings of Machine Learning and Systems 2, 481–
766
+ 496 (2020)
767
+ 29. Karkkainen, K., Joo, J.: Fairface: Face attribute dataset for balanced race, gender,
768
+ and age for bias measurement and mitigation. In: Proceedings of the IEEE CVF.
769
+ pp. 1548–1558 (2021)
770
+ 30. King, N., Horrocks, C., Brooks, J.: Interviews in qualitative research. sage (2018)
771
+ 31. Knight, J.C.: Safety critical systems: challenges and directions. In: 24th interna-
772
+ tional conference on software engineering. pp. 547–550 (2002)
773
+ 32. Liu, A., Tan, Z., Wan, J., Escalera, S., Guo, G., Li, S.Z.: Casia-surf cefa: A bench-
774
+ mark for multi-modal cross-ethnicity face anti-spoofing. In: Proceedings of the
775
+ IEEE CVF. pp. 1179–1187 (2021)
776
+ 33. Liu, H., Eksmo, S., Risberg, J., Hebig, R.: Emerging and changing tasks in the
777
+ development process for machine learning systems. In: Proceedings of the interna-
778
+ tional conference on software and system processes. pp. 125–134 (2020)
779
+ 34. Lwakatare, L.E., Crnkovic, I., Bosch, J.: Devops for ai–challenges in development
780
+ of ai-enabled applications. In: 2020 International Conference on Software, Telecom-
781
+ munications and Computer Networks. pp. 1–6. IEEE (2020)
782
+
783
+ Challenges when specifying data and runtime monitors
784
+ 15
785
+ 35. Marques, J., Yelisetty, S.: An analysis of software requirements specification char-
786
+ acteristics in regulated environments. Journal of Software Engineering & Applica-
787
+ tions (IJSEA) 10(6), 1–15 (2019)
788
+ 36. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on
789
+ bias and fairness in machine learning. ACM Computing Surveys 54(6), 1–35 (2021)
790
+ 37. Miron, M., Tolan, S., G´omez, E., Castillo, C.: Evaluating causes of algorithmic
791
+ bias in juvenile criminal recidivism. Artificial Intelligence and Law 29(2), 111–147
792
+ (2021)
793
+ 38. Rabiser, R., Schmid, K., Eichelberger, H., Vierhauser, M., Guinea, S., Gr¨unbacher,
794
+ P.: A domain analysis of resource and requirements monitoring: Towards a com-
795
+ prehensive model of the software monitoring domain. Information and Software
796
+ Technology 111, 86–109 (2019)
797
+ 39. Rahman, Q.M., Sunderhauf, N., Dayoub, F.: Per-frame map prediction for continu-
798
+ ous performance monitoring of object detection during deployment. In: Proceedings
799
+ of the IEEE CVF. pp. 152–160 (2021)
800
+ 40. Roh, Y., Lee, K., Whang, S., Suh, C.: Sample selection for fair and robust training.
801
+ Advances in Neural Information Processing Systems 34, 815–827 (2021)
802
+ 41. Salda˜na, J.: The coding manual for qualitative researchers. Sage Publishing, second
803
+ edn. (2013)
804
+ 42. Sambasivan, N., Kapania, S., Highfill, H., Akrong, D., Paritosh, P., Aroyo, L.M.:
805
+ “everyone wants to do the model work, not the data work”: Data cascades in high-
806
+ stakes ai. In: 2021 Conference on Human Factors in Computing Systems. pp. 1–15
807
+ (2021)
808
+ 43. Shao, Z., Yang, J., Ren, S.: Increasing trustworthiness of deep neural networks via
809
+ accuracy monitoring. arXiv preprint arXiv:2007.01472 (2020)
810
+ 44. Slack, M.K., Draugalis Jr, J.R.: Establishing the internal and external validity of
811
+ experimental studies. American journal of health-system pharmacy 58(22), 2173–
812
+ 2181 (2001)
813
+ 45. Uchˆoa, V., Aires, K., Veras, R., Paiva, A., Britto, L.: Data augmentation for face
814
+ recognition with cnn transfer learning. In: 2020 International Conference on Sys-
815
+ tems, Signals and Image Processing. pp. 143–148. IEEE (2020)
816
+ 46. Uric´ar, M., Hurych, D., Krizek, P., Yogamani, S.: Challenges in designing datasets
817
+ and validation for autonomous driving. arXiv preprint arXiv:1901.09270 (2019)
818
+ 47. Vierhauser, M., Rabiser, R., Gr¨unbacher, P., Danner, C., Wallner, S., Zeisel, H.: A
819
+ flexible framework for runtime monitoring of system-of-systems architectures. In:
820
+ 2014 IEEE Conference on Software Architecture. pp. 57–66. IEEE (2014)
821
+ 48. Vogelsang, A., Borg, M.: Requirements engineering for machine learning: Perspec-
822
+ tives from data scientists. In: 2019 IEEE 27th International Requirements Engi-
823
+ neering Conference Workshops. pp. 245–251. IEEE (2019)
824
+ 49. Wang, A., Liu, A., Zhang, R., Kleiman, A., Kim, L., Zhao, D., Shirai, I., Narayanan,
825
+ A., Russakovsky, O.: Revise: A tool for measuring and mitigating bias in visual
826
+ datasets. International Journal of Computer Vision pp. 1–21 (2022)
827
+ 50. Wang, T., Zhao, J., Yatskar, M., Chang, K.W., Ordonez, V.: Balanced datasets are
828
+ not enough: Estimating and mitigating gender bias in deep image representations.
829
+ In: Proceedings of the IEEE/CVF International Conference on Computer Vision
830
+ (October 2019)
831
+ 51. Wardat, M., Le, W., Rajan, H.: Deeplocalize: Fault localization for deep neural
832
+ networks. In: 2021 IEEE/ACM 43rd International Conference on Software Engi-
833
+ neering. pp. 251–262. IEEE (2021)
834
+
835
+ 16
836
+ H.-M. Heyn et al.
837
+ 52. Zhang, X., Xie, X., Ma, L., Du, X., Hu, Q., Liu, Y., Zhao, J., Sun, M.: Towards
838
+ characterizing adversarial defects of deep learning software from the lens of uncer-
839
+ tainty. 2020 IEEE/ACM 42nd International Conference on Software Engineering
840
+ pp. 739–751 (2020)
841
+
LNFRT4oBgHgl3EQfEjcG/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
LdE4T4oBgHgl3EQfJww5/content/tmp_files/2301.04923v1.pdf.txt ADDED
@@ -0,0 +1,2046 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Semi-Lagrangian Finite-Element Exterior
2
+ Calculus for Incompressible Flows
3
+ Wouter Tonnon*
4
+ Ralf Hiptmair†
5
+ January 13, 2023
6
+ 1
7
+ Incompressible Navier-Stokes Equations
8
+ We consider the incompressible Navier-Stokes equations—a standard hydrodynamic
9
+ model for the motion of an incompressible, potentially-viscous fluid—in a container
10
+ with rigid walls, where we impose so-called “free boundary conditions” in the par-
11
+ lance of [31, p. 346] and [43, p. 502], see the latter article for further references. We
12
+ search the fluid velocity field u(t, x) and the pressure p(t, x) as functions of time t and
13
+ space x on a bounded, Lipschitz domain Ω ⊂ Rd such that they solve the evolution
14
+ boundary-value problem
15
+ ∂tu + u · ∇u − ε∆u + ∇p = f,
16
+ on ]0, T[×Ω,
17
+ (1a)
18
+ ∇ · u = 0,
19
+ on ]0, T[×Ω,
20
+ (1b)
21
+ u · n = 0,
22
+ on ]0, T[×∂Ω,
23
+ (1c)
24
+ εn × ∇ × u = 0,
25
+ on ]0, T[×∂Ω,
26
+ (1d)
27
+ u = u0,
28
+ on {0} × Ω,
29
+ (1e)
30
+ where ε ≥ 0 denotes a (non-dimensional) viscosity, f a given source term, T > 0 the
31
+ final time, ∂Ω the boundary of Ω, and n(x) the outward normal vector at x ∈ ∂Ω. The
32
+ initial condition u0 is to satisfy ∇ · u0 = 0 in Ω and u0 · n = 0, εn × ∇ × u0 = 0 on
33
+ ∂Ω. Based on the variational description of the Navier-Stokes equations as described
34
+ in [5], u can be interpreted as a differential 1-form [33] and we can recast system (1)
35
+ in the following way. Let Λk(Ω) for k ∈ N denote the space of differential k-forms on
36
+ *SAM, ETH Zürich, CH-8092 Zürich, [email protected]
37
+ †SAM, ETH Zürich, CH-8092 Zürich, [email protected]
38
+ 1
39
+ arXiv:2301.04923v1 [math.NA] 12 Jan 2023
40
+
41
+ Ω. Then we search ω ∈ Λ1(Ω) and p ∈ Λ0(Ω) such that
42
+ Duω + εδdω + dp = f,
43
+ on ]0, T[×Ω,
44
+ (2a)
45
+ δω = 0,
46
+ on ]0, T[×Ω,
47
+ (2b)
48
+ tr ⋆ω = 0,
49
+ on ]0, T[×∂Ω,
50
+ (2c)
51
+ ε tr ⋆dω = 0,
52
+ on ]0, T[×∂Ω,
53
+ (2d)
54
+ ω = ω0,
55
+ on{0} × Ω,
56
+ (2e)
57
+ where Duω denotes the material derivative of ω with respect to u, d : Λk−1(Ω) �→
58
+ Λk(Ω) the exterior derivative, δ : Λk(Ω) �→ Λk−1(Ω) the exterior coderivative, and the
59
+ trace tr is the pullback under the embedding ∂Ω ⊂ ¯Ω. Here, u is related to ω through
60
+ ω := uZ, i.e. u is the vector proxy of ω w.r.t. the Euclidean metric. Similarly, we have
61
+ that Λ1(Ω) ∋ ω0 := u0Z and Λ1(Ω) ∋ f := fZ. Note that (2) can be derived through
62
+ classical vector calculus for vector proxies as shown in Appendix A for d = 3.
63
+ As shown in [18, 19], sufficiently-smooth solutions ω :]0, T[�→ Λ1(Ω) of the in-
64
+ compressible Navier-Stokes equations as given in system (2) satisfy an energy relation,
65
+ that is,
66
+ dE
67
+ dt (t) := d
68
+ dt
69
+ 1
70
+ 2
71
+
72
+
73
+ ω(t) ∧ ⋆ω(t) = −ε
74
+
75
+
76
+ dω(t) ∧ ⋆dω(t).
77
+ (3)
78
+ This relation implies energy conservation for ε = 0. In the case of ε = 0, we also have
79
+ helicity conservation, that is,
80
+ ε = 0 =⇒ dH
81
+ dt (t) := d
82
+ dt
83
+
84
+
85
+ dω(t) ∧ ω(t) = 0.
86
+ (4)
87
+ Note that the Onsager conjecture tells us that in the case ε = 0 the solutions need to
88
+ be at least Hölder regular with exponent 1
89
+ 3 for energy conservation to hold [28].
90
+ Remark 1 We acknowledge that the boundary condition (1d) is non-standard. This
91
+ boundary condition was chosen because it is the natural boundary condition associ-
92
+ ated to system (2). To enforce the standard no-slip boundary conditions, (1d) could
93
+ be replaced by εu × n = u on ]0, T[×∂Ω, that is, we impose an essential instead
94
+ of natural boundary condition to system (2). Unfortunately, in this case, the scheme
95
+ presented in this work leads to an ill-posed system. In the case ε = 0, the only imposed
96
+ boundary condition (1c) is standard.
97
+ Remark 2 Boundary conditions (1c),(1d) can be interpreted as slip boundary con-
98
+ ditions. However, on smooth domains Ω, they are only equivalent to Navier’s slip
99
+ boundary conditions if the Weingarten map related to ∂Ω vanishes [31, section 2].
100
+ 2
101
+ Outline and Related Work
102
+ We propose a semi-Lagrangian approach to the discretization of the reformulated
103
+ Navier-Stokes boundary value problem (2). This method revolves around the dis-
104
+ cretization of the material derivative Duω in the framework of a finite-element Galerkin
105
+ 2
106
+
107
+ discretization on a fixed spatial mesh. The main idea is to approximate Duω by back-
108
+ ward difference quotients involving transported snapshots of the 1-form ω, which can
109
+ be computed via the pullback induced by the flow of the velocity vector field u.
