ivangtorre
commited on
Commit
•
8c033c4
1
Parent(s):
fd0d156
changing and deleting files
Browse files- Generate_metadata.ipynb +0 -883
Generate_metadata.ipynb
DELETED
@@ -1,883 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "markdown",
|
5 |
-
"id": "91b21cf6",
|
6 |
-
"metadata": {},
|
7 |
-
"source": [
|
8 |
-
"## Generate the datasets for uploading"
|
9 |
-
]
|
10 |
-
},
|
11 |
-
{
|
12 |
-
"cell_type": "code",
|
13 |
-
"execution_count": null,
|
14 |
-
"id": "e1a3d25b",
|
15 |
-
"metadata": {},
|
16 |
-
"outputs": [],
|
17 |
-
"source": []
|
18 |
-
},
|
19 |
-
{
|
20 |
-
"cell_type": "code",
|
21 |
-
"execution_count": 21,
|
22 |
-
"id": "aa925968",
|
23 |
-
"metadata": {
|
24 |
-
"scrolled": true
|
25 |
-
},
|
26 |
-
"outputs": [
|
27 |
-
{
|
28 |
-
"name": "stdout",
|
29 |
-
"output_type": "stream",
|
30 |
-
"text": [
|
31 |
-
"[]\n"
|
32 |
-
]
|
33 |
-
},
|
34 |
-
{
|
35 |
-
"data": {
|
36 |
-
"application/vnd.jupyter.widget-view+json": {
|
37 |
-
"model_id": "86aedd302b3041d9b4bf80a3c60c096a",
|
38 |
-
"version_major": 2,
|
39 |
-
"version_minor": 0
|
40 |
-
},
|
41 |
-
"text/plain": [
|
42 |
-
"Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
|
43 |
-
]
|
44 |
-
},
|
45 |
-
"metadata": {},
|
46 |
-
"output_type": "display_data"
|
47 |
-
},
|
48 |
-
{
|
49 |
-
"data": {
|
50 |
-
"application/vnd.jupyter.widget-view+json": {
|
51 |
-
"model_id": "d40686210f1b49cf9a2b980964f32c34",
|
52 |
-
"version_major": 2,
|
53 |
-
"version_minor": 0
|
54 |
-
},
|
55 |
-
"text/plain": [
|
56 |
-
"Map: 0%| | 0/1097 [00:00<?, ? examples/s]"
|
57 |
-
]
|
58 |
-
},
|
59 |
-
"metadata": {},
|
60 |
-
"output_type": "display_data"
|
61 |
-
},
|
62 |
-
{
|
63 |
-
"data": {
|
64 |
-
"application/vnd.jupyter.widget-view+json": {
|
65 |
-
"model_id": "6e86ed4b25894e37837cdb6cb46e662a",
|
66 |
-
"version_major": 2,
|
67 |
-
"version_minor": 0
|
68 |
-
},
|
69 |
-
"text/plain": [
|
70 |
-
"Creating parquet from Arrow format: 0%| | 0/11 [00:00<?, ?ba/s]"
|
71 |
-
]
|
72 |
-
},
|
73 |
-
"metadata": {},
|
74 |
-
"output_type": "display_data"
|
75 |
-
},
|
76 |
-
{
|
77 |
-
"data": {
|
78 |
-
"application/vnd.jupyter.widget-view+json": {
|
79 |
-
"model_id": "d138c6b6f3b548298986710d9dbea010",
|
80 |
-
"version_major": 2,
|
81 |
-
"version_minor": 0
|
82 |
-
},
|
83 |
-
"text/plain": [
|
84 |
-
"README.md: 0%| | 0.00/1.64k [00:00<?, ?B/s]"
|
85 |
-
]
|
86 |
-
},
|
87 |
-
"metadata": {},
|
88 |
-
"output_type": "display_data"
|
89 |
-
},
|
90 |
-
{
|
91 |
-
"name": "stdout",
|
92 |
-
"output_type": "stream",
|
93 |
-
"text": [
|
94 |
-
"[]\n"
|
95 |
-
]
|
96 |
-
},
|
97 |
-
{
|
98 |
-
"data": {
|
99 |
-
"application/vnd.jupyter.widget-view+json": {
|
100 |
-
"model_id": "41c0e3b2a72f4ce690a5d068ad6ee76e",
|
101 |
-
"version_major": 2,
|
102 |
-
"version_minor": 0
|
103 |
-
},
|
104 |
-
"text/plain": [
|
105 |
-
"Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
|
106 |
-
]
|
107 |
-
},
|
108 |
-
"metadata": {},
|
109 |
-
"output_type": "display_data"
|
110 |
-
},
|
111 |
-
{
|
112 |
-
"data": {
|
113 |
-
"application/vnd.jupyter.widget-view+json": {
|
114 |
-
"model_id": "c4c9e9d1a0c64e728527636022468fb0",
|
115 |
-
"version_major": 2,
|
116 |
-
"version_minor": 0
|
117 |
-
},
|
118 |
-
"text/plain": [
|
119 |
-
"Map: 0%| | 0/1097 [00:00<?, ? examples/s]"
|
120 |
-
]
|
121 |
-
},
|
122 |
-
"metadata": {},
|
123 |
-
"output_type": "display_data"
|
124 |
-
},
|
125 |
-
{
|
126 |
-
"data": {
|
127 |
-
"application/vnd.jupyter.widget-view+json": {
|
128 |
-
"model_id": "de8c8d8db3704cbe9e86266166e898fa",
|
129 |
-
"version_major": 2,
|
130 |
-
"version_minor": 0
|
131 |
-
},
|
132 |
-
"text/plain": [
|
133 |
-
"Creating parquet from Arrow format: 0%| | 0/11 [00:00<?, ?ba/s]"
|
134 |
-
]
|
135 |
-
},
|
136 |
-
"metadata": {},
|
137 |
-
"output_type": "display_data"
|
138 |
-
},
|
139 |
-
{
|
140 |
-
"data": {
|
141 |
-
"application/vnd.jupyter.widget-view+json": {
|
142 |
-
"model_id": "30139cf5070d40d69db2bc1aa691e422",
|
143 |
-
"version_major": 2,
|
144 |
-
"version_minor": 0
|
145 |
-
},
|
146 |
-
"text/plain": [
|
147 |
-
"README.md: 0%| | 0.00/1.64k [00:00<?, ?B/s]"
|
148 |
-
]
|
149 |
-
},
|
150 |
-
"metadata": {},
|
151 |
-
"output_type": "display_data"
|
152 |
-
},
|
153 |
-
{
|
154 |
-
"name": "stdout",
|
155 |
-
"output_type": "stream",
|
156 |
-
"text": [
|
157 |
-
"[]\n"
|
158 |
-
]
|
159 |
-
},
|
160 |
-
{
|
161 |
-
"data": {
|
162 |
-
"application/vnd.jupyter.widget-view+json": {
|
163 |
-
"model_id": "91e76dd77c394f10a6316e2cbc738f53",
|
164 |
-
"version_major": 2,
|
165 |
-
"version_minor": 0
|
166 |
-
},
|
167 |
-
"text/plain": [
|
168 |
-
"Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
|
169 |
-
]
|
170 |
-
},
|
171 |
-
"metadata": {},
|
172 |
-
"output_type": "display_data"
|
173 |
-
},
|
174 |
-
{
|
175 |
-
"data": {
|
176 |
-
"application/vnd.jupyter.widget-view+json": {
|
177 |
-
"model_id": "dd557f750be248b8900132ec09bd3ea9",
|
178 |
-
"version_major": 2,
|
179 |
-
"version_minor": 0
|
180 |
-
},
|
181 |
-
"text/plain": [
|
182 |
-
"Map: 0%| | 0/1097 [00:00<?, ? examples/s]"
|
183 |
-
]
|
184 |
-
},
|
185 |
-
"metadata": {},
|
186 |
-
"output_type": "display_data"
|
187 |
-
},
|
188 |
-
{
|
189 |
-
"data": {
|
190 |
-
"application/vnd.jupyter.widget-view+json": {
|
191 |
-
"model_id": "82d08a53de1f42f8a8e2a98686f15e02",
|
192 |
-
"version_major": 2,
|
193 |
-
"version_minor": 0
|
194 |
-
},
