ivangtorre commited on
Commit
fd0d156
·
1 Parent(s): edd8ca4

changing and deleting files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. Generate_metadata.ipynb +586 -293
  2. data/bribri/dev/bribri000495.wav +0 -3
  3. data/bribri/dev/bribri000496.wav +0 -3
  4. data/bribri/dev/bribri000497.wav +0 -3
  5. data/bribri/dev/bribri000498.wav +0 -3
  6. data/bribri/dev/bribri000499.wav +0 -3
  7. data/bribri/dev/bribri000500.wav +0 -3
  8. data/bribri/dev/bribri000501.wav +0 -3
  9. data/bribri/dev/bribri000502.wav +0 -3
  10. data/bribri/dev/bribri000503.wav +0 -3
  11. data/bribri/dev/bribri000504.wav +0 -3
  12. data/bribri/dev/bribri000505.wav +0 -3
  13. data/bribri/dev/bribri000506.wav +0 -3
  14. data/bribri/dev/bribri000507.wav +0 -3
  15. data/bribri/dev/bribri000508.wav +0 -3
  16. data/bribri/dev/bribri000509.wav +0 -3
  17. data/bribri/dev/bribri000510.wav +0 -3
  18. data/bribri/dev/bribri000511.wav +0 -3
  19. data/bribri/dev/bribri000512.wav +0 -3
  20. data/bribri/dev/bribri000513.wav +0 -3
  21. data/bribri/dev/bribri000514.wav +0 -3
  22. data/bribri/dev/bribri000515.wav +0 -3
  23. data/bribri/dev/bribri000516.wav +0 -3
  24. data/bribri/dev/bribri000517.wav +0 -3
  25. data/bribri/dev/bribri000518.wav +0 -3
  26. data/bribri/dev/bribri000519.wav +0 -3
  27. data/bribri/dev/bribri000520.wav +0 -3
  28. data/bribri/dev/bribri000521.wav +0 -3
  29. data/bribri/dev/bribri000522.wav +0 -3
  30. data/bribri/dev/bribri000523.wav +0 -3
  31. data/bribri/dev/bribri000524.wav +0 -3
  32. data/bribri/dev/bribri000525.wav +0 -3
  33. data/bribri/dev/bribri000526.wav +0 -3
  34. data/bribri/dev/bribri000527.wav +0 -3
  35. data/bribri/dev/bribri000528.wav +0 -3
  36. data/bribri/dev/bribri000529.wav +0 -3
  37. data/bribri/dev/bribri000530.wav +0 -3
  38. data/bribri/dev/bribri000531.wav +0 -3
  39. data/bribri/dev/bribri000532.wav +0 -3
  40. data/bribri/dev/bribri000533.wav +0 -3
  41. data/bribri/dev/bribri000534.wav +0 -3
  42. data/bribri/dev/bribri000535.wav +0 -3
  43. data/bribri/dev/bribri000536.wav +0 -3
  44. data/bribri/dev/bribri000537.wav +0 -3
  45. data/bribri/dev/bribri000538.wav +0 -3
  46. data/bribri/dev/bribri000539.wav +0 -3
  47. data/bribri/dev/bribri000540.wav +0 -3
  48. data/bribri/dev/bribri000541.wav +0 -3
  49. data/bribri/dev/bribri000542.wav +0 -3
  50. data/bribri/dev/bribri000543.wav +0 -3
Generate_metadata.ipynb CHANGED
@@ -18,7 +18,7 @@
18
  },
19
  {
20
  "cell_type": "code",
21
- "execution_count": 14,
22
  "id": "aa925968",
23
  "metadata": {
24
  "scrolled": true
@@ -28,22 +28,18 @@
28
  "name": "stdout",
29
  "output_type": "stream",
30
  "text": [
31
- "[]\n",
32
- "[]\n",
33
- "['kotiria000263.wav', 'kotiria000265.wav', 'kotiria000273.wav', 'kotiria000285.wav', 'kotiria000289.wav', 'kotiria000291.wav', 'kotiria000294.wav', 'kotiria000295.wav', 'kotiria000297.wav', 'kotiria000300.wav', 'kotiria000306.wav', 'kotiria000308.wav']\n",
34
- "[]\n",
35
- "['waikhana000740.wav', 'waikhana000745.wav', 'waikhana000746.wav']\n"
36
  ]
37
  },
38
  {
39
  "data": {
40
  "application/vnd.jupyter.widget-view+json": {
41
- "model_id": "15adf9d48a44440dac871ce9f432294c",
42
  "version_major": 2,
43
  "version_minor": 0
44
  },
45
  "text/plain": [
46
- "Uploading the dataset shards: 0%| | 0/3 [00:00<?, ?it/s]"
47
  ]
48
  },
49
  "metadata": {},
@@ -52,12 +48,12 @@
52
  {
53
  "data": {
54
  "application/vnd.jupyter.widget-view+json": {
55
- "model_id": "aa491992d4fa43688c71ea1e09b25ca0",
56
  "version_major": 2,
57
  "version_minor": 0
58
  },
59
  "text/plain": [
60
- "Map: 0%| | 0/1583 [00:00<?, ? examples/s]"
61
  ]
62
  },
63
  "metadata": {},
@@ -66,12 +62,12 @@
66
  {
67
  "data": {
68
  "application/vnd.jupyter.widget-view+json": {
69
- "model_id": "0f560606c9094daf92d9f5328f18b2dd",
70
  "version_major": 2,
71
  "version_minor": 0
72
  },
73
  "text/plain": [
74
- "Creating parquet from Arrow format: 0%| | 0/16 [00:00<?, ?ba/s]"
75
  ]
76
  },
77
  "metadata": {},
@@ -80,26 +76,33 @@
80
  {
81
  "data": {
82
  "application/vnd.jupyter.widget-view+json": {
83
- "model_id": "538b15ad0bbe4684a09ae610fce7ab8c",
84
  "version_major": 2,
85
  "version_minor": 0
86
  },
87
  "text/plain": [
88
- "Map: 0%| | 0/1583 [00:00<?, ? examples/s]"
89
  ]
90
  },
91
  "metadata": {},
92
  "output_type": "display_data"
93
  },
 