110
+ Semi-Lagrangian methods for transient transport equations like (2) are well-es-
111
+ tablished for the linear case when u is a given Lipschitz-continuous velocity field.
112
+ In particular, for ω a 0-form, that is, a plain scalar-valued function, plenty of semi-
113
+ Lagrangian approaches have been proposed and investigated, see, for instance, [8, 7,
114
+ 20, 21, 23, 35, 39, 40, 6, 12, 45]. We refer to [24, Chapter 5] for a comprehensive
115
+ pre-2013 literature review on the analysis of general semi-Lagrangian schemes. Most
116
+ of these methods focus on mapping point values under the flow, with the exception
117
+ of a particularly interesting class of semi-Lagrangian methods known as Lagrange-
118
+ Galerkin methods.
119
+ Lagrange-Galerkin methods do not transport point values, but
120
+ rather triangles (in 2D) or tetrahedra (in 3D). Refer to [10] for a review of those meth-
121
+ ods.
122
+ Meanwhile semi-Lagrangian methods for transport problems for differential forms
123
+ of any order have been developed [26, 25, 24]. The next section will review these
124
+ semi-Lagrangian methods for linear transport problems with emphasis on 1-forms.
125
+ We will also introduce a new scheme which is second-order in space and time based
126
+ on so-called “small edges”, see section 3.1.2 for details.
127
+ Semi-Lagrangian schemes for the incompressible Navier-Stokes equations are also
128
+ well-documented in literature, with emphasis on the Lagrange-Galerkin method [10,
129
+ 14, 15, 30, 1, 11, 9]. A survey of the application of Lagrange-Galerkin methods to the
130
+ incompressible Navier-Stokes equations is given in [10]. It is important to note that
131
+ these methods require the evaluation of integrals of transported quantities and, in case
132
+ these integrals cannot be computed exactly, instabilities can occur [12, 32]. A possi-
133
+ ble remedy is to add an additional stabilization term that includes artificial diffusion
134
+ [10]. Other semi-Lagrangian methods for incompressible Navier-Stokes equations di-
135
+ rectly transport point values with the nodes of a mesh instead of evaluating integrals
136
+ of transported quantities, see [34, 29, 47, 46, 13] and [16], where the last work makes
137
+ use of exponential integrators [17]. Most authors employ spectral elements for the
138
+ discretization in space [34, 29], but any type of finite-element space with degrees-of-
139
+ freedom relying on point evaluations can be used. The methods proposed in [47, 46]
140
+ are also based on finite-element spaces with degrees-of-freedom on nodes, but em-
141
+ ploy backward-difference approximations for the material derivative. The work [13]
142
+ proposes an explicit semi-Lagrangian method still built around the transport of point
143
+ values in the nodes of the mesh. The diffusion term is also taken into account in a
144
+ semi-Lagrangian fashion and the incompressibility constraint is enforced by means of
145
+ a Chorin projection. Also [13] proposes an explicit semi-Lagrangian scheme using the
146
+ same principles, but based on the vorticity-streamfunction form of the incompressible
147
+ Navier-Stokes equations.
148
+ All the mentioned semi-Lagrangian schemes rely on the transport of point val-
149
+ ues of continuous vector fields, which is the perspective embraced in formulation (1).
150
+ However, we believe that, in particular in the case of free boundary conditions (1c)
151
+ 3
152
+
153
+ and (1d), the semi-Lagrangian method based on (2) offers benefits similar to the bene-
154
+ fits bestowed by the use of discrete differential forms (finite-element exterior calculus,
155
+ FEEC [3, 4]) for the discretization of electromagnetic fields. Section 4 will convey that
156
+ the boundary conditions (2c), (2d), and the incompressiblity constraint can very natu-
157
+ rally be incorporated into a variational formulation of (2) posed in spaces of 1-forms.
158
+ This has been the main motivation for pursuing the new idea of a semi-Lagrangian
159
+ method for (2) that employs discrete 1-forms. Another motivation has been the ex-
160
+ pected excellent robustness of the semi-Lagrangian discretization in the limit ε �→ 0.
161
+ Numerical tests reported in section 5 will confirm this.
162
+ Two more aspects of our method are worth noting: Firstly, a discrete 1-form ωh will
163
+ not immediately spawn a continuous velocity field uh = ωZ
164
+ h, However, continuity is
165
+ essential for defining a meaningful flow. We need an additional averaging step, which
166
+ we present in section 4.1. Secondly, since semi-Lagrangian methods fail to respect the
167
+ decay/conservation laws (3) and (4) exactly, we present a way how to enforce them in
168
+ section 4.3.
169
+ 3
170
+ Semi-Lagrangian Advection of differential forms
171
+ 3.1
172
+ Discrete differential forms
173
+ We start from a simplicial triangulation Kh(Ω) of Ω, which may rely on a piecewise
174
+ linear approximation of ∂Ω so that it covers a slightly perturbed domain.
175
+ 3.1.1
176
+ Lowest-order case: Whitney forms
177
+ For Λ0(Ω)—the space of 0-forms on Ω, which is just a space of real-valued func-
178
+ tions—the usual (Lagrange) finite-element space of continuous, piecewise-linear, poly-
179
+ nomial functions provides the space Λ0
180
+ h,1(Ω) of lowest-order discrete 0-forms.
181
+ Let d ∈ {2, 3}, K a d-simplex with edges {e1, .., e3(d−1)}. To construct lowest-
182
+ order discrete 1-forms on K, we associate to every edge ei a local shape function
183
+ wei. Let the edge ei be directed from vertex v1
184
+ i to v2
185
+ i , then the local shape function
186
+ wei ∈ Λ1(K) associated with edge ei is
187
+ wei := λv1
188
+ i dλv2
189
+ i − λv2
190
+ i dλv1
191
+ i ,
192
+ (5)
193
+ where λv represents the barycentric coordinate associated with vertex v. We define
194
+ the lowest-order, local space of discrete 1-forms
195
+ Λ1
196
+ h,1(K) := span{we; e an edge of K}.
197
+ (6)
198
+ Using these local spaces, we can define the global space of lowest-order, discrete 1-
199
+ forms
200
+ Λ1
201
+ h,1(Ω) := {ω ∈ Λ1(Ω); ∀K ∈ Kh(Ω) : ω|K ∈ Λ1
202
+ h,1(K)},
203
+ (7)
204
+ 4
205
+
206
+ (0,0)
207
+ (1,0)
208
+ (0,1)
209
+ 1
210
+ 2
211
+ 3
212
+ 4
213
+ 5
214
+ 6
215
+ 7
216
+ 8
217
+ 9
218
+ (a) 9 small edges of a second-order element in 2D. All the edges between the different
219
+ connection points are small edges. In 3D, we simply have all these small edges on
220
+ the faces of the simplex.
221
+ edge no.
222
+ l.s.f.
223
+ edge no.
224
+ l.s.f.
225
+ 1
226
+ [ x
227
+ y ] �→
228
+
229
+ x(x+y−1)
230
+ −(x−1)(x+y−1)
231
+
232
+ 6
233
+ [ x
234
+ y ] �→
235
+
236
+ (y−1)(x+y−1)
237
+ x(1−x−y)
238
+
239
+ 2
240
+ [ x
241
+ y ] �→
242
+
243
+ −y2
244
+ y(x−1)
245
+
246
+ 7
247
+ [ x
248
+ y ] �→
249
+
250
+ −xy
251
+ x(x−1)
252
+
253
+ 3
254
+ [ x
255
+ y ] �→
256
+ � −y2
257
+ xy
258
+
259
+ 8
260
+ [ x
261
+ y ] �→
262
+ � y(1−y)
263
+ xy
264
+
265
+ 4
266
+ [ x
267
+ y ] �→
268
+ � −xy
269
+ x2
270
+
271
+ 9
272
+ [ x
273
+ y ] �→
274
+
275
+ y(x+y−1)
276
+ x(1−x−y)
277
+
278
+ 5
279
+ [ x
280
+ y ] �→
281
+
282
+ x(1−y)
283
+ x2
284
+
285
+ (b) Local shape functions (l.s.f.) for the unit triangle associated with second-order,
286
+ discrete differential forms in 2D as proposed in [38]. Each shape function corre-
287
+ sponds to the small edge in (a) with the same numbering.
288
+ Figure 1: Illustration of small edges (a) and corresponding local shape functions (b)
289
+ for the unit triangle.
290
+ 5
291
+
292
+ where Λ1(Ω) again denotes the space of differential 1-forms on Ω. We demand that
293
+ for every ω ∈ Λ1(Ω) integration along any smooth oriented path yields a unique value.
294
+ Thus, the requirement ω ∈ Λ1(Ω) imposes tangential continuity on the vector proxy
295
+ of ω.
296
+ 3.1.2
297
+ Second-order discrete forms
298
+ Similar to the lowest-order case, the space Λ0
299
+ h,2(Ω) of second-order discrete 0-forms
300
+ is spawned by the usual (Lagrange) finite-element space of continuous, piecewise-
301
+ quadratic, polynomial functions.
302
+ Let d ∈ {2, 3}, K a d-simplex with edges {e1, .., e3(d−1)} and vertices {v1, .., vd+1}.
303
+ To construct second-order discrete 1-forms, we associate local shape functions to
304
+ "small edges". We can construct 3(d + 1)(d − 1) small edges [38, Definition 3.2]
305
+ by defining ∀i ∈ {1, .., d + 1} and ∀j ∈ {1, .., 3(d − 1)}
306
+ {vi, ej} := {vi + 1
307
+ 2(x − vi); x ∈ ej},
308
+ where {vi, ej} denotes the small edge. In Figure 1a we illustrate the 9 small edges of a
309
+ 2-simplex. For example, we see that small edge 9 can be written as {(0, 0), [(1, 0), (0, 1)]}.
310
+ To make the difference between small edges and edges of the mesh explicit, we will
311
+ sometimes refer to the latter as "big edges".
312
+ The local shape function [38, Definition 3.3] associated with {vi, ej} is given by
313
+ w{vi,ej} := λviwej,
314
+ where wej denotes the Whitney 1-form associated with the big edge ej as defined in
315
+ (5). In Figure 1b we give explicit expressions for the shape functions associated with
316
+ the small edges in Figure 1a. Note that the local shape functions of the form w{v,e}
317
+ associated with small edges in the interior (d = 2) or on the same face (d = 3) of
318
+ the form {v, e} such that v /∈ ∂e (example: small edge 7, 8, and 9 in Figure 1a) are
319
+ linearly dependent. We define the second-order, local space of discrete 1-forms [38,
320
+ Definition 3.3]
321
+ Λ1
322
+ h,2(K) := span{w{v,e}; v a vertex of K, e a (big) edge of K}.
323
+ (8)
324
+ Using these local spaces, we can define the global space of second-order, discrete 1-
325
+ forms
326
+ Λ1
327
+ h,2(Ω) := {ω ∈ Λ1(Ω); ∀K ∈ Kh(Ω) : ω|K ∈ Λ1
328
+ h,2(K)},
329
+ (9)
330
+ where again we have tangential continuity by a similar argument as in section 3.1.1.
331
+ 3.1.3
332
+ Projection operators
333
+ We denote by Eh,p(Ω) the global set of big edges (p = 1) or small edges (p = 2)
334
+ associated with Kh(Ω). We will define the projection operator Ih,p : Λ1(Ω) �→ Λ1
335
+ h,p(Ω)
336
+ 6
337
+
338
+ as the unique operator that maps ω ∈ Λ1(Ω) to ωh ∈ Λ1
339
+ h,p(Ω) such that the mismatch
340
+
341
+ e∈Eh,p(Ω)
342
+ ��
343
+ e
344
+ ω −
345
+
346
+ e
347
+ ωh
348
+ �2
349
+ (10)
350
+ is minimized. Note that for p = 1, this mismatch can be made to vanish. In this case,
351
+ Ih,1 agrees with the usual edge-based nodal projection operator [27, Eq. (3.11)].
352
+ In practice, we can compute the projection locally as follows. Let K ∈ Kh(Ω) be
353
+ a d-simplex, d ∈ {2, 3}, and let {s1, .., sNp,d} and {ws1, .., wsNp,d} denote the corre-
354
+ sponding big (p = 1) or small (p = 2) edges and corresponding shape functions as
355
+ introduced above. Specifically, we have N1,2 = 3, N1,3 = 6, N2,2 = 9, and N2,3 = 24.