|
195 |
-
"text/plain": [
|
196 |
-
"Creating parquet from Arrow format: 0%| | 0/11 [00:00<?, ?ba/s]"
|
197 |
-
]
|
198 |
-
},
|
199 |
-
"metadata": {},
|
200 |
-
"output_type": "display_data"
|
201 |
-
},
|
202 |
-
{
|
203 |
-
"data": {
|
204 |
-
"application/vnd.jupyter.widget-view+json": {
|
205 |
-
"model_id": "0c86ca04ca6d46b7a4637153831843c6",
|
206 |
-
"version_major": 2,
|
207 |
-
"version_minor": 0
|
208 |
-
},
|
209 |
-
"text/plain": [
|
210 |
-
"README.md: 0%| | 0.00/1.75k [00:00<?, ?B/s]"
|
211 |
-
]
|
212 |
-
},
|
213 |
-
"metadata": {},
|
214 |
-
"output_type": "display_data"
|
215 |
-
},
|
216 |
-
{
|
217 |
-
"name": "stdout",
|
218 |
-
"output_type": "stream",
|
219 |
-
"text": [
|
220 |
-
"[]\n"
|
221 |
-
]
|
222 |
-
},
|
223 |
-
{
|
224 |
-
"data": {
|
225 |
-
"application/vnd.jupyter.widget-view+json": {
|
226 |
-
"model_id": "1105fc397b7942569e2b6e7263dadb3e",
|
227 |
-
"version_major": 2,
|
228 |
-
"version_minor": 0
|
229 |
-
},
|
230 |
-
"text/plain": [
|
231 |
-
"Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
|
232 |
-
]
|
233 |
-
},
|
234 |
-
"metadata": {},
|
235 |
-
"output_type": "display_data"
|
236 |
-
},
|
237 |
-
{
|
238 |
-
"data": {
|
239 |
-
"application/vnd.jupyter.widget-view+json": {
|
240 |
-
"model_id": "b2464a4420284e2fa43352d21cc0849d",
|
241 |
-
"version_major": 2,
|
242 |
-
"version_minor": 0
|
243 |
-
},
|
244 |
-
"text/plain": [
|
245 |
-
"Map: 0%| | 0/1097 [00:00<?, ? examples/s]"
|
246 |
-
]
|
247 |
-
},
|
248 |
-
"metadata": {},
|
249 |
-
"output_type": "display_data"
|
250 |
-
},
|
251 |
-
{
|
252 |
-
"data": {
|
253 |
-
"application/vnd.jupyter.widget-view+json": {
|
254 |
-
"model_id": "b4b5a5308c584bfeb9933074e70cfa0a",
|
255 |
-
"version_major": 2,
|
256 |
-
"version_minor": 0
|
257 |
-
},
|
258 |
-
"text/plain": [
|
259 |
-
"Creating parquet from Arrow format: 0%| | 0/11 [00:00<?, ?ba/s]"
|
260 |
-
]
|
261 |
-
},
|
262 |
-
"metadata": {},
|
263 |
-
"output_type": "display_data"
|
264 |
-
},
|
265 |
-
{
|
266 |
-
"data": {
|
267 |
-
"application/vnd.jupyter.widget-view+json": {
|
268 |
-
"model_id": "eefe4a691e4e4d1db3f8ea7db47b068e",
|
269 |
-
"version_major": 2,
|
270 |
-
"version_minor": 0
|
271 |
-
},
|
272 |
-
"text/plain": [
|
273 |
-
"README.md: 0%| | 0.00/2.22k [00:00<?, ?B/s]"
|
274 |
-
]
|
275 |
-
},
|
276 |
-
"metadata": {},
|
277 |
-
"output_type": "display_data"
|
278 |
-
},
|
279 |
-
{
|
280 |
-
"name": "stdout",
|
281 |
-
"output_type": "stream",
|
282 |
-
"text": [
|
283 |
-
"[]\n"
|
284 |
-
]
|
285 |
-
},
|
286 |
-
{
|
287 |
-
"data": {
|
288 |
-
"application/vnd.jupyter.widget-view+json": {
|
289 |
-
"model_id": "75a9f81c1ee843c397590f4d156df530",
|
290 |
-
"version_major": 2,
|
291 |
-
"version_minor": 0
|
292 |
-
},
|
293 |
-
"text/plain": [
|
294 |
-
"Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
|
295 |
-
]
|
296 |
-
},
|
297 |
-
"metadata": {},
|
298 |
-
"output_type": "display_data"
|
299 |
-
},
|
300 |
-
{
|
301 |
-
"data": {
|
302 |
-
"application/vnd.jupyter.widget-view+json": {
|
303 |
-
"model_id": "ec3e0856e7074218a23062cf1f4a84b9",
|
304 |
-
"version_major": 2,
|
305 |
-
"version_minor": 0
|
306 |
-
},
|
307 |
-
"text/plain": [
|
308 |
-
"Map: 0%| | 0/1097 [00:00<?, ? examples/s]"
|
309 |
-
]
|
310 |
-
},
|
311 |
-
"metadata": {},
|
312 |
-
"output_type": "display_data"
|
313 |
-
},
|
314 |
-
{
|
315 |
-
"data": {
|
316 |
-
"application/vnd.jupyter.widget-view+json": {
|
317 |
-
"model_id": "f4db44eb772642daa5fb9533ce793085",
|
318 |
-
"version_major": 2,
|
319 |
-
"version_minor": 0
|
320 |
-
},
|
321 |
-
"text/plain": [
|
322 |
-
"Creating parquet from Arrow format: 0%| | 0/11 [00:00<?, ?ba/s]"
|
323 |
-
]
|
324 |
-
},
|
325 |
-
"metadata": {},
|
326 |
-
"output_type": "display_data"
|
327 |
-
},
|
328 |
-
{
|
329 |
-
"data": {
|
330 |
-
"application/vnd.jupyter.widget-view+json": {
|
331 |
-
"model_id": "8f455a25b8ec4686b36569e323b93e3f",
|
332 |
-
"version_major": 2,
|
333 |
-
"version_minor": 0
|
334 |
-
},
|
335 |
-
"text/plain": [
|
336 |
-
"README.md: 0%| | 0.00/2.32k [00:00<?, ?B/s]"
|
337 |
-
]
|
338 |
-
},
|
339 |
-
"metadata": {},
|
340 |
-
"output_type": "display_data"
|
341 |
-
},
|
342 |
-
{
|
343 |
-
"name": "stdout",
|
344 |
-
"output_type": "stream",
|
345 |
-
"text": [
|
346 |
-
"[]\n"
|
347 |
-
]
|
348 |
-
},
|
349 |
-
{
|
350 |
-
"data": {
|
351 |
-
"application/vnd.jupyter.widget-view+json": {
|
352 |
-
"model_id": "780547210b7e4db588220b112c7958f7",
|
353 |
-
"version_major": 2,
|
354 |
-
"version_minor": 0
|
355 |
-
},
|
356 |
-
"text/plain": [
|
357 |
-
"Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
|
358 |
-
]
|
359 |
-
},
|
360 |
-
"metadata": {},
|
361 |
-
"output_type": "display_data"
|
362 |
-
},
|
363 |
-
{
|
364 |
-
"data": {
|
365 |
-
"application/vnd.jupyter.widget-view+json": {
|
366 |
-
"model_id": "1d7eaf59c4eb4bcb9aab6dd38fd0f101",
|
367 |
-
"version_major": 2,
|
368 |
-
"version_minor": 0
|
369 |
-
},
|
370 |
-
"text/plain": [
|
371 |
-
"Map: 0%| | 0/1097 [00:00<?, ? examples/s]"
|
372 |
-
]
|
373 |
-
},
|
374 |
-
"metadata": {},
|
375 |
-
"output_type": "display_data"
|
376 |
-
},
|
377 |
-
{
|
378 |
-
"data": {
|
379 |
-
"application/vnd.jupyter.widget-view+json": {
|
380 |
-
"model_id": "7ebec41677a04747ae02d1645a19bf8d",
|
381 |
-
"version_major": 2,
|
382 |
-
"version_minor": 0
|
383 |
-
},
|
384 |
-
"text/plain": [
|
385 |
-
