jackkuo commited on
Commit
6ef475c
·
verified ·
1 Parent(s): 569dfda

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -9E0T4oBgHgl3EQfxAH-/vector_store/index.pkl +3 -0
  2. -9E5T4oBgHgl3EQfRw7N/content/tmp_files/2301.05524v1.pdf.txt +843 -0
  3. -9E5T4oBgHgl3EQfRw7N/content/tmp_files/load_file.txt +0 -0
  4. -NE3T4oBgHgl3EQfrQru/vector_store/index.pkl +3 -0
  5. -dAzT4oBgHgl3EQfSvvG/content/tmp_files/2301.01238v1.pdf.txt +554 -0
  6. -dAzT4oBgHgl3EQfSvvG/content/tmp_files/load_file.txt +270 -0
  7. -dE1T4oBgHgl3EQf8QXB/content/tmp_files/2301.03544v1.pdf.txt +1020 -0
  8. -dE1T4oBgHgl3EQf8QXB/content/tmp_files/load_file.txt +0 -0
  9. .gitattributes +96 -0
  10. 1NE2T4oBgHgl3EQf5Ahd/vector_store/index.faiss +3 -0
  11. 1NE2T4oBgHgl3EQf5Ahd/vector_store/index.pkl +3 -0
  12. 1NE4T4oBgHgl3EQfzQ1E/content/2301.05272v1.pdf +3 -0
  13. 1NE4T4oBgHgl3EQfzQ1E/vector_store/index.faiss +3 -0
  14. 1NE4T4oBgHgl3EQfzQ1E/vector_store/index.pkl +3 -0
  15. 29FLT4oBgHgl3EQfrS9R/vector_store/index.faiss +3 -0
  16. 39E1T4oBgHgl3EQfSgNA/content/tmp_files/2301.03066v1.pdf.txt +1416 -0
  17. 39E1T4oBgHgl3EQfSgNA/content/tmp_files/load_file.txt +0 -0
  18. 3NE1T4oBgHgl3EQfAQKK/vector_store/index.faiss +3 -0
  19. 3NE1T4oBgHgl3EQfAQKK/vector_store/index.pkl +3 -0
  20. 3tAyT4oBgHgl3EQf1_ko/content/2301.00743v1.pdf +3 -0
  21. 3tAyT4oBgHgl3EQf1_ko/vector_store/index.faiss +3 -0
  22. 3tAyT4oBgHgl3EQf1_ko/vector_store/index.pkl +3 -0
  23. 49FKT4oBgHgl3EQf9y5B/content/2301.11955v1.pdf +3 -0
  24. 49FKT4oBgHgl3EQf9y5B/vector_store/index.faiss +3 -0
  25. 49FKT4oBgHgl3EQf9y5B/vector_store/index.pkl +3 -0
  26. 5tE0T4oBgHgl3EQfewA6/content/tmp_files/2301.02394v1.pdf.txt +352 -0
  27. 5tE0T4oBgHgl3EQfewA6/content/tmp_files/load_file.txt +388 -0
  28. 69AyT4oBgHgl3EQfpvg-/content/2301.00530v1.pdf +3 -0
  29. 69AyT4oBgHgl3EQfpvg-/vector_store/index.faiss +3 -0
  30. 69AyT4oBgHgl3EQfpvg-/vector_store/index.pkl +3 -0
  31. 6NFIT4oBgHgl3EQf8isw/content/tmp_files/2301.11402v1.pdf.txt +1730 -0
  32. 6NFIT4oBgHgl3EQf8isw/content/tmp_files/load_file.txt +0 -0
  33. 6dE2T4oBgHgl3EQf7QhB/content/tmp_files/2301.04207v1.pdf.txt +2567 -0
  34. 6dE2T4oBgHgl3EQf7QhB/content/tmp_files/load_file.txt +0 -0
  35. 7tAzT4oBgHgl3EQf-f6Q/content/tmp_files/2301.01935v1.pdf.txt +826 -0
  36. 7tAzT4oBgHgl3EQf-f6Q/content/tmp_files/load_file.txt +0 -0
  37. 8NAyT4oBgHgl3EQfp_h6/content/2301.00535v1.pdf +3 -0
  38. 8NAyT4oBgHgl3EQfp_h6/vector_store/index.faiss +3 -0
  39. 8NAyT4oBgHgl3EQfp_h6/vector_store/index.pkl +3 -0
  40. 8NE4T4oBgHgl3EQfdAy1/content/2301.05088v1.pdf +3 -0
  41. 8NE4T4oBgHgl3EQfdAy1/vector_store/index.faiss +3 -0
  42. 8NE4T4oBgHgl3EQfdAy1/vector_store/index.pkl +3 -0
  43. 8tAyT4oBgHgl3EQfc_f6/content/2301.00296v1.pdf +3 -0
  44. 8tAyT4oBgHgl3EQfc_f6/vector_store/index.faiss +3 -0
  45. 8tAyT4oBgHgl3EQfc_f6/vector_store/index.pkl +3 -0
  46. 9NAzT4oBgHgl3EQfFPpp/vector_store/index.pkl +3 -0
  47. 9tAyT4oBgHgl3EQfdPfZ/content/tmp_files/2301.00300v1.pdf.txt +1769 -0
  48. 9tAyT4oBgHgl3EQfdPfZ/content/tmp_files/load_file.txt +0 -0
  49. A9AyT4oBgHgl3EQfd_iI/vector_store/index.faiss +3 -0
  50. ANFLT4oBgHgl3EQfEi_Y/content/2301.11984v1.pdf +3 -0
-9E0T4oBgHgl3EQfxAH-/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36f4efa43ea50d329d29f00f5d9c3da7d14da7b558a6535236c4cd5c9b489436
3
+ size 112302
-9E5T4oBgHgl3EQfRw7N/content/tmp_files/2301.05524v1.pdf.txt ADDED
@@ -0,0 +1,843 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Veltman Criteria in Beyond Standard Model Effective Field Theory
2
+ of Complex Scalar Triplet
3
+ aJaydeb Das 1, bNilanjana Kumar2
4
+ a Department of Physics and Astrophysics, University of Delhi, Delhi-110007, India
5
+ bCentre For Cosmology and Science Popularization (CCSP),
6
+ SGT University, Gurugram, Haryana-122006, India
7
+ Abstract
8
+ The Standard Model Higgs mass, not being protected by any symmetry, suffers from large
9
+ correction terms due to quadratic divergence coming from the self energy corrections. Veltman
10
+ Condition (V.C.) ensures that the coefficient of the quadratic divergent term either vanishes or
11
+ becomes negligible. If the Standard Model (SM) is valid upto a scale (Λ) and new physics exists
12
+ after that, V.C. demands Λ ≲ 760 GeV. But the non-observation of new physics has pushed the scale
13
+ to be ≥ 1 TeV already, making it impossible to satisfy V.C. in the Standard Model without very large
14
+ fine tuning. Attempts has been made to satisfy the V.C. in many Beyond Standard Model (BSM)
15
+ theories but they fail to satisfy V.C. at large Λ including the scenario of complex triplet scalar
16
+ with hypercharge 1. Hence, alternate scenario can be considered where the new physics appears
17
+ much above the Electroweak scale, and at low energy it emerges as Standard Model Effective Field
18
+ Theory (SMEFT). In this literature, we consider some specific BSM scenarios to appear at a large
19
+ scale such that at low energy we get the Beyond Standard Model Effective Field Theory (BSM-
20
+ EFT). We found that the V.C. satisfies easily if the BSM is type-II seesaw model with complex
21
+ triplet scalar (Y = 1) compared to the other extensions in the BSM-EFT framework. We examine
22
+ the model parameter dependence of the Wilson Coefficients (W.C.) in detail and show that the
23
+ cancellation of the Wilson Coefficients appearing in the V.C. is highly dependent on some specific
24
+ values of the model parameters.
25
+ 1
26
+ Introduction
27
+ The smallness of the observed Higgs mass is confirmed by the experiments [1,2] at the Large Hadron
28
+ Collider (LHC). However, in the Standard Model (SM) of particle physics, the scalar mass (mass of
29
+ Higgs boson) is not protected by any symmetry. Hence, if SM is valid upto a large scale, Planck scale,
30
+ the Higgs mass suffers from quadratic divergence (∼ Λ2). In order to ensure that the mass of the Higgs
31
+ boson is small, one has to consider a very large fine tuning in the SM. A way to ensure that the Higgs
32
+ mass does not get large correction at a higher scale is coined as Veltman Condition (V.C.) [3]. V.C.
33
+ checks if the sum of all quadratically divergent terms coming from the self energy diagrams of the
34
+ Higgs boson are either zero or very small. On the other hand, experiments such as the Large Hadron
35
+ Collider (LHC) is pushing the New Physics (NP) scale towards > 1 TeV and the Veltman Criteria is
36
+ not possible to satisfy in the SM, as it demands Λ to be less than 760 GeV [4].
37
+ Simple extensions of SM has been studied in literature [4–10], where the V.C. is valid but only in
38
+ some region of parameter space. Overall, there are two main concerns in these models: (1) These
39
+ theories encounter different problems at large scale, such as the potential becomes unstable leading
40
41
42
+ 1
43
+ arXiv:2301.05524v1 [hep-ph] 13 Jan 2023
44
+
45
+ to the invalidity of the theory beyond that scale. (2) The non observation of the Beyond Standard
46
+ Model (BSM) particles at LHC is pushing their masses above TeV scale [11].
47
+ One may assume that SM is valid upto certain scale (Λ) and above that scale some unknown symmetry
48
+ appears to protect the Higgs mass, then the Higgs mass can be stabilised and the fine tuning problem
49
+ can also be addressed. For examples, in the Composite Higgs Scenario [12], where the Higgs is dissolved
50
+ in higher degrees of freedom above the symmetry breaking scale or in Supersymmetric theories [13],
51
+ where the bosonic and fermionic degrees of freedom cancels out exactly – the Higgs mass is maintained
52
+ to be finite and small. However these theories also can not avoid certain amount of fine tuning [14,15]
53
+ coming from several sources. However, the none of these theories are observed at LHC and other
54
+ experiments so far.
55
+ These observations raise the question that what if the new physics lie at a very large scale. In such a
56
+ scenario, SM can emerge as an Effective Field Theory (SMEFT) [16] by integrating out the dynamics
57
+ of the larger theory. The Information of the heavy particles appearing in the loop are absorbed in
58
+ the higher dimensional operators in the Effective Field Theory (EFT) and the theory is invariant
59
+ under SM symmetries. Ref [17] has shown that the V.C. can be satisfied in the SMEFT framework by
60
+ including the higher dimensional operators and their Wilson Coefficients. Only a few of the operators
61
+ are relevant to the V.C. and they play a major role in satisfying the V.C.
62
+ In this paper, we take one step forward and ask this question what if the theory at a very high
63
+ scale (Λ) is governed by the larger symmetries, and how they affect the V.C.? We adopt the Beyond
64
+ Standard Model Effective Field theory (BSM-EFT) [18] approach, which has been studied previously
65
+ in Ref [18–24].
66
+ In BSM-EFT the Lagrangian becomes invariant under the particular BSM model
67
+ in consideration. The motivation to study the V.C. in BSM-EFT framework is two fold. 1) We can
68
+ specifically check how many higher dimensional operators are allowed by the model. 2) We can express
69
+ the Wilson Coefficients in terms of the model parameters. Hence, the sign dependence of the W.C.’s
70
+ come naturally.
71
+ We begin with simple BSM scenarios (in BSM-SMEFT) such as, scalar singlet, doublet and triplets
72
+ (real or complex). Remarkably, we found that among these models, it is possible to generate all the
73
+ SMEFT operators that contributes to the V.C. in the complex scalar triplet model with Y = 1. This
74
+ model makes the cancellation easier in V.C. with less fine tuning than the other scenarios3. This
75
+ particular model is well motivated in literature from different aspects such as: 1) Neutrino mass
76
+ generation through the see-saw mechanism [25], 2) type-II Leptogenesis scenario [26] 3) Enhancement
77
+ of the h → γγ branching ratio [27] etc, among many other [28]. Hence we pursue this model only in
78
+ detail.
79
+ In Section 2, we show how the V.C. depends on the SMEFT operators in the WARSAW basis [29].
80
+ In Section 3, we discuss some specific models in the BSM-EFT scenario, and express the Wilson
81
+ coefficients of Y = 1 complex scalar triplet model in terms of the model parameters. In Section 4, we
82
+ show how it is possible to satisfy the V.C. by exact cancellation of the Wilson Coefficients at different
83
+ scale and interpret the result in terms of the model parameter space. Then in Section 5 we conclude.
84
+ 3Even type I and type II seesaw models does not generate all these operators. Moreover a recent study [22] has also
85
+ shown that these models are also not favored from the fact that the radiative electroweak symmetry breaking can not
86
+ be triggered even at the Planck scale.
87
+ 2
88
+
89
+ 2
90
+ SMEFT operators in Veltman Criteria
91
+ The physical mass of the Higgs in the Standard Model can be written in terms of the bare mass term
92
+ mh(0) and the higher-order self-energy corrections:
93
+ m2
94
+ h = m2
95
+ h(0) + δm2
96
+ h = m2
97
+ h(0) + Log Div. Term + Quadratic Div. Term + Finite terms,
98
+ (1)
99
+ where the assumption is that the SM is valid upto the scale Λ and the correction terms are coming
100
+ from the loop diagrams involving scalars, fermions and bosons in the loop. The d = 4 potential in the
101
+ Standard Model in terms of Higgs doublet (H) is
102
+ V (H) = −m2
103
+ HH†H + λ(H†H)2.
104
+ (2)
105
+ This leads to the correction to the higgs mass and the quadratic divergent contribution is,
106
+ (δm2
107
+ h)SM
108
+ =
109
+ Λ2
110
+ 16π2 (6λ + 9
111
+ 4g2
112
+ W + 3
113
+ 4g2
114
+ Y − 6y2
115
+ t ),
116
+ (3)
117
+ where, gY and gW are the U(1)Y and SU(2)L gauge couplings respectively and gt = 2mt/v is the top
118
+ quark Yukawa coupling. Here we neglect couplings of the lighter quarks and Λ is the cut-off scale. The
119
+ Veltman Condition (V.C.) demands that δm2
120
+ h ∼ 0 or at least controllably small. With the observed
121
+ Higgs mass at 125 GeV, the condition to make δmh ∼ 0 demands Λ < 760 GeV, which is already ruled
122
+ out by LHC. One way to solve this problem is to introduce new particles, which can contribute in the
123
+ loops and soften the fine tuning by ensuring exact cancellation or partial as we have already discussed
124
+ in the introduction.
125
+ A popular way to address this problem is to consider the effects of the higher dimensional operators in
126
+ the EFT framework. Let us assume that the New Physics (NP) exists at a very high scale Λ. The effect
127
+ of NP can be effectively integrated out at Λ and this will effectively give us SM, plus some effective
128
+ operators involving only the SM fields, which holds through out the low energy scale, otherwise known
129
+ as the Standard Model Effective Field Theory (SMEFT) [16]. The Lagrangian, which incorporates
130
+ dimension six SMEFT operators in addition to the Standard Model dimension four operators, can be
131
+ expressed as,
132
+ L = ∑
133
+ i
134
+ C4iQ4i + 1
135
+ Λ2 ∑
136
+ i
137
+ C6iQ6i.
138
+ (4)
139
+ In contrast to C4i, which is the only function of the parameters linked to the degrees of freedom in the
140
+ Standard Model, C6i are the Wilson Coefficients, which are functions of the integrated out dynamics
141
+ at Λ. These operators can be expanded at any choice of basis, for example, HISZ basis [30], Warsaw
142
+ basis [29,32], SILH basis [31] etc. The set of dimension six operators that involves Higgs in Warsaw
143
+ basis are:
144
+ QH = (H†H)3, QHD = (H†DµH)∗(H†DµH), QH◻ = (H†H) ◻ (H†H)
145
+ QHB = (H†H)BµνBµν, QHW = (H†H)W a
146
+ µνW a,µν, QGG = (H†H)GA
147
+ µνGA,µν
148
+ QHWB = (H†τaH)BµνW a
149
+ µν
150
+ (5)
151
+ It can be shown that the last operator does not contribute Higgs self energy correction [17]. The first
152
+ operator will also not contribute at one-loop level as the Higgs does not develop a vev at Λ. There can
153
+ be the appearance of the operators involving the gluons of the form QGG = (H†H)GA
154
+ µνGA,µν. However,
155
+ while considering BSM-EFT framework with heavy scalars, this operator does not contribute as scalars
156
+ 3
157
+
158
+ do not carry any color charge. Note that, these operators can be written in any basis, for example
159
+ Ref [17] choose the HISZ basis.
160
+ We choose the Warsaw basis because it is self consistent at one
161
+ loop [32,33] and easier to check the running of the Wilson coefficients in Warsaw basis.
162
+ The correction to the Higgs mass from the higher order terms in the Lagrangian is given by
163
+ (δm2
164
+ h)total
165
+ =
166
+ Λ2
167
+ 16π2 ∑
168
+ i
169
+ fi(C4i,C6i) +
170
+ Λ2
171
+ (16π2)2 ∑
172
+ i
173
+ gi(C4i,C6i)
174
+ (6)
175
+ Here fi and gi are one loop and two loop correction to the Higgs mass. The V.C., δm2
176
+ h ∼ 0 translates
177
+ into
178
+ f(C4i,C6i),g(C4i,C6i) ∼ 0
179
+ (7)
180
+ The coefficients, C4i and C6i are function of Λ and the model parameters. Hence Eq:6 can be written
181
+ in terms of the SM and higher dimension operators contribution as,
182
+ (δm2
183
+ h)total ≡ (δm2
184
+ h)SM(fi(C4i),gi(C4i)) + (δm2
185
+ h)HO(fi(C6i),gi(C6i))
186
+ (8)
187
+ Also, it has been shown in Ref [17] that at d ≥ 8, the SMEFT operators are not able to produce any Λ6
188
+ divergence, which will produce any effective Λ2 divergence while calculating the self energy correction
189
+ of Higgs mass. There are studies in the literature, where the V.C in terms of EFT has been studied
190
+ in detail [17,34,35]. In particular it has been shown in Ref: [17] that it is possible to satisfy the V.C
191
+ for appropriate values and sign of the Wilson coefficients at large Λ.
192
+ 3
193
+ BSM-EFT with Complex Scalar Triplet
194
+ In the above section, we see that only four operators are involved in the V.C. Now, we assume that the
195
+ new physics at a high scale follow certain symmetries of a BSM model which effectively produces SM as
196
+ an EFT. In this BSM-EFT framework, these 4 operators may or may not be possible to generate at one
197
+ loop, depending on the underlying symmetry of the model at scale Λ. In Table: 1 we present if these
198
+ 4 operators can be generated at one loop in some simple BSM-EFT cases with additional scalar(s) or
199
+ not 4. For the calculation, we have implemented the Lagrangian of each model in CoDEx [36,37] and
200
+ generated the Wilson coefficients as an output 5.
201
+ Among all popular SM extensions, we have found that BSM-EFT with complex scalar triplet will
202
+ easily address the V.C, as it generates all four Wilson Coefficients at one loop. In other models, the
203
+ cancellation will be harder to achieve as the number of operators are less than four. For example
204
+ in 2HDM scenario and real scalar singlet + triplet model, only three operators can be generated.
205
+ Whereas, in complex scalar singlet model, only 2 operators are generated and the cancellation will be
206
+ hard to obtain (hence large fine tuning) in these models compared to the complex scalar triplet model.
207
+ Even larger fine tuning will be unavoidble for the real scalar singlet model as it generates only one
208
+ operator. The complex scalar triplet with additional doublet also can generate these four operators
209
+ but we examine the minimal scenario only with complex scalar triplet model in the following.
210
+ 4Note that we are not checking non scalar extensions of SM because, the sign of the top-loop contribution (dominant
211
+ contribution) or rather fermionic contribution is opposite to the other diagrams with a gauge boson or a scalar in the
212
+ loop. Therefore, V.C. is hard to solve by adding non scalar particles such as vector-like quarks or fermions, additional
213
+ gauge bosons etc.
214
+ 5We have also cross checked our result with Matchmakereft [38].
215
+ 4
216
+
217
+ Model
218
+ Quantum No
219
+ QHD
220
+ QHB
221
+ QHW
222
+ QH◻
223
+ Real Scalar Singlet
224
+ (1,1,0)
225
+ 
226
+ 
227
+ 
228
+ 
229
+ Real Scalar Triplet
230
+ (1,3,0)
231
+ 
232
+ 
233
+ 
234
+ 
235
+ Complex Scalar Triplet
236
+ (1,3,1)
237
+ 
238
+ 
239
+ 
240
+ 
241
+ Complex scalar doublets (2HDM)
242
+ (1,2,±1/2)
243
+ 
244
+ 
245
+ 
246
+ 
247
+ Real Scalar Singlet +
248
+ (1,1,0)
249
+ 
250
+ 
251
+ 
252
+ 
253
+ Real Scalar Triplet
254
+ (1,3,0)
255
+ Complex Scalar Triplet +
256
+ (1,3,1)
257
+ 
258
+ 
259
+ 
260
+ 
261
+ Complex Scalar Doublet
262
+ (1,2,1/2)
263
+ Table 1: SMEFT operators in Warsaw basis in different BSM-EFT scenarios.
264
+ Let us consider that beyond the scale Λ, there exists a heavy complex triplet, ∆, with weak hypercharge
265
+ Y = 1. The most general renormalizable tree-level scalar potential of such a model is given by
266
+ V (H,∆)
267
+ =
268
+ −m2
269
+ H (H†H) + M2Tr[∆†∆] + (µ∆HT iσ2∆+H + h.c) + λ(H†H)
270
+ 2 + λ1 (H†H)Tr[∆†∆]
271
+ +
272
+ λ2 (Tr[∆†∆])
273
+ 2 + λ3Tr[(∆†∆)2] + λ4 (H†∆∆†H).
274
+ (9)
275
+ The extra Yukawa term for neutrino mass generation is,
276
+ LY
277
+ =
278
+ y∆ℓT iCiσ2∆ℓ + h.c.
279
+ (10)
280
+ Here the trilinear coupling µ∆ can be taken as positive by absorbing its phase into Φ and ∆. The
281
+ total Lagrangian is,
282
+ L = LY − V (H,∆),
283
+ (11)
284
+ The detail of this model is summarized in ‘Model Description’ part of the Appendix.
285
+ The dimension six operators the Warsaw basis, as listed in Eq:5, can be expanded and the calculation
286
+ of the symmetry factors are shown in the ‘Calculation’ part of the Appendix. Hence, the Higgs mass
287
+ correction in terms of W.C.’s is found to be,
288
+ (δm2
289
+ h)BSM
290
+ =
291
+ Λ2
292
+ 16π2 ( − 3CHD + 12CH◻ + 9CHW + 3CHB)
293
+ +
294
+ Λ2
295
+ (16π2)2 (54CH − 9
296
+ 2(g2
297
+ Y + 3g2
298
+ W )CHD + 108g2
299
+ W CHW )
300
+ (12)
301
+ Which leads to the total correction to the Higgs mass to be,
302
+ δm2
303
+ h = (δm2
304
+ h)SM + (δm2
305
+ h)BSM
306
+ (13)
307
+ 5
308
+
309
+ We found the the following expressions of the Wilson Coefficients appearing in one loop contribution
310
+ in (δm2
311
+ h)BSM:
312
+ CHD
313
+ =
314
+
315
+ g4
316
+ Y
317
+ 320π2 + 4µ2
318
+
319
+ M2 −
320
+ λ2
321
+ 4
322
+ 24π2 + 11g2
323
+ Y µ2
324
+
325
+ 24π2M2 −
326
+ 8µ4
327
+
328
+ 3π2M4 + λ4µ2
329
+
330
+ 6π2M2 + 3λµ2
331
+
332
+ 8π2M2
333
+ (14)
334
+ CH◻
335
+ =
336
+
337
+ g4
338
+ W
339
+ 1920π2 + 2µ2
340
+
341
+ M2 −
342
+ λ2
343
+ 1
344
+ 16π2 − λ1λ4
345
+ 16π2 −
346
+ λ2
347
+ 4
348
+ 192π2 − g2
349
+ W µ2
350
+
351
+ 96π2M2 +
352
+ +
353
+ 11g2
354
+ Y µ2
355
+
356
+ 96π2M2 −
357
+ 49µ4
358
+
359
+ 12π2M4 + λ1µ2
360
+
361
+ 8π2M2 +
362
+ λ4µ2
363
+
364
+ 48π2M2 + 3λµ2
365
+
366
+ 4π2M2
367
+ (15)
368
+ CHB
369
+ =
370
+ g2
371
+ Y λ1
372
+ 32π2 + g2
373
+ Y λ4
374
+ 64π2 + 11g2
375
+ Y µ2
376
+
377
+ 64π2M2
378
+ (16)
379
+ CHW
380
+ =
381
+ g2
382
+ W λ1
383
+ 48π2 + g2
384
+ W λ4
385
+ 96π2 + 25g2
386
+ W µ2
387
+
388
+ 192π2M2 .
389
+ (17)
390
+ Here, M is the mass of the heavy triplet. For the theory to be valid, it is sufficient to assume that M
391
+ is greater than Λ. We assume the order of magnitude to be the same for M and Λ in our calculation
392
+ as a limiting scenario. For M >> Λ, the W.C.’s will obtain smaller values.
393
+ 4
394
+ Result
395
+ We consider the one loop correction to the Higgs mass at first and fix two benchmark scenarios at
396
+ large scales, such as 100 TeV, 106 TeV. In Fig: 1 we show the model parameter space of λ1 and
397
+ λ4, for which quadratic divergence cancels out exactly, making δm2
398
+ h = 0. The SM input parameters,
399
+ such as (gW , yt, gY , λ) are determined at the benchmark scales by solving two loop Renormalized
400
+ Group Equation (RGE)’s. λ1 and λ4 are varied in such a way that the Wilson Coefficients obey the
401
+ perturbative limit and the running of the Wilson Coefficients from Λ to the EW scale is not varied
402
+ much. Note that, the tree level couplings (λ and µH) also get shifted due to the higher dimensional
403
+ operators. The parameter λ can not be more than O(1) and this puts an upper limit on the quantity,
404
+ µ2
405
+
406
+ 2M2 < O(1), where µ∆ =
407
+
408
+ 2v∆M2
409
+ v2
410
+ H
411
+ , in the limit of large masses of the triplet (M). Also, recent precission
412
+ measurements of the ρ parameter gives ρ = 1.00038 ± 0.00020, resulting in v∆ < 2.56 [39].
413
+ Figure 1: Variation of λ1 and λ4 with µ∆ at two benchmark values of Λ.
414
+ 6
415
+
416
+ 6
417
+ =100 GeV
418
+ = 5*104 GeV
419
+ 3
420
+ = 105 GeV
421
+ 0
422
+ -3
423
+ A=100TeV
424
+ -6
425
+ -50
426
+ -25
427
+ 0
428
+ 25
429
+ 50
430
+ 入46
431
+ =100 GeV
432
+ =5*108GeV
433
+ 3
434
+ = 109 GeV
435
+ 0
436
+ -3
437
+ Λ=10%
438
+ Tev
439
+ -6
440
+ -50
441
+ -25
442
+ 0
443
+ 25
444
+ 50
445
+ 入4From Fig: 1, we can see that the parameter space of (λ1, λ4) is very much constrained from the V.C.
446
+ Note that, both positive and negative values of λ1 and λ4 are allowed. The green line represents the
447
+ highest possible value of µ∆, which comes from
448
+ µ2
449
+
450
+ 2M2 ∼ O(1). The V.C. only satisfies over the thin lines
451
+ for different values of µ∆. The nature of the plots is highly dependent on the values of µ∆, because the
452
+ Wilson coefficients have (µ∆/M)2 and (µ∆/M)4 dependence with additional suppression of 1/16π2.
453
+ The freedom to choose the W.C’s in terms of parameters λ1, λ4 and µ∆, allows the exact cancellation
454
+ even at a very large scale ( Λ = 106 TeV). The small change in parameter space is due to the running
455
+ of the SM parameters. Hence we found that the V.C is insensitive to the scale Λ, and the fine tuning
456
+ is appearing only due to the precession of the numbers that the parameters take, which is negligible6.
457
+ Figure 2: Variation of the Wilson Coefficients with model parameter λ4
458
+ In Fig: 2, we show the variation of the Wilson Coefficients with the model parameter λ4 at 100 TeV.
459
+ The corresponding value(s) of λ1 can be inferred form Fig: 1. The Wilson coefficients show similar
460
+ behaviour for the othe benchmark case. For CHD and CH◻, negative values are more preferred, whereas,
461
+ for CHW and CHB, both positive and negative values are allowed. However, when λ4 is negative, all
462
+ coefficients are negative mostly, except for some values of the CHD and CH◻. Again, when λ4 is positive,
463
+ CHW and CHB are always positive but CHD and CH◻ are mostly negative except for some values as
464
+ shown in Fig: 2. Thus, it is clearly visible that the cancellation among the Wilson coefficients are not
465
+ ad-hoc in V.C., but are controlled by the model parameters. We have also implemented the two loop
466
+ 6Note that, for other models, where the number of Wilson Coefficient is less than 4 can be generated, the exact
467
+ cancellation will be harder to obtain and the amount of fine tuning will also be very high compared to this model.
468
+ 7
469
+
470
+ 10
471
+ = 100 GeV
472
+ = 5104 GeV
473
+ 5
474
+ μ = 105 GeV
475
+ CHD
476
+ -
477
+ -5
478
+ Λ= 100 TeV
479
+ -10
480
+ -50
481
+ -25
482
+ 0
483
+ 25
484
+ 50
485
+ 入42.5
486
+ =100 GeV
487
+ = 5*104 GeV
488
+ 1.5
489
+ μ = 105 GeV
490
+ 0.5
491
+ CH
492
+ 0.5
493
+ 1.5
494
+ A=100TeV
495
+ 2.5
496
+ 50
497
+ -25
498
+ 0
499
+ 25
500
+ 50
501
+ 入40.02
502
+ =100 GeV
503
+ M = 5*104 GeV
504
+ 0.01
505
+ M = 105 GeV
506
+ 0.00
507
+ 0.01
508
+ Λ= 100 TeV
509
+ 0.02
510
+ -50
511
+ -25
512
+ 0
513
+ 25
514
+ 50
515
+ 入40.050
516
+ =100GeV
517
+ = 5*104GeV
518
+ 0.025
519
+ M = 105 GeV
520
+ 0.000
521
+ 0.025
522
+ Λ = 100 TeV
523
+ -0.050
524
+ -50
525
+ -25
526
+ 0
527
+ 25
528
+ 50
529
+ 入4contribution to Higgs mass correction and in V.C. Due to the extra suppression by (1/16π2), the effect
530
+ is not visible, hence we do not show that.
531
+ HD
532
+ H 
533
+ 100
534
+ 104
535
+ 106
536
+ 108
537
+ -8
538
+ -6
539
+ -4
540
+ -2
541
+ 0
542
+ Λ(GeV)
543
+ λ1 = 4, λ4 = 40,
544
+ μΔ = 1000 GeV
545
+ HW
546
+ HB
547
+ 100
548
+ 104
549
+ 106
550
+ 108
551
+ 0.000
552
+ 0.005
553
+ 0.010
554
+ 0.015
555
+ 0.020
556
+ Λ(GeV)
557
+ λ1 = 0.01, λ4 = 40,
558
+ μΔ = 1000 GeV
559
+ Figure 3: Running of the Wilson Coefficients from Λ = 106 TeV to the cut-off scale for one set of model
560
+ parameters. We have kept the value of µ∆ to be fixed at 1 TeV.
561
+ We have also checked the running of the Wilson coefficients from the effective scale Λ to the electroweak
562
+ scale. We show the running of the Wilson coefficients in Fig: 3 for a particular choice of the model
563
+ parameters, λ1 and λ4. We choose λ1 = 4.0 and λ4 = 40 as an input parameter. This particular
564
+ choice of parameter represents the maximum possible value of the model parameters as can be seen
565
+ in Fig: 2. We found that, the values of these W.C.’s do not change much and also the sign does not
566
+ change. The conclusion remains same for other allowed values of λ1 and λ4. The values of W.C’s.
567
+ (Ci(1TeV)2/Λ2) are highly constrained at the EW scale [40] from various experiments. The values
568
+ of Wilson coefficients (as in Fig: 2,Fig: 3), for which the V.C. is satisfied, is well within the current
569
+ experimental limits.
570
+ 5
571
+ Conclusion
572
+ The Veltman Condition can not be satisfied within the framework of the Standard Model because of
573
+ significant quadratic divergences to the Higgs self-energy correction if the cutoff scale Λ is ∼ 1 TeV
574
+ or higher. However, in addition to the dimension four operators from the Standard Model, we have
575
+ also included dimension six operators whose contributions to the Higgs mass correction result from
576
+ integrating out the heavy triplet scalar with hypercharge one in terms of the SMEFT operators. We
577
+ show how the quadratic divergence of the Higgs self-energy vanishes in this particular model due to
578
+ the cancellation among the SM parameters and the Wilson Coefficients.
579
+ We have shown the relevant SMEFT operators which contributes in the V.C., and expressed them in
580
+ terms of the model parameters. Hence, the sign of the Wilson Coefficients are not ad-hoc, it is driven
581
+ by the larger theory, which is a heavy triplet scalar in our case. We found that, in other models the
582
+ cancellation is harder to achieve because some of the operators are absent. In other words, one has
583
+ to allow for a minimum fine tuning in order to generate the model parameter space which is allowed
584
+ by the V.C. However, the values of the Wilson Coefficients will be different in every model, as it is
585
+ controlled by the specific model parameters.
586
+ In order to achieve the Veltman Condition, it should be noted that the contributions from two par-
587
+ ticular dimension six operators QHD and QH◻ play a dominating role in cancelling out the quadratic
588
+ 8
589
+
590
+ divergences. However, this may or may not be the case in other models. We have observed that
591
+ for energy scales Λ = 100 TeV and 106 TeV, the cancellation is almost similar, when the W.C’s are
592
+ expressed in terms of λ1 and λ4 for a given µ∆. The minimal change in the parameter space is mainly
593
+ due to the running of the SM parameters. If we introduce some relaxation in the V.C., by allowing
594
+ some amount of fine tuning, the model parameter space will surely enlarge, but it will get narrower
595
+ with the increasing values of Λ. Thus, the Veltman Condition can be easily satisfied in the framwork
596
+ of effective field theory, when a scalar triplet exists at a very large scale. The study of this model
597
+ as an Effective Field Theory can also be useful to revisit the Type II leptogenesis scenario, where it
598
+ will be possible to generate specific dimension six terms which are allowed by the symmetries of the
599
+ model.
600
+ Acknowledgements: JD acknowledges the Council of Scientific and Industrial Research (CSIR),
601
+ Government of India, for the SRF fellowship grant with File No. 09/045(1511)/ 2017-EMR-I. JD also
602
+ would like to acknowledge Research Grant No. SERB/CRG/004889/SGBKC/2022/04 of the SERB,
603
+ India, for partial financial support. The work of NK is supported by Department of Science and
604
+ Technology, Government of India under the SRG grant, Grant Agreement Number SRG/2022/000363.
605
+ We also thank Prof. Anirban Kundu and Dr. Supratim Das Bakshi for useful discussion.
606
+ 6
607
+ Appendix
608
+ Model Description
609
+ In the type-II seesaw model, the scalar sector is extended by a complex scalar
610
+ triplet(∆) with hypercharge 1, in addition to the Higgs doublet (H). Explicitly,
611
+ H (1,2,+1/2) = (φ+
612
+ φ0), ∆(1,3,+1) = (∆+/
613
+
614
+ 2
615
+ ∆++
616
+ ∆0
617
+ −∆+/
618
+
619
+ 2)
620
+ (18)
621
+ with the neutral components:
622
+ φ0 = vH + h + iφ3
623
+
624
+ 2
625
+ , ∆0 = v∆ + δ + iξ
626
+
627
+ 2
628
+ (19)
629
+ The numbers in the parentheses represent the charges of SU(3)C × SU(2)L × U(1)Y gauge group of
630
+ the SM. The kinetic terms corresponding to the scalar fields are given as
631
+ Lkin ⊃ (DµH)†DµH + Tr[(Dµ∆)†(Dµ∆)],
632
+ (20)
633
+ with the covariant derivatives
634
+ DµH
635
+ =
636
+ ∂µH − igY
637
+ 2 W a
638
+ µσaH − igW
639
+ 2 BµH,
640
+ Dµ∆
641
+ =
642
+ ∂µ∆ − igY
643
+ 2 Tr[W a
644
+ µσa,∆] − igW
645
+ 2 Bµ∆.
646
+ (21)
647
+ Here σa (a = 1, 2, 3) are the Pauli spin matrices and gW and gY are the gauge couplings associated
648
+ with SU(2)L and U(1)Y gauge group respectively.
649
+ 9
650
+
651
+ Calculation
652
+ The dimension six SMEFT operators which contribute Higgs mass correction either at
653
+ one-loop or two-loop level in this model can be written upto a total derivative as,
654
+ QHD
655
+ =
656
+ (H+DµH)∗(H+DµH) ⊃ (∂µH†)HH† (∂µH†) + [g2
657
+ W
658
+ 4 σaσbH†W a
659
+ µHH†W µbH
660
+ +
661
+ g2
662
+ Y
663
+ 4 H†BµHH†BµH]
664
+ QH◻
665
+ =
666
+ (H+H) ◻ (H+H) = −∂µ (H†H)∂µ (H†H)
667
+ QHW
668
+ =
669
+ (H+H)W a
670
+ µνW a,µν ⊃ 2H†[σa (∂µW a
671
+ ν )σb (∂µW νb) − σa (∂µW a
672
+ ν )σb (∂νW µb)]H
673
+ +
674
+ g2
675
+ W σafabcσpfpqrH†W b
676
+ µW c
677
+ νW µqW νrH
678
+ QHB
679
+ =
680
+ (H+H)BµνBµν ⊃ 2H†[∂µBν∂µBν − ∂µBν∂νBµ]H
681
+ QH
682
+ =
683
+ (H†H)3.
684
+ (22)
685
+ Note that only momentum dependent vertices can generate quartic divergence at one-loop level. Pos-
686
+ sible Feynman diagrams originating from these terms are similar to Ref. [17].
687
+ References
688
+ [1] G. Aad et al. [ATLAS], “Observation of a new particle in the search for the Standard
689
+ Model Higgs boson with the ATLAS detector at the LHC,” Phys. Lett. B 716, 1-29 (2012)
690
+ doi:10.1016/j.physletb.2012.08.020 [arXiv:1207.7214 [hep-ex]].
691
+ [2] S. Chatrchyan et al. [CMS], “Observation of a New Boson at a Mass of 125 GeV with the CMS
692
+ Experiment at the LHC,” Phys. Lett. B 716, 30-61 (2012) doi:10.1016/j.physletb.2012.08.021
693
+ [arXiv:1207.7235 [hep-ex]].
694
+ [3] M. J. G. Veltman, “The Infrared - Ultraviolet Connection,” Acta Phys. Polon. B 12, 437 (1981).
695
+ [4] I. Chakraborty and A. Kundu, “Triplet-extended scalar sector and the naturalness problem,”
696
+ Phys. Rev. D 89, no.9, 095032 (2014) doi:10.1103/PhysRevD.89.095032 [arXiv:1404.1723 [hep-
697
+ ph]].
698
+ [5] A. Kundu and S. Raychaudhuri, “Taming the scalar mass problem with a singlet higgs boson,”
699
+ Phys. Rev. D 53, 4042 (1996) [arXiv:hep-ph/9410291 [hep-ph]].
700
+ [6] A. Drozd, B. Grzadkowski and J. Wudka, “Multi-Scalar-Singlet Extension of the Standard Model -
701
+ the Case for Dark Matter and an Invisible Higgs Boson,” JHEP 1204, 006 (2012) [arXiv:1112.2582
702
+ [hep-ph]].
703
+ [7] A. Drozd, “RGE and the Fine-Tuning Problem,” arXiv:1202.0195 [hep-ph].
704
+ [8] I. Chakraborty and A. Kundu, “Controlling the fine-tuning problem with singlet scalar dark
705
+ matter,” Phys. Rev. D 87, 055015 (2013) [arXiv:1212.0394 [hep-ph]].
706
+ [9] I. Chakraborty and A. Kundu, “Two-Higgs doublet models confront the naturalness problem,”
707
+ Phys. Rev. D 90, 115017 (2014) [arXiv:1404.3038 [hep-ph]].
708
+ [10] I. Chakraborty and A. Kundu, “Naturalness problem: Off the beaten track,” Pramana 87, no.
709
+ 3, 38 (2016).
710
+ 10
711
+
712
+ [11] R. L. Workman et al. [Particle Data Group], “Review of Particle Physics,” PTEP 2022, 083C01
713
+ (2022) doi:10.1093/ptep/ptac097
714
+ [12] R.
715
+ Contino,
716
+ “The
717
+ Higgs
718
+ as
719
+ a
720
+ Composite
721
+ Nambu-Goldstone
722
+ Boson,”
723
+ doi:10.1142/9789814327183 0005 [arXiv:1005.4269 [hep-ph]].
724
+ [13] P. Fayet, “Supersymmetry and Weak, Electromagnetic and Strong Interactions,” Phys. Lett. B
725
+ 64, 159 (1976) doi:10.1016/0370-2693(76)90319-1
726
+ [14] J.
727
+ Barnard,
728
+ D.
729
+ Murnane,
730
+ M.
731
+ White
732
+ and
733
+ A.
734
+ G.
735
+ Williams,
736
+ “Constraining
737
+ fine
738
+ tuning
739
+ in Composite Higgs Models with partially composite leptons,”
740
+ JHEP 09,
741
+ 049 (2017)
742
+ doi:10.1007/JHEP09(2017)049
743
+ [15] M. van Beekveld, S. Caron and R. Ruiz de Austri, “The current status of fine-tuning in super-
744
+ symmetry,” JHEP 01, 147 (2020) doi:10.1007/JHEP01(2020)147
745
+ [16] I. Brivio and M. Trott, “The Standard Model as an Effective Field Theory,” Phys. Rept. 793,
746
+ 1-98 (2019) doi:10.1016/j.physrep.2018.11.002 [arXiv:1706.08945 [hep-ph]].
747
+ [17] A. Biswas, A. Kundu and P. Mondal, “Hierarchy problem and dimension-six effective operators,”
748
+ Phys. Rev. D 102, no.7, 075022 (2020) doi:10.1103/PhysRevD.102.075022 [arXiv:2006.13513 [hep-
749
+ ph]].
750
+ [18] S. Adhikari, I. M. Lewis and M. Sullivan, “Beyond the Standard Model effective field
751
+ theory:
752
+ The singlet extended Standard Model,” Phys. Rev. D 103, no.7, 075027 (2021)
753
+ doi:10.1103/PhysRevD.103.075027 [arXiv:2003.10449 [hep-ph]].
754
+ [19] S. Karmakar and S. Rakshit, “Relaxed constraints on the heavy scalar masses in 2HDM,” Phys.
755
+ Rev. D 100, no.5, 055016 (2019) doi:10.1103/PhysRevD.100.055016 [arXiv:1901.11361 [hep-ph]].
756
+ [20] T. Alanne and F. Goertz, “Extended Dark Matter EFT,” Eur. Phys. J. C 80, no.5, 446 (2020)
757
+ doi:10.1140/epjc/s10052-020-7999-2 [arXiv:1712.07626 [hep-ph]].
758
+ [21] S. Bar-Shalom, J. Cohen, A. Soni and J. Wudka, “Phenomenology of TeV-scale scalar Lepto-
759
+ quarks in the EFT,” Phys. Rev. D 100, no.5, 055020 (2019) doi:10.1103/PhysRevD.100.055020
760
+ [arXiv:1812.03178 [hep-ph]].
761
+ [22] Y. Du, X. X. Li and J. H. Yu, “Neutrino seesaw models at one-loop matching: discrimination
762
+ by effective operators,” JHEP 09, 207 (2022) doi:10.1007/JHEP09(2022)207 [arXiv:2201.04646
763
+ [hep-ph]].
764
+ [23] X. Li, D. Zhang and S. Zhou, “One-loop matching of the type-II seesaw model onto the
765
+ Standard Model effective field theory,” JHEP 04, 038 (2022) doi:10.1007/JHEP04(2022)038
766
+ [arXiv:2201.05082 [hep-ph]].
767
+ [24] D. Zhang and S. Zhou, “Complete one-loop matching of the type-I seesaw model onto the
768
+ Standard Model effective field theory,” JHEP 09, 163 (2021) doi:10.1007/JHEP09(2021)163
769
+ [arXiv:2107.12133 [hep-ph]].
770
+ [25] J. Schechter and J. W. F. Valle, “Neutrino Masses in SU(2) x U(1) Theories,” Phys. Rev. D 22,
771
+ 2227 (1980);
772
+ R. N. Mohapatra and G. Senjanovic, “Neutrino Masses and Mixings in Gauge Models with
773
+ Spontaneous Parity Violation,” Phys. Rev. D 23, 165 (1981);
774
+ C. -S. Chen and C. -M. Lin, “Type II Seesaw Higgs Triplet as the inflaton for Chaotic Inflation
775
+ 11
776
+
777
+ and Leptogenesis,” Phys. Lett. B 695, 9 (2011) [arXiv:1009.5727 [hep-ph]];
778
+ A. Chaudhuri, W. Grimus and B. Mukhopadhyaya, “Doubly charged scalar decays in a type II
779
+ seesaw scenario with two Higgs triplets,” JHEP 1402, 060 (2014) [arXiv:1305.5761 [hep-ph]].
780
+ [26] See, e.g. E. Ma and U. Sarkar, “Neutrino masses and leptogenesis with heavy Higgs triplets,”
781
+ Phys. Rev. Lett. 80, 5716 (1998) [hep-ph/9802445];
782
+ T. Hambye, E. Ma and U. Sarkar, “Supersymmetric triplet Higgs model of neutrino masses and
783
+ leptogenesis,” Nucl. Phys. B 602, 23 (2001) [hep-ph/0011192];
784
+ D. Aristizabal Sierra, M. Dhen and T. Hambye, “Scalar triplet flavored leptogenesis: a systematic
785
+ approach,” arXiv:1401.4347 [hep-ph].
786
+ [27] A. Arhrib, R. Benbrik, M. Chabab, G. Moultaka and L. Rahili, “hγγ Coupling in Higgs Triplet
787
+ Model,” arXiv:1202.6621 [hep-ph];
788
+ A. G. Akeroyd and S. Moretti, “Enhancement of H to gamma gamma from doubly charged scalars
789
+ in the Higgs Triplet Model,” Phys. Rev. D 86, 035015 (2012) [arXiv:1206.0535 [hep-ph]].
790
+ [28] I. Gogoladze, N. Okada and Q. Shafi, “Higgs boson mass bounds in a type II seesaw model with
791
+ triplet scalars,” Phys. Rev. D 78, 085005 (2008) [arXiv:0802.3257 [hep-ph]];
792
+ H. E. Logan and M. -A. Roy, “Higgs couplings in a model with triplets,” Phys. Rev. D 82, 115011
793
+ (2010) [arXiv:1008.4869 [hep-ph]];
794
+ F. Arbabifar, S. Bahrami and M. Frank, “Neutral Higgs Bosons in the Higgs Triplet Model with
795
+ nontrivial mixing,” Phys. Rev. D 87, 015020 (2013) [arXiv:1211.6797 [hep-ph]]. P. S. Bhupal Dev,
796
+ D. K. Ghosh, N. Okada and I. Saha, “125 GeV Higgs Boson and the Type-II Seesaw Model,”
797
+ JHEP 1303, 150 (2013) [Erratum-ibid. 1305, 049 (2013)] [arXiv:1301.3453]. C. Englert, E. Re
798
+ and M. Spannowsky, “Triplet Higgs boson collider phenomenology after the LHC,” Phys. Rev. D
799
+ 87, no. 9, 095014 (2013) [arXiv:1302.6505 [hep-ph]]; “Pinning down Higgs triplets at the LHC,”
800
+ Phys. Rev. D 88, 035024 (2013) [arXiv:1306.6228 [hep-ph]].
801
+ [29] B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, “Dimension-Six Terms in the Standard
802
+ Model Lagrangian,” JHEP 10, 085 (2010) doi:10.1007/JHEP10(2010)085 [arXiv:1008.4884 [hep-
803
+ ph]].
804
+ [30] K. Hagiwara, T. Hatsukano, S. Ishihara and R. Szalapski, “Probing nonstandard bosonic in-
805
+ teractions via W boson pair production at lepton colliders,” Nucl. Phys. B 496, 66-102 (1997)
806
+ doi:10.1016/S0550-3213(97)00208-3 [arXiv:hep-ph/9612268 [hep-ph]].
807
+ [31] G. F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, “The Strongly-Interacting Light Higgs,”
808
+ JHEP 06, 045 (2007) doi:10.1088/1126-6708/2007/06/045 [arXiv:hep-ph/0703164 [hep-ph]].
809
+ [32] E. E. Jenkins, A. V. Manohar and M. Trott, “Renormalization Group Evolution of the Standard
810
+ Model Dimension Six Operators I: Formalism and lambda Dependence,” JHEP 10, 087 (2013)
811
+ doi:10.1007/JHEP10(2013)087 [arXiv:1308.2627 [hep-ph]].
812
+ [33] R. Alonso, E. E. Jenkins, A. V. Manohar and M. Trott, “Renormalization Group Evolution of the
813
+ Standard Model Dimension Six Operators III: Gauge Coupling Dependence and Phenomenology,”
814
+ JHEP 04, 159 (2014) doi:10.1007/JHEP04(2014)159 [arXiv:1312.2014 [hep-ph]].
815
+ [34] G. Passarino, “Veltman, Renormalizability, Calculability,” Acta Phys. Polon. B 52, no.6-7, 533
816
+ (2021) doi:10.5506/APhysPolB.52.533 [arXiv:2104.13569 [hep-ph]].
817
+ [35] F. Abu-Ajamieh, “Model-independent Veltman condition, naturalness and the little hier-
818
+ archy problem *,” Chin. Phys. C 46, no.1, 013101 (2022) doi:10.1088/1674-1137/ac2ffa
819
+ [arXiv:2101.06932 [hep-ph]].
820
+ 12
821
+
822
+ [36] S. Das Bakshi, J. Chakrabortty and S. K. Patra, “CoDEx: Wilson coefficient calculator connecting
823
+ SMEFT to UV theory,” Eur. Phys. J. C 79, no.1, 21 (2019) doi:10.1140/epjc/s10052-018-6444-2
824
+ [arXiv:1808.04403 [hep-ph]].
825
+ [37] Anisha, S. Das Bakshi, S. Banerjee, A. Biek¨otter, J. Chakrabortty, S. Kumar Patra and
826
+ M. Spannowsky, “Effective limits on single scalar extensions in the light of recent LHC data,”
827
+ [arXiv:2111.05876 [hep-ph]].
828
+ [38] A. Carmona, A. Lazopoulos, P. Olgoso and J. Santiago, “Matchmakereft: automated tree-level
829
+ and one-loop matching,” SciPost Phys. 12, no.6, 198 (2022) doi:10.21468/SciPostPhys.12.6.198
830
+ [arXiv:2112.10787 [hep-ph]].
831
+ [39] R. Ghosh, B. Mukhopadhyaya and U. Sarkar, “The ρ parameter and the CDF W-mass anomaly:
832
+ observations on the role of scalar triplets,” [arXiv:2205.05041 [hep-ph]].
833
+ [40] J. Ellis,
834
+ M. Madigan,
835
+ K. Mimasu,
836
+ V. Sanz and T. You,
837
+ “Top,
838
+ Higgs,
839
+ Diboson and
840
+ Electroweak Fit to the Standard Model Effective Field Theory,” JHEP 04, 279 (2021)
841
+ doi:10.1007/JHEP04(2021)279 [arXiv:2012.02779 [hep-ph]].
842
+ 13
843
+
-9E5T4oBgHgl3EQfRw7N/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
-NE3T4oBgHgl3EQfrQru/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13507e0c5117a4d559c65a09a1c5780c45d64f9dad545934d8e62167fc624373
3
+ size 370513
-dAzT4oBgHgl3EQfSvvG/content/tmp_files/2301.01238v1.pdf.txt ADDED
@@ -0,0 +1,554 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ EL ELIXIR DE LA ENERGÍA ETERNA
3
+
4
+
5
+
6
+
7
+
8
+
9
+
10
+ Abstract
11
+
12
+ The recent announcement of a purported breakthrough result in inertial nuclear fusion at NIF
13
+ (Lawrence Livermore Laboratory, USA) has aroused a tide of media and public interest. The
14
+ excitement has been generalized to the whole field of research in fusion energy with, in its wake,
15
+ announcements of an imminent advent of the cure for the energetic crisis and the aggravating
16
+ influence in the climate change associated to the fossil fuels. This opinion article is intended to
17
+ show that such expectations are not founded on sound scientific bases and that there is a long way
18
+ until the practical production of electricity from nuclear fusion is achieved, if ever.
19
+
20
+ Resumen
21
+
22
+ El reciente anuncio de un supuestamente trascendental resultado en fusión nuclear inercial en
23
+ NIF (Lawrence Livermore Laboratory, EEUU de Norteamérica) ha desatado un enorme interés en el
24
+ público y los medios de comunicación. El entusiasmo se ha trasladado a todo el campo de la
25
+ investigación en fusión para la producción de energía con, a su estela, anuncios de la llegada
26
+ inminente de la solución a la crisis energética y al efecto agravante del cambio climático asociado a
27
+ los combustibles fósiles. Este artículo de opinión pretende poner de manifiesto que tales
28
+ expectativas no están fundadas en bases científicas sólidas y que hay un largo camino por recorrer
29
+ hasta que se logre, a niveles prácticos, la producción de electricidad a partir de la fusión nuclear, si
30
+ se consigue alguna vez.
31
+
32
+
33
+ Introducción
34
+
35
+ Recientemente se anunció con extraordinario aparato mediático un nuevo hito alcanzado en la
36
+ fusión nuclear, muy oportunamente publicitado en el contexto actual de crisis energética. En
37
+ principio no hay nada que objetar a ello: en la comunidad científica es bien conocida la necesidad
38
+ de financiación que tienen los grupos de investigación, y no digamos los grandes laboratorios como
39
+ el Lawrence Livermore Laboratory, que deben anunciar sus logros científicos a fin de despertar el
40
+ interés de la opinión pública, que busca soluciones tangibles a sus problemas inmediatos, y, con
41
+ ello, captar la atención de las instancias políticas, siempre ávidas de réditos demoscópicos.
42
+
43
+ No obstante, opino que se está vertiendo con demasiada frecuencia información sesgada que
44
+ induce a confusión. Comencemos con el detonante del presente texto, la noticia que ha
45
+ desencadenado el frenesí mediático: el DOE (Department of Energy) norteamericano anunció a
46
+ bombo y platillo el pasado 13 de diciembre que en la instalación NIF (National Ignition Facility)
47
+ del Lawrence Livermore Laboratory se acababa de conseguir superar el breakeven en un
48
+ experimento de fusión, lo cual simplemente consiste en conseguir más energía que la suministrada.
49
+ Suena muy bien y prometedor, pero conviene puntualizar. En primer lugar, esto se ha conseguido
50
+ mediante la compresión con 192 láseres de altísima potencia sincronizados en un brevísimo pulso
51
+ del orden de varios nanosegundos1 (la mayor concentración energética mediante láser jamás
52
+ José Manuel Quesada Molina
53
+ Departamento de Física Atómica, Molecular y Nuclear
54
+ Universidad de Sevilla
55
+
56
+ 2
57
+ conseguida) de una diminuta cápsula de diamante conteniendo un pellet ultracongelado con dos
58
+ isótopos del hidrógeno, deuterio y tritio (DT)2. Ello es un mecanismo completamente diferente al
59
+ confinamiento magnético que se utiliza en los llamados tokamaks3, donde el confinamiento se
60
+ consigue mediante campos magnéticos con geometría toroidal (donut). En la actualidad el diseño
61
+ tipo tokamak es el más ampliamente utilizado, particularmente en Europa, donde bajo estas
62
+ premisas desde comienzos de los años 90 se realizan experimentos en el JET (Joint European
63
+ Torus) en Gran Bretaña, con financiación de la Unión Europea (al menos era sí hasta el Brexit, ya
64
+ que actualmente está en fase terminal), y actualmente está en construcción el ITER (acrónimo de
65
+ International Thermonuclear Experimental Reactor) en Cadarache, Francia. Por lo tanto, el logro
66
+ alcanzado en el NIF es muy difícilmente extrapolable a la apuesta científico-técnica mayoritaria en
67
+ curso, que es el confinamiento magnético; es más, dicha vinculación se me escapa por completo.
68
+ Por lo tanto, considero que ésta es una matización clave, que se debe realizar claramente desde el
69
+ principio: ambos mecanismos (compresión inercial – mediante láser u otro tipo de haces de
70
+ partículas - y confinamiento magnético), aunque comparten finalidad, difieren esencialmente y los
71
+ pretendidos logros en uno no son trasladables al otro.
72
+
73
+ ¿Es todo esto como se anuncia y promete?
74
+
75
+ A raíz de la noticia, y aprovechando su tirón mediático, he podido leer nuevamente (para mi gran
76
+ sorpresa) algo que lleva repitiéndose desde los orígenes del desarrollo de la fusión nuclear: se
77
+ trataría de reproducir en la Tierra el proceso que tiene lugar en el Sol y permite la vida; es más, se le
78
+ llega a poner fecha: un reactor de fusión conectado a la red eléctrica en 10 años. Lo primero no es
79
+ cierto en sentido estricto y lo segundo es, simplemente, un despropósito que prefiero atribuir a una
80
+ mala interpretación periodística (que, lamentablemente, cala en el imaginario del público no
81
+ avisado). El tiempo dirá y la hemeroteca lo reflejará.
82
+
83
+ En el Sol se quema hidrógeno, un recurso inagotable a nuestra escala, para producir partículas
84
+ alfa, que son estables, es decir sin producir residuos radiactivos4. Todo extraordinariamente
85
+ prometedor, salvo por un detalle: no es posible realizarlo en la Tierra, ya que entra dentro del
86
+ dominio de la ciencia ficción. El motivo: la probabilidad de que dos núcleos de hidrógeno (es decir,
87
+ dos protones) superen su repulsión eléctrica mutua y se fundan es tan pequeña que ni siquiera ha
88
+ podido medirse experimentalmente en un laboratorio. En el Sol ello se produce debido a las
89
+ monstruosas (a escala terrestre) densidades de masa que se alcanzan en su interior por la atracción
90
+ gravitatoria de su enorme masa (también comparada con la de la Tierra); pero en la Tierra no son
91
+ alcanzables tales densidades5. Este es el motivo de que haya que recurrir a otras mezclas de
92
+ fusionantes : deuterio-deuterio (DD), la ya mencionada deuterio-tritio (DT), etc.. Es decir, lo que se
93
+ pretende realizar en la Tierra es parecido a lo que ocurre en el Sol, pero no es lo mismo; en ambos
94
+ casos hay un mecanismo común, pero el combustible es diferente. En particular, la única que se
95
+ vislumbra con posibilidades de permitir la fusión para producir energía eléctrica es la combinación
96
+ DT6, que es la adoptada en todos los proyectos vigentes que pretenden conducir a ese objetivo.
97
+
98
+ El deuterio es abundante (constituye una pequeña fracción del hidrógeno natural) y estable. Pero el
99
+ tritio no es ninguna de las dos cosas: es radiactivo y, por lo tanto, no existe naturalmente; es decir,
100
+ hay que producirlo. Esto cambia bastante el panorama de supuestas bondades del combustible (casi
101
+ infinito, según se anuncia): el tritio, como isótopo del hidrógeno, se comporta químicamente (y, por
102
+ lo tanto, biológicamente) exactamente igual que el hidrógeno normal ; es decir, dado el papel
103
+ central del hidrógeno en el ciclo de la vida, el tritio se incorpora al mismo sin que haya forma de
104
+ separarlo químicamente, porque es hidrógeno (aunque radiactivo). Su vida media de 12.6 años hace
105
+ que en ese tiempo su cantidad se reduzca a la mitad, pero en un reactor de fusión ha de producirse
106
+ continuamente, para lo cual se coloca en su borde exterior una manta de litio (que debe
107
+
108
+ 3
109
+ enriquecerse en su minoritario isótopo adecuado), que al ser bombardeada con neutrones
110
+ procedentes de las fusiones DT produce el tritio que regenera el consumido. Al menos ese es el
111
+ objetivo que se pretende alcanzar (sobre todo, en la tasa suficiente).
112
+
113
+ Las consecuencias de la infiltración y fuga del tritio a través de las paredes del reactor a las
114
+ enormes temperaturas a las que se pretende que funcione se conocen sólo parcialmente, ya que los
115
+ valores que se manejan se basan en extrapolaciones. Por lo tanto el combustible previsto no es casi
116
+ infinito, ni es limpio ni seguro ni barato. El tritio es tan problemático7 que en JET se ha trabaja en
117
+ la medida de lo posible sólo con hidrógeno o sólo con deuterio, extrapolándose las tasas de
118
+ reacción a la mezcla DT. De este modo se obtiene el factor Q (o eficiencia energética, que es el
119
+ cociente entre la potencia conseguida y la consumida) extrapolado, con el llamativo resultado de
120
+ que cuando se realizó el experimento con la mezcla DT el valor de Q obtenido fue
121
+ aproximadamente la mitad; lo cual muestra algo bien conocido en física e ingeniería, que es el
122
+ riesgo de las extrapolaciones, a la vez que pone en evidencia la problemática asociada al uso del
123
+ tritio. Lo anterior añade otra incógnita más a la pretendida limpieza radiológica de la fusión para
124
+ producir energía eléctrica a partir de combustible limpio, accesible e inagotable, según otro lugar
125
+ común en muchas declaraciones leídas en la prensa: “porque se extrae del agua del mar”.
126
+
127
+ Jugando con las definiciones
128
+
129
+ Otro aspecto a destacar de la citada noticia tiene que ver con el ya mencionado logro del breakeven
130
+ en el NIF. Este consistió en alcanzar un factor Q de ganancia energética de fusión de 1.54, es
131
+ decir que se obtuvo 1.54 veces más energía que la se invirtió . Al margen de otras consideraciones
132
+ en las que entraré más adelante, resulta llamativo (por expresarlo suavemente) el cambio de
133
+ definición que ha conducido a este anunciado éxito. El NIF cambió hace algunos años la definición
134
+ del Q para colocar en el denominador (potencia que hay que suministrar a los láseres para
135
+ comprimir y calentar el plasma) sólo la fracción que éstos devuelven en forma de radiación
136
+ ultravioleta para comprimir y calentar, es decir sólo la fracción aprovechable. Teniendo en cuenta
137
+ que la eficiencia de los láseres es muy baja (en torno al 1%), en rigor hay que dividir por toda la
138
+ energía invertida, es decir dividir el aunciado factor de ganancia Q = 1.54 por 100, con lo cual se
139
+ está aún muy lejos de recuperar lo invertido. Muy lejos. Obviamente, esta redefinición unilateral
140
+ del factor Q por parte del NIF recibió severas críticas8, pero el hecho de que no se haya reflejado en
141
+ las noticias esta matización (¡de un factor 100!) por parte de sus voceros (o al menos yo no la he
142
+ encontrado) permite hacerse una idea del poder del lobby que hay detrás.
143
+
144
+ Toda la discusión anterior se ha realizado omitiendo un detalle adicional que considero
145
+ fundamental para tener una visión clara de la situación real: no toda la energía liberada en la fusión
146
+ (el numerador del factor Q) es aprovechable para producir calor y, con ello, la energía eléctrica que
147
+ se pretende obtener. En la fusión DT el 80% de la energía producida se la llevan los neutrones en
148
+ forma de energía cinética, siendo las partículas alfa (que se llevan el 20% restante) las responsables
149
+ de la mayor parte del calentamiento9. Por el contrario, en una fisión del combustible típico de las
150
+ centrales nucleares de fisión (U235), sólo en torno al 5% de la energía se la llevan los neutrones,
151
+ mientras que el resto corresponde a los fragmentos de fisión, núcleos de tamaño medio muy
152
+ cargados eléctricamente, que son los responsables del calentamiento de las barras de combustible,
153
+ que a su vez calientan el refrigerante (normalmente agua) encargado de transportarlo. Por lo tanto,
154
+ incluso sin la redefinición del NIF, el factor Q dista de ser una medida realista de la rentabilidad
155
+ energética del proceso de fusión, ya que no sólo una fracción minoritaria de la energía liberada en la
156
+ fusión es aprovechable para producir calor, que es lo que interesa.
157
+
158
+
159
+ 4
160
+ En la misma línea de información sesgada por parte de los gabinetes de comunicación, ITER hizo
161
+ oficialmente pública una información que claramente conducía a error de interpretación.
162
+ Concretamente, se afirmaba que ITER sería capaz de producir 500 MW10 de potencia a partir de 50
163
+ MW de potencia suministrada. De ahí se infería lógicamente que esos 50 MW suministrados se
164
+ referían a la potencia total eléctrica invertida, no a la calorífica finalmente suministrada al plasma
165
+ (es decir, igual que en el caso de NIF con los láseres). Ante las críticas recibidas11, tuvieron que
166
+ rectificar. Debido a la la eficiencia del proceso de conversión (siempre menor que la unidad,
167
+ usualmente mucho menor, al igual que en el caso del NIF), la primera es muy superior,
168
+ estimándose en más de 300 MW necesarios para mantener la fusión12. Además, los 500 MW
169
+ producidos son totales, de los cuales, como ya se ha indicado, aproximadamente el 80%
170
+ corresponde a los neutrones rápidos, que son mucho menos eficientes produciendo calor (sólo son
171
+ capaces de transferir una parte del mismo al medio antes de escapar), que, al no ser utilizable para
172
+ mantener la temperatura del plasma, ITER propone13 aprovechar calentando el agua del circuito
173
+ refrigerante de la manta que envolverá la cámara de vacío para producir electricidad. Toda la
174
+ responsabilidad del mantenimiento de la temperatura del plasma recaerá sobre las partículas alfa,
175
+ que depositarán directamente en el mismo toda su energía (que, recordemos, es sólo el 20 % de la
176
+ energía en cada fusión). La regeneración del tritio (caro, escaso y que debe producirse en reactores
177
+ nucleares de fisión, principalmente) necesario para mantener la fusión se pospone para para una
178
+ fase posterior de ITER, donde se experimentará con la capacidad del isótopo minoritario Li6 del
179
+ litio natural (que debe ser enriquecido para ello) para producirlo en la suficiente cantidad para
180
+ mantener la reacción14. Nuevamente nos movemos en el campo de las expectativas, sólo la
181
+ experimentación demostrará la viabilidad de la propuesta.
182
+
183
+ Un poco de historia
184
+
185
+ Las radicales diferencias entre los procesos de fusión y fisión nuclear son la causa de que entre la
186
+ primera reacción nuclear explosiva en cadena (Trinity , 16 de julio de 1945 en Alamogordo, Nuevo
187
+ México, EEUU) y la primera producción comercial de energía eléctrica mediante la fisión
188
+ controlada15 (18 de diciembre 1957, en Shippingport, Pennsylvania, EEUU) transcurriesen
189
+ solamente 12 años, mientras que tras la primera explosión termonuclear16 (Ivy Mike, 1 de
190
+ noviembre de 1952 en el atolón Enewetak, en las Islas Marshall) aún no se ha conseguido
191
+ domesticar la fusión para mantenerla bajo control y producir energía aprovechable.
192
+
193
+ En el caso de la fisión se pretende (y consigue desde el año 1942) mantener controlada una
194
+ reacción en cadena, donde los garantes de esa continuidad son los neutrones producidos en cada
195
+ reacción. En el caso de la fusión los neutrones no juegan ningún papel en mantenimiento de la
196
+ misma, sino que el agente garante de la reacción en cadena es el calor producido, que se debe
197
+ traducir en temperatura (manteniendo la densidad). Cuando no se pretende el control de la misma
198
+ sino todo lo contrario (bombas), ello se hace por fuerza bruta (nunca mejor dicho) recurriendo a la
199
+ extraordinaria presión de radiación originada por el fulminante de fisión17, sin que ésta escape antes
200
+ de conseguir instantáneamente su objetivo (todo ocurre en unos pocos microsegundos18). En
201
+ cambio, para mantener la reacción de fusión en un reactor no se puede, obviamente, recurrir a ese
202
+ mecanismo explosivo y se debe conseguir que el calor generado por las reacciones de fusión se
203
+ recicle sin escapar para mantener la temperatura, al tiempo que la densidad se mantenga
204
+ temporalmente. Una empresa formidable, que aún está por conseguirse.
205
+ paral
206
+
207
+
208
+
209
+ 5
210
+
211
+ ¿Por qué se persigue conseguir tan elevadas densidades y temperaturas en un futuro reactor
212
+ nuclear de fusión?
213
+
214
+ Porque es preciso conseguir que núcleos atómicos ligeros superen la repulsión debida a su carga
215
+ eléctrica y se fundan en un núcleo mayor y alguna otra partícula emergente; y además que lo hagan
216
+ en la tasa (velocidad a la que se producen las reaccciones) suficiente. La clave radica en que la
217
+ suma de las masas de los productos de la reacción es ligeramente inferior a la masa de los
218
+ reaccionantes, convirtiéndose esa diferencia de masa m en energía E, según la archiconocida
219
+ fórmula de Einstein E=m c2, donde c es la velocidad de la luz. Este mecanismo es el opuesto al de
220
+ la fisión nuclear, aunque la consecuencia es la misma: conversión de masa en energía. En la fisión
221
+ un núcleo pesado captura un neutrón y se rompe en dos fragmentos de aproximadamente la mitad
222
+ de su masa y varios neutrones. Aquí tenemos por tanto una gran diferencia cualitativa: a diferencia
223
+ de la fusión, en la fisión el agente desencadenante (el neutrón, que como su nombre indica, carece
224
+ de carga eléctrica) no tiene que superar en primer lugar la repulsión eléctrica por parte del núcleo
225
+ (donde hay protones y neutrones que, en todo caso, lo atraen por la llamada interacción nuclear o
226
+ fuerte, que es de corto alcance). Por ello en la fisión, si se dan las circunstancias adecuadas
227
+ (características del núcleo progenitor y energía del neutrón incidente) el núcleo compuesto
228
+ resultante, que se forma en un estado excitado, se rompe espontáneamente en busca de una mayor
229
+ estabilidad del sistema, es decir fisiona. Nos encontramos ante una situación radicalmente diferente
230
+ a la de la fusión, donde los dos intervinientes han de superar su repulsión mutua (ambos están
231
+ cargados positivamente), lo cual implica enormes temperaturas para conseguirlo19. Además la
232
+ densidad ha de ser altísima para que la tasa de reacción sea la suficiente, como comentaré a
233
+ continuación.
234
+
235
+ La tasa de reacción es la clave
236
+
237
+ La tasa de una reacción nuclear (es decir, el número de reacciones por unidad de tiempo) es
238
+ proporcional a la densidad de blancos20, al flujo de proyectiles que los bombardean y a la
239
+ probabilidad de que la reacción se produzca una vez que proyectil y blanco colisionan. Esta última
240
+ cantidad es a su vez proporcional a una magnitud llamada sección eficaz21, que viene determinada
241
+ por la estructura nuclear intrínseca de cada pareja proyectil-blanco y en la cual nuestro margen de
242
+ maniobra está limitado a la velocidad relativa, es decir, a la temperatura. Por lo tanto, para cada
243
+ pareja de proyectil y blanco reaccionantes (fusionantes o fisionantes), conseguir una tasa de
244
+ reacción suficiente exige unos valores adecuados de densidad y temperatura.
245
+
246
+ La tasa de reacción es la clave para producir energía aprovechable, porque las reacciones de fusión
247
+ se producen rutinariamente en laboratorio mediante el uso de aceleradores (controladas, pero no
248
+ automantenidas ya que exigen aporte continuo de energía). Una de las fuentes habituales de
249
+ neutrones es la llamada DT (deuterio-tritio), la misma mezcla prevista en ITER, en la cual
250
+ mediante un acelerador se bombardea con deuterones un blanco de tritio gaseoso, en cada una de
251
+ cuyas reacciones de fusión se liberan unos 17.6 MeV22 de energía, que se reparten entre una
252
+ partícula alfa (núcleo de helio, que se lleva aproximadamente el 80% de diche energía) y un neutrón
253
+ (de alta energía en la jerga especializada, que se lleva el 20% restante). Pero la producción
254
+ energética en forma de calor (debido mayoritariamente a la energía que transportan las partículas
255
+ alfa23) es ínfima debido a los valores de las tasas de reacción implicadas. Es decir, esta fusión DT
256
+ ( y lo mismo se puede decir de las fuentes de neutrones DD) no sirve para producir energía
257
+ eléctrica aprovechable, su finalidad es producir neutrones rápidos.
258
+
259
+
260
+
261
+ 6
262
+
263
+
264
+ El balance energético
265
+
266
+ En principio, un argumento en favor de la fusión nuclear frente a la fisión es la energía específica
267
+ (o energía por unidad de masa). Vamos a explicarlo. Una característica de los núcleos atómicos,
268
+ aunque no exclusiva, ya que lo siguiente es aplicable a cualquier sistema regido por las leyes de la
269
+ Física Cuántica (es decir a todos), es que su masa es menor que la suma de las masas de sus
270
+ constituyentes por separado. Esa diferencia, traducida en energía por la fórmula de Einstein, es lo
271
+ que se conoce como energía de ligadura. Por lo tanto si en una reacción nuclear pasamos de una
272
+ situación con menos ligadura (más masa) a otra de más ligadura (menor masa), la diferencia se
273
+ transforma en energía cinética de los productos y radiación. Y esa es la energía que, en forma de
274
+ calor, se utiliza (en un reactor nuclear de fisión) o debería algún día poder utilizarse (en un reactor
275
+ nuclear de fusión) para producir energía eléctrica. Si colocamos los isótopos conocidos (es decir
276
+ tipos de núcleos atómicos) en orden creciente con sus masas, comenzando en el hidrógeno,
277
+ encontramos que la ligadura por nucleón va aumentando en promedio hasta el Fe56 (núcleo de
278
+ hierro con 26 protones y 30 neutrones, donde alcanza casi 9 MeV por nucleón); a partir de ese
279
+ punto comienza a disminuir suavemente hasta el final de la tabla , donde llega a unos 7.5 MeV por
280
+ nucleón en la región de isótopos que nos interesa (la llamada zona de los actínidos). Ello quiere
281
+ decir que, cuando dos isótopos ligeros (por debajo de la masa del Fe56) se fusionan, el resultado
282
+ está más ligado en general, es decir tiene menos masa, y esa pérdida de masa se transforma en
283
+ energía. Por ejemplo en la típica reaccción DT la ligadura del deuterón son unos 2.2 MeV, es decir
284
+ aproximadamente 1.1 MeV por nucleón ; la ligadura del tritio son unos 8.5 MeV, es decir unos 2.8
285
+ MeV por nucleón; la ligadura de la partícula alfa son unos 28.3 MeV, es decir aproximadamente 7.1
286
+ MeV por nucleón. Por lo tanto, se pasa de una ligadura incial en el sistema DT de aproximadamente
287
+ 10.7 MeV a los 28.3 MeV de la partícula alfa, es decir hay una ganancia de energía ligadura de unos
288
+ 3.5 MeV por nucleón inicial (~17.6/5) eV. La situación opuesta se presenta en el otro extremo de
289
+ la tabla de isótopos cuando un núcleo pesado, por ejemplo el U235, captura un neutrón y fisiona. La
290
+ energía de ligadura del U235 son unos 1786.7 MeV, es decir aproximadamente unos 7.6 MeV por
291
+ nucleón, y la de dos típicos productos de fisión (recordemos que es un proceso probabilístico) está
292
+ próxima a la máxima del Fe56, digamos que en torno a los 8.5 MeV por nucleón; por lo tanto se ha
293
+ ganado aproximadamente 0.9 MeV por nucleón en energía de ligadura. Multiplicando esta cantidad
294
+ por los 236 nucleones del núcleo compuesto inicial (el de U235 más el neutrón absorbido) resultan
295
+ unos 212 MeV de energía liberada en una fisión típica, cantidad bastante próxima a los valores
296
+ medidos experimentalmente. Desde este punto de vista, en principio, la fusión DT es claramente
297
+ más interesante, ya que la ganancia neta de ligadura por nucleón del combustible es casi 4 veces
298
+ mayor (lo cual se traduce en una energía específica unas 4 veces mayor del combustible DT
299
+ respecto del U235), pero hay que considerar que la mayor parte de esa energía cinética corresponde
300
+ a los neutrones (el ya mencionado 80% típicamente en el caso de la fusión DT, frente al
301
+ aproximadamente 5% en el caso de la fisión del U235), que es muy poco aprovechable para
302
+ producir calor, es decir, en última instancia energía eléctrica. En resumidas cuentas, un reactor de
303
+ fusión es una magnífica fuente de neutrones muy energéticos, otro asunto muy diferente es cómo
304
+ aprovechar la energía producida (de la que esos neutrones se llevan lel 80%), ya que sólo una
305
+ pequeña parte de ella se podrá transformar en calor y, aún menos, en energía eléctrica a partir de él.
306
+
307
+ ¿Por qué es tan difícil conseguir la fusión nuclear automantenida?
308
+
309
+ En el caso de la fisión, en la que se basan las centrales nucleares actuales, la densidad de núcleos
310
+ está fijada por ser el combustible un medio sólido (aunque puede ser líquido, que para el caso es lo
311
+ mismo) y la sección eficaz (es decir, la probabilidad de que se produzca la reacción) se hace
312
+
313
+ 7
314
+ enorme en los núcleos fisionables para una energía adecuada de los neutrones (recordemos que los
315
+ neutrones no tienen carga eléctrica, por lo que se cuelan sin obstáculo en los núcleos blanco, y que
316
+ la sección eficaz varía con su energía – es decir con la temperatura del medio que los termaliza, es
317
+ decir que los frena- debido a los detalles de la estructura nuclear). Por este motivo, para mantener
318
+ bajo control la tasa de reacciones nucleares basta con controlar con precisión la población
319
+ neutrónica. Con ello se consigue una tasa de reacción que libera la cantidad de calor suficiente
320
+ para ser transformado comercialmente en energía eléctrica.
321
+
322
+ Por el contrario, en el caso de la fusión (la que nos anuncian como fuente de energía limpia e
323
+ inagotable del futuro) la sección eficaz es extraordinariamente pequeña comparada con la de fisión.
324
+ Concretamente, en la fusión DT la sección eficaz a la temperatura prevista de unos 150-200
325
+ millones de grados24 es aproximadamente una cienmillonésima de la sección eficaz de fisión de
326
+ un núcleo de U235 bombardeado por neutrones termalizados (es decir con energía óptima para
327
+ fisionar eficazmente este isótopo) en un reactor convencional refrigerado por agua ligera a presión
328
+ (LWR-PWR), que opera a unos 350ºC. Conseguir la temperatura necesaria en el plasma de fusión
329
+ (que es la sopa de núcleos y electrones en que se transforma la materia esas temperaturas), es ya en
330
+ sí misma una empresa formidable, pero a eso hay que añadir la necesidad de alcanzar una densidad
331
+ suficiente de dicho plasma y , además, que ambos parámetros se mantengan durante el tiempo
332
+ suficiente para mantener una tasa de reacción que la haga utilizable para producir energía. En las
333
+ bombas de fusión (empleadas con fines bélicos) se utilizan una o varias bombas de fisión para
334
+ conseguir simultáneamente los objetivos anteriores (compresión y calentamiento), y en ellas,
335
+ obviamente, ni el control ni el mantenimiento temporal son necesarios, sino todo lo contrario,
336
+ desafortunadamente. Pero evidentemente este mecanismo está excluido para aplicaciones pacíficas,
337
+ de forma que el objetivo de mantener el plasma en esas condiciones sólo se plantea de forma
338
+ pulsada, ya sea mediante compresión con láseres o confinamiento magnético (con la que se
339
+ pretende llegar a varios centenares de segundos). Ello explica el ya mencionado hecho de que
340
+ desde Ivy Mike en 1952 hayan transcurrido 70 años sin alcanzar la fusión controlada para la
341
+ producción comercial de energía eléctrica, siendo las predicciones más optimistas de unos 30, 40,
342
+ ¿50? años adicionales para conseguirlo. Porque ITER , cuando funcione, está destinado ser la
343
+ prueba de concepto científica de la fusión controlada y automantenida para producir energía
344
+ eléctrica. Habrá que esperar a DEMO (como su nombre indica) para la prueba de concepto de
345
+ ingeniería, que demuestre que es posible verter energía neta a la red eléctrica. Y mientras tanto
346
+ debe continuarse investigando exhaustivamente en los efectos que el extraordinario bombardeo con
347
+ neutrones de alta energía a semejantes temperaturas induce en las propiedades de los materiales
348
+ estructurales del reactor , en particular la fragilización, aparición de fallas y deformaciones25. Y tras
349
+ todo ello, si se alcanza ese punto (cosa que en el mejor de los casos podrán ver nuestros nietos o
350
+ bisnietos, porque ninguno de nosotros tendrá la oportunidad de sonreir consultando la hemeroteca)
351
+ habrá de demostrarse la viabilidad económica de esta fuente de energía, que dados los enormes
352
+ costes de desarrollo y su descomunal consumo energético previo acumulado en forma de consumo
353
+ de combustibles fósiles y energía eléctrica de origen nuclear de fisión (hay estudios al respecto)
354
+ dista mucho de estar claro.