356
+ We can define the matrix
357
+ (M)i,j =
358
+
359
+ si
360
+ wsj,
361
+ 1 ≤ i, j ≤ Np,d.
362
+ (11)
363
+ We will say that there is an interaction from edge sj to si if (M)i,j ̸= 0. Note that
364
+ for p = 1, M is the identity matrix. For p = 2 the local shape functions are linearly
365
+ dependent and, thus, the above matrix is not invertible. However, we can decompose
366
+ M into invertible and singular sub-matrices. For illustrative purposes we display for
367
+ p = 2 and d = 2 the decomposition of M in Figure 2b. The three top-left sub-matrices
368
+ in Figure 2b are invertible 2 × 2 matrices that describe the interaction between the
369
+ two small edges that lie on the same big edge, that is, the blue, red, and green sub-
370
+ matrix in Figure 2b correspond to the blue, red, and green small edges in Figure 2a,
371
+ respectively. The orange sub-matrix in Figure 2b is a 3 × 3 matrix with rank 2 that
372
+ describes the interaction between the three small edges that lie in the interior of the
373
+ simplex in Figure 2a, that is, the orange small edges. The gray sub-matrix encodes the
374
+ one-directional interaction from the the small edges that lie on a big edge to the small
375
+ edges in the interior. Note that the decomposition of M as given in Figure 2b is not
376
+ limited to d = 2. The idea can be extended to d = 3 by considering each face of a
377
+ 3-simplex as a 2-simplex. This is sufficient, since for d = 3 we have no small edges in
378
+ the interior and there is no interaction between small edges that do not lie on the same
379
+ face. We give the general structure of M in Figure 2c. Note that the small, purple
380
+ sub-matrices represent invertible 2 × 2 matrices and the bigger, orange sub-matrices
381
+ represent 3 × 3 matrices with rank 2.
382
+ In order to find ωh
383
+ ��
384
+ K ∈ Λ1
385
+ h,p(K) such that ωh
386
+ ��
387
+ K = Ih,pω
388
+ ��
389
+ K, let ⃗ηK be a vector of
390
+ coefficients η1
391
+ K, .., η
392
+ Np,d
393
+ K
394
+ such that
395
+ ωh|K =
396
+ Np,d
397
+
398
+ i=1
399
+ ηi
400
+ Kwsi.
401
+ (12)
402
+ We can then compute ⃗ηK as a least-squares solution of
403
+ M⃗ηK =
404
+ ��
405
+ si
406
+ ω
407
+
408
+ 1≤i≤Np,d
409
+ .
410
+ (13)
411
+ 7
412
+
413
+ (a) 2-simplex K
414
+ (b) matrix M (d = 2)
415
+ (c) matrix M (d = 3)
416
+ Figure 2: For p = 2 and d = 2 the matrix M corresponding to the 2-simplex K in (a)
417
+ has the form given in (b). Each row and column in M is associated to a small edge
418
+ in (a). Each sub-matrix in (b) describes the interactions between edges with the same
419
+ color in (a). The gray sub-matrix is an exception as it describes the one-directional
420
+ interaction between the small edges that lie on a big edge and the small edges that lie
421
+ in the interior. For d = 3, we M has the structure as shown in Figure 2c, where the
422
+ purple sub-matrixs are 2 × 2 invertible matrices and the orange sub-matrixs are 3 × 3
423
+ matrices of rank 2.
424
+ Without loss of generality we assume that M has the form as given in Figure 2c. Then,
425
+ we solve (13) as follows:
426
+ 1. The local shape functions related to small edges that lie on a big edge of the
427
+ simplex are linearly independent. We solve for their coefficients first, that is, we
428
+ solve the system corresponding to the invertible blue sub-matrices in Figure 2c
429
+ first.
430
+ 2. Using the results from step 1, we can move the gray sub-matrix in Figure 2c
431
+ to the right-hand side. Then, we solve the matrix-system corresponding to the
432
+ orange sub-matrices in Figure 2c in a least-squares sense.
433
+ If we perform the above steps for all K ∈ Kh(Ω), we find ωh = Ih,pω ∈ Λ1
434
+ h,p(Ω).
435
+ Note that only the shape functions associated to small edges on a face contribute to
436
+ the tangential fields on that face. Therefore, the above procedure yields tangential
437
+ continuity.
438
+ Remark 3 For p = 1, (13) reduces to
439
+ ηi
440
+ K =
441
+
442
+ si
443
+ ω,
444
+ ∀i ∈ {1, .., 3(d − 1)}
445
+ (14)
446
+ with si a big edge of the 3-simplex K for all i ∈ {1, .., 3(d − 1)}. This yields the
447
+ standard nodal interpolation operator of [27, Eq. (3.11)].
448
+ 8
449
+
450
+ 3.2
451
+ Semi-Lagrangian material derivative
452
+ The method described in this section is largely based on [24, 26]. Throughout this
453
+ section, unless stated otherwise, we fix the stationary, Lipschitz-continuous velocity
454
+ field u ∈ W 1,∞(Ω) with u · n = 0 on ∂Ω. This means that we consider a linear trans-
455
+ port problem and our main concern will be the discretization of the material derivative
456
+ Duω for a 1-form ω. We can define the flow ]0, T[×Ω ∋ (τ, x) �→ Xτ(x) ∈ Rd as the
457
+ solution of the initial value problems
458
+
459
+ ∂τ Xt,t+τ(x) = u(Xt,t+τ(x)),
460
+ Xt(x) = x.
461
+ (15)
462
+ Given that flow we can define the material derivative for a time-dependent differential
463
+ 1-form ω
464
+ Duω(t) := ∂
465
+ ∂τ X∗
466
+ t,t+τω(t + τ)
467
+ ����
468
+ τ=0
469
+ .
470
+ (16)
471
+ We employ a first- or second-order, backward-difference method to approximate the
472
+ derivative. Writing X∗
473
+ t,t−τ for the pullback of forms under the flow, we obtain for
474
+ sufficiently-smooth t �→ ω(t) and a timestep 0 < τ → 0
475
+ Duω(t) = 1
476
+ τ
477
+
478
+ ω(t) − X∗
479
+ t,t−τω(t − τ)
480
+
481
+ + O(τ 2)
482
+ (17)
483
+ or
484
+ Duω(t) = 1
485
+
486
+
487
+ 3ω(t) − 4X∗
488
+ t,t−τω(t − τ) + X∗
489
+ t,t−2τω(t − 2τ)
490
+
491
+ + O(τ 3),
492
+ (18)
493
+ respectively. Note that both backward-difference methods are A-stable [41]. In the
494
+ remainder of this section we restrict ourselves to (17), but exactly the same considera-
495
+ tions apply to (18).
496
+ Given a temporal mesh .. < tn < tn+1 < .., we approximate ω(tn, ·) ∈ Λ1(Ω)
497
+ by a discrete differential form ωn
498
+ h ∈ Λ1
499
+ h,p(Ω) with p ∈ {1, 2}. Using the backward-
500
+ difference quotient (17), we can define the discrete material derivative for fixed timestep
501
+ τ > 0
502
+ (Dβω)(tn) ≈ 1
503
+ τ
504
+
505
+ ωn
506
+ h − Ih,pX∗
507
+ t,t−τωn−1
508
+ h
509
+
510
+ ∈ Λ1
511
+ h,p(Ω),
512
+ (19)
513
+ where we need to use the projection operator Ih,p : Λ1(Ω) �→ Λh,p(Ω) since X∗
514
+ t,t−τωn−1
515
+ h
516
+ /∈
517
+ Λ1
518
+ h,p(Ω) in general. Recall from section 3.1 that the degrees of freedom for discrete
519
+ 1-forms are associated to small (p = 2) or big (p = 1) edges. As discussed in sec-
520
+ tion 3.1.3, evaluating the interpolation operator entails integrating X��
521
+ t,t−τωn−1
522
+ h
523
+ over
524
+ small (p = 2) or big (p = 1) edges. We can approximate these integrals as follows
525
+
526
+ e
527
+ X∗
528
+ t,t−τωn−1
529
+ h
530
+ =
531
+
532
+ Xt,t−τ(e)
533
+ ωn−1
534
+ h
535
+
536
+
537
+ ¯
538
+ Xt,t−τ(e)
539
+ ωn−1
540
+ h
541
+ ,
542
+ (20)
543
+ where e is a small or big edge and
544
+ ¯Xt,t−τ(e) =
545
+
546
+ (1 − ξ)Xt,t−τ(v1) + ξXt,t−τ(v2); 0 ≤ ξ ≤ 1
547
+
548
+ (21)
549
+ 9
550
+
551
+ Figure 3: Edge e (in red) is transported using the flow β (in blue). The exact trans-
552
+ ported edge Xτ(e) and the approximate transported edge ¯Xτ(e) are given in orange
553
+ and green.
554
+ with v1, v2 the vertices of e. Instead of transporting the edge e using the exact flow
555
+ Xt,t−τ, we follow [12, 24, 26] and only transport the vertices of the small edges (p = 2)
556
+ or big edges (p = 1) and obtain a piecewise linear (second-order) approximation
557
+ ¯Xt,t−τ(e) of the transported edge Xt,t−τ(e) as illustrated in Figure 3. We can approxi-
558
+ mate the movement of the endpoints of e under the flow as defined by (15) by solving
559
+ (15) using the explicit Euler method or Heun’s method for the first- and second-order
560
+ case, respectively. We will elaborate on this further in section 4.1.
561
+ In Figure 3, we can also see that the approximate transported edge may intersect
562
+ several different elements of the mesh. When we evaluate the integral in (20), it can
563
+ happen that there are discontinuities of ωn−1
564
+ h
565
+ along ¯Xt,t−τ(e). Therefore, we cannot
566
+ apply a global quadrature rule to the entire integral. Instead, we split ¯Xt,t−τ(e) into
567
+ several segments defined by the intersection of ¯Xt,t−τ(e) with cells of the mesh. In
568
+ our implementation, for the sake of stability, we find the intersection points by trans-
569
+ forming back to a reference element as visualised in Figure 4. Algorithm 1 gives all
570
+ details. Note that we can forgo the treament of any special cases (e.g. intersection
571
+ with vertices) without jeopardizing stability. After we split the transported edge into
572
+ segments, we can evaluate the integrals over these individual pieces exactly, because
573
+ we know that ωn−1
574
+ h
575
+ is of polynomial form when restricted to individual elements of the
576
+ mesh (see section 3.1).
577
+ When simulating the fluid model (2), we will not have access to an exact velocity
578
+ field. Instead we only have access to an approximation of the velocity field. This ap-
579
+ proximation may not satisfy exact vanishing normal boundary conditions. Therefore,
580
+ a part of ¯Xt,t−τ(e) may end up outside the domain. This can also happen due to an
581
+ approximation of the flow by explicit timestepping. Since ωn−1
582
+ h
583
+ is not defined outside
584
+ 10
585
+
586
+ Algorithm 1 Splitting 1-simplex over mesh elements (see Figure 4 for illustration).
587
+ Here, Kref denotes the reference simplex.
588
+ Input: x0 ∈ K0 ∈ Kh(Ω) and x1 vertices of a 1-simplex e.
589
+ Output: Number of elements N, elements {K0, .., KN−1} ∈ Kh(Ω)N.
590
+ 1: K ← K0
591
+ 2: Fold ← NULL
592
+ 3: Kold ← NULL
593
+ 4: N ← 1
594
+ 5: E ← {K}
595
+ 6: while x1 /∈ K do
596
+ 7:
597
+ Find the isoparametric mapping ϕK : Kref �→ K
598
+ 8:
599
+ Find face F ⊂ ∂K s.t. F ̸= Fold and ϕ−1
600
+ K (e) ∩ ϕ−1
601
+ K (F) ̸= ∅
602
+ 9:
603
+ K ← K ∈ Kh(Ω) s.t. F ⊂ ∂K and K ̸= Kold (K on the other side of face F)
604
+ 10:
605
+ Fold ← F
606
+ 11:
607
+ N ← N + 1
608
+ 12:
609
+ E ← E ∪ {K}
610
+ 13: end while
611
+ ϕK : Kref �→ K
612
+ x0
613
+ e
614
+ K
615
+ ϕ−1
616
+ K (e)
617
+ Kref
618
+ K0
619
+ x1
620
+ Figure 4: The red line indicates the line that spans multiple elements. On the left we
621
+ see the reference triangle associated with the yellow element in the mesh on the right.