 
 
 
 
 
 
94
  {
95
  "data": {
96
  "application/vnd.jupyter.widget-view+json": {
97
- "model_id": "391fb889ea15447ca8ec509a04de2ebe",
98
  "version_major": 2,
99
  "version_minor": 0
100
  },
101
  "text/plain": [
102
- "Creating parquet from Arrow format: 0%| | 0/16 [00:00<?, ?ba/s]"
103
  ]
104
  },
105
  "metadata": {},
@@ -108,12 +111,12 @@
108
  {
109
  "data": {
110
  "application/vnd.jupyter.widget-view+json": {
111
- "model_id": "960a0088fc564383a32d2f6f0816b215",
112
  "version_major": 2,
113
  "version_minor": 0
114
  },
115
  "text/plain": [
116
- "Map: 0%| | 0/1583 [00:00<?, ? examples/s]"
117
  ]
118
  },
119
  "metadata": {},
@@ -122,34 +125,565 @@
122
  {
123
  "data": {
124
  "application/vnd.jupyter.widget-view+json": {
125
- "model_id": "3355cb1c65d84a24b1a146a17e43b1c4",
126
  "version_major": 2,
127
  "version_minor": 0
128
  },
129
  "text/plain": [
130
- "Creating parquet from Arrow format: 0%| | 0/16 [00:00<?, ?ba/s]"
131
  ]
132
  },
133
  "metadata": {},
134
  "output_type": "display_data"
135
  },
136
  {
137
- "ename": "ValueError",
138
- "evalue": "Features of the new split don't match the features of the existing splits on the hub: {'audio': Audio(sampling_rate=None, mono=True, decode=True, id=None), 'source_processed': Value(dtype='string', id=None), 'source_raw': Value(dtype='string', id=None), 'target_raw': Value(dtype='string', id=None)} != {'audio': Audio(sampling_rate=None, mono=True, decode=True, id=None)}",
139
- "output_type": "error",
140
- "traceback": [
141
- "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
142
- "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
143
- "Input \u001b[0;32mIn [14]\u001b[0m, in \u001b[0;36m<cell line: 38>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 31\u001b[0m a \u001b[38;5;241m=\u001b[39m flatten(a)\n\u001b[1;32m 32\u001b[0m audio_dataset \u001b[38;5;241m=\u001b[39m Dataset\u001b[38;5;241m.\u001b[39mfrom_dict({\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124maudio\u001b[39m\u001b[38;5;124m\"\u001b[39m: flatten(df[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mfile_name\u001b[39m\u001b[38;5;124m\"\u001b[39m]\u001b[38;5;241m.\u001b[39mvalues\u001b[38;5;241m.\u001b[39mtolist()),\n\u001b[1;32m 33\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124msource_processed\u001b[39m\u001b[38;5;124m\"\u001b[39m: flatten(df[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124msource_processed\u001b[39m\u001b[38;5;124m\"\u001b[39m]\u001b[38;5;241m.\u001b[39mvalues\u001b[38;5;241m.\u001b[39mtolist()),\n\u001b[1;32m 34\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124msource_raw\u001b[39m\u001b[38;5;124m\"\u001b[39m: flatten(df[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124msource_raw\u001b[39m\u001b[38;5;124m\"\u001b[39m]\u001b[38;5;241m.\u001b[39mvalues\u001b[38;5;241m.\u001b[39mtolist()),\n\u001b[1;32m 35\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtarget_raw\u001b[39m\u001b[38;5;124m\"\u001b[39m: flatten(df[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtarget_raw\u001b[39m\u001b[38;5;124m\"\u001b[39m]\u001b[38;5;241m.\u001b[39mvalues\u001b[38;5;241m.\u001b[39mtolist()),\n\u001b[1;32m 36\u001b[0m },\n\u001b[1;32m 37\u001b[0m )\u001b[38;5;241m.\u001b[39mcast_column(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124maudio\u001b[39m\u001b[38;5;124m\"\u001b[39m, Audio())\n\u001b[0;32m---> 38\u001b[0m \u001b[43maudio_dataset\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpush_to_hub\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mivangtorre/second_americas_nlp_2022\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msplit\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtrain\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 40\u001b[0m df\u001b[38;5;241m.\u001b[39mto_csv(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtrain.csv\u001b[39m\u001b[38;5;124m\"\u001b[39m, sep\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;130;01m\\t\u001b[39;00m\u001b[38;5;124m'\u001b[39m, index\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m)\n\u001b[1;32m 42\u001b[0m df \u001b[38;5;241m=\u001b[39m generate_df(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mquechua\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdev\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
144
- "File \u001b[0;32m~/.local/lib/python3.10/site-packages/datasets/arrow_dataset.py:5707\u001b[0m, in \u001b[0;36mDataset.push_to_hub\u001b[0;34m(self, repo_id, config_name, set_default, split, data_dir, commit_message, commit_description, private, token, revision, branch, create_pr, max_shard_size, num_shards, embed_external_files)\u001b[0m\n\u001b[1;32m 5705\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m repo_info\u001b[38;5;241m.\u001b[39msplits \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28mlist\u001b[39m(repo_info\u001b[38;5;241m.\u001b[39msplits) \u001b[38;5;241m!=\u001b[39m [split]:\n\u001b[1;32m 5706\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_info\u001b[38;5;241m.\u001b[39mfeatures \u001b[38;5;241m!=\u001b[39m repo_info\u001b[38;5;241m.\u001b[39mfeatures:\n\u001b[0;32m-> 5707\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m 5708\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mFeatures of the new split don\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt match the features of the existing splits on the hub: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_info\u001b[38;5;241m.\u001b[39mfeatures\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m != \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mrepo_info\u001b[38;5;241m.\u001b[39mfeatures\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 5709\u001b[0m )\n\u001b[1;32m 5711\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m split \u001b[38;5;129;01min\u001b[39;00m repo_info\u001b[38;5;241m.\u001b[39msplits:\n\u001b[1;32m 5712\u001b[0m repo_info\u001b[38;5;241m.\u001b[39mdownload_size \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m=\u001b[39m deleted_size\n",
145
- "\u001b[0;31mValueError\u001b[0m: Features of the new split don't match the features of the existing splits on the hub: {'audio': Audio(sampling_rate=None, mono=True, decode=True, id=None), 'source_processed': Value(dtype='string', id=None), 'source_raw': Value(dtype='string', id=None), 'target_raw': Value(dtype='string', id=None)} != {'audio': Audio(sampling_rate=None, mono=True, decode=True, id=None)}"
 