355
+
356
+ El tamaño importa
357
+
358
+ Considero también pertinente mencionar el previsible tamaño de una central de fusión para
359
+ producción de energía eléctrica, si algún día llega a construirse. Una de las muchas críticas que se
360
+ han realizado en contra de las centrales nucleares de fisión es la gran concentración de
361
+ infraestructuras y capital que implican y su tamaño, que van radicalmente en contra de una
362
+ producción distribuida y cercana a los puntos de consumo. Ello sin olvidar los riesgos inherentes a
363
+ dicha concentración provenientes de posibles ataques terroristas. A estas alturas del texto, creo que
364
+
365
+ 8
366
+ resulta evidente que en una central de fusión estos aspectos criticados en una central de fisión
367
+ aumentan hasta dimensiones desconocidas hasta la fecha. No hay más que comparar el tamaño de
368
+ ITER con su precursor JET y, aún más, con el previsto para DEMO. Los gabinetes de comunicación
369
+ de los proyectos de fusión (NIF, ITER) nos inundan con informaciones grandilocuentes donde
370
+ siempre aparece lo más de lo más: los láseres más potentes del mundo (en el caso del NIF), los
371
+ imanes superconductores mayores del mundo, la vasija de vacío mayor del mundo, la soldadura
372
+ electrónica más sofisticada del mundo, etc .. (en el caso de ITER). Son innegables logros de
373
+ ingeniería a gran escala (y puede que ya eso de por sí justifique el esfuerzo y la energía invertidos),
374
+ pero no deberían hacernos perder la visión de conjunto: de lo que se trata es de producir energía
375
+ aprovechable en un futuro no demasiado lejano. Además, tampoco conviene olvidar que dicho
376
+ desarrollo en busca de cuanto más grande mejor (porque esa es la única manera conocida de
377
+ alcanzar las extremas condiciones descritas anteriormente) va en el sentido opuesto al seguido en
378
+ los modernos prototipos de centrales de fisión modulares, destinados a su instalación a escala local,
379
+ de los cual hay ya uno en fase operacional en Rusia26 y otro en China en fase avanzada de
380
+ construcción27; hay muchos otros diseños avanzados y prometedores en Japón, Europa y EEUU,
381
+ que hasta ahora no se han podido llevar a la práctica. El hecho de que hayan sido precisamente
382
+ Rusia y China los países que primero hayan llevado a la práctica esta idea innovadora, dice mucho
383
+ del panorama geopolítico actual, donde la segunda (a Rusia aún le quedan rescoldos científicos y
384
+ tecnológicos de la época soviética) se ha convertido a pasos agigantados en un referente mundial en
385
+ ciencia y tecnología en todas las áreas estratégicas. Igualmente, se continúa investigando
386
+ exhaustivamente en el ciclo de fisión del torio28,29, desarrollando la tecnología para reactores más
387
+ pequeños (llegando a la escala del MW), más seguros y con menos producción de residuos. No
388
+ olvidemos que ITER , cuando entre en funcionamiento, consumirá del orden de 300 MW sólo para
389
+ mantener la temperatura del plasma.
390
+
391
+ Epílogo
392
+
393
+ El proyecto ITER, al igual que la Estación Espacial Internacional (ISS, de sus siglas en inglés)
394
+ surgieron en las mismas fechas (años 90) y con los mismos loables propósitos (fomentar la
395
+ colaboración científico-técnica internacional), inmediatamente tras el derrumbe del bloque
396
+ soviético y el comienzo de una época de absoluto dominio del bloque llamado occidental (aunque
397
+ incluye también a Japón, Corea del Sur y, por supuesto, Australia y Nueva Zelanda) liderado por los
398
+ EEUU de Norteamérica y la postración absoluta de la otra antigua potencia hegemónica, Rusia;
399
+ China, aunque despegando, aún contaba poco. Era la época del famoso Final de la Historia de
400
+ Francis Fukuyama. No creo necesario resaltar cómo ha cambiado el panorama internacional. La
401
+ ISS, con Rusia retirándose, además de la poca relevancia de los resultados científicos obtenidos,
402
+ está abocada a convertirse pronto en un trozo más de chatarra orbital destinada a desintegrarse en
403
+ unos 10 años (si no antes, el silencio mediático es poco prometedor en ese sentido). Opino que,
404
+ aparte de los innegables avances tecnológicos asociados a su desarrollo, ese es su principal ( y
405
+ probablemente) único éxito.
406
+
407
+ Los plazos han ido alargándose sin cesar: De la fecha inicialmente prevista de las primeras pruebas
408
+ con plasma en ITER, 2016, se pasó a 2025 y hasta 2035 para las pruebas con la mezcla real DT. Los
409
+ rumores sugieren insistentemente un nuevo alargamiento y la situación geopolítica mundial (al
410
+ margen de los enormes problemas científico-técnicos asociados al proyecto) apunta a ello. Para
411
+ DEMO ya ni siquiera se dan fechas concretas, sólo se habla de que será una realidad en la segunda
412
+ mitad de la centuria. Vienen a la mente las palabras del Quijote: “Cuán largo me lo fiais, amigo
413
+ Sancho”.
414
+
415
+
416
+ 9
417
+ 1 Un nanosegundo es una milésima de una millonésima de segundo.
418
+
419
+ 2 El núcleo de hidrógeno, que consiste en un único protón, es el más simple de la Naturaleza y, obviamente es estable, es
420
+ decir, no radiactivo. El de deuterio o deuterón consiste en un protón más un neutrón y es también estable. El de
421
+ tritio consiste en un protón más dos neutrones y es radiactivo, con una semivida de 12.6 años (el tiempo en que
422
+ tardan en desintegrarse la mitad de sus núcleos a partir de una población incial).
423
+
424
+ 3 Inicialmente la idea del tokamak, que es una palabra rusa porque fue un concepto propuesto en la Unión Soviética en
425
+ los años 50, fue descartada por los investigadores norteamericanos, que llevaban desde los primeros años 50
426
+ trabajando en la Universidad de Princeton y el Laboratorio Nacional de Los Alamos tratando de controlar la fusión
427
+ nuclear para usos civiles mediante confinamiento magnético con la configuración llamada stellarator (de aspecto
428
+ exterior muy parecido al tokamak, pero con importantes diferencias conceptuales entre ambos), en paralelo al
429
+ desarrollo del programa militar; de hecho ambos proyectos compartían inicialmente gran parte de su nombre en
430
+ clave: Matterhorn-B para el militar (la B de bomb) y Matterhorn-S para la civil (con la S de stellarator) . A
431
+ comienzos de los años 60 los científicos norteamericanos tuvieron que rendirse a la evidencia de que la idea del
432
+ tokamak funcionaba mejor en muchos aspectos y comenzaron a investigar mayoritariamente basándose en ella,
433
+ aunque varios grupos continuaron la investigación en la línea original (stellarator), que aún se mantiene hoy en
434
+ día. Como puede fácilmente deducirse, la íntima interconexión en el entramado científico-militar norteamericano
435
+ era evidente desde los inicios en estas investigaciones. Abundando en esta idea, cabe resaltar que el Livermore
436
+ National Laboratory tiene una bien conocida vinculación íntima con la industria militar estadounidense en forma de
437
+ contratos de investigación orientada tanto a las armas de fisión nuclear como a las basadas en láseres de alta
438
+ potencia (sobre todo a partir de la llamada Guerra de las Galaxias, que promovió su presidente Ronald Reagan en
439
+ los años 80).
440
+
441
+ 4 La explicación del mecanismo de producción de energía en el Sol fue propuesta por Hans Bethe en su genial y
442
+ clarividente artículo (uno más entre tantos de los suyos) “Energy Production in Stars”, Physical Review 55 (1939)
443
+ p. 434 , considerado uno de los diez mejores de la Historia de la Física moderna en una clasificación del Instituto
444
+ Niels Bohr de Copenhague. Como curiosidad, este artículo fue inicialmente retirado por el autor para poder
445
+ presentarlo a un concurso de ideas científicas inéditas (que obviamente ganó), con cuyo premio costeó la mudanza
446
+ de su madre (judía perseguida en Alemania) a los Estados Unidos de América del Norte. En el mismo, entre otras
447
+ muchas especulaciones basadas en las evidencias entonces disponibles, el autor propone una cadena que se inicia
448
+ con la fusión de dos núcleos de hidrógeno, es decir dos protones, y que globalmente se traduce en que a partir de 4
449
+ protones se forma una partícula alfa con gran liberación de energía.
450
+
451
+ 5 A no ser que se consiga crear algún día en la Tierra algo parecido a una estrella de neutrones (en este caso de
452
+ protones, vamos, un Sol .. pero necesitaríamos su masa para tener la compresión gravitacional suficiente, es decir,
453
+ su tamaño, con lo cual nos quedaríamos sin Tierra ..). Mi imaginación no da para tanto y esto entra dentro del
454
+ campo de la ciencia ficción.
455
+
456
+ 6 Es la combinación que presenta mayor probabilidad de fusión a las temperaturas que, aunque enormes (del orden de
457
+ los cien millones de grados), pueden alcanzarse en una central de fusión.
458
+
459
+ 7 En los experimentos realizados hasta la fecha en JET, la única instalación operativa por confinamiento magnético
460
+ capaz de utilizarlo, se ha evitado en lo possible su utilización por las complicaciones que acarrea; de hecho, según
461
+ la información de que dispongo, no se utiliza desde 1997.
462
+
463
+ 8 Clery, Daniel (10 October 2013). "Fusion "Breakthrough" at NIF? Uh, Not Really …". Science.
464
+
465
+
466
+ 9 Por su ausencia de carga eléctrica, los neutrones son mucho menos eficientes que las partículas cargadas, como las
467
+ alfas, para transformar su energía cinética en calor.
468
+
469
+ 10 1 MW es un millón de vatios. Para hacernos una idea: uno de los últimos reactores nucleares instalados en España
470
+ produce del orden de 1000 MW de potencia eléctrica
471
+
472
+ 11 Steven B. Krivit, “The ITER Power Amplification Myth”. En New Energy Times, 6 Oct. 2017
473
+
474
+ 12 Ya que nos movemos en el ámbito de las estimaciones, no encuentro motivo a priori valorar unas más que otras: sólo
475
+ la experiencia dará su veredicto.
476
+
477
+
478
+ 10
479
+
480
+
481
+ 13 https://www.iter.org/mach/Blanket
482
+
483
+ 14 T. Giegerich et al, Development of a viable route for lithium-6 supply of DEMO and future fusion power plants,
484
+ Fusion Engineering and Design, Volume 149, December 2019, 111339
485
+
486
+ 15 Los primeros reactores nucleares de fisión estuvieron vinculados al programa militar norteamericano (proyecto
487
+ Manhattan) . En concreto, la primera reacción en cadena controlada fue en el Pile-1 (“CP-1”, acónimo de Chicago
488
+ Pile 1) situado bajo el graderío oeste del campo de fútbol americano de la Universidad de Chicago, bajo la
489
+ dirección científica de Enrico Fermi, el 2 de diciembre de 1942. Por ello se puede afirmar que la fisión nuclear
490
+ controlada y la explosiva se desarrollaron en paralelo.
491
+
492
+ 16 El nombre que inicalmente se le dio fue el de bomba de hidrógeno, o simplemente bomba H porque utilizaba isótopos
493
+ de hidrógeno para producir la fusión, aunque el detonante fuera una bomba atómica (varias en los diseños
494
+ modernos). Como dato se aporta el hecho de que aproximadamente las tres cuartas partes de la energía liberada en
495
+ una explosiión termonulear proviene de la fisión, mientras que sólo la cuarta parte restante proviene de la fusión.
496
+ Ello es debido a que un detonante central (sparkplug, o bujía, en su denominación inicial) de fisión convencional
497
+ (Pu239 en el caso de Ivy Mike), que fisiona bajo el efecto de bombardeo con neutrones lentos, comprime y calienta
498
+ la mezcla de isótopos de hidrógeno deuterio y tritio, que fusionan. En cada una de dichas fusiones se produce una
499
+ partícula alfa (núcleo de helio) y un neutrón de alta energía que se utiliza para fisionar otro isótopo (U238 en Ivy
500
+ Mike, dispuesto en la parte exterior del dispositivo), que precisamente fisiona muy eficientemente bajo el
501
+ bombardeo con neutrones muy energéticos (no lo hace con neutrones lentos, por lo cual no es útil en las bombas
502
+ atómicas convencionales) . Por lo tanto puede afirmarse que una bomba termonuclear,de hidrógeno o de fusión es
503
+ en realidad un amplificador de la fisión mediante la fusión. De hecho, a pesar de su nombre, aproximadamente el
504
+ 75% de su energía liberada proviene de la fisión.
505
+
506
+ 17 La energía transportada por la radiación a temperaturas ordinarias es despreciable frente a la asociada a la agitación
507
+ cinética a nivel microscópico, pero la primera aumenta con la cuarta ptencia de la temperatura, mientras que la
508
+ segunada lo hace linealmente. A las enormes temperaturas alcanzadas en una reacción en una bomba de fisión la
509
+ presión de la radiación se comporta como un gigantesco mazo que se utiliza para comprimir y calentar el plasma de
510
+ fusión. Ello está descartado, obviamente, para aplicaciones pacíficas.
511
+
512
+ 18 Un microsegundo es una millonésima de segundo.
513
+
514
+ 19 La temperatura es una medida de la agitación a nivel microscópico, es decir de la energía cinética (aproximadamente
515
+ proporcional a la velodidad al cuadrado en este contexto) de los constituyentes de la materia.
516
+
517
+
518
+ 20 Número de partículas blanco por unidad de volumen. Obviamente en el caso de la fusión, proyectil y blanco son
519
+ intercambiables, ya que ambos están en movimiento en el sistema del laboratorio, a diferencia de la fisión donde los
520
+ blancos (usualmente núcleos de U235) están en reposo y son bombardeados por los neutrones.
521
+
522
+ 21 El cálculo teórico y medida experimental de las secciones eficaces de las diferentes reacciones es, en última
523
+ instancia, a lo que nos dedicamos los físicos nucleares.
524
+
525
+ 22 El MeV es la unidad de energía típica de Física nuclear, siendo la energíacinética que adquiere un electrón acelerado
526
+ por una diferencia de potencial de un millón de voltios.
527
+
528
+ 23 Las particulas cargadas (en este caso las partículas alfa) son las responsables de la generación de la mayor parte del
529
+ calor. El proceso es como sigue: al estar cargadas, interaccionan eléctricamente con los átomos del medio,
530
+ arrancándoles electroles, es decir produciendo parejas iones positivos y electrones. Estos posteriormente se
531
+ recombinan para formar nuevamente átomos neutros, liberándose la energía de ligadura correspondiente en forma
532
+ de energías de vibración y rotación de dichos átomos, lo cual macroscópicamente se traduce en el aumento de
533
+ temperatura. Los neutrones, por el contrario, son muy poco eficientes para producir calor a partir de su energía
534
+ cinética (es decir aumento de temperatura del medio) debido a su carencia de carga eléctrica, que obliga a producir
535
+ la ionización sólo indirectamente, a través de partículas cargadas secundarias.
536
+
537
+ 24 El máximo se alcanza a unos 600 milllones de grados y aumenta unos dos órdenes de magnitud, pero esa temperatura
538
+ excede con mucho lo previsiblemente alcanzable.
539
+
540
+
541
+ 11
542
+
543
+ 25 La instalación IFMIF, asociada a la futura instalación DEMO, para la cual la ciudad de Granada es una firme
544
+ candidata, estará destinada a investigar los efectos de un bombardeo masivo de neutrones (producidos mediante un
545
+ intenso haz de deuterio sobre un blanco de litio) en diferentes materiales que se pretende utilizar en el reactor.
546
+
547
+ 26 http://fnpp.info/
548
+
549
+ 27 https://www.world-nuclear-news.org/Articles/Linglong-One-reactor-pit-installed-at-Changjiang
550
+
551
+ 28 http://ithec.org
552
+
553
+ 29 https://www.thmsr.com/en/
554
+
-dAzT4oBgHgl3EQfSvvG/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,270 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf,len=269
2
+ page_content='1 EL ELIXIR DE LA ENERGÍA ETERNA Abstract The recent announcement of a purported breakthrough result in inertial nuclear fusion at NIF (Lawrence Livermore Laboratory, USA) has aroused a tide of media and public interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
3
+ page_content=' The excitement has been generalized to the whole field of research in fusion energy with, in its wake, announcements of an imminent advent of the cure for the energetic crisis and the aggravating influence in the climate change associated to the fossil fuels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
4
+ page_content=' This opinion article is intended to show that such expectations are not founded on sound scientific bases and that there is a long way until the practical production of electricity from nuclear fusion is achieved, if ever.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
5
+ page_content=' Resumen El reciente anuncio de un supuestamente trascendental resultado en fusión nuclear inercial en NIF (Lawrence Livermore Laboratory, EEUU de Norteamérica) ha desatado un enorme interés en el público y los medios de comunicación.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
6
+ page_content=' El entusiasmo se ha trasladado a todo el campo de la investigación en fusión para la producción de energía con, a su estela, anuncios de la llegada inminente de la solución a la crisis energética y al efecto agravante del cambio climático asociado a los combustibles fósiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
7
+ page_content=' Este artículo de opinión pretende poner de manifiesto que tales expectativas no están fundadas en bases científicas sólidas y que hay un largo camino por recorrer hasta que se logre, a niveles prácticos, la producción de electricidad a partir de la fusión nuclear, si se consigue alguna vez.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
8
+ page_content=' Introducción Recientemente se anunció con extraordinario aparato mediático un nuevo hito alcanzado en la fusión nuclear, muy oportunamente publicitado en el contexto actual de crisis energética.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
9
+ page_content=' En principio no hay nada que objetar a ello: en la comunidad científica es bien conocida la necesidad de financiación que tienen los grupos de investigación, y no digamos los grandes laboratorios como el Lawrence Livermore Laboratory, que deben anunciar sus logros científicos a fin de despertar el interés de la opinión pública, que busca soluciones tangibles a sus problemas inmediatos, y, con ello, captar la atención de las instancias políticas, siempre ávidas de réditos demoscópicos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
10
+ page_content=' No obstante, opino que se está vertiendo con demasiada frecuencia información sesgada que induce a confusión.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
11
+ page_content=' Comencemos con el detonante del presente texto, la noticia que ha desencadenado el frenesí mediático: el DOE (Department of Energy) norteamericano anunció a bombo y platillo el pasado 13 de diciembre que en la instalación NIF (National Ignition Facility) del Lawrence Livermore Laboratory se acababa de conseguir superar el breakeven en un experimento de fusión, lo cual simplemente consiste en conseguir más energía que la suministrada.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
12
+ page_content=' Suena muy bien y prometedor, pero conviene puntualizar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
13
+ page_content=' En primer lugar, esto se ha conseguido mediante la compresión con 192 láseres de altísima potencia sincronizados en un brevísimo pulso del orden de varios nanosegundos1 (la mayor concentración energética mediante láser jamás José Manuel Quesada Molina Departamento de Física Atómica, Molecular y Nuclear Universidad de Sevilla 2 conseguida) de una diminuta cápsula de diamante conteniendo un pellet ultracongelado con dos isótopos del hidrógeno, deuterio y tritio (DT)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
14
+ page_content=' Ello es un mecanismo completamente diferente al confinamiento magnético que se utiliza en los llamados tokamaks3, donde el confinamiento se consigue mediante campos magnéticos con geometría toroidal (donut).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
15
+ page_content=' En la actualidad el diseño tipo tokamak es el más ampliamente utilizado, particularmente en Europa, donde bajo estas premisas desde comienzos de los años 90 se realizan experimentos en el JET (Joint European Torus) en Gran Bretaña, con financiación de la Unión Europea (al menos era sí hasta el Brexit, ya que actualmente está en fase terminal), y actualmente está en construcción el ITER (acrónimo de International Thermonuclear Experimental Reactor) en Cadarache, Francia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
16
+ page_content=' Por lo tanto, el logro alcanzado en el NIF es muy difícilmente extrapolable a la apuesta científico-técnica mayoritaria en curso, que es el confinamiento magnético;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
17
+ page_content=' es más, dicha vinculación se me escapa por completo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
18
+ page_content=' Por lo tanto, considero que ésta es una matización clave, que se debe realizar claramente desde el principio: ambos mecanismos (compresión inercial – mediante láser u otro tipo de haces de partículas - y confinamiento magnético), aunque comparten finalidad, difieren esencialmente y los pretendidos logros en uno no son trasladables al otro.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
19
+ page_content=' ¿Es todo esto como se anuncia y promete?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
20
+ page_content=' A raíz de la noticia, y aprovechando su tirón mediático, he podido leer nuevamente (para mi gran sorpresa) algo que lleva repitiéndose desde los orígenes del desarrollo de la fusión nuclear: se trataría de reproducir en la Tierra el proceso que tiene lugar en el Sol y permite la vida;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
21
+ page_content=' es más, se le llega a poner fecha: un reactor de fusión conectado a la red eléctrica en 10 años.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
22
+ page_content=' Lo primero no es cierto en sentido estricto y lo segundo es, simplemente, un despropósito que prefiero atribuir a una mala interpretación periodística (que, lamentablemente, cala en el imaginario del público no avisado).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
23
+ page_content=' El tiempo dirá y la hemeroteca lo reflejará.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
24
+ page_content=' En el Sol se quema hidrógeno, un recurso inagotable a nuestra escala, para producir partículas alfa, que son estables, es decir sin producir residuos radiactivos4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
25
+ page_content=' Todo extraordinariamente prometedor, salvo por un detalle: no es posible realizarlo en la Tierra, ya que entra dentro del dominio de la ciencia ficción.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
26
+ page_content=' El motivo: la probabilidad de que dos núcleos de hidrógeno (es decir, dos protones) superen su repulsión eléctrica mutua y se fundan es tan pequeña que ni siquiera ha podido medirse experimentalmente en un laboratorio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
27
+ page_content=' En el Sol ello se produce debido a las monstruosas (a escala terrestre) densidades de masa que se alcanzan en su interior por la atracción gravitatoria de su enorme masa (también comparada con la de la Tierra);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
28
+ page_content=' pero en la Tierra no son alcanzables tales densidades5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
29
+ page_content=' Este es el motivo de que haya que recurrir a otras mezclas de fusionantes : deuterio-deuterio (DD), la ya mencionada deuterio-tritio (DT), etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
30
+ page_content='. Es decir, lo que se pretende realizar en la Tierra es parecido a lo que ocurre en el Sol, pero no es lo mismo;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
31
+ page_content=' en ambos casos hay un mecanismo común, pero el combustible es diferente.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
32
+ page_content=' En particular, la única que se vislumbra con posibilidades de permitir la fusión para producir energía eléctrica es la combinación DT6, que es la adoptada en todos los proyectos vigentes que pretenden conducir a ese objetivo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
33
+ page_content=' El deuterio es abundante (constituye una pequeña fracción del hidrógeno natural) y estable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
34
+ page_content=' Pero el tritio no es ninguna de las dos cosas: es radiactivo y, por lo tanto, no existe naturalmente;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
35
+ page_content=' es decir, hay que producirlo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
36
+ page_content=' Esto cambia bastante el panorama de supuestas bondades del combustible (casi infinito, según se anuncia): el tritio, como isótopo del hidrógeno, se comporta químicamente (y, por lo tanto, biológicamente) exactamente igual que el hidrógeno normal ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
37
+ page_content=' es decir, dado el papel central del hidrógeno en el ciclo de la vida, el tritio se incorpora al mismo sin que haya forma de separarlo químicamente, porque es hidrógeno (aunque radiactivo).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
38
+ page_content=' Su vida media de 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
39
+ page_content='6 años hace que en ese tiempo su cantidad se reduzca a la mitad, pero en un reactor de fusión ha de producirse continuamente, para lo cual se coloca en su borde exterior una manta de litio (que debe 3 enriquecerse en su minoritario isótopo adecuado), que al ser bombardeada con neutrones procedentes de las fusiones DT produce el tritio que regenera el consumido.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
40
+ page_content=' Al menos ese es el objetivo que se pretende alcanzar (sobre todo, en la tasa suficiente).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
41
+ page_content=' Las consecuencias de la infiltración y fuga del tritio a través de las paredes del reactor a las enormes temperaturas a las que se pretende que funcione se conocen sólo parcialmente, ya que los valores que se manejan se basan en extrapolaciones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
42
+ page_content=' Por lo tanto el combustible previsto no es casi infinito, ni es limpio ni seguro ni barato.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
43
+ page_content=' El tritio es tan problemático7 que en JET se ha trabaja en la medida de lo posible sólo con hidrógeno o sólo con deuterio, extrapolándose las tasas de reacción a la mezcla DT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
44
+ page_content=' De este modo se obtiene el factor Q (o eficiencia energética, que es el cociente entre la potencia conseguida y la consumida) extrapolado, con el llamativo resultado de que cuando se realizó el experimento con la mezcla DT el valor de Q obtenido fue aproximadamente la mitad;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
45
+ page_content=' lo cual muestra algo bien conocido en física e ingeniería, que es el riesgo de las extrapolaciones, a la vez que pone en evidencia la problemática asociada al uso del tritio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
46
+ page_content=' Lo anterior añade otra incógnita más a la pretendida limpieza radiológica de la fusión para producir energía eléctrica a partir de combustible limpio, accesible e inagotable, según otro lugar común en muchas declaraciones leídas en la prensa: “porque se extrae del agua del mar”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
47
+ page_content=' Jugando con las definiciones Otro aspecto a destacar de la citada noticia tiene que ver con el ya mencionado logro del breakeven en el NIF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
48
+ page_content=' Este consistió en alcanzar un factor Q de ganancia energética de fusión de 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
49
+ page_content='54, es decir que se obtuvo 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
50
+ page_content='54 veces más energía que la se invirtió .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
51
+ page_content=' Al margen de otras consideraciones en las que entraré más adelante, resulta llamativo (por expresarlo suavemente) el cambio de definición que ha conducido a este anunciado éxito.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
52
+ page_content=' El NIF cambió hace algunos años la definición del Q para colocar en el denominador (potencia que hay que suministrar a los láseres para comprimir y calentar el plasma) sólo la fracción que éstos devuelven en forma de radiación ultravioleta para comprimir y calentar, es decir sólo la fracción aprovechable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
53
+ page_content=' Teniendo en cuenta que la eficiencia de los láseres es muy baja (en torno al 1%), en rigor hay que dividir por toda la energía invertida, es decir dividir el aunciado factor de ganancia Q = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
54
+ page_content='54 por 100, con lo cual se está aún muy lejos de recuperar lo invertido.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
55
+ page_content=' Muy lejos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
56
+ page_content=' Obviamente, esta redefinición unilateral del factor Q por parte del NIF recibió severas críticas8, pero el hecho de que no se haya reflejado en las noticias esta matización (¡de un factor 100!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
57
+ page_content=') por parte de sus voceros (o al menos yo no la he encontrado) permite hacerse una idea del poder del lobby que hay detrás.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
58
+ page_content=' Toda la discusión anterior se ha realizado omitiendo un detalle adicional que considero fundamental para tener una visión clara de la situación real: no toda la energía liberada en la fusión (el numerador del factor Q) es aprovechable para producir calor y, con ello, la energía eléctrica que se pretende obtener.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
59
+ page_content=' En la fusión DT el 80% de la energía producida se la llevan los neutrones en forma de energía cinética, siendo las partículas alfa (que se llevan el 20% restante) las responsables de la mayor parte del calentamiento9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
60
+ page_content=' Por el contrario, en una fisión del combustible típico de las centrales nucleares de fisión (U235), sólo en torno al 5% de la energía se la llevan los neutrones, mientras que el resto corresponde a los fragmentos de fisión, núcleos de tamaño medio muy cargados eléctricamente, que son los responsables del calentamiento de las barras de combustible, que a su vez calientan el refrigerante (normalmente agua) encargado de transportarlo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
61
+ page_content=' Por lo tanto, incluso sin la redefinición del NIF, el factor Q dista de ser una medida realista de la rentabilidad energética del proceso de fusión, ya que no sólo una fracción minoritaria de la energía liberada en la fusión es aprovechable para producir calor, que es lo que interesa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
62
+ page_content=' 4 En la misma línea de información sesgada por parte de los gabinetes de comunicación, ITER hizo oficialmente pública una información que claramente conducía a error de interpretación.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
63
+ page_content=' Concretamente, se afirmaba que ITER sería capaz de producir 500 MW10 de potencia a partir de 50 MW de potencia suministrada.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
64
+ page_content=' De ahí se infería lógicamente que esos 50 MW suministrados se referían a la potencia total eléctrica invertida, no a la calorífica finalmente suministrada al plasma (es decir, igual que en el caso de NIF con los láseres).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
65
+ page_content=' Ante las críticas recibidas11, tuvieron que rectificar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
66
+ page_content=' Debido a la la eficiencia del proceso de conversión (siempre menor que la unidad, usualmente mucho menor, al igual que en el caso del NIF), la primera es muy superior, estimándose en más de 300 MW necesarios para mantener la fusión12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
67
+ page_content=' Además, los 500 MW producidos son totales, de los cuales, como ya se ha indicado, aproximadamente el 80% corresponde a los neutrones rápidos, que son mucho menos eficientes produciendo calor (sólo son capaces de transferir una parte del mismo al medio antes de escapar), que, al no ser utilizable para mantener la temperatura del plasma, ITER propone13 aprovechar calentando el agua del circuito refrigerante de la manta que envolverá la cámara de vacío para producir electricidad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
68
+ page_content=' Toda la responsabilidad del mantenimiento de la temperatura del plasma recaerá sobre las partículas alfa, que depositarán directamente en el mismo toda su energía (que, recordemos, es sólo el 20 % de la energía en cada fusión).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
69
+ page_content=' La regeneración del tritio (caro, escaso y que debe producirse en reactores nucleares de fisión, principalmente) necesario para mantener la fusión se pospone para para una fase posterior de ITER, donde se experimentará con la capacidad del isótopo minoritario Li6 del litio natural (que debe ser enriquecido para ello) para producirlo en la suficiente cantidad para mantener la reacción14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
70
+ page_content=' Nuevamente nos movemos en el campo de las expectativas, sólo la experimentación demostrará la viabilidad de la propuesta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
71
+ page_content=' Un poco de historia Las radicales diferencias entre los procesos de fusión y fisión nuclear son la causa de que entre la primera reacción nuclear explosiva en cadena (Trinity ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
72
+ page_content=' 16 de julio de 1945 en Alamogordo,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
73
+ page_content=' Nuevo México,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
74
+ page_content=' EEUU) y la primera producción comercial de energía eléctrica mediante la fisión controlada15 (18 de diciembre 1957,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
75
+ page_content=' en Shippingport,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
76
+ page_content=' Pennsylvania,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
77
+ page_content=' EEUU) transcurriesen solamente 12 años,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
78
+ page_content=' mientras que tras la primera explosión termonuclear16 (Ivy Mike,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
79
+ page_content=' 1 de noviembre de 1952 en el atolón Enewetak,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
80
+ page_content=' en las Islas Marshall) aún no se ha conseguido domesticar la fusión para mantenerla bajo control y producir energía aprovechable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
81
+ page_content=' En el caso de la fisión se pretende (y consigue desde el año 1942) mantener controlada una reacción en cadena, donde los garantes de esa continuidad son los neutrones producidos en cada reacción.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
82
+ page_content=' En el caso de la fusión los neutrones no juegan ningún papel en mantenimiento de la misma, sino que el agente garante de la reacción en cadena es el calor producido, que se debe traducir en temperatura (manteniendo la densidad).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
83
+ page_content=' Cuando no se pretende el control de la misma sino todo lo contrario (bombas), ello se hace por fuerza bruta (nunca mejor dicho) recurriendo a la extraordinaria presión de radiación originada por el fulminante de fisión17, sin que ésta escape antes de conseguir instantáneamente su objetivo (todo ocurre en unos pocos microsegundos18).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
84
+ page_content=' En cambio, para mantener la reacción de fusión en un reactor no se puede, obviamente, recurrir a ese mecanismo explosivo y se debe conseguir que el calor generado por las reacciones de fusión se recicle sin escapar para mantener la temperatura, al tiempo que la densidad se mantenga temporalmente.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
85
+ page_content=' Una empresa formidable, que aún está por conseguirse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
86
+ page_content=' paral 5 ¿Por qué se persigue conseguir tan elevadas densidades y temperaturas en un futuro reactor nuclear de fusión?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
87
+ page_content=' Porque es preciso conseguir que núcleos atómicos ligeros superen la repulsión debida a su carga eléctrica y se fundan en un núcleo mayor y alguna otra partícula emergente;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
88
+ page_content=' y además que lo hagan en la tasa (velocidad a la que se producen las reaccciones) suficiente.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
89
+ page_content=' La clave radica en que la suma de las masas de los productos de la reacción es ligeramente inferior a la masa de los reaccionantes, convirtiéndose esa diferencia de masa m en energía E, según la archiconocida fórmula de Einstein E=m c2, donde c es la velocidad de la luz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
90
+ page_content=' Este mecanismo es el opuesto al de la fisión nuclear, aunque la consecuencia es la misma: conversión de masa en energía.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
91
+ page_content=' En la fisión un núcleo pesado captura un neutrón y se rompe en dos fragmentos de aproximadamente la mitad de su masa y varios neutrones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
92
+ page_content=' Aquí tenemos por tanto una gran diferencia cualitativa: a diferencia de la fusión, en la fisión el agente desencadenante (el neutrón, que como su nombre indica, carece de carga eléctrica) no tiene que superar en primer lugar la repulsión eléctrica por parte del núcleo (donde hay protones y neutrones que, en todo caso, lo atraen por la llamada interacción nuclear o fuerte, que es de corto alcance).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
93
+ page_content=' Por ello en la fisión, si se dan las circunstancias adecuadas (características del núcleo progenitor y energía del neutrón incidente) el núcleo compuesto resultante, que se forma en un estado excitado, se rompe espontáneamente en busca de una mayor estabilidad del sistema, es decir fisiona.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
94
+ page_content=' Nos encontramos ante una situación radicalmente diferente a la de la fusión, donde los dos intervinientes han de superar su repulsión mutua (ambos están cargados positivamente), lo cual implica enormes temperaturas para conseguirlo19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
95
+ page_content=' Además la densidad ha de ser altísima para que la tasa de reacción sea la suficiente, como comentaré a continuación.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
96
+ page_content=' La tasa de reacción es la clave La tasa de una reacción nuclear (es decir, el número de reacciones por unidad de tiempo) es proporcional a la densidad de blancos20, al flujo de proyectiles que los bombardean y a la probabilidad de que la reacción se produzca una vez que proyectil y blanco colisionan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
97
+ page_content=' Esta última cantidad es a su vez proporcional a una magnitud llamada sección eficaz21, que viene determinada por la estructura nuclear intrínseca de cada pareja proyectil-blanco y en la cual nuestro margen de maniobra está limitado a la velocidad relativa, es decir, a la temperatura.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
98
+ page_content=' Por lo tanto, para cada pareja de proyectil y blanco reaccionantes (fusionantes o fisionantes), conseguir una tasa de reacción suficiente exige unos valores adecuados de densidad y temperatura.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
99
+ page_content=' La tasa de reacción es la clave para producir energía aprovechable, porque las reacciones de fusión se producen rutinariamente en laboratorio mediante el uso de aceleradores (controladas, pero no automantenidas ya que exigen aporte continuo de energía).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
100
+ page_content=' Una de las fuentes habituales de neutrones es la llamada DT (deuterio-tritio), la misma mezcla prevista en ITER, en la cual mediante un acelerador se bombardea con deuterones un blanco de tritio gaseoso, en cada una de cuyas reacciones de fusión se liberan unos 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
101
+ page_content='6 MeV22 de energía, que se reparten entre una partícula alfa (núcleo de helio, que se lleva aproximadamente el 80% de diche energía) y un neutrón (de alta energía en la jerga especializada, que se lleva el 20% restante).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
102
+ page_content=' Pero la producción energética en forma de calor (debido mayoritariamente a la energía que transportan las partículas alfa23) es ínfima debido a los valores de las tasas de reacción implicadas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
103
+ page_content=' Es decir, esta fusión DT ( y lo mismo se puede decir de las fuentes de neutrones DD) no sirve para producir energía eléctrica aprovechable, su finalidad es producir neutrones rápidos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
104
+ page_content=' 6 El balance energético En principio, un argumento en favor de la fusión nuclear frente a la fisión es la energía específica (o energía por unidad de masa).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
105
+ page_content=' Vamos a explicarlo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
106
+ page_content=' Una característica de los núcleos atómicos, aunque no exclusiva, ya que lo siguiente es aplicable a cualquier sistema regido por las leyes de la Física Cuántica (es decir a todos), es que su masa es menor que la suma de las masas de sus constituyentes por separado.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
107
+ page_content=' Esa diferencia, traducida en energía por la fórmula de Einstein, es lo que se conoce como energía de ligadura.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
108
+ page_content=' Por lo tanto si en una reacción nuclear pasamos de una situación con menos ligadura (más masa) a otra de más ligadura (menor masa), la diferencia se transforma en energía cinética de los productos y radiación.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
109
+ page_content=' Y esa es la energía que, en forma de calor, se utiliza (en un reactor nuclear de fisión) o debería algún día poder utilizarse (en un reactor nuclear de fusión) para producir energía eléctrica.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
110
+ page_content=' Si colocamos los isótopos conocidos (es decir tipos de núcleos atómicos) en orden creciente con sus masas, comenzando en el hidrógeno, encontramos que la ligadura por nucleón va aumentando en promedio hasta el Fe56 (núcleo de hierro con 26 protones y 30 neutrones, donde alcanza casi 9 MeV por nucleón);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
111
+ page_content=' a partir de ese punto comienza a disminuir suavemente hasta el final de la tabla , donde llega a unos 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
112
+ page_content='5 MeV por nucleón en la región de isótopos que nos interesa (la llamada zona de los actínidos).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
113
+ page_content=' Ello quiere decir que, cuando dos isótopos ligeros (por debajo de la masa del Fe56) se fusionan, el resultado está más ligado en general, es decir tiene menos masa, y esa pérdida de masa se transforma en energía.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
114
+ page_content=' Por ejemplo en la típica reaccción DT la ligadura del deuterón son unos 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
115
+ page_content='2 MeV, es decir aproximadamente 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
116
+ page_content='1 MeV por nucleón ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
117
+ page_content=' la ligadura del tritio son unos 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
118
+ page_content='5 MeV, es decir unos 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
119
+ page_content='8 MeV por nucleón;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
120
+ page_content=' la ligadura de la partícula alfa son unos 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
121
+ page_content='3 MeV, es decir aproximadamente 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
122
+ page_content='1 MeV por nucleón.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
123
+ page_content=' Por lo tanto, se pasa de una ligadura incial en el sistema DT de aproximadamente 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
124
+ page_content='7 MeV a los 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
125
+ page_content='3 MeV de la partícula alfa, es decir hay una ganancia de energía ligadura de unos 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
126
+ page_content='5 MeV por nucleón inicial (~17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
127
+ page_content='6/5) eV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
128
+ page_content=' La situación opuesta se presenta en el otro extremo de la tabla de isótopos cuando un núcleo pesado, por ejemplo el U235, captura un neutrón y fisiona.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
129
+ page_content=' La energía de ligadura del U235 son unos 1786.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
130
+ page_content='7 MeV, es decir aproximadamente unos 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
131
+ page_content='6 MeV por nucleón, y la de dos típicos productos de fisión (recordemos que es un proceso probabilístico) está próxima a la máxima del Fe56, digamos que en torno a los 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
132
+ page_content='5 MeV por nucleón;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
133
+ page_content=' por lo tanto se ha ganado aproximadamente 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
134
+ page_content='9 MeV por nucleón en energía de ligadura.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
135
+ page_content=' Multiplicando esta cantidad por los 236 nucleones del núcleo compuesto inicial (el de U235 más el neutrón absorbido) resultan unos 212 MeV de energía liberada en una fisión típica, cantidad bastante próxima a los valores medidos experimentalmente.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
136
+ page_content=' Desde este punto de vista,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
137
+ page_content=' en principio,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
138
+ page_content=' la fusión DT es claramente más interesante,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
139
+ page_content=' ya que la ganancia neta de ligadura por nucleón del combustible es casi 4 veces mayor (lo cual se traduce en una energía específica unas 4 veces mayor del combustible DT respecto del U235),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
140
+ page_content=' pero hay que considerar que la mayor parte de esa energía cinética corresponde a los neutrones (el ya mencionado 80% típicamente en el caso de la fusión DT,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
141
+ page_content=' frente al aproximadamente 5% en el caso de la fisión del U235),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
142
+ page_content=' que es muy poco aprovechable para producir calor,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
143
+ page_content=' es decir,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
144
+ page_content=' en última instancia energía eléctrica.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
145
+ page_content=' En resumidas cuentas, un reactor de fusión es una magnífica fuente de neutrones muy energéticos, otro asunto muy diferente es cómo aprovechar la energía producida (de la que esos neutrones se llevan lel 80%), ya que sólo una pequeña parte de ella se podrá transformar en calor y, aún menos, en energía eléctrica a partir de él.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
146
+ page_content=' ¿Por qué es tan difícil conseguir la fusión nuclear automantenida?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
147
+ page_content=' En el caso de la fisión,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
148
+ page_content=' en la que se basan las centrales nucleares actuales,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
149
+ page_content=' la densidad de núcleos está fijada por ser el combustible un medio sólido (aunque puede ser líquido,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
150
+ page_content=' que para el caso es lo mismo) y la sección eficaz (es decir,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
151
+ page_content=' la probabilidad de que se produzca la reacción) se hace 7 enorme en los núcleos fisionables para una energía adecuada de los neutrones (recordemos que los neutrones no tienen carga eléctrica,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
152
+ page_content=' por lo que se cuelan sin obstáculo en los núcleos blanco,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
153
+ page_content=' y que la sección eficaz varía con su energía – es decir con la temperatura del medio que los termaliza,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
154
+ page_content=' es decir que los frena- debido a los detalles de la estructura nuclear).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
155
+ page_content=' Por este motivo, para mantener bajo control la tasa de reacciones nucleares basta con controlar con precisión la población neutrónica.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
156
+ page_content=' Con ello se consigue una tasa de reacción que libera la cantidad de calor suficiente para ser transformado comercialmente en energía eléctrica.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
157
+ page_content=' Por el contrario, en el caso de la fusión (la que nos anuncian como fuente de energía limpia e inagotable del futuro) la sección eficaz es extraordinariamente pequeña comparada con la de fisión.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
158
+ page_content=' Concretamente, en la fusión DT la sección eficaz a la temperatura prevista de unos 150-200 millones de grados24 es aproximadamente una cienmillonésima de la sección eficaz de fisión de un núcleo de U235 bombardeado por neutrones termalizados (es decir con energía óptima para fisionar eficazmente este isótopo) en un reactor convencional refrigerado por agua ligera a presión (LWR-PWR), que opera a unos 350ºC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
159
+ page_content=' Conseguir la temperatura necesaria en el plasma de fusión (que es la sopa de núcleos y electrones en que se transforma la materia esas temperaturas), es ya en sí misma una empresa formidable, pero a eso hay que añadir la necesidad de alcanzar una densidad suficiente de dicho plasma y , además, que ambos parámetros se mantengan durante el tiempo suficiente para mantener una tasa de reacción que la haga utilizable para producir energía.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
160
+ page_content=' En las bombas de fusión (empleadas con fines bélicos) se utilizan una o varias bombas de fisión para conseguir simultáneamente los objetivos anteriores (compresión y calentamiento), y en ellas, obviamente, ni el control ni el mantenimiento temporal son necesarios, sino todo lo contrario, desafortunadamente.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
161
+ page_content=' Pero evidentemente este mecanismo está excluido para aplicaciones pacíficas, de forma que el objetivo de mantener el plasma en esas condiciones sólo se plantea de forma pulsada, ya sea mediante compresión con láseres o confinamiento magnético (con la que se pretende llegar a varios centenares de segundos).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
162
+ page_content=' Ello explica el ya mencionado hecho de que desde Ivy Mike en 1952 hayan transcurrido 70 años sin alcanzar la fusión controlada para la producción comercial de energía eléctrica, siendo las predicciones más optimistas de unos 30, 40, ¿50?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
163
+ page_content=' años adicionales para conseguirlo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
164
+ page_content=' Porque ITER , cuando funcione, está destinado ser la prueba de concepto científica de la fusión controlada y automantenida para producir energía eléctrica.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
165
+ page_content=' Habrá que esperar a DEMO (como su nombre indica) para la prueba de concepto de ingeniería, que demuestre que es posible verter energía neta a la red eléctrica.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
166
+ page_content=' Y mientras tanto debe continuarse investigando exhaustivamente en los efectos que el extraordinario bombardeo con neutrones de alta energía a semejantes temperaturas induce en las propiedades de los materiales estructurales del reactor , en particular la fragilización, aparición de fallas y deformaciones25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
167
+ page_content=' Y tras todo ello,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
168
+ page_content=' si se alcanza ese punto (cosa que en el mejor de los casos podrán ver nuestros nietos o bisnietos,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
169
+ page_content=' porque ninguno de nosotros tendrá la oportunidad de sonreir consultando la hemeroteca) habrá de demostrarse la viabilidad económica de esta fuente de energía,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
170
+ page_content=' que dados los enormes costes de desarrollo y su descomunal consumo energético previo acumulado en forma de consumo de combustibles fósiles y energía eléctrica de origen nuclear de fisión (hay estudios al respecto) dista mucho de estar claro.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
171
+ page_content=' El tamaño importa Considero también pertinente mencionar el previsible tamaño de una central de fusión para producción de energía eléctrica, si algún día llega a construirse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
172
+ page_content=' Una de las muchas críticas que se han realizado en contra de las centrales nucleares de fisión es la gran concentración de infraestructuras y capital que implican y su tamaño, que van radicalmente en contra de una producción distribuida y cercana a los puntos de consumo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
173
+ page_content=' Ello sin olvidar los riesgos inherentes a dicha concentración provenientes de posibles ataques terroristas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
174
+ page_content=' A estas alturas del texto, creo que 8 resulta evidente que en una central de fusión estos aspectos criticados en una central de fisión aumentan hasta dimensiones desconocidas hasta la fecha.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
175
+ page_content=' No hay más que comparar el tamaño de ITER con su precursor JET y, aún más, con el previsto para DEMO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
176
+ page_content=' Los gabinetes de comunicación de los proyectos de fusión (NIF, ITER) nos inundan con informaciones grandilocuentes donde siempre aparece lo más de lo más: los láseres más potentes del mundo (en el caso del NIF), los imanes superconductores mayores del mundo, la vasija de vacío mayor del mundo, la soldadura electrónica más sofisticada del mundo, etc .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
177
+ page_content='. (en el caso de ITER).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
178
+ page_content=' Son innegables logros de ingeniería a gran escala (y puede que ya eso de por sí justifique el esfuerzo y la energía invertidos), pero no deberían hacernos perder la visión de conjunto: de lo que se trata es de producir energía aprovechable en un futuro no demasiado lejano.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
179
+ page_content=' Además, tampoco conviene olvidar que dicho desarrollo en busca de cuanto más grande mejor (porque esa es la única manera conocida de alcanzar las extremas condiciones descritas anteriormente) va en el sentido opuesto al seguido en los modernos prototipos de centrales de fisión modulares, destinados a su instalación a escala local, de los cual hay ya uno en fase operacional en Rusia26 y otro en China en fase avanzada de construcción27;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
180
+ page_content=' hay muchos otros diseños avanzados y prometedores en Japón, Europa y EEUU, que hasta ahora no se han podido llevar a la práctica.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
181
+ page_content=' El hecho de que hayan sido precisamente Rusia y China los países que primero hayan llevado a la práctica esta idea innovadora, dice mucho del panorama geopolítico actual, donde la segunda (a Rusia aún le quedan rescoldos científicos y tecnológicos de la época soviética) se ha convertido a pasos agigantados en un referente mundial en ciencia y tecnología en todas las áreas estratégicas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
182
+ page_content=' Igualmente, se continúa investigando exhaustivamente en el ciclo de fisión del torio28,29, desarrollando la tecnología para reactores más pequeños (llegando a la escala del MW), más seguros y con menos producción de residuos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
183
+ page_content=' No olvidemos que ITER , cuando entre en funcionamiento, consumirá del orden de 300 MW sólo para mantener la temperatura del plasma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
184
+ page_content=' Epílogo El proyecto ITER,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
185
+ page_content=' al igual que la Estación Espacial Internacional (ISS,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
186
+ page_content=' de sus siglas en inglés) surgieron en las mismas fechas (años 90) y con los mismos loables propósitos (fomentar la colaboración científico-técnica internacional),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
187
+ page_content=' inmediatamente tras el derrumbe del bloque soviético y el comienzo de una época de absoluto dominio del bloque llamado occidental (aunque incluye también a Japón,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
188
+ page_content=' Corea del Sur y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
189
+ page_content=' por supuesto,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
190
+ page_content=' Australia y Nueva Zelanda) liderado por los EEUU de Norteamérica y la postración absoluta de la otra antigua potencia hegemónica,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
191
+ page_content=' Rusia;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
192
+ page_content=' China, aunque despegando, aún contaba poco.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
193
+ page_content=' Era la época del famoso Final de la Historia de Francis Fukuyama.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
194
+ page_content=' No creo necesario resaltar cómo ha cambiado el panorama internacional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
195
+ page_content=' La ISS, con Rusia retirándose, además de la poca relevancia de los resultados científicos obtenidos, está abocada a convertirse pronto en un trozo más de chatarra orbital destinada a desintegrarse en unos 10 años (si no antes, el silencio mediático es poco prometedor en ese sentido).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
196
+ page_content=' Opino que, aparte de los innegables avances tecnológicos asociados a su desarrollo, ese es su principal ( y probablemente) único éxito.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
197
+ page_content=' Los plazos han ido alargándose sin cesar: De la fecha inicialmente prevista de las primeras pruebas con plasma en ITER, 2016, se pasó a 2025 y hasta 2035 para las pruebas con la mezcla real DT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
198
+ page_content=' Los rumores sugieren insistentemente un nuevo alargamiento y la situación geopolítica mundial (al margen de los enormes problemas científico-técnicos asociados al proyecto) apunta a ello.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
199
+ page_content=' Para DEMO ya ni siquiera se dan fechas concretas, sólo se habla de que será una realidad en la segunda mitad de la centuria.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
200
+ page_content=' Vienen a la mente las palabras del Quijote: “Cuán largo me lo fiais, amigo Sancho”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
201
+ page_content=' 9 1 Un nanosegundo es una milésima de una millonésima de segundo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
202
+ page_content=' 2 El núcleo de hidrógeno, que consiste en un único protón, es el más simple de la Naturaleza y, obviamente es estable, es decir, no radiactivo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
203
+ page_content=' El de deuterio o deuterón consiste en un protón más un neutrón y es también estable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
204
+ page_content=' El de tritio consiste en un protón más dos neutrones y es radiactivo, con una semivida de 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
205
+ page_content='6 años (el tiempo en que tardan en desintegrarse la mitad de sus núcleos a partir de una población incial).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
206
+ page_content=' 3 Inicialmente la idea del tokamak,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
207
+ page_content=' que es una palabra rusa porque fue un concepto propuesto en la Unión Soviética en los años 50,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
208
+ page_content=' fue descartada por los investigadores norteamericanos,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
209
+ page_content=' que llevaban desde los primeros años 50 trabajando en la Universidad de Princeton y el Laboratorio Nacional de Los Alamos tratando de controlar la fusión nuclear para usos civiles mediante confinamiento magnético con la configuración llamada stellarator (de aspecto exterior muy parecido al tokamak,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
210
+ page_content=' pero con importantes diferencias conceptuales entre ambos),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
211
+ page_content=' en paralelo al desarrollo del programa militar;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
212
+ page_content=' de hecho ambos proyectos compartían inicialmente gran parte de su nombre en clave: Matterhorn-B para el militar (la B de bomb) y Matterhorn-S para la civil (con la S de stellarator) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
213
+ page_content=' A comienzos de los años 60 los científicos norteamericanos tuvieron que rendirse a la evidencia de que la idea del tokamak funcionaba mejor en muchos aspectos y comenzaron a investigar mayoritariamente basándose en ella, aunque varios grupos continuaron la investigación en la línea original (stellarator), que aún se mantiene hoy en día.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
214
+ page_content=' Como puede fácilmente deducirse, la íntima interconexión en el entramado científico-militar norteamericano era evidente desde los inicios en estas investigaciones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
215
+ page_content=' Abundando en esta idea, cabe resaltar que el Livermore National Laboratory tiene una bien conocida vinculación íntima con la industria militar estadounidense en forma de contratos de investigación orientada tanto a las armas de fisión nuclear como a las basadas en láseres de alta potencia (sobre todo a partir de la llamada Guerra de las Galaxias, que promovió su presidente Ronald Reagan en los años 80).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
216
+ page_content=' 4 La explicación del mecanismo de producción de energía en el Sol fue propuesta por Hans Bethe en su genial y clarividente artículo (uno más entre tantos de los suyos) “Energy Production in Stars”, Physical Review 55 (1939) p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
217
+ page_content=' 434 , considerado uno de los diez mejores de la Historia de la Física moderna en una clasificación del Instituto Niels Bohr de Copenhague.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
218
+ page_content=' Como curiosidad, este artículo fue inicialmente retirado por el autor para poder presentarlo a un concurso de ideas científicas inéditas (que obviamente ganó), con cuyo premio costeó la mudanza de su madre (judía perseguida en Alemania) a los Estados Unidos de América del Norte.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
219
+ page_content=' En el mismo, entre otras muchas especulaciones basadas en las evidencias entonces disponibles, el autor propone una cadena que se inicia con la fusión de dos núcleos de hidrógeno, es decir dos protones, y que globalmente se traduce en que a partir de 4 protones se forma una partícula alfa con gran liberación de energía.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
220
+ page_content=' 5 A no ser que se consiga crear algún día en la Tierra algo parecido a una estrella de neutrones (en este caso de protones, vamos, un Sol .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
221
+ page_content='. pero necesitaríamos su masa para tener la compresión gravitacional suficiente, es decir, su tamaño, con lo cual nos quedaríamos sin Tierra .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
222
+ page_content='.).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
223
+ page_content=' Mi imaginación no da para tanto y esto entra dentro del campo de la ciencia ficción.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
224
+ page_content=' 6 Es la combinación que presenta mayor probabilidad de fusión a las temperaturas que, aunque enormes (del orden de los cien millones de grados), pueden alcanzarse en una central de fusión.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
225
+ page_content=' 7 En los experimentos realizados hasta la fecha en JET, la única instalación operativa por confinamiento magnético capaz de utilizarlo, se ha evitado en lo possible su utilización por las complicaciones que acarrea;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
226
+ page_content=' de hecho, según la información de que dispongo, no se utiliza desde 1997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
227
+ page_content=' 8 Clery, Daniel (10 October 2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
228
+ page_content=' "Fusion "Breakthrough" at NIF?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
229
+ page_content=' Uh, Not Really …".' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
230
+ page_content=' Science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
231
+ page_content=' 9 Por su ausencia de carga eléctrica, los neutrones son mucho menos eficientes que las partículas cargadas, como las alfas, para transformar su energía cinética en calor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
232
+ page_content=' 10 1 MW es un millón de vatios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
233
+ page_content=' Para hacernos una idea: uno de los últimos reactores nucleares instalados en España produce del orden de 1000 MW de potencia eléctrica 11 Steven B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
234
+ page_content=' Krivit, “The ITER Power Amplification Myth”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
235
+ page_content=' En New Energy Times, 6 Oct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
236
+ page_content=' 2017 12 Ya que nos movemos en el ámbito de las estimaciones, no encuentro motivo a priori valorar unas más que otras: sólo la experiencia dará su veredicto.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
237
+ page_content=' 10 13 https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
238
+ page_content='iter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
239
+ page_content='org/mach/Blanket 14 T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
240
+ page_content=' Giegerich et al, Development of a viable route for lithium-6 supply of DEMO and future fusion power plants, Fusion Engineering and Design, Volume 149, December 2019, 111339 15 Los primeros reactores nucleares de fisión estuvieron vinculados al programa militar norteamericano (proyecto Manhattan) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
241
+ page_content=' En concreto, la primera reacción en cadena controlada fue en el Pile-1 (“CP-1”, acónimo de Chicago Pile 1) situado bajo el graderío oeste del campo de fútbol americano de la Universidad de Chicago, bajo la dirección científica de Enrico Fermi, el 2 de diciembre de 1942.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
242
+ page_content=' Por ello se puede afirmar que la fisión nuclear controlada y la explosiva se desarrollaron en paralelo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
243
+ page_content=' 16 El nombre que inicalmente se le dio fue el de bomba de hidrógeno, o simplemente bomba H porque utilizaba isótopos de hidrógeno para producir la fusión, aunque el detonante fuera una bomba atómica (varias en los diseños modernos).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
244
+ page_content=' Como dato se aporta el hecho de que aproximadamente las tres cuartas partes de la energía liberada en una explosiión termonulear proviene de la fisión, mientras que sólo la cuarta parte restante proviene de la fusión.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
245
+ page_content=' Ello es debido a que un detonante central (sparkplug, o bujía, en su denominación inicial) de fisión convencional (Pu239 en el caso de Ivy Mike), que fisiona bajo el efecto de bombardeo con neutrones lentos, comprime y calienta la mezcla de isótopos de hidrógeno deuterio y tritio, que fusionan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
246
+ page_content=' En cada una de dichas fusiones se produce una partícula alfa (núcleo de helio) y un neutrón de alta energía que se utiliza para fisionar otro isótopo (U238 en Ivy Mike, dispuesto en la parte exterior del dispositivo), que precisamente fisiona muy eficientemente bajo el bombardeo con neutrones muy energéticos (no lo hace con neutrones lentos, por lo cual no es útil en las bombas atómicas convencionales) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
247
+ page_content=' Por lo tanto puede afirmarse que una bomba termonuclear,de hidrógeno o de fusión es en realidad un amplificador de la fisión mediante la fusión.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
248
+ page_content=' De hecho, a pesar de su nombre, aproximadamente el 75% de su energía liberada proviene de la fisión.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
249
+ page_content=' 17 La energía transportada por la radiación a temperaturas ordinarias es despreciable frente a la asociada a la agitación cinética a nivel microscópico, pero la primera aumenta con la cuarta ptencia de la temperatura, mientras que la segunada lo hace linealmente.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
250
+ page_content=' A las enormes temperaturas alcanzadas en una reacción en una bomba de fisión la presión de la radiación se comporta como un gigantesco mazo que se utiliza para comprimir y calentar el plasma de fusión.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
251
+ page_content=' Ello está descartado, obviamente, para aplicaciones pacíficas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
252
+ page_content=' 18 Un microsegundo es una millonésima de segundo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
253
+ page_content=' 19 La temperatura es una medida de la agitación a nivel microscópico, es decir de la energía cinética (aproximadamente proporcional a la velodidad al cuadrado en este contexto) de los constituyentes de la materia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
254
+ page_content=' 20 Número de partículas blanco por unidad de volumen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
255
+ page_content=' Obviamente en el caso de la fusión, proyectil y blanco son intercambiables, ya que ambos están en movimiento en el sistema del laboratorio, a diferencia de la fisión donde los blancos (usualmente núcleos de U235) están en reposo y son bombardeados por los neutrones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
256
+ page_content=' 21 El cálculo teórico y medida experimental de las secciones eficaces de las diferentes reacciones es, en última instancia, a lo que nos dedicamos los físicos nucleares.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
257
+ page_content=' 22 El MeV es la unidad de energía típica de Física nuclear, siendo la energíacinética que adquiere un electrón acelerado por una diferencia de potencial de un millón de voltios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
258
+ page_content=' 23 Las particulas cargadas (en este caso las partículas alfa) son las responsables de la generación de la mayor parte del calor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
259
+ page_content=' El proceso es como sigue: al estar cargadas, interaccionan eléctricamente con los átomos del medio, arrancándoles electroles, es decir produciendo parejas iones positivos y electrones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
260
+ page_content=' Estos posteriormente se recombinan para formar nuevamente átomos neutros, liberándose la energía de ligadura correspondiente en forma de energías de vibración y rotación de dichos átomos, lo cual macroscópicamente se traduce en el aumento de temperatura.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
261
+ page_content=' Los neutrones, por el contrario, son muy poco eficientes para producir calor a partir de su energía cinética (es decir aumento de temperatura del medio) debido a su carencia de carga eléctrica, que obliga a producir la ionización sólo indirectamente, a través de partículas cargadas secundarias.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
262
+ page_content=' 24 El máximo se alcanza a unos 600 milllones de grados y aumenta unos dos órdenes de magnitud, pero esa temperatura excede con mucho lo previsiblemente alcanzable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
263
+ page_content=' 11 25 La instalación IFMIF, asociada a la futura instalación DEMO, para la cual la ciudad de Granada es una firme candidata, estará destinada a investigar los efectos de un bombardeo masivo de neutrones (producidos mediante un intenso haz de deuterio sobre un blanco de litio) en diferentes materiales que se pretende utilizar en el reactor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
264
+ page_content=' 26 http://fnpp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
265
+ page_content='info/ 27 https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
266
+ page_content='world nuclear news.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
267
+ page_content='org/Articles/Linglong One reactor pit installed at Changjiang 28 http://ithec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
268
+ page_content='org 29 https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
269
+ page_content='thmsr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
270
+ page_content='com/en/' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf'}
-dE1T4oBgHgl3EQf8QXB/content/tmp_files/2301.03544v1.pdf.txt ADDED
@@ -0,0 +1,1020 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ © 2023 Steven Fraser and Dennis Mancl
3
+ Report on the Future of Conferences
4
+ Steven Fraser, Innoxec, Santa Clara CA USA, [email protected]
5
+ Dennis Mancl, MSWX Software Experts, Bridgewater NJ USA, [email protected]
6
+ January 9, 2023
7
+ ABSTRACT
8
+ In 2020, virtual conferences became almost the only alternative to cancellation. Now that the pandemic is subsiding,
9
+ the pros and cons of virtual conferences need to be reevaluated. In this report, we scrutinize the dynamics and
10
+ economics of conferences and highlight the history of successful virtual meetings in industry. We also report on the
11
+ attitudes of conference attendees from an informal survey we ran in spring 2022.
12
+ 1. Conferences must evolve
13
+ In March 2020, catalyzed by the need for “social distancing” due to the COVID-19 pandemic, conferences, trade
14
+ shows, symposia, workshops, and other “mass” meetings were canceled, postponed, or moved to virtual (online)
15
+ formats for the balance of the year. Government travel restrictions and individual health concerns made in-person
16
+ conferences difficult, if not impossible, to organize.
17
+ The authors wholeheartedly endorse the adoption and growth of virtual and hybrid conferences, even as the
18
+ pandemic subsides. We strongly believe that conference organizers must increase conference accessibility by
19
+ reducing the cost for attendees. Accessibility is improved and costs are reduced by the adoption of virtual and hybrid
20
+ conference strategies. Communities that sponsor conferences need to create new and more open conference models
21
+ to foster increased diversity, equity, inclusion, and accessibility while decreasing attendee cost and carbon footprint.
22
+ Pre-COVID, conferences were organized as face-to-face assemblies with participants congregating at convention
23
+ centers, hotel complexes, resorts, or on company/university campuses. Attendees would meet, talk, give
24
+ presentations, present papers, receive feedback, market and sell products/ideas, network, build community, and have
25
+ some fun together.
26
+ Based on experiences of the past two years, participants extol the benefits of no-travel conferences. Virtual events
27
+ eliminate conference-associated risks from the pandemic, reduce climate change impact, and increase accessibility
28
+ for those with limited travel budgets or government travel restrictions. Others yearn for a return to face-to-face
29
+ meetings, driven by a desire to return a pre-pandemic status quo with in-person networking and the attraction of
30
+ interesting destinations. The authors believe that each side of the debate has merits. However, we strongly believe
31
+ that virtual and hybrid public conferences will flourish, in spite of the nostalgia for pre-pandemic in-person
32
+ conferences.
33
+ Our report will explore aspects of in-person, virtual, and hybrid conferences. We will examine motivations,
34
+ logistics, technology, finances, and new ways of enabling interactions.
35
+ In the course of our study of conferences, the authors ran a community survey in spring 2022 to probe for opinions
36
+ about the value of in-person, virtual, and hybrid conferences [1].
37
+ This report will not address the pandemic-era trend to “work from home” or the more recent debate over a “return to
38
+ the office.” We have already seen many recent changes in vision of the workplace of the future, including work from
39
+ open-plan offices, coworking spaces, work from home, work from anywhere, and hybrid models (a mix of
40
+ workplaces). A discussion of the workplace of the future is beyond the scope of this report.
41
+ This report is a general discussion of the structure of past and future conferences – and it is aimed at conference
42
+ attendees, organizers, and sponsors. The historical discussion is a recap of information that is already familiar to
43
+ frequent academic conference veterans. Even so, to better understand the pros and cons of virtual conferences, it is
44
+ useful to revisit the benefits of traditional conferences.
45
+
46
+
47
+
48
+ Page 2
49
+ 1.1. A look back at history
50
+ Stepping back in time, many advances in technologies over the past 250 years have changed how civilization works,
51
+ learns, communicates, and plays.
52
+ Commercialization of inventions such as the steam engine (accelerating manufacturing and transportation),
53
+ electricity (working longer than daylight hours), telecommunications (telegraphy and telephony), aviation, and the
54
+ internet have each played a role in changing society.
55
+ Inter-personal communication has made enormous progress in 25 years. Emergent technologies have enabled the
56
+ virtualization of retail commerce, the evolution of print media from paper to websites, blogs, Twitter, and other
57
+ digital social media platforms, and the migration from POTS (Plain Old Telephone Service) to multi-media
58
+ platforms enabling text, images, voice, video, virtual reality, and augmented reality.
59
+ In the intervening years, internet technology has been adopted for general use in homes, offices, and schools.
60
+ Business has somewhat reluctantly embraced “work-from-home” virtual meeting technologies as a result of the
61
+ pandemic. Other virtual applications are emergent, from distance learning, tele-justice, tele-health, media live-
62
+ streams, internet-gaming, to social networking. This brings us to the question of virtual conferences. Could
63
+ conferences be the next domain where “virtual” achieves a more significant level of adoption above the plateau
64
+ achieved during the pandemic?
65
+ Let us pose two questions before we delve into our prognostications on the future of conferences.
66
+ 1.2. What is a conference?
67
+ For the purposes of this report, a conference is a meeting to share, discuss, and expand knowledge. Some exemplars
68
+ of conferences are:
69
+
70
+ Academic conferences are sponsored by professional societies, industry associations, or academic entities.
71
+ The core part of an academic conference often consists of peer-reviewed research paper presentations and
72
+ prepared talks; attendees come to learn, discuss, and network. Examples include the ACM/IEEE ICSE and
73
+ ACM SPLASH Conferences. Key characteristics are: Low registration fees, discounts for students, all
74
+ participants pay; size may range from small to large.
75
+
76
+ Commercial conferences are organized by media companies like InfoQ and O’Reilly and feature tutorials,
77
+ keynotes, and panels delivered by industry experts. Registration fees in comparison to academic
78
+ conferences are higher and speakers are paid to present. Conference size is generally large.
79
+
80
+ Developer conferences are focused on company product ecosystems, e.g., JavaOne, AWS Summit.
81
+ Conference size is generally large.
82
+
83
+ Trade association conferences are organized to showcase the latest products and innovations in an
84
+ industry. Participants market products to increase sales, e.g., CES, Interop, Mobile World Congress.
85
+ Conference size is generally large to ultra large with many tens of thousands of attendees.
86
+
87
+ Government/NGO conferences initiate and continue discussions on policies and innovations with societal
88
+ breadth – for example, the 2021 UN Climate Change Conference in Glasgow. Conference size varies from
89
+ small to ultra large.
90
+ 1.3. What factors influence conferences?
91
+ Factor #1: Conference stakeholders.
92
+ It is important to understand the set of stakeholders (the people who are connected directly and indirectly to
93
+ conference registration and conference events) to ensure that future conferences deliver value.
94
+ Within each stakeholder category, the set of conference participants is constantly evolving. The conference
95
+ community is growing more global and diverse, especially in the domain of scientific and technical conferences.
96
+ Conferences have created a competitive ecosystem, but there is also a place for effective collaboration among the
97
+ stakeholders.
98
+ Key stakeholders include:
99
+
100
+ Attendees – individuals who will benefit directly from participation through making presentations,
101
+ learning, and marketing ideas/products
102
+
103
+
104
+
105
+ Page 3
106
+
107
+ Attendee Proxies and Sponsors (companies, universities, or funding agencies that pay for attendees to
108
+ attend a conference)
109
+
110
+ Conference Organizers (individuals, companies, professional societies, NGOs, governments)
111
+
112
+ Conference Sponsors – organizations that support conferences through paid sponsorships or gifts
113
+
114
+ Venue Sponsors – tourism/hospitality businesses and regional development government interests
115
+ Factor #2: Motivations for attendance differentiated by “personal” or “organizational” benefits:
116
+ Personal
117
+ Self-improvement
118
+ Learning
119
+ Ideation
120
+ Problem Solving
121
+ Publishing
122
+ Networking
123
+ Fun
124
+ Company, University, or
125
+ Organization Benefit
126
+
127
+ Learning
128
+ Scouting Trends
129
+ Recruiting
130
+ Marketing/Selling Products
131
+ Enhancing Reputation
132
+ Motivations for Attending Conferences
133
+ In general, a conference is a great place to create and communicate, and there is almost always some reward in terms
134
+ of individual self-improvement.
135
+ “Learning” appears twice in the table above because Individuals and organizations both may benefit from the
136
+ conference “learning experience.” For example, a company may send a group of employees to a conference tutorial
137
+ or workshop.
138
+ Factor #3: Conference finances must be economically sound.
139
+ Revenues must balance costs. The COVID-19 pandemic has demonstrated that it is not simply a matter of “build it
140
+ and they will come.” Conference stakeholders (organizers, attendees, and sponsors), each have a different
141
+ perspective on economics.
142
+ Organizers orchestrate conference logistics by soliciting, curating, and marketing content to put on “the show” (i.e.,
143
+ the conference). Organizers assume financial risks, and their “rewards” depend on the nature of the conference. In
144
+ some cases, conferences are commercial ventures where the organizers hope to turn a profit (with revenue greater
145
+ than the event’s costs). For academic conferences, success might be measured by “breaking even” after taking into
146
+ account government grants and sponsorships. Other conferences are organized by professional societies with some
147
+ costs offset by society membership fees.
148
+ Conference organizers need to balance costs and revenues. Some costs are fixed (independent of the number of
149
+ attendees):
150
+ Fixed conference costs
151
+ Insurance and legal
152
+ Registration services
153
+ Professional staff
154
+ Most IT services
155
+ Marketing/Advertising
156
+ Conference publications
157
+ (proceedings, Open Access fees)
158
+ Security
159
+ (physical and electronic)
160
+ Speaker costs
161
+ Other costs are variable (proportional to the number of conference attendees):
162
+
163
+
164
+
165
+ Page 4
166
+ Variable conference costs
167
+ Meeting room logistics
168
+ IT services
169
+ (wi-fi, streaming, attendee support)
170
+ Food and beverage
171
+ Support staff
172
+ Hotel logistics
173
+ Conference publications
174
+ Whether a conference is small or large, seed funding is required to cover initial planning, marketing, and deposits
175
+ when booking venues or reserving IT services.
176
+ As with any personal purchase, prospective attendees should assess the advertised value of a conference before
177
+ attempting to convince their “management” (corporate or academic) to “buy” a registration. Post-conference,
178
+ attendees (and their proxies and sponsors) will need to assess whether they received positive value for their time and
179
+ investment (registration cost and travel/living costs). This value can be demonstrated through conference reports,
180
+ inspiration, key learnings, and personal experience (fun, learning, and network growth). In times of economic
181
+ restraint, corporate employees might be fortunate enough to get time-off-with-pay while having to self-fund
182
+ conference travel and registration. Virtual conferences, with reduced costs, can prove attractive to budget-conscious
183
+ attendees.
184
+ To evaluate the delivered value of a conference, sponsors evaluate changes in sales, market opportunities, recruiting,
185
+ and other business goals. However, these are often impossible to directly quantify in the short term – and corporate
186
+ sponsorships frequently depend on a company’s desire to do “social good” or as part of a targeted marketing
187
+ campaign. Some conference sponsors are government agencies who have ongoing programs to provide funds for the
188
+ support of research, regional development, and information exchanges in selected fields.
189
+ Factor #4: Nostalgia for past conference experiences
190
+ Conferences of the “Future” will change as technology, social norms, and government policy evolve. Nostalgia
191
+ shouldn’t be ignored, but how many times should progress be sacrificed to satisfy a core set of repeat attendees? It is
192
+ useful to reflect on the following questions:
193
+
194
+ Which parts of traditional conference experiences are most attractive to attendees and organizers?
195
+
196
+ Will new conference formats be sufficiently engaging to attract “repeat attendees?”
197
+ Technology changes may make virtual meetings increasingly more effective. Over time, virtual meetings will feel
198
+ less awkward, especially as more people use video telephony for chatting with family and friends. Government
199
+ policies may constrain travel to react to worldwide crises: carbon offset requirements (global warming), quarantines
200
+ (pandemics), or diplomatic issues (sanctions, armed conflicts) that may make international travel impossible. Social
201
+ norms may also change – reducing the desire to travel or interact face-to-face.
202
+ Fifty years ago, if one had mentioned “games” – one would have imagined face-to-face participation on an outdoor
203
+ playing field, indoor gymnasium, or across a table. Today, over 3 billion people participate in “game” experiences
204
+ online – not in-person. Technology has also catalyzed everything from the evolution of retail sales from bricks-and-
205
+ mortar to virtual retail shops on the web – to matchmaking.
206
+ The “Future of Conferences” will depend more than we can imagine on the evolution of technology, social norms,
207
+ and government policy.
208
+ 2. Origins of virtual conferences
209
+ Virtual meetings weren’t “invented” as a result of the pandemic in the spring 2020. Virtual meetings emerged in the
210
+ late 1980s for companies to reduce costs [2]. In the 2010s, learned institutions experimented with virtual
211
+ conferencing to reduce their carbon footprint – for example, the Nearly Carbon-Neutral (NCN) conferences (UCSB)
212
+ [3]. In April 2020, an ACM task force published a report on best practices for virtual conferences [4].
213
+ Multinational companies were already embracing virtual meeting technology in the late 20th century, which they
214
+ used for business meetings and large company events. Virtual meetings helped cut travel costs and reduced “out-of-
215
+ office” time. Internal company meetings made increasing use of virtual meeting technology in the late 20th century,
216
+
217
+
218
+
219
+ Page 5
220
+ even though public conferences remained in-person. Some large companies sponsor internal virtual forums: multi-
221
+ site events to share best practices across business units [5].
222
+ As technology developed, company meetings became hybrid with a mix of in-person and virtual participation.
223
+ Companies used the best communications technologies they could afford: teleconferencing in the 1980s, multi-site
224
+ video rooms (ISDN-based) in late 1980s to 2000s, telepresence systems beginning in the mid-1990s, and evolving
225
+ desktop video collaboration applications starting in the early 2000s. Early telepresence systems were costly to run
226
+ and required: specialized rooms, high performance equipment, and special low latency high bandwidth networking.
227
+ Companies welcomed the advent of desktop video collaboration applications – the earliest desktop applications
228
+ (such as WebEx and Skype) were primitive, but they were cheaper, easier to use, more accessible, and scalable
229
+ across enterprises.
230
+ There are social challenges associated with today’s virtual meeting technology. In a hybrid meeting, with a mix of
231
+ in-person and virtual, some virtual attendees feel they are “second-class” participants. Virtual attendees miss side
232
+ conversations and are limited in how they can influence the course of a meeting. Virtual attendees don’t always hear
233
+ what was said or miss attendee body language cues. In-person interactions have a much higher “social bandwidth”
234
+ than virtual interactions.
235
+ A recent ACM conference paper made this point: “[T]he most challenging asymmetry is the diverse experience
236
+ between co-located and remote meeting participants. Remote participants often feel isolated, while co-located
237
+ participants dominate the interaction. [6]”
238
+ For public conferences, virtual technology did not gain traction before 2020, even though there were some trials,
239
+ such as ACM and IEEE’s ICSE conference experiment with MBone (multicast backbone) in 1995 [7]. In the world
240
+ of “virtual meeting technology,” public conferences were late adopters.
241
+ Why wasn’t virtual technology adopted by public conferences, even though it was being used widely in company
242
+ business meetings? At the time, the authors believe, a transition to virtual public conferences would have been a
243
+ disruptive change in the participation and economic models. Most decision makers (conference organizers and long-
244
+ time conference attendees) were likely reluctant to make changes to successful in-person conference models. In
245
+ contrast, internal company meetings are another matter: a company could easily realize significant travel savings
246
+ and time savings by going virtual.
247
+ Today, progressive conference organizers should consider the need to improve conference accessibility for students,
248
+ young professionals, women, and others with less influence in the conference hierarchy. A virtual conference
249
+ structure might serve to expand and diversify the conference community [8].
250
+ 3. Conferences are a business
251
+ Conferences and other in-person business meetings have been “big business.” The conference business exploits the
252
+ dimensions of entertainment, tourism, and wanderlust (the appeal of travel, especially to exotic locations). The
253
+ economic influence of a trillion dollar conference and event industry is difficult to resist [9]. The business meeting
254
+ industry advertises the charms of their meeting venues and cities to conference decision makers. In addition to the
255
+ business or academic attraction of conference content, a tourist destination will attract attendees wishing to mix
256
+ business and pleasure. The authors suspect that exotic conference locations raise the popularity of a conference – but
257
+ it has been difficult to obtain comparative statistics.
258
+ Virtual conferences are boring in comparison to “destination” conferences.
259
+ 4. Logistics for virtual and hybrid conferences
260
+ During the pandemic, conferences borrowed many ideas from the classroom – adapting techniques for both “all-
261
+ virtual” and “hybrid” learning. Schools chose to employ virtual and hybrid to keep students and teachers safe –
262
+ choosing “all-virtual” when the local infection rate was high, transitioning to a hybrid mix of in-person and virtual
263
+ instruction as infection rates declined.
264
+ Hybrid enabled students to be “socially distant” in a half-full classroom, and it also helped students feel less isolated
265
+ after months of virtual schooling. Teachers complained about the logistical challenges: it is very difficult to organize
266
+ classroom activities that can deliver an equivalent learning experience for in-person and virtual students.
267
+
268
+
269
+
270
+ Page 6
271
+ The motivation for choosing a virtual or hybrid structure is different for schools and conferences. For schools, the
272
+ main motivation has been local health concerns. On the other hand, conferences are a very different context from
273
+ schools. Differences for conferences (in contrast to schools) include:
274
+
275
+ No grades
276
+
277
+ No attendance requirements
278
+
279
+ Sharing new information on the leading edge
280
+
281
+ Audience a mix of experts and non-experts
282
+
283
+ Participants from multiple time zones
284
+
285
+ Global participants with expensive travel costs
286
+
287
+ Condensed time schedule (few days versus school year)
288
+
289
+ Participants attracted by well-known experts on the program
290
+
291
+ Participants attracted by the conference’s focus
292
+ 4.1. Virtual presentations can be live or recorded
293
+ In all-virtual conferences, there are four major variations for making virtual talks and sessions available to virtual
294
+ attendees:
295
+ 1. Live Program: Program is presented as a sequence of “live” presentations; attendees may ask questions in
296
+ real-time (Zoom, WebEx, …).
297
+ 2. Recorded presentations with “live” Q&A: Each presenter pre-records their presentation which is
298
+ displayed in sequence; attendees may ask questions in real-time following recorded presentation.
299
+ 3. Recorded “on-demand” presentations: Pre-recorded presentations may be viewed by attendees in any
300
+ order.
301
+ 4. Mix of Live and Recorded Presentations: Presentations with Q&A are recorded in real time; conference
302
+ attendees have two additional choices for viewing: to watch a “mirror” replay at a designated time (e.g., 4,
303
+ 6, 8, 12 hours) later the same day, or “on demand” (at any time after the “live” session).
304
+ “On demand” is ideal to avoid attendee “schedule conflicts” (two or more talks scheduled at the same time).
305
+ Attendees with large time zone offsets (more than 2 hours) appreciate options to view presentations at a more
306
+ convenient time.
307
+ However, “on demand” does not support interactions between the presenters and the audience. Live interactions are
308
+ possible only in options 1 and 2. In those options, organizers usually include a short question and answer session for
309
+ each talk – and this “feedback and interaction” can be the most interesting part of a conference session. Interactive
310
+ sessions need to be engaging and structured to support in-person and virtual participants equitably. Virtual/hybrid
311
+ conferences can be more staffing-intensive: a standard research paper session requires multiple facilitators per
312
+ session, including an in-person chair who works to keep all attendees engaged and several behind-the-scenes
313
+ production assistants.
314
+ Virtual conference panels enable global participation by experts who would not otherwise attend the conference in
315
+ person. For example, the authors recently organized ICSE and SPLASH virtual panels with diverse panelists from
316
+ four continents unlikely to attend ICSE or SPLASH.
317
+ 4.2. Hybrid conference options
318
+ While in-person and virtual conferences are fairly straightforward to explain, hybrid conferences have different
319
+ options. A hybrid conference will include both in-person and virtual elements.
320
+ A hybrid conference could be “asynchronous,” consisting of a separate in-person conference and virtual conference
321
+ that are separated in time.
322
+ For example, ACM/IEEE ICSE 2022 had a virtual conference (May 10-13, 2022) and an in-person conference two
323
+ weeks later (May 25-27, 2022). At “asynchronous hybrid ICSE,” most of the in-person presenters were able to
324
+ present their talks for both conferences, but some presenters in the virtual conference were unable to travel and give
325
+ their presentations a second time at the in-person conference.
326
+
327
+
328
+
329
+ Page 7
330
+ Another hybrid conference option is “synchronous,” such as SPLASH 2022 (December 5-10, 2022). At “hybrid
331
+ SPLASH,” some presenters were in-person, others were virtual. In-person attendees and virtual attendees could view
332
+ any of the talks. Last but not least, a hybrid conference could be a blend of synchronous and asynchronous events.
333
+ Below are two tables summarizing key characteristics of in-person, virtual, and hybrid conferences.
334
+
335
+ In-Person Conference
336
+ Virtual Conference
337
+ “Live” presentations
338
+ Traditional in-person conference:
339
+ Live in-person presenters and
340
+ attendees
341
+ Virtual conference: all presenters and
342
+ attendees are virtual and presentations
343
+ occur in “real time”
344
+ “Recorded” presentations
345
+ In-person attendees view
346
+ prerecorded conference
347
+ presentations during conference
348
+ Virtual attendees view recorded
349
+ conference sessions/presentations at
350
+ any time during or following the
351
+ conference
352
+ In-Person and Virtual conference characteristics
353
+
354
+
355
+ Synchronous Hybrid
356
+ Conference
357
+ (overlap of in-person and
358
+ virtual sessions)
359
+ Blended Synchronous and
360
+ Asynchronous Hybrid
361
+ Conference Options
362
+ Asynchronous Hybrid Conference
363
+ (no overlap of in-person and virtual
364
+ sessions)
365
+ Attendees may be
366
+ in-person or virtual: Sessions
367
+ are synchonous
368
+ (SPLASH 2022)
369
+ Synchronous sessions for virtual
370
+ attendees plus presentations for
371
+ “local” attendees at conference hubs
372
+ In-person sessions are separated in time
373
+ from virtual sessions days or weeks apart
374
+ (ICSE 2022)
375
+ Hybrid conference options
376
+ A hybrid conference may have one or more “hubs” – a hub is a location where attendees can meet in-person, and
377
+ where some presenters may deliver in-person talks. In a hybrid conference with multiple hubs in different time
378
+ zones, it is preferable that virtual sessions be held at a time that is convenient for a majority of attendees. For
379
+ example, if there is a North America hub and a European hub, virtual sessions could be held in the afternoon for
380
+ Europe (in the morning for North America). Each hub could host a “local program” at a time most convenient to the
381
+ local in-person attendees. For corporate hybrid conferences – e.g., Cisco, Qualcomm, Nortel – conference “hubs”
382
+ were the regional R&D Labs plus the corporate headquarters.