622
+ 11
623
+
624
+ Figure 5: A coarse triangulation of Ω = {x ∈ R2; ||x|| < 1} with the velocity field
625
+ u = [−y, x]T satisfying u · n = 0. Despite the vanishing normal components of the
626
+ velocity, the blue edge gets transported out of the domain to the green edge.
627
+ the domain, we set
628
+
629
+ ¯
630
+ Xt,t−τ(e)|Rd\Ω
631
+ ωn−1
632
+ h
633
+ :=
634
+ len
635
+
636
+ ¯Xt,t−τ(e)
637
+ ��
638
+ Rd\Ω
639
+
640
+ len
641
+
642
+ ¯Xt,t−τ(e)
643
+
644
+
645
+ e
646
+ ωn−1
647
+ h
648
+ ,
649
+ (22)
650
+ where ¯Xt,t−τ(e)
651
+ ��
652
+ Rd\Ω is the part of ¯Xt,t−τ(e) that lies outside the domain Ω and len
653
+
654
+ ·)
655
+ gives the arclength of the argument. This is motivated by the situation displayed in
656
+ Figure 5—a case where an edge gets transported out of the domain due to the use of
657
+ approximate flow maps despite vanishing normal components of the velocity. If we
658
+ set the value defined in (22) to zero in this case, it would be equivalent to applying
659
+ vanishing tangential boundary conditions, which is inconsistent with (1). Instead, (22)
660
+ just takes the tangential components from the previous timestep.
661
+ We arrive at the following approximation of the material derivative
662
+ (Dβω)(tn) ≈ 1
663
+ τ
664
+
665
+ ωn
666
+ h − Ih,p ¯X∗
667
+ t,t−τωn−1
668
+ h
669
+
670
+ ,
671
+ (23)
672
+ where the only difference between (19) and (23) is that Xt,t−τ was replaced by ¯Xt,t−τ
673
+ and Ih,p is implemented based on (22). Note that in our scheme ¯X∗
674
+ t,t−τ is always
675
+ evaluated in conjunction with Ih,p, which means that we need define ¯Xt,t−τ only on
676
+ small (p = 2) or big (p = 1) edges. In fact, ¯Xt,t−τ is defined through (21) for all points
677
+ that lie on small (p = 2) or big (p = 1) edges.
678
+ Given a velocity field u ∈ W 1,∞(Ω) with u · n = 0, it was shown in [26, section
679
+ 4] that using a first-order backward difference scheme and lowest-order elements for
680
+ the spatial discretization, we can approximate a smooth solution ω ∈ Λ1(Ω) of
681
+ Duω = 0,
682
+ (24)
683
+ 12
684
+
685
+ with an L2-error of O(τ − 1
686
+ 2h), where h is the spatial meshwidth and τ > 0 is the
687
+ timestep size. However, numerical experiments [26, section 6] performed with τ =
688
+ O(h) show an error of O(h)—a slight improvement over the a-priori estimates. This
689
+ motivates us to link the timestep to the mesh width as τ = O(h).
690
+ 4
691
+ Semi-Lagrangian Advection applied to the Incom-
692
+ pressible Navier-Stokes Equations
693
+ Given a temporal mesh t0 < t1 < ... < tN−1 < tN, we elaborate a single timestep
694
+ tn−1 �→ tn of size τ := tn − tn−1, n ≤ N. We assume that approximations ωk
695
+ h ∈
696
+ Λ1
697
+ h,p(Ω) of ω(tk, ·) ∈ Λ1(Ω) are available for k < n with [0, T] �→ ω ∈ Λ1(Ω) a
698
+ solution of (2).
699
+ 4.1
700
+ Approximation of the flow map
701
+ In the Navier-Stokes equations, the flow is induced by the unknown, time-dependent
702
+ velocity field u(t, x). Therefore, (15) becomes
703
+
704
+ ∂τ Xt,t+τ(x) = u(t + τ, Xt,t+τ(x)),
705
+ Xt(x) = x ,
706
+ t ∈ (0, T).
707
+ (25)
708
+ The discretization of the material derivative requires us to approximate the flow map
709
+ Xt,t−τ in order to evaluate (21).
710
+ 4.1.1
711
+ A first-order scheme
712
+ We use the explicit Euler method to approximate the (backward) flow according to
713
+ Xtn,tn−τ(x) ≈ x − τu(tn − τ, x),
714
+ (26)
715
+ where tn is a node in the temporal mesh and τ denotes the timestep size. We only have
716
+ access to an approximation un−1
717
+ h
718
+ := (ωn−1
719
+ h
720
+ )\ of u at time tn−1, which gives
721
+ Xtn,tn−τ(x) ≈ x − τun−1
722
+ h
723
+ (x).
724
+ (27)
725
+ Note that a direct application of the explicit Euler method would require an evaluation
726
+ of the velocity field at tn. Instead, we perform a constant extrapolation and evaluate
727
+ the velocity field at tn−1, that is, we use un−1
728
+ h
729
+ in (27).
730
+ The approximation un−1
731
+ h
732
+ resides in the space of vector proxies for discrete dif-
733
+ ferential 1-forms as discussed in section 3.1. This means that only tangential conti-
734
+ nuity of un−1
735
+ h
736
+ across faces of elements of the mesh is guaranteed, while discontinu-
737
+ ities may appear in the normal direction of the faces. Therefore, un−1
738
+ h
739
+ is not defined
740
+ point-wise—even though (27) requires point-wise evaluation. For that reason, we will
741
+ 13
742
+
743
+ replace un−1
744
+ h
745
+ by a globally-continuous, smoothened velocity field ¯un−1
746
+ h
747
+ that approxi-
748
+ mates un−1
749
+ h
750
+ (see section 4.1.3 for the construction). We then have
751
+ Xtn,tn−τ(x) ≈ x − τ ¯un−1
752
+ h
753
+ (x)
754
+ (28)
755
+ which yields a first-order-in-time approximation of Xtn,tn−τ(x), provided that ¯un−1
756
+ h
757
+ is
758
+ a first-order approximation of u(tn−1, ·).
759
+ 4.1.2
760
+ A second-order scheme
761
+ A second-order approximation can be achieved by using Heun’s method [44] instead
762
+ of explicit Euler. We find the following second-order in time approximations
763
+ Xtn,tn−τ(x) ≈ x − τ
764
+ 2
765
+
766
+ u∗
767
+ h(x) + un−1
768
+ h
769
+ (x − τu∗
770
+ h(x))
771
+
772
+ ,
773
+ (29)
774
+ Xtntn−2τ(x) ≈ x − τ
775
+
776
+ u∗
777
+ h(x) + un−2
778
+ h
779
+ (x − 2τu∗
780
+ h(x))
781
+
782
+ ,
783
+ (30)
784
+ where we approximate the velocity field at tn by the linear extrapolation u∗
785
+ h = 2un−1
786
+ h
787
+
788
+ un−2
789
+ h
790
+ . As described in section 4.1.1, we replace the velocity fields by suitable smooth
791
+ approximations. We obtain
792
+ Xtn,tn−τ(x) ≈ ¯Xt−τ(x) := x − τ
793
+ 2
794
+ �¯u∗
795
+ h(x) + ¯un−1
796
+ h
797
+ (x − τ ¯u∗
798
+ h(x))
799
+
800
+ ,
801
+ (31)
802
+ Xtn,tn−2τ(x) ≈ ¯Xt−2τ(x) := x − τ
803
+ �¯u∗
804
+ h(x) + ¯un−2
805
+ h
806
+ (x − 2τ ¯u∗
807
+ h(x))
808
+
809
+ ,
810
+ (32)
811
+ where ¯u•
812
+ h with • = ∗, n − 1, n − 2 denotes the smoothened version of u•
813
+ h as it will be
814
+ constructed in the next section.
815
+ 4.1.3
816
+ Smooth reconstruction of the velocity field
817
+ Given a discrete velocity field uZ
818
+ h ∈ Λ1
819
+ h,p(Ω), we can define a smoothened version ¯uh
820
+ of uh that is
821
+ • Lipschitz continuous to ensure stable evaluation of (28),
822
+ • well-defined on every point of the meshed domain,
823
+ • practically computable, and
824
+ • second-order accurate.
825
+ We introduce ¯uh as follows. Let hmin denote the length of the shortest edge of the
826
+ mesh and (ui
827
+ h)i=1,..,d the components of uh. Then,
828
+ ¯ui
829
+ h(x) =
830
+ 1
831
+ hmin
832
+ � xi+ 1
833
+ 2 hmin
834
+ xi− 1
835
+ 2 hmin
836
+ ui
837
+ h([x1, . . . , xi−1, ξ, xi+1, . . . , xd]T)dξ
838
+ (33)
839
+ 14
840
+
841
+ provides a second-order, Lipschitz-continuous approximation of uh. In the above def-
842
+ inition, we can also replace hmin by a localized parameter that scales as O(h) with h
843
+ the length of the edges "close" to x. Note that the above integral can be evaluated up
844
+ to machine precision using the algorithm as described in section 3.2 for (20). The av-
845
+ eraging (33) provides a second-order approximation of uh on every point in the mesh.
846
+ 4.2
847
+ A first- and second-order SL scheme
848
+ We are now ready to turn the ideas of section 3 into a concrete numerical scheme
849
+ for the incompressible Navier-Stokes equations as given in (2). We cast (2a) and
850
+ (2b) into weak form and, subsequently, do Galerkin discretization in space relying
851
+ on those spaces of discrete differential forms introduced in section 3.1. For the first-
852
+ order scheme, we have the following discrete variational formulation. Given ωn−1
853
+ h
854
+
855
+ Λ1
856
+ h,1(Ω), we search pn
857
+ h ∈ Λ0
858
+ h,1(Ω), ωn
859
+ h ∈ Λ1
860
+ h,1(Ω) such that
861
+ �1
862
+ τ
863
+
864
+ ωn
865
+ h − Ih,1 ¯X∗
866
+ tn,tn−τωn−1
867
+ h
868
+
869
+ , ηh
870
+
871
+
872
+ +ε (dωn
873
+ h, dηh)Ω + (dpn
874
+ h, ηh)Ω = (f n, ηh)Ω ,
875
+ (34a)
876
+ (ωn
877
+ h, dψh)Ω = 0
878
+ (34b)
879
+ for all ηh ∈ Λ1
880
+ h,1(Ω) and ψh ∈ Λ0
881
+ h,1(Ω). Ih,p denotes the projection operator as defined
882
+ in section 3.1. For the second-order scheme, we use second-order timestepping and
883
+ second-order discrete differential forms. Given ωn−2
884
+ h
885
+ , ωn−1
886
+ h
887
+ ∈ Λ1
888
+ h,2(Ω), we search pn
889
+ h ∈
890
+ Λ0
891
+ h,2(Ω), ωn
892
+ h ∈ Λ1
893
+ h,2(Ω) such that
894
+ � 1
895
+
896
+
897
+ 3ωn
898
+ h − 4Ih,2 ¯X∗
899
+ tn,tn−τωn−1
900
+ h
901
+ + Ih,2 ¯X∗
902
+ tn,tn−2τωn−2
903
+ h
904
+
905
+ , ηh
906
+
907
+
908
+ +ε (dωn
909
+ h, dηh)Ω + (dpn
910
+ h, ηh)Ω = (f n, ηh)Ω ,
911
+ (35a)
912
+ (ωn
913
+ h, dψh)Ω = 0
914
+ (35b)
915
+ for all ηh ∈ Λ1
916
+ h,2(Ω) and ψh ∈ Λ0
917
+ h,2(Ω). Numerical experiments reported in section 5
918
+ give evidence that these schemes indeed do provide first- and second-order conver-
919
+ gence for smooth solutions. Note that the schemes presented in this section only re-
920
+ quire solving symmetric, linear systems of equations at every time-step.