"Creating parquet from Arrow format: 0%| | 0/11 [00:00<?, ?ba/s]"
|
386 |
-
]
|
387 |
-
},
|
388 |
-
"metadata": {},
|
389 |
-
"output_type": "display_data"
|
390 |
-
},
|
391 |
-
{
|
392 |
-
"data": {
|
393 |
-
"application/vnd.jupyter.widget-view+json": {
|
394 |
-
"model_id": "4ed3f65de03c48f488ca3f518d063d0d",
|
395 |
-
"version_major": 2,
|
396 |
-
"version_minor": 0
|
397 |
-
},
|
398 |
-
"text/plain": [
|
399 |
-
"README.md: 0%| | 0.00/2.80k [00:00<?, ?B/s]"
|
400 |
-
]
|
401 |
-
},
|
402 |
-
"metadata": {},
|
403 |
-
"output_type": "display_data"
|
404 |
-
},
|
405 |
-
{
|
406 |
-
"name": "stdout",
|
407 |
-
"output_type": "stream",
|
408 |
-
"text": [
|
409 |
-
"[]\n"
|
410 |
-
]
|
411 |
-
},
|
412 |
-
{
|
413 |
-
"data": {
|
414 |
-
"application/vnd.jupyter.widget-view+json": {
|
415 |
-
"model_id": "d888ccc2841c4ed8a70e94562e404c34",
|
416 |
-
"version_major": 2,
|
417 |
-
"version_minor": 0
|
418 |
-
},
|
419 |
-
"text/plain": [
|
420 |
-
"Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
|
421 |
-
]
|
422 |
-
},
|
423 |
-
"metadata": {},
|
424 |
-
"output_type": "display_data"
|
425 |
-
},
|
426 |
-
{
|
427 |
-
"data": {
|
428 |
-
"application/vnd.jupyter.widget-view+json": {
|
429 |
-
"model_id": "578990cd94ef481ab41ae3ffe9dae522",
|
430 |
-
"version_major": 2,
|
431 |
-
"version_minor": 0
|
432 |
-
},
|
433 |
-
"text/plain": [
|
434 |
-
"Map: 0%| | 0/1097 [00:00<?, ? examples/s]"
|
435 |
-
]
|
436 |
-
},
|
437 |
-
"metadata": {},
|
438 |
-
"output_type": "display_data"
|
439 |
-
},
|
440 |
-
{
|
441 |
-
"data": {
|
442 |
-
"application/vnd.jupyter.widget-view+json": {
|
443 |
-
"model_id": "6b038d4a6bb044cdbe4d96e436311426",
|
444 |
-
"version_major": 2,
|
445 |
-
"version_minor": 0
|
446 |
-
},
|
447 |
-
"text/plain": [
|
448 |
-
"Creating parquet from Arrow format: 0%| | 0/11 [00:00<?, ?ba/s]"
|
449 |
-
]
|
450 |
-
},
|
451 |
-
"metadata": {},
|
452 |
-
"output_type": "display_data"
|
453 |
-
},
|
454 |
-
{
|
455 |
-
"data": {
|
456 |
-
"application/vnd.jupyter.widget-view+json": {
|
457 |
-
"model_id": "81475d2e23da48fe867e9931c92fe246",
|
458 |
-
"version_major": 2,
|
459 |
-
"version_minor": 0
|
460 |
-
},
|
461 |
-
"text/plain": [
|
462 |
-
"README.md: 0%| | 0.00/2.90k [00:00<?, ?B/s]"
|
463 |
-
]
|
464 |
-
},
|
465 |
-
"metadata": {},
|
466 |
-
"output_type": "display_data"
|
467 |
-
},
|
468 |
-
{
|
469 |
-
"name": "stdout",
|
470 |
-
"output_type": "stream",
|
471 |
-
"text": [
|
472 |
-
"[]\n"
|
473 |
-
]
|
474 |
-
},
|
475 |
-
{
|
476 |
-
"data": {
|
477 |
-
"application/vnd.jupyter.widget-view+json": {
|
478 |
-
"model_id": "d805ff2d7b43482cb7d9ffe19a473bf1",
|
479 |
-
"version_major": 2,
|
480 |
-
"version_minor": 0
|
481 |
-
},
|
482 |
-
"text/plain": [
|
483 |
-
"Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
|
484 |
-
]
|
485 |
-
},
|
486 |
-
"metadata": {},
|
487 |
-
"output_type": "display_data"
|
488 |
-
},
|
489 |
-
{
|
490 |
-
"data": {
|
491 |
-
"application/vnd.jupyter.widget-view+json": {
|
492 |
-
"model_id": "f89273f09ed34a67bb905bfa80a82628",
|
493 |
-
"version_major": 2,
|
494 |
-
"version_minor": 0
|
495 |
-
},
|
496 |
-
"text/plain": [
|
497 |
-
"Map: 0%| | 0/1097 [00:00<?, ? examples/s]"
|
498 |
-
]
|
499 |
-
},
|
500 |
-
"metadata": {},
|
501 |
-
"output_type": "display_data"
|
502 |
-
},
|
503 |
-
{
|
504 |
-
"data": {
|
505 |
-
"application/vnd.jupyter.widget-view+json": {
|
506 |
-
"model_id": "563022c1f761483fbb63a3e95d92e5ed",
|
507 |
-
"version_major": 2,
|
508 |
-
"version_minor": 0
|
509 |
-
},
|
510 |
-
"text/plain": [
|
511 |
-
"Creating parquet from Arrow format: 0%| | 0/11 [00:00<?, ?ba/s]"
|
512 |
-
]
|
513 |
-
},
|
514 |
-
"metadata": {},
|
515 |
-
"output_type": "display_data"
|
516 |
-
},
|
517 |
-
{
|
518 |
-
"data": {
|
519 |
-
"application/vnd.jupyter.widget-view+json": {
|
520 |
-
"model_id": "466c0109b16d4a14a7587bf395e20270",
|
521 |
-
"version_major": 2,
|
522 |
-
"version_minor": 0
|
523 |
-
},
|
524 |
-
"text/plain": [
|
525 |
-
"README.md: 0%| | 0.00/3.37k [00:00<?, ?B/s]"
|
526 |
-
]
|
527 |
-
},
|
528 |
-
"metadata": {},
|
529 |
-
"output_type": "display_data"
|
530 |
-
},
|
531 |
-
{
|
532 |
-
"name": "stdout",
|
533 |
-
"output_type": "stream",
|
534 |
-
"text": [
|
535 |
-
"[]\n"
|
536 |
-
]
|
537 |
-
},
|
538 |
-
{
|
539 |
-
"data": {
|
540 |
-
"application/vnd.jupyter.widget-view+json": {
|
541 |
-
"model_id": "6564df13321c4447bf713efb5dd7c0d4",
|
542 |
-
"version_major": 2,
|
543 |
-
"version_minor": 0
|
544 |
-
},
|
545 |
-
"text/plain": [
|
546 |
-
"Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
|
547 |
-
]
|
548 |
-
},
|
549 |
-
"metadata": {},
|
550 |
-
"output_type": "display_data"
|
551 |
-
},
|
552 |
-
{
|
553 |
-
"data": {
|
554 |
-
"application/vnd.jupyter.widget-view+json": {
|
555 |
-
"model_id": "328f67aa739a40a8a7c8d989e0614418",
|
556 |
-
"version_major": 2,
|
557 |
-
"version_minor": 0
|
558 |
-
},
|
559 |
-
"text/plain": [
|
560 |
-
"Map: 0%| | 0/1097 [00:00<?, ? examples/s]"
|
561 |
-
]
|
562 |
-
},
|
563 |
-
"metadata": {},
|
564 |
-
"output_type": "display_data"
|
565 |
-
},
|
566 |
-
{
|
567 |
-
"data": {
|
568 |
-
"application/vnd.jupyter.widget-view+json": {
|
569 |
-
"model_id": "65e428172a2c40f7a8c6b267f3a1db54",
|
570 |
-
"version_major": 2,
|
571 |
-
"version_minor": 0
|
572 |
-
},
|
573 |
-
"text/plain": [
|
574 |
-
"Creating parquet from Arrow format: 0%| | 0/11 [00:00<?, ?ba/s]"
|
575 |
-
]
|
576 |
-
},
|
577 |