383
+ 5. Motivation for attending conferences: networking and learning
384
+ Conferences can be a place to share knowledge in a “formal” manner. In many scientific fields, publishing new
385
+ research work in conference papers can be preferable to (and faster than) publishing articles in scientific journals
386
+ [10].
387
+ Conferences can also be a way to share ideas informally. Conferences offer an excellent opportunity to make new
388
+ connections, build networks, and to renew friendships. Conferences bring people with shared interests together.
389
+ Even if they are sometimes distracted by technology (e.g., cellphones, email, Facebook, Twitter, and TikTok),
390
+ attendees become more energized when they break out of their day-to-day universe of familiar faces.
391
+ The value of making new contacts is difficult to estimate. One approach might be to assess the value of increasing a
392
+ “personal network” by applying Metcalfe’s Law. Metcalfe’s Law proclaims that the value of a computer network is
393
+ proportional to the square of the number of connected users.
394
+ Extrapolating Metcalfe’s Law to social networks suggests that personal network growth is more impactful for
395
+ individuals with smaller personal networks.
396
+
397
+
398
+
399
+ Page 8
400
+ For an individual with a 10-person network, adding 10 more contacts increases the network’s value by 300%, while
401
+ those with a 50-person network, adding 10 more contacts increases the network’s value by only 44%.
402
+ Even if we choose a much more modest value model, such as “proportional to Nlog(N)” (as suggested by Briscoe,
403
+ et.al. [11]), the impact of expanding the network is still much more significant for people with small networks.
404
+ Adding 10 people to a 10-person network adds 160% to the network’s value, adding 10 people to a 50-person
405
+ network adds 26%.
406
+ Based on the premise of network value, the individuals who might benefit most from the networking opportunities at
407
+ an in-person conference are those least likely to be able to afford to travel: students, early-career professionals, and
408
+ individuals who have high travel costs – or visa related challenges.
409
+ A return to an in-person-only format is very short-sighted, in terms of attempts to foster greater diversity, equity, and
410
+ inclusiveness of conference participation. There is a large potential to help more people build more diverse
411
+ networks, if and only if we can organize our virtual conferences to support more effective interactions.
412
+ 6. The dynamics of building personal networks
413
+ 6.1. Conferences have both one-way and multi-way communication
414
+ Many conferences are centered around keynotes, tutorials, and paper presentations. These talks are similar to
415
+ university lectures: a one-way form of communication with limited audience interaction. Attendees also participate
416
+ in interactive (multi-way) activities, such as workshops, hands-on demos, and “shows” – be they artistic, musical,
417
+ multi-media, or product-oriented in nature. Other more casual settings for interaction and information sharing may
418
+ include social events and informal serendipitous conversations.
419
+ 6.2. Knowledge transfer through personal contacts
420
+ Conference participation helps disseminate and incubate knowledge that is not yet widely available. One-on-one
421
+ networking is a key part of the knowledge transfer process, even in a world that has a wealth of information in
422
+ electronic media.
423
+ Today, the research community depends on the materials held in digital libraries, open-source repositories, open
424
+ access journals, and online forums. Static material is complemented by online education options which help the
425
+ global community of software professionals upskill and expand their knowledge.
426
+ But there are pitfalls relying exclusively on non-peer reviewed knowledge sources due to a low signal-to-noise ratio
427
+ (lots of noise). The internet serves up an amazing supply of scientific and technical information, practical YouTube
428
+ videos, and useful social media discussions; it also hosts misinformation and conspiracy theories.
429
+ Face-to-face conference discussions make it possible to ask questions directly. Tapping into personal networks via
430
+ an informal conversation or email exchange can help accelerate research.
431
+ Without personal interaction, “asking a quick question” or “having a conversation” is slowed by the constraints of
432
+ distance. The personal touch matters – interaction at a conference helps build long-term relationships with experts.
433
+ Conversing with an expert can be more helpful than a computer search engine inquiry.
434
+ A conference is an ideal setting for informal discussions. At home, our focus is on day-to-day job software
435
+ development, research experiments, meetings, writing and reading reports, and office bureaucracy.
436
+ 6.3. Impromptu discussions and serendipitous interactions
437
+ Information exchanges are built on discussions and interactions, and in-person meetings improve the
438
+ communication. In contrast, interactions that use or apply technology (virtual collaboration tools) can be awkward.
439
+ The standard rules of interpersonal interaction have not caught up to the new wave of networking tools. In general,
440
+ the authors believe that face-to-face interactions still provide better support for ideation and incubation of
441
+ friendships and partnerships.
442
+ As humans, we gain insight from the tone of voice, body language, and eye contact. Interpersonal interactions at
443
+ conferences are not preprogrammed or prerecorded. The interactions are made much richer by:
444
+
445
+ impromptu discussions – without previous preparation
446
+
447
+
448
+
449
+ Page 9
450
+
451
+ serendipitous encounters – random meetings with individuals one is unlikely to meet elsewhere
452
+
453
+ serendipitous discussions – leading to valuable or interesting revelations
454
+ Conference attendees are uniquely positioned to learn from in-person impromptu discussions – ideas that are
455
+ difficult to acquire in any other fashion. For example, an in-person discussion may help to understand results or
456
+ spark new approaches. Serendipity often contributes to new connections and ideas. A dialog might start with
457
+ introductions followed by an exchange of recent experiences: “What did you try? Did it work? Was it a key
458
+ learning? A best practice? Or something to be avoided?” A short conversation can trigger an insight, inspire a
459
+ concept, or initiate a collaboration.
460
+ Serendipity happens “by chance” at a conference: at sessions, during breaks, or even on conference travel. For
461
+ example, Kent Beck tells the story of how he and Erich Gamma had a useful software design session on a flight
462
+ from Switzerland to the United States on their journey to attend ACM’s OOPSLA 1997. In three hours of
463
+ discussions, they collaborated to write the first version of the popular JUnit automated unit test framework [12].
464
+ A serendipitous conversation is more than an opportunity to exchange social networking profiles or business cards –
465
+ it could inspire new ideas and collaborations.
466
+ 6.4. Do virtual conferences support serendipity?
467
+ Most virtual conferences as currently designed have limited support for one-on-one serendipitous meetings.
468
+ There are two forces at work that limit serendipitous conversations in a virtual conference: technology obstacles and
469
+ social norms. The key obstacle for virtual conference technology is the inability to communicate “presence.” In day-
470
+ to-day conversations, we often read body language, facial expressions, and tone of voice. With virtual meeting
471
+ technology, it isn’t easy to read non-verbal cues across meeting participants. The camera sees only speakers’ faces,
472
+ video resolution is poor, and audio can be masked by background noise.
473
+ Virtual conference attendees have low expectations for interactions with other attendees. They are resigned to being
474
+ a “viewer” – watching the set of “canned” presentations without interacting either with the speaker or other
475
+ attendees. Virtual conferees might be multi-tasking with non-conference activities – too busy for side conversations
476
+ with other conferees.
477
+ But even if current expectations are low for virtual technology, there is hope for both the present and the future. A
478
+ well-designed virtual conference program is not required to follow the same structure or timeline as an in-person
479
+ conference. There are many creative options for building an effective virtual conference program to catalyze more
480
+ active participation.
481
+ 6.5. Engaging virtual conference attendees
482
+ The structure of conferences must evolve to better serve virtual attendees. In-person attendees benefit more from in-
483
+ person contacts, impromptu discussions, and serendipity. Virtual attendees need similar benefits – conference
484
+ activities that give them a chance to be active participants, make connections with other attendees, and establish
485
+ opportunities for dialog with other conferees after the conference is over.
486
+ Conference organizers should leverage experiences from social media to get participants more engaged. Conference
487
+ organizers should increase participant engagement by borrowing community-building practices from social media.
488
+ A simple approach to get participants engaged is to use real-time polling throughout the conference. A session chair
489
+ could use a web-based tool like MentiMeter or Slido to run frequent audience polls to sustain audience engagement.
490
+ Social media can also support multiway discussions during a virtual conference. Today’s social media users have
491
+ opinionated exchanges with people they have never met in real life. Virtual conference participants could convene
492
+ an impromptu panel discussion with participants selected via real-time social media metrics. The panelists could be
493
+ the most frequent conference Twitter or Facebook posters – the posters who get the most likes or text responses to
494
+ their real-time blogging of conference talks.
495
+ In many conferences, virtual participants are totally anonymous, for example, when presentations are streamed via
496
+ YouTube. In other conferences, the virtual participants connect to an online conference platform, which displays a
497
+ list of session attendees – and no other valuable session context, e.g., organizational affiliation, contact information,
498
+ or chat links.
499
+
500
+
501
+
502
+ Page 10
503
+ While some platforms encourage attendees to add a “personal profile” associated with their conference login, there
504
+ is generally no incentive for participants to enter personal information, so most profiles are left blank.
505
+ To encourage participants to add to their profile, conference organizers can provide motivation through:
506
+
507
+ registration discounts
508
+
509
+ post-conference access to premium conference content
510
+
511
+ forums to enable post-conference conversations among attendees with similar interests
512
+ However, it is necessary to be mindful of GDPR [13] and other privacy concerns – and to be mindful of possible
513
+ abuses. Profiles are a useful way to connect attendees who have similar (or dissimilar) interests and backgrounds –
514
+ while offering privacy and diversity safeguards. Different conferences will likely require different templates. To
515
+ assist attendees profile information could be suggested from personal websites and public databases, with the
516
+ opportunity for participants to customize as they choose.
517
+ In order to support participant interactions during the conference (via chat or web video), it isn’t necessary to have
518
+ the conference platform be a “completely immersive environment.” Conference participants may have other ways to
519
+ chat. A conference platform ought to include some impromptu text chat or user-configurable small-group video
520
+ meeting capabilities. Conference attendees would then have the option to establish their own one-on-one
521
+ communications (using email, Twitter, LinkedIn, Slack, Skype, or whatever) during or after conference sessions.
522
+ Some of the experts in the conference community might also volunteer to host small-group informal chat sessions –
523
+ an opportunity for non-experts to meet some of the stars in the field. This is a practice that has started to become
524
+ commonplace. Some recent conferences have offered virtual sessions titled “Ask Me Anything” with a keynote
525
+ speaker or another notable person.
526
+ 7. Virtual conferences – commitment to diversity, equity, and inclusion
527
+ Conference attendance costs include registration, travel, and time away from home and office. With virtual
528
+ conferences, conference costs are lower because physical logistics are unnecessary (food, meeting rooms, etc.),
529
+ participant travel costs are reduced (no need for transportation or hotels), and “away time” from home and office are
530
+ reduced (at least proportionally to travel time). That said, some would argue that getting away from “home and
531
+ office” is the attraction of attending a conference. Crista Lopes postulated that escaping to conference “destinations”
532
+ at the expense of your employer or grant agency is a key motivator for some to attend a conference [14].
533
+ But in-person conferences might not be a “safe” environment for some attendees. Some people in the technical
534
+ community can be outright hostile to newcomers. Some of the hostility may include racism and sexism. But a subtle
535
+ hostility is elitism – rejecting academics from lower-rated universities, company participants who are not from
536
+ highly-ranked research programs, and “practitioners” who just come to learn.
537
+ As noted earlier, virtual conferences are much easier for students to attend, and many people who are unable to
538
+ travel appreciate the opportunity to attend conferences from home. At a town hall meeting discussion at ICSE 2022,
539
+ one attendee suggested that 50 students can attend a virtual ICSE for the cost of sending one person to the in-person
540
+ ICSE [15].
541
+ Hybrid conferences can draw virtual attendees who live nearby. In metropolitan areas, traffic and parking can be an
542
+ enormous obstacle to attending a meeting – it may take more than an hour to navigate rush-hour traffic, especially in
543
+ congested metro regions. Hybrid conferences are a way to encourage more local participants.
544
+ 8. Financial issues
545
+ The rise of virtual conferences has created many new revenue opportunities for conference organizers, but virtual
546
+ also adds new challenges. During the pandemic, organizers found it difficult to monetize virtual conferences since
547
+ attendees associated conference “cost” with in-person expenses (food & beverage plus physical meeting logistics).
548
+ In-person conferences fees are usually tiered by content elements, e.g., for an entire multi-day program – or by day,
549
+ by track, by workshop, or by tutorial. Different categories of attendees may be assessed different fees – for example:
550
+ presenters, industry participants, students, academics, members (ACM, IEEE), etc.
551
+
552
+
553
+
554
+ Page 11
555
+ For a virtual conference, the charging model can be more fine-grained. For example, if the conference presentations
556
+ are organized in one-quarter, one-third, or half day blocks, there could be a charge per block. It is one way to attract
557
+ attendees who are interested in a group of specialized talks, or just the keynotes. Fine-grained session charges are
558
+ likely more useful for conferences with large attendance.
559
+ With conference collateral such as session recordings, organizers have the choice between making these freely
560
+ available after the conference to registered conference attendees or to charge premium access fees to a wider
561
+ audience. However, organizers need to be mindful of digital rights issues. Without securing blanket permissions
562
+ from all attendees, only the presentations can be shared – but not the recordings of the Q&A sessions – assuming
563
+ that presenter permissions are a conference participation prerequisite.
564
+ Another question is how to set pricing for virtual attendance since attendees have expectations that virtual should be
565
+ cheaper than an in-person registration. This expectation is based on the assumption that there will be no cost
566
+ expenditures for physical rooms, coffee breaks, lunches, meals, or social events. However, the IT and production
567
+ costs may be higher for virtual conferences that go beyond simple video conferencing (Teams, WebEx, Zoom, etc.).
568
+ Advanced virtual conference services may require paid production staff, which can result in a higher per-attendee
569
+ cost than in-person food and beverage services.
570
+ Recruiting, training, and supporting volunteers is a significant burden on the conference organizers. There is a
571
+ tradeoff: Working with volunteers can help keep costs low. In contrast, paid staff may require less training and
572
+ support.
573
+ There are many more practical suggestions for virtual and hybrid conferences in the “High-Level Planning” section
574
+ of the report of the ACM Task Force on virtual conferences [4].
575
+ 9. What factors will drive the future of conferences?
576
+ The future of conferences depends on three key issues:
577
+
578
+ Increasing costs [financial and carbon footprint] and the inconvenience of travel.
579
+
580
+ Emerging technologies topics spawn new conferences. Research funding and commercial investments
581
+ incubate new communities that need to share and innovate. New virtual conferences have a low cost of
582
+ entry. This may stimulate fragmentation of existing conferences.
583
+
584
+ New collaboration technologies will enable new conference formats. Examples may include Virtual
585
+ Reality, Augmented Reality, and Gamification.
586
+ 10. Attitudes of conference attendees: a community survey
587
+ To learn more about current attitudes about in-person and virtual conferences, the authors ran a community survey
588
+ in spring 2022 [1]. Although the survey population was not a random sample of the universe of all conference
589
+ attendees, it did include a range of geographies (70% of survey respondents were from North America, 23% from
590
+ Europe, 7% from the rest of the world) and there were respondents from industry (77%), academia (19%), and other
591
+ (4%).
592
+ The primary result of the survey: “hybrid” was the preferred conference mode.
593
+
594
+ 54% said they preferred hybrid
595
+
596
+ 36% preferred in-person
597
+
598
+ 9% preferred virtual
599
+ It is possible that hybrid was preferred by many because they wanted to have the option to attend an in-person event
600
+ after two years of pandemic-imposed isolation. On the other hand, hybrid might have been the top option because
601
+ many respondents are still nervous about traveling – but they didn’t want to bar others from being able to attend a
602
+ face-to-face conference.
603
+ In the survey’s text comments, respondents shared a range of opinions. Some had serious issues with virtual
604
+ attendance and made a good case for choosing in-person conferences. Comments included:
605
+
606
+ Nothing today can replace the human networking and high-intensity one-on-one networking that happens at
607
+ an in-person conference
608
+
609
+
610
+
611
+ Page 12
612
+
613
+ Virtual is too much one-way broadcast
614
+
615
+ Virtual conferences are absolutely abysmal experiences
616
+
617
+ Virtual – I find it really difficult to pay attention
618
+ Other respondents found virtual or hybrid conferences valuable:
619
+
620
+ I especially value the global participation of virtual conferences, this democratizes technology development
621
+ and sharing
622
+
623
+ Hybrid offers flexibility that can meet the needs and constraints of diverse potential attendees
624
+
625
+ Hybrid is the way of the future
626
+
627
+ Hybrid allows me to make the choice of how to attend
628
+ We asked the survey participants to list the conferences they attended. Respondents replied with an amazingly
629
+ diverse set of conferences. The 331 survey respondents reported attending over 500 different conferences,
630
+ everything from AAAI to ICSE to JavaOne to SPLASH to Zoomtopia. The most frequent conferences attended were
631
+ software engineering conferences (such as ICSE and SPLASH), consumer products gatherings (CES), agile
632
+ development conferences (sponsored by Agile Alliance or Scrum Alliance).
633
+ The survey asked respondents to rate potential obstacles for virtual and in-person conferences. The purpose of these
634
+ questions was to solicit improvements for conference program design and logistics. Responses identified aspects of
635
+ virtual and in-person conferences that might limit participation.
636
+ Identified challenges for virtual conferences were:
637
+
638
+ Ineffective support for casual discussions
639
+
640
+ Ineffective tools for interactive discussions
641
+
642
+ Time zone issues
643
+
644
+ Fatigue due to long virtual meetings
645
+ Identified challenges for in-person conferences were:
646
+
647
+ Registration and travel costs are too high
648
+
649
+ Ongoing pandemic related health risks
650
+
651
+ Time away from family or work
652
+ The challenges for virtual conferences focused on communications and interactions – while the obstacles for in-
653
+ person conferences related to economic and health issues (cost, travel, and time).
654
+ We asked how many conferences participants attended in 2021 and how many conferences they planned to attend in
655
+ 2022.
656
+
657
+ 86% of respondents reported attending at least one virtual or hybrid conference in 2021
658
+
659
+ 79% said they would attend at least one virtual or hybrid conference in 2022
660
+ Also, the average number of “conferences attended” rose significantly per survey respondent.
661
+
662
+ The mean number of 2021 conferences attended = 2.1
663
+
664
+ The mean number of planned 2022 conferences = 3.5
665
+ This ratio held firm across several job roles: managers, university faculty, and industry software developers.
666
+ To increase the viability of virtual conferences, enabling casual discussions and interactive discussions requires
667
+ creativity and effort by organizers and attendees. Conference organizers need to incorporate conference activities
668
+ that will help the online conference community to get to know one another. Online participants will get more out of
669
+ their conference experience if they would be willing to do more than just “view” talks. Questions and dialog
670
+ between conference attendees help increase understanding.
671
+ Our survey suggests that in order to increase the value of in-person conferences, conference organizers need to
672
+ convert at least part of their meetings to a virtual event – to attract attendees who would not normally participate
673
+
674
+
675
+
676
+ Page 13
677
+ because of cost and travel barriers. Organizers need to keep in mind that the effectiveness of virtual and hybrid
678
+ events will vary depending on the conference content and structure.
679
+ 11. Keep conferences simple, understand motivations of the participants
680
+ 11.1. Practices for virtual and hybrid conferences
681
+ To reduce the complexity and increase the appeal of virtual and/or hybrid conferences, here are some practices the
682
+ authors have found useful:
683
+
684
+ Smaller conferences (fewer talks, fewer tracks, fewer days) that simplify logistics
685
+
686
+ Shorter conference days (4 hours of conference program per day instead of 6 or 8 hours)
687
+
688
+ Keynote talks in “the middle of day” to anchor the program
689
+
690
+ Moderated Q&A: host-curated questions received via chat
691
+
692
+ Easy-to-navigate conference program: with hyperlinks to program elements
693
+
694
+ Web-based conference programs: attendee sees the schedule with automatic time zone localization for their
695
+ time zone
696
+
697
+ Support: a “help line” for technical assistance (either via chat or phone)
698
+
699
+ Be kind to presenters: avoid scheduling 3:00 a.m. presentations
700
+
701
+ Registration options: sell registrations “by program element” for broad spectrum conferences; also sell an
702
+ “all-access” registration
703
+ Less helpful strategies (“antipatterns”) include:
704
+
705
+ “Live” anonymous chat feeds – with inappropriate, vitriolic, or profane comments
706
+
707
+ Conference program that is difficult to navigate
708
+
709
+ Incomplete presenter and attendee profiles
710
+ 11.2. Motivations for attendees and organizers
711
+ Many conference activities are linked to the “motivations for conference attendance.” Virtual conferences can
712
+ adequately address some of them – but there are some activities that work much better at in-person conferences.
713
+ [Note that ratings in these tables are the subjective opinions of the authors.]
714
+ Attendee
715
+ Motivation
716
+ Conference Program
717
+ Element
718
+ In-person
719
+ Virtual
720
+ Learning
721
+ All program elements
722
+ +++
723
+ ++
724
+ Ideation &
725
+ Problem Solving
726
+ Collaborative workshops
727
+ +++
728
+ +
729
+ Publishing
730
+ Conference papers
731
+ +++
732
+ +++
733
+ Networking
734
+ Social networking
735
+ +++
736
+ +
737
+ Fun
738
+ Social activities
739
+ +++
740
+ +
741
+ Relative Value of Conference Program Elements (for attendee self-development)
742
+
743
+
744
+
745
+ Page 14
746
+ Attendee/Organization Goal
747
+ Conference Program Element
748
+ In-person
749
+ Virtual
750
+ Cost-effective Learning
751
+ Presentations, Tutorials, Workshops
752
+ +
753
+ +++
754
+ Scout Trends
755
+ Expert chats, Demos, Exhibits, Posters
756
+ +++
757
+ +
758
+ Social Networking
759
+ Snacks/Lunch/Dinner/Hallway chats
760
+ +++
761
+ +
762
+ Recruiting
763
+ Presentations,
764
+ Social networking
765
+ ++
766
+ ++
767
+ Marketing Products
768
+ Special events,
769
+ Sponsor receptions, Tradeshows
770
+ +++
771
+ ++
772
+ Enhancing Reputation
773
+ Peer reviewed papers,
774
+ Organization success stories,
775
+ Sponsor keynotes
776
+ +++
777
+ ++
778
+ Relative Effectiveness of In-person vs Virtual Conference Program Elements
779
+ In the opinion of the authors, the list of “goals” in the left column are the principal benefits to organizations when
780
+ their employees attend conferences. Recruiting and marketing are much more effective when done in person. On the
781
+ other hand, cost-effective learning is a key motivation for companies to have their staff attend virtual conferences.
782
+ Conference organizers need to monitor the primary motivations of their attendees to ensure that activities will meet
783
+ the needs of both repeat attendees and conference newbies.
784
+ Conference Organizer Objective
785
+ How
786
+ In-person
787
+ Virtual
788
+ Education / Training
789
+ Feature “hot topics”
790
+ attractive to attendees
791
+ Tutorials and workshops that
792
+ support “collaborative and
793
+ experiential learning”
794
+ ++
795
+ ++
796
+ Maximize Revenue
797
+ Hot topics
798
+ Feature “experts”
799
+ Targeted marketing/discounts
800
+ +++
801
+ +
802
+ Community Building
803
+ Targeted marketing
804
+ Feature community experts
805
+ Community sponsors
806
+ ++
807
+ +
808
+ Increased Accessibility
809
+ Global marketing
810
+ Sponsor attendees
811
+ +
812
+ +++
813
+ Showcase University or Company
814
+ Promote location benefits
815
+ +++
816
+ +
817
+ Relative Value of In-Person vs Virtual Conferences for Organizers
818
+ Again, these relative assessments are the opinions of the authors. Our framework is a starting point for the reader to
819
+ evaluate the most relevant tradeoffs for conference attendees, sponsors, and organizers.
820
+ A virtual conference may have a different mission than an in-person conference – and it may be judged as
821
+ “successful” even if it doesn’t achieve all of the goals listed above.
822
+ 11.3. Motivations for conference presenters
823
+ Conference presenters have a wide range of motivations. Most of their goals are similar to conference attendees –
824
+ especially for presenters who are members of the core community. Presenters may also attend the full conference to
825
+ learn, scout tech trends, recruit, and market products. One of the most important collateral benefits of being a
826
+ conference presenter is the potential for an increase in reputation as a subject matter expert.
827
+
828
+
829
+
830
+ Page 15
831
+ Some non-community members (i.e., individuals who have not attended previous conferences associated with the
832
+ community) may be invited to participate in a conference program as a keynote speaker or panelist. Each conference
833
+ has its own guidelines for keynotes and speaker compensation. Featured speakers might include:
834
+
835
+ Famous researchers, authors, and experts
836
+
837
+ Celebrities: executives, entertainers, athletes, writers, and inspirational individuals
838
+ Compensation can be an issue for speakers. An invited speaker may have a mercenary interest. Speaker bureaus
839
+ have a reputation for negotiating high appearance fees for famous individuals. Other invited speakers may be willing
840
+ to forego direct compensation, because they view their appearance as a publicity and marketing opportunity for their
841
+ company’s products and services.
842
+ “Virtual speakers” – speakers who aren’t required to travel – can sometimes be less expensive. Most speakers are
843
+ more willing to deliver a virtual talk, because they can avoid the time and inconvenience of travel. “Virtual” can
844
+ simplify scheduling, and it is especially useful for organizing panel sessions – where panelists might participate
845
+ from any continent.
846
+ On the other hand, when a virtual talk is broadcast online to a large conference audience, it raises the question of
847
+ “digital rights management” which if not addressed might lead to the illegal bootlegging of screen-capture
848
+ recordings by conference attendees – however this can now be a challenge for in-person conferences too!
849
+ Alternatively, speakers might desire larger fees for a wider distribution of their presentations – although in the age of
850
+ YouTube videos and TedTalks – the world is moving slowly towards “Open Access.”
851
+ 12. Reflecting on the past, trying new things in the future
852
+ 12.1. Conference surveys, retrospectives, and experiments
853
+ It is essential that conference organizers keep asking questions of their stakeholders – to sustain a conference’s
854
+ relevance. Every conference should run a post-conference survey to identify trends (year over year) and run a
855
+ retrospective to learn and improve. Also, because the best practices for virtual and hybrid conferences are evolving,
856
+ organizers should experiment with new approaches.
857
+ Conference organizers need to track the changing attitudes of their own community of conference attendees and
858
+ presenters, just as the authors’ (Fraser/Mancl) community survey in the spring of 2022 gathered opinions from
859
+ people who attend a spectrum of conferences. There are many things for conference organizers to assess:
860
+
861
+ Are attendees satisfied with the conference’s virtual platform? If not – why not?
862
+
863
+ Is the conference is serving the needs its community? For example, if the conference is intended to serve an
864
+ international audience, how successful is its marketing? How effective is the conference at delivering
865
+ value?
866
+
867
+ What changes might improve accessibility and attract a diverse community?
868
+ A “retrospective” is an essential management practice for conference stakeholders to drive ongoing improvements to
869
+ a conference. A retrospective is an informal meeting of conference organizers after the event to reflect on which
870
+ strategies worked well or what to consider for the next event (assuming a conference series).
871
+ A survey is an essential part of the feedback process. Why collect opinions from conference attendees? The views of
872
+ community members evolve over time. Organizers might believe a virtual or hybrid conference cannot be successful
873
+ based on a dated pre-pandemic survey. Attitudes change. Expanding access, reaching out to an international
874
+ community, and improving diversity are also increasingly important goals for conferences in the third decade of the
875
+ 21st century.
876
+ 12.2. Attendee self-assessment after a conference
877
+ The authors have attended many conferences, and we are still learning. We have personally assessed our likes and
878
+ dislikes about in-person, virtual, and hybrid conferences – because we perform our own “self-assessment” after each
879
+ conference experience.
880
+ For example, we have both worked for many years in a corporate culture where technical staff members would write
881
+ and present short “trip reports” following any outside activities. A good conference report focuses on two things.
882
+
883
+
884
+
885
+ Page 16
886
+
887
+ What did the conference attendee learn at the conference? (short summaries of interesting presentations,
888
+ ideas collected from hallway conversations)
889
+
890
+ How well did the attendee’s conference activities meet personal and corporate goals? (learning specific
891
+ technology trends, recruiting new staff, or doing targeted marketing)
892
+ With a series of self-assessment reports for conferences, the value of participation becomes more evident. In the mix
893
+ of in-person, virtual, and hybrid conferences, reports help us to assess the effectiveness of each type of conference
894
+ participation. Although it requires daily effort during the conference, a report doesn’t need to be a long narrative. A
895
+ report might consist of one or two paragraphs summarizing each day’s program – an outline of conference topics,
896
+ good questions from the conference sessions, and a short list of “new contacts.”
897
+ The authors look forward to learning more about the evolution of conferences from new surveys shared by
898
+ conference organizers and informal conference reports shared by our colleagues.
899
+ 12.2. Attendee multi-tasking at a conference
900
+ Two situations to consider unrelated to the conference focus: (1) an in-person conference where attendees are
901
+ distracted for reasons directly unrelated to the conference (work or personal); or (2) a virtual conference where
902
+ attendees are multi-tasking on non-conference related matters. The degree of “distraction” is likely due to an
903
+ attendee not being fully engaged by the conference or not having any conference related “deliverables.” For
904
+ example, will they be evaluated post-conference via a trip report/presentation which requires them to remain focused
905
+ – or is their personal value self-assessed?
906
+ 13. The future?
907
+ Although “virtual” changed the conference experience in the early stages of the pandemic, the flexibility of virtual
908
+ participation has had important side benefits. Virtual has led to increased conference accessibility through lower
909
+ attendee travel costs (money, time, carbon, government visas), and reduced expenditures by companies, universities,
910
+ and governments. One conference category where “virtual” meeting technologies are not making a significant
911
+ difference currently – are trade shows. For example, the annual Consumer Technology Association’s CES 2022
912
+ reported a 75% drop in attendance (40,000 attendees instead of the pre-pandemic 170,000 attendees) [16].
913
+ Areas ripe for “virtual” improvement include:
914
+
915
+ Increased support for casual serendipitous interactions
916
+
917
+ Support for interactive discussions for ideation
918
+
919
+ Convenient post-event access to video and presentation content
920
+
921
+ Sustainable revenue models for virtual events
922
+ While “online fatigue” is an issue for virtual conferences, it is not obvious whether this is more than the fatigue
923
+ experienced with travel to an in-person conference. While some might argue that the lure of a conference destination
924
+ mitigates travel fatigue – the authors suggest that more data and research is required to assess the comparative
925
+ impact of online versus travel fatigue on conference attendees. In-person conferences appear to catalyze increased
926
+ attendee interaction. In comparison, virtual conference environments, as currently implemented, seem to foster less
927
+ engagement between attendees.
928
+ The questions of in-person, virtual, or hybrid conferences – and the appropriate ways to apply advances in virtual
929
+ technology – need to be answered in the context of global and personal issues. The world is facing a climate crisis.
930
+ Society is becoming more aware of diversity and equity issues. All of us are facing individual challenges: keeping
931
+ our knowledge and skills up to date, expanding our set of personal contacts, and protecting our health by reducing
932
+ unnecessary travel. Our employers and sponsors are trying to get maximum value at the lowest cost. There is no
933
+ single simple answer for conference organizers, but we should all work together to try new ideas.
934
+ The authors believe that it is short-sighted and reduces accessibility if all conferences return to an in-person format.
935
+ Our informal survey suggests that individuals prefer conference attendance options. While there is more work to be
936
+ done to make virtual conferences truly effective and collaborative – we should all recognize that reducing travel and
937
+ carbon footprints is a good thing. In our view, we all need to foster the adoption of virtual conferences – beyond the
938
+ plateau achieved during the pandemic.
939
+
940
+
941
+
942
+ Page 17
943
+ “The only thing we know about the future is that it will be different.” – Peter Drucker
944
+ “Alone we can do so little; together we can do so much.” – Helen Keller
945
+ 14. About the authors
946
+ This report reflects the opinions and the combined 50+ years’ experience with in-person, virtual, and hybrid
947
+ conferences of the authors. Fraser and Mancl have participated and presented at over one hundred ACM, IEEE,
948
+ Agile Alliance, and university hosted conferences and workshops – including the 2000, 2021, and 2022 virtual and
949
+ hybrid ACM SPLASH, ACM/IEEE ICSE, and Agile Alliance’s XP conferences.
950
+ Fraser pioneered virtual hybrid corporate forums at Nortel, Qualcomm, and Cisco Systems starting in the 1990s with
951
+ ISDN based videoconferencing (25+ sites worldwide). The Nortel Design Forum (a global internal hybrid technical
952
+ conference with 30+ ISDN video meeting room hubs and audio/web desktop participation) attracted up to 2,000
953
+ attendees per forum and ran through more than a dozen editions featuring peer-reviewed paper presentations,
954
+ keynotes, and interactive workshops. The hybrid QTech and CTech forums at Qualcomm and Cisco used a
955
+ combination of desktop video applications (e.g., WebEx) and TelePresence – with the program anchored by in-
956
+ person presentations at corporate headquarters.
957
+ Mancl has been a presenter at internal technical conferences on software tools and technology at Lucent and Alcatel-
958
+ Lucent beginning in 1990. He also has worldwide experience in corporate education and training, developing a wide
959
+ range of software technology courses and delivering them in person and virtually using multiple generations of
960
+ collaboration technology.
961
+ ACKNOWLEDGMENTS
962
+ Thanks to our anonymous reviewers and a special thanks to Moshe Vardi, Crista Lopes, and Dave Parnas for their
963
+ perspectives on conferences. We would also like to thank Robert Crawhall and Steve McConnell for feedback on a
964
+ draft of this report. Lastly, we would like to thank Teresa Foster and Ellen Grove from the Agile Alliance for their
965
+ support of our community survey on conference preferences that the authors ran in the spring 2022.
966
+ REFERENCES
967
+ [1] Steven Fraser and Dennis Mancl. 2022. The Future of Conferences Research Survey,
968
+ https://manclswx.com/survey2022.html, Accessed 5 Jan 2023.
969
+ [2] Clarence A. Ellis, Simon J. Gibbs, and Gail Rein. 1991. Groupware: some issues and experiences.
970
+ Communications of the ACM 34, 1 (Jan. 1991), 39–58. https://doi.org/10.1145/99977.99987
971
+ [3] Ken Hiltner. A Nearly Carbon-Neutral (NCN) Conference Model, 2016,
972
+ https://hiltner.english.ucsb.edu/index.php/ncnc-guide/, Accessed 5 Jan 2023.
973
+ [4] ACM Presidential Task Force on What Conferences Can Do to Replace Face to Face Meetings. Virtual
974
+ Conferences, A Guide to Best Practices, 2020, https://www.acm.org/virtual-conferences, Accessed 5 Jan 2023.
975
+ [5] Steven Fraser. 2021. Five Strategies for the Future of Work: Accelerating Innovation through Tech Transfer.
976
+ Experience report from XP 2021 Conference. https://www.agilealliance.org/wp-
977
+ content/uploads/2021/06/S.Fraser.Five-Strategies-for-the-Future-of-Work-Accelerating-Innovation-through-
978
+ Tech-Transfer.pdf. Accessed 5 Jan 2023.
979
+ [6] Marios Constantinides and Daniele Quercia. 2022. The Future of Hybrid Meetings. In 2022 Symposium on
980
+ Human-Computer Interaction for Work (CHIWORK 2022). Association for Computing Machinery, New York,
981
+ NY, USA, Article 6, 1–6. https://doi.org/10.1145/3533406.3533415
982
+ [7] Kevin Sullivan, Interview with Michael Gorlick: On the Mbone. In Will Tracz (editor). 1995. 17th International
983
+ Conference on Software Engineering: Window on the World. SIGSOFT Software Engineering Notes 20, 3 (July
984
+ 1995), 18-19. https://doi.org/10.1145/219308.773575
985
+ [8] Alexandra Ridgway. 2022. “Conference water-cooler moments are not accessible to everyone,” Times Higher
986
+ Education (THE), https://www.timeshighereducation.com/opinion/conference-water-cooler-moments-are-not-
987
+ accessible-everyone, Accessed 5 Jan 2023.
988
+
989
+
990
+
991
+ Page 18
992
+ [9] Liang Zhao. 2020. How the Trillion Dollar Global Business Events Industry Is Adjusting to a Rapid Shift
993
+ Online, Grit Daily, June 11, 2020, https://gritdaily.com/how-the-trillion-dollar-global-business-events-industry-
994
+ is-adjusting-to-a-rapid-shift-online/, Accessed 5 Jan 2023.
995
+ [10] Moshe Y. Vardi. 2020. Reboot the computing-research publication systems. Communications of the ACM 64, 1
996
+ (January 2021), 7. https://doi.org/10.1145/3437991
997
+ [11] Bob Briscoe, Andrew Odlyzko and Benjamin Tilly. 2016. Metcalfe’s law is wrong - communications networks
998
+ increase in value as they add members-but by how much? IEEE Spectrum, vol. 43, no. 7, pp. 34-39, July 2006,
999
+ https://doi.org/10.1109/MSPEC.2006.1653003
1000
+ [12] Kent Beck. 2005. Video interview with Kent Beck at the Agile 2005 Conference, July 22, 2005.
1001
+ https://www.youtube.com/watch?v=1zaCvLVU70o starting at 10:13], Accessed 5 Jan 2023.
1002
+ [13] European Union GDPR website, https://gdpr.eu/what-is-gdpr/, Accessed 5 Jan 2023.
1003
+ [14] Crista Lopes. The Future of Conferences, Strange Loop 2022 conference,
1004
+ https://www.youtube.com/watch?v=LkJNA88R_5w, Accessed 5 Jan 2023.
1005
+ [15] Dennis Mancl. 2022. Personal notes from ICSE 2022 conference,
1006
+ https://manclswx.com/notes/icse2022_report.html#icse_town_meeting, Accessed 5 Jan 2023.
1007
+ [16] Richard N. Velotta. 2022. “CES attendance down more than 75%, organizers say,” Las Vegas Review-Journal,
1008
+ January 7, 2022. https://www.reviewjournal.com/business/conventions/ces/ces-attendance-down-more-than-75-
1009
+ organizers-say-2509439/, Accessed 5 Jan 2023.
1010
+
1011
+ © 2023 Steven Fraser and Dennis Mancl
1012
+
1013
+ This report is licensed under the terms of the Creative Commons Attribution 4.0
1014
+ International License (https://creativecommons.org/licenses/by/4.0/), which
1015
+ permits use, sharing, adaptation, distribution and reproduction in any medium or
1016
+ format, as long as you give appropriate credit to the original author(s) and the
1017
+ source, provide a link to the Creative Commons license and indicate if changes
1018
+ were made.
1019
+
1020
+ BY
-dE1T4oBgHgl3EQf8QXB/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
.gitattributes CHANGED
@@ -9879,3 +9879,99 @@ qdAyT4oBgHgl3EQfl_jn/content/2301.00464v1.pdf filter=lfs diff=lfs merge=lfs -tex
9879
  A9AyT4oBgHgl3EQfd_iI/content/2301.00313v1.pdf filter=lfs diff=lfs merge=lfs -text
9880
  3tFAT4oBgHgl3EQflR3K/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9881
  29FLT4oBgHgl3EQfrS9R/content/2301.12143v1.pdf filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9879
  A9AyT4oBgHgl3EQfd_iI/content/2301.00313v1.pdf filter=lfs diff=lfs merge=lfs -text
9880
  3tFAT4oBgHgl3EQflR3K/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9881
  29FLT4oBgHgl3EQfrS9R/content/2301.12143v1.pdf filter=lfs diff=lfs merge=lfs -text
9882
+ YdAyT4oBgHgl3EQfiPiV/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9883
+ UtE3T4oBgHgl3EQf0Au1/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9884
+ X9E3T4oBgHgl3EQfGAla/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9885
+ R9E2T4oBgHgl3EQfBwbf/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9886
+ JtFQT4oBgHgl3EQfSTYo/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9887
+ JtFQT4oBgHgl3EQfSTYo/content/2301.13289v1.pdf filter=lfs diff=lfs merge=lfs -text
9888
+ fdE0T4oBgHgl3EQf6AIY/content/2301.02757v1.pdf filter=lfs diff=lfs merge=lfs -text
9889
+ a9AyT4oBgHgl3EQf9_qg/content/2301.00885v1.pdf filter=lfs diff=lfs merge=lfs -text
9890
+ s9FJT4oBgHgl3EQfcyxN/content/2301.11545v1.pdf filter=lfs diff=lfs merge=lfs -text
9891
+ jNE5T4oBgHgl3EQfGA7Z/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9892
+ jNE5T4oBgHgl3EQfGA7Z/content/2301.05428v1.pdf filter=lfs diff=lfs merge=lfs -text
9893
+ z9AzT4oBgHgl3EQf8f40/content/2301.01904v1.pdf filter=lfs diff=lfs merge=lfs -text
9894
+ A9AyT4oBgHgl3EQfd_iI/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9895
+ JNE4T4oBgHgl3EQfhg0d/content/2301.05125v1.pdf filter=lfs diff=lfs merge=lfs -text
9896
+ 3tAyT4oBgHgl3EQf1_ko/content/2301.00743v1.pdf filter=lfs diff=lfs merge=lfs -text
9897
+ aNE0T4oBgHgl3EQfnQFP/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9898
+ DdAzT4oBgHgl3EQfT_w7/content/2301.01258v1.pdf filter=lfs diff=lfs merge=lfs -text
9899
+ zNE5T4oBgHgl3EQfNw6V/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9900
+ cdE0T4oBgHgl3EQfWQDo/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9901
+ V9FPT4oBgHgl3EQfqjWj/content/2301.13142v1.pdf filter=lfs diff=lfs merge=lfs -text
9902
+ OtFJT4oBgHgl3EQfICxT/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9903
+ DdAzT4oBgHgl3EQfT_w7/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9904
+ V9FPT4oBgHgl3EQfqjWj/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9905
+ c9E0T4oBgHgl3EQfoAGA/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9906
+ dtAzT4oBgHgl3EQfn_1r/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9907
+ 69AyT4oBgHgl3EQfpvg-/content/2301.00530v1.pdf filter=lfs diff=lfs merge=lfs -text
9908
+ P9FJT4oBgHgl3EQf2S1v/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9909
+ z9E5T4oBgHgl3EQfOQ4n/content/2301.05495v1.pdf filter=lfs diff=lfs merge=lfs -text
9910
+ gtE2T4oBgHgl3EQfcAfW/content/2301.03892v1.pdf filter=lfs diff=lfs merge=lfs -text
9911
+ ItE3T4oBgHgl3EQfugv_/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9912
+ ONE3T4oBgHgl3EQfxAvE/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9913
+ etE3T4oBgHgl3EQfHQmJ/content/2301.04322v1.pdf filter=lfs diff=lfs merge=lfs -text
9914
+ XdE3T4oBgHgl3EQf1Qur/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9915
+ C9AzT4oBgHgl3EQfiP2U/content/2301.01497v1.pdf filter=lfs diff=lfs merge=lfs -text
9916
+ Q9E0T4oBgHgl3EQfkQH6/content/2301.02472v1.pdf filter=lfs diff=lfs merge=lfs -text
9917
+ 3tAyT4oBgHgl3EQf1_ko/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9918
+ 69AyT4oBgHgl3EQfpvg-/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9919
+ V9E1T4oBgHgl3EQfJAMR/content/2301.02945v1.pdf filter=lfs diff=lfs merge=lfs -text
9920
+ hdE0T4oBgHgl3EQfXwBq/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9921
+ 8NAyT4oBgHgl3EQfp_h6/content/2301.00535v1.pdf filter=lfs diff=lfs merge=lfs -text
9922
+ XdE3T4oBgHgl3EQf1Qur/content/2301.04745v1.pdf filter=lfs diff=lfs merge=lfs -text
9923
+ qdE4T4oBgHgl3EQfvw0Q/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9924
+ 8NAyT4oBgHgl3EQfp_h6/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9925
+ M9AyT4oBgHgl3EQf6_oJ/content/2301.00829v1.pdf filter=lfs diff=lfs merge=lfs -text
9926
+ zNE5T4oBgHgl3EQfNw6V/content/2301.05492v1.pdf filter=lfs diff=lfs merge=lfs -text
9927
+ etE3T4oBgHgl3EQfHQmJ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9928
+ _tFAT4oBgHgl3EQfrB0d/content/2301.08650v1.pdf filter=lfs diff=lfs merge=lfs -text
9929
+ etFKT4oBgHgl3EQfry7P/content/2301.11880v1.pdf filter=lfs diff=lfs merge=lfs -text
9930
+ Q9E0T4oBgHgl3EQfkQH6/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9931
+ pdE4T4oBgHgl3EQfvQ2I/content/2301.05240v1.pdf filter=lfs diff=lfs merge=lfs -text
9932
+ w9E2T4oBgHgl3EQfLwYb/content/2301.03716v1.pdf filter=lfs diff=lfs merge=lfs -text
9933
+ BNFRT4oBgHgl3EQfuzgt/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9934
+ PdAzT4oBgHgl3EQfWvxw/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9935
+ RtAzT4oBgHgl3EQfXPx9/content/2301.01315v1.pdf filter=lfs diff=lfs merge=lfs -text
9936
+ xdFQT4oBgHgl3EQfATUq/content/2301.13222v1.pdf filter=lfs diff=lfs merge=lfs -text
9937
+ z9AzT4oBgHgl3EQf8f40/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9938
+ SdAzT4oBgHgl3EQf0f6b/content/2301.01785v1.pdf filter=lfs diff=lfs merge=lfs -text
9939
+ UNE2T4oBgHgl3EQfCwYa/content/2301.03616v1.pdf filter=lfs diff=lfs merge=lfs -text
9940
+ WtE0T4oBgHgl3EQf3QI4/content/2301.02722v1.pdf filter=lfs diff=lfs merge=lfs -text
9941
+ ztFLT4oBgHgl3EQfoC-E/content/2301.12130v1.pdf filter=lfs diff=lfs merge=lfs -text
9942
+ ANFLT4oBgHgl3EQfEi_Y/content/2301.11984v1.pdf filter=lfs diff=lfs merge=lfs -text
9943
+ cdFPT4oBgHgl3EQfxjU-/content/2301.13168v1.pdf filter=lfs diff=lfs merge=lfs -text
9944
+ zdFQT4oBgHgl3EQfCTXT/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9945
+ 49FKT4oBgHgl3EQf9y5B/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9946
+ s9A0T4oBgHgl3EQfLP_n/content/2301.02117v1.pdf filter=lfs diff=lfs merge=lfs -text
9947
+ 8tAyT4oBgHgl3EQfc_f6/content/2301.00296v1.pdf filter=lfs diff=lfs merge=lfs -text
9948
+ OdFRT4oBgHgl3EQf4zhC/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9949
+ UNE2T4oBgHgl3EQfCwYa/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9950
+ 8tAyT4oBgHgl3EQfc_f6/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9951
+ 8NE4T4oBgHgl3EQfdAy1/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9952
+ 8NE4T4oBgHgl3EQfdAy1/content/2301.05088v1.pdf filter=lfs diff=lfs merge=lfs -text
9953
+ 1NE2T4oBgHgl3EQf5Ahd/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9954
+ RtAzT4oBgHgl3EQfXPx9/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9955
+ itE3T4oBgHgl3EQf4wuZ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9956
+ V9E1T4oBgHgl3EQfJAMR/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9957
+ zdAzT4oBgHgl3EQfQ_uv/content/2301.01209v1.pdf filter=lfs diff=lfs merge=lfs -text
9958
+ 1NE4T4oBgHgl3EQfzQ1E/content/2301.05272v1.pdf filter=lfs diff=lfs merge=lfs -text
9959
+ ctAzT4oBgHgl3EQfLvsV/content/2301.01118v1.pdf filter=lfs diff=lfs merge=lfs -text
9960
+ ctAzT4oBgHgl3EQfLvsV/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9961
+ VNE1T4oBgHgl3EQfbASE/content/2301.03168v1.pdf filter=lfs diff=lfs merge=lfs -text
9962
+ zdAzT4oBgHgl3EQfQ_uv/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9963
+ k9E1T4oBgHgl3EQfNwMc/content/2301.03005v1.pdf filter=lfs diff=lfs merge=lfs -text
9964
+ j9A0T4oBgHgl3EQfIv_e/content/2301.02081v1.pdf filter=lfs diff=lfs merge=lfs -text
9965
+ fdE0T4oBgHgl3EQf6AIY/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9966
+ 1NE4T4oBgHgl3EQfzQ1E/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9967
+ u9AzT4oBgHgl3EQf6_6o/content/2301.01884v1.pdf filter=lfs diff=lfs merge=lfs -text
9968
+ INE4T4oBgHgl3EQfhA00/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9969
+ sdFKT4oBgHgl3EQfJy1E/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9970
+ 29FLT4oBgHgl3EQfrS9R/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9971
+ WtE0T4oBgHgl3EQf3QI4/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9972
+ k9E1T4oBgHgl3EQfggTF/content/2301.03231v1.pdf filter=lfs diff=lfs merge=lfs -text
9973
+ 49FKT4oBgHgl3EQf9y5B/content/2301.11955v1.pdf filter=lfs diff=lfs merge=lfs -text
9974
+ ztFLT4oBgHgl3EQfoC-E/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9975
+ 3NE1T4oBgHgl3EQfAQKK/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9976
+ WtE3T4oBgHgl3EQf1AtK/content/2301.04742v1.pdf filter=lfs diff=lfs merge=lfs -text
9977
+ u9AzT4oBgHgl3EQf6_6o/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1NE2T4oBgHgl3EQf5Ahd/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8cd96bf473aa8aa559b56fae80230cd08b7f7e0e04ee8a3f4ce3b450e6a9dedb
3
+ size 1114157
1NE2T4oBgHgl3EQf5Ahd/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66cefe25893598aedf004bbdee9d2875ae9994563d8f1dc268421bc1be334728
3
+ size 39949
1NE4T4oBgHgl3EQfzQ1E/content/2301.05272v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a9b53dad5f1a141ecbf63d356c2575b5dad2f1045505091129208fc8fa551f1
3
+ size 152015
1NE4T4oBgHgl3EQfzQ1E/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:610746013cb2b397b45dd76d374829a5ef01f4b92418a94eaa818806c79a4471
3
+ size 1638445
1NE4T4oBgHgl3EQfzQ1E/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d76f0cdf4950a5f5bfa6f47aa0727738ba60007206923ff18c0d1be8ce4ae71f
3
+ size 62380
29FLT4oBgHgl3EQfrS9R/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea019431ae87b00ef9a2e93f2722f540a0af9ed231f4ae7096c4807a86f02335
3
+ size 13565997
39E1T4oBgHgl3EQfSgNA/content/tmp_files/2301.03066v1.pdf.txt ADDED
@@ -0,0 +1,1416 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Impacts of momentum dependent interaction, symmetry energy and near-threshold
2
+ NN → N∆ cross sections on isospin sensitive flow and pion observables
3
+ Yangyang Liu,1, ∗ Yingxun Zhang,1, 2, † Junping Yang,1 Yongjia Wang,3, ‡ Qingfeng Li,3, 4, § and Zhuxia Li1
4
+ 1China Institute of Atomic Energy, Beijing 102413, China
5
+ 2Guangxi Key Laboratory of Nuclear Physics and Technology,
6
+ Guangxi Normal University, Guilin, 541004, China
7
+ 3School of Science, Huzhou University, Huzhou 313000, China
8
+ 4Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
9
+ (Dated: January 10, 2023)
10
+ Based on the ultra-relativistic quantum molecular dynamics (UrQMD) model, the impacts of
11
+ momentum dependent interaction, symmetry energy and near-threshold NN → N∆ cross sections
12
+ on isospin sensitive collective flow and pion observables are investigated. Our results confirm that
13
+ the elliptic flow of neutrons and charged particles, i.e. vn
14
+ 2 and vch
15
+ 2 , are sensitive to the strength
16
+ of momentum dependence interaction and the elliptic flow ratio, i.e., vn
17
+ 2 /vch
18
+ 2 , is sensitive to the
19
+ stiffness of symmetry energy. For describing the pion multiplicity near the threshold energy, accurate
20
+ NN → N∆ cross sections are crucial. With the updated momentum dependent interaction and
21
+ NN → N∆ cross sections in UrQMD model, seven observables, such as directed flow and elliptic
22
+ flow of neutrons and charged particles, the elliptic flow ratio of neutrons to charged particles, charged
23
+ pion multiplicity and its ratio π−/π+, can be well described by the parameter sets with the slope
24
+ of symmetry energy from 5 MeV to 70 MeV. To describe the constraints of symmetry energy at
25
+ the densities probed by the collective flow and pion observables, the named characteristic density
26
+ is investigated and used. Our analysis found that the flow characteristic density is around 1.2ρ0
27
+ and pion characteristic density is around 1.5ρ0, and we got the constrains of symmetry energy at
28
+ characteristic densities are S(1.2ρ0) = 34 ± 4 MeV and S(1.5ρ0) = 36 ± 8 MeV. These results are
29
+ consistent with previous analysis by using pion and flow observable with different transport models,
30
+ and demonstrate a reasonable description of symmetry energy constraint should be presented at the
31
+ characteristic density of isospin sensitive observables.
32
+ I.
33
+ INTRODUCTION
34
+ The isospin asymmetric nuclear equation of state is
35
+ crucial for understanding the isospin asymmetric objects,
36
+ such as the structure of neutron-rich nuclei, mechanism
37
+ of neutron-rich heavy ion collisions, the properties of neu-
38
+ tron stars including neutron star mergers and core col-
39
+ lapse supernovae[1–4].
40
+ The symmetric part of isospin
41
+ asymmetric equation of state has been well constrained
42
+ by using the flow and Kaon condensation[5]. However,
43
+ the symmetry energy away from the normal density still
44
+ have large uncertainty, and it leads that the constraint
45
+ of symmetry energy becomes one of the important goal
46
+ in nuclear physics[6, 7].
47
+ The ultimate goal of symmetry energy constraint is to
48
+ obtain the density dependence of symmetry energy over
49
+ a wide range, and many efforts have been devoted to con-
50
+ strain the symmetry energy from subsaturation density
51
+ to suprasaturation density. For probing the symmetry
52
+ energy at suprasaturation density, the isospin sensitive
53
+ observables in heavy ion collisions (HICs), such as the
54
+ ratio of elliptic flow of neutrons to charged particles, hy-
55
+ drogen isotopes or protons (vn
56
+ 2 /vch
57
+ 2 , vn
58
+ 2 /vH
59
+ 2 or vn
60
+ 2 /vp
61
+ 2)[8–
62
+ 12] and the multiplicity ratio of charged pions (i.e.,
63
64
65
66
67
+ M(π−)/M(π+) or named as π−/π+)[13–23], were mainly
68
+ used.
69
+ By comparing the calculations to transverse-
70
+ momentum-dependent or integrated FOPI/LAND and
71
+ ASY-EOS elliptic flow data of nucleons and hydrogen
72
+ isotopes, a moderately soft to linear symmetry energy
73
+ is obtained with UrQMD[8, 10, 11] and T¨ubingen quan-
74
+ tum molecular dynamics (T¨uQMD) models[9]. The lower
75
+ limit of the slope of symmetry energy L obtained with the
76
+ flow ratio data is L > 60 MeV[24], which overlaps with
77
+ the upper limits of the constraints from nuclear structure
78
+ and isospin diffusion, i.e., L ≈ 60±20 MeV[25–27]. How-
79
+ ever, the constraints of symmetry energy from π−/π+
80
+ show strong model dependence[15–21, 28], and the ex-
81
+ tracted L values ranges from 5 MeV to 144 MeV. It may
82
+ be caused by the different treatments on the nucleonic
83
+ potential, ∆ potential, threshold effects, pion potential,
84
+ Pauli blocking, in-medium cross sections and so on, and
85
+ also by the different numerical technical for solving the
86
+ transport equations.
87
+ To reduce the model dependence and enhance the reli-
88
+ ability of the constraints of symmetry energy, especially
89
+ at suprasaturation density, the transport model evalu-
90
+ ations are required.
91
+ The transport model evaluation
92
+ project has made important progress on benchmarking
93
+ the treatment of particle-particle collision[29, 30] and
94
+ nucleonic mean field potential[31] in both Boltzmann-
95
+ Uehling-Uhlenbeck (BUU) type and Quantum molecu-
96
+ lar dynamics (QMD) type models. For simulating the
97
+ collisions or decay of resonance particles, the time-step-
98
+ arXiv:2301.03066v1 [nucl-th] 8 Jan 2023
99
+
100
+ 2
101
+ free method is suggested[29, 30] since this method au-
102
+ tomatically determine whether the resonance will col-
103
+ lide or decay according to their collision time or decay
104
+ time. In the UrQMD model, the time-step-free method
105
+ is adopted in the collision part[29, 30], and the nucleonic
106
+ potential is also involved for extending its applications
107
+ in low-intermediate energy HICs[10, 21].
108
+ This model
109
+ has been successfully used to study the HICs from low-
110
+ intermediate energy to high energies[10, 21, 24, 32, 33].
111
+ Another method to reduce the model uncertainties is si-
112
+ multaneously describing the observables data (or named
113
+ doing combination analysis), such as isospin sensitive col-
114
+ lective flow and pion observables. For the combination
115
+ analysis on the isospin sensitive nucleonic and pion ob-
116
+ servables, there were few works to simultaneously inves-
117
+ tigate them except the T¨uQMD model[20] as far as we
118
+ know.
119
+ Thus, it will be interesting to do combination
120
+ analysis on nucleonic and pion observables back-to-back
121
+ by the UrQMD model for increasing the reliability of the
122
+ constraints of symmetry energy in the community.
123
+ In previous analysis on the neutrons to protons or
124
+ to hydrogen isotopes elliptic flow ratios[10] or π−/π+
125
+ ratios[21] by UrQMD model, the momentum dependent
126
+ interaction (MDI) form, i.e., t4 ln2(1+t5(p1−p2)2)δ(r1−
127
+ r2), was used. This form was extracted from the Arnold’s
128
+ optical potential data [34, 35]. In 1990’s, the real part
129
+ of the global Dirac optical potential (Schr¨odinger equiv-
130
+ alent potential) was published by Hama et al. [36], in
131
+ which angular distribution and polarization quantities
132
+ in proton-nucleus elastic scattering were analyzed in the
133
+ range of 10 MeV to 1 GeV. The Hama’s data generated
134
+ Lorentzian-type momentum-dependent interaction [35],
135
+ which give a stronger momentum dependent potential
136
+ than the Arnold’s form at high momentum, have been
137
+ used in many version of transport models[37–42] for
138
+ studying high energy HICs. In another, the cross sections
139
+ of NN → N∆ channel, i.e.,σNN→N∆, used in UrQMD
140
+ model are obtained by fitting CERN data [43], and the
141
+ fitting formula underestimate σNN→N∆ near the thresh-
142
+ old energy which will be shown in Figure 2. Thus, the
143
+ refinements of MDI and formula of NN → N∆ cross
144
+ section σNN→N∆ near the threshold are necessary for si-
145
+ multaneously describing the flow and pion observables.
146
+ In this work, we will address these issues with the
147
+ UrQMD model and investigate their influence on nucle-
148
+ onic flow and pion observables. Further, the constraints
149
+ of symmetry energy at suprasaturation density are dis-
150
+ cussed with the updated version of UrQMD model. The
151
+ paper is organized as follows: in Sect.II, we briefly intro-
152
+ duce the nucleonic potential, momentum dependent in-
153
+ teraction and refined cross sections of NN → N∆ chan-
154
+ nel. In Set.III, the impacts of momentum dependent in-
155
+ teraction, symmetry energy and refined NN → N∆ cross
156
+ sections on flow and pion observables are presented and
157
+ discussed. By comparing the calculations with the ASY-
158
+ EOS flow data and FOPI pion data, the constraints of
159
+ symmetry energy at characteristic density are discussed.
160
+ Sec.IV is the summary of this work.
161
+ II.
162
+ URQMD MODEL
163
+ The version of UrQMD model we used is the same as
164
+ that in Ref.[21], in which the cross sections of N∆ →
165
+ NN channel are replaced with a more delicate form by
166
+ considering the ∆-mass dependence of the M-matrix in
167
+ the calculation of N∆ → NN cross section[44].
168
+ This
169
+ version has been successfully used to describe the FOPI
170
+ experimental data of multiplicity and ratio of charged
171
+ pion[21], but did not use to simultaneously describe the
172
+ pion and flow observables.
173
+ Since we focus on the effects of different forms of MDI,
174
+ symmetry energy, and cross sections of NN → N∆, we
175
+ briefly introduce them in the following. The nucleonic
176
+ potential energy U is calculated from the potential energy
177
+ density, i.e., U =
178
+
179
+ ud3r. The u reads as
180
+ u = α
181
+ 2
182
+ ρ2
183
+ ρ0
184
+ +
185
+ β
186
+ η + 1
187
+ ρη+1
188
+ ρη
189
+ 0
190
+ (1)
191
+ +gsur
192
+ 2ρ0
193
+ (∇ρ)2 + gsur,iso
194
+ ρ0
195
+ [∇(ρn − ρp)]2
196
+ +umd + usym.
197
+ The parameters α, β, and η are related to the two, three-
198
+ body interaction term. The third and fourth terms are
199
+ isospin independent and isospin dependent surface term,
200
+ respectively. The umd is from the MDI term, and we will
201
+ adopt two forms in this work. The usym is the symmetry
202
+ energy term.
203
+ The energy density associated with the MDI, i.e., umd,
204
+ is calculated according to the following relationship,
205
+ umd =
206
+
207
+ ij
208
+
209
+ d3p1d3p2fi (⃗r, ⃗p1) fj (⃗r, ⃗p2) vmd(∆p12).
210
+ (2)
211
+ The form of vmd(∆p12) is assumed as,
212
+ vmd(∆p12) = t4 ln2(1 + t5∆p2
213
+ 12) + C,
214
+ (3)
215
+ where ∆p12 = |p1 − p2|, and the parameters t4, t5 and
216
+ C are obtained by fitting the data of the real part of
217
+ optical potential. In details, we fit the data of real part
218
+ of nucleon-nucleus optical potential Vmd(p) according to
219
+ the following ansatz,
220
+ Vmd(p1) =
221
+
222
+ p2<pF
223
+ vmd(p1 − p2)d3p2/
224
+
225
+ p2<pF
226
+ d3p2.
227
+ (4)
228
+ This method is as the same as that in Ref.[35].
229
+ Two
230
+ sets of data of the real part of optical potential are used.
231
+ One is from Arnold et al. [34] which were used in pre-
232
+ vious version of UrQMD[10, 21]. Another is from Hama
233
+ et al. [36]. They are presented as green squares and red
234
+ circles in Fig. 1 (a), respectively. The lines are momen-
235
+ tum dependence interaction vmd(∆p12) at normal den-
236
+ sity obtained by fitting Arnold’s or Hama’s data by using
237
+ Eq.(3) and Eq.(4) within the kinetic energy Ekin ≈ 750
238
+ MeV. The values of t4, t5 and C obtained from Arnold’s
239
+
240
+ 3
241
+ data and Hama’s data are listed in Table I. The momen-
242
+ tum dependence of vHama
243
+ md
244
+ (∆p12) is stronger than that of
245
+ vArnold
246
+ md
247
+ (∆p12), and the value of vHama
248
+ md
249
+ (∆p12) is higher
250
+ than vArnold
251
+ md
252
+ (∆p12) at high momentum region.
253
+ To keep the incompressibility of symmetric nuclear
254
+ matter K0 = 231 MeV for two different MDIs, the pa-
255
+ rameter α, β, and η are readjusted and the values of
256
+ parameters and corresponding effective mass m∗/m are
257
+ listed in Table I.
258
+ TABLE I. Parameters used in the present work.
259
+ t4, C, α,
260
+ β and K0 are in MeV. t5 is in MeV−2, η and m∗/m are
261
+ dimensionless. The width of Gaussian wave packet is taken
262
+ as 1.414 fm for Au+Au collision.
263
+ Para.
264
+ t4
265
+ t5
266
+ C
267
+ α
268
+ β
269
+ η
270
+ K0 m∗/m
271
+ vArnold
272
+ md
273
+ 1.57 5×10−4 -54 -221 153 1.31 231
274
+ 0.77
275
+ vHama
276
+ md
277
+ 3.058 5×10−4 -86 -335 253 1.16 231 0.635
278
+ For the potential energy density of symmetry en-
279
+ ergy part, i.e., usym, we take two forms in the calcu-
280
+ lations. One is the Skyrme-type polynomial form ( (a) in
281
+ Eq. (5)) and another is the density power law form ((b)
282
+ in Eq. (5)). It reads,
283
+ usym = Spot
284
+ sym(ρ)ρδ2
285
+ (5)
286
+ =
287
+
288
+ (A( ρ
289
+ ρ0 ) + B( ρ
290
+ ρ0 )γs + C( ρ
291
+ ρ0 )5/3)ρδ2, (a)
292
+ Cs
293
+ 2 ( ρ
294
+ ρ0 )γiρδ2.
295
+ (b)
296
+ The symmetry energy coefficient is S0 = S(ρ0) and the
297
+ slope of symmetry energy is L = 3ρ0∂S(ρ)/∂ρ|ρ0. Based
298
+ on the values of S0, L and parameters in Table I, one
299
+ can also obtain the parameters of Eq.(5) based on the
300
+ relationship described in Ref. [27, 45]. In following cal-
301
+ culations, we taken S(ρ0) = 30−34 MeV and L = 5−144
302
+ MeV, as shown in Table.II.
303
+ For L < 35 MeV, we use the Skyrme polynomial form
304
+ of Spot
305
+ sym(ρ) because the simple power law form of symme-
306
+ try energy can not give reasonable values at subnormal
307
+ density. Further, the L < 5 MeV sets are not adopted be-
308
+ cause the corresponding symmetry energy becomes nega-
309
+ tive at the densities above 2.7ρ0 and the EOS will not be
310
+ favored by the properties of the neutron stars. Thus, the
311
+ lower limit of L in our calculations is 5 MeV. For L > 35
312
+ MeV, we use the simple power law form of symmetry en-
313
+ ergy. As an example, we present the density dependence
314
+ of symmetry energy in Fig.1 (b) for L = 20, 144 MeV at
315
+ S0=30 and 34 MeV.
316
+ TABLE II. Parameters of symmetry energy and effective mass
317
+ used in the calculations.
318
+ Para. Name
319
+ Values
320
+ Description
321
+ S0
322
+ [30, 34]
323
+ symmetry energy coefficient
324
+ L
325
+ [5,144]
326
+ slope of symmetry energy
327
+ m∗/m
328
+ 0.635,0.77
329
+ isoscalar effective mass
330
+ 0
331
+ 300
332
+ 600
333
+ 900
334
+ -50
335
+ 0
336
+ 50
337
+ 100
338
+ 0.00
339
+ 0.16
340
+ 0.320
341
+ 40
342
+ 80
343
+
344
+
345
+ Re Uopt (MeV)
346
+ Ekin (MeV)
347
+ Arnold
348
+ Hama
349
+ v
350
+ Arnold
351
+ md
352
+ v
353
+ Hama
354
+ md
355
+ (a)
356
+ L=20 MeV
357
+ S0=30 MeV
358
+ S0=34 MeV
359
+ S(r) (MeV)
360
+ L=144 MeV
361
+ r (fm-3)
362
+ (b)
363
+ FIG. 1. (a) Real part of the optical potential Vmd and momen-
364
+ tum dependent interaction vmd. The symbols are the optical
365
+ potential data obtained from Arnold et al. [34] and Hama et
366
+ al. [36]. Lines are the vArnold
367
+ md
368
+ and vHama
369
+ md
370
+ obtained through
371
+ Eq.(4). (b) density dependence of the symmetry energy with
372
+ different S0 and L values.
373
+ In the collision term, the medium modified nucleon-
374
+ nucleon elastic cross sections are used as the same as that
375
+ in our previous works[24]. For the NN → N∆ cross sec-
376
+ tions, we found that the default formula used in UrQMD
377
+ model in Ref. [32] underestimates the data [43] near the
378
+ threshold energy. The discrepancy is shown in Fig.2 (a),
379
+ where the blue line is the fitting formula in Ref. [32] and
380
+ solid symbols are the data taken from Ref. [43].
381
+ Thus, one can expect that we have to use an accurate
382
+ form of NN → N∆ cross section near the threshold en-
383
+ ergy for describing the pion production at 0.4A GeV. To
384
+ refine the fitting of NN → N∆ cross section near the
385
+ threshold energy, we adopt a Hubbert function form to
386
+ describe the NN → N∆ cross sections at √s < 2.21
387
+ GeV. That is,
388
+ σNN→N∆(√s) = A1 + 4A2 ∗ e−(√s−A3)/A4
389
+ (1 + e−(√s−A3)/A4)2 ,
390
+ (6)
391
+ √s < 2.21GeV.
392
+ In which, A1=-1.11 mb, A2=26.30 mb, A3=2.24 GeV,
393
+ and A4=0.05 GeV. We named it as σHub
394
+ NN→N∆ to distin-
395
+ guish the default form in Ref.[32]. The fitting results are
396
+ represented as the red line in Fig.2 (a). Above 2.21 GeV,
397
+ the original fitting function is used.
398
+ As shown in Fig.2 (a), the σHub
399
+ NN→N∆ is closer to the
400
+ experimental data than the original formula. The right
401
+ panels show that the ratio of R = σHub/σDefault, and one
402
+ can see that the cross sections σHub
403
+ NN→N∆ are increased
404
+ by a factor of 8.56 at the beam energy of 0.4A GeV.
405
+ Consequently, one can expect a higher pion multiplicity
406
+ with σHub
407
+ NN→N∆ than the one with σDefault
408
+ NN→N∆. The N∆ →
409
+ NN cross sections are obtained based on the detailed
410
+ balance, in which a ∆ mass dependent N∆ → NN cross
411
+ sections was also considered as in Refs. [21, 44].
412
+
413
+ 4
414
+ 2.0
415
+ 2.1
416
+ 2.2
417
+ 0
418
+ 20
419
+ 40
420
+ 2.0
421
+ 2.1
422
+ 2.2
423
+ 0
424
+ 5
425
+ 10
426
+ 2
427
+ 3
428
+ 4
429
+ 0
430
+ 20
431
+
432
+ s
433
+ Default
434
+ NN→ND
435
+ s
436
+ Hub
437
+ NN→ND
438
+ s1/2 (GeV)
439
+ sNN→ND (mb)
440
+ (a)
441
+ 0.4A GeV
442
+ (b)
443
+ 8.56
444
+ 0.4A GeV
445
+ R=s
446
+ Hub/s
447
+ Default
448
+ s1/2 (GeV)
449
+ DATA
450
+ (c)
451
+ FIG. 2. (a) The cross section of NN → N∆ channel used in
452
+ the default UrQMD model σDefault
453
+ NN→N∆ and obtained by refitting
454
+ the experimental data with Hubbert function σHub
455
+ NN→N∆ near
456
+ threshold energy. (b) The ratio of σHub
457
+ NN→N∆ over σDefault
458
+ NN→N∆
459
+ as a function of √s.
460
+ III.
461
+ RESULTS AND DISCUSSIONS
462
+ The collective flow reflects the directional features of
463
+ the transverse collective motion, and it can be quantified
464
+ in terms of the moments of the azimuthal angle relative
465
+ to the reaction plane, i.e., vn = ⟨cos(nφ)⟩, n = 1, 2, 3, · · · .
466
+ Among the vn, the elliptic flow v2 has been used to de-
467
+ termine the MDI [46], and the ratio between v2 of neu-
468
+ trons and protons, i.e., vn
469
+ 2 /vp
470
+ 2, or ratio between v2 of neu-
471
+ trons and charged particles, i.e., vn
472
+ 2 /vch
473
+ 2 , are proposed to
474
+ determine the symmetry energy at suprasaturation den-
475
+ sity [10–12]. It is known that pions are mainly produced
476
+ through ∆ resonance decay in suprasaturation density re-
477
+ gion at early stage; and the multiplicity ratio of charged
478
+ pions, i.e., π−/π+, was also supposed as a probe to con-
479
+ strain the symmetry energy at suprasaturation density
480
+ and widely studied[13–17, 20, 21]. In this work, we first
481
+ investigate the nucleonic flow observables to determine
482
+ the form of MDI and pion production to determine the
483
+ form of NN → N∆ cross sections near the threshold en-
484
+ ergy. Then, the symmetry energy at suprasaturation den-
485
+ sity will be extracted by comparing the UrQMD calcula-
486
+ tions of vn
487
+ 2 /vch
488
+ 2 to ASY-EOS data and comparing π−/π+
489
+ results to FOPI data.
490
+ A.
491
+ collective flow and pion observable
492
+ In this work, we perform the calculations of Au+Au
493
+ collision at 0.4A GeV witsubsectionh 200,000 events at
494
+ each impact parameter.
495
+ The final observables are ob-
496
+ tained by integrating over b from 0 ot bmax with a certain
497
+ weight. The weight of b is reconstructed by the central-
498
+ ity selection used in the experiments where the Zbound
499
+ or Zrat and the detected charge particle multiplicity or
500
+ the ratio of total transverse to longitudinal kinetic en-
501
+ ergies in the center-of-mass (c.m.) system are used as
502
+ in Refs. [11, 47]. The corresponding impact parameter
503
+ distributes in a wide range and the weight of b is a Gaus-
504
+ sian shape rather than a triangular shape [11], which also
505
+ have been discussed in Refs.[48–50]. The seven observ-
506
+ ables are investigated in the following analysis, as listed
507
+ in Table.III.
508
+ TABLE III. Seven experimental observables used in this work.
509
+ obsevable
510
+ rapidity y0 cut
511
+ θlab cut
512
+ < b >
513
+ vn
514
+ 1 (pt/A)
515
+ −0.5 − 0.5
516
+ 37◦ − 53◦ 5.69 fm [11]
517
+ vch
518
+ 1 (pt/A)
519
+ −0.5 − 0.5
520
+ 37◦ − 53◦ 5.69 fm[11]
521
+ vn
522
+ 2 (pt/A)
523
+ −0.5 − 0.5
524
+ 37◦ − 53◦ 5.69 fm[11]
525
+ vch
526
+ 2 (pt/A)
527
+ −0.5 − 0.5
528
+ 37◦ − 53◦ 5.69 fm[11]
529
+ vn
530
+ 2 /vch
531
+ 2 (pt/A)
532
+ −0.5 − 0.5
533
+ 37◦ − 53◦ 5.69 fm [11]
534
+ M(π)
535
+
536
+
537
+ <2a[47]
538
+ π−/π+
539
+
540
+
541
+ <2a[47]
542
+ a We did not put the average b value here since experimental
543
+ paper only provides b/bmax < 0.15, which is obtained by
544
+ estimating the impact parameter b from the measured
545
+ differential cross sections for the ERAT under a geometrical
546
+ sharp-cut approximation.
547
+ -0.2
548
+ 0.0
549
+ 0.2
550
+ 0.2
551
+ 0.4
552
+ 0.6
553
+ -0.1
554
+ 0.0
555
+ 0.2
556
+ 0.4
557
+ 0.6
558
+ 0.8
559
+
560
+ v1
561
+ neutrons
562
+ (c)
563
+ L=20 MeV
564
+ L=144 MeV
565
+ (a)
566
+
567
+
568
+ v2
569
+ pt/A (GeV/c)
570
+ ASY-EOS
571
+
572
+ (d)
573
+ Au+Au Ebeam=0.4A GeV
574
+ Charged particles
575
+ V
576
+ Arnold s
577
+ Default
578
+ V
579
+ Hama s
580
+ Default
581
+ V
582
+ Hama s
583
+ Hub
584
+ (b)
585
+
586
+ pt/A (GeV/c)
587
+ FIG. 3.
588
+ Panel (a) v1(pt/A) for neutrons; (b) v1(pt/A) for
589
+ charged particles; (c) v2(pt/A) for neutrons, and (d) v2(pt/A)
590
+ for charged particles.
591
+ The green lines are for V Arnold
592
+ md
593
+ and
594
+ σDefault
595
+ NN→N∆, blue lines for V Hama
596
+ md
597
+ and σDefault
598
+ NN→N∆, and red lines
599
+ for V Hama
600
+ md
601
+ and σHub
602
+ NN→N∆. The dash and solid lines represent
603
+ the results with L = 20 MeV and L = 144 MeV. The ASY-
604
+ EOS data of collective flow for neutrons and charged particles
605
+ are shown as circle and triangle symbols[11].
606
+ Fig.3 (a) and (b) show directed flow as a function
607
+ of pt/A for neutrons vn
608
+ 1 (pt/A) and for charged parti-
609
+ cles vch
610
+ 1 (pt/A) at given rapidity region and angle cut.
611
+ The symbols are the ASY-EOS data from Ref.[11]. The
612
+ lines represent the results of UrQMD calculations with
613
+ different forms of MDI, symmetry energy and different
614
+
615
+ 5
616
+ NN → N∆ cross sections. The green lines are the re-
617
+ sults with vArnold
618
+ md
619
+ and σDefault
620
+ NN→N∆, blue lines are the results
621
+ with vHama
622
+ md
623
+ and σDefault
624
+ NN→N∆. By comparing the green and
625
+ blue lines, one can understand the effects of MDI. The red
626
+ lines are the results for vHama
627
+ md
628
+ and σHub
629
+ NN→N∆. By com-
630
+ paring the blue lines and red lines, the effects of σNN→N∆
631
+ can be understood. The dashed lines and solid lines rep-
632
+ resent the results with L = 20 MeV and L = 144 MeV at
633
+ S0 = 32.5 MeV, respectively. The calculations show that
634
+ the vn
635
+ 1 (pt/A) and vch
636
+ 1 (pt/A) increase from negative val-
637
+ ues to positive values with the increasing of pt/A, and the
638
+ sign of v1 changes around pt/A ≈ 0.5 GeV/c. Further-
639
+ more, the calculations show that there is no sensitivities
640
+ of v1 to L, MDI and σNN→N∆ at the selected rapidity
641
+ region, due to the spectator matter blocking effect. In
642
+ addition, the calculations with different combination of
643
+ L, MDI and σNN→N∆ falls in the data region.
644
+ Fig.3 (c) and (d) show the elliptic flow for neutrons
645
+ vn
646
+ 2 (pt/A) and for charged particles vch
647
+ 2 (pt/A), with differ-
648
+ ent L, MDI and σNN→N∆. The symbols and lines have
649
+ the same meaning as in panels (a) and (b). Both the vn
650
+ 2
651
+ and vch
652
+ 2
653
+ have negative values and decrease with pt/A in-
654
+ creasing, which means a preference for particle emission
655
+ out of the reaction plane, towards 90◦ and 270◦. The im-
656
+ portant point is that both vn
657
+ 2 and vch
658
+ 2
659
+ at high pt region
660
+ are strongly sensitive to the strength of MDI and L, but
661
+ hardly influenced by the forms of σNN→N∆. The reason
662
+ is that only 6% of NN collisions belong to NN → N∆
663
+ collision in the present studied beam energy [21]. The
664
+ values of v2 obtained with the vHama
665
+ md
666
+ are always lower
667
+ than that with vArnold
668
+ md
669
+ due to the stronger momentum
670
+ dependence of vHama
671
+ md
672
+ than that of vArnold
673
+ md
674
+ . The calcula-
675
+ tions of vn
676
+ 2 and vch
677
+ 2
678
+ with vHama
679
+ md
680
+ are more closed to the
681
+ ASY-EOS experiment data than the one obtained with
682
+ vArnold
683
+ md
684
+ , which means that the vHama
685
+ md
686
+ is favored. Thus,
687
+ the following analyzing on the symmetry energy effects
688
+ are based on the MDI of vHama
689
+ md
690
+ .
691
+ In addition, both the vn
692
+ 2 and vch
693
+ 2 exhibit some sensitiv-
694
+ ity to the stiffness of the symmetry energy. As shown in
695
+ Fig.3 (c), the values of vn
696
+ 2 obtained with L = 144 MeV
697
+ (stiff) are lower than that with L = 20 MeV (soft) case.
698
+ The reason is that the stiff symmetry energy provides
699
+ the stronger repulsive force on neutrons at suprasatu-
700
+ ration density than that for soft symmetry energy cases.
701
+ For charged particles, as shown in panel (d), vch
702
+ 2 obtained
703
+ with stiff symmetry energy case are higher than that with
704
+ soft symmetry energy case. This is because the emitted
705
+ charged particles are mainly composed of free protons,
706
+ which feel stronger attractive interaction for stiff symme-
707
+ try energy case than that for soft symmetry energy case
708
+ at suprasaturation density. However, vn
709
+ 2 or vch
710
+ 2 cannot be
711
+ used individually to constrain the symmetry energy, be-
712
+ cause both vn
713
+ 2 and vch
714
+ 2
715
+ not only depend on the symmetry
716
+ energy but also on the MDI and incompressibility. For
717
+ example, the calculations with different incompressibility
718
+ can lead to different results of the elliptic flow[51].
719
+ To isolate the contributions from the isocalar poten-
720
+ tial, vn
721
+ 2 /vch
722
+ 2
723
+ ratio was proposed to probe symmetry en-
724
+ ergy and several analysis have been performed by using
725
+ the UrQMD model or T¨uQMD model[11, 20]. Fig.4 (a)
726
+ shows the calculations for vn
727
+ 2 /vch
728
+ 2
729
+ as a function of pt/A
730
+ obtained with vHama
731
+ md
732
+ . The symbols are the data points.
733
+ The upper two lines are the calculations with L = 144
734
+ MeV, and the lower two lines are for L = 20 MeV. The vi-
735
+ olet lines are for S0=30 MeV and red lines are for S0=34
736
+ MeV. The calculations show that vn
737
+ 2 /vch
738
+ 2
739
+ is sensitive to
740
+ L, especially at the low pt region in which the mean-field
741
+ play more important role. The values of vn
742
+ 2 /vch
743
+ 2 obtained
744
+ with stiff symmetry energy cases are larger than that
745
+ with soft symmetry energy case. This behavior can be
746
+ understood from Fig.3 (c) and (d). By comparing the
747
+ calculations of vn
748
+ 2 /vch
749
+ 2
750
+ to ASY-EOS experimental data
751
+ and doing a χ2 analysis, one can find the data favored
752
+ parameter sets. In our work, the parameter sets are dis-
753
+ tinguished by the values of S0 and L. Our conclusion
754
+ is that the parameter sets with L = 5 − 70 MeV and
755
+ S0 = 30 − 34 MeV can describe the data.