 
 
 
 
 
 
 
 
146
  ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
147
  }
148
  ],
149
  "source": [
150
  "import pandas as pd\n",
151
  "from datasets import Dataset, Audio\n",
152
  "\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153
  "def generate_df(language, split):\n",
154
  " # QUECHUA TRAIN\n",
155
  " with open(\"./../\"+language +\"_\"+split+\".tsv\") as f:\n",
@@ -162,276 +696,35 @@
162
  " df1 = df1.assign(subset=[language]*df1.shape[0])\n",
163
  " df1 = df1.rename(columns={'wav': 'file_name'})\n",
164
  " df1['file_name'] = 'data/' + language + '/' + split +'/' + df1['file_name'].astype(str)\n",
165
- " return df1\n",
 
166
  "\n",
167
- "df = generate_df(\"quechua\", \"train\")\n",
168
- "df = pd.concat([df, generate_df(\"guarani\", \"train\")])\n",
169
- "df = pd.concat([df, generate_df(\"kotiria\", \"train\")])\n",
170
- "df = pd.concat([df, generate_df(\"bribri\", \"train\")])\n",
171
- "df = pd.concat([df, generate_df(\"waikhana\", \"train\")])\n",
172
- "cols = df.columns.tolist()\n",
173
- "cols = cols[-1:] + cols[:-1]\n",
174
- "df = df[cols]\n",
175
  "\n",
176
- "def flatten(xss):\n",
177
- " return [x for xs in xss for x in xs]\n",
178
  "\n",
179
- "a = flatten(df[\"file_name\"].values.tolist())\n",
180
- "a = flatten(a)\n",
181
- "audio_dataset = Dataset.from_dict({\"audio\": flatten(df[\"file_name\"].values.tolist()),\n",
182
- " \"source_processed\": flatten(df[\"source_processed\"].values.tolist()),\n",
183
- " \"source_raw\": flatten(df[\"source_raw\"].values.tolist()),\n",
184
- " \"target_raw\": flatten(df[\"target_raw\"].values.tolist()),\n",
185
- " },\n",
186
- " ).cast_column(\"audio\", Audio())\n",
187
- "audio_dataset.push_to_hub(\"ivangtorre/second_americas_nlp_2022\", split=\"train\")\n",
188
  "\n",
189
- "df.to_csv(\"train.csv\", sep='\\t', index=None)\n",
 
 
 