-
"metadata": {},
|
578 |
-
"output_type": "display_data"
|
579 |
-
},
|
580 |
-
{
|
581 |
-
"data": {
|
582 |
-
"application/vnd.jupyter.widget-view+json": {
|
583 |
-
"model_id": "51699e5f26774ba3ad8c15434da11bb7",
|
584 |
-
"version_major": 2,
|
585 |
-
"version_minor": 0
|
586 |
-
},
|
587 |
-
"text/plain": [
|
588 |
-
"README.md: 0%| | 0.00/3.47k [00:00<?, ?B/s]"
|
589 |
-
]
|
590 |
-
},
|
591 |
-
"metadata": {},
|
592 |
-
"output_type": "display_data"
|
593 |
-
},
|
594 |
-
{
|
595 |
-
"name": "stdout",
|
596 |
-
"output_type": "stream",
|
597 |
-
"text": [
|
598 |
-
"[]\n"
|
599 |
-
]
|
600 |
-
},
|
601 |
-
{
|
602 |
-
"data": {
|
603 |
-
"application/vnd.jupyter.widget-view+json": {
|
604 |
-
"model_id": "75d0a41d05334cba889bd566cd746f96",
|
605 |
-
"version_major": 2,
|
606 |
-
"version_minor": 0
|
607 |
-
},
|
608 |
-
"text/plain": [
|
609 |
-
"Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
|
610 |
-
]
|
611 |
-
},
|
612 |
-
"metadata": {},
|
613 |
-
"output_type": "display_data"
|
614 |
-
},
|
615 |
-
{
|
616 |
-
"data": {
|
617 |
-
"application/vnd.jupyter.widget-view+json": {
|
618 |
-
"model_id": "4223d1e159f6432d98a95a4868c31af5",
|
619 |
-
"version_major": 2,
|
620 |
-
"version_minor": 0
|
621 |
-
},
|
622 |
-
"text/plain": [
|
623 |
-
"Map: 0%| | 0/1097 [00:00<?, ? examples/s]"
|
624 |
-
]
|
625 |
-
},
|
626 |
-
"metadata": {},
|
627 |
-
"output_type": "display_data"
|
628 |
-
},
|
629 |
-
{
|
630 |
-
"data": {
|
631 |
-
"application/vnd.jupyter.widget-view+json": {
|
632 |
-
"model_id": "32685d9c0ba54e8288b35d8c6b56369e",
|
633 |
-
"version_major": 2,
|
634 |
-
"version_minor": 0
|
635 |
-
},
|
636 |
-
"text/plain": [
|
637 |
-
"Creating parquet from Arrow format: 0%| | 0/11 [00:00<?, ?ba/s]"
|
638 |
-
]
|
639 |
-
},
|
640 |
-
"metadata": {},
|
641 |
-
"output_type": "display_data"
|
642 |
-
},
|
643 |
-
{
|
644 |
-
"data": {
|
645 |
-
"application/vnd.jupyter.widget-view+json": {
|
646 |
-
"model_id": "fa33e335c997460b8047df3d2550fa8f",
|
647 |
-
"version_major": 2,
|
648 |
-
"version_minor": 0
|
649 |
-
},
|
650 |
-
"text/plain": [
|
651 |
-
"README.md: 0%| | 0.00/3.95k [00:00<?, ?B/s]"
|
652 |
-
]
|
653 |
-
},
|
654 |
-
"metadata": {},
|
655 |
-
"output_type": "display_data"
|
656 |
-
},
|
657 |
-
{
|
658 |
-
"data": {
|
659 |
-
"text/plain": [
|
660 |
-
"CommitInfo(commit_url='https://huggingface.co/datasets/ivangtorre/second_americas_nlp_2022/commit/edd8ca4dc1e477443d98f7eace86ee02daf62347', commit_message='Upload dataset', commit_description='', oid='edd8ca4dc1e477443d98f7eace86ee02daf62347', pr_url=None, pr_revision=None, pr_num=None)"
|
661 |
-
]
|
662 |
-
},
|
663 |
-
"execution_count": 21,
|
664 |
-
"metadata": {},
|
665 |
-
"output_type": "execute_result"
|
666 |
-
}
|
667 |
-
],
|
668 |
-
"source": [
|
669 |
-
"import pandas as pd\n",
|
670 |
-
"from datasets import Dataset, Audio\n",
|
671 |
-
"\n",
|
672 |
-
"def flatten(xss):\n",
|
673 |
-
" return [x for xs in xss for x in xs]\n",
|
674 |
-
"\n",
|
675 |
-
"def create_dataset(df):\n",
|
676 |
-
" audio_dataset = Dataset.from_dict({\"audio\": flatten(df[\"file_name\"].values.tolist()),\n",
|
677 |
-
" \"subset\": flatten(df[\"subset\"].values.tolist()),\n",
|
678 |
-
" \"source_processed\": flatten(df[\"source_processed\"].values.tolist()),\n",
|
679 |
-
" \"source_raw\": flatten(df[\"source_raw\"].values.tolist()),\n",
|
680 |
-
" \"target_raw\": flatten(df[\"target_raw\"].values.tolist()),\n",
|
681 |
-
" \"split\": flatten(df[\"split\"].values.tolist()),\n",
|
682 |
-
" },\n",
|
683 |
-
" ).cast_column(\"audio\", Audio())\n",
|
684 |
-
" return(audio_dataset)\n",
|
685 |
-
"\n",
|
686 |
-
"\n",
|
687 |
-
"def generate_df(language, split):\n",
|
688 |
-
" # QUECHUA TRAIN\n",
|
689 |
-
" with open(\"./../\"+language +\"_\"+split+\".tsv\") as f:\n",
|
690 |
-
" lines = f.read().splitlines()\n",
|
691 |
-
" lines2 = [l.split(\"\\t\") for l in lines if len(l.split(\"\\t\"))==4]\n",
|
692 |
-
" asd = [l.split(\"\\t\")[0] for l in lines if len(l.split(\"\\t\"))>4]\n",
|
693 |
-
" print(asd)\n",
|
694 |
-
" df1 = pd.DataFrame(lines2[1::], columns =lines2[0:1])\n",
|
695 |
-
" df1 = df1.assign(split=[split]*df1.shape[0])\n",
|
696 |
-
" df1 = df1.assign(subset=[language]*df1.shape[0])\n",
|
697 |
-
" df1 = df1.rename(columns={'wav': 'file_name'})\n",
|
698 |
-
" df1['file_name'] = 'data/' + language + '/' + split +'/' + df1['file_name'].astype(str)\n",
|
699 |
-
" audio_dataset = create_dataset(df)\n",
|
700 |
-
" return audio_dataset\n",
|
701 |
-
"\n",
|
702 |
-
"\n",
|
703 |
-
"\n",
|
704 |
-
"audio_dataset = generate_df(\"quechua\", \"train\")\n",
|
705 |
-
"audio_dataset.push_to_hub(\"ivangtorre/second_americas_nlp_2022\", \"quechua\", split=\"train\")\n",
|
706 |
-
"audio_dataset = generate_df(\"quechua\", \"dev\")\n",
|
707 |
-
"audio_dataset.push_to_hub(\"ivangtorre/second_americas_nlp_2022\", \"quechua\", split=\"dev\")\n",
|
708 |
-
"\n",
|
709 |
-
"audio_dataset = generate_df(\"guarani\", \"train\")\n",
|
710 |
-
"audio_dataset.push_to_hub(\"ivangtorre/second_americas_nlp_2022\", \"guarani\", split=\"train\")\n",
|
711 |
-
"audio_dataset = generate_df(\"guarani\", \"dev\")\n",
|
712 |
-
"audio_dataset.push_to_hub(\"ivangtorre/second_americas_nlp_2022\", \"guarani\", split=\"dev\")\n",
|
713 |
-
"\n",
|
714 |
-
"audio_dataset = generate_df(\"kotiria\", \"dev\")\n",
|
715 |
-