756
+ 0.30
757
+ 0.45
758
+ 0.60
759
+ 0
760
+ 1
761
+ 2
762
+ 0
763
+ 50
764
+ 100
765
+ 1500
766
+ 10
767
+ 20
768
+ 30
769
+ L=144 MeV
770
+ L=20 MeV
771
+ ASY-EOS
772
+ 197Au+
773
+ 197Au Ebeam=0.4A GeV
774
+ vn2 / vch
775
+ 2
776
+
777
+
778
+ pt/A (GeV/c)
779
+ (a)
780
+ S0=34 MeV
781
+ (b)
782
+ c
783
+ 2
784
+
785
+ L(MeV)
786
+ S0=30 MeV
787
+ FIG. 4. Panel (a) vn
788
+ 2 /vch
789
+ 2
790
+ as a function of pt/A for L = 20
791
+ MeV and 144 MeV at S0=30 MeV (violet line) and S0=34
792
+ MeV (red line). The black symbols represent the ASY-EOS
793
+ experimental data[11]; (b) χ2 as a function of L with different
794
+ S0.
795
+ Fig.5 (a) shows the calculated Mπ/Apart as a func-
796
+ tion of L with vHama
797
+ md
798
+ , under different forms of σNN→N∆.
799
+ Apart is the nucleon number of the participant, which is
800
+ 90% of the number of system. The blue lines represent
801
+ the calculations obtained with σDefault
802
+ NN→N∆ in the UrQMD
803
+ model.
804
+ By using the σDefault
805
+ NN→N∆, Mπ/Apart is underes-
806
+ timated by about 30% relative to the data.
807
+ This dis-
808
+ crepancy can be understood from the underestimation of
809
+ NN → N∆ cross sections by using the default formula
810
+ σDefault
811
+ NN→N∆ in UrQMD model, as shown in Fig. 2. The vi-
812
+ olet and red lines represent the results obtained with the
813
+ σHub
814
+ NN→N∆ at S0 varying from 30 to 34 MeV. The calcu-
815
+ lated results of Mπ/Apart fall into the data region since
816
+ the σHub
817
+ NN→N∆ enhance the cross sections by a factor of
818
+ 8.56 at 0.4A GeV relative to the default formula. But
819
+ Mπ/Apart can not be used to probe L, since Mπ/Apart is
820
+ insensitive to L based on the calculations.
821
+
822
+ 6
823
+ 0
824
+ 50
825
+ 100
826
+ 0.00
827
+ 0.01
828
+ 0.02
829
+ 0
830
+ 50
831
+ 100
832
+ 1502.0
833
+ 2.5
834
+ 3.0
835
+ 3.5
836
+
837
+ FOPI
838
+ L(MeV)
839
+ Mp/Apart
840
+ (a)
841
+ S0=34 MeV
842
+ p
843
+ -/p
844
+ +
845
+ (b)
846
+ sHub
847
+ sDefault
848
+ L(MeV)
849
+ S0=30 MeV
850
+ FIG. 5. Mπ/Apart and π−/π+ as a function of L with two
851
+ forms of σNN→N∆.
852
+ The blue shaded region is the FOPI
853
+ data[47].
854
+ The blue dashed lines represent the calculations
855
+ obtained with σDefault
856
+ NN→N∆, and the violet and red lines are the
857
+ calculations with σHub
858
+ NN→N∆ for S0 = 30 and 34 MeV.
859
+ In Fig.5 (b), we present the calculated ratios π−/π+ as
860
+ a function of L with different forms of σNN→N∆. Calcu-
861
+ lations show that π−/π+ is sensitive to L for both forms
862
+ of σNN→N∆. Even the calculations with σDefault
863
+ NN→N∆ can
864
+ reproduce the π−/π+ (blue line), one can not believe the
865
+ conclusion since the pion multiplicity is underestimated
866
+ relative to the data. For the calculations with σHub
867
+ NN→N∆,
868
+ both the multiplicity of charged pion and its ratio π−/π+
869
+ can be reproduced. By comparing the calculations to the
870
+ FOPI data, the parameter sets with L = 5 − 70 MeV are
871
+ also favored at S0 = 30 − 34 MeV.
872
+ B.
873
+ Characteristic density of nucleonic flow
874
+ observable and symmetry energy constraints
875
+ Before extracting the constraints of symmetry en-
876
+ ergy at suprasaturation density with collective flow and
877
+ charged pion production, it is interesting to check the
878
+ characteristic density probed by charged pion produc-
879
+ tion and nucleonic flow observable. For pion observable,
880
+ the characteristic density is obtained by averaging the
881
+ compressed density with pion production rate and force
882
+ acting on ∆s in spatio-temporal domain in our previous
883
+ work[21], and the calculations show that the character-
884
+ istic density of pion observable is around 1.5±0.5 times
885
+ normal density.
886
+ For the collective flow of neutrons and charged par-
887
+ ticles, the idea of calculating characteristic density is
888
+ as same as pion characteristic density in our previ-
889
+ ous work[21], but the weight is replaced by momentum
890
+ change of nucleons. The momentum changes of nucleons
891
+ during the time interval reflect the strength of the driven
892
+ force for the collective motion of emitted particles, and
893
+ can be used to understand the origins of v1 and v2. In the
894
+ following calculations, two kinds of momentum change of
895
+ nucleons are used. One is the momentum change in x-
896
+ direction,
897
+ ⟨ρc, flow ⟩|∆px| =
898
+ � t1
899
+ t0 Σi
900
+ ��∆pi
901
+ x(t)/∆t
902
+ �� ρc(t)dt
903
+ � t1
904
+ t0 Σi |∆pix(t)/∆t| dt
905
+ (7)
906
+ and another is the momentum change in tranverse direc-
907
+ tion,
908
+ ⟨ρc, flow ⟩|∆pt| =
909
+ � t1
910
+ t0 Σi
911
+ ��∆pi
912
+ t(t)/∆t
913
+ �� ρc(t)dt
914
+ � t1
915
+ t0 Σi
916
+ ��∆pi
917
+ t(t)/∆t
918
+ �� dt
919
+ .
920
+ (8)
921
+ The summation over i runs over the nucleons belong-
922
+ ing to the emitted nucleons and particles. More details,
923
+ |∆pi
924
+ x/t(t)/∆t| = |(pi
925
+ x/t(t) − pi
926
+ x/t(t − ∆t))/∆t|, i.e., the
927
+ momentum changes of nucleon during the time interval.
928
+ ρc(t) is obtained in a spherical region centered at c.m.
929
+ of the system and with a radius of 3.35 fm. The region
930
+ is used to represent the overlap region in semi-peripheral
931
+ collisions of Au+Au.
932
+ In Figure.6 (a), we plot the time evolution of the aver-
933
+ aged central density ρc(t) for a semi-peripheral collision
934
+ of Au+Au.
935
+ The averaged central density beyond nor-
936
+ mal density from 8 fm/c to 28 fm/c and reaches maxi-
937
+ mum values of 1.8ρ0 at 16 fm/c with the interactions we
938
+ adopted. For convenience, we use ∆p/∆t to represent the
939
+ momentum change per nucleon for nucleons and emitted
940
+ particles, i.e.,
941
+ ∆p
942
+ ∆t = Σi
943
+ ��∆pi(t)/∆t
944
+ ��
945
+ N(t)
946
+ ,
947
+ (9)
948
+ N(t) is the total number of nucleons in the emitted nucle-
949
+ ons and particles. Panel (b) shows the average momen-
950
+ tum changes of emitted particles ∆p
951
+ ∆t as a function of time
952
+ in x-direction and transverse direction. It illustrates that
953
+ the drastic momentum changes of nucleons occur around
954
+ 16 fm/c when the participant region reaches the maxi-
955
+ mum density. It confirms that nucleonic flow observables
956
+ mainly carry the EOS information at high density. Two
957
+ forms of symmetry energy are tested, and they did not
958
+ change the results dramatically.
959
+ By using Eq.(7) and Eq.(8), the characteristic density
960
+ for the collective flow are obtained, and they are around
961
+ 1.2 ± 0.6ρ0. It is consistent with the characteristic den-
962
+ sity obtained in the Ref.[52] and Ref.[53], but is smaller
963
+ than the characteristic density obtained with pion ob-
964
+ servable. Thus, by comparing the calculations of vn
965
+ 2 /vch
966
+ 2
967
+ and π−/π+ to data, one can give the constraints of sym-
968
+ metry energy at two densities, i.e., 1.2 ρ0 and 1.5 ρ0. The
969
+ values of them we got are S(1.2ρ0) = 34 ± 4 MeV and
970
+ S(1.5ρ0) = 36 ± 8 MeV, and we present them as black
971
+ symbols in Fig.7.
972
+ The important point is that the constraints of S(ρ) at
973
+ flow characteristic density, i.e., at 1.2ρ0, are consistent
974
+ with the analysis of elliptic flow ratios or elliptic flow
975
+ difference by UrQMD[10] or T¨uQMD calculations[9, 12]
976
+ which are presented by blue symbols. The constraints of
977
+
978
+ 7
979
+ 0
980
+ 20
981
+ 40
982
+ 0
983
+ 1
984
+ 2
985
+ 0
986
+ 20
987
+ 40
988
+ 600.00
989
+ 0.02
990
+ time (fm/c)
991
+
992
+
993
+ rc/r0
994
+ 197Au+
995
+ 197Au
996
+ 0.4A GeV
997
+ (a)
998
+ L=20 MeV
999
+ L=144 MeV
1000
+ (b)
1001
+ Dp
1002
+
1003
+ x/Dt
1004
+ Dp
1005
+
1006
+ t/Dt
1007
+ time (fm/c)
1008
+
1009
+ Dp/Dt (GeV/fm)
1010
+ FIG. 6.
1011
+ (a) Time evolution of the averaged density in the
1012
+ center of reaction system, (b) time evolution of momen-
1013
+ tum changes in x direction ∆px/∆t and transverse direction
1014
+ ∆pt/∆t .
1015
+ S(ρ) at pion characteristic density, i.e., at 1.5ρ0, is consis-
1016
+ tent with our previous analysis[21] and constraints from
1017
+ the analysis of SπRIT by using dcQMD[23] and isospin-
1018
+ dependent Boltzmann-Uehling-Uhlenbeck (IBUU) [22],
1019
+ analysis of FOPI data by using T¨uQMD[20], IBUU [15]
1020
+ and isospin-dependent Boltzmann-Langevian (IBL) [17]
1021
+ within statistical uncertainties,
1022
+ except for the con-
1023
+ straints obtained by Lanzhou quantum molecular dy-
1024
+ namics (LQMD) model[16]. Furthermore, if we extrap-
1025
+ olate our constraints to subsaturation density, it also
1026
+ consists with the one at its characteristic density from
1027
+ the neutrons to protons yield ratios in HIC (n/p)[54],
1028
+ isospin diffusion in HIC (isodiff)[55], mass calculated
1029
+ by the Skyrme[56] and density functional theory (DFT)
1030
+ theory[57], Isobaric analog state (IAS)[58], electric dipole
1031
+ polarization αD[59], at their sensitive density, which are
1032
+ decoded by Lynch and Betty in Ref.[60]. Further, the ex-
1033
+ trapolated region is also consistent with the results from
1034
+ theoretical calculation with chiral effective field theory
1035
+ (χEFT)[61].
1036
+ IV.
1037
+ SUMMARY AND OUTLOOK
1038
+ In summary, we have investigated the influence of dif-
1039
+ ferent momentum dependent interactions, symmetry en-
1040
+ ergy and NN → N∆ cross sections on nucleonic ob-
1041
+ servables and pion observables, such as vn
1042
+ 1 , vch
1043
+ 1 , vn
1044
+ 2 ,
1045
+ vch
1046
+ 2 , vn
1047
+ 2 /vch
1048
+ 2 , M(π) and π−/π+, with UrQMD model for
1049
+ Au+Au at the beam energy of 0.4A GeV. Our results
1050
+ confirm that the elliptic flow of neutrons and charged
1051
+ particles, i.e. vn
1052
+ 2 and vch
1053
+ 2 , are sensitive to the momentum
1054
+ dependence potential. The ASY-EOS flow data favors
1055
+ the calculations with a strong momentum dependent in-
1056
+ teraction, i.e., vHama
1057
+ md
1058
+ .
1059
+ However, the calculations with
1060
+ vHama
1061
+ md
1062
+ underestimate the pion multiplicity by about 30%
1063
+ relative to FOPI data if the σDefault
1064
+ NN→N∆ is adopted. Our
1065
+ calculations illustrate that the underestimation can be
1066
+ fixed by considering an accurate NN → N∆ cross sec-
1067
+ 0.0
1068
+ 0.5
1069
+ 1.0
1070
+ 1.5
1071
+ 2.0
1072
+ 0
1073
+ 20
1074
+ 40
1075
+ 60
1076
+ 80
1077
+ 30
1078
+ 40
1079
+ 50
1080
+ vn
1081
+ 2/vH
1082
+ 2 , Russotto
1083
+ vn
1084
+ 2/vH
1085
+ 2 , Wang
1086
+ vn
1087
+ 2/vp
1088
+ 2 , Cozma
1089
+ vn
1090
+ 2/vp
1091
+ 2 , Wang
1092
+ vn
1093
+ 2-vp
1094
+ 2 , Cozma
1095
+ vn
1096
+ 2-vp
1097
+ 2 , Wang
1098
+ vn
1099
+ 2/vch
1100
+ 2 , Russotto
1101
+ vn
1102
+ 2-vH
1103
+ 2 , Wang
1104
+ vn
1105
+ 2/vH,p,ch
1106
+ 2
1107
+ , Cozma
1108
+ p-/p+, Xiao
1109
+ p-/p+, Feng
1110
+ p-/p+, Xie
1111
+ p-/p+, Cozma
1112
+ p-/p+, Liu
1113
+ p-/p+, Yong
1114
+ p-/p+, Estee
1115
+ HIC (n/p)
1116
+ HIC (isodiff)
1117
+ Mass (skyrme
1118
+ IAS
1119
+ Mass (DFT)
1120
+ aD
1121
+ PREX-II
1122
+ Lynch
1123
+
1124
+ cEFT
1125
+ S(r) (MeV)
1126
+ r/r0
1127
+
1128
+
1129
+
1130
+
1131
+
1132
+ FIG. 7.
1133
+ The constrains of the density dependence of symme-
1134
+ try energy at the collective flow characteristic density 1.2ρ0
1135
+ and the pion characteristic density 1.5ρ0.
1136
+ tions σHub
1137
+ NN→N∆ in UrQMD model.
1138
+ Further, the constraints on the symmetry energy at
1139
+ flow and pion characteristic densities are investigated
1140
+ with the updated UrQMD model.
1141
+ The characteristic
1142
+ density probed by flow is around 1.2ρ0, which is smaller
1143
+ than the pion characteristic density 1.5ρ0[21]. By simul-
1144
+ taneously describing the data of vn
1145
+ 2 /vch
1146
+ 2
1147
+ and π−/π+ with
1148
+ UrQMD calculations, the favored effective interaction pa-
1149
+ rameter sets are obtained and we got the S(1.2ρ0) =
1150
+ 34±4 MeV and S(1.5ρ0) = 36±8 MeV. These results are
1151
+ consistent with previous analysis by using pion and flow
1152
+ observable with different transport models, and the con-
1153
+ sistency suggests that the reliable description of the con-
1154
+ straints on symmetry energy should be presented at the
1155
+ characteristic density of isospin sensitive observables. By
1156
+ using more than one isospin sensitive observables which
1157
+ have different characteristic densities, the reliable of the
1158
+ extrapolation of symmetry energy at normal density can
1159
+ be enhanced. The extrapolated values of L in this work
1160
+ are in 5−70 MeV within 2σ uncertainty for S0 = 30−34
1161
+ MeV, which is below the analysis of PREX-II results with
1162
+ a specific class of relativistic energy density functional,
1163
+ but is consistent with the constrains from charged ra-
1164
+ dius of 54Ni, from the combining astrophysical data with
1165
+ PREX-II and chiral effective field theory, and the SπRIT
1166
+ pion data for Sn+Sn at 0.27A GeV.
1167
+ ACKNOWLEDGEMENTS
1168
+ The authors thank the discussions on the transport
1169
+ model and symmetry energy constraints at TMEP weekly
1170
+ meeting. This work was supported by the National Natu-
1171
+ ral Science Foundation of China Nos.11875323, 12275359,
1172
+
1173
+ 8
1174
+ 12205377, 11875125, U2032145, 11790320, 11790323,
1175
+ 11790325, and 11961141003, the National Key R&D Pro-
1176
+ gram of China under Grant No.
1177
+ 2018 YFA0404404,
1178
+ the Continuous Basic Scientific Research Project (No.
1179
+ WDJC-2019-13), and the funding of China Institute of
1180
+ Atomic Energy (No. YZ222407001301), and the Lead-
1181
+ ing Innovation Project of the CNNC under Grant No.
1182
+ LC192209000701, No.
1183
+ LC202309000201.
1184
+ We acknowl-
1185
+ edge support by the computing server C3S2 in Huzhou
1186
+ University.
1187
+ [1] B. A. Li, L. W. Chen, and C. M. Ko, Phys. Rept. 464,
1188
+ 113 (2008).
1189
+ [2] C. J. Horowitz, E. F. Brown, Y. Kim, W. G. Lynch,
1190
+ R. Michaels, A. Ono, J. Piekarewicz, M. B. Tsang, and
1191
+ H. H. Wolter, J. Phys. G 41, 093001 (2014).
1192
+ [3] J. M. Lattimer and M. Prakash, Science 304, 536 (2004),
1193
+ https://www.science.org/doi/pdf/10.1126/science.1090720,
1194
+ URL
1195
+ https://www.science.org/doi/abs/10.1126/
1196
+ science.1090720.
1197
+ [4] A. W. Steiner, J. M. Lattimer, and E. F. Brown, The
1198
+ Astrophysical Journal 722, 33 (2010), URL https://dx.
1199
+ doi.org/10.1088/0004-637X/722/1/33.
1200
+ [5] P. Danielewicz, R. Lacey, and W. G. Lynch, Science 298,
1201
+ 1592 (2002).
1202
+ [6] J. Carlson, M. P. Carpenter, R. Casten, C. Elster,
1203
+ P. Fallon,
1204
+ A. Gade,
1205
+ C. Gross,
1206
+ G. Hagen,
1207
+ A. C.
1208
+ Hayes, D. W. Higinbotham, et al., Progress in Par-
1209
+ ticle and Nuclear Physics 94, 68 (2017), ISSN 0146-
1210
+ 6410, URL https://www.sciencedirect.com/science/
1211
+ article/pii/S0146641016300722.
1212
+ [7] A. Bracco, Europhysics News 48, 21 (2017).
1213
+ [8] P. Russotto, P. Wu, M. Zoric, M. Chartier, Y. Leifels,
1214
+ R. Lemmon, Q. Li, J. �Lukasik, A. Pagano, P. Paw�lowski,
1215
+ et al., Physics Letters B 697, 471 (2011), ISSN 0370-
1216
+ 2693, URL https://www.sciencedirect.com/science/
1217
+ article/pii/S037026931100178X.
1218
+ [9] M. D. Cozma, Y. Leifels, W. Trautmann, Q. Li, and
1219
+ P. Russotto, Phys. Rev. C 88, 044912 (2013).
1220
+ [10] Y. J. Wang, C. C. Guo, Q. F. Li, H. F. Zhang, Y. Leifels,
1221
+ and W. Trautmann, Phys. Rev. C 89, 044603 (2014).
1222
+ [11] P. Russotto, S. Gannon, S. Kupny, P. Lasko, L. Acosta,
1223
+ M. Adamczyk,
1224
+ A. Al-Ajlan,
1225
+ M. Al-Garawi,
1226
+ S. Al-
1227
+ Homaidhi,
1228
+ F.
1229
+ Amorini,
1230
+ et
1231
+ al.,
1232
+ Phys.
1233
+ Rev.
1234
+ C 94,
1235
+ 034608 (2016), URL https://link.aps.org/doi/10.
1236
+ 1103/PhysRevC.94.034608.
1237
+ [12] M. D. Cozma, Eur. Phys. J. A 54, 40 (2018).
1238
+ [13] B. A. Li, Phys. Rev. Lett. 88, 192701 (2002).
1239
+ [14] B. A. Li, Nucl. Phys. A 708, 365 (2002).
1240
+ [15] Z. G. Xiao, B. A. Li, L. W. Chen, G. C. Yong, and
1241
+ M. Zhang, Phys. Rev. Lett. 102, 062502 (2009).
1242
+ [16] Z. Q. Feng and G. M. Jin, Phys. Lett. B 683, 140 (2010).
1243
+ [17] W. J. Xie, J. Su, L. Zhu, and F. S. Zhang, Phys. Lett. B
1244
+ 718, 1510 (2013).
1245
+ [18] J. Hong and P. Danielewicz, Phys. Rev. C 90, 024605
1246
+ (2014).
1247
+ [19] T. Song and C. M. Ko, Phys. Rev. C 91, 014901 (2015).
1248
+ [20] M. D. Cozma, Phys. Lett. B 753, 166 (2016).
1249
+ [21] Y. Y. Liu, Y. J. Wang, Y. Cui, C. J. Xia, Z. X. Li, Y. J.
1250
+ Chen, Q. F. Li, and Y. X. Zhang, Phys. Rev. C 103,
1251
+ 014616 (2021).
1252
+ [22] G. C. Yong, Phys. Rev. C 104, 014613 (2021).
1253
+ [23] J. Estee, W. G. Lynch, C. Y. Tsang, J. Barney, G. Jhang,
1254
+ M. B. Tsang, R. Wang, M. Kaneko, J. W. Lee, T. Isobe,
1255
+ et al. (SπRIT Collaboration), Phys. Rev. Lett. 126,
1256
+ 162701 (2021), URL https://link.aps.org/doi/10.
1257
+ 1103/PhysRevLett.126.162701.
1258
+ [24] Y. J. Wang and Q. F. Li, Front. Phys. (Beijing) 15, 44302
1259
+ (2020).
1260
+ [25] B. A. Li and X. Han, Phys. Lett. B 727, 276 (2013).
1261
+ [26] M. Oertel, M. Hempel, T. Kl¨ahn, and S. Typel, Rev.
1262
+ Mod. Phys. 89, 015007 (2017).
1263
+ [27] Y. X. Zhang, M. Liu, C. J. Xia, Z. X. Li, and S. K.
1264
+ Biswal, Phys. Rev. C 101, 034303 (2020).
1265
+ [28] G.
1266
+ Jhang,
1267
+ J.
1268
+ Estee,
1269
+ J.
1270
+ Barney,
1271
+ G.
1272
+ Cerizza,
1273
+ M. Kaneko, J. Lee, W. Lynch, T. Isobe, M. Kurata-
1274
+ Nishimura,
1275
+ T.
1276
+ Murakami,
1277
+ et
1278
+ al.,
1279
+ Physics
1280
+ Letters
1281
+ B
1282
+ 813,
1283
+ 136016
1284
+ (2021),
1285
+ ISSN
1286
+ 0370-2693,
1287
+ URL
1288
+ https://www.sciencedirect.com/science/article/
1289
+ pii/S0370269320308194.
1290
+ [29] Y.-X. Zhang, Y.-J. Wang, M. Colonna, P. Danielewicz,
1291
+ A.
1292
+ Ono,
1293
+ M.
1294
+ B.
1295
+ Tsang,
1296
+ H.
1297
+ Wolter,
1298
+ J.
1299
+ Xu,
1300
+ L.-
1301
+ W.
1302
+ Chen,
1303
+ D.
1304
+ Cozma,
1305
+ et
1306
+ al.,
1307
+ Phys.
1308
+ Rev.
1309
+ C
1310
+ 97,
1311
+ 034625 (2018), URL https://link.aps.org/doi/10.
1312
+ 1103/PhysRevC.97.034625.
1313
+ [30] A. Ono, J. Xu, M. Colonna, P. Danielewicz, C. M.
1314
+ Ko,
1315
+ M.
1316
+ B.
1317
+ Tsang,
1318
+ Y.-J.
1319
+ Wang,
1320
+ H.
1321
+ Wolter,
1322
+ Y.-
1323
+ X. Zhang, L.-W. Chen, et al., Phys. Rev. C 100,
1324
+ 044617 (2019), URL https://link.aps.org/doi/10.
1325
+ 1103/PhysRevC.100.044617.
1326
+ [31] M. Colonna, Y.-X. Zhang, Y.-J. Wang, D. Cozma,
1327
+ P. Danielewicz, C. M. Ko, A. Ono, M. B. Tsang,
1328
+ R. Wang,
1329
+ H. Wolter,
1330
+ et al.,
1331
+ Phys. Rev. C 104,
1332
+ 024603 (2021), URL https://link.aps.org/doi/10.
1333
+ 1103/PhysRevC.104.024603.
1334
+ [32] S. Bass, M. Belkacem, M. Bleicher, M. Brandstet-
1335
+ ter, L. Bravina, C. Ernst, L. Gerland, M. Hofmann,
1336
+ S. Hofmann, J. Konopka, et al., Progress in Parti-
1337
+ cle and Nuclear Physics 41, 255 (1998), ISSN 0146-
1338
+ 6410, URL https://www.sciencedirect.com/science/
1339
+ article/pii/S0146641098000581.
1340
+ [33] M. Bleicher, E. Zabrodin, C. Spieles, S. A. Bass, C. Ernst,
1341
+ S. Soff, L. Bravina, M. Belkacem, H. Weber, H. St¨ocker,
1342
+ et al., Journal of Physics G: Nuclear and Particle Physics
1343
+ 25, 1859 (1999), URL https://dx.doi.org/10.1088/
1344
+ 0954-3899/25/9/308.
1345
+ [34] L. G. Arnold, B. C. Clark, E. D. Cooper, H. S. Sherif,
1346
+ D. A. Hutcheon, P. Kitching, J. M. Cameron, R. P. Liljes-
1347
+ trand, R. N. MacDonald, W. J. McDonald, et al., Phys.
1348
+ Rev. C 25, 936 (1982), URL https://link.aps.org/
1349
+ doi/10.1103/PhysRevC.25.936.
1350
+ [35] C. Hartnack and J. Aichelin, Phys. Rev. C 49, 2801
1351
+ (1994).
1352
+ [36] S. Hama, B. C. Clark, E. D. Cooper, H. S. Sherif, and
1353
+ R. L. Mercer, Phys. Rev. C 41, 2737 (1990).
1354
+ [37] M. Isse, A. Ohnishi, N. Otuka, P. K. Sahu, and Y. Nara,
1355
+ Phys. Rev. C 72, 064908 (2005).
1356
+ [38] L.-W. Chen, C. M. Ko, B.-A. Li, C. Xu, and J. Xu, Eur.
1357
+ Phys. J. A 50, 29 (2014).
1358
+
1359
+ 9
1360
+ [39] Y. Nara, T. Maruyama, and H. Stoecker, Phys. Rev. C
1361
+ 102, 024913 (2020).
1362
+ [40] M. D. Cozma and M. B. Tsang, Eur. Phys. J. A 57, 309
1363
+ (2021).
1364
+ [41] F. Zhang and G.-C. Yong, Phys. Rev. C 106, 054603
1365
+ (2022).
1366
+ [42] Q. Li and M. Bleicher, J. Phys. G 36, 015111 (2009).
1367
+ [43] A. Baldini, V. Flaminio, W. G. Moorhead, and D. R. O.
1368
+ Morrison, Total Cross-Sections for Reactions of High En-
1369
+ ergy Particles (Including Elastic, Topological, Inclusive
1370
+ and Exclusive Reactions), vol. 12a of Landolt-Boernstein
1371
+ - Group I Elementary Particles, Nuclei and Atoms
1372
+ (Springer, 1988), ISBN 978-3-540-18386-0, 978-3-540-
1373
+ 47940-6.
1374
+ [44] Y. Cui, Y. X. Zhang, and Z. X. Li, Chin. Phys. C 44,
1375
+ 024106 (2020).
1376
+ [45] Y. Zhang, N. Wang, Q.-F. Li, L. Ou, J.-L. Tian, M. Liu,
1377
+ K. Zhao, X.-Z. Wu, and Z.-X. Li, Front. Phys. (Beijing)
1378
+ 15, 54301 (2020).
1379
+ [46] P. Danielewicz, Nucl. Phys. A 673, 375 (2000).
1380
+ [47] W. Reisdorf et al. (FOPI), Nucl. Phys. A 848, 366 (2010).
1381
+ [48] J. D. Frankland, D. Gruyer, E. Bonnet, B. Borderie,
1382
+ R. Bougault, A. Chbihi, J. E. Ducret, D. Durand, Q. Fa-
1383
+ ble, M. Henri, et al. (INDRA Collaboration), Phys. Rev.
1384
+ C 104, 034609 (2021), URL https://link.aps.org/
1385
+ doi/10.1103/PhysRevC.104.034609.
1386
+ [49] L. Li, Y. Zhang, Z. Li, N. Wang, Y. Cui, and J. Winkel-
1387
+ bauer, Phys. Rev. C 97, 044606 (2018).
1388
+ [50] L. Li, X. Chen, Y. Cui, Z. Li, and Y. Zhang (2022),
1389
+ 2201.12586.
1390
+ [51] Y. Wang, C. Guo, Q. Li, A. Le F`evre, Y. Leifels, and
1391
+ W. Trautmann, Phys. Lett. B 778, 207 (2018).
1392
+ [52] A. Le F`evre, Y. Leifels, W. Reisdorf, J. Aichelin, and
1393
+ C. Hartnack, Nucl. Phys. A 945, 112 (2016).
1394
+ [53] B. Gao, Y. Wang, Z. Gao, and Q. Li (2022), 2210.08213.
1395
+ [54] P. Morfouace, C. Tsang, Y. Zhang, W. Lynch, M. Tsang,
1396
+ D. Coupland, M. Youngs, Z. Chajecki, M. Famiano,
1397
+ T. Ghosh, et al., Physics Letters B 799, 135045 (2019),
1398
+ ISSN 0370-2693,
1399
+ URL https://www.sciencedirect.
1400
+ com/science/article/pii/S0370269319307671.
1401
+ [55] M. B. Tsang, Y. Zhang, P. Danielewicz, M. Famiano,
1402
+ Z. Li, W. G. Lynch, and A. W. Steiner, Phys. Rev. Lett.
1403
+ 102, 122701 (2009).
1404
+ [56] B. A. Brown, Phys. Rev. Lett. 111, 232502 (2013).
1405
+ [57] M. Kortelainen, J. McDonnell, W. Nazarewicz, P. G.
1406
+ Reinhard, J. Sarich, N. Schunck, M. V. Stoitsov, and
1407
+ S. M. Wild, Phys. Rev. C 85, 024304 (2012).
1408
+ [58] P. Danielewicz, P. Singh, and J. Lee, Nucl. Phys. A 958,
1409
+ 147 (2017).
1410
+ [59] Z. Zhang and L.-W. Chen, Phys. Rev. C 92, 031301
1411
+ (2015).
1412
+ [60] W. G. Lynch and M. B. Tsang, Phys. Lett. B 830, 137098
1413
+ (2022).
1414
+ [61] C. Drischler, R. J. Furnstahl, J. A. Melendez, and D. R.
1415
+ Phillips, Phys. Rev. Lett. 125, 202702 (2020).
1416
+
39E1T4oBgHgl3EQfSgNA/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
3NE1T4oBgHgl3EQfAQKK/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f310e3b9e94dc71310429ec565b92929bc863be4081f02a958220013dd74b6d
3
+ size 2752557
3NE1T4oBgHgl3EQfAQKK/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c83cdac37896734d32c754ae3976103e4813870f6af319638381abbc4d2ffe2
3
+ size 109158
3tAyT4oBgHgl3EQf1_ko/content/2301.00743v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aceb683bbfa164e5bd7a75bd54924ae32eb2f247f5638a885cf310c8f88d7e69
3
+ size 328107
3tAyT4oBgHgl3EQf1_ko/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7b6c9d26dc5f4e7a0af159f71f0310daec2377292d9326ff63e69a2f41e4a81
3
+ size 2818093
3tAyT4oBgHgl3EQf1_ko/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d0ab39aa386f1e08fd0057729268d036517e2f66aa9fda22fe77856b8424d98
3
+ size 98284
49FKT4oBgHgl3EQf9y5B/content/2301.11955v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b9dac2e812769bddd448577c75d26ca9cea3e7862ec33dbb0f41ff1891f383f
3
+ size 4092998
49FKT4oBgHgl3EQf9y5B/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b96169ffad74c9954590475f5d0a22d4048ee70cda76826ad7c8320854696ba2
3
+ size 3735597
49FKT4oBgHgl3EQf9y5B/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f18719168c3918b7d210abd3e117acd30fdf5726b13cf2346564fad7027de6ce
3
+ size 141607
5tE0T4oBgHgl3EQfewA6/content/tmp_files/2301.02394v1.pdf.txt ADDED
@@ -0,0 +1,352 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.02394v1 [cond-mat.stat-mech] 6 Jan 2023
2
+ Increase in Rod Diffusivity Emerges even in Markovian Nature
3
+ Fumiaki Nakai,1, ∗ Martin Kr¨oger,2, † Takato Ishida,1
4
+ Takashi Uneyama,1 Yuya Doi,1 and Yuichi Masubuchi1
5
+ 1Department of Materials Physics, Graduate School of Engineering,
6
+ Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
7
+ 2Polymer Physics, Department of Materials,
8
+ ETH Zurich, CH-8093 Zurich, Switzerland
9
+ 1
10
+
11
+ Abstract
12
+ Rod-shaped particles embedded in certain matrices have been reported to exhibit an increase in their
13
+ center of mass diffusivity upon increasing the matrix density. This increase has been considered to be
14
+ caused by a kinetic constraint in analogy with tube models. Here, we investigate a mobile rod-like particle
15
+ in a three-dimensional sea of immobile point obstacles using a kinetic Monte Carlo scheme equipped with a
16
+ Markovian process, that generates gas-like collision times and positions stochastically, so that such kinetic
17
+ constraints do essentially not exist. We find that even in such a system, the unusual increase in diffusivity
18
+ emerges. This result implies that the kinetic constraint is not a necessary condition for the increase in the
19
+ diffusivity. More generally, this work will provide fresh insight into the kinetics of non-spherical particles.
20
+ The translational diffusion coefficient Dc of a particle is generally known to decrease with in-
21
+ creasing matrix density or increasing amount of obstacles. It is understood as a consequence of
22
+ the ballistic particle motion being disturbed during collisions with the surrounding matrix. How-
23
+ ever, if the particle is rod-shaped, a counter-intuitive motion can occur; the Dc of a rod may
24
+ increase as the matrix concentration increases, provided the concentration is sufficiently high.
25
+ Frenkel and Maguire [1, 2] first observed such behavior for fluids consisting of infinitely thin
26
+ hard rods, whose static properties are exactly the same as those of an ideal gas. This finding was
27
+ later confirmed with higher accuracy [3, 4]. Their systems do not have any hidden particles or
28
+ thermostats; the constituent particle moves ballistically between elastic collisions. Following the
29
+ previous studies[1, 2], an increase in Dc has been observed in various systems: (i) an infinitely
30
+ thin rod in a two-dimensional (2D) sea of fixed point obstacles [5], (ii) a thick rod in a 2D matrix
31
+ of circular obstacles [6], and (iii) an active matter fluid consisting of a rod swimming in direction
32
+ of its major axis [7]. In these systems, the increase in Dc is not triggered by a phase transition.
33
+ Still, some rod systems exhibit an increase in Dc accompanied by the isotropic-nematic transition
34
+ [8]. Such multi-particle effects remain beyond the scope of the present work.
35
+ Various loosely defined concepts have been considered previously to explain the increase in Dc:
36
+ so-called dynamic correlation, steric hindrance, geometrical constraints, confinement, or tube [2,
37
+ 5]. We refer to these concepts as the ”kinetic constraint” in what follows. In this work, we define
38
+ the kinetic constraint as the constraint that prevents the rod from crossing an obstacle until the
39
+ rod moves about the rod length. Using the kinetic constraint, the increase in Dc can be explained.
40
41
42
+ 2
43
+
44
+ Namely, the rotational motion of the rod is kinetically constrained via the surrounding matrix in
45
+ the concentrated matrix regime. Even in such a regime, the ballistic motion along the major axis
46
+ of an infinitely thin rod is not hindered, while the relevance of collisions in direction of the major
47
+ axis increases with increasing width of the rod or size of the obstacles. Consequently, the ballistic
48
+ motion with the major axis may persist for a relatively long time. This duration may increase with
49
+ matrix density or the degree of confinement and ultimately leads to an increase in Dc. In the so-
50
+ called active rod fluid [7], a similar behavior is caused by swimming along the axial direction of
51
+ the rod instead of ballistic motion. In light of these studies one question may arise; Is the kinetic
52
+ constraint a necessary condition for the emergence of the increase in diffusivity?
53
+ On our way towards an answer, we have been guided by our naive belief that such an increase
54
+ can be caused by the reduction of the rotational diffusivity alone, without the hindrance of the
55
+ axially directed motion. To test our hypothesis rigorously, we consider a simple model system
56
+ where the rotational diffusivity reduces with increasing matrix density, whereas the ballistic mo-
57
+ tion along the major axis of the rod-like particle remains largely undisturbed. One possible such
58
+ system is a single mobile rod embedded in a 3D arrangement of spatially fixed point obstacles. It
59
+ can be regarded as the extension of the Lorentz gas systems [9–11]; the single spherical particle in
60
+ fixed obstacles.
61
+ In this work, we report that the upturn of Dc emerges even in the presence of a Markovian
62
+ process where the kinetic constraint does essentially not exist. We investigate the trajectories of a
63
+ sphero-cylinder in a 3D matrix of stochastically homogeneously distributed point obstacles using a
64
+ Markovian kinetic Monte Carlo (KMC) scheme [12, 13]. The Dc of this rod-like particle increases
65
+ in an intermediate matrix density regime if the rod is sufficiently long. In our system, Dc reaches a
66
+ peak value and subsequently decreases with increasing obstacle density due to the thickness of the
67
+ rod. On the basis of the Markovian nature, we give scaling relations between Dc and the obstacle
68
+ density for dilute, intermediate, and concentrated density regimes. This work will generate fresh
69
+ insight into the kinetics of the non-spherical shaped particles [14].
70
+ Model and methods. — The model consists of a rod-like sphero-cylinder (also termed capsule
71
+ or stadium of revolution) with radius σ, mass M, and length L of its major axis. The effective ”rod”
72
+ length is Le = L + 2σ due to the half-spherical end-caps, and the inertia tensor I is determined
73
+ by assuming that the mass is homogeneously distributed over the volume of the rod [15]. The
74
+ point obstacles are statistically homogeneously distributed in the unbounded 3D space at number
75
+ density ρ. The interaction between the rod and obstacles is modeled by a hard-core potential; the
76
+ 3
77
+
78
+ time
79
+ ballistic motion
80
+ collision
81
+ FIG. 1. Schematic representation of the KMC method. r(t), e(t), v(t), and ω(t) are the position, direction
82
+ unit vector, velocity, and angular velocity, respectively, of the rod at time t. z and n characterize the
83
+ coordinate of the collision point; z ∈ [−L/2, L/2] is the axial coordinate and n is the surface normal at the
84
+ collision point. τ is the collision time interval between successive collisions. τ, z, and n are stochastically
85
+ sampled based on the collision statistics corresponding to Eq. (1). From the sampled variables, r, e, v and
86
+ ω at time t + τ are obtained.
87
+ obstacles do not penetrate the rod, and they do not move during a collision. The rod ballistically
88
+ moves except when it elastically collides with an obstacle. The center of mass velocity v and
89
+ angular velocity ω are changed during a collision, conserving the rod particle’s translational and
90
+ rotational kinetic energy. The total energy of this system is 5kBT/2, where kB and T are the
91
+ Boltzmann constant and temperature. Due to the assumed elastic collisions, the total energy is a
92
+ conserved quantity and does not change during the course of time. We choose M, σ, and kBT
93
+ to define dimensionless units. All physical quantities are therefore presented without physical
94
+ dimensions, as they follow by dimensional arguments from the three units. Within these settings,
95
+ the remaining parameters are the effective rod length Le and the number density of the obstacles,
96
+ ρ. Here, we avoid the density ρLe > 1, which physically corresponds to the trapping transition
97
+ regime.
98
+ To calculate the dynamics of a rod subject to a Markovian collision process, we extend the
99
+ kinetic Monte Carlo (KMC) simulation method [12, 13]. It requires two inputs; (i) statistics of
100
+ collisions and (ii) the change of dynamical variables by a collision. For (i), we here extend the
101
+ calculations for a sphere [14, 16] to the collision statistics of a sphero-cylinder and obtain the
102
+ collision frequency with the coordinates of collision for a given v(t), ω(t), and the direction vector
103
+ of the rod e(t). In the following, we denote Γ(t) as the 8-dimensional time-dependent phase space
104
+ variable (v(t), ω(t), e(t)) characterizing the state of the rod (Fig. 1). The explicit expression for
105
+ 4
106
+
107
+ -20
108
+ 0
109
+ 20
110
+ -80
111
+ -60
112
+ -40
113
+ -20
114
+ 0
115
+ 20
116
+ 40
117
+ 60
118
+ 80
119
+ FIG. 2. Trajectories of the rod’s (Le = 2502) center of mass for various scaled obstacle densities ρL2
120
+ e from
121
+ the KMC simulation. 3D motions are projected onto the XY -plane and scaled by Le.
122
+ the collision frequency for a given Γ(t), F(Γ(t)), arises from a surface integral of the collision
123
+ frequency density
124
+ f(z, n; Γ(t)) = ρve(z; Γ(t)) · nΘ[ve(z; Γ(t)) · n]
125
+ × {δ(e(t) · n) + δ (z − L/2) Θ[e(t) · n]
126
+ +δ (z + L/2) Θ[−e(t) · n]}
127
+ (1)
128
+ where z is the axial coordinate along the rod direction and n an unit vector normal to the rod’s
129
+ surface (Fig. 1). These two variables characterize the coordinate ze + n of the collision point
130
+ between the rod and an obstacle, while ve(z; Γ(t)) = v(t) + zω(t) × e(t) is the rod’s velocity at
131
+ the collision point. In Eq. (1), the first, second, and third terms in the curly bracket are relevant to
132
+ the collision on the side (∥) and two opposing (±) edges of the rod. Based on f(z, n; Γ(t)) and
133
+ F(Γ), the coordinate of the collision point and the collision time interval τ between successive
134
+ collisions are sampled using stochastic techniques [17]. (ii) From these sampled variables, r,
135
+ e, v, and ω are updated based on the rules of classical mechanics for a rigid body. Repeating
136
+ these samplings and updates, we calculate the dynamics of the mobile rod. The details of the
137
+ derivation of the collision statistics, sampling method, and the update scheme are described in the
138
+ supplementary material.
139
+ Results. — Qualitatively different behaviors occur during a change of ρ at fixed Le = 2502, as
140
+ visually captured by representative trajectories in Fig. 2. The observed time duration is 2.0 × 106.
141
+ For ρL2
142
+ e = 1 and 10, the mobile rod seems to move randomly. At higher number densities ρL2
143
+ e =
144
+ 100, the straight motion persists over longer distances compared with those for lower densities
145
+ ρL2
146
+ e = 1 and 10. For ρL2
147
+ e = 1000, we observe straight and bouncing motions.
148
+ To quantify these motions (Fig. 2), we calculate Dc of the mobile rod from its center-of-mass
149
+ 5
150
+
151
+ 101
152
+ 102
153
+ 103
154
+ 104
155
+ 105
156
+ 106
157
+ 10-11 10-10 10-9
158
+ 10-8
159
+ 10-7
160
+ 10-6
161
+ 10-5
162
+ 10-4
163
+ 10-3
164
+ 10-2
165
+ 10-1
166
+ 100
167
+ 101
168
+ 100
169
+ 101
170
+ 102
171
+ 103
172
+ FIG. 3.
173
+ Translational diffusion coefficient of the mobile rod (various rod lengths Le) from the KMC
174
+ simulations. Data are shown as (a) Dc versus ρ and (b) in scaled form DcL−1
175
+ e
176
+ versus ρL2
177
+ e. Error bars and
178
+ asymptotic exponents are also displayed.
179
+ mean square displacement (MSD) in the linear time domain. Dc versus the obstacle number
180
+ density ρ are displayed in Fig. 3(a) for various mobile rod lengths Le (error bars arise from the
181
+ linear fitting). In this figure, Dc shows non-monotonic behaviors with increasing ρ for the highly
182
+ elongated rods Le ≳ 66; Dc at large Le exhibits both a local minimum and maximum. When
183
+ the same data are represented in scaled forms, DcL−1
184
+ e
185
+ and ρL2
186
+ e, as shown in Fig. 3(b), the curves
187
+ collapse except for the larger density regime. From Figs. 3(a,b), the asymptotic forms are observed
188
+ for small, intermediate, and large density regimes as Dc ∝ (ρL3
189
+ e)−1, Dc ∝ ρL3
190
+ e, and Dc ∝
191
+ ρ−1, respectively. We emphasize that the non-monotonic ρ dependency for Dc arises even under
192
+ the Markovian process. In contrast to Dc, the rotational diffusion coefficient Dr in the current
193
+ system exhibits monotonic behavior with increasing obstacle density, Dr ∼ (ρL3
194
+ e)−1 as shown in
195
+ supplementary Fig. S4.
196
+ The scaling relations between Dc and ρ can be simply explained based on the Markovian na-
197
+ ture. Here, the Dc is also calculated from the integration of the velocity auto-correlation function
198
+ over time lag, instead of the mean square displacement. Thus, the diffusion coefficient would be
199
+ roughly approximated as the relaxation time of the center of mass velocity in the dimensionless
200
+ units. The collision frequency can be decomposed into two contributions: collision frequencies
201
+ from the side F∥ and edges F±. These contributions scale as F∥ ∼ ρLe and F± ∼ ρ. These
202
+ estimates are confirmed by the rigorous calculations for the collision frequencies as shown in sup-
203
+ plementary Eqs. S7 and S11. The average angular velocity scales as ¯ω ∼ L−1
204
+ e . In the dilute regime
205
+ ρL2
206
+ e ≲ 1, the relation ¯ω > F∥ is satisfied. In this low density regime, the rod mainly rotates and
207
+ occasionally collides with an obstacle on its side. By a few collisions, the motion of the rod largely
208
+ 6
209
+
210
+ changes since the rod experiences the impulsive forces from various directions. Then, Dc scales
211
+ linearly as the collision time interval as Dc ∼ F −1
212
+
213
+ ∼ ρ−1L−1
214
+ e . This description is consistent
215
+ with the observed random motions for the lower density regimes ρL2
216
+ e = 1 and 10 in Fig. 2. In
217
+ the higher density regime ρL2
218
+ e ≳ 1, where the relation ¯ω > F∥ is fulfilled, the rotational motion
219
+ of the rod is diffusive, and thus the direction of the rod slowly changes. In this density regime,
220
+ the velocity with the orthogonal direction rapidly relaxes, whereas that with the axial direction is
221
+ not largely disturbed. In such a case, there are possible relaxation mechanisms for the velocity
222
+ with axial direction: the change of rod direction or the collision on the edge. Here, the change of
223
+ rod direction between collisions is approximately ∆θ ∼ ¯ω/F∥, and the rotational relaxation time
224
+ scales as τrot ∼ ∆θ−2/F∥ ∼ ρL3
225
+ e. This estimate also predicts the rotational diffusion coefficient
226
+ Dr = (2τr) ∼ (ρL3
227
+ e)−1, in full agreement with our measurements, c.f., supplementary Fig. S4.
228
+ The collision time interval on the edge is about F −1
229
+ ± . In the intermediate density regime where
230
+ Dc increases, the rotational relaxation time is smaller than the collision time interval on the edge.
231
+ Thus, the velocity relaxes by the rotation of the direction, and consequently the diffusion coeffi-
232
+ cient is approximately Dc ∼ ρL3
233
+ e. Within the high density regime where Dc decreases again, the
234
+ collision on the edge is the main mechanism causing velocity relaxation with the axial direction,
235
+ and we obtain Dc ∼ ρ−1. These mechanisms explained above seem to be consistent with the
236
+ persistence of the straight motion with ρL2
237
+ e = 100 and the straight and bouncing motions with
238
+ ρL2
239
+ e = 1000 displayed in Fig. 2, and the estimated exponents also successfully agree with the
240
+ simulation results in Fig. 3.
241
+ One may suspect that the increase in Dc is an artifact since we assume a Markovian process
242
+ even in the high density regime. However, we next show that this assumption is indeed a good
243
+ approximation to calculate Dc for a rod embedded in a 3D sea of point obstacles. To this end, we
244
+ calculate the dynamics of a rod using conventional molecular dynamics (MD) simulations [18].
245
+ Here, instead of a hard-core potential, the repulsive Weeks-Chandler-Andersen potential [19] is
246
+ employed for the elastic interaction between rod and point obstacles. The details of the simulation
247
+ method are described in the supplementary material. Fig. 4 displays Dc (symbols) for various rod
248
+ lengths Le obtained via MD. Error bars are again calculated from linear fitting for the MSDs. Due
249
+ to the computational cost, data for large rod lengths Le = 16002 and 100002 could not be sampled.
250
+ For comparison, the KMC data from Fig. 3 are shown in Fig. 4 (solid curves). The MD results
251
+ quantitatively agree with those obtained via KMC. This indicates that multi-body correlations are
252
+ negligible in the estimation of Dc within the explored wide regime of obstacle densities.
253
+ 7
254
+
255
+ 10-1
256
+ 100
257
+ 100
258
+ 101
259
+ 102
260
+ 103
261
+ FIG. 4. Translational diffusion coefficient Dc versus obstacle density with the error bars from MD simula-
262
+ tions (Symbols). Data for three rod lengths Le are displayed. For comparison, the KMC simulation results
263
+ (Fig. 3) are shown by solid curves.
264
+ Discussion.— This work shows that Dc increases even in a Markovian process and that the
265
+ observed exponents are easily rationalized. This result does not imply that the exponents in prior
266
+ studied systems can be simply understood. Frenkel and Maguire [1, 2] investigated Dc of a con-
267
+ stituent particle in a system of infinitely thin hard rods, where Dc was found to be proportional
268
+ to the root of the rod density. For a 2D rod in the presence of point obstacles studied by H¨ofling,
269
+ Frey, and Franosch [5], the power exponent of Dc versus obstacle density is 0.8 in the concentrated
270
+ regime. Mandal et al [7] investigated the dynamics of a rod-shaped active swimmer (along the ax-
271
+ ial direction) and showed that Dc depends on the square of the density of the constituent. In these
272
+ prior systems, the kinetic constraints are not negligible, and they should be taken into account to
273
+ explain the observed exponents.
274
+ Some works investigated similar systems to ours. Tucker and Hernandez [6, 20] numerically
275
+ studied the dynamics of a 5 ˚A long mobile rod in the presence of spatially fixed spherical obstacles
276
+ with radius 0.5 ˚A for rod thickness values 0, 0.1, and 0.5 ˚A. They argued that the increase in Dc
277
+ does not occur in their 3D system, while it can occur in the corresponding 2D setup. One may
278
+ 8
279
+
280
+ think that these findings are inconsistent with our results. However, if one identifies the lengths in
281
+ their system with ours, the effective aspect ratio of the rod becomes about 10 since the interaction
282
+ distance between the rod and the obstacle is the rod thickness plus obstacle size. For the rod with
283
+ such an aspect ratio 10, an increase in Dc does not occur. Conversely, in Tucker and Hernandez’s
284
+ system, the increase in Dc will occur for a much smaller obstacle radius or much larger rod length.
285
+ Otto, Aspelmeier, and Zippelius [21] theoretically analyzed the dynamics of a constituent particle
286
+ of infinitely thin rods under the assumption of the Markovian process. They argued that an increase
287
+ in Dc should not occur under such circumstances. This result obviously contradicts our findings.
288
+ However, they did not consider the long-time persistence of the ballistic motion with the axial
289
+ direction. Thus, the increase in the Dc could not be captured.
290
+ It should be emphasized that a rise of Dc can occur for a ballistic system [1–5] or some active
291
+ matter systems [7] due to the persistence of the motion with the axial direction. One may think
292
+ that an increase in Dc can occur for passive rod-shaped particles in some solvents or some porous
293
+ media. However, it can not exhibit the increase in diffusivity by the same mechanism as our system
294
+ since the persistence of the motion with axial direction rapidly relaxes by the Brownian motion.
295
+ Recently, the increase in diffusivity with increasing aspect ratio is observed for rod in a gel [22],
296
+ although the mechanism would be different to our system.
297
+ The current system consists of a rod colliding with immobile, or infinitely heavy point obsta-
298
+ cles. Let us consider the situation where obstacles move in an equilibrium state. As long as the
299
+ obstacle mass is sufficiently larger than M, the obstacle motion is slow because of the Maxwell-
300
+ Boltzmann velocity distribution. In this case, the situation would not be largely different from
301
+ the current system since the moving particles can be approximated as the fixed obstacles for the
302
+ rod particle, and the increase in the diffusivity will emerge in this case. In contrast to this, if the
303
+ obstacle mass is comparable to M, the situation can be different from the current system since
304
+ the translational and rotational relaxation times vary largely with the obstacle mass. Even in this
305
+ case, the increase in the diffusivity can emerge since it simply originates from the reduction of the
306
+ rotational motion and the persistence of the axial motion. The analyses for the effects of obstacle
307
+ mass on the increase in diffusivity will be future interesting work.
308
+ In conclusion, this study demonstrated that a Dc upturn can emerge even in Markovian na-
309
+ ture, where the kinetic constraint does not exist. As a simple model system, we investigated the
310
+ single mobile rod-shaped particle in immobile fixed obstacles in three-dimensions using highly
311
+ efficient Markovian kinetic Monte Carlo simulations. The translational diffusion coefficient of the
312
+ 9
313
+
314
+ rod decreases, increases, and decreases again as the obstacle density increases. These non-trivial
315
+ behaviors could be explained based on the Markovian process. This work sheds light on the ki-
316
+ netics of non-spherical particles where the elementary dynamic processes are ballistic motion and
317
+ collisions.
318
+ FN and MK were supported by the “Young Researchers Exchange Programme between Japan
319
+ and Switzerland” under the “Japanese-Swiss Science and Technology Programme”. FN was also
320
+ supported by a Grant-in-Aid (KAKENHI) for JSPS Fellows (Grant No. JP21J21725 from the
321
+ Ministry of Education, Culture, Sports, Science and Technology, MEXT).
322
+ [1] D. Frenkel and J. F. Maguire, Phys. Rev. Lett. 47, 1025 (1981).
323
+ [2] D. Frenkel and J. Maguire, Mol. Phys. 49, 503 (1983).
324
+ [3] J. Magda, H. Davis, and M. Tirrell, J. Chem. Phys. 85, 6674 (1986).
325
+ [4] J. J. Magda, M. Tirrell, and H. T. Davis, J. Chem. Phys. 88, 1207 (1988).
326
+ [5] F. H¨ofling, E. Frey, and T. Franosch, Phys. Rev. Lett. 101, 120605 (2008).
327
+ [6] A. K. Tucker and R. Hernandez, J. Phys. Chem. A 114, 9628 (2010).
328
+ [7] S. Mandal, C. Kurzthaler, T. Franosch, and H. L¨owen, Phys. Rev. Lett. 125, 138002 (2020).
329
+ [8] M. P. Allen, Phys. Rev. Lett. 65, 2881 (1990).
330
+ [9] H. A. Lorentz, Proc. K. Ned. Akad. Wet. 7, 438 (1905).
331
+ [10] B. Alder and W. Alley, Physica A 121, 523 (1983).
332
+ [11] F. H¨ofling and T. Franosch, Phys. Rev. Lett. 98, 140601 (2007).
333
+ [12] D. T. Gillespie, J. Comput. Phys. 22, 403 (1976).
334
+ [13] A. B. Bortz, M. H. Kalos, and J. L. Lebowitz, J. Comput. Phys. 17, 10 (1975).
335
+ [14] J. R. Dorfman, H. van Beijeren, and T. R. Kirkpatrick, Contemporary Kinetic Theory of Matter (Cam-
336
+ bridge University Press, Cambridge, U.K., 2021).
337
+ [15] L. Pournin, M. Weber, M. Tsukahara, J.-A. Ferrez, M. Ramaioli, and T. M. Liebling, Granul. Matter
338
+ 7, 119 (2005).
339
+ [16] G. F. Mazenko, Nonequilibrium statistical mechanics (John Wiley & Sons, Hoboken, NJ, United
340
+ States, 2008).
341
+ [17] L. Devroye, Non-Uniform Random Variate Generation (Springer, New York, 1986).
342
+ [18] M. P. Allen and D. J. Tildesley, Computer simulation of liquids (Oxford University Press, Oxford,
343
+ 10
344
+
345
+ U.K., 1989).
346
+ [19] J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys 54, 5237 (1971).
347
+ [20] A. K. Tucker and R. Hernandez, J. Phys. Chem. B 115, 4412 (2011).
348
+ [21] M. Otto, T. Aspelmeier, and A. Zippelius, J. Chem. Phys. 124, 154907 (2006).
349
+ [22] K. A. Rose, N. Gogotsi, J. H. Galarraga, J. A. Burdick, C. B. Murray, D. Lee, and R. J. Composto,
350
+ Macromolecules (2022).
351
+ 11
352
+
5tE0T4oBgHgl3EQfewA6/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,388 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf,len=387
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
3
+ page_content='02394v1 [cond-mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
4
+ page_content='stat-mech] 6 Jan 2023 Increase in Rod Diffusivity Emerges even in Markovian Nature Fumiaki Nakai,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
5
+ page_content='1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
6
+ page_content=' ∗ Martin Kr¨oger,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
7
+ page_content='2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
8
+ page_content=' † Takato Ishida,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
9
+ page_content='1 Takashi Uneyama,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
10
+ page_content='1 Yuya Doi,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
11
+ page_content='1 and Yuichi Masubuchi1 1Department of Materials Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
12
+ page_content=' Graduate School of Engineering,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
13
+ page_content=' Nagoya University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
14
+ page_content=' Furo-cho,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
15
+ page_content=' Chikusa,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
16
+ page_content=' Nagoya 464-8603,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
17
+ page_content=' Japan 2Polymer Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
18
+ page_content=' Department of Materials,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
19
+ page_content=' ETH Zurich,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
20
+ page_content=' CH-8093 Zurich,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
21
+ page_content=' Switzerland 1 Abstract Rod-shaped particles embedded in certain matrices have been reported to exhibit an increase in their center of mass diffusivity upon increasing the matrix density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
22
+ page_content=' This increase has been considered to be caused by a kinetic constraint in analogy with tube models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
23
+ page_content=' Here, we investigate a mobile rod-like particle in a three-dimensional sea of immobile point obstacles using a kinetic Monte Carlo scheme equipped with a Markovian process, that generates gas-like collision times and positions stochastically, so that such kinetic constraints do essentially not exist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
24
+ page_content=' We find that even in such a system, the unusual increase in diffusivity emerges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
25
+ page_content=' This result implies that the kinetic constraint is not a necessary condition for the increase in the diffusivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
26
+ page_content=' More generally, this work will provide fresh insight into the kinetics of non-spherical particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
27
+ page_content=' The translational diffusion coefficient Dc of a particle is generally known to decrease with in- creasing matrix density or increasing amount of obstacles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
28
+ page_content=' It is understood as a consequence of the ballistic particle motion being disturbed during collisions with the surrounding matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
29
+ page_content=' How- ever, if the particle is rod-shaped, a counter-intuitive motion can occur;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
30
+ page_content=' the Dc of a rod may increase as the matrix concentration increases, provided the concentration is sufficiently high.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
31
+ page_content=' Frenkel and Maguire [1, 2] first observed such behavior for fluids consisting of infinitely thin hard rods, whose static properties are exactly the same as those of an ideal gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
32
+ page_content=' This finding was later confirmed with higher accuracy [3, 4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
33
+ page_content=' Their systems do not have any hidden particles or thermostats;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
34
+ page_content=' the constituent particle moves ballistically between elastic collisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
35
+ page_content=' Following the previous studies[1, 2], an increase in Dc has been observed in various systems: (i) an infinitely thin rod in a two-dimensional (2D) sea of fixed point obstacles [5], (ii) a thick rod in a 2D matrix of circular obstacles [6], and (iii) an active matter fluid consisting of a rod swimming in direction of its major axis [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
36
+ page_content=' In these systems, the increase in Dc is not triggered by a phase transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
37
+ page_content=' Still, some rod systems exhibit an increase in Dc accompanied by the isotropic-nematic transition [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
38
+ page_content=' Such multi-particle effects remain beyond the scope of the present work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
39
+ page_content=' Various loosely defined concepts have been considered previously to explain the increase in Dc: so-called dynamic correlation, steric hindrance, geometrical constraints, confinement, or tube [2, 5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
40
+ page_content=' We refer to these concepts as the ”kinetic constraint” in what follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
41
+ page_content=' In this work, we define the kinetic constraint as the constraint that prevents the rod from crossing an obstacle until the rod moves about the rod length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
42
+ page_content=' Using the kinetic constraint, the increase in Dc can be explained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
43
+ page_content=' ∗ nakai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
44
+ page_content='fumiaki.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
45
+ page_content='c7@s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
46
+ page_content='mail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
47
+ page_content='nagoya-u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
48
+ page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
49
+ page_content='jp † mk@mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
50
+ page_content='ethz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
51
+ page_content='ch 2 Namely, the rotational motion of the rod is kinetically constrained via the surrounding matrix in the concentrated matrix regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
52
+ page_content=' Even in such a regime, the ballistic motion along the major axis of an infinitely thin rod is not hindered, while the relevance of collisions in direction of the major axis increases with increasing width of the rod or size of the obstacles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
53
+ page_content=' Consequently, the ballistic motion with the major axis may persist for a relatively long time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
54
+ page_content=' This duration may increase with matrix density or the degree of confinement and ultimately leads to an increase in Dc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
55
+ page_content=' In the so- called active rod fluid [7], a similar behavior is caused by swimming along the axial direction of the rod instead of ballistic motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
56
+ page_content=' In light of these studies one question may arise;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
57
+ page_content=' Is the kinetic constraint a necessary condition for the emergence of the increase in diffusivity?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
58
+ page_content=' On our way towards an answer, we have been guided by our naive belief that such an increase can be caused by the reduction of the rotational diffusivity alone, without the hindrance of the axially directed motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
59
+ page_content=' To test our hypothesis rigorously, we consider a simple model system where the rotational diffusivity reduces with increasing matrix density, whereas the ballistic mo- tion along the major axis of the rod-like particle remains largely undisturbed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
60
+ page_content=' One possible such system is a single mobile rod embedded in a 3D arrangement of spatially fixed point obstacles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
61
+ page_content=' It can be regarded as the extension of the Lorentz gas systems [9–11];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
62
+ page_content=' the single spherical particle in fixed obstacles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
63
+ page_content=' In this work, we report that the upturn of Dc emerges even in the presence of a Markovian process where the kinetic constraint does essentially not exist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
64
+ page_content=' We investigate the trajectories of a sphero-cylinder in a 3D matrix of stochastically homogeneously distributed point obstacles using a Markovian kinetic Monte Carlo (KMC) scheme [12, 13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
65
+ page_content=' The Dc of this rod-like particle increases in an intermediate matrix density regime if the rod is sufficiently long.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
66
+ page_content=' In our system, Dc reaches a peak value and subsequently decreases with increasing obstacle density due to the thickness of the rod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
67
+ page_content=' On the basis of the Markovian nature, we give scaling relations between Dc and the obstacle density for dilute, intermediate, and concentrated density regimes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
68
+ page_content=' This work will generate fresh insight into the kinetics of the non-spherical shaped particles [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
69
+ page_content=' Model and methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
70
+ page_content=' — The model consists of a rod-like sphero-cylinder (also termed capsule or stadium of revolution) with radius σ, mass M, and length L of its major axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
71
+ page_content=' The effective ”rod” length is Le = L + 2σ due to the half-spherical end-caps, and the inertia tensor I is determined by assuming that the mass is homogeneously distributed over the volume of the rod [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
72
+ page_content=' The point obstacles are statistically homogeneously distributed in the unbounded 3D space at number density ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
73
+ page_content=' The interaction between the rod and obstacles is modeled by a hard-core potential;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
74
+ page_content=' the 3 time ballistic motion collision FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
75
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
76
+ page_content=' Schematic representation of the KMC method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
77
+ page_content=' r(t), e(t), v(t), and ω(t) are the position, direction unit vector, velocity, and angular velocity, respectively, of the rod at time t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
78
+ page_content=' z and n characterize the coordinate of the collision point;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
79
+ page_content=' z ∈ [−L/2, L/2] is the axial coordinate and n is the surface normal at the collision point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
80
+ page_content=' τ is the collision time interval between successive collisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
81
+ page_content=' τ, z, and n are stochastically sampled based on the collision statistics corresponding to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
82
+ page_content=' (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
83
+ page_content=' From the sampled variables, r, e, v and ω at time t + τ are obtained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
84
+ page_content=' obstacles do not penetrate the rod, and they do not move during a collision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
85
+ page_content=' The rod ballistically moves except when it elastically collides with an obstacle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
86
+ page_content=' The center of mass velocity v and angular velocity ω are changed during a collision, conserving the rod particle’s translational and rotational kinetic energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
87
+ page_content=' The total energy of this system is 5kBT/2, where kB and T are the Boltzmann constant and temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
88
+ page_content=' Due to the assumed elastic collisions, the total energy is a conserved quantity and does not change during the course of time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
89
+ page_content=' We choose M, σ, and kBT to define dimensionless units.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
90
+ page_content=' All physical quantities are therefore presented without physical dimensions, as they follow by dimensional arguments from the three units.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
91
+ page_content=' Within these settings, the remaining parameters are the effective rod length Le and the number density of the obstacles, ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
92
+ page_content=' Here, we avoid the density ρLe > 1, which physically corresponds to the trapping transition regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
93
+ page_content=' To calculate the dynamics of a rod subject to a Markovian collision process, we extend the kinetic Monte Carlo (KMC) simulation method [12, 13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
94
+ page_content=' It requires two inputs;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
95
+ page_content=' (i) statistics of collisions and (ii) the change of dynamical variables by a collision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
96
+ page_content=' For (i), we here extend the calculations for a sphere [14, 16] to the collision statistics of a sphero-cylinder and obtain the collision frequency with the coordinates of collision for a given v(t), ω(t), and the direction vector of the rod e(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
97
+ page_content=' In the following, we denote Γ(t) as the 8-dimensional time-dependent phase space variable (v(t), ω(t), e(t)) characterizing the state of the rod (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
98
+ page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
99
+ page_content=' The explicit expression for 4 20 0 20 80 60 40 20 0 20 40 60 80 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
100
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
101
+ page_content=' Trajectories of the rod’s (Le = 2502) center of mass for various scaled obstacle densities ρL2 e from the KMC simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
102
+ page_content=' 3D motions are projected onto the XY -plane and scaled by Le.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
103
+ page_content=' the collision frequency for a given Γ(t), F(Γ(t)), arises from a surface integral of the collision frequency density f(z, n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
104
+ page_content=' Γ(t)) = ρve(z;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
105
+ page_content=' Γ(t)) · nΘ[ve(z;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
106
+ page_content=' Γ(t)) · n] × {δ(e(t) · n) + δ (z − L/2) Θ[e(t) · n] +δ (z + L/2) Θ[−e(t) · n]} (1) where z is the axial coordinate along the rod direction and n an unit vector normal to the rod’s surface (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
107
+ page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
108
+ page_content=' These two variables characterize the coordinate ze + n of the collision point between the rod and an obstacle, while ve(z;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
109
+ page_content=' Γ(t)) = v(t) + zω(t) × e(t) is the rod’s velocity at the collision point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
110
+ page_content=' In Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
111
+ page_content=' (1), the first, second, and third terms in the curly bracket are relevant to the collision on the side (∥) and two opposing (±) edges of the rod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
112
+ page_content=' Based on f(z, n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
113
+ page_content=' Γ(t)) and F(Γ), the coordinate of the collision point and the collision time interval τ between successive collisions are sampled using stochastic techniques [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
114
+ page_content=' (ii) From these sampled variables, r, e, v, and ω are updated based on the rules of classical mechanics for a rigid body.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
115
+ page_content=' Repeating these samplings and updates, we calculate the dynamics of the mobile rod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
116
+ page_content=' The details of the derivation of the collision statistics, sampling method, and the update scheme are described in the supplementary material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
117
+ page_content=' Results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
118
+ page_content=' — Qualitatively different behaviors occur during a change of ρ at fixed Le = 2502, as visually captured by representative trajectories in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
119
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
120
+ page_content=' The observed time duration is 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
121
+ page_content='0 × 106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
122
+ page_content=' For ρL2 e = 1 and 10, the mobile rod seems to move randomly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
123
+ page_content=' At higher number densities ρL2 e = 100, the straight motion persists over longer distances compared with those for lower densities ρL2 e = 1 and 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
124
+ page_content=' For ρL2 e = 1000, we observe straight and bouncing motions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
125
+ page_content=' To quantify these motions (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
126
+ page_content=' 2), we calculate Dc of the mobile rod from its center-of-mass 5 101 102 103 104 105 106 10-11 10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101 100 101 102 103 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
127
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
128
+ page_content=' Translational diffusion coefficient of the mobile rod (various rod lengths Le) from the KMC simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
129
+ page_content=' Data are shown as (a) Dc versus ρ and (b) in scaled form DcL−1 e versus ρL2 e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
130
+ page_content=' Error bars and asymptotic exponents are also displayed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
131
+ page_content=' mean square displacement (MSD) in the linear time domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
132
+ page_content=' Dc versus the obstacle number density ρ are displayed in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
133
+ page_content=' 3(a) for various mobile rod lengths Le (error bars arise from the linear fitting).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
134
+ page_content=' In this figure, Dc shows non-monotonic behaviors with increasing ρ for the highly elongated rods Le ≳ 66;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
135
+ page_content=' Dc at large Le exhibits both a local minimum and maximum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
136
+ page_content=' When the same data are represented in scaled forms, DcL−1 e and ρL2 e, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
137
+ page_content=' 3(b), the curves collapse except for the larger density regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
138
+ page_content=' From Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
139
+ page_content=' 3(a,b), the asymptotic forms are observed for small, intermediate, and large density regimes as Dc ∝ (ρL3 e)−1, Dc ∝ ρL3 e, and Dc ∝ ρ−1, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
140
+ page_content=' We emphasize that the non-monotonic ρ dependency for Dc arises even under the Markovian process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
141
+ page_content=' In contrast to Dc, the rotational diffusion coefficient Dr in the current system exhibits monotonic behavior with increasing obstacle density, Dr ∼ (ρL3 e)−1 as shown in supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
142
+ page_content=' S4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
143
+ page_content=' The scaling relations between Dc and ρ can be simply explained based on the Markovian na- ture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
144
+ page_content=' Here, the Dc is also calculated from the integration of the velocity auto-correlation function over time lag, instead of the mean square displacement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
145
+ page_content=' Thus, the diffusion coefficient would be roughly approximated as the relaxation time of the center of mass velocity in the dimensionless units.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
146
+ page_content=' The collision frequency can be decomposed into two contributions: collision frequencies from the side F∥ and edges F±.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
147
+ page_content=' These contributions scale as F∥ ∼ ρLe and F± ∼ ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
148
+ page_content=' These estimates are confirmed by the rigorous calculations for the collision frequencies as shown in sup- plementary Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
149
+ page_content=' S7 and S11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
150
+ page_content=' The average angular velocity scales as ¯ω ∼ L−1 e .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
151
+ page_content=' In the dilute regime ρL2 e ≲ 1, the relation ¯ω > F∥ is satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
152
+ page_content=' In this low density regime, the rod mainly rotates and occasionally collides with an obstacle on its side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
153
+ page_content=' By a few collisions, the motion of the rod largely 6 changes since the rod experiences the impulsive forces from various directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
154
+ page_content=' Then, Dc scales linearly as the collision time interval as Dc ∼ F −1 ∥ ∼ ρ−1L−1 e .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
155
+ page_content=' This description is consistent with the observed random motions for the lower density regimes ρL2 e = 1 and 10 in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
156
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
157
+ page_content=' In the higher density regime ρL2 e ≳ 1, where the relation ¯ω > F∥ is fulfilled, the rotational motion of the rod is diffusive, and thus the direction of the rod slowly changes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
158
+ page_content=' In this density regime, the velocity with the orthogonal direction rapidly relaxes, whereas that with the axial direction is not largely disturbed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
159
+ page_content=' In such a case, there are possible relaxation mechanisms for the velocity with axial direction: the change of rod direction or the collision on the edge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
160
+ page_content=' Here, the change of rod direction between collisions is approximately ∆θ ∼ ¯ω/F∥, and the rotational relaxation time scales as τrot ∼ ∆θ−2/F∥ ∼ ρL3 e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
161
+ page_content=' This estimate also predicts the rotational diffusion coefficient Dr = (2τr) ∼ (ρL3 e)−1, in full agreement with our measurements, c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
162
+ page_content='f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
163
+ page_content=', supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
164
+ page_content=' S4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
165
+ page_content=' The collision time interval on the edge is about F −1 ± .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
166
+ page_content=' In the intermediate density regime where Dc increases, the rotational relaxation time is smaller than the collision time interval on the edge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
167
+ page_content=' Thus, the velocity relaxes by the rotation of the direction, and consequently the diffusion coeffi- cient is approximately Dc ∼ ρL3 e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
168
+ page_content=' Within the high density regime where Dc decreases again, the collision on the edge is the main mechanism causing velocity relaxation with the axial direction, and we obtain Dc ∼ ρ−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
169
+ page_content=' These mechanisms explained above seem to be consistent with the persistence of the straight motion with ρL2 e = 100 and the straight and bouncing motions with ρL2 e = 1000 displayed in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
170
+ page_content=' 2, and the estimated exponents also successfully agree with the simulation results in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
171
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
172
+ page_content=' One may suspect that the increase in Dc is an artifact since we assume a Markovian process even in the high density regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
173
+ page_content=' However, we next show that this assumption is indeed a good approximation to calculate Dc for a rod embedded in a 3D sea of point obstacles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
174
+ page_content=' To this end, we calculate the dynamics of a rod using conventional molecular dynamics (MD) simulations [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
175
+ page_content=' Here, instead of a hard-core potential, the repulsive Weeks-Chandler-Andersen potential [19] is employed for the elastic interaction between rod and point obstacles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
176
+ page_content=' The details of the simulation method are described in the supplementary material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
177
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
178
+ page_content=' 4 displays Dc (symbols) for various rod lengths Le obtained via MD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
179
+ page_content=' Error bars are again calculated from linear fitting for the MSDs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
180
+ page_content=' Due to the computational cost, data for large rod lengths Le = 16002 and 100002 could not be sampled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
181
+ page_content=' For comparison, the KMC data from Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
182
+ page_content=' 3 are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
183
+ page_content=' 4 (solid curves).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
184
+ page_content=' The MD results quantitatively agree with those obtained via KMC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
185
+ page_content=' This indicates that multi-body correlations are negligible in the estimation of Dc within the explored wide regime of obstacle densities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
186
+ page_content=' 7 10-1 100 100 101 102 103 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
187
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
188
+ page_content=' Translational diffusion coefficient Dc versus obstacle density with the error bars from MD simula- tions (Symbols).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
189
+ page_content=' Data for three rod lengths Le are displayed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
190
+ page_content=' For comparison, the KMC simulation results (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
191
+ page_content=' 3) are shown by solid curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
192
+ page_content=' Discussion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
193
+ page_content='— This work shows that Dc increases even in a Markovian process and that the observed exponents are easily rationalized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
194
+ page_content=' This result does not imply that the exponents in prior studied systems can be simply understood.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
195
+ page_content=' Frenkel and Maguire [1, 2] investigated Dc of a con- stituent particle in a system of infinitely thin hard rods, where Dc was found to be proportional to the root of the rod density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
196
+ page_content=' For a 2D rod in the presence of point obstacles studied by H¨ofling, Frey, and Franosch [5], the power exponent of Dc versus obstacle density is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
197
+ page_content='8 in the concentrated regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
198
+ page_content=' Mandal et al [7] investigated the dynamics of a rod-shaped active swimmer (along the ax- ial direction) and showed that Dc depends on the square of the density of the constituent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
199
+ page_content=' In these prior systems, the kinetic constraints are not negligible, and they should be taken into account to explain the observed exponents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
200
+ page_content=' Some works investigated similar systems to ours.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
201
+ page_content=' Tucker and Hernandez [6, 20] numerically studied the dynamics of a 5 ˚A long mobile rod in the presence of spatially fixed spherical obstacles with radius 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
202
+ page_content='5 ˚A for rod thickness values 0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
203
+ page_content='1, and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
204
+ page_content='5 ˚A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
205
+ page_content=' They argued that the increase in Dc does not occur in their 3D system, while it can occur in the corresponding 2D setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
206
+ page_content=' One may 8 think that these findings are inconsistent with our results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
207
+ page_content=' However, if one identifies the lengths in their system with ours, the effective aspect ratio of the rod becomes about 10 since the interaction distance between the rod and the obstacle is the rod thickness plus obstacle size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
208
+ page_content=' For the rod with such an aspect ratio 10, an increase in Dc does not occur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
209
+ page_content=' Conversely, in Tucker and Hernandez’s system, the increase in Dc will occur for a much smaller obstacle radius or much larger rod length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
210
+ page_content=' Otto, Aspelmeier, and Zippelius [21] theoretically analyzed the dynamics of a constituent particle of infinitely thin rods under the assumption of the Markovian process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
211
+ page_content=' They argued that an increase in Dc should not occur under such circumstances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
212
+ page_content=' This result obviously contradicts our findings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
213
+ page_content=' However, they did not consider the long-time persistence of the ballistic motion with the axial direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
214
+ page_content=' Thus, the increase in the Dc could not be captured.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
215
+ page_content=' It should be emphasized that a rise of Dc can occur for a ballistic system [1–5] or some active matter systems [7] due to the persistence of the motion with the axial direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
216
+ page_content=' One may think that an increase in Dc can occur for passive rod-shaped particles in some solvents or some porous media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
217
+ page_content=' However, it can not exhibit the increase in diffusivity by the same mechanism as our system since the persistence of the motion with axial direction rapidly relaxes by the Brownian motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
218
+ page_content=' Recently, the increase in diffusivity with increasing aspect ratio is observed for rod in a gel [22], although the mechanism would be different to our system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
219
+ page_content=' The current system consists of a rod colliding with immobile, or infinitely heavy point obsta- cles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
220
+ page_content=' Let us consider the situation where obstacles move in an equilibrium state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
221
+ page_content=' As long as the obstacle mass is sufficiently larger than M, the obstacle motion is slow because of the Maxwell- Boltzmann velocity distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
222
+ page_content=' In this case, the situation would not be largely different from the current system since the moving particles can be approximated as the fixed obstacles for the rod particle, and the increase in the diffusivity will emerge in this case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
223
+ page_content=' In contrast to this, if the obstacle mass is comparable to M, the situation can be different from the current system since the translational and rotational relaxation times vary largely with the obstacle mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
224
+ page_content=' Even in this case, the increase in the diffusivity can emerge since it simply originates from the reduction of the rotational motion and the persistence of the axial motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
225
+ page_content=' The analyses for the effects of obstacle mass on the increase in diffusivity will be future interesting work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
226
+ page_content=' In conclusion, this study demonstrated that a Dc upturn can emerge even in Markovian na- ture, where the kinetic constraint does not exist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
227
+ page_content=' As a simple model system, we investigated the single mobile rod-shaped particle in immobile fixed obstacles in three-dimensions using highly efficient Markovian kinetic Monte Carlo simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
228
+ page_content=' The translational diffusion coefficient of the 9 rod decreases, increases, and decreases again as the obstacle density increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
229
+ page_content=' These non-trivial behaviors could be explained based on the Markovian process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
230
+ page_content=' This work sheds light on the ki- netics of non-spherical particles where the elementary dynamic processes are ballistic motion and collisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
231
+ page_content=' FN and MK were supported by the “Young Researchers Exchange Programme between Japan and Switzerland” under the “Japanese-Swiss Science and Technology Programme”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
232
+ page_content=' FN was also supported by a Grant-in-Aid (KAKENHI) for JSPS Fellows (Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
233
+ page_content=' JP21J21725 from the Ministry of Education, Culture, Sports, Science and Technology, MEXT).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
234
+ page_content=' [1] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
235
+ page_content=' Frenkel and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
236
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
237
+ page_content=' Maguire, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
238
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
239
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
240
+ page_content=' 47, 1025 (1981).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
241
+ page_content=' [2] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
242
+ page_content=' Frenkel and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
243
+ page_content=' Maguire, Mol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
244
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
245
+ page_content=' 49, 503 (1983).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
246
+ page_content=' [3] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
247
+ page_content=' Magda, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
248
+ page_content=' Davis, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
249
+ page_content=' Tirrell, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
250
+ page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
251
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
252
+ page_content=' 85, 6674 (1986).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
253
+ page_content=' [4] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
254
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
255
+ page_content=' Magda, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
256
+ page_content=' Tirrell, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
257
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
258
+ page_content=' Davis, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
259
+ page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
260
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
261
+ page_content=' 88, 1207 (1988).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
262
+ page_content=' [5] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
263
+ page_content=' H¨ofling, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
264
+ page_content=' Frey, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
265
+ page_content=' Franosch, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
266
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
267
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
268
+ page_content=' 101, 120605 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
269
+ page_content=' [6] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
270
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
271
+ page_content=' Tucker and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
272
+ page_content=' Hernandez, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
273
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
274
+ page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
275
+ page_content=' A 114, 9628 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
276
+ page_content=' [7] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
277
+ page_content=' Mandal, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
278
+ page_content=' Kurzthaler, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
279
+ page_content=' Franosch, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
280
+ page_content=' L¨owen, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
281
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
282
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
283
+ page_content=' 125, 138002 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
284
+ page_content=' [8] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
285
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
286
+ page_content=' Allen, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
287
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
288
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
289
+ page_content=' 65, 2881 (1990).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
290
+ page_content=' [9] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
291
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
292
+ page_content=' Lorentz, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
293
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
294
+ page_content=' Ned.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
295
+ page_content=' Akad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
296
+ page_content=' Wet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
297
+ page_content=' 7, 438 (1905).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
298
+ page_content=' [10] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
299
+ page_content=' Alder and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
300
+ page_content=' Alley, Physica A 121, 523 (1983).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
301
+ page_content=' [11] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
302
+ page_content=' H¨ofling and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
303
+ page_content=' Franosch, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
304
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
305
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
306
+ page_content=' 98, 140601 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
307
+ page_content=' [12] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
308
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
309
+ page_content=' Gillespie, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
310
+ page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
311
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
312
+ page_content=' 22, 403 (1976).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
313
+ page_content=' [13] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
314
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
315
+ page_content=' Bortz, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
316
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
317
+ page_content=' Kalos, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
318
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
319
+ page_content=' Lebowitz, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
320
+ page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
321
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
322
+ page_content=' 17, 10 (1975).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
323
+ page_content=' [14] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
324
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
325
+ page_content=' Dorfman, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
326
+ page_content=' van Beijeren, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
327
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
328
+ page_content=' Kirkpatrick, Contemporary Kinetic Theory of Matter (Cam- bridge University Press, Cambridge, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
329
+ page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
330
+ page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
331
+ page_content=' [15] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
332
+ page_content=' Pournin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
333
+ page_content=' Weber, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
334
+ page_content=' Tsukahara, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
335
+ page_content='-A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
336
+ page_content=' Ferrez, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
337
+ page_content=' Ramaioli, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
338
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
339
+ page_content=' Liebling, Granul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
340
+ page_content=' Matter 7, 119 (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
341
+ page_content=' [16] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
342
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
343
+ page_content=' Mazenko, Nonequilibrium statistical mechanics (John Wiley & Sons, Hoboken, NJ, United States, 2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
344
+ page_content=' [17] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
345
+ page_content=' Devroye, Non-Uniform Random Variate Generation (Springer, New York, 1986).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
346
+ page_content=' [18] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
347
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
348
+ page_content=' Allen and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
349
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
350
+ page_content=' Tildesley, Computer simulation of liquids (Oxford University Press, Oxford, 10 U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
351
+ page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
352
+ page_content=', 1989).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
353
+ page_content=' [19] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
354
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
355
+ page_content=' Weeks, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
356
+ page_content=' Chandler, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
357
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
358
+ page_content=' Andersen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
359
+ page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
360
+ page_content=' Phys 54, 5237 (1971).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
361
+ page_content=' [20] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
362
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
363
+ page_content=' Tucker and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
364
+ page_content=' Hernandez, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
365
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
366
+ page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
367
+ page_content=' B 115, 4412 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
368
+ page_content=' [21] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
369
+ page_content=' Otto, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
370
+ page_content=' Aspelmeier, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
371
+ page_content=' Zippelius, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
372
+ page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
373
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
374
+ page_content=' 124, 154907 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
375
+ page_content=' [22] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
376
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
377
+ page_content=' Rose, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
378
+ page_content=' Gogotsi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
379
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
380
+ page_content=' Galarraga, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
381
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
382
+ page_content=' Burdick, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
383
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
384
+ page_content=' Murray, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
385
+ page_content=' Lee, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
386
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
387
+ page_content=' Composto, Macromolecules (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
388
+ page_content=' 11' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE0T4oBgHgl3EQfewA6/content/2301.02394v1.pdf'}
69AyT4oBgHgl3EQfpvg-/content/2301.00530v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5829c0b7fe085c85489e6e2c14e12472199a31bf390aee6c7946d2f3927bc24c
3
+ size 683406
69AyT4oBgHgl3EQfpvg-/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c3e45abbee112ee7d23873137d38abdb7412890c37908b5c4011a5e3d609bf77
3
+ size 2359341
69AyT4oBgHgl3EQfpvg-/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb5ed9b2d5ebdc4aae21530895519154ca8449d79f165a816308d45377523d9c
3
+ size 87672
6NFIT4oBgHgl3EQf8isw/content/tmp_files/2301.11402v1.pdf.txt ADDED
@@ -0,0 +1,1730 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A Hybrid Deep Neural Operator/Finite Element Method for Ice-Sheet Modeling
2
+ QiZhi Hea, Mauro Peregob, Amanda A. Howardc, George Em Karniadakisc,d, Panos Stinisc
3
+ aDepartment of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Drive S.E., Minneapolis, MN 55455
4
+ bCenter for Computing Research, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185
5
+ cAdvanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, Richland, WA 99352
6
+ dDivision of Applied Mathematics and School of Engineering, Brown University, 182 George Street, Providence, RI 02912
7
+ Abstract
8
+ One of the most challenging and consequential problems in climate modeling is to provide probabilistic projections
9
+ of sea level rise. A large part of the uncertainty of sea level projections is due to uncertainty in ice sheet dynamics.