921
+ 4.3
922
+ Conservative SL schemes
923
+ In order to enforce energy-tracking—the correct behavior of the total energy E(t) over
924
+ time as expressed in (3)—we add a suitable constraint plus a Lagrange multiplier to
925
+ 15
926
+
927
+ the discrete variational problems proposed in section 4.2. Given ωn−1
928
+ h
929
+ ∈ Λ1
930
+ h,1(Ω), we
931
+ search pn
932
+ h ∈ Λ0
933
+ h,1(Ω), ωn
934
+ h ∈ Λ1
935
+ h,1(Ω), and µn ∈ R such that
936
+ �1
937
+ τ
938
+
939
+ ωn
940
+ h − Ih,1 ¯X∗
941
+ tn,tn−τωn−1
942
+ h
943
+
944
+ , ηh
945
+
946
+
947
+ + (dpn
948
+ h, ηh)Ω + ε(dωn
949
+ h,dηh)Ω
950
+ +µn [(ωn
951
+ h, ηh)Ω + 2ετ(dωn
952
+ h, dηh)Ω − τ(f n, ηh)Ω] = (f n, ηh)Ω ,
953
+ (36a)
954
+ (ωn
955
+ h, dψh)Ω = 0,
956
+ (36b)
957
+ (ωn
958
+ h, ωn
959
+ h)Ω + 2ετ(dωn
960
+ h, dωn
961
+ h)Ω − τ(f n, ωn
962
+ h)Ω =
963
+
964
+ ωn−1
965
+ h
966
+ , ωn−1
967
+ h
968
+
969
+ Ω (36c)
970
+ for all ηh ∈ Λ1
971
+ h,1(Ω) and ψh ∈ Λ0
972
+ h,1(Ω). Note that the last scalar equation enforces
973
+ energy conservation for ε = 0 and f = 0. To solve the nonlinear system (36) for
974
+ ωn
975
+ h, pn
976
+ h, µn, we propose the following iterative scheme. Assume that we have a se-
977
+ quence (ωn
978
+ h,k)k∈N with ωn
979
+ h,k → ωn
980
+ h(k → ∞). Then we can employ the Newton-like
981
+ linearization
982
+ (ωn
983
+ h, ωn
984
+ h)Ω ←
985
+
986
+ ωn
987
+ h,k, ωn
988
+ h,k
989
+
990
+
991
+ =
992
+
993
+ ωn
994
+ h,k−1, ωn
995
+ h,k−1
996
+
997
+ Ω + 2
998
+
999
+ ωn
1000
+ h,k−1, ωn
1001
+ h,k − ωn
1002
+ h,k−1
1003
+
1004
+ Ω + O
1005
+
1006
+ ||ωn
1007
+ h,k − ωn
1008
+ h,k−1||2
1009
+
1010
+
1011
+ .
1012
+ (37)
1013
+ We use the above expansion to replace the quadratic terms (ωn, ωn)Ω and (dωn, dωn)Ω
1014
+ and arrive at the following linear variational problem to be solved in every step of
1015
+ the inner iteration. Given ωn−1
1016
+ h
1017
+ , ωn
1018
+ h,k−1 ∈ Λ1
1019
+ h,1(Ω), we search pn
1020
+ h,k ∈ Λ0
1021
+ h,1(Ω), ωn
1022
+ h,k ∈
1023
+ Λ1
1024
+ h,1(Ω), and µn
1025
+ k ∈ R such that
1026
+ �1
1027
+ τ
1028
+
1029
+ ωn
1030
+ h,k − Ih,1 ¯X∗
1031
+ tn,tn−τωn−1
1032
+ h
1033
+
1034
+ , ηh
1035
+
1036
+
1037
+ +
1038
+
1039
+ dpn
1040
+ h,k, ηh
1041
+
1042
+ Ω + ε(dωn
1043
+ h,k, dηh)Ω
1044
+ +µn
1045
+ k
1046
+
1047
+ (ωn
1048
+ h,k−1, ηh)Ω + 2ετ(dωn
1049
+ h,k−1, dηh)Ω − τ(f n, ηh)Ω
1050
+
1051
+ = (f n, ηh)Ω ,
1052
+ (38a)
1053
+
1054
+ ωn
1055
+ h,k, dψh
1056
+
1057
+ Ω = 0,
1058
+ (38b)
1059
+
1060
+ ωn
1061
+ h,k−1, ωn
1062
+ h,k−1
1063
+
1064
+ Ω + 2
1065
+
1066
+ ωn
1067
+ h,k−1, ωn
1068
+ h,k − ωn
1069
+ h,k−1
1070
+
1071
+ +2ετ[(dωn
1072
+ h,k−1, dωn
1073
+ h,k−1)Ω + 2(dωn
1074
+ h,k−1, dωn
1075
+ h,k − dωn
1076
+ h,k−1)]
1077
+ −τ(f n, ωn
1078
+ h,k−1)Ω =
1079
+
1080
+ ωn−1
1081
+ h
1082
+ , ωn−1
1083
+ h
1084
+
1085
+
1086
+ (38c)
1087
+ for all ηh ∈ Λ1
1088
+ h,1(Ω) and ψh ∈ Λ0
1089
+ h,1(Ω). This is a symmetric, linear system that
1090
+ is equivalent to the original system in the limit (ωn
1091
+ h,k, pn
1092
+ h,k, µn
1093
+ k) → (ωn
1094
+ h, pn
1095
+ h, µn). In
1096
+ numerical experiments we observe that it takes around 2-3 steps of the inner iteration
1097
+ to converge to machine precision using an initial guess ωn
1098
+ h,0 = ωn−1
1099
+ h
1100
+ . We can apply the
1101
+ same idea for energy-tracking to our second-order scheme as proposed in section 4.2.
1102
+ 16
1103
+
1104
+ Remark 4 For the case ε = 0 and f = 0, we can also enforce helicity conservation by
1105
+ adding a suitable Lagrange multiplier to the discrete system. Given ωn−1
1106
+ h
1107
+ ∈ Λ1
1108
+ h,1(Ω),
1109
+ we search pn
1110
+ h ∈ Λ0
1111
+ h,1, ωn
1112
+ h ∈ Λ1
1113
+ h,1(Ω), and λn ∈ R such that
1114
+ �1
1115
+ τ
1116
+
1117
+ ωn
1118
+ h − Ih,1 ¯X∗
1119
+ tn,tn−τωn−1
1120
+ h
1121
+
1122
+ , ηh
1123
+
1124
+
1125
+ + (dpn
1126
+ h, ηh)Ω + ε(dωn
1127
+ h, dηh)Ω
1128
+ +λn(ωn
1129
+ h, dηh)Ω + λn(dωn
1130
+ h, ηh)Ω + µn(ωn
1131
+ h, ηh)Ω = 0,
1132
+ (39a)
1133
+ (ωn
1134
+ h, dψh)Ω = 0,
1135
+ (39b)
1136
+ (ωn
1137
+ h, ωn
1138
+ h)Ω =
1139
+
1140
+ ωn−1
1141
+ h
1142
+ , ωn−1
1143
+ h
1144
+
1145
+ Ω ,
1146
+ (39c)
1147
+ (ωn
1148
+ h, dωn
1149
+ h)Ω =
1150
+
1151
+ ωn−1
1152
+ h
1153
+ , dωn−1
1154
+ h
1155
+
1156
+
1157
+ (39d)
1158
+ for all ηh ∈ Λ1
1159
+ h,1(Ω) and ψh ∈ Λ0
1160
+ h,1(Ω). By linearization as for energy-tracking, we
1161
+ obtain the following system. Given ωn−1, ωn
1162
+ h,k−1 ∈ Λ1
1163
+ h,1(Ω), we search pn
1164
+ h,k ∈ Λ0
1165
+ h,1(Ω),
1166
+ ωn
1167
+ h,k ∈ Λ1
1168
+ h,1(Ω), and λn
1169
+ k ∈ R such that
1170
+ �1
1171
+ τ
1172
+
1173
+ ωn
1174
+ h,k − Ih,1 ¯X∗
1175
+ tn,tn−τωn−1�
1176
+ , ηh
1177
+
1178
+
1179
+ +
1180
+
1181
+ dpn
1182
+ h,k, ηh
1183
+
1184
+ Ω + ε(dωn
1185
+ h,k, dηh)Ω
1186
+ +λn
1187
+ k(ωn
1188
+ h,k−1, dηh)Ω + λn
1189
+ k(dωn
1190
+ h,k−1, ηh)Ω + µn
1191
+ k(ωn
1192
+ h,k−1, ηh)Ω = 0,
1193
+ (40a)
1194
+
1195
+ ωn
1196
+ h,k, dψh
1197
+
1198
+ Ω = 0,
1199
+ (40b)
1200
+
1201
+ ωn
1202
+ h,k−1, ωn
1203
+ h,k−1
1204
+
1205
+ Ω + 2
1206
+
1207
+ ωn
1208
+ h,k−1, ωn
1209
+ h,k − ωn
1210
+ h,k−1
1211
+
1212
+ =
1213
+
1214
+ ωn−1
1215
+ h
1216
+ , ωn−1
1217
+ h
1218
+
1219
+ Ω , (40c)
1220
+
1221
+ ωn
1222
+ h,k−1, dωn
1223
+ h,k
1224
+
1225
+ Ω +
1226
+
1227
+ ωn
1228
+ h,k, dωn
1229
+ h,k−1
1230
+
1231
+ Ω −
1232
+
1233
+ ωn
1234
+ h,k−1, dωn
1235
+ h,k−1
1236
+
1237
+ Ω =
1238
+
1239
+ ωn−1
1240
+ h
1241
+ , dωn−1
1242
+ h
1243
+
1244
+ Ω (40d)
1245
+ for all ηh ∈ Λ1
1246
+ h,1(Ω) and ψh ∈ Λ0
1247
+ h,1(Ω). Again, this is a symmetric, linear system
1248
+ that is equivalent to the original system in the limit (ωn
1249
+ h,k, pn
1250
+ h,k, µn
1251
+ k) → (ωn
1252
+ h, pn
1253
+ h, µn).
1254
+ Also, numerical experiments hint that it takes around 2-3 steps of the inner iteration to
1255
+ converge to machine precision using an initial guess ωn
1256
+ h,0 = ωn−1
1257
+ h
1258
+ .
1259
+ 5
1260
+ Numerical Results
1261
+ In this section, we present multiple numerical experiments to validate the new scheme.
1262
+ In the following, we will always consider schemes that include energy-tracking as in-
1263
+ troduced in section 4.3 unless stated otherwise. We only include helicity-conservation
1264
+ as introduced in Remark 4 for domains in R3 when ε = 0 and f = 0. The ex-
1265
+ periments are based on a C++ code that heavily relies on MFEM [2]. The source
1266
+ code is published under the GNU General Public License in the online code repository
1267
+ https://gitlab.com/WouterTonnon/semi-lagrangian-tools.
1268
+ 17
1269
+
1270
+ 10−1
1271
+ mesh width h
1272
+ 10−3
1273
+ 10−2
1274
+ 10−1
1275
+ L2 Error u
1276
+ first-order,
1277
+ ε = 0
1278
+ first-order,
1279
+ ε = 0.01π−2
1280
+ first-order,
1281
+ ε = 0.1π−2
1282
+ second-order,
1283
+ ε = 0
1284
+ second-order,
1285
+ ε = 0.01π−2
1286
+ second-order,
1287
+ ε = 0.1π−2
1288
+ Figure 6: Convergence results for Experiment 1 using the first- and second-order
1289
+ schemes on simplicial meshes with mesh width h, timestep τ = 0.065804h. We ob-
1290
+ serve first- and second-order algebraic convergence for all values of ε.
1291
+ 5.1
1292
+ Experiment 1: Decaying Taylor-Green Vortex
1293
+ We consider the incompressible Navier-Stokes equations with Ω = [− 1
1294
+ 2, 1
1295
+ 2]2, T = 1,
1296
+ varying ε ≥ 0, f = 0, and vanishing boundary conditions. An exact, classical solution
1297
+ is the following Taylor-Green vortex [42]
1298
+ u(t, x) =
1299
+ � cos(πx1) sin(πx2)
1300
+ − sin(πx1) cos(πx2)
1301
+
1302
+ e−2π2εt.
1303
+ (41)
1304
+ We ran a h-convergence analysis for different values of ε ≥ 0 and summarize the
1305
+ results in Figure 6. We also track the energy for different values of ε and compare the
1306
+ energy to the exact solution in Figure 7.