"audio_dataset.push_to_hub(\"ivangtorre/second_americas_nlp_2022\", \"kotiria\", split=\"train\")\n",
|
716 |
-
"audio_dataset = generate_df(\"kotiria\", \"dev\")\n",
|
717 |
-
"audio_dataset.push_to_hub(\"ivangtorre/second_americas_nlp_2022\", \"kotiria\", split=\"dev\")\n",
|
718 |
-
"\n",
|
719 |
-
"audio_dataset = generate_df(\"bribri\", \"train\")\n",
|
720 |
-
"audio_dataset.push_to_hub(\"ivangtorre/second_americas_nlp_2022\", \"bribri\", split=\"train\")\n",
|
721 |
-
"audio_dataset = generate_df(\"bribri\", \"dev\")\n",
|
722 |
-
"audio_dataset.push_to_hub(\"ivangtorre/second_americas_nlp_2022\", \"bribri\", split=\"dev\")\n",
|
723 |
-
"\n",
|
724 |
-
"audio_dataset = generate_df(\"waikhana\", \"dev\")\n",
|
725 |
-
"audio_dataset.push_to_hub(\"ivangtorre/second_americas_nlp_2022\", \"waikhana\", split=\"train\")\n",
|
726 |
-
"audio_dataset = generate_df(\"waikhana\", \"dev\")\n",
|
727 |
-
"audio_dataset.push_to_hub(\"ivangtorre/second_americas_nlp_2022\", \"waikhana\", split=\"dev\")\n"
|
728 |
-
]
|
729 |
-
},
|
730 |
-
{
|
731 |
-
"cell_type": "code",
|
732 |
-
"execution_count": 2,
|
733 |
-
"id": "a1f02703",
|
734 |
-
"metadata": {
|
735 |
-
"scrolled": true
|
736 |
-
},
|
737 |
-
"outputs": [],
|
738 |
-
"source": [
|
739 |
-
"#from datasets import load_dataset\n",
|
740 |
-
"#dataset = load_dataset(\"audiofolder\", data_dir=\"second_americas_nlp_2022\")\n"
|
741 |
-
]
|
742 |
-
},
|
743 |
-
{
|
744 |
-
"cell_type": "markdown",
|
745 |
-
"id": "5eaa7c93",
|
746 |
-
"metadata": {},
|
747 |
-
"source": [
|
748 |
-
"# EVALUATE MODELS\n"
|
749 |
-
]
|
750 |
-
},
|
751 |
-
{
|
752 |
-
"cell_type": "markdown",
|
753 |
-
"id": "2e4e15c9",
|
754 |
-
"metadata": {},
|
755 |
-
"source": [
|
756 |
-
"## QUECHUA"
|
757 |
-
]
|
758 |
-
},
|
759 |
-
{
|
760 |
-
"cell_type": "code",
|
761 |
-
"execution_count": 8,
|
762 |
-
"id": "e165f4bf",
|
763 |
-
"metadata": {
|
764 |
-
"scrolled": true
|
765 |
-
},
|
766 |
-
"outputs": [
|
767 |
-
{
|
768 |
-
"data": {
|
769 |
-
"application/vnd.jupyter.widget-view+json": {
|
770 |
-
"model_id": "9c96f2ce38474bc990e57387acd56fc8",
|
771 |
-
"version_major": 2,
|
772 |
-
"version_minor": 0
|
773 |
-
},
|
774 |
-
"text/plain": [
|
775 |
-
"Map: 0%| | 0/250 [00:00<?, ? examples/s]"
|
776 |
-
]
|
777 |
-
},
|
778 |
-
"metadata": {},
|
779 |
-
"output_type": "display_data"
|
780 |
-
},
|
781 |
-
{
|
782 |
-
"ename": "LibsndfileError",
|
783 |
-
"evalue": "Error opening 'data/quechua/dev/quechua000573.wav': System error.",
|
784 |
-
"output_type": "error",
|
785 |
-
"traceback": [
|
786 |
-
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
787 |
-
"\u001b[0;31mLibsndfileError\u001b[0m Traceback (most recent call last)",
|
788 |
-
"Input \u001b[0;32mIn [8]\u001b[0m, in \u001b[0;36m<cell line: 25>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 22\u001b[0m batch[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtranscription\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m processor\u001b[38;5;241m.\u001b[39mbatch_decode(predicted_ids)\n\u001b[1;32m 23\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m batch\n\u001b[0;32m---> 25\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43mquechua\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmap\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmap_to_pred\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mbatched\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mbatch_size\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 27\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCER:\u001b[39m\u001b[38;5;124m\"\u001b[39m, cer(result[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124msource_processed\u001b[39m\u001b[38;5;124m\"\u001b[39m], result[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtranscription\u001b[39m\u001b[38;5;124m\"\u001b[39m]))\n",
|
789 |
-
"File \u001b[0;32m~/.local/lib/python3.10/site-packages/datasets/arrow_dataset.py:602\u001b[0m, in \u001b[0;36mtransmit_tasks.<locals>.wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 600\u001b[0m \u001b[38;5;28mself\u001b[39m: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mDataset\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m=\u001b[39m kwargs\u001b[38;5;241m.\u001b[39mpop(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mself\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 601\u001b[0m \u001b[38;5;66;03m# apply actual function\u001b[39;00m\n\u001b[0;32m--> 602\u001b[0m out: Union[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mDataset\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mDatasetDict\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 603\u001b[0m datasets: List[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mDataset\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(out\u001b[38;5;241m.\u001b[39mvalues()) \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(out, \u001b[38;5;28mdict\u001b[39m) \u001b[38;5;28;01melse\u001b[39;00m [out]\n\u001b[1;32m 604\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m dataset \u001b[38;5;129;01min\u001b[39;00m datasets:\n\u001b[1;32m 605\u001b[0m \u001b[38;5;66;03m# Remove task templates if a column mapping of the template is no longer valid\u001b[39;00m\n",
|
790 |
-