10
+ At the moment, accurate quantification of the uncertainty is hindered by the cost of ice sheet computational models.
11
+ In this work, we develop a hybrid approach to approximate existing ice sheet computational models at a fraction
12
+ of their cost. Our approach consists of replacing the finite element model for the momentum equations for the ice
13
+ velocity, the most expensive part of an ice sheet model, with a Deep Operator Network, while retaining a classic finite
14
+ element discretization for the evolution of the ice thickness. We show that the resulting hybrid model is very accurate
15
+ and it is an order of magnitude faster than the traditional finite element model. Further, a distinctive feature of the
16
+ proposed model compared to other neural network approaches, is that it can handle high-dimensional parameter spaces
17
+ (parameter fields) such as the basal friction at the bed of the glacier, and can therefore be used for generating samples
18
+ for uncertainty quantification. We study the impact of hyper-parameters, number of unknowns and correlation length of
19
+ the parameter distribution on the training and accuracy of the Deep Operator Network on a synthetic ice sheet model.
20
+ We then target the evolution of the Humboldt glacier in Greenland and show that our hybrid model can provide accurate
21
+ statistics of the glacier mass loss and can be effectively used to accelerate the quantification of uncertainty.
22
+ Keywords: hybrid model, finite element, neural operator, ice-sheet dynamics, deep learning surrogate
23
+ 1. Introduction
24
+ Ice sheet models are important components of climate models and are crucial for providing projections of sea-level
25
+ rise. In fact, sea-level rise is due in large part to added water to the ocean originating from mass loss of Greenland and
26
+ Antarctic ice sheets [1, 2, 3].
27
+ Quantifying the uncertainty on the projections of sea-level rise, due to uncertainties in the data and in the models,
28
+ is an extremely challenging task. The large dimensionality of the parameter space, and high computational cost of
29
+ ice sheet models make Bayesian inference and uncertainty quantification infeasible, despite the large computational
30
+ resources available. While there are efficient ways to perform Bayesian inference under certain approximations
31
+ [4, 5], previous attempts to quantify the uncertainty on sea level rise (e.g., [6, 7, 8]) perform drastic reductions of
32
+ the dimensionality of the parameter space that are often dictated by feasibility reasons rather than by physical or
33
+ mathematical arguments.
34
+ Several efforts [9, 10, 11, 12, 13, 14, 15, 16, 17, 18] over the last decades focused on efficiently solving the steady
35
+ state Stokes-like flow equations governing the ice flow, which still represents the most computationally expensive
36
+ part of an ice flow model. Flow equations need to be solved at each time step. While time steps can be as little as a
37
+ week, typical temporal periods of interest range from a few decades to centuries, to millennia. In this work we aim at
38
+ replacing the most expensive part of an ice sheet model, the Stokes-like flow equations, with a deep learning surrogate
39
+ that is order of magnitudes faster than the finite element based implementation. A similar idea has been pursued by
40
+ Jouvet et al. [19], where a deep learning model was used to accelerate ice sheet modeling of Paleo simulations. A key
41
+ requirement for our surrogate, that sets it apart from [19], is that it depends on high-dimensional parameter spaces
42
+ (parameter fields), such as the basal friction coefficient that determines the basal sliding or the bed topography. This
43
+ allows us to use the model for inference and for uncertainty quantification. We also note that in paleo simulations
44
+ Preprint submitted to Elsevier
45
+ January 30, 2023
46
+ arXiv:2301.11402v1 [physics.comp-ph] 26 Jan 2023
47
+
48
+ most of the uncertainty comes from the climate forcing, whereas in the simulations in which we are interested here,
49
+ that spans approximately half a century, model error is a significant source of uncertainty [8], which forces us to
50
+ have very accurate models. Another related problem, where deep learning models have been used to approximate the
51
+ parameter-to-velocity map in ice-sheet problems, is presented in [20]. In that work, the authors first find a basis of the
52
+ operator using principal component analysis, and then use a residual neural network to compute the basis coefficients
53
+ as a function of the parameters. In contrast to our problem, in [20] only a handful of parameters are considered.
54
+ We represent our deep learning surrogate with Deep Operator Networks (DeepONets) [21], which have proven
55
+ to work well in learning operators in a wide range of applications ranging from fracture mechanics to combustion
56
+ problems [22, 23, 24, 25, 26]. In its vanilla formulation, a DeepONet contains two deep neural networks, referred to as
57
+ the branch network and the trunk network. The trunk network takes as input spatial coordinates whereas the branch
58
+ network takes as input the input fields evaluated at a fixed set of points. DeepONets approximate operators as a linear
59
+ combination of “basis functions” generated by the trunk network, with coefficients generated by the branch network.
60
+ The mathematical foundations of DeepONets are based on the universal approximation theorem [27, 28], and, under
61
+ mild assumptions, it has been proven that DeepONets can approximate with given accuracy any operator [21]. Our
62
+ DeepONet surrogate takes as input fields the ice thickness and the basal friction field and computes the depth-averaged
63
+ ice velocity field.
64
+ We use the trained DeepONet to build a fast hybrid ice-flow model, where the evolution of the ice thickness is
65
+ discretized with a classic finite element method, and, at each time step, the ice velocity field (as a function of the ice
66
+ thickness and the basal friction field) is computed by the DeepONet. A finite element implementation of the ice-flow
67
+ model is used as the “reference model” and also used to generate data to train the the DeepONet model. We demonstrate
68
+ our approach on two ice sheet problems: 1. a synthetic ice sheet problem for exploring different hyper-parameters of
69
+ the DeepONet and for studying the impact of mesh resolution and correlation length on the DeeoONet training and
70
+ accuracy, and 2. a realistic simulation of the Humboldt glacier, which is one of the largest glaciers in Greenland and
71
+ one that is expected to greatly contribute to sea-level rise in this century [29]. We show how our DeepONet surrogate
72
+ can approximate the ice velocity computed by the finite element model very accurately (relative error of 0.4%) and at a
73
+ fraction of the cost of the finite element model. The hybrid model produces accurate results for the ice thickness (˜2%
74
+ relative error over a span of 100 years). We also show how the mass loss of the Humboldt glacier, computed using the
75
+ hybrid model, is an accurate representation of the finite element model and can be used for computing statistics of sea
76
+ level rise, yielding a 10 fold speed-up.
77
+ In Section 2 we present the mathematical equations that we use to compute the ice thickness and velocity and
78
+ the probability distribution of the basal friction parameter. In section 3 we introduce the hybrid model, focusing in
79
+ particular on its DeepONet component. In Section 4 we present the result of training the DeepOpNet for a synthetic
80
+ test case, studying how the resolution of the input data and the correlation length of the basal friction distribution affect
81
+ the accuracy and training of the DeepONet. Finally in Section 5 we target the Humboldt glacier and show how hybrid
82
+ model can be effectively used for computing the statistics of the glacier mass loss. We conclude in Section 6 with a
83
+ summary.
84
+ 2. Ice Sheet Models
85
+ In this section, we briefly introduce the ice sheet models considered in this work, as depicted in Fig. 1.
86
+ Let x and y denote the horizontal coordinates and z the vertical coordinate, chosen such that the sea level corresponds
87
+ to z = 0. The ice domain, at time t, can be approximated as a vertically extruded domain Ω defined as
88
+ Ω(t) := {(x, y, z) s.t. (x, y) ∈ Σ, and l(x, y, t) < z < s(x, y, t)},
89
+ where Σ ⊂ R2 is the horizontal extension of the ice. Γl(t) := {(x, y, z) s.t. z = l(x, y, t)} denotes the lower surface of the
90
+ ice at time t, and Γs(t) := {(x, y, z) s.t. z = s(x, y, t)} denotes the upper surface of the ice1. The bed topography, which
91
+ we assume constant in time, is given by Γb := {(x, y, z) s.t. z = b(x, y)}. In general, the ice sheet can have ice shelves
92
+ where the ice is floating. We hence partition the lower surface of the ice Γl in the grounded part Γg = Γl ∩ Γb (here,
93
+ 1For simplicity here we assume that Σ does not change in time. This implies that the ice sheet cannot extend beyond Σ but it can become thicker
94
+ or thinner (to the point of disappearing in some regions).
95
+ 2
96
+
97
+ l(x, y, t) = b(x, y)) and the floating part Γ f under the ice shelf. We partition the lateral boundary of Ω in Γm, denoting
98
+ the ice sheet margin (either terrestrial or marine margin), and, when we only consider a portion of the ice sheet, in Γd,
99
+ denoting an internal (artificial) boundary often chosen in correspondence of the ice divides.
100
+ Figure 1: Cartoon of an ice sheet in the x − z plane.
101
+ The thickness of the ice, given by H(x, y, t) := s(x, y, t) − l(x, y, t), is defined on Σ × [0, t f ] and evolves according to
102
+ ∂tH + ∇ · (¯uH) = fH
103
+ (1)
104
+ where ¯u := 1
105
+ H
106
+ � s
107
+ l
108
+ u dz is the depth-integrated velocity and fH is an accumulation rate, accounting for accumulation
109
+ (e.g., due to snow precipitations) and melting at the upper surface and accumulation/melting at the base of the ice sheet.
110
+ We need to constrain H to be non-negative, as there is no guarantee that fH, typically coming from climate models, is
111
+ consistent with the ice thickness equation.
112
+ Ice sheets behave as a shear thinning fluid and can be modeled with the nonlinear Stokes equation [30]. In this work
113
+ we use simplifications of Stokes equations that are less expensive to solve and that are obtained with scaling arguments
114
+ based on the fact that glaciers and in particular ice sheets are typically shallow. We consider two such simplifications:
115
+ the mono-layer higher-order approximation (MOLHO) and the shallow shelf approximation (SSA). The MOLHO
116
+ model [31] is suitable for both frozen and thawed beds, whereas the simpler SSA model [32, 33] works well only
117
+ for grounded ice with significant sliding at the bed or for ice shelves where the ice is floating over the water. In the
118
+ following we detail the Stokes model and its approximations.
119
+ 2.1. Stokes model
120
+ We denote with u, v and w the x, y and z components of the ice velocity, respectively, and the ice velocity vector is
121
+ denoted by u := (u, v, w). Denoting the pressure with p, and the ice density with ρ, the Stokes equation reads
122
+ −∇ · σ = ρg
123
+ (2)
124
+ ∇ · u = 0
125
+ (3)
126
+ with stress tensor σ = 2µD − pI, and strain rate tensor Di j(u) = 1
127
+ 2
128
+
129
+ ∂ui
130
+ ∂xj + ∂uj
131
+ ∂xi
132
+
133
+ . The non-linear viscosity is given by
134
+ µ = 1
135
+ 2A(T)−q De(u)q−1
136
+ (4)
137
+ with q ≤ 1. In this work we take q = 1
138
+ 3, a typical choice. A is the ice flow factor that depends on the ice temperature
139
+ T. The effective strain rate De(u) is given by De(u) =
140
+ 1√
141
+ 2|D(u)|, where | · | denotes the Frobenius norm. The Stokes
142
+ 3
143
+
144
+ Td
145
+ 2
146
+ Ta
147
+ Ig
148
+ ice
149
+ Tm
150
+ If
151
+ bedrock
152
+ Fb
153
+ oceanequation is accompanied by the following boundary conditions:
154
+ �������������������
155
+ σn = 0
156
+ on Γs
157
+ stress free, atmospheric pressure neglected
158
+ σn = ρw g min(z, 0)n
159
+ on Γm
160
+ boundary condition at the ice margin
161
+ u = ud
162
+ on Γd
163
+ Dirichlet condition at internal boundary
164
+ u · n = 0, (σn)∥ = βu∥
165
+ on Γg
166
+ impenetrability + sliding condition
167
+ σn = ρw g z n
168
+ on Γf
169
+ back pressure from ocean under ice shelves
170
+ Here β(x, y) is the sliding (or friction) coefficient, ρw is the density of the ocean water and n the unit outward-pointing
171
+ normal to the boundary. The boundary condition at the margin includes the ocean back-pressure term, when the margin
172
+ is partially submerged (z < 0). For terrestrial margin, z > 0, hence the term becomes a stress-free condition. The
173
+ friction term β can also depend on u, depending on the choice of the sliding law.
174
+ 2.2. Mono-layer higher-order (MOLHO)
175
+ The MOLHO model [31] is based on the Blatter-Pattyn approximation [34] that can be derived neglecting the terms
176
+ wx and wy in the strain-rate tensor D and, using the continuity equation, replacing wz with −(ux + vy):
177
+ D =
178
+ ��������������
179
+ ux
180
+ 1
181
+ 2(uy + vx)
182
+ 1
183
+ 2uz
184
+ 1
185
+ 2(uy + vx)
186
+ vy
187
+ 1
188
+ 2uz
189
+ 1
190
+ 2uz
191
+ 1
192
+ 2vz
193
+ −(ux + vy)
194
+ ��������������
195
+ .
196
+ (5)
197
+ This leads to the following elliptic equations in the horizontal velocity (u, v)
198
+ − ∇ · (2µ ˆD) = −ρg∇s
199
+ (6)
200
+ with
201
+ ˆD =
202
+ � 2ux + vy
203
+ 1
204
+ 2(uy + vx)
205
+ 1
206
+ 2uz
207
+ 1
208
+ 2(uy + vx)
209
+ ux + 2vy
210
+ 1
211
+ 2vz
212
+
213
+ .
214
+ (7)
215
+ Here the gradient is two-dimensional: ∇ = [∂x, ∂y]T. The viscosity µ is given by (4) with the effective strain rate
216
+ De =
217
+
218
+ u2x + v2y + uxvy + 1
219
+ 4(uy + vx)2 + 1
220
+ 4u2z + 1
221
+ 4v2z.
222
+ The boundary conditions reads
223
+ ���������������������
224
+ 2µ ˆD n = 0
225
+ on Γs
226
+ stress free, atmospheric pressure neglected
227
+ 2µ ˆD n = ψn
228
+ on Γm
229
+ boundary condition at at ice margin
230
+ u = ud
231
+ on Γd
232
+ Dirichlet condition at internal boundary
233
+ 2µ ˆD n = βu∥
234
+ on Γg
235
+ sliding condition
236
+ 2µ ˆD n = 0
237
+ on Γ f
238
+ free slip under ice shelves
239
+ where ψ = ρg(s − z)n + ρw g min(z, 0)n, which can be approximated with its depth-averaged value ¯ψ = 1
240
+ 2gH(ρ − r2ρw),
241
+ r being the the submerged ratio r = max
242
+
243
+ 1 − s
244
+ H , 0
245
+
246
+ ; u∥ is the component of the velocity u tangential to the bed.
247
+ MOLHO consists of solving the weak form of the Blatter-Pattyn model, with the ansatz that the velocity can be
248
+ expressed as :
249
+ u(x, y, z) = ub(x, y) + uv(x, y)
250
+
251
+ 1 −
252
+ � s − z
253
+ H
254
+ � 1
255
+ q +1�
256
+ .
257
+ The problem is then formulated as a system of two two-dimensional partial differential equations (PDEs) for ub and uv
258
+ (for a detailed derivation see [31].) Note that the depth-averaged velocity is given by ¯u = ub + (1+q)
259
+ (1+2q) uv.
260
+ 4
261
+
262
+ 2.3. Shallow Shelf Approximation (SSA)
263
+ The shallow shelf approximation [32] is a simplification of the Blatter-Pattyn model, assuming that the velocity is
264
+ uniform in z, so u = ¯u. It follows that uz = 0 and vz = 0, giving:
265
+ D =
266
+ ����������
267
+ ux
268
+ 1
269
+ 2(uy + vx)
270
+ 0
271
+ 1
272
+ 2(uy + vx)
273
+ vy
274
+ 0
275
+ 0
276
+ 0
277
+ −(ux + vy)
278
+ ���������� ,
279
+ ˆD =
280
+ � 2ux + vy
281
+ 1
282
+ 2(uy + vx)
283
+ 0
284
+ 1
285
+ 2(uy + vx)
286
+ ux + 2vy
287
+ 0
288
+
289
+ ,
290
+ (8)
291
+ and De =
292
+
293
+ u2x + v2y + uxvy + 1
294
+ 4(uy + vx)2. The problem simplifies to a two-dimensional PDE in Σ
295
+ −∇ ·
296
+
297
+ 2µH ˆD(¯u)
298
+
299
+ + β¯u = −ρgH∇s,
300
+ in Σ
301
+ with ¯µ = 1
302
+ 2 ¯A(T)− 1
303
+ n De(¯u)
304
+ 1
305
+ n −1, where ¯A is the depth-averaged flow factor and with boundary conditions:
306
+
307
+ 2µ ˆD(¯u) n = ¯ψn
308
+ on Γm
309
+ boundary condition at ice margin
310
+ ¯u = ¯ud
311
+ on Γd
312
+ Dirichlet condition at internal boundary
313
+ Recall that ¯ψ = 1
314
+ 2gH(ρ − r2ρw), r being the the submerged ratio r = max
315
+
316
+ 1 − s
317
+ H , 0
318
+
319
+ . With abuse of notation, here Γm
320
+ and Γd are intended to be subsets of ∂Σ.
321
+ 2.4. Distribution of basal friction field
322
+ The basal friction field β is one of the main factors that control the ice velocity. It cannot be measured directly and
323
+ it is typically estimated by solving a PDE-constrained optimization problem, e.g., [35, 36], to assimilate observations
324
+ of the surface ice velocity. As a result, the basal friction field is affected by both uncertainties in the observations and in
325
+ the the model. While it is possible to characterize the probability distribution for β using a Bayesian inference approach,
326
+ e.g., [37], here we adopt a simplified log-normal distribution for β. We write the basal friction field as β = exp(γ),
327
+ where γ is normally distributed as
328
+ γ ∼ F
329
+
330
+ log(¯β), kl
331
+
332
+ , and kl(x1, x2) = a exp
333
+
334
+ −|x1 − x2|2
335
+ 2l2
336
+
337
+ .
338
+ (9)
339
+ Here log(¯β) is the mean of the Gaussian process F and it is often obtained by assimilating the observed velocities [35],
340
+ l is the correlation length and a is a scaling factor. In this work we choose values of the correlation length and of the
341
+ scaling factor that produce reasonable results. While an in-depth validation of the chosen parameters is beyond the
342
+ scope of this work, we explore the dependence of the accuracy of the DeepONet model as a function of the correlation
343
+ length, as discussed in Section 4.
344
+ 3. Computational Models
345
+ In this section we introduce the finite element ice flow model and the hybrid ice flow model. We first perform a
346
+ semi-implicit time discretization of the ice thickness equation (1):
347
+
348
+ Hn+1
349
+ =
350
+ Hn − ∆t ∇ ·
351
+
352
+ ¯unHn+1�
353
+ + ∆tFn
354
+ H
355
+ ¯un
356
+ =
357
+ G(β, Hn)
358
+ (10)
359
+ where Hn is the approximation of H at time tn = t0+n∆t, for a given time-step ∆t, and Fn
360
+ H = FH(tn) is the corresponding
361
+ discrete approximation of the accumulation rate fH. Here, G(·, ·) is the velocity operator that maps the basal friction
362
+ field and the ice thickness into the depth-averaged velocity vector, based either on the SSA (Sec. 2.3) model or the
363
+ MOLHO (Sec. 2.2) model. In this work we discretize the thickness equation (10) with finite elements, using streamline
364
+ upwind stabilization. Similarly, we provide a classic Galerkin finite element discretization of the nonlinear operator G.
365
+ The finite element discretization is implemented in FEniCS [38]. We use continuous piece-wise linear finite elements
366
+ for both the thickness and the velocity fields, and solve the discretized problem with PETSc [39] SNES nonlinear
367
+ 5
368
+
369
+ solvers. We refer to this finite element implementation of (10) as the finite element ice flow model that we use as our a
370
+ reference model.
371
+ The focus of the paper is on avoiding the high computational cost of constructing a finite element approximation of
372
+ the nonlinear operator G, and using, instead, a DeepONet approximation of G, which, in combination with the finite
373
+ element discretization of the first equation of (10), constitutes the hybrid ice flow model. The DeepONet implementation
374
+ and training are performed using JAX [40]. At each time step, the FEniCS finite element code calls theJAX DeepONet
375
+ code to compute an approximation of G(β, Hn). In the next sections we describe in detail the DeepONet architecture
376
+ and its training.
377
+ 3.1. DeepONet approximation
378
+ As briefly discussed in the introduction, the main idea of DeepONet is to learn, in general nonlinear, operators
379
+ mapping between infinite-dimensional function spaces via deep neural networks [21]. Inspired by the universal
380
+ approximation theorem for operators [27], DeepONet’s architecture consists of two neural networks: one is used to
381
+ encode the input function sampled at fixed sensor points (branch net) whereas the other inputs the location coordinates
382
+ to evaluate the output function (trunk net). It has been shown that this architecture of two sub-networks can substantially
383
+ improve generalization compared to fully connected neural networks [21]. In this study, a DeepONet denoted by Gθ is
384
+ used as a surrogate for the nonlinear operator G in Eq. (10),
385
+ Gθ(β, Hn)(x) ≈ G(β, Hn)(x),
386
+ (11)
387
+ where θ represents the collection of trainable parameters in DeepONet, and the approximated velocity components are
388
+ ¯un
389
+ x ≈ Gx
390
+ θ(β, Hn)(x) =
391
+ p
392
+
393
+ m=1
394
+ bm(β, Hn)tm(x),
395
+ ¯un
396
+ y ≈ Gy
397
+ θ(β, Hn)(x) =
398
+ 2p
399
+
400
+ m=p+1
401
+ bm(β, Hn)tm(x),
402
+ (12)
403
+ where bm and tm denote the outputs of the branch net and the trunk net, respectively. The details of the DeepONet
404
+ model is shown in the schematic of Fig. 2. In this setting, the input functions, i.e., the friction β and thickness Hn at the
405
+ moment tn, evaluated at finite locations (sensors), X = {x1, x2, ..., xN}, are mapped as embedded coefficients through
406
+ the branch net, while the trunk net learns a collection of space-dependent basis functions that are linearly combined
407
+ with the branch coefficients to approximate the velocity components. Note that the learned operator Gθ(β, Hn) is a
408
+ continuous function with respect to coordinates x, which are the inputs to the trunk net. For brevity, we denote the
409
+ DeepONet approximated velocity as ¯uNN.
410
+ 3.2. DeepONet training
411
+ The trainable parameters, i.e., θ, associated with the DeepONet model are obtained by minimizing the loss function
412
+ L(θ) =
413
+ 1
414
+ NβNT
415
+
416
+
417
+ i=1
418
+ NT
419
+
420
+ j=1
421
+
422
+ x∈Y
423
+ wi j(x)|¯u(x, t j; βi) − Gθ(βi, H j)(x)|2,
424
+ (13)
425
+ where wij(x) are weights corresponding to each data point, Nβ is the number of friction fields {βi}
426
+
427
+ i=1 used for different
428
+ training simulations, NT is the number of time steps within each simulation to sample the velocity and thickness,
429
+ ¯u(x, t j; βi) is the target velocity solution, and Gθ(βi, H j)(x) is the predicted value obtained from DeepONet. Both target
430
+ solution ¯u(x, t j; βi) := G(βi, H j)(x) and DeepONet prediction Gθ(βi, H j)(x) are evaluated at the set of locations Y. The
431
+ input functions βi and H j of the branch network are discretized at the fixed set of sensor points X (see Fig. 2). In this
432
+ work it is convenient to choose X to be the set of the grid nodes used in the finite element discretization and to take
433
+ Y = X.
434
+ In Eq. (13), the penalizing weights wij(x) are generally related to the characteristics of training data, i.e., the friction
435
+ field, time step, and spatial locations. For simplified cases where the target operator presents little variability with
436
+ 6
437
+
438
+ 𝛽
439
+ 𝛽(𝒙!)
440
+ 𝛽(𝒙")
441
+
442
+ 𝛽(𝒙#)
443
+ 𝐻$(𝒙!)
444
+ 𝐻$(𝒙")
445
+
446
+ 𝐻$(𝒙#)
447
+ 𝐻$
448
+ Branch net
449
+ 𝒙 = (𝑥, 𝑦)
450
+ Trunk net
451
+ 𝑏%&!
452
+
453
+ 𝑏"%
454
+ ×
455
+ 𝒢'
456
+ ((𝛽, 𝐻$)(𝒙)
457
+ 𝑏!
458
+
459
+ 𝑏%
460
+ 𝑡!
461
+
462
+ 𝑡%
463
+ 𝑡%&!
464
+
465
+ 𝑡"%
466
+ ×
467
+ 𝒢'
468
+ )(𝛽, 𝐻$)(𝒙)
469
+ 𝒢'(𝛽, 𝐻$)(𝒙)
470
+ Figure 2: Schematic representation of DeepONet. The branch net takes as inputs the functions β(x) and Hn(x) = H(tn, x) evaluated at N fixed sensor
471
+ points X = {xi}N
472
+ i=1 and returns the feature embedding vector b ∈ R2p as output. The trunk net takes the continuous coordinates x ∈ Y as input
473
+ and outputs another embedding vector t ∈ R2p. The embedding vectors b and t are combined by dot product to generate the solution operator,
474
+ Gθ(β, Hn)(x). The trainable parameters θ associated with the branch net and the trunk net are optimized by minimizing the loss function defined as a
475
+ weighted mean square error (see Eq. 13). In this study, we set Y = X for simplicity.
476
+ respect to the input parameters, the weights are assumed to be unity, i.e., wi j(x) ≡ 1. However, it is observed in our
477
+ numerical investigation that using nonuniform (space-dependent) weights can lead to better generalization. To this
478
+ end, we use the self-adaptive weight estimation approach [41, 42] to adjust the weight parameters through gradient
479
+ descent along with the network parameters. Assuming that the weights depend only on the space coordinates, i.e.,
480
+ wi j(x) = w(x), the loss function (13) is modified as
481
+ L(θ, λ) =
482
+ 1
483
+ NβNT
484
+
485
+
486
+ i=1
487
+ NT
488
+
489
+ j=1
490
+
491
+ x∈Y
492
+ w(x)|¯u(x, t j; βi) − Gθ(βi, H j)(x)|2,
493
+ (14)
494
+ where w(x) is further defined as m(λ(x)) in which λ = {λ(x)}x∈Y are the trainable self-adaptive weight parameters
495
+ dependent on locations x, and m(λ) is a mask function defined on [0, ∞] to accelerate convergence [41]. The mask
496
+ function needs to be differentiable, nonnegative, and monotonically increasing. The polynomial mask m(λ) = λq for
497
+ q = 1, 2, ... is adopted in this study.
498
+ The key feature of self-adaptive DeepONet training is that the loss L(θ, λ) is simultaneously minimized with respect
499
+ to the network parameters θ but maximized with respect to the self-adaptive parameters λ, i.e.,
500
+ min
501
+ θ max
502
+ λ
503
+ L(θ, λ).
504
+ (15)
505
+ If one uses the gradient descent method, the updated equations of the two sets of parameters at v iteration are:
506
+ θv+1 = θv − ηθ∇θL(θv, λv),
507
+ λv+1 = λv + ηλ∇λL(θv, λv),
508
+ (16)
509
+ where ηθ and ηλ are the learning rates for updating θ and λ, respectively. The employment of self-adaptive weights can
510
+ significantly improve the prediction accuracy at the localized features in the solution by properly balancing the terms
511
+ via the corresponding weights [41, 43].
512
+ 3.3. Data preparation & training details
513
+ To generate sufficient training data, we perform simulations of the finite element ice flow model (10) based on
514
+ either SSA or MOLHO and considering Nβ basal friction samples, βi(x), i = 1, ..., Nβ, taken from distribution (9). For
515
+ 7
516
+
517
+ each sample βi, we compute the thickness and depth-integrated velocity using the finite element flow model and store
518
+ their values {H j
519
+ i }NT
520
+ j=1 and {¯u j
521
+ i }NT
522
+ j=1 at times t j, j = 1, 2, ..., NT and grid points xi ∈ X.
523
+ In training the DeepONet, the input functions, β(x) and Hn(x), as well as the DeepONet operator Gθ are evaluated
524
+ at points X = {x1, x2, ..., xN}, as described in Fig. 2. Therefore, a DeepONet training dataset is expressed as a triplet of
525
+ the form,
526
+ ��
527
+ [β(k), H(k)]
528
+ �NβNT
529
+ k=1 ,
530
+
531
+ Y(k)�NβNT
532
+ k=1 ,
533
+ � ¯U(k)�NβNT
534
+ k=1
535
+
536
+ ,
537
+ (17)
538
+ where
539
+ [β(k), H(k)] = [βj(x1), βj(x2), ..., β j(xN), H j
540
+ i (x1), H j
541
+ i (x2), ..., H j
542
+ i (xN)],
543
+ Y(k) ≡ X = {x1, x2, ..., xN},
544
+ ¯U(k) = [¯uj
545
+ i (y1), ¯uj
546
+ i (y2), ..., ¯u j
547
+ i (yNu)].
548
+ (18)
549
+ Here, the superscript k is defined as k = (i − 1)NT + j with i = 1, ..., Nβ and j = 1, ..., NT, denoting the index of input
550
+ parameters associated with time steps and friction samples.
551
+ Regarding the basal friction fields, we adopt the following procedure to split the training and testing data: if Nb
552
+ friction fields are generated from the Gaussian process described in Section 2.4, the simulation solutions associated
553
+ with the first 20 fields, {βi}20
554
+ i=1, are exclusively used for testing, while the rest Nβ = Nb − 20 fields, {βi}
555
+ 20+Nβ
556
+ i=21 , are selected
557
+ for training the DeepONet model. Unless stated otherwise, for the given training basal friction fields the finite element
558
+ solutions at time steps t = 1, 2, ..., 100 (i.e., NT = 100) are used for the training.
559
+ In the following tests, the default training scheme uses the Adam optimizer with a learning rate 1 × 10−3. ReLU is
560
+ selected as the activation function, and the batch size is 200. The architecture of both the branch net and the trunk net is
561
+ a fully connected neural network consisting of 4 hidden layers and 300 neurons per layer (denoted as 4 × 300). To
562
+ mitigate possible overfitting in training, we also introduce an ℓ2 regularization in (14) with a small penalty coefficient
563
+ 5 × 10−5. However, we note that we did not observe any signs of conventional overfitting during our numerical tests,
564
+ and the additional regularization has a negligible impact on the DeepONet accuracy.
565
+ 4. Synthetic Ice-Sheet Problem
566
+ In this section we apply our approach to a well-known benchmark in ice sheet modeling, the MISMIP problem
567
+ [44]. We use this problem to explore how hyper-parameters affect the training of the DeepONet and the accuracy of the
568
+ hybrid model.
569
+ The problem geometry is defined by a marine ice stream that is partially floating. The ice domain is 640 km long
570
+ and 80 km wide (Ω = [0, 640 km] × [0, 80 km]). The bed topography is provided in [44]. We consider an initial
571
+ thickness (note that this is different from the one in [44]):
572
+ H(x, y) = 100 m
573
+ �3
574
+ 2 + 1
575
+ 2 tanh
576
+ �400 km − x
577
+ 100 km
578
+ ��
579
+ .
580
+ We prescribe the normal velocity at the upstream boundary (x = 0 km) and lateral boundaries (y = 0 km and y = 80 km)
581
+ to be zero, and free-slip conditions in the direction tangential to these boundaries. We prescribe stress-free conditions
582
+ at the outlet boundary (x = 640 km). No boundary conditions are prescribed for the thickness equation, as there are
583
+ no inflow boundaries. We use a constant mean basal friction field ¯β = 5000 Pa yr/m and a scaling factor a = 0.2 in
584
+ (9). As described in Section 3.2, for each sample β from (9), we run the finite-element ice flow model for 100 years,
585
+ using a constant forcing fH = 0.3 m/ yr, and compute the ice thickness H. We then use the thickness data to train the
586
+ DeepONet.
587
+ For ease of analysis, the mean squared error (MSE) and relative squared error (RSE), given as follows, are used to
588
+ evaluate the DeepONet performance:
589
+ eMS E = 1
590
+ N
591
+ N
592
+
593
+ i=1
594
+ ||ui − u∗
595
+ i ||2,
596
+ eRS E =
597
+ �N
598
+ i=1 ||ui − u∗
599
+ i ||2
600
+ �N
601
+ i=1 ||u∗
602
+ i ||2
603
+ 8
604
+
605
+ Figure 3: The loss plots of DeepONet training for the MISMIP testcase with SSA model under different correlation lengths: (a) l = 80 km; (b) l = 40
606
+ km; (c) l = 20 km. The simulation data associated with {βi}300
607
+ i=21 is used as the training data while {βi}20
608
+ i=1 is used as testing data. At the final epoch
609
+ (300, 000), the training MSEs are 2.60 × 10−6, 1.03 × 10−5, and 3.33 × 10−5, respectively.
610
+ Table 1: MISMIP test case with the SSA and MOLHO models. The mean square errors of the DeepONet training with different training dataset sizes
611
+ under various correlation lengths l. The testing error is evaluated on the same size of testing data of {βi}20
612
+ i=1.
613
+ l = 80 km
614
+ l = 40 km
615
+ l = 20 km
616
+ Training dataset
617
+ SSA
618
+ MOLHO
619
+ SSA
620
+ MOLHO
621
+ SSA
622
+ MOLHO
623
+ {βi}200
624
+ i=21
625
+ 7.37 × 10−5
626
+ 7.31 × 10−5
627
+ 2.09 × 10−4
628
+ 1.77 × 10−4
629
+ 2.92 × 10−4
630
+ 3.04 × 10−4
631
+ {βi}300
632
+ i=21
633
+ 4.84 × 10−5
634
+ 4.72 × 10−5
635
+ 1.32 × 10−4
636
+ 1.47 × 10−4
637
+ 2.54 × 10−4
638
+ 2.11 × 10−4
639
+ {βi}400
640
+ i=21
641
+ 3.62 × 10−5
642
+ 4.09 × 10−5
643
+ 1.05 × 10−4
644
+ 0.97 × 10−4
645
+ 2.28 × 10−4
646
+ 1.97 × 10−4
647
+ where ui and u∗
648
+ i denote the prediction and reference values, respectively, and N is the number of data.
649
+ Table 1 shows that DeepONet converges well with respect to the size Nβ of the training dataset and that using more
650
+ training data enhances generalization capacity. The table also shows the impact of the correlation length magnitude on
651
+ the approximation accuracy. As expected, in order to maintain the same level of accuracy, larger training datasets are
652
+ required for smaller correlation lengths. Another important piece of information from the table is that DeepONets can
653
+ approximate with a similar accuracy both the lower-fidelity SSA model and higher-fidelity MOLHO model.
654
+ Taking the case with {βi}300
655
+ i=21 as an example, the curves of training and testing losses are plotted in Fig. 3. The result
656
+ shows that the DeepONet models converge stably for all three different correlation lengths, and the prediction accuracy
657
+ on testing cases reaches a plateau after 50000 epochs. It is observed that the generalization gap2 remains nearly the
658
+ same for the data with different correlation lengths when the size of the training dataset is fixed.
659
+ The trained DeepONet model Gθ(β, H j)(x) is able to predict the velocity field ¯uNN(x) at any time t j for the given
660
+ friction field β and thickness field H j. The DeepONet predictions at t = 99 yr for an exemplary training case
661
+ corresponding to correlation lengths l = 20, 40, 80 km are presented in Fig. 4. The results in Fig. 4(g)-(i) show that
662
+ more localized features appear in the velocity solution with a smaller correlation length, e.g., the case of l = 20 km.
663
+ The RSEs between the predicted and reference velocity fields at t = 99 yr are 3.61 × 10−4, 2.57 × 10−3, and 7.96 × 10−3
664
+ for the correlation lengths l = 80, 40, and 20 km, respectively, indicating the excellent learning capacity of DeepONet
665
+ on the training velocity fields.
666
+ To examine the generalization performance, we test the trained DeepONet on an unseen test case (β6) with l = 20
667
+ km at two different time instances, as shown in Fig. 5. The relative squared errors at t = 18 and t = 94 yr are 5.67×10−2
668
+ and 4.88 × 10−2, respectively. We observe that the DeepONet accuracy does not depend significantly on the time t at
669
+ which the input thickness is evaluated.
670
+ Lastly, we investigate the effect of mesh resolution on the DeepONet performance. We use the same 4 × 300
671
+ DeepONet architecture as before, but we change the size of the input layer to accommodate input data of different
672
+ resolutions. Table 2 presents the relative squared errors of the DeepONet model against the training dataset {βi}300
673
+ i=21
674
+ and testing dataset {βi}20
675
+ i=1 under different mesh resolutions of 36 × 9, 60 × 15, and 100 × 25. Overall, the accuracy of
676
+ 2The difference between a model’s performance on training data and its performance on unseen testing data drawn from the same distribution.
677
+ 9
678
+
679
+ 10 -2
680
+ training
681
+ training
682
+ training
683
+ (a)
684
+ (b)
685
+ (c)
686
+ testing
687
+ testing
688
+ testing
689
+ 10 -3
690
+ 10 ~3
691
+ 10 -3
692
+ SSOL
693
+ loss
694
+ MSE loss
695
+ MSE
696
+ MSI
697
+ 10 -4
698
+ 10 -4
699
+ 10°
700
+ 10 ~5
701
+ 10 -5
702
+ 10 ~5
703
+ 0
704
+ 500
705
+ 1000
706
+ 1500
707
+ 2000
708
+ 2500
709
+ 3000
710
+ 0
711
+ 500
712
+ 1000
713
+ 1500
714
+ 2000
715
+ 2500
716
+ 3000
717
+ 0
718
+ 500
719
+ 1000
720
+ 1500
721
+ 2000
722
+ 2500
723
+ 3000
724
+ epoch (×100)
725
+ epoch (×100)
726
+ epoch (×100)Figure 4: The DeepONet prediction at t = 99 yr for an exemplary training case (β25) corresponding to correlation lengths l = 20, 40, 80 km. (a) - (c):
727
+ log10(β); (d) - (f): the thickness H; (g)-(i): The modulus of the predicted velocity |¯uNN|. The relative squared errors are 3.61 × 10−4, 2.57 × 10−3, and
728
+ 7.96 × 10−3 for the correlation lengths l = 80, 40, and 20 km, respectively. The simulation data associated with {βi}300
729
+ i=21 is used as the training data.
730
+ DeepONet remains comparable for the various mesh resolutions. The training time for DeepONet under different mesh
731
+ resolutions is also provided in Table 2, indicating a linear relation between the training time and the size of meshes (i.e.,
732
+ the size of the dataset).
733
+ Table 2: MISMIP testcase with the SSA model under different mesh resolutions. The relative squared errors of the DeepONet model against the
734
+ training dataset {βi}300
735
+ i=21 and testing dataset {βi}20
736
+ i=1 under various correlation lengths l. The clock time used to train DeepONet based on a given mesh
737
+ resolution remains the same for different correlation lengths.
738
+ l = 80 km
739
+ l = 40 km
740
+ l = 20 km
741
+ Mesh resolution
742
+ Time
743
+ training
744
+ testing
745
+ training
746
+ testing
747
+ training
748
+ testing
749
+ 36 × 9
750
+ 1.13 hrs
751
+ 2.97 × 10−4
752
+ 8.02 × 10−3
753
+ 0.90 × 10−3
754
+ 2.70 × 10−2
755
+ 5.28 × 10−3
756
+ 6.19 × 10−2
757
+ 60 × 15
758
+ 2.80 hrs
759
+ 3.03 × 10−4
760
+ 5.70 × 10−3
761
+ 1.14 × 10−3
762
+ 1.99 × 10−2
763
+ 5.48 × 10−3
764
+ 4.25 × 10−2
765
+ 100 × 25
766
+ 7.24 hrs
767
+ 4.55 × 10−4
768
+ 4.02 × 10−3
769
+ 1.56 × 10−3
770
+ 2.82 × 10−2
771
+ 5.44 × 10−3
772
+ 4.60 × 10−2
773
+ 5. Hybrid Modeling of Humboldt Glacier
774
+ In this section we consider the Humboldt glacier, one of the largest glaciers in Greenland. In Fig. 6, we report the
775
+ Humboldt bed topography, ice surface elevation and ice thickness obtained from observations, refer to [29] for details
776
+ on how these fields are collected and processed. These fields will be use to determine the problem geometry and the
777
+ initial ice thickness H0. The mean value ¯β of the basal friction in (9) is obtained with a PDE-constrained optimization
778
+ approach [35] where the mismatch between the computed and observed surface velocities are minimized. Fig. 7 shows
779
+ ¯β together with a couple of samples of the basal friction from (9).
780
+ Similarly to the MISMIP case, for each sample of β, obtained from (9) with correlation length l = 50 km and scaling
781
+ a = 0.2, the ice finite element flow model is run forward in time for 100 yr, using a climate forcing generated according
782
+ to the Representative Concentration Pathway 2.6 (see [29] for the problem definition and the data used including the
783
+ mean basal friction ¯β). The collected thickness and velocity simulation data are used to train the DeepONet model.
784
+ 5.1. DeepONet Training
785
+ We first evaluate the performance of DeepONet for different ice approximation models (MOLHO and SSA). Figs.
786
+ 8a-c present the plots of training and testing errors corresponding to three different DeepONet cases, i.e., training with
787
+ 1) simulation data obtained from the SSA ice model, 2) simulation data obtained from the MOLHO ice model, and 3)
788
+ simulation data obtained from the MOLHO ice model together with the self-adaptive scheme described in (14)-(16). At
789
+ 10
790
+
791
+ (b)
792
+ 3.0
793
+ 3.5
794
+ 4.0
795
+ 4.5
796
+ 50
797
+ 50
798
+ 50
799
+ 0 -
800
+ 0-
801
+ 0 -
802
+ 0
803
+ 100
804
+ 100
805
+ 0
806
+ 100
807
+ 600
808
+ 200
809
+ 300
810
+ 400
811
+ 500
812
+ 600
813
+ 0
814
+ 200
815
+ 300
816
+ 400
817
+ 500
818
+ 600
819
+ 200
820
+ 300
821
+ 400
822
+ 500
823
+ [km]
824
+ [km]
825
+ [km]
826
+ (e)
827
+ 100
828
+ 200
829
+ 300
830
+ 50 -
831
+ 50
832
+ 50
833
+ 0-
834
+ 0:
835
+ 01
836
+ 500
837
+ 100
838
+ 200
839
+ 300
840
+ 600
841
+ 0
842
+ 100
843
+ 200
844
+ 300
845
+ 400
846
+ 500
847
+ 600
848
+ 0
849
+ 100
850
+ 200
851
+ 300
852
+ 400
853
+ 600
854
+ 0
855
+ 400
856
+ 500
857
+ [km]
858
+ [km]
859
+ [km]
860
+ 20
861
+ (h)
862
+ 40
863
+ 50
864
+ 50
865
+ 50
866
+ 0
867
+ 0
868
+ 100
869
+ 0
870
+ 200
871
+ 300
872
+ 400
873
+ 500
874
+ 600
875
+ 100
876
+ 200
877
+ 300
878
+ 400
879
+ 500
880
+ 600
881
+ 0
882
+ 100
883
+ 200
884
+ 300
885
+ 400
886
+ 500
887
+ 0
888
+ 600
889
+ [km]
890
+ [km]
891
+ [km] (a)
892
+ (b)
893
+ (c)
894
+ (d)
895
+ (e)
896
+ Figure 5: The DeepONet prediction for an exemplary test case (β6) with the correlation length l = 20 km: (a) log10(β); (b) and (c) are the maps
897
+ of reference velocity modulus |¯u| at t = 18 and t = 94 yr, respectively; (d) and (e) are the point-wise errors of the velocity modulus between the
898
+ reference and DeepONet predictions |¯u − ¯uNN| at t = 18 and t = 94 yr, respectively, where the corresponding relative squared errors are 5.67 × 10−2
899
+ and 4.88 × 10−2.
900
+ Figure 6: Observations for Humboldt glacier for the initial year 2007. Left: bed topography [m] from [45], Center: ice surface elevation [m], Right:
901
+ thickness [m]. Additional details on the collection and processing of these data can be found in [29].
902
+ the last epoch (300, 000), the relative squared errors of these three DeepONet models on the testing data are 3.74 × 10−3,
903
+ 3.59 × 10−3, and 2.16 × 10−3, respectively. The comparison of results in Figs. 8a and b shows that training DeepONet
904
+ with MOLHO simulation data yields higher prediction accuracy than the low-order SSA data, which is consistent with
905
+ our observation for the MISMIP testcase. In the following, we will only consider the MOLHO model, given that it
906
+ better describes the ice sheet dynamics compared to the SSA model, and it can be well approximated by our DeepONet
907
+ model. We also observe in Fig. 8c that the employment of the self-adaptive weighting scheme significantly improves
908
+ the training and testing performance in the Humboldt glacier testcase, reducing the testing error by 40%.
909
+ We further study the impact of using self-adaptive weights in Figs. 9 and 10, where we show the prediction errors
910
+ at different β samples for different choices of adaptive weighting schemes. In Fig. 9 we report the results for a β sample
911
+ taken from the training dataset, whereas in Fig. 10 we consider a sample from the testing dataset. In both cases, the
912
+ DeepONet model trained with the self-adaptive weighting scheme with m(λ) = λ4 yields the best performance, which
913
+ is consistent with the results in Fig. 8. The self-adaptive weighting scheme especially helps mitigate the prediction
914
+ errors in the interior of the domain and the region at the outlet (i.e., northwest) region. Given the improved prediction,
915
+ in the following sections we will present the DeepONet models trained with the self-adaptive weighting scheme with
916
+ m(λ) = λ4.
917
+ 11
918
+
919
+ 0
920
+ 500
921
+ -1050
922
+ -1100
923
+ -1150
924
+ -1200
925
+ -1250
926
+ -1300
927
+ -1350
928
+ -600
929
+ -500
930
+ -400
931
+ -300
932
+ -200
933
+ [km]1000
934
+ 2000
935
+ -1050
936
+ -1100
937
+ -1150
938
+ -1200
939
+ -1250
940
+ -1300
941
+ -1350
942
+ -600
943
+ -500
944
+ -400
945
+ -300
946
+ -200
947
+ [km]1000
948
+ 2000
949
+ -1050
950
+ -1100
951
+ -1150
952
+ -1200
953
+ -1250
954
+ -1300
955
+ -1350
956
+ -600
957
+ -500
958
+ -400
959
+ -300
960
+ -200
961
+ [km]0
962
+ 20
963
+ 40
964
+ 50
965
+ 0
966
+ 0
967
+ 100
968
+ 200
969
+ 300
970
+ 400
971
+ 500
972
+ 600
973
+ [km]0
974
+ 2
975
+ 4
976
+ 50
977
+ 0
978
+ 0
979
+ 100
980
+ 200
981
+ 300
982
+ 400
983
+ 500
984
+ 600
985
+ [km]0
986
+ 20
987
+ 40
988
+ 50
989
+ 0
990
+ 0
991
+ 100
992
+ 200
993
+ 300
994
+ 400
995
+ 500
996
+ 600
997
+ [km]0
998
+ 2
999
+ 4
1000
+ 50
1001
+ 0
1002
+ 0
1003
+ 100
1004
+ 200
1005
+ 300
1006
+ 400
1007
+ 500
1008
+ 600
1009
+ [km]3.0
1010
+ 3.5
1011
+ 4.0
1012
+ 4.5
1013
+ 50
1014
+ 0
1015
+ 0
1016
+ 100
1017
+ 200
1018
+ 300
1019
+ 400
1020
+ 500
1021
+ 600
1022
+ [km]Figure 7: Mean value of the basal friction ¯β (left) and two samples of the basal friction using (9).Units: [Pa yr / m].
1023
+ Figure 8: The loss plots of DeepONet training for different ice models: (a) SSA; (b) MOLHO; (c) MOLHO with self-adaptive (SA) weighting
1024
+ scheme (m(λ) = λ4). The simulation data associated with {βi}300
1025
+ i=21 is used as the training data while {βi}20
1026
+ i=1 is used as testing data. At the final epoch
1027
+ (300, 000), the corresponding testing MSEs of these three DeepONet models are 4.23 × 10−6, 4.02 × 10−6, and 2.42 × 10−6, indicating the enhanced
1028
+ generalization by using the self-adaptive weighting scheme.
1029
+ 5.2. Hybrid model: DeepONet embedded in finite element solver
1030
+ In this section we study the accuracy and cost of the hybrid ice flow model with respect to the finite element model.
1031
+ As explained in Section 3, the hybrid model approximates at each time step the operator G with the trained DeepONet
1032
+ model Gθ. Because the DeepONet approximation is much cheaper than the finite element approximation, the hybrid
1033
+ solver is significantly more efficient than a traditional finite element solver. We study the approximation properties and
1034
+ computational savings of using the hybrid model for computing the evolution of the Humboldt glacier thickness over
1035
+ time, and then focus in particular on how well the hybrid model can approximate the glacier mass change. We finally
1036
+ show how the hybrid model can be used to produce statistics of the glacier mass loss.
1037
+ 5.2.1. Thickness evolution over time
1038
+ In this section we compare the ice thickness computed with the finite-element model, and with the hybrid model.
1039
+ We take 8 samples of beta (not used to train the DeepONet) from distribution (9). We then run the finite-element and
1040
+ the hybrid models for 150 years. Results of the comparison are shown in Fig. 11. The plot on the left shows the
1041
+ variability of the thickness, over time, with respect to the samples of β, using the same model. The plot on the right
1042
+ shows the relative difference between the ice thickness computed with the finite-element model and the one computed
1043
+ with the hybrid model. The relative differences due to the models are significantly smaller than the variability with
1044
+ respect to the different samples. Moreover, for t < 100 years, which is the period used for training the DeepONet, the
1045
+ relative differences between the two models are small, 3% at most. Differences increase in the extrapolation region
1046
+ (100 − 150 years), however the increase is mostly linear, which signifies robustness of the hybrid approximation.
1047
+ 12
1048
+
1049
+ 20000 40000 60000
1050
+ -1050
1051
+ -1100
1052
+ -1150
1053
+ -1200
1054
+ -1250
1055
+ -1300
1056
+ -1350
1057
+ -600
1058
+ -500
1059
+ -400
1060
+ -300
1061
+ -200
1062
+ -100
1063
+ [km]20000
1064
+ 40000
1065
+ -1050
1066
+ -1100
1067
+ -1150
1068
+ -1200
1069
+ -1250
1070
+ -1300
1071
+ -1350
1072
+ -600
1073
+ -500
1074
+ -400
1075
+ -300
1076
+ -200
1077
+ -100
1078
+ [km]10-3
1079
+ 10-3
1080
+ 10-3
1081
+ training
1082
+ training
1083
+ training
1084
+ testing
1085
+ - testing
1086
+ testing
1087
+ 10 -4
1088
+ 10-4
1089
+ 10 -4
1090
+ loss
1091
+ loss
1092
+ MSE
1093
+ MSE
1094
+ MSE
1095
+ 10-5
1096
+ 10-5
1097
+ 10 -6
1098
+ 10~6
1099
+ 10-6
1100
+ 0
1101
+ 500
1102
+ 1000
1103
+ 1500
1104
+ 2000
1105
+ 2500
1106
+ 3000
1107
+ 0
1108
+ 500
1109
+ 1000
1110
+ 1500
1111
+ 2000
1112
+ 2500
1113
+ 3000
1114
+ 0
1115
+ 500
1116
+ 1000
1117
+ 1500
1118
+ 2000
1119
+ 2500
1120
+ 3000
1121
+ epoch (×100)
1122
+ epoch (×100)
1123
+ epoch (×100)20000
1124
+ 40000
1125
+ -1050
1126
+ -1100
1127
+ -1150
1128
+ -1200
1129
+ -1250
1130
+ -1300
1131
+ -1350
1132
+ -600
1133
+ -500
1134
+ -400
1135
+ -300
1136
+ -200
1137
+ [km](a) 𝛽
1138
+ (b) 𝐻
1139
+ (d) |𝒖& − 𝒖&!!|
1140
+ (c) |𝒖&|
1141
+ (e) |𝒖& − 𝒖&!!|
1142
+ (f) |𝒖& − 𝒖&!!|
1143
+ Figure 9: The DeepONet prediction for an exemplary training case (β23) at t = 99 yr: (a) basal friction β in [Pa yr/m]; (b) Thickness H in [m]; (c) the
1144
+ reference velocity modulus |¯u| in [m/yr]; (d) the point-wise errors ([m/yr]) of the DeepONet; (e) the point-wise errors ([m/yr]) of the DeepONet
1145
+ trained with self-adaptive weighting scheme m(λ) = λ2; (f) the point-wise errors ([m/yr]) of the DeepONet trained with self-adaptive weighting
1146
+ scheme m(λ) = λ4. The relative squared errors corresponding to (d)-(f) are 6.29 × 10−4, 5.00 × 10−4, and 4.18 × 10−4, respectively.
1147
+ 5.2.2. Glacier mass-loss over time
1148
+ As explained in the introduction, the mass change of a glacier over the years is one of the most important quantities
1149
+ of interest in ice sheet modeling because it directly affects the net amount of water added to the oceans and hence the
1150
+ potential sea level rise. In this work, we compute the mass of the glacier only considering the ice that is above flotation,
1151
+ because changes in the mass of ice that is afloat do not affect the sea level; for details, see [46]. In Fig. 12, we show
1152
+ the mass change (mass at time t minus mass at time t0 = 0) as a function of time for the same samples of the basal
1153
+ friction used for Fig. 11. While there are some small discrepancies between the finite-element and hybrid models, the
1154
+ two model are in very good agreement overall, especially in the first 100 years, which are within the period of ice
1155
+ simulation data used for training the DeepONet model, with the largest difference being ≈ 10%. We also note that the
1156
+ qualitative behaviors of the two models are very similar in the extrapolation region (100 − 150 years).
1157
+ 5.2.3. Computing statistics on quantity of interest using Hybrid model
1158
+ Finally, we demonstrate how the hybrid model can be effectively used to compute statistics of the glacier mass
1159
+ change. We take unseen 2000 samples of β from distribution (9), and run both the hybrid model and the finite-element
1160
+ model for 100 years and 150 years for each sample. We then compute the glacier mass change (using only the ice
1161
+ above flotation) and show histograms (Fig. 13) of the mass-change distribution, comparing the differences between the
1162
+ reference finite element model and the hybrid model. The results demonstrate that the hybrid model can accurately
1163
+ compute the statistics of mass change, and therefore has the potential to be used to significantly accelerate the uncertainty
1164
+ quantification analysis for sea-level projections due to ice-sheet mass change. The discrepancies between the results
1165
+ computed with the reference finite element model and the hybrid model are likely small in practical applications, and,
1166
+ if needed, they can be corrected using a multifidelity approach where the hybrid model is used as low-fidelity model
1167
+ and the finite-element model as the high-fidelity model; see e.g., [47]. The figure also shows the impact of training
1168
+ the DeepONets using self-adaptive weights and uniform weights. It seems that the use of self-adaptive weights in
1169
+ training can lead to a small bias in the hybrid modeling to underestimate the mass loss. More investigation is needed
1170
+ 13
1171
+
1172
+ 20000
1173
+ 40000
1174
+ -1050
1175
+ -1100
1176
+ -1150
1177
+ -1200
1178
+ -1250
1179
+ -1300
1180
+ -1350
1181
+ -600
1182
+ -500
1183
+ -400
1184
+ -300
1185
+ -200
1186
+ -100
1187
+ [km]0
1188
+ 1000
1189
+ 2000
1190
+ 3000
1191
+ -1050
1192
+ -1100
1193
+ -1150
1194
+ -1200
1195
+ -1250
1196
+ -1300
1197
+ -1350
1198
+ -600
1199
+ -500
1200
+ -400
1201
+ -300
1202
+ -200
1203
+ [km]0
1204
+ 250
1205
+ 500
1206
+ 750
1207
+ 1000
1208
+ -1050
1209
+ -1100
1210
+ -1150
1211
+ -1200
1212
+ -1250
1213
+ -1300
1214
+ -1350
1215
+ -600
1216
+ -500
1217
+ -400
1218
+ -300
1219
+ -200
1220
+ [km]0
1221
+ 5
1222
+ 10
1223
+ 15
1224
+ -1050
1225
+ -1100
1226
+ -1150
1227
+ -1200
1228
+ -1250
1229
+ -1300
1230
+ -1350
1231
+ -600
1232
+ -500
1233
+ -400
1234
+ -300
1235
+ -200
1236
+ [km]0
1237
+ 5
1238
+ 10
1239
+ 15
1240
+ -1050
1241
+ -1100
1242
+ -1150
1243
+ -1200
1244
+ -1250
1245
+ -1300
1246
+ -1350
1247
+ -600
1248
+ -500
1249
+ -400
1250
+ -300
1251
+ -200
1252
+ [km]0
1253
+ 5
1254
+ 10
1255
+ 15
1256
+ -1050
1257
+ -1100
1258
+ -1150
1259
+ -1200
1260
+ -1250
1261
+ -1300
1262
+ -1350
1263
+ -600
1264
+ -500
1265
+ -400
1266
+ -300
1267
+ -200
1268
+ [km](a) 𝛽
1269
+ (b) 𝐻
1270
+ (d) |𝒖& − 𝒖&!!|
1271
+ (c) |𝒖&|
1272
+ (e) |𝒖& − 𝒖&!!|
1273
+ (f) |𝒖& − 𝒖&!!|
1274
+ Figure 10: The DeepONet prediction for an exemplary testing case (β6) at t = 92 yr: (a) β in [Pa yr/m]; (b) Thickness H in [m]; (c) the reference
1275
+ velocity modulus |¯u| in [m/yr]; (d) the point-wise errors ([m/yr]) of the DeepONet; (e) the point-wise errors ([m/yr]) of the DeepONet trained
1276
+ with self-adaptive weighting scheme m(λ) = λ2; (f) the point-wise errors ([m/yr]) of the DeepONet trained with self-adaptive weighting scheme
1277
+ m(λ) = λ4. The relative squared errors corresponding to (d)-(f) are 3.36 × 10−3, 7.66 × 10−3, and 2.88 × 10−3, respectively.
1278
+ to understand the cause of this bias and to confirm that this phenomenon is general and not specific to this particular
1279
+ glacier and the settings we used.
1280
+ 5.2.4. Computational saving using Hybrid model
1281
+ Table 3 shows the computational times for running the finite element and hybrid models, when using the MOLHO
1282
+ approximation. Overall, we see almost a 5-fold speedup when using the hybrid model over the finite element model.
1283
+ The total computational costs includes time to allocate memory, initialize data and for intput/output. If we only consider
1284
+ the time to solve the coupled model system (10), we have a 11-fold speedup. The evaluation of the DeepONet takes
1285
+ only 4.99s of the 9.46s taken to solve the hybrid model. We believe that there is margin for improvement in real
1286
+ applications. While we trained the DeepONet on GPUs, our prototype FEniCS code can only run on CPUs, therefore
1287
+ the results in this section refers to simulations run on CPUs. We expect that the DeepONet would benefit more from
1288
+ running on GPUs than a the classic finite element model, because it is still challenging to efficiently run implicit
1289
+ nonlinear solvers on GPUs (see [48], in the context of a production ice sheet model), whereas modern machine learning
1290
+ code can take full advantage of GPUs. The cost of the finite element solver scales with increasing mesh resolutions
1291
+ whereas DeepONet can maintain the same level of predictive accuracy and efficiency for various mesh resolutions (as
1292
+ shown in Table 2). Moreover, we expect that an hybrid model would be significantly more efficient, compared to the
1293
+ corresponding finite element code, when higher-order approximations of the velocity solver are considered. In fact, a
1294
+ Stokes solver can be an order of magnitude slower than the MOLHO model considered here, whereas we expect the
1295
+ cost of the DeepONet to be fairly independent from the model chosen for the velocity solver, as we observed when
1296
+ comparing the SSA and the MOLHO DeepONet models.
1297
+ 14
1298
+
1299
+ 20000 40000 60000
1300
+ -1050
1301
+ -1100
1302
+ -1150
1303
+ -1200
1304
+ -1250
1305
+ -1300
1306
+ -1350
1307
+ -600
1308
+ -500
1309
+ -400
1310
+ -300
1311
+ -200
1312
+ -100
1313
+ [km]0
1314
+ 1000
1315
+ 2000
1316
+ 3000
1317
+ -1050
1318
+ -1100
1319
+ -1150
1320
+ -1200
1321
+ -1250
1322
+ -1300
1323
+ -1350
1324
+ -600
1325
+ -500
1326
+ -400
1327
+ -300
1328
+ -200
1329
+ [km]0
1330
+ 5
1331
+ 10
1332
+ 15
1333
+ -1050
1334
+ -1100
1335
+ -1150
1336
+ -1200
1337
+ -1250
1338
+ -1300
1339
+ -1350
1340
+ -600
1341
+ -500
1342
+ -400
1343
+ -300
1344
+ -200
1345
+ [km]0
1346
+ 5
1347
+ 10
1348
+ 15
1349
+ -1050
1350
+ -1100
1351
+ -1150
1352
+ -1200
1353
+ -1250
1354
+ -1300
1355
+ -1350
1356
+ -600
1357
+ -500
1358
+ -400
1359
+ -300
1360
+ -200
1361
+ [km]0
1362
+ 5
1363
+ 10
1364
+ 15
1365
+ -1050
1366
+ -1100
1367
+ -1150
1368
+ -1200
1369
+ -1250
1370
+ -1300
1371
+ -1350
1372
+ -600
1373
+ -500
1374
+ -400
1375
+ -300
1376
+ -200
1377
+ [km]0
1378
+ 250
1379
+ 500
1380
+ 750
1381
+ 1000
1382
+ -1050
1383
+ -1100
1384
+ -1150
1385
+ -1200
1386
+ -1250
1387
+ -1300
1388
+ -1350
1389
+ -600
1390
+ -500
1391
+ -400
1392
+ -300
1393
+ -200
1394
+ [km]0
1395
+ 50
1396
+ 100
1397
+ 150
1398
+ Time [yr]
1399
+ 0
1400
+ 0.02
1401
+ 0.04
1402
+ 0.06
1403
+ 0.08
1404
+ 0.1
1405
+ ||H
1406
+ - H mean || 2 / ||H mean || 2
1407
+ 10
1408
+ 11
1409
+ 12
1410
+ 13
1411
+ 14
1412
+ 15
1413
+ 16
1414
+ 17
1415
+ 0
1416
+ 50
1417
+ 100
1418
+ 150
1419
+ Time [yr]
1420
+ 0
1421
+ 0.02
1422
+ 0.04
1423
+ 0.06
1424
+ 0.08
1425
+ 0.1
1426
+ ||H Hyb - H FE|| 2 / ||H FE|| 2
1427
+ 10
1428
+ 11
1429
+ 12
1430
+ 13
1431
+ 14
1432
+ 15
1433
+ 16
1434
+ 17
1435
+ Figure 11: Left: relative difference over time between the ice thickness Hβ associated to sample β and the mean ice thickness. Right: relative
1436
+ difference over time between the ice thickness computed with the finite element model and the hybrid model.
1437
+ .
1438
+ 0
1439
+ 50
1440
+ 100
1441
+ 150
1442
+ Time [yr]
1443
+ -2000
1444
+ -1800
1445
+ -1600
1446
+ -1400
1447
+ -1200
1448
+ -1000
1449
+ -800
1450
+ -600
1451
+ -400
1452
+ -200
1453
+ 0
1454
+ Mass change [gigatons]
1455
+ Glacier mass change [gigatons], FE model
1456
+ 10
1457
+ 11
1458
+ 12
1459
+ 13
1460
+ 14
1461
+ 15
1462
+ 16
1463
+ 17
1464
+ 0
1465
+ 50
1466
+ 100
1467
+ 150
1468
+ Time [yr]
1469
+ -2000
1470
+ -1800
1471
+ -1600
1472
+ -1400
1473
+ -1200
1474
+ -1000
1475
+ -800
1476
+ -600
1477
+ -400
1478
+ -200
1479
+ 0
1480
+ Mass change [gigatons]
1481
+ Glacier mass change [gigatons], Hyb model
1482
+ 10
1483
+ 11
1484
+ 12
1485
+ 13
1486
+ 14
1487
+ 15
1488
+ 16
1489
+ 17
1490
+ Figure 12: Mass change [gigatons] over time for different samples of the basal friction coefficient computed using the finite element model (left) and
1491
+ the hybrid model (right).
1492
+ 6. Summary
1493
+ We developed a hybrid model for ice sheet dynamics by combining a classic finite-element discretization for the
1494
+ ice thickness equation with a DeepONet approximation of the ice momentum equation, which is the most expensive
1495
+ part of a traditional ice sheet computational model. A distinctive feature of our hybrid model is that it can handle
1496
+ high-dimensional parameter spaces, which is critical for accounting for the uncertainty in parameter fields like the basal
1497
+ friction coefficient. We demonstrated that the hybrid model can accurately compute the dynamics of a real glacier an
1498
+ order of magnitude faster than a traditional ice sheet model. As explained in Section 5.2.4, the computational savings
1499
+ are likely to be larger when using production ice-sheet codes. Moreover, we showed that the hybrid model produces
1500
+ accurate statistics of the mass loss of the Humboldt glacier over a period of one hundred years and can therefore be used
1501
+ to accelerate uncertainty quantification analysis of sea-level projections due to ice sheets. Future research directions
1502
+ include scaling up our approach to target larger problems, such as using higher-resolution data or targeting the evolution
1503
+ Table 3: Comparison of computational time per sample between the finite-element and hybrid models when using MOLHO model for the velocity
1504
+ solver. The provided average times are estimated based on 50 simulations with different friction fields.
1505
+ Times per sample (s)
1506
+ Total
1507
+ Solving Eq. (10)
1508
+ Finite-element model
1509
+ 123.30
1510
+ 105.20
1511
+ Hybrid model
1512
+ 24.15
1513
+ 9.46
1514
+ Ratio
1515
+ 19.59 %
1516
+ 8.99%
1517
+ 15
1518
+
1519
+ Figure 13: Histogram of the distribution of the Humboldt mass change over a period of 100 years and 150 years. The histogram has been generated
1520
+ by simulating the mass change corresponding to 2000 samples from distribution (9). The DeepONet used for the results on the right (b and d) has
1521
+ been trained using self-adaptive weights, whereas uniform weights have been used for the results on the left (a and c).
1522
+ of the entire Greenland ice sheet, and performing uncertainty quantification analysis using the hybrid model.
1523
+ 7. Acknowledgements
1524
+ The authors wish to thank L. Lu for helpful discussions, K. C. Sockwell for co-developing the ice-sheet code, and
1525
+ T. Hillebrand for generating the Humboldt grid.
1526
+ The work is supported by the U.S. Department of Energy, Advanced Scientific Computing Research program, under
1527
+ the Physics-Informed Learning Machines for Multiscale and Multiphysics Problems (PhILMs) project and under the
1528
+ SciDAC-BER Probabilistic Sea Level Projections from Ice-Sheets and Earth System Models (ProSPect) partnership.
1529
+ The authors also acknowledge the support from the UMII Seed Grant and the Minnesota Supercomputing Institute
1530
+ (MSI) at the University of Minnesota for providing resources that contributed to the research results reported within
1531
+ this paper.
1532
+ Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
1533
+ Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
1534
+ Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.
1535
+ Pacific Northwest National Laboratory (PNNL) is a multi-program national laboratory operated for the U.S.
1536
+ Department of Energy (DOE) by Battelle Memorial Institute under Contract No. DE-AC05-76RL01830. The
1537
+ computational work was performed with resources from PNNL Institutional Computing at Pacific Northwest National
1538
+ Laboratory.
1539
+ This paper describes objective technical results and analysis. Any subjective views or opinions that might be
1540
+ expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States
1541
+ 16
1542
+
1543
+ 400
1544
+ 400
1545
+ IFEM
1546
+ IFEM
1547
+ Hybrid
1548
+ IHybrid
1549
+ 350
1550
+ 350
1551
+ 300
1552
+ 300
1553
+ 250
1554
+ 250
1555
+ 200
1556
+ 200
1557
+ 150
1558
+ 150
1559
+ 100
1560
+ 100
1561
+ 50
1562
+ 50
1563
+ 0
1564
+ 0
1565
+ -1500
1566
+ -1000
1567
+ -500
1568
+ 0
1569
+ -1500
1570
+ -1000
1571
+ -500
1572
+ 0
1573
+ 400
1574
+ 400
1575
+ FEM
1576
+ IFEM
1577
+ Hybrid
1578
+ IHybrid
1579
+ 350
1580
+ 350
1581
+ 300
1582
+ 300
1583
+ 250
1584
+ 250
1585
+ 200
1586
+ 200
1587
+ 150
1588
+ 150
1589
+ 100
1590
+ 100
1591
+ 50
1592
+ 50
1593
+ 0
1594
+ 0
1595
+ -2000
1596
+ -1500
1597
+ -1000
1598
+ -500
1599
+ 0
1600
+ -2000
1601
+ -1500
1602
+ -1000
1603
+ -500
1604
+ 0Government.
1605
+ 17
1606
+
1607
+ References
1608
+ [1] I. P. on Climate Change, Climate Change 2013 – The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of
1609
+ the Intergovernmental Panel on Climate Change, Cambridge University Press, 2014.
1610
+ [2] A. Levermann, R. Winkelmann, T. Albrecht, H. Goelzer, N. R. Golledge, R. Greve, P. Huybrechts, J. Jordan, G. Leguy, D. Martin, et al.,
1611
+ Projecting Antarctica’s contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models
1612
+ (LARMIP-2), Earth System Dynamics 11 (1) (2020) 35–76. doi:10.5194/esd-11-35-2020.
1613
+ [3] T. L. Edwards, S. Nowicki, B. Marzeion, R. Hock, H. Goelzer, H. Seroussi, N. C. Jourdain, D. Slater, F. Turner, C. J. Smith, C. M. McKenna,
1614
+ E. Simon, A. Abe-Ouchi, J. M. Gregory, E. Larour, W. H. Lipscomb, A. J. Payne, A. Shepherd, C. Agosta, P. Alexander, T. Albrecht,
1615
+ B. Anderson, X. Asay-Davis, A. Aschwanden, A. Barthel, A. Bliss, R. Calov, C. Chambers, N. Champollion, Y. Choi, R. Cullather, J. Cuzzone,
1616
+ C. Dumas, D. Felikson, X. Fettweis, K. Fujita, B. K. Galton-Fenzi, R. Gladstone, N. R. Golledge, R. Greve, T. Hattermann, M. J. Hoffman,
1617
+ A. Humbert, M. Huss, P. Huybrechts, W. Immerzeel, T. Kleiner, P. Kraaijenbrink, S. Le clec’h, V. Lee, G. R. Leguy, C. M. Little, D. P. Lowry,
1618
+ J.-H. Malles, D. F. Martin, F. Maussion, M. Morlighem, J. F. O’Neill, I. Nias, F. Pattyn, T. Pelle, S. Price, A. Quiquet, V. Radi´c, R. Reese, D. R.
1619
+ Rounce, M. Ruckamp, A. Sakai, C. Shafer, N.-J. Schlegel, S. Shannon, R. S. Smith, F. Straneo, S. Sun, L. Tarasov, L. D. Trusel, J. V. Breedam,
1620
+ R. van de Wal, M. van den Broeke, R. Winkelmann, H. Zekollari, C. Zhao, T. Zhang, T. Zwinger, Projected land ice contributions to 21st
1621
+ century sea level rise, Nature 593 (2021) 74–82. doi:10.1038/s41586-021-03302-y.
1622
+ [4] T. Isaac, G. Stadler, O. Ghattas, Scalable and efficient algorithms for the propagation of uncertainty from data through inference to prediction
1623
+ for large-scale problems, with application to flow of the antarctic ice sheet, Journal of Computational Physics 296 (2015) 348–368. doi:
1624
+ https://doi.org/10.1016/j.jcp.2015.04.047.
1625
+ URL https://www.sciencedirect.com/science/article/pii/S0021999115003046
1626
+ [5] D. J. Brinkerhoff, Variational inference at glacier scale, Journal of Computational Physics 459 (2022) 111095. doi:https://doi.org/10.
1627
+ 1016/j.jcp.2022.111095.
1628
+ URL https://www.sciencedirect.com/science/article/pii/S0021999122001577
1629
+ [6] A. Aschwanden, M. A. Fahnestock, M. Truffer, D. J. Brinkerhoff, R. Hock, C. Khroulev, R. Mottram, S. A. Khan, Contribution of the greenland
1630
+ ice sheet to sea level over the next millennium, Science Advances 5 (6) (2019). arXiv:https://www.science.org/doi/pdf/10.1126/
1631
+ sciadv.aav9396, doi:10.1126/sciadv.aav9396.
1632
+ URL https://www.science.org/doi/abs/10.1126/sciadv.aav9396
1633
+ [7] K. Bulthuis, M. Arnst, S. Sun, F. Pattyn, Uncertainty quantification of the multi-centennial response of the antarctic ice sheet to climate change,
1634
+ The Cryosphere 13 (4) (2019) 1349–1380. doi:10.5194/tc-13-1349-2019.
1635
+ URL https://tc.copernicus.org/articles/13/1349/2019/
1636
+ [8] F. Lehner, C. Deser, N. Maher, J. Marotzke, E. M. Fischer, L. Brunner, R. Knutti, E. Hawkins, Partitioning climate projection uncertainty with
1637
+ multiple large ensembles and cmip5/6, Earth System Dynamics 11 (2) (2020) 491–508. doi:10.5194/esd-11-491-2020.
1638
+ URL https://esd.copernicus.org/articles/11/491/2020/
1639
+ [9] E. Bueler, J. Brown, Shallow shelf approximation as a “sliding law” in a thermomechanically coupled ice sheet model, Journal of Geophysical
1640
+ Research 114 (F3) (2009) 1–21.
1641
+ [10] D. N. Goldberg, A variationally derived, depth-integrated approximation to a higher-order glaciological flow model, Journal Of Glaciology
1642
+ 57 (201) (2011) 157–170.
1643
+ [11] M. Perego, M. Gunzburger, J. Burkardt, Parallel finite-element implementation for higher-order ice-sheet models, Journal of Glaciology
1644
+ 58 (207) (2012) 76–88. doi:10.3189/2012JoG11J063.
1645
+ [12] W. Leng, L. Ju, M. Gunzburger, S. Price, T. Ringler, A parallel high-order accurate finite element nonlinear Stokes ice sheet model and
1646
+ benchmark experiments, Journal of Geophysical Research 117 (F1) (Jan. 2012).
1647
+ [13] E. Larour, H. Seroussi, M. Morlighem, E. Rignot, Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet
1648
+ System Model (ISSM), Journal of Geophysical Research 117 (F1) (2012) F01022. doi:10.1029/2011JF002140.
1649
+ [14] S. L. Cornford, D. F. Martin, D. T. Graves, D. F. Ranken, A. M. Le Brocq, R. M. Gladstone, A. J. Payne, E. G. Ng, W. H. Lipscomb, Adaptive
1650
+ mesh, finite volume modeling of marine ice sheets, Journal of Computational Physics 232 (2013) 529–549.
1651
+ [15] O. Gagliardini, T. Zwinger, F. Gillet-Chaulet, G. Durand, L. Favier, B. De Fleurian, R. Greve, M. Malinen, C. Martin, P. Råback, J. Ruokolainen,
1652
+ M. Sacchettini, M. Sch¨afer, H. Seddik, J. Thies, Capabilities and performance of Elmer/Ice, a new-generation ice sheet model, Geoscientific
1653
+ Model Development 6 (4) (2013) 1299–1318.
1654
+ [16] D. J. Brinkerhoff, J. V. Johnson, Data assimilation and prognostic whole ice sheet modelling with the variationally derived, higher order, open
1655
+ source, and fully parallel ice sheet model VarGlaS, The Cryosphere 7 (4) (2013) 1161–1184. doi:10.5194/tc-7-1161-2013.
1656
+ [17] I. K. Tezaur, M. Perego, A. G. Salinger, R. S. Tuminaro, S. Price, Albany/FELIX: a parallel, scalable and robust, finite element, first-order Stokes
1657
+ approximation ice sheet solver built for advanced analysis, Geoscientific Model Development 8 (2015) 1–24. doi:10.5194/gmd-8-1-2015.
1658
+ [18] M. J. Hoffman, M. Perego, S. F. Price, W. H. Lipscomb, T. Zhang, D. Jacobsen, I. Tezaur, A. G. Salinger, R. Tuminaro, L. Bertagna,
1659
+ Mpas-albany land ice (mali): a variable-resolution ice sheet model for earth system modeling using voronoi grids, Geoscientific Model
1660
+ Development 11 (9) (2018) 3747–3780. doi:10.5194/gmd-11-3747-2018.
1661
+ URL https://www.geosci-model-dev.net/11/3747/2018/
1662
+ [19] G. Jouvet, G. Cordonnier, B. Kim, M. L¨uthi, A. Vieli, A. Aschwanden, Deep learning speeds up ice flow modelling by several orders of
1663
+ magnitude, Journal of Glaciology (2021) 1–14doi:10.1017/jog.2021.120.
1664
+ [20] D. Brinkerhoff, A. Aschwanden, M. Fahnestock, Constraining subglacial processes from surface velocity observations using surrogate-based
1665
+ bayesian inference, Journal of Glaciology 67 (263) (2021) 385–403. doi:10.1017/jog.2020.112.
1666
+ [21] P. J. Lu Lu, Z. Z. Guofei Pang, G. E. Karniadakis, Learning nonlinear operators via deeponet based on the universal approximation theorem of
1667
+ operators, Nature Machine Intelligence 3 (2021) 218––229.
1668
+ [22] C. Lin, M. Maxey, Z. Li, G. E. Karniadakis, A seamless multiscale operator neural network for inferring bubble dynamics, Journal of Fluid
1669
+ Mechanics 929 (2021).
1670
+ 18
1671
+
1672
+ [23] R. Ranade, K. Gitushi, T. Echekki, Generalized joint probability density function formulation inturbulent combustion using deeponet, arXiv
1673
+ preprint arXiv:2104.01996 (2021).
1674
+ [24] S. Goswami, M. Yin, Y. Yu, G. Karniadakis, A physics-informed variational deeponet for predicting the crack path in brittle materials, arXiv
1675
+ preprint arXiv:2108.06905 (2021).