190
  "\n",
191
- "df = generate_df(\"quechua\", \"dev\")\n",
192
- "df = pd.concat([df, generate_df(\"guarani\", \"dev\")])\n",
193
- "df = pd.concat([df, generate_df(\"kotiria\", \"dev\")])\n",
194
- "df = pd.concat([df, generate_df(\"bribri\", \"dev\")])\n",
195
- "df = pd.concat([df, generate_df(\"waikhana\", \"dev\")])\n",
196
- "cols = df.columns.tolist()\n",
197
- "cols = cols[-1:] + cols[:-1]\n",
198
- "df = df[cols]\n",
199
- "df.to_csv(\"dev.csv\", sep='\\t', index=None)\n",
200
  "\n",
201
- "a = df[\"file_name\"].values.tolist()\n",
202
- "a = flatten(a)\n",
203
- "#audio_dataset = Dataset.from_dict({\"audio\": a}).cast_column(\"audio\", Audio())\n",
204
- "#audio_dataset.push_to_hub(\"ivangtorre/second_americas_nlp_2022\", split=\"dev\")\n",
205
- "\n"
206
- ]
207
- },
208
- {
209
- "cell_type": "code",
210
- "execution_count": 6,
211
- "id": "4ce2eeb3",
212
- "metadata": {},
213
- "outputs": [
214
- {
215
- "data": {
216
- "text/plain": [
217
- "{'audio': {'path': 'data/quechua/train/quechua000000.wav',\n",
218
- " 'array': array([0.00045776, 0.00042725, 0.00018311, ..., 0.00286865, 0.00186157,\n",
219
- " 0.00253296]),\n",
220
- " 'sampling_rate': 16000}}"
221
- ]
222
- },
223
- "execution_count": 6,
224
- "metadata": {},
225
- "output_type": "execute_result"
226
- }
227
- ],
228
- "source": [
229
- "audio_dataset[0]"
230
- ]
231
- },
232
- {
233
- "cell_type": "code",
234
- "execution_count": 10,
235
- "id": "bd39f2f4",
236
- "metadata": {},
237
- "outputs": [
238
- {
239
- "data": {
240
- "text/html": [
241
- "<div>\n",
242
- "<style scoped>\n",
243
- " .dataframe tbody tr th:only-of-type {\n",
244
- " vertical-align: middle;\n",
245
- " }\n",
246
- "\n",
247
- " .dataframe tbody tr th {\n",
248
- " vertical-align: top;\n",
249
- " }\n",
250
- "\n",
251
- " .dataframe thead tr th {\n",
252
- " text-align: left;\n",
253
- " }\n",
254
- "</style>\n",
255
- "<table border=\"1\" class=\"dataframe\">\n",
256
- " <thead>\n",
257
- " <tr>\n",
258
- " <th></th>\n",
259
- " <th>subset</th>\n",
260
- " <th>file_name</th>\n",
261
- " <th>source_processed</th>\n",
262
- " <th>source_raw</th>\n",
263
- " <th>target_raw</th>\n",
264
- " <th>split</th>\n",
265
- " </tr>\n",
266
- " </thead>\n",
267
- " <tbody>\n",
268
- " <tr>\n",
269
- " <th>0</th>\n",
270
- " <td>quechua</td>\n",
271
- " <td>data/quechua/train/quechua000000.wav</td>\n",
272
- " <td>wañuchisunchu kay suwakunata</td>\n",
273
- " <td>wañuchisunchu kay suwakunata</td>\n",
274
- " <td>matemos a esos ladrones</td>\n",
275
- " <td>train</td>\n",
276
- " </tr>\n",
277
- " <tr>\n",
278
- " <th>1</th>\n",
279
- " <td>quechua</td>\n",
280
- " <td>data/quechua/train/quechua000001.wav</td>\n",
281
- " <td>imaninkichikmi qamkuna</td>\n",
282
- " <td>imaninkichikmi qamkuna</td>\n",
283
- " <td>que dicen ustedes</td>\n",
284
- " <td>train</td>\n",
285
- " </tr>\n",
286
- " <tr>\n",
287
- " <th>2</th>\n",
288
- " <td>quechua</td>\n",
289
- " <td>data/quechua/train/quechua000002.wav</td>\n",
290
- " <td>hatun urqukunapi kunturkunapas uyarirqan</td>\n",
291
- " <td>hatun urqukunapi kunturkunapas uyarirqan</td>\n",
292
- " <td>en grandes montañas hasta los condores escuchaban</td>\n",
293
- " <td>train</td>\n",
294
- " </tr>\n",
295
- " <tr>\n",
296
- " <th>3</th>\n",
297
- " <td>quechua</td>\n",
298
- " <td>data/quechua/train/quechua000003.wav</td>\n",
299
- " <td>ninsi winsislaw maqtaqa tumpa machasqaña</td>\n",
300
- " <td>ninsi winsislaw maqtaqa tumpa machasqaña</td>\n",
301
- " <td>dice el joven wessceslao cuando ya estaba borr...</td>\n",
302
- " <td>train</td>\n",
303
- " </tr>\n",
304
- " <tr>\n",
305
- " <th>4</th>\n",
306
- " <td>quechua</td>\n",
307
- " <td>data/quechua/train/quechua000004.wav</td>\n",
308
- " <td>huk qilli chuspi chuspi misapi kimsantin suwak...</td>\n",
309
- " <td>huk qilli chuspi chuspi misapi kimsantin suwak...</td>\n",
310
- " <td>una sucia mosca en la mesa con los tres ladron...</td>\n",
311
- " <td>train</td>\n",
312
- " </tr>\n",
313
- " <tr>\n",
314
- " <th>...</th>\n",
315
- " <td>...</td>\n",
316
- " <td>...</td>\n",
317
- " <td>...</td>\n",
318
- " <td>...</td>\n",
319
- " <td>...</td>\n",
320
- " <td>...</td>\n",
321
- " </tr>\n",
322
- " <tr>\n",
323
- " <th>1411</th>\n",
324
- " <td>waikhana</td>\n",
325
- " <td>data/waikhana/train/waikhana001414.wav</td>\n",
326
- " <td>masiaha malia masinapea</td>\n",
327
- " <td>masiaha malia masinapea, ()</td>\n",
328
- " <td>Nos tambem sabemos (as historias antigas)</td>\n",
329
- " <td>train</td>\n",
330
- " </tr>\n",
331
- " <tr>\n",
332
- " <th>1412</th>\n",
333
- " <td>waikhana</td>\n",
334
- " <td>data/waikhana/train/waikhana001415.wav</td>\n",
335
- " <td>a'lide mu:sale ya'uaha yu:'u:</td>\n",
336
- " <td>a'lide mu:sale ya'uaha yu:'u:</td>\n",
337
- " <td>Tudo isso estou explicando para voces.</td>\n",
338
- " <td>train</td>\n",
339
- " </tr>\n",
340
- " <tr>\n",
341
- " <th>1413</th>\n",
342
- " <td>waikhana</td>\n",
343
- " <td>data/waikhana/train/waikhana001416.wav</td>\n",
344
- " <td>a'lide tina a'likodo pekasonoko a'li gravaka'a...</td>\n",
345
- " <td>a'lide tina a'likodo pekasonoko a'li gravaka'a...</td>\n",
346
- " <td>Tudo isso essa branca vai gravar.</td>\n",
347
- " <td>train</td>\n",
348
- " </tr>\n",
349
- " <tr>\n",
350
- " <th>1414</th>\n",
351
- " <td>waikhana</td>\n",
352
- " <td>data/waikhana/train/waikhana001417.wav</td>\n",
353
- " <td>sayeotha ninokata mipe</td>\n",
354
- " <td>sayeotha ninokata mipe</td>\n",
355
- " <td>Ela disse que vai fazer tudo isso,</td>\n",
356
- " <td>train</td>\n",
357
- " </tr>\n",
358
- " <tr>\n",
359
- " <th>1415</th>\n",
360
- " <td>waikhana</td>\n",
361
- " <td>data/waikhana/train/waikhana001418.wav</td>\n",
362
- " <td>yu:'u:le ~o'o ihide yu:'u: akaye</td>\n",
363
- " <td>yu:'u:le ~o'o ihide yu:'u: akaye</td>\n",
364
- " <td>Para mim, e' ate aqui, meus irmaos.</td>\n",
365
- " <td>train</td>\n",
366
- " </tr>\n",
367
- " </tbody>\n",
368
- "</table>\n",
369
- "<p>4749 rows × 6 columns</p>\n",
370
- "</div>"
371
- ],
372
- "text/plain": [
373
- " subset file_name \\\n",
374
- "0 quechua data/quechua/train/quechua000000.wav \n",
375
- "1 quechua data/quechua/train/quechua000001.wav \n",
376
- "2 quechua data/quechua/train/quechua000002.wav \n",
377
- "3 quechua data/quechua/train/quechua000003.wav \n",
378
- "4 quechua data/quechua/train/quechua000004.wav \n",
379
- "... ... ... \n",
380
- "1411 waikhana data/waikhana/train/waikhana001414.wav \n",
381
- "1412 waikhana data/waikhana/train/waikhana001415.wav \n",
382
- "1413 waikhana data/waikhana/train/waikhana001416.wav \n",
383
- "1414 waikhana data/waikhana/train/waikhana001417.wav \n",
384
- "1415 waikhana data/waikhana/train/waikhana001418.wav \n",
385
- "\n",
386
- " source_processed \\\n",
387
- "0 wañuchisunchu kay suwakunata \n",
388
- "1 imaninkichikmi qamkuna \n",
389
- "2 hatun urqukunapi kunturkunapas uyarirqan \n",
390
- "3 ninsi winsislaw maqtaqa tumpa machasqaña \n",
391
- "4 huk qilli chuspi chuspi misapi kimsantin suwak... \n",
392
- "... ... \n",
393
- "1411 masiaha malia masinapea \n",
394
- "1412 a'lide mu:sale ya'uaha yu:'u: \n",
395
- "1413 a'lide tina a'likodo pekasonoko a'li gravaka'a... \n",
396
- "1414 sayeotha ninokata mipe \n",
397
- "1415 yu:'u:le ~o'o ihide yu:'u: akaye \n",
398
- "\n",
399
- " source_raw \\\n",
400
- "0 wañuchisunchu kay suwakunata \n",
401
- "1 imaninkichikmi qamkuna \n",
402
- "2 hatun urqukunapi kunturkunapas uyarirqan \n",
403
- "3 ninsi winsislaw maqtaqa tumpa machasqaña \n",
404
- "4 huk qilli chuspi chuspi misapi kimsantin suwak... \n",
405
- "... ... \n",
406
- "1411 masiaha malia masinapea, () \n",
407
- "1412 a'lide mu:sale ya'uaha yu:'u: \n",
408
- "1413 a'lide tina a'likodo pekasonoko a'li gravaka'a... \n",
409
- "1414 sayeotha ninokata mipe \n",
410
- "1415 yu:'u:le ~o'o ihide yu:'u: akaye \n",
411
- "\n",
412
- " target_raw split \n",
413
- "0 matemos a esos ladrones train \n",
414
- "1 que dicen ustedes train \n",
415
- "2 en grandes montañas hasta los condores escuchaban train \n",
416
- "3 dice el joven wessceslao cuando ya estaba borr... train \n",
417
- "4 una sucia mosca en la mesa con los tres ladron... train \n",
418
- "... ... ... \n",
419
- "1411 Nos tambem sabemos (as historias antigas) train \n",
420
- "1412 Tudo isso estou explicando para voces. train \n",
421
- "1413 Tudo isso essa branca vai gravar. train \n",
422
- "1414 Ela disse que vai fazer tudo isso, train \n",
423
- "1415 Para mim, e' ate aqui, meus irmaos. train \n",
424
- "\n",
425
- "[4749 rows x 6 columns]"
426
- ]
427
- },
428
- "execution_count": 10,
429
- "metadata": {},
430
- "output_type": "execute_result"
431
- }
432
- ],
433
- "source": [
434
- "df"
435
  ]
436
  },
437
  {
 