"File \u001b[0;32m~/.local/lib/python3.10/site-packages/datasets/arrow_dataset.py:567\u001b[0m, in \u001b[0;36mtransmit_format.<locals>.wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 560\u001b[0m self_format \u001b[38;5;241m=\u001b[39m {\n\u001b[1;32m 561\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtype\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_format_type,\n\u001b[1;32m 562\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mformat_kwargs\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_format_kwargs,\n\u001b[1;32m 563\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcolumns\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_format_columns,\n\u001b[1;32m 564\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124moutput_all_columns\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_output_all_columns,\n\u001b[1;32m 565\u001b[0m }\n\u001b[1;32m 566\u001b[0m \u001b[38;5;66;03m# apply actual function\u001b[39;00m\n\u001b[0;32m--> 567\u001b[0m out: Union[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mDataset\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mDatasetDict\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 568\u001b[0m datasets: List[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mDataset\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(out\u001b[38;5;241m.\u001b[39mvalues()) \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(out, \u001b[38;5;28mdict\u001b[39m) \u001b[38;5;28;01melse\u001b[39;00m [out]\n\u001b[1;32m 569\u001b[0m \u001b[38;5;66;03m# re-apply format to the output\u001b[39;00m\n",
|
791 |
-
"File \u001b[0;32m~/.local/lib/python3.10/site-packages/datasets/arrow_dataset.py:3156\u001b[0m, in \u001b[0;36mDataset.map\u001b[0;34m(self, function, with_indices, with_rank, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, num_proc, suffix_template, new_fingerprint, desc)\u001b[0m\n\u001b[1;32m 3150\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m transformed_dataset \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 3151\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m hf_tqdm(\n\u001b[1;32m 3152\u001b[0m unit\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m examples\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 3153\u001b[0m total\u001b[38;5;241m=\u001b[39mpbar_total,\n\u001b[1;32m 3154\u001b[0m desc\u001b[38;5;241m=\u001b[39mdesc \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mMap\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 3155\u001b[0m ) \u001b[38;5;28;01mas\u001b[39;00m pbar:\n\u001b[0;32m-> 3156\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m rank, done, content \u001b[38;5;129;01min\u001b[39;00m Dataset\u001b[38;5;241m.\u001b[39m_map_single(\u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mdataset_kwargs):\n\u001b[1;32m 3157\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m done:\n\u001b[1;32m 3158\u001b[0m shards_done \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m\n",
|
792 |
-
"File \u001b[0;32m~/.local/lib/python3.10/site-packages/datasets/arrow_dataset.py:3547\u001b[0m, in \u001b[0;36mDataset._map_single\u001b[0;34m(shard, function, with_indices, with_rank, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, new_fingerprint, rank, offset)\u001b[0m\n\u001b[1;32m 3543\u001b[0m indices \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(\n\u001b[1;32m 3544\u001b[0m \u001b[38;5;28mrange\u001b[39m(\u001b[38;5;241m*\u001b[39m(\u001b[38;5;28mslice\u001b[39m(i, i \u001b[38;5;241m+\u001b[39m batch_size)\u001b[38;5;241m.\u001b[39mindices(shard\u001b[38;5;241m.\u001b[39mnum_rows)))\n\u001b[1;32m 3545\u001b[0m ) \u001b[38;5;66;03m# Something simpler?\u001b[39;00m\n\u001b[1;32m 3546\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m-> 3547\u001b[0m batch \u001b[38;5;241m=\u001b[39m \u001b[43mapply_function_on_filtered_inputs\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 3548\u001b[0m \u001b[43m \u001b[49m\u001b[43mbatch\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 3549\u001b[0m \u001b[43m \u001b[49m\u001b[43mindices\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 3550\u001b[0m \u001b[43m \u001b[49m\u001b[43mcheck_same_num_examples\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mlen\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mshard\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mlist_indexes\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m>\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 3551\u001b[0m \u001b[43m \u001b[49m\u001b[43moffset\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moffset\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 3552\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 3553\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m NumExamplesMismatchError:\n\u001b[1;32m 3554\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m DatasetTransformationNotAllowedError(\n\u001b[1;32m 3555\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mUsing `.map` in batched mode on a dataset with attached indexes is allowed only if it doesn\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt create or remove existing examples. You can first run `.drop_index() to remove your index and then re-add it.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 3556\u001b[0m ) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n",
|
793 |
-