1676
+ [25] P. C. Di Leoni, L. Lu, C. Meneveau, G. Karniadakis, T. A. Zaki, Deeponet prediction of linear instability waves in high-speed boundary layers,
1677
+ arXiv preprint arXiv:2105.08697 (2021).
1678
+ [26] M. Sharma Priyadarshini, S. Venturi, M. Panesi, Application of deeponet to model inelastic scattering probabilities in air mixtures, in: AIAA
1679
+ AVIATION 2021 FORUM, 2021, p. 3144.
1680
+ [27] T. Chen, H. Chen, Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to
1681
+ dynamical systems, IEEE Transactions on Neural Networks 6 (4) (1995) 911–917.
1682
+ [28] A. D. Back, T. Chen, Universal approximation of multiple nonlinear operators by neural networks, Neural Computation 14 (11) (2002)
1683
+ 2561–2566.
1684
+ [29] T. R. Hillebrand, M. J. Hoffman, M. Perego, S. F. Price, I. M. Howat, The contribution of humboldt glacier, northern greenland, to sea-
1685
+ level rise through 2100 constrained by recent observations of speedup and retreat, The Cryosphere 16 (11) (2022) 4679–4700. doi:
1686
+ 10.5194/tc-16-4679-2022.
1687
+ URL https://tc.copernicus.org/articles/16/4679/2022/
1688
+ [30] K. Cuffey, Paterson, The Physics of Glaciers, 4th Edition, Butterworth-Heinneman, Amsterdam, 2010.
1689
+ [31] T. Dias dos Santos, M. Morlighem, D. Brinkerhoff, A new vertically integrated mono-layer higher-order (molho) ice flow model, The
1690
+ Cryosphere 16 (1) (2022) 179–195. doi:10.5194/tc-16-179-2022.
1691
+ [32] L. W. Morland, I. R. Johnson, Steady motion of ice sheets, Journal of Glaciology 25 (92) (1980) 229–246.
1692
+ doi:10.3189/
1693
+ S0022143000010467.
1694
+ [33] M. Weis, R. Greve, K. Hutter, Theory of shallow ice shelves, Continuum Mechanics and Thermodynamics 11 (1) (1999) 15–50. doi:
1695
+ 10.1007/s001610050102.
1696
+ [34] J. K. Dukowicz, S. F. Price, W. H. Lipscomb, Consistent approximations and boundary conditions for ice-sheet dynamics from a principle of
1697
+ least action, Journal of Glaciology 56 (197) (2010) 480–496. doi:10.3189/002214310792447851.
1698
+ [35] M. Perego, S. Price, G. Stadler, Optimal initial conditions for coupling ice sheet models to earth system models, Journal of Geophysical
1699
+ Research: Earth Surface 119 (9) (2014) 1894–1917.
1700
+ [36] M. Perego, Large-scale PDE-constrained Optimization for Ice Sheet Model Initialization, https://sinews.siam.org/Details-Page/
1701
+ large-scale-pde-constrained-optimization-for-ice-sheet-model-initialization (2022).
1702
+ [37] N. Petra, J. Martin, G. Stadler, O. Ghattas, A computational framework for infinite-dimensional bayesian inverse problems, part ii: Stochastic
1703
+ newton mcmc with application to ice sheet flow inverse problems, SIAM Journal on Scientific Computing 36 (4) (2014) A1525–A1555.
1704
+ doi:10.1137/130934805.
1705
+ [38] M. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E. Rognes, G. N. Wells, The fenics project version
1706
+ 1.5, Archive of Numerical Software 3 (100) (2015).
1707
+ [39] S. Balay, W. Gropp, L. C. McInnes, B. F. Smith, Petsc, the portable, extensible toolkit for scientific computation, Argonne National Laboratory
1708
+ 2 (17) (1998).
1709
+ [40] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, et al.,
1710
+ Jax: composable transformations of python+ numpy programs, Version 0.2 5 (2018) 14–24.
1711
+ [41] L. McClenny, U. Braga-Neto, Self-adaptive physics-informed neural networks using a soft attention mechanism, arXiv preprint
1712
+ arXiv:2009.04544 (2020).
1713
+ [42] S. Goswami, A. Bora, Y. Yu, G. E. Karniadakis, Physics-informed neural operators, arXiv preprint arXiv:2207.05748 (2022).
1714
+ [43] K. Kontolati, S. Goswami, M. D. Shields, G. E. Karniadakis, On the influence of over-parameterization in manifold based surrogates and deep
1715
+ neural operators, arXiv preprint arXiv:2203.05071 (2022).
1716
+ [44] S. Cornford, H. Seroussi, X. Asay-Davis, R. Arthern, C. Borstad, J. Christmann, T. Dias dos Santos, J. Feldmann, D. Goldberg, M. Hoffman,
1717
+ A. Humbert, T. Kleiner, G. Leguy, W. Lipscomb, N. Merino, G. Durand, M. Morlighem, D. Polllard, M. R¨uckamp, H. Yu, Results of the third
1718
+ Marine Ice Sheet Model Intercomparison Project (MISMIP+), The Cryosphere Discussions (2020) 1–26doi:10.5194/tc-2019-326.
1719
+ [45] M. e. a. Morlighem, Icebridge bedmachine greenland, version 3 (2017). doi:10.5067/2CIX82HUV88Y.
1720
+ URL https://nsidc.org/data/IDBMG4/versions/3
1721
+ [46] H. Goelzer, V. Coulon, F. Pattyn, B. de Boer, R. van de Wal, Brief communication: On calculating the sea-level contribution in marine ice-sheet
1722
+ models, The Cryosphere 14 (3) (2020) 833–840. doi:10.5194/tc-14-833-2020.
1723
+ URL https://tc.copernicus.org/articles/14/833/2020/
1724
+ [47] B. Peherstorfer, K. Willcox, M. Gunzburger, Optimal model management for multifidelity monte carlo estimation, SIAM Journal on Scientific
1725
+ Computing 38 (5) (2016) A3163–A3194. arXiv:https://doi.org/10.1137/15M1046472, doi:10.1137/15M1046472.
1726
+ URL https://doi.org/10.1137/15M1046472
1727
+ [48] J. Watkins, M. Carlson, K. Shan, I. Tezaur, M. Perego, L. Bertagna, C. Kao, M. J. Hoffman, S. F. Price, Performance portable ice-sheet
1728
+ modeling with mali, arXiv preprint arXiv:2204.04321 (2022).
1729
+ 19
1730
+
6NFIT4oBgHgl3EQf8isw/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
6dE2T4oBgHgl3EQf7QhB/content/tmp_files/2301.04207v1.pdf.txt ADDED
@@ -0,0 +1,2567 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Vehicle Utilization in Hub Network Design:
2
+ Exploiting Economies of Scale in Transportation
3
+ Mohammad Saleh Farham
4
+ Lazaridis School of Business & Economics, Wilfrid Laurier University [email protected]
5
+ Borzou Rostami
6
+ Alberta School of Business, University of Alberta, [email protected]
7
+ Michael Haughton
8
+ Lazaridis School of Business & Economics, Wilfrid Laurier University [email protected]
9
+ We study a vehicle-based hub network design problem (HNDPv) with the main applications in freight
10
+ distribution and parcel delivery systems, where the economies of scale stem from the effective utilization
11
+ of vehicles that move consolidated freight. The HNDPv is a generalization of the classical single allocation
12
+ hub location problem, in which the transportation costs are stepwise functions of the number (and type) of
13
+ vehicles that move the demand. We present the quadratic mixed-integer programming formulation of the
14
+ problem and its linear reformulation. Exploiting the special structures of the linearized model, we develop
15
+ a branch-and-cut method based on Benders decomposition with solely feasibility subproblems. We derive
16
+ closed-form solutions for the extreme rays of the feasibility subproblems that improve the efficiency of
17
+ the proposed algorithm through generating stronger feasibility cuts. We also address the HNDPv under
18
+ demand uncertainty and show the flexibility of our solution methodology in handling the stochastic variant
19
+ of the problem. To evaluate the efficiency of our models and solution approaches, we perform extensive
20
+ computational experiments on uncapacitated and capacitated instances of the problem derived from the
21
+ classical Australian Post dataset. The results show a considerable advantage of using HNDPv compared
22
+ to the classical HLP with constant discount factors in terms of vehicle utilization and total transportation
23
+ costs. Our computational experiments also demonstrate the efficiency of our proposed solution method in
24
+ solving large-scale problem instances.
25
+ Key words : Hub location problem; vehicle utilization; economies of scale; demand uncertainty; Benders
26
+ decomposition
27
+ 1.
28
+ Introduction
29
+ Consolidation-based freight transportation is used for systems where several freight loads
30
+ of different demand nodes are aggregated to be transported in a less costly manner. When
31
+ the direct shipments between the origin and destination of demands are not economically
32
+ 1
33
+ arXiv:2301.04207v1 [math.OC] 10 Jan 2023
34
+
35
+ 2
36
+ Farham, Rostami, and Haughton: Vehicle utilization in the SAHLP
37
+ justifiable or even feasible, such systems provide a profitable balance between economy-of-
38
+ scale-based costs and high service quality.
39
+ Postal and parcel delivery companies, less-than-truckload (LTL) motor carriers, railroads
40
+ or maritime liner navigation companies, and air/land or water/land-based intermodal car-
41
+ riers use consolidation centers, called hub facilities, to centralize commodity handling and
42
+ sorting operations, reduce setup costs, and achieve economies of scale on transportation
43
+ costs by consolidating flows. This builds a hierarchical network called a hub network, where
44
+ at the access-level, individual demand nodes connect to the hubs, and at the hub-level,
45
+ interconnected hubs send and receive consolidated flows. The objective is to minimize
46
+ the cost of locating hubs and transporting origin-destination (OD) flows on access and
47
+ hub-level links.
48
+ Economies of scale in freight transportation networks are directly related to the level at
49
+ which hub/vehicle capacities are utilized to handle/transport large volumes of loads. At
50
+ the hub-level, loads are consolidated and can be moved in bulks. Therefore, vehicles that
51
+ travel on the inter-hub links are commonly large and are made to transport high-volume
52
+ of loads over long distances efficiently (e.g., cargo jets, trains with freight wagons, etc.).
53
+ Vehicles that are operated at the access-level are different. In a postal delivery system,
54
+ for instance, small or medium-size trucks are used to transport parcels from hubs (e.g.,
55
+ airports) to non-hubs (e.g., regional collection/distribution centers). Although the cost of
56
+ using inter-hub vehicles might be larger, they are capable of moving bulks of consolidated
57
+ freight more efficiently. Therefore, properly utilizing the capacity of inter-hub vehicles loads
58
+ to a smaller unit transportation cost on hub arcs compared to the access arcs. This enables
59
+ transportation carriers to exploit economies of scale and achieve lower transportation costs
60
+ by consolidating loads into larger vehicles.
61
+ In this paper, we consider vehicle-related decisions and utilization costs in the hub
62
+ network design problem to determine the resources required to route the flow through
63
+ the network. More specifically, we study the vehicle-based hub network design problem
64
+ (HNDPv) with the single-assignment strategy in which each demand node is assigned to
65
+ precisely one hub. The objective is to select hub nodes, assign demand nodes to the selected
66
+ hubs, and determine the number and type of vehicles that travel on hub-level and access-
67
+ level networks to minimize the total location and vehicle cost. We present mathematical
68
+ programming models of the HNDPv and solve large-scale instances of the problem by
69
+
70
+ Farham, Rostami, and Haughton: Vehicle utilization in the SAHLP
71
+ 3
72
+ developing an exact branch-and-cut solution method based on Benders decomposition.
73
+ We show the advantages of using HNDPv compared to the classical HLP with constant
74
+ discount factors in terms of vehicle utilization and total transportation costs.
75
+ The HNDPv is a strategic problem where the long-term location and allocation decisions
76
+ determine the underlying network structure and the fleet size decisions determine the
77
+ investment that should be made to move the flow through the network. However, since
78
+ selecting the optimal hub location and an appropriate vehicle fleet management are directly
79
+ related to the amount of anticipated OD shipping volumes, a poor demand estimation may
80
+ lead to an unsustainable or infeasible solution under the actual demand. To address the
81
+ demand uncertainty, we extend the mathematical programming models of HNDPv in a
82
+ stochastic environment and show how to adjust our branch-and-cut solution method to
83
+ handle the demand uncertainty.
84
+ 1.1.
85
+ Related Literature
86
+ Despite the important economic impact of vehicle utilization in hub network design prob-
87
+ lems, it has not gained enough attention in the literature. The large majority of in the
88
+ hub location problems (HLPs) in the literature model the transportation cost as a linear
89
+ function of volume transported on the network links. To address economies of scale, the
90
+ transportation cost on the inter-hub links are multiplied by a fixed constant α called the
91
+ discount factor (see Alumur et al. 2021, for a recent review). While this approach leads
92
+ to a tractable (linear) cost function to minimize, it does not provide an adequate repre-
93
+ sentation of economies of scale in consolidation-based transportation systems. Considering
94
+ a fixed discount factor on all inter-hub links may lead to an oversimplified modeling of
95
+ economies of scale and produce a poor estimation of the real savings. This simplification
96
+ may result in solutions that grant discounted transportation on the inter-hub links, even
97
+ though the flow on these links are poorly consolidated (Kimms 2006, Real et al. 2021).
98
+ In addition, it requires advanced knowledge about the technologies used in the system to
99
+ estimate potential α values in advance.
100
+ To reflect economies of scale more realistically, one can consider either a decreasing unit
101
+ cost for increasing transport volumes or a function that reflects the actual cost of vehicle
102
+ utilization on the inter-hub links (Alumur et al. 2021). The former leads to a nonlinear
103
+ concave cost function of the flow on an inter-hub link (Horner and O’Kelly 2001). Such
104
+ an approach, however, has two drawbacks. First, it does not consider the technology (i.e.,
105
+
106
+ 4
107
+ Farham, Rostami, and Haughton: Vehicle utilization in the SAHLP
108
+ Flow
109
+ Cost
110
+ 0
111
+ ch1h2
112
+ αch1h2
113
+ Regular
114
+ Discounted
115
+ Flow
116
+ Cost
117
+ 0
118
+ Qh1h2
119
+ 2Qh1h2
120
+ 3Qh1h2
121
+ 4Qh1h2
122
+ Ch1h2
123
+ 2Ch1h2
124
+ 3Ch1h2
125
+ 4Ch1h2
126
+ Figure 1
127
+ Transportation cost function over an inter-hub arc.
128
+ Note. Left: Linear discount-based cost function. Right: Stepwise vehicle-based cost function.
129
+ the means of transport) used on the inter-hub links. Hence, vehicle utilization cost and
130
+ capacity are ignored. Second, considering concave functions in mathematical modeling
131
+ brings new computational challenges. As a result, researchers often consider representing
132
+ such functions by their linear approximation (O’Kelly and Bryan 1998, Racunica and
133
+ Wynter 2005, de Camargo et al. 2009, Rostami et al. 2022).
134
+ Models with vehicle-based cost functions, on the other hand, take the vehicle char-
135
+ acteristics into account by measuring the transportation costs per vehicle (as in freight
136
+ transportation networks) or per capacitated link (as in telecommunication networks). Note
137
+ that in the context of telecommunication, vehicle capacities translate to link capacities
138
+ and the corresponding problem is called HLP with modular links (HLPm), which decides
139
+ the number of capacitated links to build between each pair of nodes in the network. Such
140
+ cost functions often lead to a stepwise linear cost function. Figure 1 plots a conventional
141
+ discount-based and a vehicle-based cost function that calculates the transportation cost
142
+ on an inter-hub arc (h1,h2). In the constant-discount models, the transportation cost per
143
+ flow unit, say ch1,h2, is reduced by a factor in the range (0,1). The cost grows linearly with
144
+ the amount of flow on the arc. The vehicle-based function calculates the transportation
145
+ cost according to how vehicles are utilized. If each vehicle on arc (h1,h2) has a capacity
146
+ Qh1,h2 and a fixed utilization cost Ch1,h2, then the cost of transporting loads on that arc is
147
+ represented by a step-wise function of the number of vehicles in use.
148
+ The main difficulty of the HNDPv (and the HLPm), in addition to the natural complexity
149
+ of the design problem, is dealing with the integer number of vehicles (capacitated links) in
150
+ the mathematical programming models. Different exact and approximation methodologies
151
+ have been presented in the literature to address this challenge.
152
+
153
+ Farham, Rostami, and Haughton: Vehicle utilization in the SAHLP
154
+ 5
155
+ In the steam of exact solution approaches, Yaman and Carello (2005) presents a branch-
156
+ and-cut method for the HLPm. They solve a set of modified Australian Post (AP) instances
157
+ with up to 20 nodes to optimality and provide feasible solutions for larger instances with up
158
+ to 50 nodes using a heuristic. Rostami and Buchheim (2015) formulate the uncapacitated
159
+ p-Hub median problem with vehicle-based transportation costs and develop a branch-
160
+ and-bound algorithm where lower bounds are computed using a Lagrangian relaxation
161
+ algorithm. The authors report the exact solutions for modified AP instances with up to
162
+ 50 nodes. Tanash et al. (2017) develop a Lagrangian-based branch-and-bound algorithm
163
+ for the HLPm with an incomplete inter-hub network structure. In such problems, the OD
164
+ paths are allowed to visit more than two hubs, and the design of the inter-hub network is
165
+ part of the decision process. They solve AP instances with up to 40 nodes to optimality.
166
+ In the stream of heuristics, different solution methods based on local search, iterated
167
+ greedy search combined with memory strategies, and variable neighborhood search have
168
+ been proposed in the literature (see Carello et al. 2004, Corber´an et al. 2016, Hoff et al.
169
+ 2017, Serper and Alumur 2016, Keshvari Fard and Alfandari 2019). In particular, Keshvari
170
+ Fard and Alfandari (2019) proposes an approximation method to transform the stepwise
171
+ vehicle-based cost function to a linear function of the flow. The authors claim that by
172
+ choosing the proper intercept and slope parameters of the linear function, one can obtain a
173
+ solution close to the one found for the original stepwise cost function. The authors provide
174
+ the inexact to a set of problem test instances from CAB, AP, and Turkish datasets with
175
+ up to 50 nodes. While this approach is more efficient, its solution quality highly depends
176
+ on the estimated parameters of the generalized linear function and the capacity of the
177
+ inter-hub vehicles. This approach may lead to inferior solutions when the flow on some
178
+ inter-hub links is small or the vehicle capacities are large.
179
+ Table 1 lists recent research in the literature on HNDPv and the HLPm with the single-
180
+ allocation strategy. For each study, the table specifies the considered inter-hub network
181
+ structure, whether the demand uncertainty is addressed, whether all vehicles (including
182
+ the access-level vehicles) are capacitated, the proposed solution approach, and the largest
183
+ instance size which could be solved exactly. Although there are a few other studies that
184
+ consider HLP variants with step-wise cost functions (e.g., Kimms 2006, Sender and Clausen
185
+ 2011, Baumung and G¨und¨uz 2015), we do not list them in this table as they only introduce
186
+
187
+ 6
188
+ Farham, Rostami, and Haughton: Vehicle utilization in the SAHLP
189
+ Table 1
190
+ Related literature to the vehicle-based HLP.
191
+ Article
192
+ Inter-hub
193
+ network structure
194
+ Demand
195
+ uncertainty
196
+ Capacitated
197
+ vehicles
198
+ Solution approach
199
+ Problem type
200
+ (optimal size)
201
+ Carello et al. (2004)
202
+ Complete
203
+ No
204
+ Yes
205
+ Heuristic
206
+ CHLP
207
+ Yaman and Carello (2005)
208
+ Complete
209
+ No
210
+ Yes
211
+ Branch-and-cut
212
+ CHLP(20)
213
+ Rostami and Buchheim (2015)
214
+ Complete
215
+ No
216
+ Yes
217
+ Branch-and-bound
218
+ p-HLP(50)
219
+ Corber´an et al. (2016)
220
+ Complete
221
+ No
222
+ Yes
223
+ Heuristic
224
+ CHLP
225
+ Serper and Alumur (2016)
226
+ incomplete
227
+ No
228
+ Yes
229
+ Heuristic
230
+ CHLP
231
+ Hoff et al. (2017)
232
+ Complete
233
+ No
234
+ No
235
+ Heuristic
236
+ CHLP
237
+ Tanash et al. (2017)
238
+ incomplete
239
+ No
240
+ Yes
241
+ Branch-and-bound
242
+ HLP(40)
243
+ Keshvari Fard and Alfandari (2019)
244
+ Complete
245
+ No
246
+ Yes
247
+ Approximation
248
+ p-CHLP
249
+ This study
250
+ Complete
251
+ Yes
252
+ Yes
253
+ Branch-and-cut
254
+ CHLP(200†, 75‡)
255
+ CHLP: capacitated HLP, p-HLP: p-hub median problem, p-CHLP: capacitated p-HLP.
256
+ † Deterministic instance size.
257
+ ‡ Stochastic instance size.
258
+ problem formulations, and do not present any problem-specific solution algorithms. The
259
+ terms that are made bold in Table 1 share similarities with our problem.
260
+ The available solution approaches for the HDNPv are either approximation methods or
261
+ exact algorithms that are only capable of solving small-size problem instances. Moreover,
262
+ despite the fact that the demand uncertainty directly affects the flow through the network,
263
+ hence vehicle utilization, no research has been carried out to investigate the HNDPv with
264
+ stochastic demand. Previous HLPs studies only consider sources of uncertainty in the
265
+ discount-based models (see, for example, Alumur et al. 2012, Qin and Gao 2017, Tran
266
+ et al. 2017, Wang et al. 2020, Hu et al. 2021, Rostami et al. 2021), and leave the stochastic
267
+ HNDPv unexplored.
268
+ 1.2.
269
+ Our Contribution
270
+ While vehicle-based cost functions provide an adequate description of scale economies,
271
+ they make the already challenging hub network design problem even more difficult to solve
272
+ due to the additional integer variables that determine the number of inter-hub vehicles.
273
+ Incorporating demand variability, which is necessary to make reliable location/allocation
274
+ and fleet-size decisions, also adds another layer of complexity. In this study, (i) we develop
275
+ an exact solution method based on Benders decomposition. While a natural approach to
276
+ tackling the problem’s difficulty is to project out the integer vehicle variables, we propose
277
+ an alternative where all the main decisions are made in the master problem. This leads
278
+ to a branch-and-cut algorithm with feasibility-checking subproblems. (ii) To generate fea-
279
+ sibility cuts more efficiently, we derive the extreme rays of the feasibility subproblem in
280
+ an analytical way that, in addition to preventing solving many linear programs within the
281
+ search tree, also provides an opportunity to add multi cuts in each call to the subproblem.
282
+
283
+ Farham, Rostami, and Haughton: Vehicle utilization in the SAHLP
284
+ 7
285
+ (iii) We address the problem with demand uncertainty under the stochastic programming
286
+ framework and show the potential of our solution methodology in solving the determinis-
287
+ tic equivalent formulation of the problem. (iv) Extensive computational experiments are
288
+ conducted to evaluate the potential, robustness, and efficiency of our models and solution
289
+ methodologies on uncapacitated and capacitated instances derived from the classical Aus-
290
+ tralian Post dataset. The results show a considerable advantage of using HNDPv compared
291
+ to the classical HLP with constant discount factors in terms of vehicle utilization and total
292
+ transportation costs. The proposed solution algorithm is able to solve large-scale deter-
293
+ ministic HNDPv instances with up to 200 nodes for the first time in the literature. We
294
+ also show the capability of the proposed solution methodology in solving problems with
295
+ uncertain demands and general (or incomplete) inter-hub network structures.
296
+ The remainder of the paper is organized as follows. Section 2 introduces mathematical
297
+ formulations for the deterministic HNDPv and presents some valid inequalities. In Sec-
298
+ tion 3, we propose our solution approaches for the HNDPv. The HNDPv under demand
299
+ uncertainty and its solution method is discussed in Section 4. Our computational study
300
+ in Section 5 investigates the performance of our solution algorithm in solving a set of
301
+ benchmark problem test instances and provides managerial insights. In this section, we
302
+ also explain how our solution approach can be adopted to solve problems with general
303
+ inter-hub network structure. Section 6 concludes the paper and highlights future research
304
+ directions.
305
+ 2.
306
+ Problem Statement and Formulation
307
+ The HNDPv is defined over a many-to-many network G = (N,A), where N represents
308
+ the set of demand points (including hubs) and A is the set of (directed) arcs. The set
309
+ of candidate hub nodes is denoted as H ⊂ N. Each node in N can potentially be the
310
+ sender/receiver of specific OD flows. That is, there exists a flow amount of wij of a single
311
+ commodity between each pair of i and j in N. We use Oi = �
312
+ j∈N wij and Di = �
313
+ j∈N wji
314
+ to denote the total amount of flow originated and destined at demand node i, respectively.
315
+ The amount of flow that can be consolidated at a hub is usually restricted by hub capacity.
316
+ Associated with each hub h ∈ H, we consider a limited capacity Uh (that is set to a big
317
+ number if the hub is uncapacitated) and a fixed setup cost Fh.
318
+
319
+ 8
320
+ Farham, Rostami, and Haughton: Vehicle utilization in the SAHLP
321
+ Node-to-node connections are established through vehicle movements. At the hub level,
322
+ loads are consolidated and are transported by high-capacity vehicles called primary vehi-
323
+ cles. At the access-level network, smaller vehicles, called secondary vehicles, are utilized to
324
+ pickup/deliver demands from/to non-hub nodes. Vehicles that are available at each hub
325
+ may differ in terms of capacity and cost factors (e.g., fixed utilization cost). Therefore,
326
+ we identify the fleet of secondary vehicles at any hub h ∈ H by capacity qh, a fixed uti-
327
+ lization cost gh, and unit traveling cost bh. We define chi = gh + bh d(h,i) as the one-way
328
+ transportation cost on access arc (h,i) ∈ A, where d(i,j) is the distance between nodes i
329
+ and j. Therefore, the cost of serving node i ∈ N by a secondary vehicle from hub h ∈ H
330
+ is c±
331
+ hi = chi + bh d(i,h). Similarly, associated with each primary vehicle connecting a pair
332
+ of hubs h,k ∈ H are capacity Qhk, fixed utilization cost Ghk, and unit traveling cost Bhk.
333
+ Therefore, we let Chk = Ghk + Bhk d(h,k) be the cost of using a primary vehicle on each
334
+ hub-hub connection (h,k).
335
+ Note that in many strategic problems, calculating vehicle costs are based on the uti-
336
+ lization cost over a given distance, while the filling quota plays a minor role. Therefore,
337
+ the vehicle utilization cost is defined as a function of a fixed cost associated with using a
338
+ vehicle on a specific link, and the cost of traversing that link. The traveling cost is assumed
339
+ as a function of distance and not the load. In this way, dispatching vehicles with high load
340
+ factors leads to a lower total transportation cost.
341
+ We assume that the fixed cost, capacity, and unit traveling costs of a primary vehicle are
342
+ strictly greater than those of a secondary vehicle, and Chk/Qhk < chk/qh holds for (h,k) ∈ A.
343
+ This ensures that the unit transportation cost is less on inter-hub arcs compared to the
344
+ access arcs when vehicles are adequately utilized. Consequently, the economies of scale is
345
+ enhanced through consolidating freight into primary vehicles.
346
+ 2.1.
347
+ Mathematical Formulation
348
+ The HNDPv aims to (i) select a set of hub nodes, (ii) assign non-hub nodes to the selected
349
+ hubs by satisfying the single-assignment property, and (iii) determine the number and
350
+ type of primary and secondary vehicles, such that the overall hub location and vehicle
351
+ utilization costs are minimized. Therefore, the major decisions in the HNDPv involve
352
+ hub location, demand node allocation, and vehicle fleet management. We define a binary
353
+ decision variable xhi to indicate whether node i ∈ N is assigned to hub h ∈ H. Variable xhh
354
+
355
+ Farham, Rostami, and Haughton: Vehicle utilization in the SAHLP
356
+ 9
357
+ indicates whether node h ∈ H is selected as a hub. Moreover, we define yij as an integer
358
+ variable that determines the number of vehicles needed on arc (i,j) ∈ A.
359
+ One of the main component of the objective cost function is the cost corresponding to
360
+ the number of primary and secondary vehicles. Due to the single-assignment property, we
361
+ have full information on the amount of flow on each selected access arc traversed in direct
362
+ shipments. For example, when node i is assigned to hub h, the total flow on arc (h,i) is
363
+ equal to Di and the total flow on arc (i,h) is equal to Oi. We can calculate the number of
364
+ vehicles required for delivering and picking up the demand of node i as n+
365
+ hi = ⌈Di/qh⌉ and
366
+ n−
367
+ ih = ⌈Oi/qh⌉, respectively, where ⌈·⌉ is the ceiling function. Therefore, the total number
368
+ of secondary vehicles yhi that need to dispatch from hub h to serve demand node i ∈ N via
369
+ direct shipment can be prepossessed and set to n±
370
+ hi = max
371
+
372
+ n+
373
+ hi,n−
374
+ hi
375
+
376
+ . This number is based
377
+ on the fact that vehicles are available at the hub locations and start and end their trip at
378
+ their hosting hubs. In the HLPs with modular links, n±
379
+ hi translates into the number of links
380
+ with capacity qh that need to be installed in order to serve demand node i from hub h (see
381
+ Yaman and Carello 2005, Corber´an et al. 2016). Therefore, we define the following cost
382
+ function at the access level network
383
+ DC(x) =
384
+
385
+ h∈H
386
+
387
+ i∈N:i̸=h
388
+
389
+ hi c±
390
+ hi xhi.
391
+ (1)
392
+ However, the decisions about the number of primary vehicles in the hub-level network
393
+ can not be prepossessed and must explicitly be addressed by y variables. The following
394
+ function calculates the total transportation cost at the hub level.
395
+ HC(y) =
396
+
397
+ h∈H
398
+
399
+ k∈H:k̸=h
400
+ Chk yhk.
401
+ (2)
402
+ Finally, the total hub location cost is defined as:
403
+ LC(x) =
404
+
405
+ h∈H
406
+ Fh xhh.
407
+ (3)
408
+ Using the defined decisions and their associated costs, we model the HNDPv as the
409
+ mixed-integer quadratic formulation given below.
410
+ Minimize
411
+ LC(x) + DC(x) + HC(y)
412
+ (4a)
413
+ subject to:
414
+
415
+ i∈N
416
+
417
+ j∈N
418
+ wij xhixkj ≤ Qhk yhk, h,k ∈ H,
419
+ (4b)
420
+
421
+ 10
422
+ Farham, Rostami, and Haughton: Vehicle utilization in the SAHLP
423
+ x ∈ X,
424
+ (4c)
425
+ y ∈ Z|H|×|H|
426
+ ≥0
427
+ ,
428
+ (4d)
429
+ where X is the set of constraints that ensure a feasible assignment. Objective function (4a)
430
+ minimizes the total cost of locating hubs and utilizing vehicles to transport flow through
431
+ the network. Constraint (4b) relates assignment and vehicle variables. It calculates the
432
+ total flow on each hub arc and ensures that a correct number of vehicles travel on that arc.
433
+ Constraint (4d) restricts y to nonnegative integer values. For simplicity, we denote Z|H|×|H|
434
+ ≥0
435
+ by Y.
436
+ Set X is well-defined in the HLP literature (see Farahani et al. 2013, for a review). A
437
+ standard feasible set X is given as:
438
+ X =
439
+
440
+
441
+ �xhi ∈ {0,1}, h ∈ H,i ∈ N
442
+ ������
443
+
444
+ h∈H xhi = 1, i ∈ N,
445
+ xhi ≤ xhh,
446
+ h ∈ H,i ∈ N.
447
+
448
+
449
+ �,
450
+ (5)
451
+ where the first constraint assigns each node to exactly one hub, and the second constraint
452
+ restricts assignments to the selected hubs. If a p-hub median problem is targeted, equality
453
+ constraint �
454
+ h∈H xhh = p is added to X to ensure that exactly p hubs are selected. When
455
+ hub h has a limited capacity Uh, X also contains the following constraint to ensure that
456
+ the total outgoing demand from a hub does not exceed its capacity.
457
+
458
+ i∈N
459
+ Oixhi ≤ Uh xhh, h ∈ H.
460
+ (6)
461
+ 2.2.
462
+ A Linear Reformulation
463
+ The HNDPv formulation (4) is a constrained binary quadratic program, which is
464
+ intractable for many standard solvers. One can use the “path-based” formulation of Skorin-
465
+ Kapov et al. (1996) or the “flow-based” formulation of Ernst and Krishnamoorthy (1996)
466
+ to obtain an equivalent MIP formulation. Although the flow-based formulation is widely
467
+ considered as the most effective model for the classical single allocation HLPs, a crucial
468
+ assumption for its validity is that the triangle inequality for the transportation costs holds
469
+ (Correia et al. 2010). As the inter-hub transportation costs are vehicle-dependent in our
470
+ application, the triangular inequality condition does not generally hold and, therefore, the
471
+ classical flow-based technique cannot be applied. Here, we use a modified version of the
472
+ flow-based linearization of Rostami et al. (2022) that always provides a valid lineariza-
473
+ tion regardless of the underlying cost structure. Consider a non-negative variable zihk that
474
+
475
+ Farham, Rostami, and Haughton: Vehicle utilization in the SAHLP
476
+ 11
477
+ determines the amount of node i’s demand transported from hub h to hub k, i.e., zihk =
478
+ xhi
479
+
480
+ j wijxkj,∀i ∈ N,h,k ∈ H. Then, constraint (4b) can be replaced by
481
+
482
+ i∈N
483
+ zihk ≤ Qhk yhk, h,k ∈ H,
484
+ (7a)
485
+ where variable z is determined by the following set of constraints.
486
+
487
+ k∈H
488
+ zihk = Oi xhi,
489
+ h ∈ H,i ∈ N,
490
+ (7b)
491
+
492
+ h∈H
493
+ zihk =
494
+
495
+ j∈N
496
+ wij xkj, k ∈ H,i ∈ N,
497
+ (7c)
498
+ z ∈ R|N|×|H|×|H|
499
+ ≥0
500
+ .
501
+ (7d)
502
+ Replacing the quadratic constraints (4b) by, new set of constraints in (7) we obtain the
503
+ following mixed-integer linear programming reformulation
504
+ P :
505
+ min
506
+ x,y,z{LC(x) + DC(x) + HC(y)|(7), x ∈ X, y ∈ Y }.
507
+ (8)
508
+ The validity of this linearization follows from the equivalence between constraints (7b)
509
+ and (7c) and the mathematical definition of the flow variables (see Remark 3 in Rostami
510
+ et al. 2022).
511
+ 3.
512
+ A Benders Decomposition-based Solution Algorithm
513
+ Model P can be solved by state-of-the-art MIP solvers. However, it is still very challenging
514
+ due to a large number of variables and linking constraints. A natural way to handle such
515
+ a difficulty is to apply a Benders decomposition (BD) to project out integral variables
516
+ y and deal with them in a subproblem. However, since the subproblem involves integral
517
+ variables, it requires special treatments, such as the integer L-shaped method (Laporte
518
+ and Louveaux 1993), to generate optimality cuts to the Benders master problem. Given
519
+ that integer L-shaped cuts are usually not strong, one can solve the linear programming
520
+ (LP) relaxation of the resulting subproblems and add Benders optimality cuts to improve
521
+ the global lower bound on the value of the subproblems (see Rostami et al. 2022, for a
522
+ recent implementation on the integer L-shaped method to solve an HLP). Our preliminary
523
+ experiments, however, showed that such a treatment is time-consuming and negatively
524
+ affects the performance of the BD algorithm. Therefore, we do not provide details of the
525
+ integer L-shaped method here.
526
+
527
+ 12
528
+ Farham, Rostami, and Haughton: Vehicle utilization in the SAHLP
529
+ In what follows, we describe an alternative Benders decomposition in Section 3.1 in
530
+ which the flow variables are projected out and will be handled through feasibility cuts. In
531
+ Section 3.2, we show how to compute such feasibility cuts efficiently. Finally, in Section 3.3,
532
+ we present some valid inequalities to enhance the algorithm.
533
+ 3.1.
534
+ Benders Feasibility Cuts
535
+ Consider P in 8 and project out the flow variables from the model, while keeping the
536
+ location/allocation and integer vehicle variables. This leads to an integer Benders master
537
+ problem (BMP) and a linear program (LP) subproblem. The Benders subproblem is defined
538
+ for a given (x,y) ∈ X × Y in order to check whether the decided vehicle variables yield a
539
+ feasible flow on hub-hub connections. This problem is referred to as the BSP(x,y) given
540
+ by
541
+ BSP(x,y) :
542
+ min 0
543
+ (9a)
544
+ s.t.
545
+
546
+ i∈N
547
+ zihk ≤ Qhkyhk,
548
+ h,k ∈ H,
549
+ (9b)
550
+
551
+ k∈H
552
+ zihk = Oixhi,
553
+ h ∈ H,i ∈ N,
554
+ (9c)
555
+
556
+ h∈H
557
+ zihk =
558
+
559
+ j∈N
560
+ wijxkj, k ∈ H,i ∈ N,
561
+ (9d)
562
+ z ∈ R|N|×|H|×|H|
563
+ ≥0
564
+ .
565
+ (9e)
566
+ By defining dual variables λ,µ,ν, we can write the dual of the BSP(x,y), called
567
+ DSP(x,y), as the following LP formulation:
568
+ DSP(x,y) :
569
+ max
570
+
571
+ h∈H
572
+
573
+ k∈H
574
+ Qhkyhk λhk +
575
+
576
+ h∈H
577
+
578
+ i∈N
579
+
580
+ Oixhi µhi +
581
+
582
+ j∈N
583
+ wijxhj νhi
584
+
585
+ (10a)
586
+ s.t.
587
+ λhk + µhi + νki ≤ 0,
588
+ h,k ∈ H,i ∈ N,
589
+ (10b)
590
+ λ ∈ R|H|×|H|
591
+ ≤0
592
+ ,µ,ν ∈ R|H|×|N|.
593
+ (10c)
594
+ The feasible set of DSP(x,y) is independent of the choice of (x,y). Therefore, if it is
595
+ not empty, the DSP(x,y) becomes either feasible or unbounded for any arbitrary choice
596
+ of (x,y). In the former case, no further action is required and (x,y) is feasible and hence
597
+
598
+ Farham, Rostami, and Haughton: Vehicle utilization in the SAHLP
599
+ 13
600
+ optimal for the problem. In the latter case, given the set of extreme rays R of the set
601
+ ��
602
+ λ,µ,ν
603
+
604
+ : (10b)
605
+
606
+ , there is an unbounded ray (λ
607
+ r,µr,νr), r ∈ R for which
608
+ Ωr =
609
+
610
+ h∈H
611
+
612
+ k∈H
613
+ Qhkλ
614
+ r
615
+ hk yhk +
616
+
617
+ h∈H
618
+
619
+ i∈N
620
+
621
+ Oiµr
622
+ hi xhi +
623
+
624
+ j∈N
625
+ wijνr
626
+ hi xhj
627
+
628
+ > 0.
629
+ (11)
630
+ We must cut solution (x,y) to restrict movement in this direction. This will result in
631
+ the following reformulation of model P refer to master problem
632
+ BMP :
633
+ min LC(x) + DC(x) + HC(y)
634
+ (12a)
635
+ s.t. Ωr ≤ 0, r ∈ R
636
+ (12b)
637
+ x ∈ X, y ∈ Y.
638
+ (12c)
639
+ In our implementation, which is evaluated in Section 5, we solve BMP using a branch-
640
+ and-cut framework of a state-of-the-art optimization solver. The feasibility cuts are incor-
641
+ porated into the master problem by using callbacks, allowing to add the cutting planes
642
+ step-by-step. A callback is executed whenever an optimal solution of the LP-relaxation is
643
+ found at the root node of the branch-and-bound-tree or an incumbent solution at any node
644
+ of the branch-and-bound-tree is found. For the current choice of variables (x,y), if this
645
+ solution satisfies the following conditions, then it is also feasible to the original problem
646
+ (4) and no further action is required.
647
+
648
+
649
+
650
+
651
+
652
+ zihk = xhi
653
+
654
+ j wijxkj,
655
+ ∀i ∈ N,h,k ∈ H,
656
+
657
+ i∈N zihk ≤ Qhk yhk,
658
+ h,k ∈ H.
659
+ (13)
660
+ Otherwise, i.e., if condition (13) is violated, the feasibility cut (12b) is added to the BMP
661
+ to cut off the current (x,y). To find the feasibility cuts, one can solve the BSP, or its dual,
662
+ using a standard LP solver.
663
+ Remark 1. The Benders decomposition approach developed here can also be applied
664
+ to solve the HNDPv with the general hub network structures with small modifications.
665
+ The general hub network structure allows the OD pairs’ demands to go through more
666
+ than two hubs if needed Tanash et al. (2017). Therefore, the quadratic constraint (4b) and
667
+ inequality (16c) are no longer valid. The Benders subproblem should incorporate a flow
668
+ conservation constraint for each hub node to ensure that the flows are correctly routed
669
+ through the network. That is, we have
670
+
671
+ 14
672
+ Farham, Rostami, and Haughton: Vehicle utilization in the SAHLP
673
+ G-BSP(x,y) : min 0
674
+ (14a)
675
+ s.t. (7a),(7d),
676
+
677
+ k∈H
678
+ zihk −
679
+
680
+ k∈H
681
+ zikh = Oixhi −
682
+
683
+ j∈N
684
+ wijxhj, h ∈ H,i ∈ N.
685
+ (14b)
686
+ Constraints (14b) are the flow conservation, which can also be obtained by subtracting
687
+ (9d) from (9c) in the BSP for complete inter-hub networks. In the online companion, we
688
+ provide more details on the method and its computational performance.
689
+ 3.2.
690
+ Cut Generation Improvement
691
+ There are two main issues with the cut generation procedure described in Section 3.1.
692
+ First, while condition (13) might be violated for more than one hub-hub connection (h,k),
693
+ we only add one feasibility cut. This is because BSP and DSP can not be decomposed on
694
+ inter-hub link (h,k). Moreover, solving LP subproblems can be time-consuming, as many
695
+ of these suproblems must be solved within the search tree (see Section 5.2). To overcome
696
+ these challenges, in the following theorem, we show how to exploit the structure of the
697
+ DSP to obtain an unbounded ray
698
+
699
+ λ,µ,ν
700
+
701
+ for each pair of hubs for which condition (13)
702
+ is violated.
703
+ Theorem 1. Let (x,y) be a feasible solution to the BMP. Let ˆh, ˆk ∈ H be an arbitrary
704
+ pair of hubs for which condition (13) is violated. Then, given a constant Γ > 0, the vector
705
+
706
+ λ,µ,ν
707
+
708
+ with
709
+ λhk =
710
+
711
+
712
+
713
+
714
+
715
+ −Γ
716
+ if h = ˆh and k = ˆk,
717
+ 0
718
+ otherwise,
719
+ h,k ∈ H,
720
+ (15a)
721
+ µhi =
722
+
723
+ h′∈H
724
+
725
+ k∈H
726
+ λh′k xh′i −
727
+
728
+ k∈H
729
+ λhk xhi h ∈ H,i ∈ N,
730
+ (15b)
731
+ νki = −
732
+
733
+ h∈H
734
+ λhk xhi
735
+ k ∈ H,i ∈ N,
736
+ (15c)
737
+ is an unbounded ray for DSP(x,y).
738
+ Proof.
739
+ Given ˆh, ˆk ∈ H, we first show that the vector
740
+
741
+ λ,µ,ν
742
+
743
+ is feasible. Substituting
744
+ the values in left-hand side of constraint (10b), we get
745
+
746
+ Farham, Rostami, and Haughton: Vehicle utilization in the SAHLP
747
+ 15
748
+ λhk + µhi + νki =
749
+
750
+
751
+
752
+
753
+
754
+
755
+
756
+
757
+
758
+
759
+
760
+ −Γ (1 − xˆhi)
761
+ if h = ˆh and k = ˆk,
762
+ −Γ xˆhi
763
+ if h ̸= ˆh and k ̸= ˆk,
764
+ 0
765
+ otherwise,
766
+ h,k ∈ H,i ∈ N,
767
+ which is always lest than or equal to 0 as −Γ < 0 and xhi ≤ 1 holds for any h,k ∈ H,i ∈ N.
768
+ We now show that the objective function is unbounded over
769
+
770
+ λ,µ,ν
771
+
772
+ . Substituting the
773
+ values in expression (10a) yields
774
+
775
+ h∈H
776
+
777
+ k∈H
778
+ Qhkyhk λhk +
779
+
780
+ h∈H
781
+
782
+ i∈N
783
+
784
+ Oixhi µhi +
785
+
786
+ j∈N
787
+ wijxhj νhi
788
+
789
+ = −Γ Qˆhˆkyˆhˆk −
790
+
791
+ h:h̸=ˆh
792
+
793
+ i∈N
794
+ Γ xˆhiOixhi +
795
+
796
+ i∈N
797
+
798
+ j∈N
799
+ Γ wijxˆhixˆkj
800
+ = −Γ Qˆhˆkyˆhˆk − 0 + Γ
801
+
802
+ i∈N
803
+ xˆhi
804
+
805
+ j∈N
806
+ wijxˆkj
807
+ = Γ
808
+ ��
809
+ i∈N
810
+ ziˆhˆk − Qˆhˆkyˆhˆk
811
+
812
+ .
813
+ Since ˆh, ˆk ∈ H violate condition (13), we have �
814
+ i∈N ziˆhˆk −Qˆhˆkyˆhˆk > 0. Therefore, the max-
815
+ imization problem (10) becomes unbounded as Γ → ∞.
816
+
817
+ Using Theorem 1, we can generate the feasibility cut (12b) without solving the DSP
818
+ subproblems. More importantly, it implies that we can generate a feasibility cut whenever
819
+ we detect a pair of hubs (ˆh, ˆk) on which there exists an insufficient number of primary
820
+ vehicles. If there are more than one infeasible inter-hub link, one can choose an arbitrary
821
+ pair or select an (ˆh, ˆk) equal to arg max(h,k)∈H×H
822
+ ��
823
+ i∈N
824
+
825
+ j∈N wijxˆhixˆkj − Qhkyhk
826
+
827
+ , i.e.,
828
+ the pair for which the highest amount of capacity violation is observed. Therefore, we
829
+ consider a modified branch-and-cut framework, where at each node, we find all (ˆh, ˆk)
830
+ with infeasible flows, calculate the extreme rays
831
+
832
+ λ,µ,ν
833
+
834
+ using Theorem 1, and add the
835
+ resulting cuts to prune that node (if needed). Our computational results show that the
836
+ multi-cut approach outperforms the single-cut version, specially for the problem under
837
+ multiple demand scenarios (see Section 4).
838
+ 3.3.
839
+ Valid Inequalities
840
+ Initially, the BMP has poor information on the flows over the inter-hub links as it includes
841
+ y variables, but not their relation to the flow variables z. Therefore, the initial bounds
842
+
843
+ 16
844
+ Farham, Rostami, and Haughton: Vehicle utilization in the SAHLP
845
+ are usually loose, and the algorithm may go through many iterations to obtain some
846
+ information through feasibility cuts. In a desire to give the algorithm a better warm start
847
+ and improve its linear relaxation, we can exploit the model’s structure to generate some
848
+ valid inequalities. In particular, we can set a lower bound on the total number of vehicles
849
+ that arrive to and dispatch from a hub based on the total incoming and outgoing demand
850
+ assigned to that hub. Let Qin
851
+ h = maxk{Qkh} and Qout
852
+ h
853
+ = maxk{Qhk}. Then, the following
854
+ set of inequalities provide the aforementioned bounds.
855
+ 1
856
+ Qin
857
+ h
858
+
859
+ i∈N
860
+ Di xhi ≤
861
+
862
+ k∈H
863
+ ykh, h ∈ H
864
+ (16a)
865
+ 1
866
+ Qout
867
+ h
868
+
869
+ i∈N
870
+ Oi xhi ≤
871
+
872
+ k∈H
873
+ yhk, h ∈ H.
874
+ (16b)
875
+ Moreover, when there is a flow between two nodes and both nodes are selected as hubs,
876
+ they must be connected by at least one primary vehicle. The following valid inequality
877
+ calculates the minimum number of vehicles required to travel between two hubs based on
878
+ their shipment volume and primary vehicle capacity.
879
+ �whk
880
+ Qhk
881
+
882
+ (xhh + xkk − 1) ≤ yhk, h,k ∈ H.
883
+ (16c)
884
+ 4.
885
+ Demand Uncertainty
886
+ The HNDPv problem presented in Section 2 assumes that the OD demands are known in
887
+ the planning stage. In reality, however, shipment volumes are stochastic, and long-term
888
+ deterministic forecasts are unreliable. In this section, we address the demand uncertainty
889
+ in HNDPv under a stochastic programming framework. The goal is to account for demand
890
+ uncertainty in the design phase of the network in order to maintain the operational relia-
891
+ bility of the network when the actual demand is realized.
892
+ For each i,j ∈ N, let random variable wij(ξ) represent the flow that needs to be sent
893
+ from node i to node j, where ξ ∈ Ξ for a given support Ξ. Define Oi(ξ) = �
894
+ j∈N wij(ξ)
895
+ and Di(ξ) = �
896
+ j∈N wji(ξ) as random variables representing the total outgoing flow from
897
+ and the total incoming flow to node i, respectively. We consider a two-stage stochastic
898
+ program with recourse in which the location and allocation variables are dealt with in the
899
+ first stage, while the flow variables and the required number of vehicles are determined in
900
+ the second stage. The two-stage stochastic formulation of HNDPv is given as
901
+ min
902
+ x∈X LC(x) + Eξ[P(x,ξ)]
903
+ (17)
904
+
905
+ Farham, Rostami, and Haughton: Vehicle utilization in the SAHLP
906
+ 17
907
+ where Eξ denotes the mathematical expectation with respect to ξ ∈ Ξ,
908
+ P(x,ξ) = min
909
+ y∈Y
910
+
911
+ DC ξ(x) + HC(y)
912
+ �����
913
+
914
+ i∈N
915
+
916
+ j∈N
917
+ wij(ξ)xhixkj ≤ Qhk yhk, h,k ∈ H
918
+
919
+ ,
920
+ (18)
921
+ and DC ξ(x) is the cost of direct access to non-hub node i which is defined as a function
922
+ of random variables calculated as:
923
+ DC ξ(x) =
924
+
925
+ h∈H
926
+
927
+ i∈N
928
+ max
929
+ ��Di(ξ)
930
+ qh
931
+
932
+ ,
933
+ �Oi(ξ)
934
+ qh
935
+ ��
936
+
937
+ hi xhi.
938
+ (19)
939
+ Evaluating Eξ[P(x,ξ)] in (17) is difficult and makes the optimization problem intractable.
940
+ Therefore, following other works on stochastic hub location (see, for example,
941
+ Alumur
942
+ et al. 2012, Rostami et al. 2021), we assume that the random variable ξ follows a discrete
943
+ distribution with finite support S = {s1,...,sm}, where each event s ∈ S occurs with prob-
944
+ ability P(ξ = s) = ps. Accordingly, we use ws
945
+ ij to denote the amount of flow from node
946
+ i to node j for each scenario s ∈ S. Therefore, Os
947
+ i = �
948
+ j∈N ws
949
+ ij and Ds
950
+ i = �
951
+ j∈N ws
952
+ ji rep-
953
+ resent the total outgoing flow from and the total incoming flow to node i, respectively.
954
+ Since vehicle selection decisions are to be done once scenario s is realized, we redefine y
955
+ variables as ys
956
+ hk to indicate the number of primary vehicles traveling on hub arc (h,k) ∈
957
+ H × H under scenario s. Moreover, for each scenario s ∈ S, we redefine flow variables as
958
+ zs
959
+ ihk to determine the amount of node i’s demand transported from hub h to hub k, i.e.,
960
+ zs
961
+ ihk = xhi
962
+
963
+ j ws
964
+ ijxkj,∀i ∈ N,h,k ∈ H. Then, the deterministic equivalent formulation of P
965
+ is stated as:
966
+ DEP :
967
+ min LC(x) +
968
+
969
+ s∈S
970
+ ps(DC s(x) + HC s(y))
971
+ (20a)
972
+ s.t.
973
+
974
+ i∈N
975
+ zs
976
+ ihk ≤ Qhk ys
977
+ hk,
978
+ h,k ∈ H,s ∈ S
979
+ (20b)
980
+
981
+ k∈H
982
+ zs
983
+ ihk = Os
984
+ i xhi,
985
+ h ∈ H,i ∈ N,s ∈ S
986
+ (20c)
987
+
988
+ h∈H
989
+ zs
990
+ ihk =
991
+
992
+ j∈N
993
+ ws
994
+ ij xkj,
995
+ k ∈ H,i ∈ N,s ∈ S
996
+ (20d)
997
+ x ∈ X, zs ∈ R|N|×|H|×|H|
998
+ ≥0
999
+ , ys ∈ Y,s ∈ S
1000
+ (20e)
1001
+ where,
1002
+ DC s(x) =
1003
+
1004
+ h∈H
1005
+
1006
+ i∈N
1007
+ max
1008
+ ��Ds
1009
+ i
1010
+ qh
1011
+
1012
+ ,
1013
+ �Os
1014
+ i
1015
+ qh
1016
+ ��
1017
+
1018
+ hi xhi,
1019
+ (21)
1020
+
1021
+ 18
1022
+ Farham, Rostami, and Haughton: Vehicle utilization in the SAHLP
1023
+ HC s(y) =
1024
+
1025
+ h∈H
1026
+
1027
+ k∈H
1028
+ Chk ys
1029
+ hk.
1030
+ (22)
1031
+ 4.1.
1032
+ Solving the HNDPv Under Demand Uncertainty
1033
+ The Benders decomposition approach presented in Section 3 can be easily adjusted to solve
1034
+ DEP. For each scenario s ∈ S, and for any feasible solution (x,y) to the master problem
1035
+ at a given iteration of the algorithm, we define one scenario-based Benders subproblem
1036
+ (S-BSP) as follows.
1037
+ S-BSPs(x,y) :
1038
+ min 0
1039
+ (23a)
1040
+ s.t.
1041
+
1042
+ i∈N
1043
+ zs
1044
+ ihk ≤ Qhk ys
1045
+ hk,
1046
+ h,k ∈ H,
1047
+ (23b)
1048
+
1049
+ k∈H
1050
+ zs
1051
+ ihk = Os
1052
+ i xhi,
1053
+ h ∈ H,i ∈ N,
1054
+ (23c)
1055
+
1056
+ h∈H
1057
+ zs
1058
+ ihk =
1059
+
1060
+ j∈N
1061
+ ws
1062
+ ij xkj, k ∈ H,i ∈ N,
1063
+ (23d)
1064
+ zs ∈ R|N|×|H|×|H|
1065
+ ≥0
1066
+ .
1067
+ (23e)
1068
+ Following the approach described in Section 3, one can solve the dual of S-BSPs(x,y)
1069
+ to generate feasibility cuts and apply them to the master problem whenever an infeasible
1070
+ S-BSP is observed. The Benders master problem corresponding to the S-HNDPv (i.e., the
1071
+ S-BMP) is formulated as:
1072
+ S-BMP :
1073
+ min LC(x) +
1074
+
1075
+ s∈S
1076
+ ps(DC s(x) + HC s(y))
1077
+ (24a)
1078
+ s.t. Ωsr ≤ 0, r ∈ Rs,s ∈ S,
1079
+ (24b)
1080
+ x ∈ X, ys ∈ Y,s ∈ S,
1081
+ (24c)
1082
+ where
1083
+ Ωsr =
1084
+
1085
+ h∈H
1086
+
1087
+ k∈H
1088
+ Qhkλ
1089
+ sr
1090
+ hk ys
1091
+ hk +
1092
+
1093
+ h∈H
1094
+
1095
+ i∈N
1096
+
1097
+ Os
1098
+ i µsr
1099
+ hi xhi +
1100
+
1101
+ j∈N
1102
+ ws
1103
+ ijνsr
1104
+ hi xhj
1105
+
1106
+ ,
1107
+ (25)
1108
+ and λ
1109
+
1110
+ hk, µsτ
1111
+ hi, and µsτ
1112
+ hi being the unbounded rays in the set extreme rays Rs corresponding
1113
+ to constraint (23b), (23c), and (23d), respectively, in the dual space.
1114
+ Note that the results of Theorem 1 are still valid for S-BSPs(x,y) for a given scenario
1115
+ s ∈ S. Therefore, similar to the deterministic case, we may add multiple cuts for any
1116
+ scenario s with infeasible inter-hub flows.
1117
+
1118
+ Farham, Rostami, and Haughton: Vehicle utilization in the SAHLP
1119
+ 19
1120
+ 5.
1121
+ Computational Experiments
1122
+ In this section, we present the numerical results evaluating models and solution algorithms.
1123
+ The algorithms are coded in Python. We used Guropi optimizer v9.5 (Gurobi Optimization,
1124
+ LLC 2022) and its callback features to solve our optimization models. Experiments are
1125
+ conducted on a Linux laptop with Intel® Core™ i9-11900H CPU @ 2.50GHz and 32GB
1126
+ of RAM using up to 14 threads. All experiments are done within a time limit of 12,000
1127
+ seconds.
1128
+ In the following sections, we first present the test instances and then provide the exper-
1129
+ imental results of solving deterministic and stochastic HNDPv test instances.
1130
+ 5.1.
1131
+ Problem Test Instances and Experimental Design
1132
+ To perform our experiments, we use the Australian Post (AP) dataset used by Contreras
1133
+ et al. (2009). We consider location cost and capacity values provided in the AP dataset.
1134
+ The location costs are all assumed to be tight, while both tight (T) and loose (L) values
1135
+ are tested for hub capacity levels. An uncapacitated case (U) is also considered where
1136
+ the hubs have unrestricted capacity. We assume fixed capacities Qhk = Q,∀h,k ∈ H, and
1137
+ qh = q,∀h ∈ H, and fixed unit transportation costs bij = b and Bij = B, ∀(i,j) ∈ A, for all
1138
+ primary and secondary vehicles, respectively. Inspired by Tanash et al. (2017), we set all
1139
+ vehicle fixed costs to 0 and consider the following configurations for primary and secondary
1140
+ vehicle parameters:
1141
+ • L1: (Q = 600,q = 100,B = 600,b = 260) ⇒ B/Q
1142
+ b/q ≈ 0.38
1143
+ • L2: (Q = 600,q = 150,B = 600,b = 300) ⇒ B/Q
1144
+ b/q = 0.50
1145
+ • L3: (Q = 320,q = 100,B = 500,b = 260) ⇒ B/Q
1146
+ b/q ≈ 0.60
1147
+ • L4: (Q = 320,q = 150,B = 500,b = 300) ⇒ B/Q
1148
+ b/q ≈ 0.78
1149
+ These configurations are chosen such that the unit transportation cost on hub arcs, when
1150
+ fully utilized, is smaller than the unit transportation cost on access arcs. We also indicate
1151
+ the B/Q
1152
+ b/q ratio for L1 to L4. This value is considered as the smallest discount factor that can
1153
+ be achieved on hub arcs (Tanash et al. 2017). Instances with |N| equal to 20, 25, 40, 50, 100,
1154
+ and 200 are considered for our computational tests. We refer to each instance by #1#2-#3
1155
+ notation, where #1 denotes the number of nodes in the instance (e.g., 50), #2 indicates
1156
+ the capacity configuration (i.e., T, L, or U), and #3 shows the vehicle configuration (e.g.,
1157
+ L1).
1158
+
1159
+ 20
1160
+ Farham, Rostami, and Haughton: Vehicle utilization in the SAHLP
1161
+ 500
1162
+ 1000
1163
+ CPU
1164
+ 4.8
1165
+ 5.0
1166
+ 5.2
1167
+ 5.4
1168
+ 5.6
1169
+ Value
1170
+ ×105
1171
+ MIP
1172
+ 0
1173
+ 200
1174
+ CPU
1175
+ BD
1176
+ Upper bound
1177
+ Lower bound
1178
+ 0
1179
+ 10
1180
+ CPU
1181
+ BC
1182
+ Figure 2
1183
+ Closing optimality gap by different approaches (problem instances: 50L-L4).
1184
+ 5000
1185
+ 10000
1186
+ CPU
1187
+ 5.5
1188
+ 6.0
1189
+ 6.5
1190
+ 7.0
1191
+ 7.5
1192
+ Value
1193
+ ×105
1194
+ MIP
1195
+ 0
1196
+ 5000
1197
+ 10000
1198
+ CPU
1199
+ BD
1200
+ Upper bound
1201
+ Lower bound
1202
+ 0
1203
+ 20
1204
+ 40
1205
+ CPU
1206
+ BC
1207
+ Figure 3
1208
+ Closing optimality gap by different approaches (problem instances: 75L-L4).
1209
+ 5.2.
1210
+ Algorithmic Efficiency
1211
+ We evaluate the performance of the proposed algorithms in terms of efficiency and compare
1212
+ them with Gurobi applied directly to solve the MIP formulation P in (8). We show by
1213
+ MIP the direct application of Gurobi to solve the MIP model, by BD the Benders-based
1214
+ branch-and-cut algorithm with single feasibility cut, and by BC, the Benders-based branch-
1215
+ and-cut algorithm with multiple feasibility cuts derived from Theorem 1. First, we compare
1216
+ the performance of these algorithms on two different instances in Figures 2 and 3. We
1217
+ then compare MIP and BC on small to medium-size instances in Table 3, and show the
1218
+ performance of the BC on large-scale instances in Table 4, and Figures 4 and 5. These
1219
+ tables and figures have been designed to give a full picture of the algorithms’ efficiency.
1220
+ The detailed performance of the algorithms can be found in the online supplement of the
1221
+ paper.
1222
+
1223
+ Farham, Rostami, and Haughton: Vehicle utilization in the SAHLP
1224
+ 21
1225
+ Table 2
1226
+ Comparison of the BD and BC performances.
1227
+ Inst
1228
+ BD
1229
+ BC
1230
+ #BNodes
1231
+ #Cuts
1232
+ #Calls
1233
+ CPUc
1234
+ CPU (%Gap)
1235
+ #BNodes
1236
+ #Cuts
1237
+ #Calls
1238
+ CPUc
1239
+ CPU (%Gap)
1240
+ 50L-L4
1241
+ 7,561
1242
+ 118
1243
+ 125
1244
+ 317.53
1245
+ 324.61 (0.0)
1246
+ 5,002
1247
+ 259
1248
+ 119
1249
+ 2.76
1250
+ 17.97 (0.0)
1251
+ 75L-L4
1252
+ 5,239
1253
+ 168
1254
+ 175
1255
+ >12,000
1256
+ >12,000 (0.88)
1257
+ 10,230
1258
+ 476
1259
+ 220
1260
+ 9.81
1261
+ 39.47 (0.0)
1262
+ Figures 2 and 3 illustrate how the upper bound and the lower bound converge during
1263
+ the procedure of solving instances 50L-L4 and 75L-L4. In each figure, the x access shows
1264
+ the CPU time in seconds, while the y access shows the values for lower and upper bounds.
1265
+ To solve the 50L-L4, Gurobi takes 23 minutes, the BD takes 5 minutes, while the BC only
1266
+ takes 18 seconds. Although the initial lower bound in MIP is better, and the solver is able
1267
+ to find a good upper bound after some time, it takes a long time to close the gap. BD and
1268
+ BC start with worse lower bounds (since less information is available at the beginning),
1269
+ but they close the gap significantly faster. When the number of nodes is increased to 75
1270
+ (Figure 3), we see the same behavior for the upper and lower bounds. However, neither
1271
+ MIP nor BD was able to solve the instance within the given time limit of 12,000 seconds,
1272
+ while the BC was able to find the optimal solution in less than 40 seconds.
1273
+ Table 2 report more information on the performance of the BD and BC in solving the
1274
+ same two instances. For each instance, CPUc shows the time spent to solve the feasibility
1275
+ subproblems and generating the associated cuts, #BNodes, #Cuts, #Calls, and %Gap
1276
+ show the number of explored branch-and-bound nodes, the number of generated feasibility
1277
+ cuts, the number of time the solver has called the subproblem, and the percent relative
1278
+ optimality gap, respectively. For 50L-L4, while both call the feasibility check subproblems
1279
+ almost the same, the BC generated more than twice the cuts than the BD. However,
1280
+ the BC generates the cuts 114 times faster than the BD. For the 75L-L4, the number of
1281
+ feasibility cuts generated by BC is larger, but the total time spent to generate these cuts
1282
+ is significantly smaller. We can see that most of the time in the BD is spent in finding the
1283
+ coefficients in the feasibility cuts. Theorem 1, on the other hand, allows us to skip solving
1284
+ an optimization problem and add multiple cuts at once. That is, generating cuts in this
1285
+ way allows us to solve larger problem instances more efficiently. Therefore, in the rest of
1286
+ this section, we do not report the results of the BD.
1287
+ Next, in Table 3 we compare BC and MIP performances in solving small to medium-size
1288
+ problem instances for which both approaches could solve them to optimality within the
1289
+ time limit. For each instance, with size |N|, the hub capacity configuration (Cap), and the
1290
+
1291
+ 22
1292
+ Farham, Rostami, and Haughton: Vehicle utilization in the SAHLP
1293
+ Table 3
1294
+ CPU values of MIP and BC in solving small and medium-size instances.
1295
+ |N|
1296
+ Cap†
1297
+ MIP
1298
+ BC
1299
+ L1
1300
+ L2
1301
+ L3
1302
+ L4
1303
+ L1
1304
+ L2
1305
+ L3
1306
+ L4
1307
+ 20
1308
+ T
1309
+ 7.27
1310
+ 3.69
1311
+ 2.97
1312
+ 9.18
1313
+ 0.15
1314
+ 0.36
1315
+ 0.29
1316
+ 0.74
1317
+ L
1318
+ 9.88
1319
+ 6.52
1320
+ 2.76
1321
+ 1.99
1322
+ 0.40
1323
+ 0.27
1324
+ 0.37
1325
+ 0.44
1326
+ U
1327
+ 8.28
1328
+ 8.11
1329
+ 3.41
1330
+ 1.99
1331
+ 0.20
1332
+ 0.32
1333
+ 0.24
1334
+ 0.33
1335
+ 25
1336
+ T
1337
+ 16.53
1338
+ 14.84
1339
+ 17.79
1340
+ 12.88
1341
+ 0.27
1342
+ 0.24
1343
+ 2.71
1344
+ 11.28
1345
+ L
1346
+ 21.01
1347
+ 24.55
1348
+ 10.91
1349
+ 10.18
1350
+ 1.50
1351
+ 1.36
1352
+ 1.41
1353
+ 1.12
1354
+ U
1355
+ 18.41
1356
+ 9.40
1357
+ 4.72
1358
+ 2.21
1359
+ 0.69
1360
+ 0.68
1361
+ 0.31
1362
+ 1.31
1363
+ 40
1364
+ T
1365
+ 266.52
1366
+ 219.05
1367
+ 270.53
1368
+ 304.10
1369
+ 0.49
1370
+ 0.53
1371
+ 44.16
1372
+ 474.52
1373
+ L
1374
+ 98.27
1375
+ 44.47
1376
+ 87.70
1377
+ 42.07
1378
+ 1.08
1379
+ 3.12
1380
+ 1.68
1381
+ 1.70
1382
+ U
1383
+ 110.98
1384
+ 41.58
1385
+ 71.28
1386
+ 44.68
1387
+ 2.70
1388
+ 1.65
1389
+ 1.39
1390
+ 3.47
1391
+ 50
1392
+ T
1393
+ 9,765.28
1394
+ 6,691.78
1395
+ 5,218.47
1396
+ 4,488.73
1397
+ 2.50
1398
+ 1.41
1399
+ 1,327.72
1400
+ 11.68
1401
+ L
1402
+ 734.93
1403
+ 1,459.41
1404
+ 1,286.41
1405
+ 1,402.19
1406
+ 1.72
1407
+ 0.80
1408
+ 7.49
1409
+ 17.97
1410
+ U
1411
+ 915.23
1412
+ 988.54
1413
+ 766.35
1414
+ 1,238.07
1415
+ 2.82
1416
+ 1.66
1417
+ 8.26
1418
+ 4.74
1419
+ Average
1420
+ 997.72
1421
+ 792.66
1422
+ 645.28
1423
+ 629.86
1424
+ 1.21
1425
+ 1.03
1426
+ 116.34
1427
+ 44.11
1428
+ † Hub capacity configuration.
1429
+ Table 4
1430
+ CPU and (%Gap) values of BC in solving large instances.
1431
+ |N|
1432
+ Cap
1433
+ Vehicle configuration
1434
+ L1
1435
+ L2
1436
+ L3
1437
+ L4
1438
+ 75
1439
+ T
1440
+ 2.15
1441
+ 2.34
1442
+ (2.71)†
1443
+ (1.96)
1444
+ L
1445
+ 2.21
1446
+ 2.19
1447
+ 81.24
1448
+ 39.47
1449
+ U
1450
+ 1.54
1451
+ 2.23
1452
+ 50.77
1453
+ 40.26
1454
+ 100
1455
+ T
1456
+ 8.31
1457
+ 5.57
1458
+ (0.60)
1459
+ 143.39
1460
+ L
1461
+ 3.14
1462
+ 6.26
1463
+ 29.75
1464
+ 11.95
1465
+ U
1466
+ 2.35
1467
+ 2.86
1468
+ 76.16
1469
+ 28.71
1470
+ 150
1471
+ T
1472
+ 24.81
1473
+ 23.49
1474
+ 520.12
1475
+ 399.36
1476
+ L
1477
+ 9.40
1478
+ 14.61
1479
+ 722.13
1480
+ 615.61
1481
+ U
1482
+ 6.47
1483
+ 12.79
1484
+ 619.59
1485
+ 421.49
1486
+ 200
1487
+ T
1488
+ 109.19
1489
+ 106.40
1490
+ 80.79
1491
+ 104.07
1492
+ L
1493
+ 83.46
1494
+ 106.87
1495
+ (0.24)
1496
+ 7,395.43
1497
+ U
1498
+ 56.82
1499
+ 70.47
1500
+ 7,689.79
1501
+ (0.09)
1502
+ Average
1503
+ 25.82 (0.00)
1504
+ 29.67 (0.00)
1505
+ 3,822.53 (1.18)
1506
+ 2,766.65 (1.03)
1507
+ † Values in parentheses represent percentage optimality gaps.
1508
+ vehicle configurations L1 to L4, the table reports CPU times for each solution method. For
1509
+ both methods, the instances with tight capacity are the most difficult to solve. From the
1510
+ vehicle configuration perspective, the L3 and L4 are the most difficult instances for the BC,
1511
+ while this is not the case for the MIP. This will be investigated further Table 4. Overall,
1512
+ as can be seen, the BC was considerably faster than MIP, particularly when solving larger
1513
+ problems. For instances with |N| = 75 and more, the MIP could not close the gap within
1514
+
1515
+ Farham, Rostami, and Haughton: Vehicle utilization in the SAHLP
1516
+ 23
1517
+ the time limit. Therefore, in Table 4, we only report the performance of the BC in solving
1518
+ larger problem instances.
1519
+ Table 4 lists the CPU time for each instance under different hub capacities and vehicle
1520
+ configurations. In cases where the time limit is reached, instead of the time, the %Gap is
1521
+ reported in parentheses. Out of 48 instances, the BC was able to find the optimal solution
1522
+ for 43 instances. These instances took, on average, about 20 seconds for |N| = 75, 30
1523
+ seconds for |N| = 100, 5 minutes for |N| = 150, and 30 minutes when |N| = 200 to be
1524
+ solved by BC. The optimality gap for unsolved instances is reported as 1.12%. We observe
1525
+ that in larger instances, the vehicle configurations have a more significant effect on the
1526
+ BC performance. The last row of Table 4 shows the average CPU time and %Gap values
1527
+ for different vehicle configurations. Vehicle configurations L3 and L4 are the most difficult
1528
+ settings to deal with. The reason is that the primary vehicle capacities are smaller in
1529
+ these settings. Hence, more effort should be made to ensure the feasibility of the flows
1530
+ on the inter-hub links, and more feasibility cuts are generated (see the online supplement
1531
+ for more details). The average CPU time and %Gap values of the L3 configuration are
1532
+ the highest among all vehicle configurations. The reason is that the L3 configuration has
1533
+ not only the smallest primary vehicle capacity, but also the smallest secondary capacity.
1534
+ Therefore, more vehicles are required on the access-level network. This increases the cost
1535
+ of assignment decisions, and, as a result, more exploration is required to find the optimal
1536
+ location and allocation decisions.
1537
+ In Figures 4 and 5, we show the effect of instance characteristics on the number of
1538
+ branch-and-bound nodes explored by the algorithm (#BNodes) and the number of gen-
1539
+ erated feasibility cuts (#Cuts). Figure 4 illustrates the average values for different hub
1540
+ capacity configurations and instance sizes. For instances with size 100 or smaller, the algo-
1541
+ rithm explores significantly more #BNodes and outputs more #Cuts when hub capacities
1542
+ are tight. We observed that in the AP instances with |N| ≥ 150, although there exists a
1543
+ large number of OD pairs, shipment volumes are smaller than those in smaller instances.
1544
+ Therefore, when hub capacities get large, more assignment options become available for the
1545
+ demand nodes, and more demands can get consolidated at hubs. This leads to more con-
1546
+ solidated flows on the inter-hub links, which in turn requires more cuts to ensure feasibility
1547
+ on those links.
1548
+
1549
+ 24
1550
+ Farham, Rostami, and Haughton: Vehicle utilization in the SAHLP
1551
+ 25
1552
+ 50
1553
+ 75
1554
+ 100
1555
+ 150
1556
+ 200
1557
+ |N|
1558
+ 0.0
1559
+ 0.5
1560
+ 1.0
1561
+ 1.5
1562
+ 2.0
1563
+ 2.5
1564
+ ×106
1565
+ #BNodes (avg)
1566
+ Cap
1567
+ T
1568
+ L
1569
+ U
1570
+ 25
1571
+ 50
1572
+ 75
1573
+ 100
1574
+ 150
1575
+ 200
1576
+ |N|
1577
+ 0
1578
+ 1
1579
+ 2
1580
+ 3
1581
+ 4
1582
+ ×103
1583
+ #Cuts (avg)
1584
+ Figure 4
1585
+ Effect of hub capacity configurations on the number of explored branch-and-bound nodes and the
1586
+ number of generated feasibility cuts.
1587
+ 25
1588
+ 50
1589
+ 75
1590
+ 100
1591
+ 150
1592
+ 200
1593
+ |N|
1594
+ 0.0
1595
+ 0.5
1596
+ 1.0
1597
+ 1.5
1598
+ 2.0
1599
+ 2.5
1600
+ 3.0
1601
+ 3.5
1602
+ ×106
1603
+ #BNodes (avg)
1604
+ Vehicle config.
1605
+ L1
1606
+ L2
1607
+ L3
1608
+ L4
1609
+ 25
1610
+ 50
1611
+ 75
1612
+ 100
1613
+ 150
1614
+ 200
1615
+ |N|
1616
+ 0
1617
+ 1
1618
+ 2
1619
+ 3
1620
+ 4
1621
+ 5 ×103
1622
+ #Cuts (avg)
1623
+ Figure 5
1624
+ Effect of vehicle configurations on the number of explored branch-and-bound nodes and the number
1625
+ of generated feasibility cuts.
1626
+ We illustrate the effect of different vehicle configurations on #BNodes and #Cuts in
1627
+ Figure 5. We can observe that many feasibility cuts are generated for the instances with
1628
+ small primary vehicles (i.e., L3 and L4). When primary vehicles have larger capacities, the
1629
+ introduced valid inequalities, along with other cuts generated by Gurobi, help to obtain
1630
+ feasible flows on the inter-hub links with no or only a few feasibility cuts. The online
1631
+ companion of this paper provides more details about the BC performance.
1632
+ 5.3.
1633
+ Managerial Insights
1634
+ The main objective of the HNDPv is to optimize vehicle utilization to reduce cost. In this
1635
+ section, we first investigate how such utilization is compared to conventional HLP with a
1636
+ constant discount factor. Then, we explore the effect of problem instance characteristics,
1637
+ i.e., size, hub capacity, and vehicle configurations on different cost factors and operational
1638
+
1639
+ Farham, Rostami, and Haughton: Vehicle utilization in the SAHLP
1640
+ 25
1641
+ decisions. While solving the conventional HLP with a constant discount factor, we assume
1642
+ that the transfer (discount), collection, and distribution factors are 0.75, 3, and 2, respec-
1643
+ tively, as given in the original AP dataset. After solving each instance of the HLP and
1644
+ finding the location and allocation decisions, we assign the minimum number of vehicles
1645
+ to transport flows on the resulting network. We use the same vehicle configurations as in
1646
+ the HNDPv.
1647
+ Table 5 compares the HNDPv and the conventional HLP solutions for instances with
1648
+ |N| = 25, 40, and 50 in terms of percentage difference of the following factors: the actual
1649
+ total cost (TC), the number of utilized primary and secondary vehicles (#Veh1 and
1650
+ #Veh2, respectively), and the average capacity utilization of the primary vehicles in per-
1651
+ cent (%VUtil). We use 100 ×
1652
+ HFlow
1653
+ #Veh1×Q to compute %VUtil, where HFlow is the total flow
1654
+ on the inter-hub links. As the HLP solution opens only one hub in uncapacitated instances
1655
+ (and hence no need for inter-hub vehicles), we only report the results for the capacitated
1656
+ instances.
1657
+ As can be seen, there is only one instance (i.e., 40T-L1) where both problems provided
1658
+ the same solution for. On the rest of the instances, the HLP-based solutions lead to, on
1659
+ average, 1.04%, 0.54%, and 3.6% higher costs for instances with 25, 40, and 50 nodes,
1660
+ respectively. All HLP-based solutions used the same or a larger number of primary vehicles
1661
+ on the network. In 50-node instances with tight capacities, the HLP required up to double
1662
+ the primary vehicle fleet size. The reason is that the HLP solution opened more hubs than
1663
+ the HNDPv solution. Therefore, although slightly fewer secondary vehicles were used, more
1664
+ primary vehicles were required, leading to poor vehicle utilization. Figure 6 illustrates the
1665
+ HNDPv solution (left) and the HLP-based solution (right). The HNDPv solution opens
1666
+ one less hub and constructs a different hub topology, resulting in a less costly solution
1667
+ with better utilized vehicles at the hub level. Even when #Veh1 is the same for both, the
1668
+ HNDPv solution provides a better primary vehicle utilization, as it incorporates vehicle-
1669
+ based decisions in the network design process, which can lead to a different location or
1670
+ allocation decisions (see Figure 7). The HNDPv solution was able to provide 10.53%,
1671
+ 9.33%, and 28.22% better primary vehicle utilization, for instances with 25, 40, and 50
1672
+ nodes, respectively.
1673
+ We further investigate the effect of problem instance characteristics, i.e., size, hub capac-
1674
+ ity, and vehicle configurations on different cost factors and operational decisions. Our aim
1675
+
1676
+ 26
1677
+ Farham, Rostami, and Haughton: Vehicle utilization in the SAHLP
1678
+ Table 5
1679
+ Comparison of the HLP-based solutions and the HNDPv solutions.
1680
+ Inst
1681
+ TC (% diff.)
1682
+ #Veh1 (% diff.)
1683
+ #Veh2 (% diff.)
1684
+ %VUtil (% diff.)
1685
+ 25T-L1
1686
+ +0.62
1687
+ 0
1688
+ +2.00
1689
+ −0.27
1690
+ 25T-L2
1691
+ +0.28
1692
+ 0
1693
+ 0
1694
+ −0.27
1695
+ 25T-L3
1696
+ +1.88
1697
+ +12.50
1698
+ +2.00
1699
+ −10.91
1700
+ 25T-L4
1701
+ +1.65
1702
+ +12.50
1703
+ 0
1704
+ −10.91
1705
+ 25L-L1
1706
+ +1.39
1707
+ +33.33
1708
+ +1.96
1709
+ −25.36
1710
+ 25L-L2
1711
+ +1.89
1712
+ +33.33
1713
+ 0
1714
+ −21.93
1715
+ 25L-L3
1716
+ +0.25
1717
+ 0
1718
+ 0
1719
+ −7.28
1720
+ 25L-L4
1721
+ +0.32
1722
+ 0
1723
+ 0
1724
+ −7.28
1725
+ Average (|N| = 25)
1726
+ +1.04
1727
+ +11.46
1728
+ +0.75
1729
+ −10.53
1730
+ 40T-L1
1731
+ 0
1732
+ 0
1733
+ 0
1734
+ 0
1735
+ 40T-L2
1736
+ +0.25
1737
+ 0
1738
+ 0
1739
+ −4.35
1740
+ 40T-L3
1741
+ +0.70
1742
+ +12.50
1743
+ 0
1744
+ −11.62
1745
+ 40T-L4
1746
+ +1.17
1747
+ +12.50
1748
+ 0
1749
+ −12.20
1750
+ 40L-L1
1751
+ +1.00
1752
+ +33.33
1753
+ 0
1754
+ −22.13
1755
+ 40L-L2
1756
+ +1.17
1757
+ +33.33
1758
+ 0
1759
+ −22.79
1760
+ 40L-L3
1761
+ +0.01
1762
+ 0
1763
+ 0
1764
+ −0.76
1765
+ 40L-L4
1766
+ +0.02
1767
+ 0
1768
+ 0
1769
+ −0.76
1770
+ Average (|N| = 40)
1771
+ +0.54
1772
+ +11.46
1773
+ +0.00
1774
+ −9.33
1775
+ 50T-L1
1776
+ +7.10
1777
+ +100.00
1778
+ −1.61
1779
+ −44.90
1780
+ 50T-L2
1781
+ +7.44
1782
+ +100.00
1783
+ −1.79
1784
+ −40.12
1785
+ 50T-L3
1786
+ +6.51
1787
+ +87.50
1788
+ −1.61
1789
+ −40.10
1790
+ 50T-L4
1791
+ +6.45
1792
+ +87.50
1793
+ −1.79
1794
+ −36.10
1795
+ 50L-L1
1796
+ +0.31
1797
+ 0
1798
+ 0
1799
+ −16.13
1800
+ 50L-L2
1801
+ +0.34
1802
+ 0
1803
+ 0
1804
+ −16.13
1805
+ 50L-L3
1806
+ +0.30
1807
+ 0
1808
+ 0
1809
+ −16.13
1810
+ 50L-L4
1811
+ +0.33
1812
+ 0
1813
+ 0
1814
+ −16.13
1815
+ Average (|N| = 50)
1816
+ +3.60
1817
+ +46.88
1818
+ −0.85
1819
+ −28.22
1820
+ is to identify which vehicle configuration is preferred under differ conditions. We consider
1821
+ the criteria in our discussion: The objective function value or the total cost (TC), the
1822
+ total hub location cost (LC), the total transportation cost on the hub-level network (HC),
1823
+ the total transportation cost on the access-level network (DC), the number of selected
1824
+ hubs (#Hubs), #Veh1, #Veh2, and %VUtil. Our experiments indicate that the solution
1825
+ is highly sensitive to the number of nodes in the instance. In the AP dataset, smaller
1826
+ instances are created by aggregating the nodes in larger instances. As the total OD flows
1827
+ remain constant between all instances, smaller instances have larger OD shipment volumes,
1828
+ while larger instances have more fractional wij values. To see how such a characteristic
1829
+ may affect the solution, we refer to Figure 8, where the value of each criterion is plotted
1830
+ with respect to hub capacity and vehicle configurations. Figure 8 (left) illustrates solution
1831
+ characteristics for instances with |N| = 40. Here, when L2 and L4 are selected, a smaller
1832
+ total cost is incurred under all vehicle capacity (Cap) levels. The L3 configuration leads
1833
+ to higher HC and DC values, as it offers the combination of the smallest vehicles in both
1834
+
1835
+ Farham, Rostami, and Haughton: Vehicle utilization in the SAHLP
1836
+ 27
1837
+ HNDPv solution
1838
+ HLP-based solution
1839
+ Figure 6
1840
+ Illustration of the solutions to problem instance 50T-L1.