1307
+ 5.2
1308
+ Experiment 2: Taylor-Green Vortex
1309
+ We consider the incompressible Navier-Stokes equations with Ω = [−1, 1]2, T = 1,
1310
+ varying ε ≥ 0, f and the boundary conditions chosen such that
1311
+ u(t, x) =
1312
+ � cos(πx1) sin(πx2)
1313
+ − sin(πx1) cos(πx2)
1314
+
1315
+ (42)
1316
+ is an exact, classical solution. We ran a h-convergence analysis for all parameters
1317
+ and summarize the results in Figure 8. We observe first- and second-order algebraic
1318
+ convergence for the corresponding schemes. Note that the error of the scheme is stable
1319
+ 18
1320
+
1321
+ 0.0
1322
+ 0.2
1323
+ 0.4
1324
+ 0.6
1325
+ 0.8
1326
+ 1.0
1327
+ time t
1328
+ 0.58
1329
+ 0.60
1330
+ 0.62
1331
+ 0.64
1332
+ 0.66
1333
+ 0.68
1334
+ 0.70
1335
+ L2 Norm u
1336
+ exact,
1337
+ ε = 0
1338
+ first-order,
1339
+ ε = 0
1340
+ exact,
1341
+ ε = 0.01π−2
1342
+ first-order,
1343
+ ε = 0.01π−2
1344
+ exact,
1345
+ ε = 0.1π−2
1346
+ first-order,
1347
+ ε = 0.1π−2
1348
+ (a) first-order
1349
+ 0.0
1350
+ 0.2
1351
+ 0.4
1352
+ 0.6
1353
+ 0.8
1354
+ 1.0
1355
+ time t
1356
+ 0.58
1357
+ 0.60
1358
+ 0.62
1359
+ 0.64
1360
+ 0.66
1361
+ 0.68
1362
+ 0.70
1363
+ L2 Norm u
1364
+ exact,
1365
+ ε = 0
1366
+ second-order,
1367
+ ε = 0
1368
+ exact,
1369
+ ε = 0.01π−2
1370
+ second-order,
1371
+ ε = 0.01π−2
1372
+ exact,
1373
+ ε = 0.1π−2
1374
+ second-order,
1375
+ ε = 0.1π−2
1376
+ (b) second-order
1377
+ Figure 7: Energy of the discrete and exact solution for Experiment 1 using the first-
1378
+ and second-order, energy-tracking schemes on a simplicial mesh with mesh width h =
1379
+ 0.0949795, timestep τ = 0.00625.
1380
+ 19
1381
+
1382
+ 10−1
1383
+ 100
1384
+ mesh width h
1385
+ 10−2
1386
+ 10−1
1387
+ 100
1388
+ L2 Error u
1389
+ first-order,
1390
+ ε = 0
1391
+ first-order,
1392
+ ε = 0.01
1393
+ first-order,
1394
+ ε = 1
1395
+ second-order,
1396
+ ε = 0
1397
+ second-order,
1398
+ ε = 0.01
1399
+ second-order,
1400
+ ε = 1
1401
+ Figure 8: Convergence results for Experiment 2 using the first- and second-order,
1402
+ non-conservative schemes on simplicial meshes with mesh width h, timestep τ =
1403
+ 0.032902h. As ε → 0 the error remains bounded.
1404
+ as ε → 0. This is in agreement with the analysis performed on the vectorial advection
1405
+ equations presented in [24]. This experiment thus suggests that this analysis can be
1406
+ extended to the scheme presented in this work.
1407
+ 5.3
1408
+ Experiment 3: A rotating hump problem
1409
+ The Taylor-Green vortices provide exact solutions to the incompressible Navier-Stokes
1410
+ equations, but they are rather "static" solutions. In this experiment, we consider a more
1411
+ dynamic solution. Let us consider the incompressible Navier-Stokes equations with
1412
+ Ω = [− 1
1413
+ 2, 1
1414
+ 2]2, T = 1, ε = 0, f = 0, and vanishing normal boundary conditions. We
1415
+ consider the following initial condition
1416
+ u0(x) =
1417
+
1418
+ −πex1 cos(πx1) sin(πx2)
1419
+ πex1 sin(πx1) cos(πx2) − ex1 cos(πx1) cos(πx2)
1420
+ ���
1421
+ .
1422
+ (43)
1423
+ The exact solution to this problem is unknown, so we compare the solution computed
1424
+ by our scheme to the solution produced by the incompressible Euler solver Gerris [37].
1425
+ The algorithm used in this solver is described in [36]. We computed the solution to this
1426
+ problem using the second-order, energy-tracking scheme presented in this work. Then,
1427
+ we plotted the magnitude of the computed velocity vector field for different mesh-sizes
1428
+ and time-steps at different time instances in Figures 10 to 13. Note that different visu-
1429
+ alisation tools were used to visualize the fields computed using the different solvers,
1430
+ but we observe that the solution computed by the semi-Lagrangian scheme comes vi-
1431
+ sually closer to the solution computed by Gerris as we decrease the mesh width and
1432
+ 20
1433
+
1434
+ 10−1
1435
+ mesh width h
1436
+ 10−2
1437
+ 10−1
1438
+ 100
1439
+ L2 Error u
1440
+ second-order,
1441
+ cons
1442
+ Figure 9: Convergence results for Experiment 2 using the second-order, conservative
1443
+ scheme on simplicial meshes with mesh width h, timestep τ = 0.06580h, and final
1444
+ time T = 1. The reference solution is a solution computed by Gerris [36]
1445
+ time step. This is confirmed by Figure 9, where we display the L2 error between the
1446
+ solution computed using the semi-Lagrangian scheme and the solution computed using
1447
+ Gerris. In Figure 15, we display the vector field as computed using the second-order,
1448
+ conservative semi-Lagrangian scheme.
1449
+ Also, in Figure 16 we display the values of the L2 norm over time of the solu-
1450
+ tions produced using our first- and second-, energy-tracking and non-energy-tracking
1451
+ schemes. Note that the energy-tracking schemes preserve the L2 norm as expected.
1452
+ The first-order, non-conservative scheme seems unstable at first, but in reality the or-
1453
+ dinate axis spans a very small range and it turns out that the L2 norm converges to a
1454
+ bounded value for longer run-times. Note that the helicity has no meaning in R2.
1455
+ 5.4
1456
+ Experiment 4: Taylor-Green Vortex in 3D
1457
+ To observe conservation of helicity, we need to consider a problem in 3D. We con-
1458
+ sider the incompressible Navier-Stokes equations with Ω = [− 1
1459
+ 2, 1
1460
+ 2]3, T = 1, ε = 0,
1461
+ vanishing normal boundary conditions, and f chosen such that
1462
+ u(t, x) =
1463
+
1464
+
1465
+ cos(πx1) sin(πx2) sin(πx3)
1466
+ − 1
1467
+ 2 sin(πx1) cos(πx2) sin(πx3)
1468
+ − 1
1469
+ 2 sin(πx1) sin(πx2) cos(πx3)
1470
+
1471
+
1472
+ (44)
1473
+ is a solution. Note that since the solution is static, we can enforce helicity conser-
1474
+ vation despite f ̸= 0. We run several experiments using the first- and second-order,
1475
+ 21
1476
+
1477
+ (a) t = 0.25
1478
+ (b) t = 0.5
1479
+ (c) t = 0.75
1480
+ (d) t = 1
1481
+ Figure 10: Experiment 3: mesh width h = 0.379918 and time-step τ = 0.025.
1482
+ (a) t = 0.25
1483
+ (b) t = 0.5
1484
+ (c) t = 0.75
1485
+ (d) t = 1
1486
+ Figure 11: Experiment 3: mesh width h = 0.0949795 and time-step τ = 0.00625.
1487
+ (a) t = 0.25
1488
+ (b) t = 0.5
1489
+ (c) t = 0.75
1490
+ (d) t = 1
1491
+ Figure 12: Experiment 3: mesh width h = 0.023744875 and time-step τ = 0.0015625.
1492
+ (a) t = 0.25
1493
+ (b) t = 0.5
1494
+ (c) t = 0.75
1495
+ (d) t = 1
1496
+ Figure 13: Reference solution Experiment 3 computed using [37].
1497
+ 0
1498
+ 1
1499
+ 2
1500
+ 3
1501
+ 4
1502
+ 5
1503
+ Figure 14: Colorbar associated with Figures 10 to 13
1504
+ 22
1505
+
1506
+ (a) t = 0.25
1507
+ (b) t = 0.5
1508
+ (c) t = 0.75
1509
+ (d) t = 1
1510
+ 0
1511
+ 1
1512
+ 2
1513
+ 3
1514
+ 4
1515
+ 5
1516
+ Figure 15: Velocity field for Experiment 3 computed using the second-order, conser-
1517
+ vative semi-Lagrangian scheme on a simplicial mesh with mesh width h = 0.189959
1518
+ and time-step τ = 0.0125. The colors indicate the magnitude of the vector.
1519
+ 23
1520
+
1521
+ 0.0
1522
+ 0.2
1523
+ 0.4
1524
+ 0.6
1525
+ 0.8
1526
+ 1.0
1527
+ time t
1528
+ 2.350
1529
+ 2.355
1530
+ 2.360
1531
+ 2.365
1532
+ 2.370
1533
+ 2.375
1534
+ 2.380
1535
+ L2 Norm u
1536
+ second-order,
1537
+ cons
1538
+ first-order,
1539
+ cons
1540
+ second-order,
1541
+ non-cons
1542
+ first-order,
1543
+ non-cons
1544
+ Figure 16: The L2 norm of the computed solutions for Experiment 3 using differ-
1545
+ ent variants of the semi-Lagrangian scheme on a simplicial mesh with mesh width
1546
+ h = 0.04748975 and time-step τ = 0.003125. In the legend, ’cons’ is short for ’con-
1547
+ servative’ and refers to energy-tracking schemes. We use ε = 0 and f = 0.
1548
+ conservative semi-Lagrangian schemes. We summarize the results in Figure 17 and we
1549
+ observe first- and second-order algebraic convergence for the corresponding schemes.
1550
+ In Figure 18 and Figure 19 we plot the L2 norm and helicity over time of the discrete
1551
+ solution for both the first- and second-order scheme. We observe that both quantities
1552
+ are conserved up to machine precision.
1553
+ 5.5
1554
+ Experiment 5: A transient solution in 3D
1555
+ To verify the scheme for transient solutions in 3D, we consider the incompressible
1556
+ Navier-Stokes equations with Ω = [− 1
1557
+ 2, 1
1558
+ 2]3, T = 1, ε = 0, vanishing normal boundary
1559
+ conditions and f is chosen such that
1560
+ u(t, x) =
1561
+
1562
+
1563
+ −x2π cos( t
1564
+ 4 + πx2x3) cos(πx2)
1565
+ −x3π cos( t
1566
+ 4 + πx1x3) cos(πx3)
1567
+ −x1π cos( t
1568
+ 4 + πx1x2) cos(πx1)
1569
+
1570
+
1571
+ (45)
1572
+ is a solution. We ran a simulation for different mesh-sizes with time-steps determined
1573
+ by a suitable CFL condition. We summarize the results in Figure 20. We observe
1574
+ second-order convergence for the second-order scheme. The first-order scheme seems
1575
+ to achieve an order of convergence that is between first- and second-order, but this may
1576
+ be pre-asymptotic behaviour.
1577
+ 24
1578
+
1579
+ 10−1
1580
+ 2 × 10−1
1581
+ 3 × 10−1
1582
+ 4 × 10−1
1583
+ 6 × 10−1
1584
+ mesh width h
1585
+ 10−2
1586
+ 10−1
1587
+ L2 Error u
1588
+ first-order
1589
+ second-order
1590
+ Figure 17: Convergence results for Experiment 4 using the first- and second-order,
1591
+ conservative schemes on simplicial meshes with mesh width h, timestep τ =
1592
+ 1
1593
+
1594
+ 2h.
1595
+ 0.2
1596
+ 0.4
1597
+ 0.6
1598
+ 0.8
1599
+ 1.0
1600
+ time t
1601
+ 0.430
1602
+ 0.435
1603
+ 0.440
1604
+ 0.445
1605
+ 0.450
1606
+ 0.455
1607
+ L2 Norm u
1608
+ second-order,
1609
+ cons
1610
+ first-order,
1611
+ cons
1612
+ second-order,
1613
+ non-cons
1614
+ first-order,
1615
+ non-cons
1616
+ Figure 18: The L2 norm of the computed solutions for Experiment 4 using differ-
1617
+ ent variants of the semi-Lagrangian scheme on a simplicial mesh with mesh width
1618
+ h = 0.08838834764 and time-step τ = 0.0625. In the legend, ’cons’ is short for ’con-
1619
+ servative’ and refers to energy-tracking schemes and helicity-conserving schemes. We
1620
+ use ε = 0 and f = 0.