18
  },
19
  {
20
  "cell_type": "code",
21
+ "execution_count": 21,
22
  "id": "aa925968",
23
  "metadata": {
24
  "scrolled": true
 
28
  "name": "stdout",
29
  "output_type": "stream",
30
  "text": [
31
+ "[]\n"
 
 
 
 
32
  ]
33
  },
34
  {
35
  "data": {
36
  "application/vnd.jupyter.widget-view+json": {
37
+ "model_id": "86aedd302b3041d9b4bf80a3c60c096a",
38
  "version_major": 2,
39
  "version_minor": 0
40
  },
41
  "text/plain": [
42
+ "Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
43
  ]
44
  },
45
  "metadata": {},
 
48
  {
49
  "data": {
50
  "application/vnd.jupyter.widget-view+json": {
51
+ "model_id": "d40686210f1b49cf9a2b980964f32c34",
52
  "version_major": 2,
53
  "version_minor": 0
54
  },
55
  "text/plain": [
56
+ "Map: 0%| | 0/1097 [00:00<?, ? examples/s]"
57
  ]
58
  },
59
  "metadata": {},
 
62
  {
63
  "data": {
64
  "application/vnd.jupyter.widget-view+json": {
65
+ "model_id": "6e86ed4b25894e37837cdb6cb46e662a",
66
  "version_major": 2,
67
  "version_minor": 0
68
  },
69
  "text/plain": [
70
+ "Creating parquet from Arrow format: 0%| | 0/11 [00:00<?, ?ba/s]"
71
  ]
72
  },
73
  "metadata": {},
 
76
  {
77
  "data": {
78
  "application/vnd.jupyter.widget-view+json": {
79
+ "model_id": "d138c6b6f3b548298986710d9dbea010",
80
  "version_major": 2,
81
  "version_minor": 0
82
  },
83
  "text/plain": [
84
+ "README.md: 0%| | 0.00/1.64k [00:00<?, ?B/s]"
85
  ]
86
  },
87
  "metadata": {},
88
  "output_type": "display_data"
89
  },
90
+ {
91
+ "name": "stdout",
92
+ "output_type": "stream",
93
+ "text": [
94
+ "[]\n"
95
+ ]
96
+ },
97
  {
98
  "data": {
99
  "application/vnd.jupyter.widget-view+json": {
100
+ "model_id": "41c0e3b2a72f4ce690a5d068ad6ee76e",
101
  "version_major": 2,
102
  "version_minor": 0
103
  },
104
  "text/plain": [
105
+ "Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
106
  ]
107
  },
108
  "metadata": {},
 
111
  {
112
  "data": {
113
  "application/vnd.jupyter.widget-view+json": {
114
+ "model_id": "c4c9e9d1a0c64e728527636022468fb0",
115
  "version_major": 2,
116
  "version_minor": 0
117
  },
118
  "text/plain": [
119
+ "Map: 0%| | 0/1097 [00:00<?, ? examples/s]"
120
  ]
121
  },
122
  "metadata": {},
 