"File \u001b[0;32m~/.local/lib/python3.10/site-packages/datasets/arrow_dataset.py:3416\u001b[0m, in \u001b[0;36mDataset._map_single.<locals>.apply_function_on_filtered_inputs\u001b[0;34m(pa_inputs, indices, check_same_num_examples, offset)\u001b[0m\n\u001b[1;32m 3414\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m with_rank:\n\u001b[1;32m 3415\u001b[0m additional_args \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m (rank,)\n\u001b[0;32m-> 3416\u001b[0m processed_inputs \u001b[38;5;241m=\u001b[39m \u001b[43mfunction\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mfn_args\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43madditional_args\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mfn_kwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 3417\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(processed_inputs, LazyDict):\n\u001b[1;32m 3418\u001b[0m processed_inputs \u001b[38;5;241m=\u001b[39m {\n\u001b[1;32m 3419\u001b[0m k: v \u001b[38;5;28;01mfor\u001b[39;00m k, v \u001b[38;5;129;01min\u001b[39;00m processed_inputs\u001b[38;5;241m.\u001b[39mdata\u001b[38;5;241m.\u001b[39mitems() \u001b[38;5;28;01mif\u001b[39;00m k \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m processed_inputs\u001b[38;5;241m.\u001b[39mkeys_to_format\n\u001b[1;32m 3420\u001b[0m }\n",
|
794 |
-
"Input \u001b[0;32mIn [8]\u001b[0m, in \u001b[0;36mmap_to_pred\u001b[0;34m(batch)\u001b[0m\n\u001b[1;32m 15\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mmap_to_pred\u001b[39m(batch):\n\u001b[0;32m---> 16\u001b[0m wav, curr_sample_rate \u001b[38;5;241m=\u001b[39m \u001b[43msf\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread\u001b[49m\u001b[43m(\u001b[49m\u001b[43mbatch\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mfile_name\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdtype\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mfloat32\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 17\u001b[0m feats \u001b[38;5;241m=\u001b[39m torch\u001b[38;5;241m.\u001b[39mfrom_numpy(wav)\u001b[38;5;241m.\u001b[39mfloat()\n\u001b[1;32m 18\u001b[0m feats \u001b[38;5;241m=\u001b[39m F\u001b[38;5;241m.\u001b[39mlayer_norm(feats, feats\u001b[38;5;241m.\u001b[39mshape) \u001b[38;5;66;03m# Normalization performed during finetuning\u001b[39;00m\n",
|
795 |
-
"File \u001b[0;32m~/.local/lib/python3.10/site-packages/soundfile.py:285\u001b[0m, in \u001b[0;36mread\u001b[0;34m(file, frames, start, stop, dtype, always_2d, fill_value, out, samplerate, channels, format, subtype, endian, closefd)\u001b[0m\n\u001b[1;32m 199\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mread\u001b[39m(file, frames\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m, start\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0\u001b[39m, stop\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, dtype\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mfloat64\u001b[39m\u001b[38;5;124m'\u001b[39m, always_2d\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m,\n\u001b[1;32m 200\u001b[0m fill_value\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, out\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, samplerate\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, channels\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 201\u001b[0m \u001b[38;5;28mformat\u001b[39m\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, subtype\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, endian\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, closefd\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m):\n\u001b[1;32m 202\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Provide audio data from a sound file as NumPy array.\u001b[39;00m\n\u001b[1;32m 203\u001b[0m \n\u001b[1;32m 204\u001b[0m \u001b[38;5;124;03m By default, the whole file is read from the beginning, but the\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 283\u001b[0m \n\u001b[1;32m 284\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 285\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[43mSoundFile\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfile\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mr\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msamplerate\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mchannels\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 286\u001b[0m \u001b[43m \u001b[49m\u001b[43msubtype\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mendian\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mformat\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mclosefd\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;28;01mas\u001b[39;00m f:\n\u001b[1;32m 287\u001b[0m frames \u001b[38;5;241m=\u001b[39m f\u001b[38;5;241m.\u001b[39m_prepare_read(start, stop, frames)\n\u001b[1;32m 288\u001b[0m data \u001b[38;5;241m=\u001b[39m f\u001b[38;5;241m.\u001b[39mread(frames, dtype, always_2d, fill_value, out)\n",
|
796 |
-