1621
+ 25
1622
+
1623
+ 0.2
1624
+ 0.4
1625
+ 0.6
1626
+ 0.8
1627
+ 1.0
1628
+ time t
1629
+ −0.006
1630
+ −0.004
1631
+ −0.002
1632
+ 0.000
1633
+ Helicity u
1634
+ second-order,
1635
+ cons
1636
+ first-order,
1637
+ cons
1638
+ second-order,
1639
+ non-cons
1640
+ first-order,
1641
+ non-cons
1642
+ Figure 19: The helicity of the computed solutions for Experiment 4 using differ-
1643
+ ent variants of the semi-Lagrangian scheme on a simplicial mesh with mesh width
1644
+ h = 0.08838834764 and time-step τ = 0.0625. In the legend, ’cons’ is short for
1645
+ ’conservative’ and refers to energy-tracking and helicity-conserving schemes. We use
1646
+ ε = 0 and f = 0.
1647
+ 10−1
1648
+ 2 × 10−1
1649
+ 3 × 10−1
1650
+ mesh width h
1651
+ 10−1
1652
+ L2 Error u
1653
+ first-order
1654
+ second-order
1655
+ Figure 20: Convergence results for Experiment 5 using the first- and second-order
1656
+ schemes without energy-tracking and helicity-conservation on simplicial meshes with
1657
+ mesh width h, timestep τ =
1658
+ 1
1659
+
1660
+ 2h.
1661
+ 26
1662
+
1663
+ 0
1664
+ 0.5
1665
+ 1
1666
+ 1.5
1667
+ 2
1668
+ 2.5
1669
+ Figure 21: Velocity field at T = 7.93s of Experiment 6 computed using the second-
1670
+ order, non-conservative semi-Lagrangian scheme on a simplicial mesh with mesh
1671
+ width h = 0.189959 and τ = 0.01.
1672
+ 5.6
1673
+ Experiment 6: Lid-driven cavity with slippery walls
1674
+ In this section, we simulate a situation that resembles a lid-driven cavity problem.
1675
+ Consider the incompressible Navier-Stokes with Ω = [− 1
1676
+ 2, 1
1677
+ 2]2, T = 7.93, ε = 0,
1678
+ vanishing normal boundary conditions and the initial velocity field is set equal to zero.
1679
+ Then, to simulate a moving lid at the top, we apply the force-field f(t, x) = [v(x), 0]T
1680
+ with
1681
+ v(x) =
1682
+
1683
+ exp
1684
+
1685
+ 1 −
1686
+ 1
1687
+ 1−100(0.5−x2)2
1688
+
1689
+ ,
1690
+ if 1 − 100(0.5 − x2)2 > 0,
1691
+ 0,
1692
+ else.
1693
+ (46)
1694
+ This force field gives a strong force in the x1-direction close to the top lid, but quickly
1695
+ tapers off to zero as we go further from the top lid. In Figure 21, we display the
1696
+ computed velocity field. Note that, because we apply slip boundary conditions, we do
1697
+ not expect to observe vortices. The numerical solution reproduces this expectation.
1698
+ 27
1699
+
1700
+ 5.7
1701
+ Experiment 7: A more complicated domain
1702
+ The numerical experiments given above, show the convergence and conservative prop-
1703
+ erties of the introduced schemes. However, these experiments are all performed on
1704
+ very simple, rectangular domains. In this experiment, we consider a more complicated
1705
+ domain and mesh (generated using [22]) as shown in Figure 22.
1706
+ We consider the case of the incompressible Navier-Stokes equations on the domain
1707
+ as given in Figure 22, T = 100, ε = 0, f = 0 and vanishing normal boundary condi-
1708
+ tions. We need to construct an initial condition that is divergence-free with vanishing
1709
+ normal boundary conditions. Following an approach close to a Chorin projection, we
1710
+ start with
1711
+ w(x, y) =
1712
+ �sin
1713
+
1714
+ 2 cos(
1715
+
1716
+ x2 + y2) − atan2(y, x)
1717
+
1718
+ sin
1719
+
1720
+ cos(
1721
+
1722
+ x2 + y2) − 2 atan2(y, x)
1723
+
1724
+
1725
+ .
1726
+ (47)
1727
+ We use this definition to define a scalar function, ϕ, as
1728
+ ∆ϕ = ∇ · w
1729
+ in Ω,
1730
+ (48)
1731
+ ∇ϕ · ˆn = w · ˆn
1732
+ on ∂Ω.
1733
+ (49)
1734
+ We can define our initial condition, u0, as
1735
+ u0 = w − ∇ϕ
1736
+ (50)
1737
+ Note that u0 is divergence-free and has vanishing normal boundary conditions. The
1738
+ above system of equations can be solved using an appropriate finite-element imple-
1739
+ mentation.
1740
+ Note that in this experiment, the field outside the domain is unknown. This is
1741
+ well-defined on a continuous level, since vanishing boundary conditions imply that
1742
+ no particle will flow in from outside the domain. However, on the discrete level we
1743
+ cannot guarantee that the same will happen. It could happen that a part of a transported
1744
+ edge (as discussed in section 3.2) ends up outside the domain. In this case, we will
1745
+ assume that the average of the vector field along the part of the edge that lies outside
1746
+ the domain, will have the same value as the average of the corresponding edge in its
1747
+ original location (before transport) at the previous timestep.
1748
+ The first ten seconds were simulated and a video of the results can be found at
1749
+ https://youtu.be/Eica8XHLtxY. For the different schemes, we also tracked
1750
+ the energy in Figure 23.
1751
+ 6
1752
+ Conclusion
1753
+ We have developed a mesh-based semi-Lagrangian discretization of the time-dependent
1754
+ incompressible Navier-Stokes equations with free boundary conditions recast as a non-
1755
+ linear transport problem for a momentum 1-form. A linearly implicit fully discrete
1756
+ version of the scheme enjoys excellent stability properties in the vanishing-viscosity
1757
+ 28
1758
+
1759
+ Figure 22: Domain and mesh associated with Experiment 7.
1760
+ 0
1761
+ 10
1762
+ 20
1763
+ 30
1764
+ 40
1765
+ 50
1766
+ 60
1767
+ time t
1768
+ 0.0
1769
+ 0.2
1770
+ 0.4
1771
+ 0.6
1772
+ 0.8
1773
+ 1.0
1774
+ L2 Norm u
1775
+ first-order,
1776
+ non-cons
1777
+ second-order,
1778
+ non-cons
1779
+ second-order,
1780
+ cons
1781
+ first-order,
1782
+ cons
1783
+ Figure 23: The L2 norm of the computed solutions for Experiment 7 using different
1784
+ variants of the semi-Lagrangian scheme on a simplicial mesh as given in Figure 22
1785
+ and time-step τ = 0.01. In the legend, ’cons’ is short for ’conservative’ and refers to
1786
+ energy-tracking schemes.
1787
+ 29
1788
+
1789
+ limit and is applicable to inviscid incompressible Euler flows. However, in this case
1790
+ conservation of energy and helicity have to be enforced separately. Making the reason-
1791
+ able choice of a time-step size proportional to the mesh width, the algorithm involves
1792
+ only local computations. Yet, these are significantly more expensive compared to those
1793
+ required for purely Eulerian finite-element and finite-volume methods. At this point
1794
+ the verdict on the competitiveness of our semi-Lagrangian scheme is still open.
1795
+ A
1796
+ Two formulations of the momentum equation
1797
+ Consider the momentum equation in (1)
1798
+ ∂tu + u · ∇u − ε∆u + ∇p = 0.
1799
+ Note that we have by standard vector calculus identities
1800
+ ∆u = ∇(∇ · u) − ∇ × ∇ × u,
1801
+ where we can use ∇ · u = 0 to obtain
1802
+ ∆u = −∇ × ∇ × u.
1803
+ This allows us to rewrite the momentum equation as
1804
+ ∂tu + u · ∇u + ε∇ × ∇ × u + ∇p = 0.
1805
+ Using the gradient of the dot-product, we find
1806
+ ∇(u · u) = 2u · ∇u + 2u × (∇ × u).
1807
+ This identity allows us to rewrite the momentum equation to
1808
+ ∂tu + ∇(u · u) − u × (∇ × u) + ε∇ × ∇ × u + ∇
1809
+
1810
+ −1
1811
+ 2u · u + p
1812
+
1813
+ = 0.
1814
+ From [27, 24], we obtain the identity
1815
+ (Luω)\ = ∇(u · u) − u × (∇ × u)
1816
+ where ω is the differential 1-form such that u = ω\. Since the material derivative for
1817
+ this 1-form is
1818
+ Duω := ∂tω + Luω,
1819
+ we find that the momentum equation can be written as
1820
+ Duω + εδdω + d˜p = 0,
1821
+ where ˜p = − 1
1822
+ 2u · u + p.
1823
+ 30
1824
+
1825
+ References
1826
+ [1]
1827
+ Mofdi El-Amrani and Mohammed Seaid. “An L2-projection for the Galerkin-
1828
+ characteristic solution of incompressible flows”. In: SIAM Journal on Scientific
1829
+ Computing 33.6 (Jan. 2011), pp. 3110–3131. ISSN: 10648275. DOI: 10.1137/
1830
+ 100805790.
1831
+ [2]
1832
+ Robert Anderson et al. “MFEM: A modular finite element methods library”.
1833
+ In: Computers and Mathematics with Applications 81 (2021). ISSN: 08981221.
1834
+ DOI: 10.1016/j.camwa.2020.06.009.
1835
+ [3]
1836
+ Douglas N. Arnold. Finite Element Exterior Calculus. Philadelphia, PA: Society
1837
+ for Industrial and Applied Mathematics, Dec. 2018, p. 120. ISBN: 978-1-61197-
1838
+ 553-6. DOI: 10.1137/1.9781611975543.
1839
+ [4]
1840
+ Douglas N. Arnold, Richard S. Falk, and Ragnar Winther. “Finite element exte-
1841
+ rior calculus, homological techniques, and applications”. In: Acta Numerica 15
1842
+ (May 2006), pp. 1–155. ISSN: 0962-4929. DOI: 10.1017/S0962492906210018.
1843
+ [5]
1844
+ Vladimir Arnold. “Sur la géométrie différentielle des groupes de Lie de dimen-
1845
+ sion infinie et ses applications à l’hydrodynamique des fluides parfaits”. In: An-
1846
+ nales de L’Institut Fourier 16 (1966), pp. 319–361. URL: http : / / www .
1847
+ numdam.org/articles/10.5802/aif.233/.
1848
+ [6]
1849
+ Markus Bause and Peter Knabner. “Uniform error analysis for Lagrange-Galerkin
1850
+ approximations of convection-dominated problems”. In: SIAM Journal on Nu-
1851
+ merical Analysis 39.6 (2002), pp. 1954–1984. ISSN: 00361429. DOI: 10.1137/
1852
+ S0036142900367478.
1853
+ [7]
1854
+ M. Bercovier, O. Pironneau, and V. Sastri. “Finite elements and characteristics
1855
+ for some parabolic-hyperbolic problems”. In: Applied Mathematical Modelling
1856
+ 7.2 (1983), pp. 89–96.
1857
+ [8]
1858
+ Michel Bercovier and Olivier Pironneau. “Characteristics and the finite element
1859
+ method”. In: Finite Element Flow Analysis (1982), pp. 67–73.
1860
+ [9]
1861
+ Rodolfo Bermejo, Pedro Galán Del Sastre, and Laura Saavedra. “A Second Or-
1862
+ der in Time Modified Lagrange–Galerkin Finite Element Method for the Incom-
1863
+ pressible Navier–Stokes Equations”. In: SIAM Journal on Numerical Analysis
1864
+ 50.6 (2012), pp. 3084–3109.
1865
+ [10]
1866
+ Rodolfo Bermejo and Laura Saavedra. “Lagrange–Galerkin methods for the in-
1867
+ compressible Navier-Stokes equations: a review”. In: Communications in Ap-
1868
+ plied and Industrial Mathematics 7.3 (Sept. 2016), pp. 26–55. ISSN: 2038-0909.
1869
+ DOI: 10.1515/caim-2016-0021.
1870
+ [11]
1871
+ Rodolfo Bermejo and Laura Saavedra. “Modified Lagrange–Galerkin Meth-
1872
+ ods to Integrate Time Dependent Incompressible Navier–Stokes Equations”.
1873
+ In: SIAM Journal on Scientific Computing 37.6 (Jan. 2015), B779–B803. ISSN:
1874
+ 1064-8275. DOI: 10.1137/140973967.