125
  {
126
  "data": {
127
  "application/vnd.jupyter.widget-view+json": {
128
+ "model_id": "de8c8d8db3704cbe9e86266166e898fa",
129
  "version_major": 2,
130
  "version_minor": 0
131
  },
132
  "text/plain": [
133
+ "Creating parquet from Arrow format: 0%| | 0/11 [00:00<?, ?ba/s]"
134
  ]
135
  },
136
  "metadata": {},
137
  "output_type": "display_data"
138
  },
139
  {
140
+ "data": {
141
+ "application/vnd.jupyter.widget-view+json": {
142
+ "model_id": "30139cf5070d40d69db2bc1aa691e422",
143
+ "version_major": 2,
144
+ "version_minor": 0
145
+ },
146
+ "text/plain": [
147
+ "README.md: 0%| | 0.00/1.64k [00:00<?, ?B/s]"
148
+ ]
149
+ },
150
+ "metadata": {},
151
+ "output_type": "display_data"
152
+ },
153
+ {
154
+ "name": "stdout",
155
+ "output_type": "stream",
156
+ "text": [
157
+ "[]\n"
158
  ]
159
+ },
160
+ {
161
+ "data": {
162
+ "application/vnd.jupyter.widget-view+json": {
163
+ "model_id": "91e76dd77c394f10a6316e2cbc738f53",
164
+ "version_major": 2,
165
+ "version_minor": 0
166
+ },
167
+ "text/plain": [
168
+ "Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
169
+ ]
170
+ },
171
+ "metadata": {},
172
+ "output_type": "display_data"
173
+ },
174
+ {
175
+ "data": {
176
+ "application/vnd.jupyter.widget-view+json": {
177
+ "model_id": "dd557f750be248b8900132ec09bd3ea9",
178
+ "version_major": 2,
179
+ "version_minor": 0
180
+ },
181
+ "text/plain": [
182
+ "Map: 0%| | 0/1097 [00:00<?, ? examples/s]"
183
+ ]
184
+ },
185
+ "metadata": {},
186
+ "output_type": "display_data"
187
+ },
188
+ {
189
+ "data": {
190
+ "application/vnd.jupyter.widget-view+json": {
191
+ "model_id": "82d08a53de1f42f8a8e2a98686f15e02",
192
+ "version_major": 2,
193
+ "version_minor": 0
194
+ },
195
+ "text/plain": [
196
+ "Creating parquet from Arrow format: 0%| | 0/11 [00:00<?, ?ba/s]"
197
+ ]
198
+ },
199
+ "metadata": {},
200
+ "output_type": "display_data"
201
+ },
202
+ {
203
+ "data": {
204
+ "application/vnd.jupyter.widget-view+json": {
205
+ "model_id": "0c86ca04ca6d46b7a4637153831843c6",
206
+ "version_major": 2,
207
+ "version_minor": 0
208
+ },
209
+ "text/plain": [
210
+ "README.md: 0%| | 0.00/1.75k [00:00<?, ?B/s]"
211
+ ]
212
+ },
213
+ "metadata": {},
214
+ "output_type": "display_data"
215
+ },
216
+ {
217
+ "name": "stdout",
218
+ "output_type": "stream",
219
+ "text": [
220
+ "[]\n"
221
+ ]
222
+ },
223
+ {
224
+ "data": {
225
+ "application/vnd.jupyter.widget-view+json": {
226
+ "model_id": "1105fc397b7942569e2b6e7263dadb3e",
227
+ "version_major": 2,
228
+ "version_minor": 0
229
+ },
230
+ "text/plain": [
231
+ "Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
232
+ ]
233
+ },
234
+ "metadata": {},
235
+ "output_type": "display_data"
236
+ },
237
+ {
238
+ "data": {
239
+ "application/vnd.jupyter.widget-view+json": {
240
+ "model_id": "b2464a4420284e2fa43352d21cc0849d",
241
+ "version_major": 2,
242
+ "version_minor": 0
243
+ },
244
+ "text/plain": [
245
+ "Map: 0%| | 0/1097 [00:00<?, ? examples/s]"
246
+ ]
247
+ },
248
+ "metadata": {},
249
+ "output_type": "display_data"
250
+ },
251
+ {
252
+ "data": {
253
+ "application/vnd.jupyter.widget-view+json": {
254
+ "model_id": "b4b5a5308c584bfeb9933074e70cfa0a",
255
+ "version_major": 2,
256
+ "version_minor": 0
257
+ },
258
+ "text/plain": [
259
+ "Creating parquet from Arrow format: 0%| | 0/11 [00:00<?, ?ba/s]"
260
+ ]
261
+ },
262
+ "metadata": {},
263
+ "output_type": "display_data"
264
+ },
265
+ {
266
+ "data": {
267
+ "application/vnd.jupyter.widget-view+json": {
268
+ "model_id": "eefe4a691e4e4d1db3f8ea7db47b068e",
269
+ "version_major": 2,
270
+ "version_minor": 0
271
+ },
272
+ "text/plain": [
273
+ "README.md: 0%| | 0.00/2.22k [00:00<?, ?B/s]"
274
+ ]
275
+ },
276
+ "metadata": {},
277
+ "output_type": "display_data"
278
+ },
279
+ {
280
+ "name": "stdout",
281
+ "output_type": "stream",
282
+ "text": [
283
+ "[]\n"
284
+ ]
285
+ },
286
+ {
287
+ "data": {
288
+ "application/vnd.jupyter.widget-view+json": {
289
+ "model_id": "75a9f81c1ee843c397590f4d156df530",
290
+ "version_major": 2,
291
+ "version_minor": 0
292
+ },
293
+ "text/plain": [
294
+ "Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
295
+ ]
296
+ },
297
+ "metadata": {},
298
+ "output_type": "display_data"
299
+ },
300
+ {
301
+ "data": {
302
+ "application/vnd.jupyter.widget-view+json": {
303
+ "model_id": "ec3e0856e7074218a23062cf1f4a84b9",
304
+ "version_major": 2,
305
+ "version_minor": 0
306
+ },
307
+ "text/plain": [
308
+ "Map: 0%| | 0/1097 [00:00<?, ? examples/s]"