1841
+ Note. Square shapes represent open hubs, small discs show the demand nodes.
1842
+ HNDPv solution
1843
+ HLP-based solution
1844
+ Figure 7
1845
+ Illustration of the solutions to problem instance 50L-L1.
1846
+ hub and access-level networks. Therefore, more trips are required in both levels, leading
1847
+ to higher operational costs. For the 40-node instances, using larger vehicles saves costs
1848
+ through consolidation, even though the operational cost for larger vehicles are higher.
1849
+ Instances with larger set N, however, give different results. Figure 8 (right) depicts sim-
1850
+ ilar criteria for instances with |N| = 100. Larger instances have more OD pairs with less
1851
+ shipment volumes. Therefore, consolidating flows are not as straightforward. TC is larger
1852
+ for vehicle configurations (VehConfs) that offer larger secondary vehicles (i.e., L2 and L4).
1853
+ Larger secondary vehicles are more costly to operate, and since flows are more fractional
1854
+ compared to the |N| = 40 instances, we cannot fully benefit from the excess capacities on
1855
+ these vehicles. Therefore, even though less number of vehicles are used in L2 and L4, larger
1856
+ DC values are obtained. Larger primary vehicles (as in L1 and L2) also leads to smaller
1857
+ #Veh1.
1858
+
1859
+ 28
1860
+ Farham, Rostami, and Haughton: Vehicle utilization in the SAHLP
1861
+ 4.25
1862
+ 4.50
1863
+ 4.75
1864
+ 5.00
1865
+ 5.25
1866
+ ×105
1867
+ TC
1868
+ 0.6
1869
+ 0.8
1870
+ 1.0
1871
+ 1.2
1872
+ ×105
1873
+ LC
1874
+ 2
1875
+ 3
1876
+ 4
1877
+ 5
1878
+ 6
1879
+ ×104
1880
+ HC
1881
+ 3.2
1882
+ 3.4
1883
+ 3.6
1884
+ 3.8 ×105
1885
+ DC
1886
+ T
1887
+ L
1888
+ U
1889
+ Hub capacity config.
1890
+ 4
1891
+ 6
1892
+ 8
1893
+ #Veh1
1894
+ T
1895
+ L
1896
+ U
1897
+ Hub capacity config.
1898
+ 45
1899
+ 50
1900
+ 55
1901
+ #Veh2
1902
+ Vehicle config.
1903
+ L1
1904
+ L2
1905
+ L3
1906
+ L4
1907
+ 0.85
1908
+ 0.90
1909
+ 0.95
1910
+ 1.00
1911
+ ×106
1912
+ TC
1913
+ 1.5
1914
+ 2.0
1915
+ 2.5
1916
+ ×105
1917
+ LC
1918
+ 0.8
1919
+ 1.0
1920
+ 1.2
1921
+ 1.4
1922
+ ×105
1923
+ HC
1924
+ 5.5
1925
+ 6.0
1926
+ ×105
1927
+ DC
1928
+ T
1929
+ L
1930
+ U
1931
+ Hub capacity config.
1932
+ 6
1933
+ 8
1934
+ 10
1935
+ 12
1936
+ 14
1937
+ #Veh1
1938
+ T
1939
+ L
1940
+ U
1941
+ Hub capacity config.
1942
+ 1.02
1943
+ 1.04
1944
+ 1.06
1945
+ 1.08
1946
+ 1.10
1947
+ ×102
1948
+ #Veh2
1949
+ Vehicle config.
1950
+ L1
1951
+ L2
1952
+ L3
1953
+ L4
1954
+ Figure 8
1955
+ Effect of different hub and vehicle configurations on the final solutions (Left: 40-node instances, Right:
1956
+ 100-node instances).
1957
+ For both 40 and 100-node instances, we observe that hub capacities have a direct impact
1958
+ on TC and LC. The higher the Cap level, the lower TC and LC values are, regardless of
1959
+ the VehConf choice. Larger capacities also result in lower HC values and fewer number
1960
+ of primary vehicles, as more OD pairs can be linked through a single hub. However, DC
1961
+ values might increase as less number of hubs can be opened when the capacities are large.
1962
+ Overall, tight hub capacities lead to higher total costs, resulting from higher location
1963
+ and inter-hub transportation costs. When capacities are restrictive, either more hubs are
1964
+ selected or larger but more expensive hubs are opened. This may increase the total distance
1965
+ travelled between the hubs, hence more inter-hub transportation cost is incurred. When
1966
+ hub capacities are nonrestrictive, there is more flexibility in making location and allocation
1967
+ decisions, and this allows us to come up with a less costly solution.
1968
+ In Table 6, we analyze the effect of vehicle configurations on the solution characteristics in
1969
+ more details. Here, we see that if shipment volumes are larger, as seen in smaller instances,
1970
+ high-capacity secondary vehicles (i.e., in L2 and L4) helps to save costs, even though
1971
+
1972
+ Farham, Rostami, and Haughton: Vehicle utilization in the SAHLP
1973
+ 29
1974
+ Table 6
1975
+ Effect of instance size and vehicle configuration on the final solution.
1976
+ |N|
1977
+ VehConf†
1978
+ TC (avg)
1979
+ LC (avg)
1980
+ HC (avg)
1981
+ DC (avg)
1982
+ #Hubs
1983
+ (avg)
1984
+ #Veh1
1985
+ (avg)
1986
+ #Veh2
1987
+ (avg)
1988
+ %VUtil
1989
+ (avg)
1990
+ 25
1991
+ L1
1992
+ 4.42e+5
1993
+ 1.21e+5
1994
+ 3.57e+4
1995
+ 2.85e+5
1996
+ 2.33
1997
+ 4.00
1998
+ 50.67
1999
+ 74.37
2000
+ L2
2001
+ 3.93e+5
2002
+ 9.69e+4
2003
+ 2.41e+4
2004
+ 2.72e+5
2005
+ 2.00
2006
+ 3.00
2007
+ 37.67
2008
+ 69.07
2009
+ L3
2010
+ 4.47e+5
2011
+ 9.69e+4
2012
+ 3.04e+4
2013
+ 3.19e+5
2014
+ 2.00
2015
+ 4.33
2016
+ 51.67
2017
+ 91.35
2018
+ L4
2019
+ 3.98e+5
2020
+ 9.69e+4
2021
+ 3.04e+4
2022
+ 2.70e+5
2023
+ 2.00
2024
+ 4.33
2025
+ 37.67
2026
+ 91.35
2027
+ 40
2028
+ L1
2029
+ 4.77e+5
2030
+ 8.59e+4
2031
+ 2.97e+4
2032
+ 3.62e+5
2033
+ 2.33
2034
+ 4.00
2035
+ 58.67
2036
+ 74.06
2037
+ L2
2038
+ 4.46e+5
2039
+ 7.84e+4
2040
+ 3.11e+4
2041
+ 3.36e+5
2042
+ 2.33
2043
+ 4.00
2044
+ 45.67
2045
+ 75.45
2046
+ L3
2047
+ 4.85e+5
2048
+ 8.59e+4
2049
+ 3.71e+4
2050
+ 3.62e+5
2051
+ 2.33
2052
+ 6.00
2053
+ 58.67
2054
+ 92.07
2055
+ L4
2056
+ 4.53e+5
2057
+ 8.59e+4
2058
+ 3.71e+4
2059
+ 3.30e+5
2060
+ 2.33
2061
+ 6.00
2062
+ 45.67
2063
+ 92.26
2064
+ 50
2065
+ L1
2066
+ 5.31e+5
2067
+ 1.27e+5
2068
+ 3.14e+4
2069
+ 3.72e+5
2070
+ 2.33
2071
+ 3.67
2072
+ 62.67
2073
+ 77.66
2074
+ L2
2075
+ 5.57e+5
2076
+ 1.43e+5
2077
+ 3.93e+4
2078
+ 3.74e+5
2079
+ 2.33
2080
+ 3.67
2081
+ 56.67
2082
+ 75.93
2083
+ L3
2084
+ 5.39e+5
2085
+ 1.27e+5
2086
+ 4.14e+4
2087
+ 3.71e+5
2088
+ 2.33
2089
+ 5.67
2090
+ 62.67
2091
+ 89.50
2092
+ L4
2093
+ 5.66e+5
2094
+ 1.43e+5
2095
+ 4.92e+4
2096
+ 3.74e+5
2097
+ 2.33
2098
+ 5.67
2099
+ 56.67
2100
+ 87.62
2101
+ 75
2102
+ L1
2103
+ 6.18e+5
2104
+ 1.24e+5
2105
+ 5.81e+4
2106
+ 4.36e+5
2107
+ 3.00
2108
+ 6.00
2109
+ 86.00
2110
+ 60.25
2111
+ L2
2112
+ 6.64e+5
2113
+ 1.24e+5
2114
+ 5.81e+4
2115
+ 4.82e+5
2116
+ 3.00
2117
+ 6.00
2118
+ 80.00
2119
+ 60.25
2120
+ L3
2121
+ 6.29e+5
2122
+ 1.16e+5
2123
+ 5.91e+4
2124
+ 4.54e+5
2125
+ 3.00
2126
+ 8.67
2127
+ 86.00
2128
+ 83.03
2129
+ L4
2130
+ 6.74e+5
2131
+ 1.24e+5
2132
+ 6.63e+4
2133
+ 4.84e+5
2134
+ 3.00
2135
+ 8.67
2136
+ 80.00
2137
+ 76.22
2138
+ 100
2139
+ L1
2140
+ 8.63e+5
2141
+ 1.87e+5
2142
+ 1.04e+5
2143
+ 5.72e+5
2144
+ 3.33
2145
+ 8.00
2146
+ 109.67
2147
+ 45.82
2148
+ L2
2149
+ 9.04e+5
2150
+ 1.87e+5
2151
+ 1.04e+5
2152
+ 6.13e+5
2153
+ 3.33
2154
+ 8.00
2155
+ 101.67
2156
+ 45.70
2157
+ L3
2158
+ 8.61e+5
2159
+ 1.87e+5
2160
+ 1.02e+5
2161
+ 5.72e+5
2162
+ 3.33
2163
+ 10.00
2164
+ 109.67
2165
+ 66.39
2166
+ L4
2167
+ 9.01e+5
2168
+ 1.87e+5
2169
+ 9.96e+4
2170
+ 6.14e+5
2171
+ 3.33
2172
+ 9.67
2173
+ 101.67
2174
+ 68.07
2175
+ 150
2176
+ L1
2177
+ 9.31e+5
2178
+ 1.10e+5
2179
+ 1.09e+5
2180
+ 7.12e+5
2181
+ 4.00
2182
+ 12.00
2183
+ 158.00
2184
+ 34.43
2185
+ L2
2186
+ 1.02e+6
2187
+ 1.10e+5
2188
+ 1.09e+5
2189
+ 7.97e+5
2190
+ 4.00
2191
+ 12.00
2192
+ 151.00
2193
+ 34.42
2194
+ L3
2195
+ 9.20e+5
2196
+ 1.10e+5
2197
+ 9.50e+4
2198
+ 7.15e+5
2199
+ 4.00
2200
+ 12.67
2201
+ 158.00
2202
+ 60.43
2203
+ L4
2204
+ 1.01e+6
2205
+ 1.10e+5
2206
+ 9.50e+4
2207
+ 8.01e+5
2208
+ 4.00
2209
+ 12.67
2210
+ 151.00
2211
+ 60.79
2212
+ 200
2213
+ L1
2214
+ 1.22e+6
2215
+ 1.09e+5
2216
+ 1.56e+5
2217
+ 9.51e+5
2218
+ 4.33
2219
+ 14.67
2220
+ 206.67
2221
+ 28.89
2222
+ L2
2223
+ 1.34e+6
2224
+ 1.11e+5
2225
+ 1.61e+5
2226
+ 1.06e+6
2227
+ 4.33
2228
+ 14.67
2229
+ 199.67
2230
+ 29.76
2231
+ L3
2232
+ 1.19e+6
2233
+ 1.09e+5
2234
+ 1.32e+5
2235
+ 9.53e+5
2236
+ 4.33
2237
+ 15.00
2238
+ 206.67
2239
+ 52.63
2240
+ L4
2241
+ 1.31e+6
2242
+ 1.30e+5
2243
+ 1.75e+5
2244
+ 1.01e+6
2245
+ 5.00
2246
+ 20.00
2247
+ 199.00
2248
+ 41.28
2249
+ † Vehicle configuration.
2250
+ they are more expensive to operate. For larger instances, where more trips of secondary
2251
+ vehicles are required, their operational costs dominate their capacity benefits. Therefore, on
2252
+ average, L2 and L4 become expensive choices. Larger instances also require more primary
2253
+ vehicles to use, leading to lower %VUtil values. Therefore, it is always best to go with an
2254
+ option that provides the most vehicle utilization for the operational costs we pay at the
2255
+ hub-level network. That is why in large instances with |N| ≥ 100, the L3 configuration is
2256
+ the cost-efficient choice. For the smaller instances with more aggregated flows, choosing
2257
+ larger primary vehicles helps to save costs. VehConf has no significant effect on the number
2258
+ of selected hubs in most of the instances. We observed that for small-size instances with
2259
+ |N| = 25 and large hub capacities, the solution tries to open more hubs when larger primary
2260
+ vehicles are available in order to exploit the economies of scale by consolidating demand
2261
+ on the inter-hub links and save costs on the access-level network. Another exception is
2262
+ observed for the 200-node instance under L and U capacity settings. This problem requires
2263
+
2264
+ 30
2265
+ Farham, Rostami, and Haughton: Vehicle utilization in the SAHLP
2266
+ many secondary vehicles. Therefore, when vehicle configuration is L4, one additional hub
2267
+ is opened to save on DC. This did not happen for L2 since the additional hub for L2
2268
+ would require more primary vehicle trips which would be more expensive due to the higher
2269
+ operational cost of primary vehicles in L2 compared to L4. More detailed numerical results
2270
+ are provided in the online supplement.
2271
+ 5.4.
2272
+ HNDPv Instances With Stochastic Demands
2273
+ To evaluate the BC in solving the stochastic version of the HNDPv, we use the dataset
2274
+ introduced in Rostami et al. (2021) with |N| ∈ {25,40,50,75}. The demand value for an
2275
+ OD pair (i,j) in a stochastic scenario is chosen from a Poisson distribution with event
2276
+ rate πiπjwij, where wij are the demand values of the underlying AP dataset instance, and
2277
+ πi denotes the deviation from the base case being uniformly distributed in the interval
2278
+ [0.5,1.5]. Similar to Alumur et al. (2012) and Rostami et al. (2021), we consider five
2279
+ scenarios, each with a probability of occurrence of 0.2.
2280
+ Table 7 lists the CPU time for each instance under different hub capacity and vehicle
2281
+ configurations. In cases where the time limit is reached, the %Gap is reported in paren-
2282
+ theses. As expected, stochastic instances are more complex and difficult to solve than
2283
+ deterministic ones. Out of 48 instances, the BC was able to find the exact solution to 35
2284
+ instances within the time limit. Like the deterministic case, stochastic instances with tight
2285
+ hub capacities and small primary vehicle capacities are the most difficult ones to solve. The
2286
+ average optimality gap for unsolved instances is reported as 3.31%. The online companion
2287
+ of the paper gives the computational details of solving the stochastic HNDPv instances
2288
+ and a discussion on how the stochastic solution compares to the solution to the expected
2289
+ value problem.
2290
+ In Figure 9, we illustrate the effect of increasing the number of scenarios on the objective
2291
+ function value and computational time. Since the computational time increases very quickly
2292
+ as the number of scenarios increases for larger problems, we only consider the 25-node
2293
+ instances under 5 to 100 scenarios. Figure 9 shows that the increase in the number of
2294
+ scenarios leads to a lower TC value. When |S| increases beyond 60, no significant change
2295
+ in TC is observed. We observe that the effect of size S on the CPU time depends on the
2296
+ instance characteristics. In uncapacitated instances, increasing |S| increases the required
2297
+ computational time. This might not be the case when hubs are capacitated, specially with
2298
+ tight capacity levels, after |S| passes a threshold. We may explain this situation as follows.
2299
+
2300
+ Farham, Rostami, and Haughton: Vehicle utilization in the SAHLP
2301
+ 31
2302
+ Table 7
2303
+ CPU and (%Gap) values of BC in solving stochastic instances.
2304
+ |N|
2305
+ Cap
2306
+ Vehicle configuration
2307
+ L1
2308
+ L2
2309
+ L3
2310
+ L4
2311
+ 25
2312
+ T
2313
+ 1.02
2314
+ 4.02
2315
+ 3.16
2316
+ 8.38
2317
+ L
2318
+ 0.94
2319
+ 0.51
2320
+ 2.43
2321
+ 2.29
2322
+ U
2323
+ 0.89
2324
+ 0.38
2325
+ 1.18
2326
+ 1.09
2327
+ 40
2328
+ T
2329
+ 69.26
2330
+ 4.06
2331
+ (1.98)
2332
+ (3.05)
2333
+ L
2334
+ 24.01
2335
+ 12.65
2336
+ 54.05
2337
+ 29.48
2338
+ U
2339
+ 26.20
2340
+ 10.00
2341
+ 40.90
2342
+ 49.37
2343
+ 50
2344
+ T
2345
+ 84.02
2346
+ 85.17
2347
+ (1.41)
2348
+ (2.53)
2349
+ L
2350
+ 16.19
2351
+ 17.61
2352
+ 615.14
2353
+ 282.78
2354
+ U
2355
+ 89.45
2356
+ 52.17
2357
+ 143.78
2358
+ 238.97
2359
+ 75
2360
+ T
2361
+ (4.46)
2362
+ (7.00)
2363
+ (5.03)
2364
+ (6.20)
2365
+ L
2366
+ 2,547.60
2367
+ (1.17)
2368
+ (1.21)
2369
+ (3.22)
2370
+ U
2371
+ 1,483.88
2372
+ 979.86
2373
+ (1.57)
2374
+ (1.81)
2375
+ Average
2376
+ 1,361.96 (4.46)
2377
+ 2,097.20 (4.09)
2378
+ 5,071.72 (2.24)
2379
+ 5,051.03 (3.36)
2380
+ 3.0
2381
+ 3.5
2382
+ 4.0
2383
+ TC
2384
+ ×105Hub capacity config.: T
2385
+ Vehicle config.
2386
+ L1
2387
+ L2
2388
+ L3
2389
+ L4
2390
+ 2.5
2391
+ 3.0
2392
+ 3.5
2393
+ 4.0 ×105Hub capacity config.: L
2394
+ 2.5
2395
+ 3.0
2396
+ 3.5
2397
+ ×105Hub capacity config.: U
2398
+ 5
2399
+ 20
2400
+ 40
2401
+ 60
2402
+ 80
2403
+ 100
2404
+ |S|
2405
+ 0.0
2406
+ 0.2
2407
+ 0.4
2408
+ 0.6
2409
+ 0.8
2410
+ 1.0
2411
+ CPU
2412
+ ×103
2413
+ 5
2414
+ 20
2415
+ 40
2416
+ 60
2417
+ 80
2418
+ 100
2419
+ |S|
2420
+ 5
2421
+ 10
2422
+ 15
2423
+ 5
2424
+ 20
2425
+ 40
2426
+ 60
2427
+ 80
2428
+ 100
2429
+ |S|
2430
+ 2
2431
+ 4
2432
+ 6
2433
+ 8
2434
+ 10
2435
+ Figure 9
2436
+ Effect of the number of scenarios on TC and CPU (|N| = 25).
2437
+ The more scenarios we have, the more variables we need to handle in our problem, and
2438
+ the more feasibility cuts are generated. When the number of demand scenarios gets very
2439
+ large for a particular node or when the hubs have very limited capacities, the options that
2440
+ provide a feasible allocation to a capacitated hub become less. Therefore, the algorithm
2441
+ may start with better bounds and fix variables more efficiently, hence its faster termination.
2442
+ Overall, the stochastic solution may provide a better estimation of the total cost when
2443
+ the number of scenarios increases. However, it is expected that the capability of solving
2444
+ the instances with a large set S becomes prohibitively limited.
2445
+
2446
+ 32
2447
+ Farham, Rostami, and Haughton: Vehicle utilization in the SAHLP
2448
+ 6.
2449
+ Conclusion
2450
+ Incorporating decisions about the number and type of vehicles to use adds more complexity
2451
+ to the hub network design problem. Therefore, finding the optimal solution to large-scale
2452
+ problem instances remains an issue in this area. This study presented an efficient solution
2453
+ algorithm which is the first to solve large-scale benchmark instances with up to 200 nodes.
2454
+ Our solution method relies on Benders decomposition with feasibility subproblems where
2455
+ the extreme rays have been derived in a closed-form solution resulting in a multiple-cut gen-
2456
+ eration approach. Our computational experiments showed the superiority of this approach
2457
+ over the conventional Benders decomposition algorithm. To cope with more realistic situ-
2458
+ ations, we addressed the HNDPv under demand uncertainty and showed the flexibility of
2459
+ our solution methodology in handling the stochastic variant of the problem.
2460
+ While the benefits of vehicle-based hub network design problems are highlighted in this
2461
+ paper, several extensions can be investigated in the future to address different decisions
2462
+ at the tactical/operational levels. As vehicles are utilized to perform pickup/deliveries
2463
+ from/to the demand nodes, one may employ vehicle routes, instead of direct shipments,
2464
+ at the access-level network to reduce the number of trips and save costs. Furthermore, to
2465
+ deal with demand uncertainty, one possible research direction is to consider some criteria
2466
+ (e.g., in a risk-averse manner) that strike a balance between the transportation cost and
2467
+ the risk of not having enough resources to meet the demand.
2468
+ Acknowledgments
2469
+ The second author acknowledges the financial support of the Natural Sciences and Engineering Research
2470
+ Council of Canada under Discovery Grant RGPIN- 2020-05395.
2471
+ References
2472
+ Alumur SA, Campbell JF, Contreras I, Kara BY, Marianov V, O’Kelly ME (2021) Perspectives on modeling
2473
+ hub location problems. European Journal of Operational Research 291(1):1–17, URL http://dx.doi.
2474
+ org/10.1016/j.ejor.2020.09.039.
2475
+ Alumur SA, Nickel S, Saldanha-da Gama F (2012) Hub location under uncertainty. Transportation Research
2476
+ Part B: Methodological 46(4):529–543, URL http://dx.doi.org/10.1016/j.trb.2011.11.006.
2477
+ Baumung MN, G¨und¨uz HI (2015) Consolidation of residual volumes in a parcel service provider’s long-haul
2478
+ transportation network. Corman F, Voß S, Negenborn RR, eds., Computational Logistics, 437–450
2479
+ (Cham: Springer International Publishing), URL http://dx.doi.org/10.1007/978-3-319-24264-4_
2480
+ 30.
2481
+
2482
+ Farham, Rostami, and Haughton: Vehicle utilization in the SAHLP
2483
+ 33
2484
+ Carello G, Della Croce F, Ghirardi M, Tadei R (2004) Solving the hub location problem in telecommunication
2485
+ network design: A local search approach. Networks 44(2):94–105, URL http://dx.doi.org/10.1002/
2486
+ net.20020.
2487
+ Contreras I, D´ıaz JA, Fern´andez E (2009) Lagrangean relaxation for the capacitated hub location
2488
+ problem with single assignment. OR Spectrum 31(3):483–505, URL http://dx.doi.org/10.1007/
2489
+ s00291-008-0159-y.
2490
+ Corber´an ´A, Peir´o J, Campos V, Glover F, Mart´ı R (2016) Strategic oscillation for the capacitated hub
2491
+ location problem with modular links. Journal of Heuristics 22(2):221–244, URL http://dx.doi.org/
2492
+ 10.1007/s10732-016-9308-7.
2493
+ Correia I, Nickel S, Saldanha-da Gama F (2010) The capacitated single-allocation hub location problem
2494
+ revisited: A note on a classical formulation. European Journal of Operational Research 207(1):92–96,
2495
+ URL http://dx.doi.org/10.1016/j.ejor.2010.04.015.
2496
+ de Camargo RS, de Miranda G, Luna HPL (2009) Benders decomposition for hub location problems with
2497
+ economies of scale. Transportation Science 43(1):86–97, URL http://dx.doi.org/10.1287/trsc.
2498
+ 1080.0233.
2499
+ Ernst AT, Krishnamoorthy M (1996) Efficient algorithms for the uncapacitated single allocation p-hub
2500
+ median problem. Location Science 4(3):139–154, URL http://dx.doi.org/10.1016/S0966-8349(96)
2501
+ 00011-3, hub Location.
2502
+ Farahani RZ, Hekmatfar M, Arabani AB, Nikbakhsh E (2013) Hub location problems: A review of
2503
+ models, classification, solution techniques, and applications. Computers & Industrial Engineering
2504
+ 64(4):1096–1109, URL http://dx.doi.org/10.1016/j.cie.2013.01.012.
2505
+ Gurobi Optimization, LLC (2022) Gurobi Optimizer Reference Manual. URL https://www.gurobi.com.
2506
+ Hoff A, Peir´o J, Corber´an ´A, Mart´ı R (2017) Heuristics for the capacitated modular hub location problem.
2507
+ Computers & Operations Research 86:94–109, URL http://dx.doi.org/10.1016/j.cor.2017.05.
2508
+ 004.
2509
+ Horner MW, O’Kelly ME (2001) Embedding economies of scale concepts for hub network design. Journal of
2510
+ Transport Geography 9(4):255–265, URL http://dx.doi.org/10.1016/S0966-6923(01)00019-9.
2511
+ Hu QM, Hu S, Wang J, Li X (2021) Stochastic single allocation hub location problems with balanced
2512
+ utilization of hub capacities. Transportation Research Part B: Methodological 153:204–227, URL http:
2513
+ //dx.doi.org/10.1016/j.trb.2021.09.009.
2514
+ Keshvari Fard M, Alfandari L (2019) Trade-offs between the stepwise cost function and its linear approxi-
2515
+ mation for the modular hub location problem. Computers & Operations Research 104:358–374, URL
2516
+ http://dx.doi.org/10.1016/j.cor.2018.11.014.
2517
+ Kimms A (2006) Economies of scale in hub & spoke network design models: We have it all wrong. Morlock
2518
+ M, Schwindt C, Trautmann N, Zimmermann J, eds., Perspectives on Operations Research: Essays in
2519
+
2520
+ 34
2521
+ Farham, Rostami, and Haughton: Vehicle utilization in the SAHLP
2522
+ Honor of Klaus Neumann, 293–317 (DUV), ISBN 978-3-8350-9064-4, URL http://dx.doi.org/10.
2523
+ 1007/978-3-8350-9064-4_17.
2524
+ Laporte G, Louveaux FV (1993) The integer l-shaped method for stochastic integer programs with
2525
+ complete recourse. Operations Research Letters 13(3):133–142, URL http://dx.doi.org/10.1016/
2526
+ 0167-6377(93)90002-X.
2527
+ O’Kelly ME, Bryan DL (1998) Hub location with flow economies of scale. Transportation Research Part B:
2528
+ Methodological 32(8):605–616, URL http://dx.doi.org/10.1016/S0191-2615(98)00021-6.
2529
+ Qin Z, Gao Y (2017) Uncapacitated p-hub location problem with fixed costs and uncertain flows. Jour-
2530
+ nal of Intelligent Manufacturing 28(3):705–716, ISSN 1572-8145, URL http://dx.doi.org/10.1007/
2531
+ s10845-014-0990-8.
2532
+ Racunica I, Wynter L (2005) Optimal location of intermodal freight hubs. Transportation Research Part B:
2533
+ Methodological 39(5):453–477, URL http://dx.doi.org/10.1016/j.trb.2004.07.001.
2534
+ Real LB, Contreras I, Cordeau JF, de Camargo RS, de Miranda G (2021) Multimodal hub network design
2535
+ with flexible routes. Transportation Research Part E: Logistics and Transportation Review 146:102188,
2536
+ URL http://dx.doi.org/10.1016/j.tre.2020.102188.
2537
+ Rostami B, Buchheim C (2015) The uncapacitated single allocation p-hub median problem with stepwise
2538
+ cost function. Optimization Online. Preprint on webpage at https://optimization-online.org/?p=
2539
+ 13555.
2540
+ Rostami B, Chitsaz M, Arslan O, Laporte G, Lodi A (2022) Single allocation hub location with hetero-
2541
+ geneous economies of scale. Operations Research 70(2):766–785, URL http://dx.doi.org/10.1287/
2542
+ opre.2021.2185.
2543
+ Rostami B, K¨ammerling N, Naoum-Sawaya J, Buchheim C, Clausen U (2021) Stochastic single-allocation
2544
+ hub location. European Journal of Operational Research 289(3):1087–1106, URL http://dx.doi.org/
2545
+ 10.1016/j.ejor.2020.07.051.
2546
+ Sender J, Clausen U (2011) Hub location problems with choice of different hub capacities and vehicle types.
2547
+ Pahl J, Reiners T, Voß S, eds., Network Optimization, 535–546 (Berlin, Heidelberg: Springer Berlin
2548
+ Heidelberg), URL http://dx.doi.org/10.1007/978-3-642-21527-8_59.
2549
+ Serper EZ, Alumur SA (2016) The design of capacitated intermodal hub networks with different vehicle
2550
+ types. Transportation Research Part B: Methodological 86:51–65, URL http://dx.doi.org/10.1016/
2551
+ j.trb.2016.01.011.
2552
+ Skorin-Kapov D, Skorin-Kapov J, O’Kelly M (1996) Tight linear programming relaxations of uncapacitated
2553
+ p-hub median problems. European Journal of Operational Research 94(3):582–593, URL http://dx.
2554
+ doi.org/10.1016/0377-2217(95)00100-X.
2555
+ Tanash M, Contreras I, Vidyarthi N (2017) An exact algorithm for the modular hub location problem with
2556
+ single assignments. Computers & Operations Research 85:32–44, URL http://dx.doi.org/10.1016/
2557
+ j.cor.2017.03.006.
2558
+
2559
+ Farham, Rostami, and Haughton: Vehicle utilization in the SAHLP
2560
+ 35
2561
+ Tran TH, O’Hanley JR, Scaparra MP (2017) Reliable hub network design: Formulation and solution tech-
2562
+ niques. Transportation Science 51(1):358–375, URL http://dx.doi.org/10.1287/trsc.2016.0679.
2563
+ Wang S, Chen Z, Liu T (2020) Distributionally robust hub location. Transportation Science 54(5):1189–1210,
2564
+ URL http://dx.doi.org/10.1287/trsc.2019.0948.
2565
+ Yaman H, Carello G (2005) Solving the hub location problem with modular link capacities. Computers &
2566
+ Operations Research 32(12):3227–3245, URL http://dx.doi.org/10.1016/j.cor.2004.05.009.
2567
+
6dE2T4oBgHgl3EQf7QhB/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
7tAzT4oBgHgl3EQf-f6Q/content/tmp_files/2301.01935v1.pdf.txt ADDED
@@ -0,0 +1,826 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Topic Segmentation Model Focusing on Local Context
2
+ Jeonghwan Lee, Jiyeong Han, Sunghoon Baek, Min Song*
3
+ Yonsei University
4
5
+ Abstract
6
+ Topic segmentation is important in understanding scientific
7
+ documents since it can not only provide better readability but
8
+ also facilitate downstream tasks such as information retrieval
9
+ and question answering by creating appropriate sections or
10
+ paragraphs. In the topic segmentation task, topic coherence is
11
+ critical in predicting segmentation boundaries. Most of the
12
+ existing models have tried to exploit as many contexts as
13
+ possible to extract useful topic-related information. However,
14
+ additional context does not always bring promising results,
15
+ because the local context between sentences becomes inco-
16
+ herent despite more sentences being supplemented. To allevi-
17
+ ate this issue, we propose siamese sentence embedding lay-
18
+ ers which process two input sentences independently to get
19
+ appropriate amount of information without being hampered
20
+ by excessive information. Also, we adopt multi-task learn-
21
+ ing techniques including Same Topic Prediction (STP), Topic
22
+ Classification (TC) and Next Sentence Prediction (NSP).
23
+ When these three classification layers are combined in a
24
+ multi-task manner, they can make up for each other’s limi-
25
+ tations, improving performance in all three tasks. We exper-
26
+ iment different combinations of the three layers and report
27
+ how each layer affects other layers in the same combination
28
+ as well as the overall segmentation performance. The model
29
+ we proposed achieves the state-of-the-art result in the Wiki-
30
+ Section dataset.
31
+ Introduction
32
+ Nowadays, we can easily access vast amounts of scientific
33
+ documents such as PubMed and Wikipedia. A lot of re-
34
+ searchers are studying ways to effectively use these docu-
35
+ ments in areas like information retrieval (IR), question an-
36
+ swering (QA) and search engine. However, applying previ-
37
+ ous IR models (or QA models) directly on these documents
38
+ is impossible because most of them assume an input size of
39
+ at most a paragraph while these documents consist of multi-
40
+ ple paragraphs. Furthermore, extracting crucial parts of each
41
+ document does not necessarily require the whole document
42
+ to be used. For example, to search for similar papers on a
43
+ topic of interest we can simplify the problem by calculating
44
+ cosine similarity between sections of each document rather
45
+ than full text to save resources.
46
+ *Corresponding author.
47
+ Copyright © 2023, Association for the Advancement of Artificial
48
+ Intelligence (www.aaai.org). All rights reserved.
49
+ Which topic?
50
+ Which topic?
51
+ Which topic?
52
+ Which topic?
53
+ Which topic?
54
+ Sentence 1
55
+ Sentence 2
56
+ Sentence 3
57
+ Sentence n
58
+ Sentence n-1
59
+ .
60
+ .
61
+ .
62
+ Same topic?
63
+ &
64
+ Consecutive?
65
+ Same topic?
66
+ &
67
+ Consecutive?
68
+ Same topic?
69
+ &
70
+ Consecutive?
71
+ Figure 1: A window with a size of 1 slides through the entire
72
+ sentence, predicting the topic of each sentence. At the same
73
+ time, the model determines whether the two sentences are in
74
+ the same topic and whether the two sentences are consecu-
75
+ tive.
76
+ These are where topic segmentation can be used. Topic
77
+ segmentation divides a document into segments with respect
78
+ to the topic coherence of each segment. A well-divided doc-
79
+ ument according to the topics provides better readability,
80
+ making it easier for the readers to find the desired infor-
81
+ mation in the document. Most importantly, it can facilitate
82
+ downstream-tasks such as IR and QA.
83
+ Although most of the existing topic segmentation models
84
+ take topic coherence into consideration when dividing a doc-
85
+ ument, they don’t undergo the process of classifying topic
86
+ labels for each sentence, even when these topic labels are
87
+ useful for inferring topic coherence. Most importantly, in-
88
+ spired by Neural Text Segmentation Model (Koshorek et al.
89
+ 2018), these models are designed to take block of text as in-
90
+ put, which possibly hinders understanding local context of
91
+ the input text (Xing et al. 2020).
92
+ We try to tackle the above issues by adopting a siamese
93
+ network to encode two input sentences independently and
94
+ putting them through a multi-task learning algorithm that in-
95
+ cludes topic classification and other auxiliary tasks. First,
96
+ in order to deal with two input sentences independently,
97
+ we construct our model in a siamese network with sen-
98
+ tence embeddings from a Sentence Transformer (Reimers
99
+ arXiv:2301.01935v1 [cs.CL] 5 Jan 2023
100
+
101
+ and Gurevych 2019). This method allows our model to pre-
102
+ serve local context between the two input sentences without
103
+ being overwhelmed by excessive information.
104
+ We consider topic segmentation as a Same Topic Predic-
105
+ tion (STP) between two input sentences, following Aumiller
106
+ et al. (2021). However, because our model processes only
107
+ one sentence at a time to preserve its unique information, the
108
+ model cannot observe context information across sentences.
109
+ To alleviate this issue, we add two auxiliary tasks to cap-
110
+ ture local context information. One of them is Topic Classi-
111
+ fication(TC) which predicts the exact topic of the input sen-
112
+ tences through a topic classification layer to assist STP with
113
+ a detailed topic information. The other is a Next Sentence
114
+ Prediction (NSP) layer (Devlin et al. 2019), which supports
115
+ the model in understanding the relationship between con-
116
+ secutive sentences. Figure 1 simply shows how our model
117
+ works.
118
+ To sum up, our model deals with two input sentences in-
119
+ dependently via the siamese sentence embedding layer that
120
+ preserves local context of input sentences. Also, we show
121
+ that connecting tasks that utilize same input sentences to ex-
122
+ tract different features in the sentence in a multi-task manner
123
+ improves topic segmentation performance. Consequently,
124
+ our model achieves state-of-the-art in the topic segmentation
125
+ task using the WikiSection dataset.
126
+ Related Work
127
+ Topic Segmentation
128
+ Koshorek et al. (2018) solved topic segmentation task as a
129
+ supervised neural network model. Block of text that consists
130
+ of several sentences is fed into the model and the model pre-
131
+ dicts whether each sentence should be a segmentation point.
132
+ Badjatiya et al. (2018) introduced k-sized left and right
133
+ supporting sentences, where neighboring k number of sen-
134
+ tences support injecting context into input sentence. How-
135
+ ever, Xing et al. (2020) pointed out that ”local context” was
136
+ more important than ”global context” in topic segmentation
137
+ task, implying that excessive context might decrease the per-
138
+ formance. The information from various sentences can hin-
139
+ der predicting label of a single sentence due to deterioration
140
+ in the model’s understanding of local context.
141
+ Arnold et al. (2019) proposed Sector which includes a
142
+ topic embedding layer in their architecture. This topic em-
143
+ bedding layer is implemented for topic classification and the
144
+ result of topic classification is then used for segmentation.
145
+ Aumiller et al. (2021) treated topic segmentation as a
146
+ Same Topic Prediction(STP) between two input paragraphs.
147
+ STP determines whether two input paragraphs refer to the
148
+ same topic. They also experimented diverse sampling meth-
149
+ ods, and among these methods we adopt consecutive sam-
150
+ pling. Details about consecutive sampling will be explained
151
+ at section .
152
+ Sentence Embedding
153
+ Sentence embedding is a method of capturing the seman-
154
+ tic relationships among words in a sentence (Conneau et al.
155
+ 2017). Quality of sentence embedding is critical especially
156
+ in the topic segmentation task, because the task inevitably
157
+ has to capture as much information as possible from long
158
+ sentences as well as short ones. Koshorek et al. (2018) uti-
159
+ lized Bi-LSTM to generate sentence embedding where word
160
+ embedding vectors are extracted from Word2Vec with each
161
+ word in a sentence as input, fed into the Bi-LSTM layer one
162
+ by one, and the final sequence representation was made by
163
+ max-pooling over the output of the LSTM.
164
+ After the introduction of BERT, Reimers and Gurevych
165
+ (2019) proposed Sentence BERT specialized in creating
166
+ sentence embeddings. Sentence BERT is a fine-tuned ver-
167
+ sion of BERT trained on NLI(Natural Language Inference)
168
+ and STS(Semantic Textual Similarity) task. To handle input
169
+ sentences effectively, the authors adopted siamese network
170
+ which encodes each sentence independently and concate-
171
+ nates the encoded sentences to be fed into a classification
172
+ layer. Consequently, Sentence BERT has better capability of
173
+ dealing with long sentences, because the model understands
174
+ high-level context of these sentences.
175
+ As another branch of Sentence BERT, SimCSE was pro-
176
+ posed (Gao, Yao, and Chen 2021). The authors applied con-
177
+ trastive learning to forming sentence embeddings. They tried
178
+ unsupervised method and showed that dropout could work
179
+ as data augmentation and this prevented representation col-
180
+ lapse. They also empirically and theoretically proved that
181
+ contrastive learning objective was suitable for regularizing
182
+ anisotropic space of a language model’s embedding to be
183
+ more uniform and it aligned positive pairs better in a super-
184
+ vised setting as a result.
185
+ Lukasik et al. (2020) proposed Cross-segment BERT.
186
+ They used pre-trained BERT in which left and right context
187
+ were separated via [SEP] token and encoded the sequence of
188
+ word-piece tokens into sentence representations. Aumiller
189
+ et al. (2021) used Sentence BERT for a sentence encoder
190
+ which is known to have substantial capability of understand-
191
+ ing high-level context.
192
+ Proposed Approach
193
+ Architecture
194
+ Our model follows the typical architecture of text segmen-
195
+ tation models: a sentence embedding layer followed by a
196
+ segment classifier, which is replaced by a Same Topic Pre-
197
+ diction layer in our model.
198
+ However, our model takes two input sentences. To handle
199
+ them independently, our model composes sentence embed-
200
+ ding layer in siamese network form, so that the model re-
201
+ ceives an appropriate amount of information to predict the
202
+ label. The encoded sentences are then fed into the topic
203
+ classification layer one by one. By passing each sentence
204
+ through the layer, the model acquires topic-related informa-
205
+ tion of the sentence. Also, we adopt NSP layer to capture
206
+ semantic relationship between the two sentences. Finally,
207
+ STP layer predicts whether the sentences belong to the same
208
+ topic.
209
+ We have k documents D1, ...Dk that D consist of n num-
210
+ ber sentences s1, ..., sn, and the sentences are paired con-
211
+ secutively; [(s1, s2), (s2, s3), ..., (sn−2, sn−1), (sn−1, sn)].
212
+ Each si(i ≤ n) is assigned a topic label ti which describes
213
+ topic label of ith sentence.
214
+
215
+ Models
216
+ STP Loss
217
+ TC Loss
218
+ NSP Loss
219
+ STP+TC
220
+ 4
221
+ 1
222
+ -
223
+ STP+NSP
224
+ 1
225
+ -
226
+ 1
227
+ STP+TC+NSP
228
+ 4
229
+ 1
230
+ 4
231
+ Table 1: Designated loss weights for each layer in case of
232
+ multi-task learning
233
+ The sentence embedding layer encodes each input sen-
234
+ tences si and si+1 and the encoded sentences are repre-
235
+ sented as u and v, respectively. Figure 2 shows the overview
236
+ of our model.
237
+ Siamese Sentence Embedding Layers from Sentence
238
+ Transformer
239
+ We propose siamese sentence embedding
240
+ layer. In our model, Sentence Transformer encodes each sen-
241
+ tence from two input sentences independently at the entry
242
+ level. Then, the encoded sentences are concatenated before
243
+ being fed into the STP layer. This method aims to preserve
244
+ each sentence’s unique information while acquiring local
245
+ context between the two sentences.
246
+ Multi Task Learning
247
+ Our model has a total of three clas-
248
+ sification layers and we train them in a multi-task manner.
249
+ Topic classification layer: Topic classification layer is
250
+ designed to capture exact topic information of a sentence.
251
+ Topic classification is a multi-class classification that pre-
252
+ dicts the topic of an input sentence out of 30 labels for
253
+ en city and 27 labels for en disease dataset (Arnold et al.
254
+ 2019) . This layer takes u and v one by one and predicts
255
+ each topic label ti and ti+1.
256
+ NSP layer: NSP layer is fed with u; v; |u − v| (Reimers
257
+ and Gurevych 2019) and the layer predicts NSP label. This
258
+ layer aims to supplement STP layer’s limitation where STP
259
+ layer can only determine whether the two input sentences are
260
+ in the same topic and cannot determine if the sentences are
261
+ actually consecutive. By adding NSP, the model can capture
262
+ the semantic relationship between the two sentences, so the
263
+ model can figure out whether the sentences are consecutive.
264
+ NSP layer must go with consecutive sampling which will be
265
+ explained below.
266
+ STP layer: STP layer is provided with u; v; |u − v| again
267
+ and finally predicts segmentation label that is used to draw
268
+ segmentation points in places where the two sentences be-
269
+ long to different topics.
270
+ Multi task learning: When the three layers are combined
271
+ in a multi-task manner, they can make up each other’s limi-
272
+ tations. Since STP is based on binary classification, its task
273
+ is much simpler than Topic Classification that is based on
274
+ multi-class classification. However, since STP cannot cap-
275
+ ture the exact topic label of input sentences, Topic classi-
276
+ fication provides this information to the STP layer to help
277
+ determine segmentation boundaries. The effect of NSP is ex-
278
+ plained above.
279
+ Loss weight: Because the losses from each layer are
280
+ all different, there is a need to adjust the weights among
281
+ the losses for improved model performance. We decide the
282
+ weights for each loss by running numerous manual experi-
283
+ ments and calculate the total loss using a weighted sum of
284
+ en city
285
+ en disease
286
+ Docs
287
+ 19,539
288
+ 3,590
289
+ Topics
290
+ 30
291
+ 27
292
+ Table 2: The number of documents and topics for en city
293
+ and en disease
294
+ the three losses from each classification layer. Table 1 sum-
295
+ marizes how each loss is weighted.
296
+ Consecutive Sampling
297
+ To make the model more robust, we add negative samples
298
+ to the dataset by adopting consecutive sampling (Aumiller
299
+ et al. 2021). In consecutive sampling, all samples come from
300
+ the same document.
301
+ We have a document Da and a sentence sti
302
+ i ∈ Da where
303
+ the superscript ti
304
+ refers to topic label of si. We pick one
305
+ positive sample and two negative samples. The positive sam-
306
+ ple sti+1=ti
307
+ i+1
308
+ ∈ Da is consecutive to si
309
+ and the first nega-
310
+ tive sample stk=ti
311
+ k̸=i+1 is from the same topic as si, but not con-
312
+ secutive to si . Finally, the second negative sample stl̸=ti
313
+ l
314
+ is from different topics, which is naturally considered not
315
+ consecutive to si .
316
+ Experiment
317
+ Dataset
318
+ We use WikiSection (Arnold et al. 2019) for training and
319
+ evaluating our model. WikiSection covers two distinct do-
320
+ mains: city and disease. Each domain has 19,539 and 3,590
321
+ documents, respectively, with various topics in each docu-
322
+ ment. In total, there are 30 and 27 topics for each domain.
323
+ The dataset is divided into 70% training, 10% validation and
324
+ 20% test sets. Table 2 gives statistics of the dataset.
325
+ Experimental Setup
326
+ We use nltk sentence tokenizer1 to split the documents into
327
+ sentence units and apply consecutive sampling only on the
328
+ training dataset. Table 3 gives the data statistics after ap-
329
+ plying sentence split and consecutive sampling. We imple-
330
+ ment all-MiniLM-L12-v2 and from Sentence-Transformers2
331
+ for our sentence encoder. We set the maximum epoch size to
332
+ 14 but save the model only when the validation Pk scores
333
+ best. Batch size is 48, learning rate is 1e−6 and LinearLR
334
+ scheduler is applied with the default parameters setting.
335
+ Metric
336
+ For
337
+ a
338
+ comprehensive
339
+ evaluation,
340
+ we
341
+ used
342
+ Pk,
343
+ WindowDiff and micro F1 score to evaluate our models.
344
+ We use Pk score for making comparisons between our
345
+ models and all other baseline models, and WindowDiff
346
+ is used to evaluate ours and Cross-segment BERT that we
347
+ implemented. F1 score is used for the purpose of ablation
348
+ study on our models.
349
+ 1NLTK :: Natural Language Toolkit
350
+ 2Pretrained Models — Sentence-Transformers documentation
351
+ (sbert.net)
352
+
353
+ 𝑠!
354
+ 𝑠!"#
355
+ Pooling
356
+ Pooling
357
+ 𝑢
358
+ 𝑣
359
+ Softmax Classifier
360
+ (NSP)
361
+ 𝑢; 𝑣; |𝑢 − 𝑣|
362
+ 0 or 1
363
+ Sentence Transformer
364
+ Sentence Transformer
365
+ 𝑡!
366
+ 𝑡!"#
367
+ Softmax Classifier
368
+ (Topic Classification)
369
+ Softmax Classifier
370
+ (STP)
371
+ 0 or 1
372
+ Figure 2: The overview of our model. Two input sentences which are considered consecutive are fed into Sentence Transformer
373
+ independently and encodes each input sentence. Each max-pooled encoded sentence, represented by u and v respectively, is fed
374
+ into Topic classification layer. Before being fed into NSP layer and STP layer, we make concatenated feature u; v; |u−v|. Using
375
+ u; v; |u − v|, NSP layer predicts if the two sentences are consecutive and STP layer finally determines whether they belong to
376
+ same topic.
377
+ 79.5
378
+ 95.1
379
+ 95.3
380
+ 95.4
381
+ 95.8
382
+ 72.7
383
+ 73.2
384
+ 73.3
385
+ 85.7
386
+ 86.5
387
+ 40
388
+ 50
389
+ 60
390
+ 70
391
+ 80
392
+ 90
393
+ 100
394
+ TC only
395
+ STP only
396
+ STP+TC
397
+ STP+NSP
398
+ STP+TC+NSP
399
+ F1
400
+ Micro F1 Scores of STP, TC and NSP
401
+ (en_city)
402
+ STP
403
+ TC
404
+ NSP
405
+ 54.8
406
+ 87.6
407
+ 88
408
+ 88.3
409
+ 88.4
410
+ 45.8
411
+ 45.9
412
+ 46.2
413
+ 64
414
+ 64.5
415
+ 40
416
+ 50
417
+ 60
418
+ 70
419
+ 80
420
+ 90
421
+ 100
422
+ TC only
423
+ STP only
424
+ STP+TC
425
+ STP+NSP
426
+ STP+TC+NSP
427
+ F1
428
+ Micro F1 Scores of STP, TC and NSP
429
+ (en_disease)
430
+ STP
431
+ TC
432
+ NSP
433
+ Figure 3: Figure of F1 scores with combination of different task layers. In case of TC-only model, STP output is 1 if the results
434
+ of topic classification on each sentence refer to the same topic otherwise 0.
435
+ en city
436
+ en disease
437
+ Train
438
+ 1,690,103
439
+ 336,459
440
+ Valid
441
+ 85,072
442
+ 16,285
443
+ Test
444
+ 168,924
445
+ 31,110
446
+ Table 3: The number of rows after applying nltk sentence
447
+ tokenizer and consecutive sampling. Consecutive sampling
448
+ is applied only on the trainset.
449
+ Pk
450
+ Pk (Beeferman, Berger, and Lafferty 1999) is a proba-
451
+ bility that a segmentation model performs an incorrect seg-
452
+ mentation. While a sliding window of size k passing over
453
+ the sentences, the status (0 or 1) is determined by whether
454
+ the two ends of the window are in the same segment or in
455
+ different segments. Pk is calculated by counting unmatched
456
+ cases between the ground truths and predicted values. As in
457
+ many previous studies, we set the window size k to half the
458
+ average segment length of the ground truths.
459
+
460
+ Dataset
461
+ en city
462
+ en disease
463
+ Metric
464
+ Pk
465
+ WinDiff
466
+ Pk
467
+ WinDiff
468
+ SEC>T+emb
469
+ 15.5
470
+ -
471
+ 26.3
472
+ -
473
+ Transformer2
474
+ BERT
475
+ 8.2
476
+ -
477
+ 18.8
478
+ -
479
+ BiLSTM + BERT
480
+ 9.3
481
+ -
482
+ 28.0
483
+ -
484
+ Cross-segment BERT n context = 2
485
+ 15.4
486
+ 27.4
487
+ 33.9
488
+ 59.0
489
+ Cross-segment BERT n context = 4
490
+ 18.3
491
+ 32.2
492
+ 34.8
493
+ 60.3
494
+ Cross-segment BERT n context = 6
495
+ 45.1
496
+ 50.0
497
+ 34.0
498
+ 57.1
499
+ TC-only
500
+ 15.0
501
+ 17.8
502
+ 41.5
503
+ 45.4
504
+ STP-only
505
+ 5.1
506
+ 5.8
507
+ 14.8
508
+ 15.8
509
+ STP + TC
510
+ 5.0
511
+ 5.7
512
+ 14.0
513
+ 15.0
514
+ STP + NSP
515
+ 4.9
516
+ 5.6
517
+ 14.1
518
+ 15.1
519
+ STP + TC + NSP
520
+ 4.6
521
+ 5.2
522
+ 13.7
523
+ 14.7
524
+ Table 4: Test Pk and WindowDiff scores of baseline models and our models. Note that the WinDiff metric is used only
525
+ in our models and the Cross-segment BERT models. We reimplement Cross-segment BERT ourselves following their official
526
+ codes.
527
+ WindowDiff
528
+ WindowDiff
529
+ (Pevzner
530
+ and
531
+ Hearst
532
+ 2002) is an improved metric from Pk in that it alleviates
533
+ the impact of false negative penalty and segment size
534
+ distribution.
535
+ Similar to Pk, WindowDiff score also uses sliding win-
536
+ dow and compares the ground truths with the predicted val-
537
+ ues. However, this metric also takes the number of bound-
538
+ aries into consideration. It is closer to the ground truth when
539
+ the models get a lower score in both Pk and WindowDiff.
540
+ Baseline Models
541
+ We compare our model with competitive neural text seg-
542
+ mentation baselines 1) SEC>T+emb (Arnold et al. 2019),
543
+ 2) Transformer2
544
+ BERT (Lo et al. 2021), a framework based
545
+ on two transformers, where one is a pre-trained transformer
546
+ for encoding sentences and the other is a transformer for seg-
547
+ mentation, 3) Bi-LSTM + BERT (Xing et al. 2020), that is
548
+ based on a hierarchical attention Bi-LSTM network, and 4)
549
+ Cross-segment BERT (Lukasik et al. 2020), which handles
550
+ left and right context simultaneously using a BERT encoder.
551
+ We adopt the results of SEC>T+emb from Arnold
552
+ et al. (2019), Transformer2
553
+ BERT and Bi-LSTM + BERT
554
+ from Xing et al. (2020). We implement Cross-segment
555
+ BERT ourselves following their official code while apply-
556
+ ing diverse size of context.
557
+ Results and Analysis
558
+ We report evaluation results on Figure 3 and Table 4. Fig-
559
+ ure 3 summarizes how combination of each classification
560
+ layer affects their F1 scores. Table 4 shows performance
561
+ comparison between our model and other baseline models
562
+ in Pk and WindowDiff, respectively. Our proposed mod-
563
+ els, except for TC-only model, outperform all the baseline
564
+ models by a large margin.
565
+ Effect of MTL
566
+ Figure 3 shows F1 scores derived from
567
+ combinations of tasks mentioned above. We can see that
568
+ MTL is effective in improving the performance, which ap-
569
+ plies to not only the performance of STP that is responsible
570
+ segmentation but also the performances of TC and NSP. This
571
+ is believed to be because, as we pointed out in the section ,
572
+ the layers make up for each other’s limitations by extract-
573
+ ing different features from same input sentences that assist
574
+ understanding semantic information.
575
+ STP-only vs TC-only
576
+ In order to verify the effectiveness
577
+ of STP layer, we also experiment TC-only model, which is
578
+ close to Sector in that segmentation is performed only using
579
+ topic labels.
580
+ Pk and WindowDiff of TC-only model are much
581
+ higher than those of STP-only model. Poor classification
582
+ performance of Topic classification directly causes this phe-
583
+ nomenon. Figure 3 indicates that F1 scores of TC-only
584
+ model are significantly lower than those of STP-only. Be-
585
+ cause topic classification layer is based on multi-class classi-
586
+ fication, which is more difficult than the binary classification
587
+ of STP-only.
588
+ STP vs NSP
589
+ Although STP and NSP have the same ar-
590
+ chitecture, STP’s F1 scores are always higher than NSP’s in
591
+ both datasets. We assume that this difference is derived from
592
+ the difference in the information that STP and NSP focus on.
593
+ STP-only determines whether the two sentences belong to
594
+ the same topic, so it only pays attention to topic differences
595
+ between two sentences. In other words, due to the nature of
596
+ the task, STP does not consider the relationship between two
597
+ input sentences. However, in the NSP task, the layer faces
598
+ difficulties as two sentences may not be consecutive even
599
+ if they belong to the same topic because of our consecutive
600
+ sampling. Thus, NSP must find the semantic relationship be-
601
+ tween the two sentences as well as topic coherence, which
602
+ makes the task tricky.
603
+ How the number of contexts affects the performance
604
+ To show the importance of local context, we implement
605
+ Cross-segment BERT (Lukasik et al. 2020) by applying di-
606
+ verse size of context on the model. Table 4 shows that raising
607
+ context size rather deteriorates the performance. We conjec-
608
+ ture that this is because the more sentences there are, the
609
+ more likely for different topics to be mingled, which likely
610
+ interferes the model from understanding local context with
611
+
612
+ Left context
613
+ 𝑠!
614
+ 𝑠!"#
615
+ 𝑠!$#
616
+ 𝑠!$%
617
+ 𝑠!$&
618
+ 𝑠!"%
619
+ 𝑠!"&
620
+ 𝑠!"'
621
+ n_context = 1
622
+ 𝑠!
623
+ 𝑠!"#
624
+ 𝑠!$#
625
+ 𝑠!$%
626
+ 𝑠!$&
627
+ 𝑠!"%
628
+ 𝑠!"&
629
+ 𝑠!"'
630
+ n_context = 4
631
+ 𝑠!
632
+ 𝑠!"#
633
+ 𝑠!$#
634
+ 𝑠!$%
635
+ 𝑠!$&
636
+ 𝑠!"%
637
+ 𝑠!"&
638
+ 𝑠!"'
639
+ n_context = 2
640
+ 𝑠!
641
+ 𝑠!"#
642
+ 𝑠!$#
643
+ 𝑠!$%
644
+ 𝑠!$&
645
+ 𝑠!"%
646
+ 𝑠!"&
647
+ 𝑠!"'
648
+ n_context = 3
649
+ Right context
650
+ Left context
651
+ Right context
652
+ Left context
653
+ Right context
654
+ Left context
655
+ Right context
656
+ Figure 4: Effect of context size on prediction. The color of the box represents the topic of the sentence and the red line represents
657
+ supporting context. The vertical dotted line represents a segmentation point between si and si+1 while the dotted box describes
658
+ that the two sentences are not segmented. si
659
+ and si+1
660
+ should be divided, since they belong to different topics, but are not
661
+ segmented in cases of n context = 3 and n context = 4 .
662
+ overflow of noise. Because processing multiple sentences si-
663
+ multaneously using a left and right context structure rather
664
+ adds noise to the contexts, we choose to encode the two in-
665
+ put sentences independently.
666
+ Figure 4 explains this local context capturing error. The
667
+ models in Figure 4 are all expected to create a segmentation
668
+ point between si and si+1 , but models with larger con-
669
+ text sizes fail to split the two sentences, because segmenta-
670
+ tion only takes into account the overall context of each side.
671
+ As the context size increases, the model suffers from gener-
672
+ alization and interprets left and right contexts as similar even
673
+ when the two specific sentences refer to different topics and
674
+ hence should be segmented.
675
+ Also, Cross-segment BERT encodes left and right context
676
+ simultaneously. Because Cross-encoder inevitably makes
677
+ context of one input sentence influence the other (Humeau
678
+ et al. 2019), the unique information of each context can
679
+ change unexpectedly. Therefore, we process each sentence
680
+ independently via siamese sentence embedding in order to
681
+ preserve the original local context.
682
+ Dealing with Scientific Documents
683
+ We can also find that
684
+ the scores for en disease are underperforming compared to
685
+ that for en city. We assume that this result due to the fact
686
+ that en disease is more science domain specific (i.e. biol-
687
+ ogy) while en city covers relatively general topics. Arnold
688
+ et al. (2019) commented that documents in en disease are
689
+ described in a precise language, but on the other hand those
690
+ in en city are described in a common language. Consider-
691
+ ing that our backbone, miniLM was pre-trained on general
692
+ documents like Wikipedia, the result seems natural.
693
+ To improve the performance on en disease, we implement
694
+ SPECTER (Cohan et al. 2020) which was trained on scien-
695
+ tific papers using Sci-BERT as the backbone model.
696
+ As shown in table 5, Pk and WinDiff improved by 1.6
697
+ and 1.8 respectively in en disease compared to the miniLM
698
+ based model. We attribute the improvement to SPECTER’s
699
+ understanding of scientific documents. We expect the scores
700
+ Pk
701
+ WinDiff
702
+ en city
703
+ 4.6
704
+ 5.2
705
+ en disease
706
+ 12.1
707
+ 12.9
708
+ Table 5: Test Pk and WindowDiff scores of SPECTER
709
+ based Topic Segmentation Model with STP+TC+NSP
710
+ for en disease to be improved if we use more biology do-
711
+ main specific model like BioBERT as the backbone.
712
+ Interestingly, although the number of parameters of
713
+ SPECTER was twice as large as that of miniLM (i.e. 768
714
+ vs 384), there was no improvement in the performance in
715
+ en city. From this result, we can again confirm that domain
716
+ knowledge is critical to the performance.
717
+ Conclusion and Future Work
718
+ In this work, we propose our topic segmentation model
719
+ which consists of siamese sentence embedding layer from
720
+ Sentence Transformer and three classification layers. With
721
+ several different experiments, we show that our proposed
722
+ model outperforms all the existing models. We also find that
723
+ combining Same Topic Prediction, Topic Classification and
724
+ Next Sentence Prediction in a multi-task manner increases
725
+ segmentation performance.
726
+ Moreover, we empirically show the importance of local
727
+ context in topic segmentation task. Contrary to the popu-
728
+ lar belief, increasing the number of context can rather de-
729
+ grade the performance due to generalization of local context.
730
+ Our experiment indicates that narrowing context through our
731
+ siamese sentence embedding layer can be effective in pre-
732
+ serving local context.
733
+ Future work can highlight on the theoretical approach to
734
+ local context. Although we empirically showed the influence
735
+ of context size to the model performance in this paper, we
736
+ did not concentrate on how we can determine which input
737
+ sentences can provide substantial information in performing
738
+ segmentation tasks. If we can infer each sentence’s signifi-
739
+
740
+ cance in prediction, we expect the model to capture the im-
741
+ portant sentences autonomously, consequently making the
742
+ model agnostic to the context size.
743
+ Acknowledgments
744
+ This work was supported by Institute of Information &
745
+ communications Technology Planning & Evaluation (IITP)
746
+ grant funded by the Korea government(MSIT) (No. 2020-
747
+ 0-01361, Artificial Intelligence Graduate School Program
748
+ (Yonsei University)).
749
+ References
750
+ Arnold, S.; Schneider, R.; Cudr´e-Mauroux, P.; Gers, F. A.;
751
+ and L¨oser, A. 2019. SECTOR: A Neural Model for Coherent
752
+ Topic Segmentation and Classification.
753
+ Aumiller, D.; Almasian, S. S.; Lackner, M.; and Gertz. 2021.
754
+ Structural text segmentation of legal documents. In Proceed-
755
+ ings of the Eighteenth International Conference on Artificial
756
+ Intelligence and Law, 2–11. Association for Computing Ma-
757
+ chinery.
758
+ Badjatiya, P.; Kurisinkel, L. J.; Gupta, M.; and Varma, V.
759
+ 2018. Attention-based Neural Text Segmentation.
760
+ Beeferman, D.; Berger, A.; and Lafferty, J. 1999. Statistical
761
+ Models for Text Segmentation. Machine Learning, 34: 177–
762
+ 210.
763
+ Cohan, A.; Feldman, S.; Beltagy, I.; Downey, D.; and Weld,
764
+ D. 2020. SPECTER: Document-level Representation Learn-
765
+ ing using Citation-informed Transformers. In Proceedings
766
+ of the 58th Annual Meeting of the Association for Com-
767
+ putational Linguistics, 2270–2282. Online: Association for
768
+ Computational Linguistics.
769
+ Conneau, A.; Kiela, D.; Schwenk, H.; Barrault, L.; and Bor-
770
+ des, A. 2017. Supervised Learning of Universal Sentence
771
+ Representations from Natural Language Inference Data. In
772
+ Proceedings of the 2017 Conference on Empirical Methods
773
+ in Natural Language Processing, 670–680. Association for
774
+ Computational Linguistics.
775
+ Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019.
776
+ BERT: Pre-training of Deep Bidirectional Transformers for
777
+ Language Understanding. In Proceedings of the 2019 Con-
778
+ ference of the North American Chapter of the Association
779
+ for Computational Linguistics: Human Language Technolo-
780
+ gies, volume 1, 4171–4186. Association for Computational
781
+ Linguistics.
782
+ Gao, T.; Yao, X.; and Chen, D. 2021. SimCSE: Simple Con-
783
+ trastive Learning of Sentence Embeddings. In Proceedings
784
+ of the 2021 Conference on Empirical Methods in Natural
785
+ Language Processing, 6894–6910. Online and Punta Cana,
786
+ Dominican Republic: Association for Computational Lin-
787
+ guistics.
788
+ Humeau, S.; Shuster, K.; Lachaux, M.-A.; and Weston, J.
789
+ 2019. Poly-encoders: Transformer Architectures and Pre-
790
+ training Strategies for Fast and Accurate Multi-sentence
791
+ Scoring.
792
+ Koshorek, O.; Cohen, A.; Mor, N.; Rotman, M.; and Berant,
793
+ J. 2018. Text Segmentation as a Supervised Learning Task.
794
+ In Proceedings of the 2018 Conference of the North Ameri-
795
+ can Chapter of the Association for Computational Linguis-
796
+ tics: Human Language Technologies, volume 2, 469–473.
797
+ Association for Computational Linguistics.
798
+ Lo, K.; Jin, Y.; Tan, W.; Liu, M.; Du, L.; and Buntine, W.
799
+ 2021. Transformer over Pre-trained Transformer for Neu-
800
+ ral Text Segmentation with Enhanced Topic Coherence. In
801
+ Findings of the Association for Computational Linguistics:
802
+ EMNLP 2021, 3334–3340. Association for Computational
803
+ Linguistics.
804
+ Lukasik, M.; Dadachev, B.; Papineni, K.; and Sim˜oes, G.
805
+ 2020. Text Segmentation by Cross Segment Attention. Pro-
806
+ ceedings of the 2020 Conference on Empirical Methods in
807
+ Natural Language Processing (EMNLP), 4707–4716.
808
+ Pevzner, L.; and Hearst, M. A. 2002. A critique and im-
809
+ provement of an evaluation metric for text segmentation.
810
+ Computational Linguistics, 28(1): 19–36.
811
+ Reimers, N.; and Gurevych, I. 2019.
812
+ Sentence-BERT:
813
+ Sentence Embeddings using Siamese BERT-Networks. In
814
+ Proceedings of the 2019 Conference on Empirical Meth-
815
+ ods in Natural Language Processing and the 9th Interna-
816
+ tional Joint Conference on Natural Language Processing
817
+ (EMNLP-IJCNLP), 3982–3992. Association for Computa-
818
+ tional Linguistics.
819
+ Xing, L.; Hackinen, B.; Carenini, G.; and Trebbi, F. 2020.
820
+ Improving Context Modeling in Neural Topic Segmenta-
821
+ tion. In Proceedings of the 1st Conference of the Asia-Pacific
822
+ Chapter of the Association for Computational Linguistics
823
+ and the 10th International Joint Conference on Natural Lan-
824
+ guage Processing, 626–636. Association for Computational
825
+ Linguistics.
826
+
7tAzT4oBgHgl3EQf-f6Q/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
8NAyT4oBgHgl3EQfp_h6/content/2301.00535v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:09d491c8123a3924adcc5030ab425821666a8ef1c2371e3f220dc03ab729bac7
3
+ size 2141015
8NAyT4oBgHgl3EQfp_h6/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea857be78444fa9fd163820b6743cee71f8302602a027b4318d33e26bdc32235
3
+ size 5439533
8NAyT4oBgHgl3EQfp_h6/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d048605ff2e18089f2a0a214313fa0b65e1de2fb31bce834aab3e5474f9e85c
3
+ size 199211
8NE4T4oBgHgl3EQfdAy1/content/2301.05088v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7aadeb9d55ec348beda38760c0406eaca9baf3581fdd97a215e2b919c9508ebc
3
+ size 1525780
8NE4T4oBgHgl3EQfdAy1/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a41ce89ef02ccd4970bab589013d37de7009009ba9aedc19b9e3d50aa18930c
3
+ size 3801133
8NE4T4oBgHgl3EQfdAy1/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:546e18d6e0c84af4932a299f0ad7d0a275fd1c65bc7fdad66ed2a7c4282253e7
3
+ size 127132
8tAyT4oBgHgl3EQfc_f6/content/2301.00296v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc72b4a9610cbfd05a8aaa8d5c7a7ff479ed9b37e36db119b64798f7a472e8e1
3
+ size 410955
8tAyT4oBgHgl3EQfc_f6/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e87237db7d5beddb9e4c5789a1d35c78413481ae7b6ccd2ca2b303f05f5a4dfb
3
+ size 1245229
8tAyT4oBgHgl3EQfc_f6/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c20e40c4b1f86aa81286156d4f3a01f9b15fdb86f9f7116d0b726a4ee8b9ef2
3
+ size 52061
9NAzT4oBgHgl3EQfFPpp/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98dcd71477c861adb16594f83ae54f5e48b8c9310789d3c7477dbec3a1691273
3
+ size 196134
9tAyT4oBgHgl3EQfdPfZ/content/tmp_files/2301.00300v1.pdf.txt ADDED
@@ -0,0 +1,1769 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.00300v1 [math.AP] 31 Dec 2022
2
+ STOCHASTIC QUANTIZATION OF LASER PROPAGATION MODELS
3
+ SIVAGURU S. SRITHARAN1,2* AND SABA MUDALIAR1
4
+ Abstract. This paper identifies certain interesting mathematical problems of stochastic
5
+ quantization type in the modeling of Laser propagation through turbulent media. In some
6
+ of the typical physical contexts the problem reduces to stochastic Schr¨odinger equation with
7
+ space-time white noise of Gaussian, Poisson and L´evy type. We identify their mathematical
8
+ resolution via stochastic quantization. Nonlinear phenomena such as Kerr effect can be
9
+ modeled by stochastic nonlinear Schrodinger equation in the focusing case with space-time
10
+ white noise. A treatment of stochastic transport equation, the Korteweg-de Vries Equation
11
+ as well as a number of other nonlinear wave equations with space-time white noise is also
12
+ given.
13
+ Main technique is the S-transform (we will actually use closely related Hermite
14
+ transform) which converts the stochastic partial differential equation with space time white
15
+ noise to a deterministic partial differential equation defined on the Hida-Kondratiev white
16
+ noise distribution space. We then utlize the inverse S-transform/Hermite transform known
17
+ as the characterization theorem combined with the infinite dimensional implicit function
18
+ theorem for analytic maps to establish local existence and uniqueness theorems for path-
19
+ wise solutions of these class of problems. The particular focus of this paper on singular white
20
+ noise distributions is motivated by practical situations where the refractive index fluctuations
21
+ in propagation medium in space and time are intense due to turbulence, ionospheric plasma
22
+ turbulence, marine-layer fluctuations, etc. Since a large class of partial differential equations
23
+ that arise in nonlinear wave propagation have polynomial type nonlinearities, white noise
24
+ distribution theory is an effective tool in studying these problems subject to different types
25
+ of white noises.
26
+ Key words: Laser propagation, stochastic nonlinear Schr¨odinger equation, stochastic quan-
27
+ tization, space-time white noise, Wick product, paraxial equation, Korteweg-de Vries Equa-
28
+ tion, white noise calculus, S-transform, Benjamin-Ono equation, Schr¨odringer-Hartree equa-
29
+ tion, Zakharov system, Davey-Stewartson equation.
30
+ Mathematics Subject Classification (2010): 60H15, 81S20, 37N20
31
+ Contents
32
+ 1.
33
+ Introduction
34
+ 2
35
+ 2.
36
+ Derivation of the paraxial equation from the Maxwell equations
37
+ 3
38
+ 3.
39
+ Mathematical background on white noise calculus
40
+ 4
41
+ 3.1.
42
+ White noise theory: Gaussian, Poisson and L´evy
43
+ 4
44
+ 3.2.
45
+ Hida-Kondratiev spaces
46
+ 7
47
+ 3.3.
48
+ Wick products and properties
49
+ 8
50
+ 1 U. S. Air Force Research Laboratory, Wright Patterson Air Force Base, Ohio 45433, U. S. A.
51
+ 2 NRC-Senior Research Fellow, National Academies of Science, Engineering and Medicine, U. S.
52
+ Air Force Research Laboratory, Wright Patterson Air Force Base, Ohio 45433, U. S. A.
53
+ e-mail: [email protected] ∗Corresponding author.
54
+ e-mail: [email protected]
55
+ 1
56
+
57
+ 2
58
+ S. S. SRITHARAN AND SABA MUDALIAR
59
+ 3.4.
60
+ S-transform, Hermite transform and characterization theorems
61
+ 9
62
+ 4.
63
+ Kato theory of quasilinear abstract evolution equations
64
+ 10
65
+ 4.1.
66
+ Analytic Mappings between Banach Spaces and Inverse Mapping Theorem
67
+ 11
68
+ 5.
69
+ First-order PDE (transport-type)
70
+ 12
71
+ 5.1.
72
+ First order random transport equation with temporal white noise
73
+ 12
74
+ 5.2.
75
+ Stochastic transport model with space-time white noise
76
+ 13
77
+ 6.
78
+ Stochastic nonlinear wave equations
79
+ 15
80
+ 6.1.
81
+ Stochastic Korteweg De Vries equation
82
+ 15
83
+ 6.2.
84
+ Stochastic Benjamin-Ono equation
85
+ 16
86
+ 7.
87
+ Stochastic reaction diffusion equation and quantization
88
+ 16
89
+ 7.1.
90
+ Stochastic heat equation with multiplicative noise and the KPZ Equation
91
+ 17
92
+ 7.2.
93
+ Stochastic nonlinear heat equation with white noise Initial Data
94
+ 18
95
+ 8.
96
+ Stochastic linear and nonlinear Schr¨odinger equations with space-time white noise 19
97
+ 8.1.
98
+ Strichartz estimates
99
+ 19
100
+ 8.2.
101
+ Stochastic linear Schr¨odinger equation with additive space-time white noise
102
+ 19
103
+ 8.3.
104
+ Stochastic linear Schr¨odinger equation with multiplicative space-time white
105
+ noise
106
+ 20
107
+ 8.4.
108
+ Nonlinear Schr¨odinger equation with multiplicative space-time white noise
109
+ 21
110
+ 9.
111
+ Concluding remarks
112
+ 21
113
+ References
114
+ 23
115
+ 1. Introduction
116
+ Stochastic partial differential equations of the type
117
+ i ∂
118
+ ∂tψ(x, t, ω) + [∆ + Γ(x, t, ω)]ψ(x, t, ω) + F(ψ(x, t, ω)) = 0,
119
+ (1.1)
120
+ where Γ(·, ·, ·) is a random field describing the fluctuations in the medium are often en-
121
+ countered in electromagnetic and acoustic wave propagation problems in random nonlinear
122
+ media. They are usually called either “paraxial equation” or “parabolic equation model”
123
+ in the engineering literature [60, 64, 32]. As we define later, here (Ω, F, m) is a complete
124
+ probability space and ω is an S′(Rd)-valued random variable. In this paper we will study
125
+ Gaussian, Poisson and Levy type white noise models for Γ(·, ·, ·).
126
+ In the Gaussian case
127
+ for example, Γ(x, t, ω) can also formally represented using generalized derivative of Rn+1-
128
+ dimensional Brownian sheet B(x, t, ω):
129
+ Γ(x, t, ω) =
130
+ ∂n+1
131
+ ∂x1, · · ·∂xn∂tB(x, t, ω), x = (x1, · · · , xn),
132
+ (1.2)
133
+ where the Brownian sheet B(x, t, ω) has covariance:
134
+ ⟨B(x, t, ·), B(y, τ, ·)⟩ = Πn
135
+ k=1(xk ∧ yk)(t ∧ τ), x = (x1, · · · , xn), y = (y1, · · · , yn).
136
+ (1.3)
137
+ The space-time Gaussian white noise has covariance formally:
138
+ ⟨Γ(x, t, ·), Γ(y, τ, ·)⟩ = δ(x − y)δ(t − τ).
139
+ (1.4)
140
+ All three type noise structures will be developed in detail in later sections. In this paper
141
+ we will provide a systematic treatment of Laser propagation in random media highlighting
142
+ some of the well-known physical phenomena such as deep turbulence. In the simplest yet
143
+
144
+ STOCHASTIC QUANTIZATION OF LASER PROPAGATION MODELS
145
+ 3
146
+ mathematically nontrivial case, the problem reduces to stochastic Schrodinger equation with
147
+ space-time white noise and we discuss its relationship to stochastic quantization. Nonlinear
148
+ phenomena such as Kerr effect can be modeled by stochastic nonlinear Schrodinger equation
149
+ [60] in the focusing case again with space-time white noise. Similar equations also arise in
150
+ nonlinear fiber optics [1]. We will also discuss a number of other stochastic partial differential
151
+ equations studied in the context of random wave propagation phenomena such as stochastic
152
+ transport equation [52, 26] and stochastic Korteweg-de Vries equation [10]. The quantization
153
+ method we use is in the spirit of Wick expansions used in quantum field theory (see for
154
+ example [58]) and the white noise calculus ([35, 49]) method for stochastic partial differential
155
+ equations is described in [36] which also gives a comprehensive discussion of the literature
156
+ in this subject.
157
+ 2. Derivation of the paraxial equation from the Maxwell equations
158
+ In this section we will give a heuristic derivation of the paraxial equation starting from the
159
+ Maxwell equation. The paraxial equation we derive is a very well-known model widely used
160
+ in the literature on acoustic wave and electromagnetic wave propagation in random media
161
+ [65, 53, 64, 60, 32]. Let E, H, B, D denote respectively the electric field, magnetizing field,
162
+ magnetic field and the displacement field.The Maxwell equations are:
163
+ ∇ × E = ∂B
164
+ ∂t
165
+ (2.1)
166
+ ∇ × H = ∂D
167
+ ∂t
168
+ (2.2)
169
+ D = ǫE and B = µH.
170
+ (2.3)
171
+ Here ǫ is the permitivity and µ is the permiability of the medium. Taking curl of the first
172
+ equation and taking time derivative of the second equation and substituting in the first we
173
+ get upon using the vector identity ∇ × ∇ × E = −∆E + ∇(∇ · E)
174
+ ∆E − µ ∂2
175
+ ∂t2(ǫE) = ∇(∇ · E)
176
+ (2.4)
177
+ In the absence of free charge ∇ · D = 0 and hence E · ∇ǫ + ǫ∇ · E = 0 and substituting we
178
+ get
179
+ ∆E − µ ∂2
180
+ ∂t2(ǫE) = −∇(E · ∇(logǫ))
181
+ (2.5)
182
+ We have noting ǫ(x, t) = ǫ0n2(x, t) where n is the refractive index and c2 = 1/(µǫ0) with c
183
+ the light speed, we arrive at
184
+ ∆E(x, t) − 1
185
+ c2
186
+ ∂2
187
+ ∂t2(n2(x, t)E(x, t)) = −2∇(E(x, t) · ∇log(n(x, t))).
188
+ (2.6)
189
+ We assume that the time scale of fluctuations in the medium is much slower than the light
190
+ speed and invoke further simplifications based on this assumption. Thus neglecting the right
191
+ hand side and also n2 term out of time derivative we arrive at
192
+ ∆E(x, t) − n2(x, t)
193
+ c2
194
+ ∂2
195
+ ∂t2 E(x, t) = 0.
196
+ (2.7)
197
+
198
+ 4
199
+ S. S. SRITHARAN AND SABA MUDALIAR
200
+ Substituting a plane wave solution E(x1, x2, x3, t) = ψ(x1, x2, x3, t) exp(ikx3 − iωt) and ne-
201
+ glecting the back-scatter term ∂2ψ(x1,x2,x3,t)
202
+ ∂x2
203
+ 3
204
+ (using simple scaling argument, see for example
205
+ [53]) we arrive at the paraxial equation:
206
+ 2ik ∂ψ
207
+ ∂x3
208
+ + [∆⊥ + k2{n2(x1, x2, x3, t)
209
+ n2
210
+ 0
211
+ − 1}]ψ = 0.
212
+ (2.8)
213
+ where ∆⊥ is the two dimensional Laplacian in variables x2, x3.
214
+ Renaming the time-like
215
+ variable x3 as t and suppressing the actual time variable t we end up with the two dimensional
216
+ linear or nonlinear stochastic Schr¨odinger equation:
217
+ i ∂
218
+ ∂tψ(x, t, ω) + [∆ + V (x, t, ω, ψ)]ψ(x, t, ω) = 0.
219
+ (2.9)
220
+ In this paper V will be modeled as a space-time Gaussian white noise[35, 49], Poisson white
221
+ noise [38, 39, 4] or Levy type white noise[36] and the paraxial equation will then be framed
222
+ as a stochastic quantization problem.
223
+ 3. Mathematical background on white noise calculus
224
+ 3.1. White noise theory: Gaussian, Poisson and L´evy. In this section we will recall
225
+ some of the basic elements of white noise stochastic calculus [34, 35, 49, 4, 36] needed in
226
+ this paper. We will start by defining the Schwartz space S = S(Rd) of rapidly decaying
227
+ real-valued C∞ functions on Rd. This space equipped with the family of seminorms:
228
+ ∥f∥k,α := sup
229
+ x∈Rd{(1 + |x|k)|∂αf(x)|}
230
+ (3.1)
231
+ is a Frechet space [56]. Here k is a non-negative integer, α = {α1, · · · , αd} is a multi-index
232
+ of non-negative integers αi, i = 1, · · · , d and
233
+ ∂αf(x) =
234
+ ∂|α|
235
+ ∂xα1
236
+ 1 · · · ∂xαd
237
+ d
238
+ f(x), where |α| := α1 + · · · + αd.