1875
+ 31
1876
+
1877
+ [12]
1878
+ Rodolfo Bermejo and Laura Saavedra. “Modified Lagrange-Galerkin methods
1879
+ of first and second order in time for convection-diffusion problems”. In: Nu-
1880
+ merische Mathematik 120.4 (2012). ISSN: 0029599X. DOI: 10.1007/s00211-
1881
+ 011-0418-8.
1882
+ [13]
1883
+ Luca Bonaventura, Roberto Ferretti, and Lorenzo Rocchi. “A fully semi-Lagrangian
1884
+ discretization for the 2D incompressible Navier–Stokes equations in the vorticity-
1885
+ streamfunction formulation”. In: Applied Mathematics and Computation 323
1886
+ (Apr. 2018), pp. 132–144. ISSN: 00963003. DOI: 10.1016/j.amc.2017.
1887
+ 11.030.
1888
+ [14]
1889
+ Karima Boukir, Yvon Maday, and Brigitte Métivet. “A high order character-
1890
+ istics method for the incompressible Navier–Stokes equations”. In: Computer
1891
+ Methods in Applied Mechanics and Engineering 116.1-4 (Jan. 1994), pp. 211–
1892
+ 218. ISSN: 00457825. DOI: 10.1016/S0045-7825(94)80025-1.
1893
+ [15]
1894
+ Gustavo C. Buscaglia and Enzo A. Dari. “Implementation of the Lagrange-
1895
+ Galerkin method for the incompressible Navier-Stokes equations”. In: Inter-
1896
+ national Journal for Numerical Methods in Fluids 15.1 (July 1992), pp. 23–36.
1897
+ ISSN: 0271-2091. DOI: 10.1002/fld.1650150103.
1898
+ [16]
1899
+ Elena Celledoni, Bawfeh Kingsley Kometa, and Olivier Verdier. “High Order
1900
+ Semi-Lagrangian Methods for the Incompressible Navier–Stokes Equations”.
1901
+ In: Journal of Scientific Computing 66.1 (2016), pp. 91–115. ISSN: 08857474.
1902
+ DOI: 10.1007/s10915-015-0015-6.
1903
+ [17]
1904
+ Elena Celledoni, Arne Marthinsen, and Brynjulf Owren. “Commutator-free Lie
1905
+ group methods”. In: Future Generation Computer Systems 19.3 (Apr. 2003),
1906
+ pp. 341–352. ISSN: 0167739X. DOI: 10.1016/S0167-739X(02)00161-
1907
+ 9.
1908
+ [18]
1909
+ Alexandre J. Chorin and Jerrold E. Marsden. A mathematical introduction to
1910
+ fluid mechanics. Springer, 1993, p. 172. ISBN: 978-0-387-97918-2. DOI: 10.
1911
+ 1007/978-1-4612-0883-9.
1912
+ [19]
1913
+ Luigi De Rosa. “On the Helicity conservation for the incompressible Euler
1914
+ equations”. In: Proceedings of the American Mathematical Society 148.7 (Feb.
1915
+ 2020), pp. 2969–2979. ISSN: 0002-9939. DOI: 10.1090/proc/14952. URL:
1916
+ http://arxiv.org/abs/1812.00678%20https://www.ams.
1917
+ org/proc/2020-148-07/S0002-9939-2020-14952-0/.
1918
+ [20]
1919
+ Jim Douglas Jr and Thomas F. Russell. “Numerical methods for convection-
1920
+ dominated diffusion problems based on combining the method of characteris-
1921
+ tics with finite element or finite difference procedures”. In: SIAM Journal on
1922
+ Numerical Analysis 19.5 (1982), pp. 871–885.
1923
+ 32
1924
+
1925
+ [21]
1926
+ Richard E. Ewing, Thomas F. Russell, and Mary F. Wheeler. “Convergence
1927
+ analysis of an approximation of miscible displacement in porous media by mixed
1928
+ finite elements and a modified method of characteristics”. In: Computer Meth-
1929
+ ods in Applied Mechanics and Engineering 47.1-2 (1984), pp. 73–92.
1930
+ [22]
1931
+ Christophe Geuzaine and Jean-François Remacle. “Gmsh: A 3-D finite ele-
1932
+ ment mesh generator with built-in pre- and post-processing facilities”. In: In-
1933
+ ternational Journal for Numerical Methods in Engineering 79.11 (Sept. 2009),
1934
+ pp. 1309–1331. ISSN: 00295981. DOI: 10.1002/nme.2579.
1935
+ [23]
1936
+ Y. Hasbani, E. Livne, and M. Bercovier. “Finite elements and characteristics
1937
+ applied to advection-diffusion equations”. In: Computers & Fluids 11.2 (1983),
1938
+ pp. 71–83.
1939
+ [24]
1940
+ Holger Heumann and Ralf Hiptmair. “Convergence of Lowest Order Semi-
1941
+ Lagrangian Schemes”. In: Foundations of Computational Mathematics 13.2 (2013),
1942
+ pp. 187–220. ISSN: 16153383. DOI: 10.1007/s10208-012-9139-3.
1943
+ [25]
1944
+ Holger Heumann and Ralf Hiptmair. “Eulerian and semi-lagrangian methods
1945
+ for convection-diffusion for differential forms”. In: (2011), pp. 1–26. DOI: 10.
1946
+ 3929/ethz-a-006506738.
1947
+ [26]
1948
+ Holger Heumann et al. “Fully discrete semi-Lagrangian methods for advection
1949
+ of differential forms”. In: BIT Numerical Mathematics 52.4 (2012), pp. 981–
1950
+ 1007. ISSN: 00063835. DOI: 10.1007/s10543-012-0382-4.
1951
+ [27]
1952
+ Ralf Hiptmair. “Finite elements in computational electromagnetism”. In: Acta
1953
+ Numerica 11 (2002), pp. 237–339. ISSN: 14740508. DOI: 10.1017/S0962492902000041.
1954
+ [28]
1955
+ Philip Isett. “A proof of Onsager’s conjecture”. In: Annals of Mathematics 188.3
1956
+ (2018), pp. 871–963. ISSN: 19398980. DOI: 10 . 4007 / annals . 2018 .
1957
+ 188.3.4.
1958
+ [29]
1959
+ George Karniadakis and Spencer Sherwin. Spectral/hp Element Methods for
1960
+ Computational Fluid Dynamics. 2nd ed. Oxford University Press, 2005, p. 668.
1961
+ ISBN: 9780198528692. DOI: 10.1093/acprof:oso/9780198528692.
1962
+ 001.0001.
1963
+ [30]
1964
+ P. D. Minev and C. Ross Ethier. “A characteristic/finite element algorithm for
1965
+ the 3-D Navier–Stokes equations using unstructured grids”. In: Computer Meth-
1966
+ ods in Applied Mechanics and Engineering 178.1-2 (July 1999), pp. 39–50.
1967
+ ISSN: 00457825. DOI: 10.1016/S0045-7825(99)00003-1.
1968
+ [31]
1969
+ Marius Mitrea and Sylvie Monniaux. “The nonlinear Hodge-Navier-Stokes equa-
1970
+ tions in Lipschitz domains”. In: Differential and Integral Equations 22.3/4 (Mar.
1971
+ 2009), pp. 339–356. ISSN: 0893-4983. DOI: 10.57262/die/1356019778.
1972
+ 33
1973
+
1974
+ [32]
1975
+ K.W. Morton, A. Priestley, and E. Suli. “Stability of the Lagrange-Galerkin
1976
+ method with non-exact Integration”. In: Mathematical Modelling and Numeri-
1977
+ cal Analysis 22.4 (1988), pp. 625–653. URL: http://www.numdam.org/
1978
+ item/M2AN_1988__22_4_625_0/.
1979
+ [33]
1980
+ Andrea Natale and Colin J. Cotter. “A variational H(div) finite-element dis-
1981
+ cretization approach for perfect incompressible fluids”. In: IMA Journal of Nu-
1982
+ merical Analysis 38.3 (2018), pp. 1388–1419. ISSN: 14643642. DOI: 10.1093/
1983
+ imanum/drx033.
1984
+ [34]
1985
+ Anthony T. Patera. “A spectral element method for fluid dynamics: Laminar
1986
+ flow in a channel expansion”. In: Journal of Computational Physics 54.3 (1984),
1987
+ pp. 468–488. ISSN: 10902716. DOI: 10.1016/0021-9991(84)90128-1.
1988
+ [35]
1989
+ Olivier Pironneau. “On the transport-diffusion algorithm and its applications
1990
+ to the Navier-Stokes equations”. In: Numerische Mathematik 38.3 (Oct. 1982),
1991
+ pp. 309–332. ISSN: 0029-599X. DOI: 10.1007/BF01396435.
1992
+ [36]
1993
+ Stéphane Popinet. “Gerris: a tree-based adaptive solver for the incompressible
1994
+ Euler equations in complex geometries”. In: Journal of Computational Physics
1995
+ 190.2 (Sept. 2003), pp. 572–600. ISSN: 00219991. DOI: 10.1016/S0021-
1996
+ 9991(03)00298-5.
1997
+ [37]
1998
+ Stéphane Popinet. The Gerris Flow Solver. 2007. URL: https : / / gfs .
1999
+ sourceforge.net/wiki/index.php/Main_Page.
2000
+ [38]
2001
+ Francesca Rapetti and Alain Bossavit. “Whitney Forms of Higher Degree”. In:
2002
+ SIAM Journal on Numerical Analysis 47.3 (2009), pp. 2369–2386. DOI: 10.
2003
+ 1137/070705489.
2004
+ [39]
2005
+ Thomas F. Russell. “Time stepping along characteristics with incomplete itera-
2006
+ tion for a Galerkin approximation of miscible displacement in porous media”.
2007
+ In: SIAM Journal on Numerical Analysis 22.5 (1985), pp. 970–1013.
2008
+ [40]
2009
+ Endre Süli. “Convergence and nonlinear stability of the Lagrange-Galerkin method
2010
+ for the Navier-Stokes equations”. In: Numerische Mathematik 53.4 (1988), pp. 459–
2011
+ 483. DOI: 10.1007/BF01396329.
2012
+ [41]
2013
+ Endre Süli and David F. Mayers. An Introduction to Numerical Analysis. Cam-
2014
+ bridge University Press, Aug. 2003. ISBN: 9780511801181. DOI: 10.1017/
2015
+ CBO9780511801181.
2016
+ [42]
2017
+ Geoffrey Ingram Taylor and Albert Edward Green. “Mechanism of the pro-
2018
+ duction of small eddies from large ones”. In: Proceedings of the Royal Soci-
2019
+ ety of London. Series A-Mathematical and Physical Sciences 158.895 (1937),
2020
+ pp. 499–521. DOI: 10.1098/rspa.1937.0036.
2021
+ [43]
2022
+ R. Temam and M. Ziane. “Navier-Stokes equations in three-dimensional thin
2023
+ domains with various boundary conditions”. In: Advances in Differential Equa-
2024
+ tions 1.4 (1996), pp. 499–546. DOI: ade/1366896027.
2025
+ 34
2026
+
2027
+ [44]
2028
+ Cornelis Vuik et al. Numerical methods for ordinary differential equations. 1st ed.
2029
+ Delft Academic Press, 2015, p. 123. ISBN: 9789065623737. DOI: s10915-
2030
+ 004-4647-1.
2031
+ [45]
2032
+ Hong Wang and Kaixin Wang. “Uniform Estimates of an Eulerian–Lagrangian
2033
+ Method for Time-Dependent Convection-Diffusion Equations in Multiple Space
2034
+ Dimensions”. In: SIAM Journal on Numerical Analysis 48.4 (Jan. 2010), pp. 1444–
2035
+ 1473. ISSN: 0036-1429. DOI: 10.1137/070682952.
2036
+ [46]
2037
+ D. Xiu et al. “Strong and auxiliary forms of the semi-Lagrangian method for in-
2038
+ compressible flows”. In: Journal of Scientific Computing 25.1 (2005), pp. 323–
2039
+ 346. ISSN: 08857474. DOI: 10.1007/s10915-004-4647-1.
2040
+ [47]
2041
+ Dongbin Xiu and George Em Karniadakis. “A Semi-Lagrangian High-Order
2042
+ Method for Navier–Stokes Equations”. In: Journal of Computational Physics
2043
+ 172.2 (Sept. 2001), pp. 658–684. ISSN: 00219991. DOI: 10.1006/jcph.
2044
+ 2001.6847.
2045
+ 35
2046
+