309
+ ]
310
+ },
311
+ "metadata": {},
312
+ "output_type": "display_data"
313
+ },
314
+ {
315
+ "data": {
316
+ "application/vnd.jupyter.widget-view+json": {
317
+ "model_id": "f4db44eb772642daa5fb9533ce793085",
318
+ "version_major": 2,
319
+ "version_minor": 0
320
+ },
321
+ "text/plain": [
322
+ "Creating parquet from Arrow format: 0%| | 0/11 [00:00<?, ?ba/s]"
323
+ ]
324
+ },
325
+ "metadata": {},
326
+ "output_type": "display_data"
327
+ },
328
+ {
329
+ "data": {
330
+ "application/vnd.jupyter.widget-view+json": {
331
+ "model_id": "8f455a25b8ec4686b36569e323b93e3f",
332
+ "version_major": 2,
333
+ "version_minor": 0
334
+ },
335
+ "text/plain": [
336
+ "README.md: 0%| | 0.00/2.32k [00:00<?, ?B/s]"
337
+ ]
338
+ },
339
+ "metadata": {},
340
+ "output_type": "display_data"
341
+ },
342
+ {
343
+ "name": "stdout",
344
+ "output_type": "stream",
345
+ "text": [
346
+ "[]\n"
347
+ ]
348
+ },
349
+ {
350
+ "data": {
351
+ "application/vnd.jupyter.widget-view+json": {
352
+ "model_id": "780547210b7e4db588220b112c7958f7",
353
+ "version_major": 2,
354
+ "version_minor": 0
355
+ },
356
+ "text/plain": [
357
+ "Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
358
+ ]
359
+ },
360
+ "metadata": {},
361
+ "output_type": "display_data"
362
+ },
363
+ {
364
+ "data": {
365
+ "application/vnd.jupyter.widget-view+json": {
366
+ "model_id": "1d7eaf59c4eb4bcb9aab6dd38fd0f101",
367
+ "version_major": 2,
368
+ "version_minor": 0
369
+ },
370
+ "text/plain": [
371
+ "Map: 0%| | 0/1097 [00:00<?, ? examples/s]"
372
+ ]
373
+ },
374
+ "metadata": {},
375
+ "output_type": "display_data"
376
+ },
377
+ {
378
+ "data": {
379
+ "application/vnd.jupyter.widget-view+json": {
380
+ "model_id": "7ebec41677a04747ae02d1645a19bf8d",
381
+ "version_major": 2,
382
+ "version_minor": 0
383
+ },
384
+ "text/plain": [
385
+ "Creating parquet from Arrow format: 0%| | 0/11 [00:00<?, ?ba/s]"
386
+ ]
387
+ },
388
+ "metadata": {},
389
+ "output_type": "display_data"
390
+ },
391
+ {
392
+ "data": {
393
+ "application/vnd.jupyter.widget-view+json": {
394
+ "model_id": "4ed3f65de03c48f488ca3f518d063d0d",
395
+ "version_major": 2,
396
+ "version_minor": 0
397
+ },
398
+ "text/plain": [
399
+ "README.md: 0%| | 0.00/2.80k [00:00<?, ?B/s]"
400
+ ]
401
+ },
402
+ "metadata": {},
403
+ "output_type": "display_data"
404
+ },
405
+ {
406
+ "name": "stdout",
407
+ "output_type": "stream",
408
+ "text": [
409
+ "[]\n"
410
+ ]
411
+ },
412
+ {
413
+ "data": {
414
+ "application/vnd.jupyter.widget-view+json": {
415
+ "model_id": "d888ccc2841c4ed8a70e94562e404c34",
416
+ "version_major": 2,
417
+ "version_minor": 0
418
+ },
419
+ "text/plain": [
420
+ "Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
421
+ ]
422
+ },
423
+ "metadata": {},
424
+ "output_type": "display_data"
425
+ },
426
+ {
427
+ "data": {
428
+ "application/vnd.jupyter.widget-view+json": {
429
+ "model_id": "578990cd94ef481ab41ae3ffe9dae522",
430
+ "version_major": 2,
431
+ "version_minor": 0
432
+ },
433
+ "text/plain": [
434
+ "Map: 0%| | 0/1097 [00:00<?, ? examples/s]"
435
+ ]
436
+ },
437
+ "metadata": {},
438
+ "output_type": "display_data"
439
+ },
440
+ {
441
+ "data": {
442
+ "application/vnd.jupyter.widget-view+json": {
443
+ "model_id": "6b038d4a6bb044cdbe4d96e436311426",
444
+ "version_major": 2,
445
+ "version_minor": 0
446
+ },
447
+ "text/plain": [
448
+ "Creating parquet from Arrow format: 0%| | 0/11 [00:00<?, ?ba/s]"
449
+ ]
450
+ },
451
+ "metadata": {},
452
+ "output_type": "display_data"
453
+ },
454
+ {
455
+ "data": {
456
+ "application/vnd.jupyter.widget-view+json": {
457
+ "model_id": "81475d2e23da48fe867e9931c92fe246",
458
+ "version_major": 2,
459
+ "version_minor": 0
460
+ },
461
+ "text/plain": [
462
+ "README.md: 0%| | 0.00/2.90k [00:00<?, ?B/s]"
463
+ ]
464
+ },
465
+ "metadata": {},
466
+ "output_type": "display_data"
467
+ },
468
+ {
469
+ "name": "stdout",
470
+ "output_type": "stream",
471
+ "text": [
472
+ "[]\n"
473
+ ]
474
+ },
475
+ {
476
+ "data": {
477
+ "application/vnd.jupyter.widget-view+json": {
478
+ "model_id": "d805ff2d7b43482cb7d9ffe19a473bf1",
479
+ "version_major": 2,
480
+ "version_minor": 0
481
+ },
482
+ "text/plain": [
483
+ "Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
484
+ ]
485
+ },
486
+ "metadata": {},
487
+ "output_type": "display_data"
488
+ },
489
+ {
490
+ "data": {
491
+ "application/vnd.jupyter.widget-view+json": {
492
+ "model_id": "f89273f09ed34a67bb905bfa80a82628",
493