"File \u001b[0;32m~/.local/lib/python3.10/site-packages/soundfile.py:658\u001b[0m, in \u001b[0;36mSoundFile.__init__\u001b[0;34m(self, file, mode, samplerate, channels, subtype, endian, format, closefd)\u001b[0m\n\u001b[1;32m 655\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_mode \u001b[38;5;241m=\u001b[39m mode\n\u001b[1;32m 656\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_info \u001b[38;5;241m=\u001b[39m _create_info_struct(file, mode, samplerate, channels,\n\u001b[1;32m 657\u001b[0m \u001b[38;5;28mformat\u001b[39m, subtype, endian)\n\u001b[0;32m--> 658\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_file \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_open\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfile\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmode_int\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mclosefd\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 659\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mset\u001b[39m(mode)\u001b[38;5;241m.\u001b[39missuperset(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mr+\u001b[39m\u001b[38;5;124m'\u001b[39m) \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mseekable():\n\u001b[1;32m 660\u001b[0m \u001b[38;5;66;03m# Move write position to 0 (like in Python file objects)\u001b[39;00m\n\u001b[1;32m 661\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mseek(\u001b[38;5;241m0\u001b[39m)\n",
|
797 |
-
"File \u001b[0;32m~/.local/lib/python3.10/site-packages/soundfile.py:1216\u001b[0m, in \u001b[0;36mSoundFile._open\u001b[0;34m(self, file, mode_int, closefd)\u001b[0m\n\u001b[1;32m 1213\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m file_ptr \u001b[38;5;241m==\u001b[39m _ffi\u001b[38;5;241m.\u001b[39mNULL:\n\u001b[1;32m 1214\u001b[0m \u001b[38;5;66;03m# get the actual error code\u001b[39;00m\n\u001b[1;32m 1215\u001b[0m err \u001b[38;5;241m=\u001b[39m _snd\u001b[38;5;241m.\u001b[39msf_error(file_ptr)\n\u001b[0;32m-> 1216\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m LibsndfileError(err, prefix\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mError opening \u001b[39m\u001b[38;5;132;01m{0!r}\u001b[39;00m\u001b[38;5;124m: \u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;241m.\u001b[39mformat(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mname))\n\u001b[1;32m 1217\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m mode_int \u001b[38;5;241m==\u001b[39m _snd\u001b[38;5;241m.\u001b[39mSFM_WRITE:\n\u001b[1;32m 1218\u001b[0m \u001b[38;5;66;03m# Due to a bug in libsndfile version <= 1.0.25, frames != 0\u001b[39;00m\n\u001b[1;32m 1219\u001b[0m \u001b[38;5;66;03m# when opening a named pipe in SFM_WRITE mode.\u001b[39;00m\n\u001b[1;32m 1220\u001b[0m \u001b[38;5;66;03m# See http://github.com/erikd/libsndfile/issues/77.\u001b[39;00m\n\u001b[1;32m 1221\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_info\u001b[38;5;241m.\u001b[39mframes \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m0\u001b[39m\n",
|
798 |
-
"\u001b[0;31mLibsndfileError\u001b[0m: Error opening 'data/quechua/dev/quechua000573.wav': System error."
|
799 |
-
]
|
800 |
-
}
|
801 |
-
],
|
802 |
-
"source": [
|
803 |
-
"from datasets import load_dataset\n",
|
804 |
-
"from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor\n",
|
805 |
-
"import torch\n",
|
806 |
-
"from jiwer import cer\n",
|
807 |
-
"import torch.nn.functional as F\n",
|
808 |
-
"from datasets import load_dataset\n",
|
809 |
-
"import soundfile as sf\n",
|
810 |
-
"\n",
|
811 |
-
"americasnlp = load_dataset(\"ivangtorre/second_americas_nlp_2022\", split=\"dev\")\n",
|
812 |
-
"quechua = americasnlp.filter(lambda language: language['subset']=='quechua')\n",
|
813 |
-
"\n",
|
814 |
-
"model = Wav2Vec2ForCTC.from_pretrained(\"ivangtorre/wav2vec2-xlsr-300m-quechua\")\n",
|
815 |
-
"processor = Wav2Vec2Processor.from_pretrained(\"ivangtorre/wav2vec2-xlsr-300m-quechua\")\n",
|
816 |
-
"\n",
|
817 |
-
"def map_to_pred(batch):\n",
|
818 |
-
" wav, curr_sample_rate = sf.read(batch[\"file_name\"][0], dtype=\"float32\")\n",
|
819 |
-
" feats = torch.from_numpy(wav).float()\n",
|
820 |
-
" feats = F.layer_norm(feats, feats.shape) # Normalization performed during finetuning\n",
|
821 |
-
" feats = torch.unsqueeze(feats, 0)\n",
|
822 |
-
" logits = model(feats).logits\n",
|
823 |
-
" predicted_ids = torch.argmax(logits, dim=-1)\n",
|
824 |
-
" batch[\"transcription\"] = processor.batch_decode(predicted_ids)\n",
|
825 |
-
" return batch\n",
|
826 |
-
"\n",
|
827 |
-
"result = quechua.map(map_to_pred, batched=True, batch_size=1)\n",
|
828 |
-
"\n",
|
829 |
-
"print(\"CER:\", cer(result[\"source_processed\"], result[\"transcription\"]))\n"
|
830 |
-
]
|
831 |
-
},
|
832 |
-
{
|
833 |
-
"cell_type": "markdown",
|
834 |
-
"id": "8e29bc13",
|
835 |
-
"metadata": {},
|
836 |
-
"source": [
|
837 |
-
"## BRIBRI\n"
|
838 |
-
]
|
839 |
-
},
|
840 |
-
{
|
841 |
-
"cell_type": "code",
|
842 |
-
"execution_count": 7,
|
843 |
-
"id": "7cdec414",
|
844 |
-
"metadata": {},
|
845 |
-
"outputs": [
|
846 |
-
{
|
847 |
-
"data": {
|
848 |
-
"text/plain": [
|
849 |
-
"'data/quechua/dev/quechua000573.wav'"
|
850 |
-
]
|
851 |
-
},
|
852 |
-
"execution_count": 7,
|
853 |
-
"metadata": {},
|
854 |
-
"output_type": "execute_result"
|
855 |
-
}
|
856 |
-
],
|
857 |
-
"source": [
|
858 |
-
"quechua[0:1][\"file_name\"][0]"
|
859 |
-
]
|
860 |
-
}
|
861 |
-
],
|
862 |
-
"metadata": {
|
863 |
-
"kernelspec": {
|
864 |
-
"display_name": "Python 3 (ipykernel)",
|
865 |
-
"language": "python",
|
866 |
-
"name": "python3"
|
867 |
-
},
|
868 |
-
"language_info": {
|
869 |
-
"codemirror_mode": {
|
870 |
-
"name": "ipython",
|
871 |
-
"version": 3
|
872 |
-
},
|
873 |
-
"file_extension": ".py",
|
874 |
-
"mimetype": "text/x-python",
|
875 |
-
"name": "python",
|
876 |
-
"nbconvert_exporter": "python",
|
877 |
-
"pygments_lexer": "ipython3",
|
878 |
-
"version": "3.10.12"
|
879 |
-
}
|
880 |
-
},
|
881 |
-
"nbformat": 4,
|
882 |
-
"nbformat_minor": 5
|
883 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|