239
+ (3.2)
240
+ The dual space of S(Rd) denoted S′ := S′(Rd) equipped with the weak topology is the space
241
+ of tempered distributions. Let (Ω, F, m) is a complete probability space and ω is an S′(Rd)-
242
+ valued random variable. The law µ of this S′(Rd)-valued random variable ω is characterized
243
+ next. We recall the Bochner-Milnos theorem [56] for the existence of probability measures
244
+ on the Borel sets B(S′):
245
+ Theorem 3.1. A necessary and sufficient condition for the existence of a probability measure
246
+ µ on B(S′) and a functional F on S such that
247
+
248
+ S′ ei<ω,φ>µ(dω) = F(φ), ∀φ ∈ S
249
+ (3.3)
250
+ is that F satisfies the following three conditions:
251
+ (1) F(0) = 1,
252
+ (2) F is positive definite: �n
253
+ j,l=1 zj¯zlF(φj − φl) ≥ 0, ∀zk ∈ C, ∀φk ∈ S, k = 1, · · · , n,
254
+ (3) F is continuous in the Frechet topology of S.
255
+
256
+ STOCHASTIC QUANTIZATION OF LASER PROPAGATION MODELS
257
+ 5
258
+ We will also utilize three particular cases:
259
+ (i) Gaussian measure µG:
260
+
261
+ S′ ei<ω,φ>µG(dω) = exp{−1
262
+ 2∥φ∥2
263
+ L2(Rd)}, ∀φ ∈ S,
264
+ (3.4)
265
+ (ii) Poisson measure µP:
266
+
267
+ S′ ei<ω,φ>µP(dω) = exp{
268
+
269
+ Rd(eiφ(x) − 1)dx}, ∀φ ∈ S,
270
+ (3.5)
271
+ (iii) Pure jump Levy measure µL:
272
+
273
+ S′ ei<ω,φ>µL(dω) = exp{
274
+
275
+ Rd Ψ(φ(x))dx}, ∀φ ∈ S and
276
+ (3.6)
277
+ Ψ(φ) =
278
+
279
+ Rd(ei<φ,z> − 1 − i < φ, z >)ν(dz).
280
+ (3.7)
281
+ Definition 3.1.
282
+ (1) The continuous version of the mapping Rd ∋ x = (x1, · · · , xd) →
283
+ Bx(ω) ∈ L2(µG) defined by
284
+ Bx(ω) = ⟨ω, Ξ(x1) × · · · × Ξ(xd)⟩
285
+ (3.8)
286
+ is called the d-parameter Brownian motion (Brownian sheet). Here Ξ(·) ∈ L2(R) is
287
+ defined as:
288
+ Ξ(s) =
289
+
290
+ χ(0,s]
291
+ if s ≥ 0
292
+ −χ(s,0]
293
+ if s < 0
294
+ (3.9)
295
+ where χ is the usual indicator function.
296
+ (2) The right continuous interger-valued mapping Rd ∋ x = (x1, · · · , xd) → Px(ω) ∈
297
+ L2(µP) defined by
298
+ Px(ω) = ⟨ω, Ξ(x1) × · · · × Ξ(xd)⟩
299
+ (3.10)
300
+ is called the d-parameter Poisson process. The mapping Rd ∋ x = (x1, · · · , xd) →
301
+ Px(ω) − Πd
302
+ i=1xi ∈ L2(µP) is called compensated Poisson process.
303
+ We will now describe Wiener-Ito expansions:
304
+ Definition 3.2. Each f ∈ L2(µG) has an expansion in multiple (Brownian) Wiener integrals:
305
+ f(ω) =
306
+
307
+
308
+ n=0
309
+
310
+ Rnd fn(x)dB⊗n
311
+ x (ω),
312
+ (3.11)
313
+ where fn ∈
314
+ ˆ
315
+ L2(Rnd) are deterministic symmetrized functions in nd variables and
316
+ ∥f∥2
317
+ L2(µG) =
318
+
319
+
320
+ n=0
321
+ n!∥fn∥2
322
+ L2(Rnd).
323
+ (3.12)
324
+ Similarly g ∈ L2(µP) has an expansion in multiple (Poisson) Wiener integrals:
325
+ g(ω) =
326
+
327
+
328
+ n=0
329
+
330
+ Rnd fn(x)d(Px(ω) − Πd
331
+ i=1xi)⊗n
332
+ x (ω),
333
+ (3.13)
334
+
335
+ 6
336
+ S. S. SRITHARAN AND SABA MUDALIAR
337
+ where gn ∈
338
+ ˆ
339
+ L2(Rnd) are deterministic symmetrized functions in nd variables and
340
+ ∥g∥2
341
+ L2(µP ) =
342
+
343
+
344
+ n=0
345
+ n!∥gn∥2
346
+ L2(Rnd).
347
+ (3.14)
348
+ We will now recall equivalent expansions in terms of Hermite and Charlier polynomials.
349
+ For n = 1, 2, · · · let ζn(x) ∈ S(R) be the Hermite function of order n:
350
+ ζn(x) := π−1/4((n − 1)!)−1/2e−x2/2hn−1(
351
+
352
+ 2x), x ∈ R,
353
+ (3.15)
354
+ where hn(x) is the n-th Hermite polynomial defined by
355
+ hn(x) := (−1)nex2/2 dn
356
+ dxn(e−x2/2), x ∈ R, n = 0, 1, 2, · · · .
357
+ (3.16)
358
+ It is well known that [56] the sequence {ζn}∞
359
+ n=1 forms an orthonomal basis for L2(R). Hence
360
+ the family {ηα} of tensor products
361
+ ηα = eα1α2···αd := ζα1 ⊗ · · · ⊗ ζαd, α ∈ Nd
362
+ (3.17)
363
+ forms an orthonomal basis for L2(Rd). let us now assume that the family of all multi-indices
364
+ α = (α1, · · · , αd) is given a fixed ordering
365
+ (α(1), α(2), · · ·α(n), · · ·),
366
+ (3.18)
367
+ where α(k) = (α(k)
368
+ 1 , · · · , α(k)
369
+ d ) and denote ηk = ηα(k). For a multi-index α = (α1, · · · , αn) and
370
+ n ∈ N define the Hermite polynomial functionals as
371
+ Hα(ω) := Πn
372
+ j=1hαj(⟨ω, ηj⟩),
373
+ (3.19)
374
+ and the Charlier polynomial functionals as
375
+ Cα(ω) := C|α|(ω;
376
+ α1 times
377
+
378
+ ��
379
+
380
+ η1, · · · , η1, · · · ,
381
+ αn times
382
+
383
+ ��
384
+
385
+ ηn, · · · , ηn),
386
+ (3.20)
387
+ with the convention
388
+ Cn(ω; e1, · · · , en) :=
389
+ ∂n
390
+ ∂θ1 · · ·∂θn
391
+ e{⟨ω,ln (1+�n
392
+ j=1 θjej)⟩−�n
393
+ j=1 θj
394
+
395
+ Rd ej(y)dy}|θ1=···=θn=0
396
+ (3.21)
397
+ We also have the following equalities:
398
+ Hα =
399
+
400
+ Rnd eˆ⊗|α|dB⊗|α|
401
+ x
402
+ (ω)
403
+ (3.22)
404
+ and
405
+ Cα =
406
+
407
+ Rnd eˆ⊗|α|d(Px(ω) − Πd
408
+ i=1xi)⊗|α|
409
+ x
410
+ (ω)
411
+ (3.23)
412
+ Moreover, for any random functional f(ω) taking values on a separable Hilbert space V ,
413
+ and square integrable in µG, f ∈ L2(µG; V ) we have the Wiener Hermite polynomial chaos
414
+ expansion [13]:
415
+ f(ω) =
416
+
417
+ α
418
+ aαHα(ω), aα ∈ V,
419
+ (3.24)
420
+ with
421
+ ∥f∥2
422
+ L2(µG;V ) =
423
+
424
+ α
425
+ α!∥aα∥2
426
+ V , where α! = α1! · · · αn!.
427
+ (3.25)
428
+
429
+ STOCHASTIC QUANTIZATION OF LASER PROPAGATION MODELS
430
+ 7
431
+ Similarly, for any g ∈ L2(µP; V ) we have the Wiener Charlier polynomial chaos expansion
432
+ g(ω) =
433
+
434
+ α
435
+ bαCα(ω), bα ∈ V,
436
+ (3.26)
437
+ with
438
+ ∥g∥2
439
+ L2(µP ;V ) =
440
+
441
+ α
442
+ α!∥bα∥2
443
+ V , where α! = α1! · · · αn!
444
+ (3.27)
445
+ Note also that the correspondence between Gaussian and Poisson spaces U : L2(µG; V ) →
446
+ L2(µP; V ):
447
+ U{
448
+
449
+ α
450
+ aαHα(ω)} =
451
+
452
+ α
453
+ aαCα(ω),
454
+ (3.28)
455
+ is unitary [39, 3].
456
+ 3.2. Hida-Kondratiev spaces. We will start with the characterization of the classical
457
+ embedding of the Schwartz space in the space of tempered distributions as S(Rd) ⊂ L2(Rd) ⊂
458
+ S′(Rd) using Hermite Fourier coefficients [57] and then define the Hida-Kondratiev spaces in
459
+ an analogous way using Gaussian, Poisson and Levy measures.
460
+ Theorem 3.2. (i) Let φ ∈ L2(Rd) so that we have the Fourier-Hermite expansion
461
+ φ =
462
+
463
+
464
+ j=1
465
+ ajηj,
466
+ where aj = (φ, ηj), j = 1, 2, · · · ,
467
+ (3.29)
468
+ with
469
+ ηj := ζδ(j) = ζδ(j)
470
+ 1 ⊗ · · · ζδ(j)
471
+ d , j = 1, 2, · · · .
472
+ (3.30)
473
+ Here aj are the Fourier coefficients of φ with respect to the tensor product Hermite func-
474
+ tions ηj. Then φ ∈ S(Rd) if and only if
475
+
476
+
477
+ j=1
478
+ a2
479
+ j(δ(j))γ < ∞,
480
+ (3.31)
481
+ for all d-dimensional multi-indices γ = (γ1, · · · , γd).
482
+ (ii) A distribution T ∈ S′(Rd) is characterized by the expansion
483
+ T =
484
+
485
+
486
+ j=1
487
+ bjηj, with
488
+ (3.32)
489
+
490
+
491
+ j=1
492
+ b2
493
+ j(δ(j))−θ < ∞,
494
+ (3.33)
495
+ for some d-dimensional multi-index θ = (θ1, · · · , θd).
496
+ Definition 3.3. Let 0 ≤ ρ ≤ 1. We say f(ω) = �
497
+ α aαHα ∈ L2(µG; V ) belongs to Gaussian
498
+ Hida-Kondratiev stochastic test function space (S)ρ
499
+ G(V ) if
500
+ ∥f∥2
501
+ ρ,k =
502
+
503
+ α
504
+ ∥aα∥2
505
+ V (α!)1+ρ(2N)αk < ∞ ∀k ∈ N,
506
+ (3.34)
507
+ where
508
+ (2N)α = Πk
509
+ j=1(2j)αj, α = (α1, · · · , αk).
510
+ (3.35)
511
+
512
+ 8
513
+ S. S. SRITHARAN AND SABA MUDALIAR
514
+ We say f(ω) = �
515
+ α bαHα(ω) ∈ L2(µG; V ) belongs to Gaussian Hida-Kondratiev stochastic
516
+ distribution space (S)−ρ
517
+ G (V ) if
518
+
519
+ α
520
+ ∥bα∥2
521
+ V (α!)1−ρ(2N)−αq < ∞ for some q ∈ N.
522
+ (3.36)
523
+ This establishes the embedding
524
+ (S)1
525
+ X(V ) ⊂ (S)ρ
526
+ X(V ) ⊂ (S)+0
527
+ X (V ) ⊂ L2(µX; V ) ⊂ (S)−0
528
+ X (V ) ⊂ (S)−ρ
529
+ X (V ) ⊂ (S)−1
530
+ X (V ),
531
+ with X = G, P or L.
532
+ Remark: The unitary correspondence U : L2(µG; V ) → L2(µP; V ):
533
+ U{
534
+
535
+ α
536
+ aαHα(ω)} =
537
+
538
+ α
539
+ aαCα(ω),
540
+ (3.37)
541
+ can be extended as a unitary map U : (S)ρ
542
+ G(V ) → (S)ρ
543
+ P(V ), −1 ≤ ρ ≤ 1 ([39, 4]).
544
+ Definition 3.4. We have the following definitions of white noise processes.
545
+ (1) A d-parameter Gaussian white noise is defined by
546
+ Wx(ω) =
547
+
548
+
549
+ k=1
550
+ ηk(x)Hε(k)(ω), x ∈ Rd,
551
+ (3.38)
552
+ where ε(k) is the multi-index with 1 in k-th entry and zero otherwise.
553
+ (2) A d-parameter compensated Poissonian white noise is defined by
554
+ ˙Px(ω) − 1 =
555
+
556
+
557
+ k=1
558
+ ηk(x)Cε(k)(ω), x ∈ Rd.
559
+ (3.39)
560
+ Lemma 3.1. We have
561
+ (1) Wx(ω) =
562
+ ∂d
563
+ ∂x1···∂xdBx(ω) ∈ (S)−ρ
564
+ G , ρ ∈ [0, 1],
565
+ (2) ˙Px(ω) − 1 =
566
+ ∂d
567
+ ∂x1···∂xd(Px(ω) − Πd
568
+ i=1xi) ∈ (S)−ρ
569
+ P , ρ ∈ [0, 1].
570
+ 3.3. Wick products and properties. The Wick product is defined as below:
571
+ Definition 3.5. The Wick product F ⋄ G of two elements of (S)−1(Rn) is defined by:
572
+ F =
573
+
574
+ α
575
+ aαHα, G =
576
+
577
+ α
578
+ bαHα ∈ (S)−1, with aα, bα ∈ Rn,
579
+ (3.40)
580
+ F ⋄ G :=
581
+
582
+ α,β
583
+ aα · bβHα+β ∈ (S)−1(Rn).
584
+ (3.41)
585
+ The fact that Wick product gives a distribution F ⋄ G ∈ (S)−1(Rn) follows from the
586
+ estimate below (see [36]). We have F = �
587
+ α aαHα, G = �
588
+ β bβHβ ∈ (S)−1(Rn) means there
589
+ exists q1 ∈ N such that
590
+
591
+ α
592
+ |aα|2(2N)−q1α < ∞
593
+ and
594
+
595
+ β
596
+ |bβ|2(2N)−q1β < ∞.
597
+ Now rewriting
598
+ F ⋄ G :=
599
+
600
+ α,β
601
+ aα · bβHα+β =
602
+
603
+ γ
604
+ (
605
+
606
+ α+β=γ
607
+ aα · bβ)Hγ,
608
+ (3.42)
609
+
610
+ STOCHASTIC QUANTIZATION OF LASER PROPAGATION MODELS
611
+ 9
612
+ and then setting Cγ = �
613
+ α+β=γ aα·bβ and q = q1+k we have by Cauchy-Schwartz inequality:
614
+
615
+ γ
616
+ (2N)−qγ|cγ|2 ≤
617
+ ��
618
+ γ
619
+ (2N)−kγ
620
+ ���
621
+ α
622
+ |aα|2(2N)−q1α
623
+ ���
624
+ β
625
+ |bβ|2(2N)−q1β
626
+
627
+ < ∞.
628
+ The first term on the right is finite for k > 1 due to a Lemma by Zhang[71] and the other
629
+ two terms are finite by definition of the distributions F, G ∈ (S)−1(Rn).
630
+ 3.4. S-transform, Hermite transform and characterization theorems.
631
+ Definition 3.6. Let F = �
632
+ α bαHα ∈ (S)−1
633
+ G (V ). Then the Hermite transform of F denoted
634
+ HGF is defined :
635
+ HGF =
636
+
637
+ α
638
+ bαzα ∈ V
639
+ (when convergent),
640
+ (3.43)
641
+ where z = (z1, z2 · · · ) ∈ CN, zα = zα1 · · · zαk for α = (α1, · · · , αk).
642
+ Similar statements for the Poisson and L´evy cases. Remark 2.7, [71] clarifies the conver-
643
+ gence of this series.
644
+ Lemma 3.2. If F, G ∈ (S)−1
645
+ X (V ), with X = G, P, L (Gaussian, Poisson and Levy respec-
646
+ tively) then
647
+ HX(F ⋄ G)(z) = HXF(z) · HXG(z),
648
+ (3.44)
649
+ for all z such that HXF(z) and HXG(z) exist (convergent).
650
+ Lemma 3.3. Suppose g(z1, z2, · · ·) is a bounded analytic function on Bq(δ) for some δ > 0,
651
+ 0 < q < ∞ where
652
+ Bq(δ) :=
653
+
654
+ z = (z1, z2, · · · ) ∈ CN
655
+ 0 ;
656
+
657
+ α̸=0
658
+ |zα|2(2N)αq < δ2.
659
+
660
+ (3.45)
661
+ then there exists F ∈ (S)−1
662
+ G (V ) and D ∈ (S)−1
663
+ P (V ) such that HGF = g = HPD.
664
+ See also the full statement of characterization theorem for (S)−1 for the Gaussian as well
665
+ as Poisson and L´evy cases in [36] (Theorem 2.6.11, Theorem 5.4.19). In this paper we will
666
+ utilize a vector-valued version (Hilbert or Banach space valued) of the Hida-Kondratiev
667
+ spaces, Hermite transform and inverse Hermite transform (Characterization theorem) and
668
+ these extensions are straightforward generalizations of what is stated above.
669
+ Remark 3.1. Many authors have introduced S-transform of (S)−1(V ) -valued distributions
670
+ [35, 49] which is closely related to the Hermite transform:
671
+ Sφ(ζ) :=
672
+
673
+ S′ φ(ω) exp⋄⟨ω, ζ⟩dµ(ω),
674
+ (3.46)
675
+ where exp⋄⟨ω, ζ⟩ = �∞
676
+ 0
677
+ 1
678
+ n!⟨ω, ζ⟩⋄n. It can be shown to be related to the Hermite transform as
679
+ Hφ(z1, z2, · · · , zk) = Sφ(z1η1 + · · · + zkηk)
680
+ for all z1, z2, · · · , zk ∈ Ck,
681
+ (3.47)
682
+ in a suitable neighborhood. We however find it more convenient to work with the Hermite
683
+ transform as pointed out in [36].
684
+ We also note for later use that the Hermite transform of the above white noises result in:
685
+
686
+ 10
687
+ S. S. SRITHARAN AND SABA MUDALIAR
688
+ (1) Hermite transform of d-parameter Gaussian white noise is given by:
689
+ H[Wx](z) =
690
+
691
+
692
+ k=1
693
+ ηk(x)zεk.
694
+ (3.48)
695
+ (2) Hermite transform of d-parameter compensated Poisson white noise is given by
696
+ H[ ˙Px − 1](z) =
697
+
698
+
699
+ k=1
700
+ ηk(x)zεk.
701
+ (3.49)
702
+ Similar mathematical theory for pure jump L´evy measures are given in Chapter 5 of Holden
703
+ [36] which parallel the above developments in polynomial expansions, distributional spaces
704
+ as well as Hermite transforms which will be utilized in our paper as well.
705
+ 4. Kato theory of quasilinear abstract evolution equations
706
+ All the problems considered in this paper, after Wick-quantization followed by Hermit (or
707
+ S )-transform, brought to a general class of deterministic quasilinear evolutions (complex
708
+ in general) parameterized by an infinite sequence of complex numbers z1, z2, · · · ,. We will
709
+ thus recall some general results developed by T. Kato [44, 45] on quasilinear evolutions on a
710
+ Banach space X:
711
+ du
712
+ dt + A(t, u)u = 0, 0 ≤ t ≤ T,
713
+ (4.1)
714
+ u(0) = u0.
715
+ (4.2)
716
+ Here A(t, u) is an unbounded linear operator that nonlinearly depends on t and u. Kato also
717
+ points out in [45] that an inhomogeneous equation with a right hand side:
718
+ du
719
+ dt + A(t, u)u = f(t, u)
720
+ (4.3)
721
+ can be recast as a homogeneous problem above by redefining the variables. Kato’s theory
722
+ covers parabolic problems where the linearized operator generates an analytic semigroup as
723
+ well as hyperbolic problems [42, 43] where the linearized operator generates a C0-semigroup
724
+ which is not analytic. The main idea is to construct a mild solution w ∈ C([0, T]; X) for
725
+ each u ∈ C([0, T]; X) for the linearized problem:
726
+ dw
727
+ dt + A(t, u)w = 0, 0 ≤ t ≤ T,
728
+ (4.4)
729
+ w(0) = u0.
730
+ (4.5)
731
+ This defines a correspondence u → w = F(u) in C([0,T];X). Then use fixed point theory
732
+ to construct the solution of the original quasilinear problem. Kato’s quasilinear theory was
733
+ extended to the stochastic case using infinite dimensional Ito calculus in[25, 51]. In this
734
+ paper we will extend Kato’s theory to white noise calculus realm to treat problems with
735
+ singular noises. We briefly summarize Kato’s theory below [44, 45, 55].
736
+ Definition 4.1. Let B be a subset of a Banach space X and for every 0 ≤ t ≤ T and b ∈ B
737
+ let A(t, b) be the infinitesimal generator of a C0-semigroup St,b(s), s ≥ 0 on X. The family
738
+ of operators {A(t, b)}, (t, b) ∈ [0, T] × B, is stable if there are constants M ≥ 1, ω such that
739
+ the resolvent set
740
+ ρ(A(t, b)) ⊃]ω, ∞], (t, b) ∈ [0, T] × B
741
+ (4.6)
742
+
743
+ STOCHASTIC QUANTIZATION OF LASER PROPAGATION MODELS
744
+ 11
745
+ and
746
+ ∥Πk
747
+ j=1(λ − A(tj, bj))−1∥ ≤ M(λ − ω)−k
748
+ for λ > ω
749
+ (4.7)
750
+ for every finite sequence 0 ≤ ti ≤ t2 · · · ≤ T, bj ∈ B, 1 ≤ j ≤ k.
751
+ Stable family of generators {A(t, b)}, (t, b) ∈ [0, T] × B has stability estimate [44]
752
+ ∥Πk
753
+ j=1Stj,bj(sj)∥ ≤ Meω �k
754
+ j=1 sj
755
+ for sj ≥ 0
756
+ (4.8)
757
+ for every finite sequence 0 ≤ ti ≤ t2 · · · ≤ T, bj ∈ B, 1 ≤ j ≤ k.
758
+ Theorem 4.1. Let u0 ∈ Y and let B = {v ∈ Y ; ∥v − u0∥Y ≤ r}, r > 0. Let the stable family
759
+ of C0-semigroup generators {A(t, b)}, (t, b) ∈ [0, T] × B satisfy the assumptions H1 − H4 of
760
+ [55] (Section 6.4) then there is a T ′, 0 < T ′ ≤ T such that the initial value problem
761
+ du
762
+ dt + A(t, u)u = 0, 0 ≤ t ≤ T,
763
+ (4.9)
764
+ u(0) = u0,
765
+ (4.10)
766
+ has a unique mild solution u ∈ C([0, T ′]; X) with u(t) ∈ B for t ∈ [0, T ′].
767
+ Details of the hypothesis of this theorem are discussed in [44, 45] and also [55]. Kato
768
+ formulated this abstract theory to cover a large class of evolution system of physics and
769
+ mechanics including the ones studied in the subsequent sections.
770
+ 4.1. Analytic Mappings between Banach Spaces and Inverse Mapping Theorem.
771
+ Definition 4.2. A map Φ : Z1 → Z2 between Banach spaces Z1, Z2 is called analytic in
772
+ Kδ = {u ∈ Z1; ∥u∥Z1 < δ} if it can be deveoped in to a series of the form:
773
+ Φ(u) =
774
+
775
+
776
+ k=0
777
+ Φk(u, u, · · · , u),
778
+ (4.11)
779
+ where Φk(·, · · · , ·) : Z⊗k
780
+ 1
781
+ → Z2 are symmetric multi-linear operators that are bounded:
782
+ ∥Φk(·)∥ = sup{∥Φk(u, · · · , u)∥Z2; ∥u∥Z1 ≤ 1} < ∞,
783
+ and the series converges in Z2-norm for u ∈ K�� in the following sense:
784
+
785
+
786
+ k=0
787
+ ∥Φk∥ρk < ∞,
788
+ for 0 < ρ ≤ δ.
789
+ We will now state the analytic inverse function theorem [7, 69, 67]:
790
+ Theorem 4.2. Suppose that Φ : Z1 → Z2 is an analytic map in a neighborhood of the origin
791
+ 0 ∈ Kδ ⊂ Z1 and that its Frech´et derivative at the origin DΦ(0) is an isomorphism from
792
+ Z1 → Z2. Then locally Φ has a unique inverse operator which is analytic in the neighborhood
793
+ of Φ(0) ∈ Z2.
794
+ See Vallent[67] for the analytic version of the implicit function theorem as well.
795
+
796
+ 12
797
+ S. S. SRITHARAN AND SABA MUDALIAR
798
+ 5.
799
+ First-order PDE (transport-type)
800
+ 5.1. First order random transport equation with temporal white noise. Transport
801
+ problems arise in many applications including radiative transfer [16, 17, 18]. In this section
802
+ we will consider first order random transport equation with temporal white noise studied by
803
+ S. Ogawa [52], T. Funaki[26], and H. Kunita [48] and briefly summarize their results. Let
804
+ (Ω, Σ, m) be a complete probability space. Consider
805
+
806
+ ∂tu(x, t, ω) + n(x, t, ω) ∂
807
+ ∂xu(x, t, ω) = c(x, t, ω)u(x, t, ω) + d(x, t, ω).
808
+ (5.1)
809
+ Here the wave speed c(x, t, ω) and forcing d(x, t, ω) can be deterministic or random. We
810
+ will first discuss the one dimensional Ogawa-Funaki temporal white noise model with C, D
811
+ deterministic:
812
+
813
+ ∂tu(x, t, ω) +
814
+ � d
815
+ dtβ(t, ω) + b(t, x)
816
+ � ∂
817
+ ∂xu(x, t, ω)
818
+ = c(x, t)u(x, t, ω) + d(x, t).
819
+ (5.2)
820
+ Here β(t) is the 1-D Brownian motion.
821
+ Funaki also considered the n-dimensional scalar random transport model and we first write
822
+ with Smooth noise:
823
+
824
+ ∂tu(x, t, ω) +
825
+ n
826
+
827
+ i=1
828
+ ni(x, t, ω) ∂
829
+ ∂xi
830
+ u(x, t, ω)
831
+ = c(x, t)u(x, t, ω) + d(x, t).
832
+ (5.3)
833
+ The Funaki’s temporal white noise model takes the form:
834
+
835
+ ∂tu(x, t, ω) +
836
+ n
837
+
838
+ i=1
839
+ � n
840
+
841
+ j
842
+ aij(t, x) d
843
+ dtβj(t, ω) + bi(x, t)
844
+
845
+
846
+ ∂xi
847
+ u(x, t, ω)
848
+ = c(x, t)u(x, t, ω) + d(x, t).
849
+ (5.4)
850
+ Here βj(t), j = 1, · · · , n are independent 1-D Brownian motions.
851
+ Define Stratenovich differential equation
852
+ dXt = a(t, Xt) ◦ dBt + b(t, Xt)dt, t ∈ (r, T),
853
+ (5.5)
854
+ Xr = x.
855
+ (5.6)
856
+ This is equivalent to Ito differential equation of the form:
857
+ dXt = a(t, Xt)dBt + ˜b(t, Xt)dt, where
858
+ (5.7)
859
+ ˜b(x, t) = b(t, x) + 1
860
+ 2(a′a)(t, x),
861
+ (5.8)
862
+ (a′a)(t, x)i =
863
+
864
+ k,j
865
+ ∂aij
866
+ ∂xk
867
+ akj.
868
+ (5.9)
869
+ Lemma 5.1. For each r, t with 0 ≤ r ≤ t ≤ T, X(r, t, ·) is a homeomorphism of Rn on to
870
+ Rn.
871
+
872
+ STOCHASTIC QUANTIZATION OF LASER PROPAGATION MODELS
873
+ 13
874
+ Define time reversed process
875
+ Y (r, t, y) = X−1(r, t, ·)(y), 0 ≤ r ≤ t ≤ T, y ∈ Rn.
876
+ (5.10)
877
+ Consider:
878
+
879
+ ∂tu(x, t, ω) +
880
+ n
881
+
882
+ i=1
883
+ � n
884
+
885
+ j
886
+ aij(t, x) d
887
+ dtβj(t, ω) + bi(x, t)
888
+
889
+
890
+ ∂xi
891
+ u(x, t, ω)
892
+ = c(x, t)u(x, t, ω) + d(x, t),
893
+ (5.11)
894
+ u(x, 0) = φ(x), x ∈ G and u(x, t) = ψ(x, t), (x, t) ∈ ∂G × [0, T].
895
+ (5.12)
896
+ The probabilistic solution to the stochastic transport equation by Funaki is:
897
+ u(x, t, ω) = {φ(Y (0, t, x)) + ψ(Y (σ(t, x), t, x))} exp
898
+ �� t
899
+ 0
900
+ c(s, Y (s, t, x))ds
901
+
902
+ +
903
+ � t
904
+ 0
905
+ d(s, Y (s, t, x)) exp
906
+ �� t
907
+ s
908
+ c(r, Y (r, t, x))dr
909
+
910
+ ds.
911
+ (5.13)
912
+ Here σ(t, x) is the exit time for the domain G.
913
+ 5.2. Stochastic transport model with space-time white noise. We will begin with the
914
+ following simple model (similar model with temporal white noise was considered by Funaki
915
+ [26]) with space-time white noise Γ(x, t) as characteristic speed:
916
+
917
+ ∂tu(x, t, ω) + Γ(x, t, ω) ∂
918
+ ∂xu(x, t, ω) = 0, (x, t) ∈ R × [0, T],
919
+ (5.14)
920
+ u(x, 0, ω) = φ(x), x ∈ R.
921
+ (5.15)
922
+ We quantize this problem as:
923
+
924
+ ∂tu(x, t, ω) + Γ(x, t, ω) ⋄ ∂
925
+ ∂xu(x, t, ω) = 0, (x, t) ∈ R × [0, T],
926
+ (5.16)
927
+ u(x, 0, ω) = φ(x), x ∈ R.
928
+ (5.17)
929
+ We take Hermite transform to get (denoting [Hu] := ˜u )
930
+
931
+ ∂t ˜u(x, t, z) + [HΓ](x, t, z) ∂
932
+ ∂x ˜u(x, t, z) = 0,
933
+ (5.18)
934
+ ˜u(x, 0, z) = φ(x).
935
+ (5.19)
936
+ We write down the equation of characteristic:
937
+ d˜u
938
+ ds = ∂˜u(x, t, z)
939
+ ∂t
940
+ dt
941
+ ds + ∂˜u(x, t, z)
942
+ ∂x
943
+ dx
944
+ ds
945
+ (5.20)
946
+ and arrive at
947
+ d˜u
948
+ ds = 0,
949
+ dt
950
+ ds = 1, and dx
951
+ ds = [HΓ](x, t, z).
952
+ (5.21)
953
+ Solving we get x = ζt(x0) = x0 +
954
+ � t
955
+ 0[HΓ](x, r, z)dr as the equation of characteristics and
956
+ ˜u(x, 0, z) = φ(x0) = φ(ζ−1
957
+ t (x)):
958
+ ˜u(x, t, z) = φ(ζ−1
959
+ t (x)) = φ(x −
960
+ � t
961
+ 0
962
+ [HΓ](x, r, z)dr).
963
+ (5.22)
964
+
965
+ 14
966
+ S. S. SRITHARAN AND SABA MUDALIAR
967
+ Hence
968
+ u(x, t, ω) = H−1φ(ζ−1
969
+ t (x)) = H−1
970
+
971
+ φ(x −
972
+ � t
973
+ 0
974
+ [HΓ](x, r, z)dr)
975
+
976
+ .
977
+ (5.23)
978
+ We will now turn to the multidimensional stochastic transport model with space-time white
979
+ noise:
980
+
981
+ ∂tu(x, t, ω) +
982
+ n
983
+
984
+ i=1
985
+ � n
986
+
987
+ j
988
+ aij(t, x)Γj(x, t, ω) + bi(x, t)
989
+
990
+
991
+ ∂xi
992
+ u(x, t, ω)
993
+ = c(x, t)u(x, t, ω) + d(x, t).
994
+ (5.24)
995
+ We will also study the quantized random transport model:
996
+
997
+ ∂tu(x, t, ω) +
998
+ n
999
+
1000
+ i=1
1001
+ � n
1002
+
1003
+ j
1004
+ aij(t, x)Γj(x, t, ω)
1005
+
1006
+ ⋄ ∂
1007
+ ∂xi
1008
+ u(x, t, ω) +
1009
+ n
1010
+
1011
+ i
1012
+ bi(x, t) ∂
1013
+ ∂xi
1014
+ u(x, t, ω)
1015
+ = c(x, t)u(x, t, ω) + d(x, t).
1016
+ (5.25)
1017
+ Taking the Hermite transform: For z ∈ CN, and denoting Hu as ˜u, we get
1018
+
1019
+ ∂t ˜u(x, t, z) +
1020
+ n
1021
+
1022
+ i=1
1023
+ � n
1024
+
1025
+ j
1026
+ aij(t, x)[HΓ]j(x, t, z) + bi(x, t)
1027
+
1028
+
1029
+ ∂xi
1030
+ ˜u(x, t, z)
1031
+ = c(x, t)˜u(x, t, z) + d(x, t),
1032
+ (5.26)
1033
+ This is a deterministic linear hyperbolic equation (for a fixed z ) and we can solve it similar
1034
+ to the simple model presented above and the apply inverse Hermite transform to obtain
1035
+ the solution for the original stochastic transport equation with space-time white noise as
1036
+ characteristic speed coefficient and spatial white noise initial data. With the help of the
1037
+ deterministic results in [23] we can also obtain the solvability theorem for stochastic transport
1038
+ equation with white noise characteristic speeds and spatial white noise initial data as
1039
+ Proposition 5.1. Suppose that a, b ∈ L1(0, T; L1
1040
+ loc(Rn)), c, d ∈ L1(0, T; L∞(Rn)) and the
1041
+ initial data is a spatial white noise with u0 ∈ (S)−1(L∞(Rn)), and the stochastic characteristic
1042
+ speed coefficients Γj ∈ (S)−1(L∞(Rn × [0, T])), j = 1, · · · , n. Then there exists a unique
1043
+ solution u ∈ (S)−1(L∞(0, T; L∞(Rn)).
1044
+ We now consider a multidimensional quasilinear stochastic transport model with space-
1045
+ time white noise:
1046
+
1047
+ ∂tu(x, t, ω) +
1048
+ n
1049
+
1050
+ i=1
1051
+ � n
1052
+
1053
+ j
1054
+ aij(u(t, x, ω))Γj(x, t, ω) + bi(u(x, t, ω))
1055
+
1056
+
1057
+ ∂xi
1058
+ u(x, t, ω)
1059
+ = c(u(x, t, ω)),
1060
+ (5.27)
1061
+ where aij, bi, c are all polynomials in u. We quantize this problem as:
1062
+
1063
+ ∂tu(x, t, ω) +
1064
+ n
1065
+
1066
+ i=1
1067
+ � n
1068
+
1069
+ j
1070
+ (aij(u(t, x, ω))⋄) ⋄ Γj(x, t, ω) + bi(u(x, t, ω))⋄
1071
+
1072
+ ⋄ ∂
1073
+ ∂xi
1074
+ u(x, t, ω)
1075
+ = c(u(x, t, ω))⋄,
1076
+ (5.28)
1077
+
1078
+ STOCHASTIC QUANTIZATION OF LASER PROPAGATION MODELS
1079
+ 15
1080
+ Applying Hermite transform we get
1081
+
1082
+ ∂t ˜u(x, t, z) +
1083
+ n
1084
+
1085
+ i=1
1086
+ � n
1087
+
1088
+ j
1089
+ aij(˜u(t, x, z))[HΓ]j(x, t, z) + bi(˜u(x, t, z))
1090
+
1091
+
1092
+ ∂xi
1093
+ ˜u(x, t, z)
1094
+ = c(˜u(x, t, z)).
1095
+ (5.29)
1096
+ Extending the deterministic result to the Hermite transformed problem may require some
1097
+ smoothing of the white noise term Γ using an operator of the form (I −∆x,t)−γ for a suitable
1098
+ γ ≥ 0. The local solvability of this deterministic partial differential equation for a given
1099
+ fixed z can be obtained from Kato’s theory [44, 45] as ˜u ∈ C([0, T ′]; Hs(Rn)), s > n/2 + 1
1100
+ and from this we can use the characterization theorem for Hermite transform to deduce:
1101
+ Proposition 5.2. For u0 ∈ (S)−1(Hs(Rn)), s > n/2 + 1 and Γj(·, ·, ·) ∈ (S)−1(L∞
1102
+ loc(Rn ×
1103
+ R+)), j = 1, · · · , n, there is a unique local-in-time generalized solution for the Gaussian
1104
+ white noise forced quasilinear transport equation u ∈ (S)−1(C([0, T ′]; Hs(Rn))).
1105
+ For the
1106
+ Poisson and L´evy cases the unique correspondence map U gives a unique solution u ∈
1107
+ (S)−1(L∞([0, T ′]; Hs(Rn))).
1108
+ Global in time generalized solution (that accommodates shock waves) can be built by ap-
1109
+ plying Kruzkov theory [47] to the Hermite transformed problem with small bounded variation
1110
+ norm initial data:.
1111
+ Proposition 5.3. For u0 ∈ (S)−1�
1112
+ L∞
1113
+ loc(Rn) ∩ BV (Rn)
1114
+
1115
+ , with sufficiently small norm,
1116
+ and Γ(·, ·, ·) ∈ (S)−1(L∞
1117
+ loc(Rn × R+)) there is a unique global-in-time generalized solu-
1118
+ tion for the Gaussian/Poisson/L´evy white noise forced quasilinear transport equation u ∈
1119
+ (S)−1(L∞([0, T]; L∞
1120
+ loc(Rn))).
1121
+ 6. Stochastic nonlinear wave equations
1122
+ 6.1. Stochastic Korteweg De Vries equation. Let us consider the Korteweg De Vries
1123
+ equation with white noise initial data:
1124
+
1125
+ ∂tϕ(x, t, ω) + ϕ(x, t, ω) ∂
1126
+ ∂xϕ(x, t, ω) + ∂3
1127
+ ∂x3 ϕ(x, t, ω) = 0,
1128
+ (6.1)
1129
+ ϕ(x, 0, ω) = Γ(x, ω).
1130
+ (6.2)
1131
+ We quantize this problem as
1132
+
1133
+ ∂tϕ(x, t, ω) + ϕ(x, t, ω) ⋄ ∂
1134
+ ∂xϕ(x, t, ω) + ∂3
1135
+ ∂x3 ϕ(x, t, ω) = 0.
1136
+ (6.3)
1137
+ Applying Hermite transform results in:
1138
+
1139
+ ∂t ˜ϕ(x, t, z) + ˜ϕ(x, t, z) ∂
1140
+ ∂x ˜ϕ(x, t, z) + ∂3
1141
+ ∂x3 ˜ϕ(x, t, z) = 0.
1142
+ (6.4)
1143
+ ˜ϕ(x, 0, z) = [HΓ](x, z).
1144
+ (6.5)
1145
+ Note that the Hermite transformed KDV equation will have infinite number of conservation
1146
+ laws as in P. D. Lax theory for deterministic KDV equation [50] some of which would be
1147
+ finite depending on the smoothness of noise . However, for the case of singular white noise,
1148
+ values of these conservation laws will be all infinity.
1149
+
1150
+ 16
1151
+ S. S. SRITHARAN AND SABA MUDALIAR
1152
+ Tsutsumi [66] has studied deterministic Korteweg-De Vries equation with bounded Radon
1153
+ measures as initial data (see also Bourgain [11] for the space periodic case) and proven exis-
1154
+ tence of a generalized solution and we can use this theorem the above Hermite transformed
1155
+ problem for a fixed z followed by inverse Hermite transform to conclude that:
1156
+ Proposition 6.1. For the Gaussian/Poisson/L´evy white noise initial data ϕ(·, 0, ·) = Γ(·, ·) ∈
1157
+ (S)−1(L∞
1158
+ loc(R)), there exists a unique solution u to the stochastic KDV equation such that:
1159
+ u ∈ (S)−1�
1160
+ L∞(0, ∞; H−1(R)) ∩ L2((0, T) × (−R, R))
1161
+
1162
+ ,
1163
+ for any T, R > 0.
1164
+ 6.2. Stochastic Benjamin-Ono equation. The stochastic Benjamin-Ono equation is mod-
1165
+ eled as:
1166
+
1167
+ ∂tϕ(x, t, ω) + ϕ(x, t, ω) ∂
1168
+ ∂xϕ(x, t, ω) + H[ ∂2
1169
+ ∂x2 ϕ(x, t, ω)] = 0,
1170
+ (6.6)
1171
+ where H[·] is the Hilbert transform defined as
1172
+ H[f](x) := PV 1
1173
+ π
1174
+ � ∞
1175
+ −∞
1176
+ f(y)
1177
+ x − ydy =
1178
+ F −1(i · ( signζ)F(f)(ζ)),
1179
+ (6.7)
1180
+ where F and F −1 denote Fourier transform and its inverse respectively. This problem is
1181
+ supplied with random initial data:
1182
+ ϕ(x, 0) = Γ(x, ω).
1183
+ (6.8)
1184
+ We quantize this equation as
1185
+
1186
+ ∂tϕ(x, t, ω) + ϕ(x, t, ω) ⋄ ∂
1187
+ ∂xϕ(x, t, ω) + H[ ∂2
1188
+ ∂x2 ϕ(x, t, ω)] = 0,
1189
+ (6.9)
1190
+ Applying Hermite transform we get:
1191
+
1192
+ ∂t ˜ϕ(x, t, z) + ˜ϕ(x, t, z) ∂
1193
+ ∂x ˜ϕ(x, t, z) + H[ ∂2
1194
+ ∂x2 ˜ϕ(x, t, z)] = 0,
1195
+ (6.10)
1196
+ ˜ϕ(x, 0, z) = H[Γ](x, z)].
1197
+ (6.11)
1198
+ We can utilize the sharp results of T. Tao [63] along with a suitable smoothing of the noise
1199
+ by an operator of the form (I −∆)−γ to conclude that there is a unique solution to the above
1200
+ problem for fized z as ˜ϕ ∈ C([0, T]; Hs) for s ≥ 1. Hence using inverse Hermite transform
1201
+ we obtain:
1202
+ Proposition 6.2. For the Gaussian white noise initial data ϕ(·, 0, ·) = Γ(·, ·) ∈ (S)−1(Hs(R)),
1203
+ s ≥ 1, there exists a unique solution to stochastic Benjamin-Ono equation as ϕ ∈ (S)−1(C([0, T]; Hs)),
1204
+ s ≥ 1. For Poisson and L´evy cases the unique correspondence map U gives unique solution
1205
+ ϕ ∈ (S)−1(L∞([0, T]; Hs)), s ≥ 1.
1206
+ 7. Stochastic reaction diffusion equation and quantization
1207
+ Parisi and Wu [54] initiated the subject of stochastic quantization [20] which takes the view
1208
+ that (Euclidean) quantum fields can be constructed by studying stochastic partial differential
1209
+ equations. Stochastic reaction diffusion equation with space-time Gaussian noise has been
1210
+ studied by many authors [24] with results such as construction of invariant measures [5, 27]
1211
+ as well as pathwise strong solutions[2, 21]. In this section we will treat this class of problems
1212
+ with white noise theory.
1213
+
1214
+ STOCHASTIC QUANTIZATION OF LASER PROPAGATION MODELS
1215
+ 17
1216
+ 7.1. Stochastic heat equation with multiplicative noise and the KPZ Equation.
1217
+ Kardar, Parisi and Zhang [41] studied the stochastic model (which has come to be known as
1218
+ the KPZ equation):
1219
+ ∂h
1220
+ ∂t = ν∆h + λ
1221
+ 2(∇h)2 + Γ(x, t).
1222
+ (7.1)
1223
+ As pointed out in this paper, in the case of smooth noise the above stochastic PDE can be
1224
+ formally transformed in to two other well-known stochastic PDEs (ignoring some constants).
1225
+ In fact v = −∇h gives the stochastic Burgers equation:
1226
+ ∂v
1227
+ ∂t + λv · ∇v = ν∆v + ∇Γ(x, t),
1228
+ (7.2)
1229
+ and the transform ϕ = exp(( λ
1230
+ 2ν )h) converts the KPZ equation to
1231
+
1232
+ ∂tϕ(x, t, ω) = ν∆ϕ(x, t, ω) + λ
1233
+ 2ν ϕ(x, t, ω)Γ(x, t, ω),
1234
+ (7.3)
1235
+ with spatial white noise initial data:
1236
+ ϕ(x, 0, ω) = Γ0(x, ω).
1237
+ We quantize this problem as (after setting ν = σ2/2 and λ = σ2 for simplicity):
1238
+
1239
+ ∂tϕ(x, t, ω) = 1
1240
+ 2σ2∆ϕ(x, t, ω) + ϕ(x, t, ω) ⋄ Γ(x, t, ω).
1241
+ (7.4)
1242
+ Applying the Hermite transform gives
1243
+
1244
+ ∂t ˜ϕ(x, t, z) − [1
1245
+ 2σ2∆ + [HΓ](x, t, z)] ˜ϕ(x, t, z) = 0,
1246
+ (7.5)
1247
+ ˜ϕ(x, 0, z) = [HΓ0](x, z).
1248
+ We write the solution formally using the propagator Z(t, r) generated by [55] the unbounded
1249
+ time dependent operator 1
1250
+ 2σ2∆ + [HΓ](x, t, z):
1251
+ ˜ϕ(x, t, z) = Z(t, 0)[HΓ0](x, z).
1252
+ (7.6)
1253
+ The solution is also probabilistically expressed by the Feynman-Kac formula using a Brow-
1254
+ nian motion Bt independent of Γ(x, t, ω) and Γ0(x, ω):
1255
+ ˜ϕ(x, t, z) = Ex
1256
+
1257
+ [HΓ0](σBt, z) exp
1258
+ �� t
1259
+ 0
1260
+ [HΓ](σBs, t − s, z)ds
1261
+ ��
1262
+ .
1263
+ (7.7)
1264
+ Alternatively, we can consider the solution as a fixed point problem for the heat semigroup:
1265
+ ˜ϕ(x, t, z) = e
1266
+ 1
1267
+ 2 σ2t∆[HΓ0](x, z) +
1268
+ � t
1269
+ 0
1270
+ e
1271
+ 1
1272
+ 2σ2(t−τ)∆H[Γ](x, τ, z) ˜ϕ(x, τ, z)dτ.
1273
+ (7.8)
1274
+ Heat equation with singular and non-autonomous potentials have been studied in the litera-
1275
+ ture [30, 31] and for a fixed z as necessary using smoothing operator of the form (I −∆x,t)−γ
1276
+ for the noise we can conclude that the above Hermite transformed problem has a unique
1277
+ solution in ˜ϕ ∈ C([0, T]; L∞) and hence by inverse Hermite transform we obtain:
1278
+
1279
+ 18
1280
+ S. S. SRITHARAN AND SABA MUDALIAR
1281
+ Proposition 7.1. For the Gaussian white noise Γ(·, ·, ·) ∈ (S)−1(L∞
1282
+ loc(Rd × R)), and initial
1283
+ data ϕ(·, 0) ∈ L∞
1284
+ loc(Rd), there exists a unique solution to the stochastic heat equation ϕ ∈
1285
+ (S)−1(C([0, T]; L∞(Rd))). For the Poisson and L´evy white noises the unique correspondence
1286
+ map U gives a unique solution to the stochastic heat equation ϕ ∈ (S)−1(L∞([0, T]; L∞(Rd))).
1287
+ The solution to the quantized problem is also probabilistically expressed by the Feynman-
1288
+ Kac formula:
1289
+ ϕ(x, t, ω) = Ex
1290
+
1291
+ Γ0(σBt, ω) ⋄ exp⋄
1292
+ �� t
1293
+ 0
1294
+ Γ(σBs, t − s, ω)ds
1295
+ ��
1296
+ ,
1297
+ (7.9)
1298
+ where the Wick exponential of X ∈ (S)−1 is defined by:
1299
+ exp⋄ X =
1300
+
1301
+
1302
+ 0
1303
+ 1
1304
+ n!X⋄n.
1305
+ We also note here that instead of the multiplicative noise term if we have a stochastic heat
1306
+ equation with space-time white noise as an additive noise term or initial data as a spatial
1307
+ white noise then after Hermite transform we end up with heat equation with singular initial
1308
+ data or forcing term and the problem can be resolved using the fundamental solution of the
1309
+ heat equation followed by inverse Hermite transform.
1310
+ 7.2. Stochastic nonlinear heat equation with white noise Initial Data. We will now
1311
+ consider:
1312
+
1313
+ ∂tϕ(x, t, ω) + ϕ(x, t, ω)p = ∆ϕ(x, t, ω), p = 2, 3, x ∈ Rn,
1314
+ (7.10)
1315
+ ϕ(x, 0, ω) = Γ(x, ω), x ∈ Rn.
1316
+ We will quantize this equation as:
1317
+
1318
+ ∂tϕ(x, t, ω) + ϕ(x, t, ω)⋄p = ∆ϕ(x, t, ω),
1319
+ (7.11)
1320
+ Applying the Hermite transform gives
1321
+
1322
+ ∂t ˜ϕ(x, t, z) − [∆ − ˜ϕ(x, t, z)p−1] ˜ϕ(x, t, z) = 0,
1323
+ (7.12)
1324
+ ˜ϕ(x, 0, z) = [HΓ](x, z).
1325
+ (7.13)
1326
+ Nonlinear heat equations with measure initial data has been studied in the literature with
1327
+ positive as well as negative results. When the initial data is a Dirac measure it has been
1328
+ shown in [8] that this problem with the nonlinearity selected above (p = 2 and 3) has no
1329
+ solution in any space dimension n ≥ 1. This means that we need to smooth the measure by
1330
+ an operator of the form (I −∆)−γ so that we can use results for slightly less singular but still
1331
+ measure data such as that presented in [9] with initial data in Lq, 1 ≤ q < ∞. This provides
1332
+ a unique short time solution to the Hermite transformed problem as ˜ϕ ∈ C([0, T ′]; Lq) and
1333
+ we then inverse Hermite transform to obtain:
1334
+ Proposition 7.2. There exists a unique solution ϕ ∈ (S)−1(C([0, T ′]; Lq)) to the stochastic
1335
+ nonlinear heat equation with spatial white noise initial data Γ(·, ·) ∈ (S)−1(Lq).
1336
+
1337
+ STOCHASTIC QUANTIZATION OF LASER PROPAGATION MODELS
1338
+ 19
1339
+ 8. Stochastic linear and nonlinear Schr¨odinger equations with space-time
1340
+ white noise
1341
+ In this section we will address the stochastic linear and nonlinear Schr¨odinger equations
1342
+ with space-time white noise that arise in the Laser propagation problems as discussed earlier.
1343
+ Once again we will utilize the Hermite transform to convert the problem to deterministic
1344
+ linear and nonlinear Schrodinger equations parameterized by an infinite sequence of complex
1345
+ variables z. There is a wealth of literature on linear Schr¨odinger semigroup with a range of
1346
+ potentials [59, 6] and nonlinear Schr¨odinger equations [12, 62] which will enable the solvability
1347
+ of the deterministic problems obtained by Hermite transforms as we discuss below.
1348
+ 8.1. Strichartz estimates. We recall the following estimates for the Schr¨odinger free prop-
1349
+ agator [61, 46]:
1350
+ Lemma 8.1. For (q, r) and (˜q, ˜r) such that for d ≥ 1 both exponent pair satisfying:
1351
+ 2 ≤ q, r ≤ ∞, 1
1352
+ q = d
1353
+ 2(1
1354
+ 2 − 1
1355
+ r) (q, r, d) ̸= (2, ∞, 2),
1356
+ we have:
1357
+ ∥eit∆u0∥Lq
1358
+ t Lrx(R×Rd) ≲ ∥u0∥L2x(Rd),
1359
+ (8.1)
1360
+ and
1361
+
1362
+ � t
1363
+ 0
1364
+ ei(t−s)∆F(s, ·)ds∥Lq
1365
+ tLrx(R×Rd) ≲ ∥F∥L˜q′
1366
+ t L˜r′
1367
+ x (R×Rd).
1368
+ (8.2)
1369
+ 8.2. Stochastic linear Schr¨odinger equation with additive space-time white noise.
1370
+ i ∂
1371
+ ∂tψ(x, t, ω) + ∆ψ(x, t, ω) = Γ(x, t, ω), (x, t) ∈ Rd × R+,
1372
+ (8.3)
1373
+ with spatial white noise initial data:
1374
+ ψ(x, 0, ω) = Γ0(x, ω), x ∈ Rd.
1375
+ (8.4)
1376
+ Applying Hermite transform we get the Schr¨odinger equation in free space:
1377
+ i ∂
1378
+ ∂t
1379
+ ˜ψ(x, t, z) + ∆ ˜ψ(x, t, z) = H[Γ](x, t, z), x ∈ Rd, z ∈ CN,
1380
+ (8.5)
1381
+ ˜ψ(x, 0, z) = H[Γ0](x, z), x ∈ Rd, z ∈ CN.
1382
+ (8.6)
1383
+ The solution is written formally using the free Schr¨odinger propagator eit∆ as
1384
+ ˜ψ(x, t, z) = eit∆H[Γ0](x, z) − i
1385
+ � t
1386
+ 0
1387
+ ei(t−τ)∆H[Γ](x, τ, z)dτ.
1388
+ (8.7)
1389
+ The d-dimensional Schr¨odinger kernel is:
1390
+ Kt(x) =
1391
+ 1
1392
+ (4πit)d/2ei |x|2
1393
+ 4t .
1394
+ (8.8)
1395
+ Hence we also have:
1396
+ ˜ψ(x, t) =
1397
+ 1
1398
+ (4πit)d/2
1399
+ ��
1400
+ Rd ei |x−y|2
1401
+ 4t
1402
+ H[Γ0](y, z)dy − i
1403
+ � t
1404
+ 0
1405
+
1406
+ Rd ei |x−y|2
1407
+ 4(t−τ) H[Γ](x, τ, z)dydτ
1408
+
1409
+ .
1410
+ (8.9)
1411
+ This equation makes sense for a fixed z ∈ CN if H[Γ0](x, z) ∈ L2(Rd) and H[Γ](·, ·, z) ∈
1412
+ Lq
1413
+ tLr
1414
+ x(R × Rd) due to the Strichartz estimates recalled above. Hence inverse Hermite trans-
1415
+ form gives:
1416
+
1417
+ 20
1418
+ S. S. SRITHARAN AND SABA MUDALIAR
1419
+ Proposition 8.1. For initial data noise distribution Γ0 ∈ (S)−1(L2(Rd)) and noise forcing
1420
+ Γ ∈ (S)−1(Lq
1421
+ tLr
1422
+ x(R × Rd)) there exists a unique solution ψ ∈ (S)−1(Lq
1423
+ tLr
1424
+ x(R × Rd)) to the
1425
+ stochastic Schr¨odinger equation.
1426
+ 8.3. Stochastic linear Schr¨odinger equation with multiplicative space-time white
1427
+ noise. Consider the linear stochastic Schr¨odinger equation with multiplicative space-time
1428
+ noise: For ω ∈ Ω, x ∈ Rd, d ≥ 1, t > 0
1429
+ i ∂
1430
+ ∂tψ(x, t, ω) + [∆ + Γ(x, t, ω)]ψ(x, t, ω) = 0,
1431
+ (8.10)
1432
+ and spatial white noise initial data:
1433
+ ψ(x, 0, ω) = Γ0(x, ω), x ∈ Rd.
1434
+ (8.11)
1435
+ Here the time-like coordinate t is the propagation direction, ϕ is the (complex) electric field
1436
+ and the potential V in general depends on the refractive index of the medium.
1437
+ We consider the quantized linear Schr¨odinger equation with multiplicative white noise:
1438
+ i ∂
1439
+ ∂tψ(x, t, ω) + ∆ψ(x, t, ω) + ψ(x, t, ω) ⋄ Γ(x, t, ω) = 0.
1440
+ (8.12)
1441
+ Applying Hermite transform we get the Schr¨odinger equation with a potential V (x, t, z) =
1442
+ H[Γ](x, t, z):
1443
+ i ∂
1444
+ ∂t
1445
+ ˜ψ(x, t, z) + (∆ + H[Γ](x, t, z)) ˜ψ(x, t, z) = 0.
1446
+ (8.13)
1447
+ ˜ψ(x, 0, z) = H[Γ0](x, z), x ∈ Rd, z ∈ CN.
1448
+ (8.14)
1449
+ We write the solution formally using the propagator Z(t, r) generated by [59, 55] the un-
1450
+ bounded Hamiltonian time dependent (∆ + V (x, t, z)):
1451
+ ˜ψ(x, t, z) = Z(t, 0) ˜ψ(x, 0, z).
1452
+ (8.15)
1453
+ Alternatively, we can consider the solution as a fixed point problem for the free propagator:
1454
+ ˜ψ(x, t, z) = eit∆ ˜ψ(x, 0, z) − i
1455
+ � t
1456
+ 0
1457
+ ei(t−τ)∆H[Γ](x, τ, z) ˜ψ(x, τ, z)dτ.
1458
+ (8.16)
1459
+ Schr¨odinger equations with time dependent unbounded singular potential have been studied
1460
+ in the literature [70] where it is shown that the two parameter propagator Z(t, r) is unitary
1461
+ in L2(R2) (actually K. Yajima’s results holds in any dimension.) With an introduction to a
1462
+ suitable smoothing for the noise in the form of (I−∆x,t)−γ we can fit the Hermite transformed
1463
+ problem above in Yajima’s framework and deduce a unique solution ˜ψ ∈ C([0, T]; L2(R2))
1464
+ and hence inverse Hermite transform gives:
1465
+ Proposition 8.2. For Gaussian initial data noise distribution Γ0 ∈ (S)−1(L2(Rd)) and
1466
+ Gaussian white noise forcing Γ ∈ (S)−1(L∞
1467
+ loc(R × Rd)), there exists a unique solution
1468
+ to the stochastic Schr¨odinger equation with multiplicative space-time white noise as ψ ∈
1469
+ (S)−1(C([0, T]; L2(R2))). For Gaussian and L´evy cases unique correspondence map U gives
1470
+ a unique solution ψ ∈ (S)−1(L∞([0, T]; L2(R2)))
1471
+
1472
+ STOCHASTIC QUANTIZATION OF LASER PROPAGATION MODELS
1473
+ 21
1474
+ 8.4. Nonlinear Schr¨odinger equation with multiplicative space-time white noise.
1475
+ Nonlinear defocusing cubic Stochastic Schr¨odinger equation with multiplicative space-time
1476
+ white noise:
1477
+ i ∂
1478
+ ∂tψ(x, t, ω) + ∆ψ(x, t, ω) +
1479
+
1480
+ Γ(x, t, ω) − |ψ|2�
1481
+ ψ(x, t, ω) = 0, x ∈ R3, t > 0
1482
+ (8.17)
1483
+ and spatial white noise initial data:
1484
+ ψ(x, 0, ω) = Γ0(x, ω), x ∈ R3.
1485
+ (8.18)
1486
+ We consider the quantized nonlinear Schrodinger equation with multiplicative white noise:
1487
+ i ∂
1488
+ ∂tψ(x, t, ω) + ∆ψ(x, t, ω) + (Γ(x, t, ω) − ψ(x, t, ω) ⋄ ψ∗(x, t, ω)) ⋄ ψ(x, t, ω) = 0.
1489
+ (8.19)
1490
+ Here (in the Gaussian white noise case) we take
1491
+ ψ(x, t, ω) =
1492
+
1493
+ α
1494
+ Φα(x, t)Hα(ω) and its complex conjugate ψ∗(x, t, ω) =
1495
+
1496
+ α
1497
+ Φ∗
1498
+ α(x, t)Hα(ω),
1499
+ Applying Hermite transform we get a deterministic nonlinear Schr¨odinger equation:
1500
+ i ∂
1501
+ ∂t
1502
+ ˜ψ(x, t, z) + [(∆ + H[Γ](x, t, z) − ˜ψ(x, t, z) ˜
1503
+ (ψ∗)(x, t, z)] ˜ψ(x, t, z) = 0,
1504
+ (8.20)
1505
+ where
1506
+ ˜ψ(x, t, ω) =
1507
+
1508
+ α
1509
+ Φα(x, t)zα and
1510
+ ˜
1511
+ (ψ∗)(x, t, z) =
1512
+
1513
+ α
1514
+ Φ∗
1515
+ α(x, t)zα.
1516
+ ˜ψ(x, 0, z) = H[Γ0](x, z), x ∈ R3, z ∈ CN.
1517
+ (8.21)
1518
+ Nonlinear Schr¨odinger equation with time dependent potential of the above type (with fixed
1519
+ z ) is studied in [15]. With an introduction to a suitable smoothing for the noise in the form
1520
+ of (I−∆x,t)−γ the Hermite transformed problem above in the framework of [15] (in particular
1521
+ Assumption 1.3 regarding the potential in that paper) and deduce a unique solution ˜ψ ∈
1522
+ C([0, T]; L2(R3)) ∩ L8/3([0, T]; L4(R3)) and hence inverse Hermite transform gives:
1523
+ Proposition 8.3. For Gaussian initial data noise distribution Γ0 ∈ (S)−1(L2(Rd)) and
1524
+ Gaussian noise forcing Γ ∈ (S)−1(L∞
1525
+ loc(R × Rd)), there exists a unique solution to the sto-
1526
+ chastic nonlinear Schr¨odinger equation with multiplicative space-time white noise as ψ ∈
1527
+ (S)−1(C([0, T]; L2(R3))∩L8/3([0, T]; L4(R3))). For Poisson and L´evy cases unique correspon-
1528
+ dence map U gives a unique solution ψ ∈ (S)−1(L∞([0, T]; L2(R3)) ∩ L8/3([0, T]; L4(R3)))
1529
+ 9. Concluding remarks
1530
+ In this paper we have casted a number of Laser propagation problems in random media in
1531
+ the white noise distribution theory framework to stimulate further research in their mathe-
1532
+ matical structure. Some of the most prominent problems are selected for our discussion and
1533
+ a number of other nonlinear wave equations that arise in Laser interaction with plasma such
1534
+ as the Schrodinger-Hartree equation [33], Zakharov system [72] and Davey-Stewartson equa-
1535
+ tion [22, 14] can also be treated by the method initiated here when dealing with stochastic
1536
+ medium effects. We briefly indicate below how one may proceed with Wick quantization in
1537
+ these well-known nonlinear wave problems and for simplicity we formulate them with spa-
1538
+ tially random initial data.
1539
+
1540
+ 22
1541
+ S. S. SRITHARAN AND SABA MUDALIAR
1542
+ (1) Random (quantized) Schr¨odinger-Hartree equation:
1543
+ i ∂
1544
+ ∂tϕ + ∆ϕ = ±[|x|n ⋆ (ϕ∗ ⋄ ϕ)] ⋄ ϕ, x ∈ Rd, 0 < n < d,
1545
+ (9.1)
1546
+ ϕ(x, ω, 0) = Γ(x, ω).
1547
+ (9.2)
1548
+ Upon Hermite transform this system (for a fixed z) will result in the usual deterministic
1549
+ Schr¨odinger-Hartree system measure initial data. We can apply a smoothing to the noise in
1550
+ the form (I −∆)−γ and then use a solvability theorem such as in [37] and utilize the analytic
1551
+ implicit function theorem [7, 67] and inverse Hermite transform to deduce the solvability:
1552
+ Proposition 9.1. For 0 < γ < min (2, n), and Gaussian/Poisson/L´evy white noise initial
1553
+ data Γ(·, ·) ∈ (S)−1(L2(Rn)), there is a unique solution to the (quantized) Schr¨odinger-
1554
+ Hartree equation ϕ ∈ (S)−1�
1555
+ C(R; L2(Rn)) ∩ L8/γ
1556
+ loc(R; L
1557
+ 4n
1558
+ 2n−γ (Rn))
1559
+
1560
+ .
1561
+ (2) Random (quantized) Zakharov system in Rd+1, d = 2, 3:
1562
+ i ∂
1563
+ ∂tϕ + ∆ϕ = ϕ ⋄ n,
1564
+ (9.3)
1565
+ [ ∂2
1566
+ ∂t2 − ∆]n = −∆(ϕ∗ ⋄ ϕ),
1567
+ (9.4)
1568
+ ϕ(x, ω, 0) = Γ1(x, ω), n(x, ω, 0) = Γ2(x, ω), and ∂
1569
+ ∂tn(x, ω, 0) = Γ3(x, ω).
1570
+ (9.5)
1571
+ Upon Hermite transform this system (for a fixed z) will result in the usual deterministic
1572
+ Zakharov system measure initial data. We may have to apply a smoothing to the noise in
1573
+ the form (I −∆)−γ before we can start with a suitable solvability theorem such as in [29, 19]
1574
+ and utilize the analytic implicit function theorem [7, 67] and inverse Hermite transform [36]
1575
+ to deduce the solvability of the stochastic Zakharov model.
1576
+ Proposition 9.2. Suppose the initial data Gaussian white noise distribution satisfy (Γ1, Γ2, Γ3) ∈
1577
+ (S)−1�
1578
+ H1/2(Rd)) × L2(Rd) × H−1(Rd)
1579
+
1580
+ then there exists a unique local-in-time solution to
1581
+ stochastic Zakharov equation with white noise initial data such that
1582
+ (ϕ, n, ∂tϕ) ∈ (S)−1�
1583
+ C([0, T]; H1/2(Rd) × L2(Rd) × H−1(Rd))
1584
+
1585
+ .
1586
+ (9.6)
1587
+ (3) Random (quantized) Davey-Stewartson system in R2+1: The system was derived by
1588
+ Davey and Stewartson [22] and see [28] for a rigorous study. We consider the Wick-quantized
1589
+ problem:
1590
+ i ∂
1591
+ ∂tu + δ ∂2
1592
+ ∂x2 u + ∂2
1593
+ ∂y2u = χ(u∗ ⋄ u) ⋄ ϕ + bu ⋄ ∂
1594
+ ∂xϕ,
1595
+ (9.7)
1596
+ ∂2
1597
+ ∂x2 ϕ + m ∂2
1598
+ ∂y2ϕ = ∂
1599
+ ∂x(u∗ ⋄ u),
1600
+ (9.8)
1601
+ u(x, y, ω, 0) = Γ(x, y, ω).
1602
+ (9.9)
1603
+ The four parameters δ, χ, b, m are real, |δ| = |χ| = 1. The system is classified as elliptic-
1604
+ elliptic, elliptic-hyperbolic, hyperbolic-elliptic and hyperbolic-hyperbolic according to the
1605
+ respective signs of (δ, m) : (+.+), (+, −), (−, +), (−, −). Upon Hermite transform this sys-
1606
+ tem (for a fixed z) will result in the usual deterministic Davey-Stewartson system measure
1607
+ initial data and as discussed in the paper we can start with a suitable solvability theorem
1608
+
1609
+ STOCHASTIC QUANTIZATION OF LASER PROPAGATION MODELS
1610
+ 23
1611
+ such as in [28, 68] and utilize the analytic implicit function theorem [7, 67] and inverse
1612
+ Hermite transform [36] to deduce the solvability of the stochastic model:
1613
+ Proposition 9.3. For the Gaussian/Poisson/L´evy initial data white noise distribution Γ ∈
1614
+ (S)−1(L2(R2)), there exists a unique local in time solution in the elliptic-elliptic and hyperbolic-
1615
+ elliptic cases (m > 0):
1616
+ u ∈ (S)−1�
1617
+ C([0, T ∗[; L2(R2)) ∩ L4((0, T ∗) × R2)
1618
+
1619
+ ,
1620
+ (9.10)
1621
+ ∇ϕ ∈ (S)−1�
1622
+ L2((0, T ∗) × R2)
1623
+
1624
+ .
1625
+ (9.11)
1626
+ Acknowledgment: The first author’s research has been supported by the U. S. Air Force
1627
+ Research Laboratory through the National Research Council Senior Research Fellowship of
1628
+ the National Academies of Science, Engineering and Medicine.
1629
+ References
1630
+ [1] G. P. Agrawal, Nonlinear fiber optics: its history and recent progress, J. Optical Society of America B,
1631
+ Vol. 28, No. 12 (2011), A1-A10.
1632
+ [2] Albeverio, Z. Habba and S. Russo, A two-space dimensional semilinear heat equation perturbed by
1633
+ (Gaussian) white noise, Probab Theory Relat. Fields, 121, (2001), 319–366.
1634
+ [3] F. E. Benth, A White Noise Approach to a Class of Non-linear Stochastic Heat Equations, Journal of
1635
+ Functional Analysis, 146, 382-415, (1997).
1636
+ [4] F. E. Benth and J. Gjerde, A Remark on the Equivalence between Poisson and Gaussian Stochastic
1637
+ Partial Differential Equations, Potential Analysis, Vol. 8,(1998), 179–193.
1638
+ [5] R. Benzi, G. Jona-Lasinio, and A. Sutera, Stochastically perturbed Landau-Ginzburg system, J. Stat.
1639
+ Phys., vol. 55, Nos. 3-4, (1989), 506-522.
1640
+ [6] F. A. Berezin and M. A. Shubin, The Schr¨odinger Equation, Springer-Verlag, (1991).
1641
+ [7] N. Bourbaki, El´ements de Math´ematique: Variet´e diff´erentielles et analytiques, Fasc. XXXIII, Livre VI.
1642
+ Hermann, Paris (1967).
1643
+ [8] H. Brezis and A. Friedman, Nonlinear parabolic equations involving measures as initial data, University
1644
+ of Wisconsin, Madison, Mathematics Research Center Report No. 2277, (1981).
1645
+ [9] H. Brezis and T. Cazenave, A nonlinear heat equation with singular initial data, Journal D’Analyse
1646
+ Mathematique, Vol. 68, (1996), 277-308.
1647
+ [10] A. de Bouard, A. Debussche, On the stochastic Korteweg-de Vries equation, J. Funct. Anal. 22 154,
1648
+ 215–251 (1998).
1649
+ [11] J. Bourgain, Periodic Korteweg de Vries equation with measures as initial data,Selecta mathematica,
1650
+ New ser., Vol. 3 (1997) 115 – 159.
1651
+ [12] J. Bourgain, Global Solutions of Nonlinear Schr¨odinger Equations, American Mathematical Society,
1652
+ Providence, Rhode Island, 1999.
1653
+ [13] R. H. Cameron and W. T. Martin, The orthogonal development of nonlinear functionals in series of
1654
+ Fourier-Hermite functions, Annals of Mathematics, Vol. 48, No. 2, April, 1947, 385-392.
1655
+ [14] P. Carbonaro, The Davey-Stewartson equation in a complex plasma, Waves and Stability in Continuous
1656
+ Media, pp. 68-73 (2010).
1657
+ [15] R. Carles, Nonlinear Schr¨odinger equation with time dependent potential, Commun. Math. Sci., vol. 9
1658
+ (2011), 937–964.
1659
+ [16] S. Chandrasekhar, The transfer of radiation in stellar atmospheres, Bull. Amer. Math. Soc. 53(7), 641-
1660
+ 711 (1947).
1661
+ [17] S. Chandrasekhar, On the diffuse reflection of a pencil of radiation by a plane parallel atmosphere,
1662
+ Proceedings of the National Academy of Sciences, Vol. 44, (1958), 933-940.
1663
+ [18] S. Chandrasekhar, Radiative Transfer, Dover Publishers, (1960).
1664
+ [19] Z. Chen and S. Wu, Local well-posedness for the Zakharov system in dimension d = 2, 3, Communica-
1665
+ tions on Pure and Applied Analysis, Vol. 20, Issue 12: 4307-4319, (2021).
1666
+
1667
+ 24
1668
+ S. S. SRITHARAN AND SABA MUDALIAR
1669
+ [20] P. H. Damgaard and H. Huffel, Stochastic quantization, Physics Reports, Vol. 152, Nos. 5 & 6, (1987),
1670
+ 227-398.
1671
+ [21] G. Da Prato and A. Debussche, Strong solution to the stochastic quantization equation, The annals of
1672
+ probability, Vol. 31, No. 4, (2003), 1900-1916.
1673
+ [22] A. Davey, K. Stewartson, “On three dimensional packets of surface waves”, Proc. R. Soc. London, Series
1674
+ A, Vol. 338 (1613), 101–110,(1974).
1675
+ [23] R. J. Diperna and P. L. Lions, Ordinary differential equations, transport theory and Sobolev spaces,
1676
+ Inventiones Mathematicae, 98, 511-547 (1989).
1677
+ [24] W. G. Faris and G. Jona-Lasinio, Large fluctuations for a nonlinear heat equation with noise, J. Phys.
1678
+ A, Gen. Math., Vol. 15 (1982) 3025-3055.
1679
+ [25] B. P. W. Fernando and S. S. Sritharan, Stochastic quasilinear partial differential equations of evolution,
1680
+ Infinite Dimensional Analysis, Quantum Probability and Related Topics, 18(3), 01–13 (2015).
1681
+ [26] T. Funaki, Construction of a solution of random transport equation with boundary condition, J. Math.
1682
+ Soc. Japan, Vol. 31, No. 4, 1979.
1683
+ [27] D. Gatarek and B. Goldys, Existence, uniqueness and ergodicity for the stochastic quantization equation,
1684
+ Studia Mathematica, Vol. 119, No. 2, (1996), 179-193.
1685
+ [28] J.M. Ghidaglia and J. C. Saut, On the initial value problem for the Davey-Stewartson equation, Non-
1686
+ linearity, 3 (1990) 475-506.
1687
+ [29] J. Ginibre and Y. Tsutsumi, On the Cauchy problem of the Zakharov equation, Journal of Functional
1688
+ Analysis, 151, 384-436 (1997).
1689
+ [30] A. Gulisashvili, Non-autonomous Kato classes of measures and Feynman-Kac propagators, Trans. Amer-
1690
+ ican Math. Soc., Volume 357, Number 11, (2004) 4607–4632.
1691
+ [31] A. Gulisashvili and J. A. Van Casteren, Non-autonomous Kato Classes of Measures and Feynman-Kac
1692
+ Propagators, World Scientific Publishing, Singapore (2006).
1693
+ [32] Jonathan Gustafsson, Benjamin F. Akers, Jonah A. Reeger, Sivaguru S. Sritharan, Atmospheric prop-
1694
+ agation of high energy lasers, Eng. Math. Lett., 2019 (2019), Article ID 7.
1695
+ [33] D. R. Hartree, The Calculation of Atomic Structures, John Wiley and Sons, New York, (1957).
1696
+ [34] T. Hida, Brownian Motion, Springer-Verlag, New York, (1980).
1697
+ [35] T. Hida, H-H. Kuo, J. Patthoff, and L. Streit, White Noise - an Infinite Dimensional Calculus, Springer
1698
+ Science, 1993.
1699
+ [36] H. Holden, B. Oksendal, J. Uboe and T. Zhang, Stochastic Partial Differential Equations: A Modelling
1700
+ White Noise Functional Approach, Springer-Verlag, 2010.
1701
+ [37] R. Hyakuna, On the global Cauchy problem for the Hartree equation with rapidly decaying initial data,
1702
+ Annales de l’Institut Henri Poincar´e C, Analyse non lin´eaire, Vol. 36, Issue 4, July (2019), 1081-1104.
1703
+ [38] Y. Ito, Generalized Poisson Functionals, Probab. Th. Rel. Fields, Vol. 77, (1988), 1-28.
1704
+ [39] Y. Ito and I. Kubo, Calculus on Gaussian and Poisson white noises, Nagoya Math. Journal, Vol. Ill
1705
+ (1988), 41-84.
1706
+ [40] S. Kaligotla and S. V. Lototsky, Wick Product in The Stochastic Burgers Equation: A Curse or a Cure?
1707
+ Asymptotic Analysis, Vol. 75, No 3-4, pp. 145-168, (2011).
1708
+ [41] M. Kardar, G. Parisi and Y. Zhang, Dynamic scaling of growing interfaces, Physical Review Letters,
1709
+ Vol. 56, No. 9, (1986), 889-892.
1710
+ [42] T. Kato, Linear evolution equation of “hyperbolic” type, J. Fac. Sc., University of Tokyo, Vol. 25,
1711
+ (1970), 241-258.
1712
+ [43] T. Kato, Linear evolution equation of “hyperbolic” type-II, J. Math. Soc. Japan, Vol. 25, (1973), 648-
1713
+ 666.
1714
+ [44] T. Kato, Quasi-linear equations of evolution with applications to partial differential equations, Lecture
1715
+ Notes in Math. 448, Springer Verlag (1975) 25-70.
1716
+ [45] T. Kato, Linear and quasi-linear equations of evolution of hyperbolic type. (C.I.M.E.) II CicIo (1976).
1717
+ [46] M. Keel and T. Tao, End point Strichartz estimates, American Journal of Mathematics, Vol. 120,
1718
+ 955-980, (1998).
1719
+ [47] S. N. Kruzkov, First order quasilinear equations of several independent variables, Math. U. S. S. R.
1720
+ Sbornik, Vol. 10 (1970), No. 2 ,217-243.
1721
+ [48] H. Kunita, Stochastic Flows and Stochastic Differential Equations, Cambridge University Press, Cam-
1722
+ bridge, U.K. (1990).
1723
+
1724
+ STOCHASTIC QUANTIZATION OF LASER PROPAGATION MODELS
1725
+ 25
1726
+ [49] H-H. Kuo, White Noise Distribution Theory, CRC Press, 1996.
1727
+ [50] P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Communications on Pure
1728
+ and Applied Mathematics, Vol. 21, No.5, 467–490, (1968).
1729
+ [51] M. T. Mohan and S. S. Sritharan, Stochastic quasilinear evolution equation in UMD-Banach spaces,
1730
+ Math. Nachr. 1–20 (2017).
1731
+ [52] S. Ogawa, A partial differential equation with the white noise as a coefficient, Z. Wahr. verw. Geb., 28
1732
+ (1973), 53-71.
1733
+ [53] G. C. Papanicolaou, D. McLaughlin, and R. Burridge, A Stochastic Gaussian Beam, J. Math, Phys.,
1734
+ Vol. 14, No. 1, (1973), 84-89.
1735
+ [54] G. Parisi and Y. Wu, Perturbation theory without gauge fixing, Scientia Sinica, Vol. XXIV, No.4,
1736
+ (1981), 483-496.
1737
+ [55] A. Pazy, Semigroups of Operators and applications to Partial Differential Equations, Springer-Verlag,
1738
+ New York, (1983).
1739
+ [56] M. Reed and B. Simon, Methods of Modern Mathematical Physics, V.1, Academic Press, 1980.
1740
+ [57] B. Simon, Distributions and their Hermite expansions, Journal of Mathematical Physics, Vol. 12, No.1,
1741
+ (1971), 140-148.
1742
+ [58] B. Simon, The P(Φ)2 Euclidean (Quantum) Field Theory, Princeton Series in Physics, 1974.
1743
+ [59] B. Simon, Schrodinger semigroups, Bulletin of the American Mathematical Society, Vol. 10, No. 3,
1744
+ (1982), 447-526.
1745
+ [60] P. Sprangle, J. R. Pe˜nano, and B. Hafizi, Propagation of intense short laser pulses in the atmosphere,
1746
+ Phys. Rev. E 66, Issue: 4, 2002, Paper 046418 pp.1-21.
1747
+ [61] R. S. Strichartz, Restriction of Fourier transforms to quadratic surfaces and decay of solutions of wave
1748
+ equations, Duke Mathematical Journal, Vol. 44, No.3, (1977), 705-714.
1749
+ [62] C. Sulem and P-L. Sulem, The Nonlinear Schr¨odinger Equation: Self-Focusing and Wave Collapse,
1750
+ Springer-Verlag, New York, (1999).
1751
+ [63] T. Tao, Global well-posedness of the Benjamin-Ono equation in H1(R), Journal of Hyperbolic Differen-
1752
+ tial Equations, Vol. 1, No. 1 (2004) 27–49.
1753
+ [64] Fred D. Tappert, The parabolic approximation method, in Joseph B. Keller, John S. Papadakis, Editors,
1754
+ Wave Propagation and Underwater Acoustics, Springer-Verlag, Berlin, 1977.
1755
+ [65] V. I. Tatarski, Wave Propagation in a Turbulent Medium, Dover Publishers, New York, (1961).
1756
+ [66] Y. Tsutsumi, The Cauchy problem for the Korteweg-De Vries equation with measures as initial data,
1757
+ SIAM J. Math. Analy., Vol. 20, No. 3, pp. 582-588, (1989).
1758
+ [67] T. Vallent, Boundary Value Problems of Finite Elasticity, Springer-Verlag, New York, 1988.
1759
+ [68] E. J. Villamizar-Roa and J. E. Perez-Lopez, On the Davey–Stewartson system with singular initial data,
1760
+ Comptes Rendus Mathematique, Vol. 350, Issues 21–22, (2012), 959-964.
1761
+ [69] M. J. Vishik and A. V. Fursikov, Mathematical Problems of Statistical Hydromechanics, Kluwer Aca-
1762
+ demic Publishers, (1988), Norwell, MA, U. S. A.
1763
+ [70] K. Yajima, Schr¨odinger equations with time-dependent unbounded singular potentials, Reviews in Math-
1764
+ ematical Physics, Vol. 23, No. 8 (2011) 823–838.
1765
+ [71] T. Zhang, Characterizations of the white noise test functionals and Hida distributions, Stochastics and
1766
+ Stochastic Reports , 41:1-2, 71-87 (1992).
1767
+ [72] V. E. Zakharov, “Collapse of Langmuir waves”, Soviet Journal of Experimental and Theoretical Physics,,
1768
+ Vol. 35: 908–914,(1972).
1769
+
9tAyT4oBgHgl3EQfdPfZ/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
A9AyT4oBgHgl3EQfd_iI/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92a61774e23aaa23d0d195367b7151223c2652e79cc03686036097b383a51193
3
+ size 2687021
ANFLT4oBgHgl3EQfEi_Y/content/2301.11984v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf058c9c0f80f8f6ed7f0c14fa4b4f0f549efe18c59f523c45db1e3924ad3474
3
+ size 1239877