+ "version_major": 2,
494
+ "version_minor": 0
495
+ },
496
+ "text/plain": [
497
+ "Map: 0%| | 0/1097 [00:00<?, ? examples/s]"
498
+ ]
499
+ },
500
+ "metadata": {},
501
+ "output_type": "display_data"
502
+ },
503
+ {
504
+ "data": {
505
+ "application/vnd.jupyter.widget-view+json": {
506
+ "model_id": "563022c1f761483fbb63a3e95d92e5ed",
507
+ "version_major": 2,
508
+ "version_minor": 0
509
+ },
510
+ "text/plain": [
511
+ "Creating parquet from Arrow format: 0%| | 0/11 [00:00<?, ?ba/s]"
512
+ ]
513
+ },
514
+ "metadata": {},
515
+ "output_type": "display_data"
516
+ },
517
+ {
518
+ "data": {
519
+ "application/vnd.jupyter.widget-view+json": {
520
+ "model_id": "466c0109b16d4a14a7587bf395e20270",
521
+ "version_major": 2,
522
+ "version_minor": 0
523
+ },
524
+ "text/plain": [
525
+ "README.md: 0%| | 0.00/3.37k [00:00<?, ?B/s]"
526
+ ]
527
+ },
528
+ "metadata": {},
529
+ "output_type": "display_data"
530
+ },
531
+ {
532
+ "name": "stdout",
533
+ "output_type": "stream",
534
+ "text": [
535
+ "[]\n"
536
+ ]
537
+ },
538
+ {
539
+ "data": {
540
+ "application/vnd.jupyter.widget-view+json": {
541
+ "model_id": "6564df13321c4447bf713efb5dd7c0d4",
542
+ "version_major": 2,
543
+ "version_minor": 0
544
+ },
545
+ "text/plain": [
546
+ "Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
547
+ ]
548
+ },
549
+ "metadata": {},
550
+ "output_type": "display_data"
551
+ },
552
+ {
553
+ "data": {
554
+ "application/vnd.jupyter.widget-view+json": {
555
+ "model_id": "328f67aa739a40a8a7c8d989e0614418",
556
+ "version_major": 2,
557
+ "version_minor": 0
558
+ },
559
+ "text/plain": [
560
+ "Map: 0%| | 0/1097 [00:00<?, ? examples/s]"
561
+ ]
562
+ },
563
+ "metadata": {},
564
+ "output_type": "display_data"
565
+ },
566
+ {
567
+ "data": {
568
+ "application/vnd.jupyter.widget-view+json": {
569
+ "model_id": "65e428172a2c40f7a8c6b267f3a1db54",
570
+ "version_major": 2,
571
+ "version_minor": 0
572
+ },
573
+ "text/plain": [
574
+ "Creating parquet from Arrow format: 0%| | 0/11 [00:00<?, ?ba/s]"
575
+ ]
576
+ },
577
+ "metadata": {},
578
+ "output_type": "display_data"
579
+ },
580
+ {
581
+ "data": {
582
+ "application/vnd.jupyter.widget-view+json": {
583
+ "model_id": "51699e5f26774ba3ad8c15434da11bb7",
584
+ "version_major": 2,
585
+ "version_minor": 0
586
+ },
587
+ "text/plain": [
588
+ "README.md: 0%| | 0.00/3.47k [00:00<?, ?B/s]"
589
+ ]
590
+ },
591
+ "metadata": {},
592
+ "output_type": "display_data"
593
+ },
594
+ {
595
+ "name": "stdout",
596
+ "output_type": "stream",
597
+ "text": [
598
+ "[]\n"
599
+ ]
600
+ },
601
+ {
602
+ "data": {
603
+ "application/vnd.jupyter.widget-view+json": {
604
+ "model_id": "75d0a41d05334cba889bd566cd746f96",
605
+ "version_major": 2,
606
+ "version_minor": 0
607
+ },
608
+ "text/plain": [
609
+ "Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
610
+ ]
611
+ },
612
+ "metadata": {},
613
+ "output_type": "display_data"
614
+ },
615
+ {
616
+ "data": {
617
+ "application/vnd.jupyter.widget-view+json": {
618
+ "model_id": "4223d1e159f6432d98a95a4868c31af5",
619
+ "version_major": 2,
620
+ "version_minor": 0
621
+ },
622
+ "text/plain": [
623
+ "Map: 0%| | 0/1097 [00:00<?, ? examples/s]"
624
+ ]
625
+ },
626
+ "metadata": {},
627
+ "output_type": "display_data"
628
+ },
629
+ {
630
+ "data": {
631
+ "application/vnd.jupyter.widget-view+json": {
632
+ "model_id": "32685d9c0ba54e8288b35d8c6b56369e",
633
+ "version_major": 2,
634
+ "version_minor": 0
635
+ },
636
+ "text/plain": [
637
+ "Creating parquet from Arrow format: 0%| | 0/11 [00:00<?, ?ba/s]"
638
+ ]
639
+ },
640
+ "metadata": {},
641
+ "output_type": "display_data"
642
+ },
643
+ {
644
+ "data": {
645
+ "application/vnd.jupyter.widget-view+json": {
646
+ "model_id": "fa33e335c997460b8047df3d2550fa8f",
647
+ "version_major": 2,
648
+ "version_minor": 0
649
+ },
650
+ "text/plain": [
651
+ "README.md: 0%| | 0.00/3.95k [00:00<?, ?B/s]"
652
+ ]
653
+ },
654
+ "metadata": {},
655
+ "output_type": "display_data"
656
+ },
657
+ {
658
+ "data": {
659
+ "text/plain": [
660
+ "CommitInfo(commit_url='https://huggingface.co/datasets/ivangtorre/second_americas_nlp_2022/commit/edd8ca4dc1e477443d98f7eace86ee02daf62347', commit_message='Upload dataset', commit_description='', oid='edd8ca4dc1e477443d98f7eace86ee02daf62347', pr_url=None, pr_revision=None, pr_num=None)"
661
+ ]
662
+ },
663
+ "execution_count": 21,
664
+ "metadata": {},
665
+ "output_type": "execute_result"
666
  }
667
  ],
668
  "source": [
669
  "import pandas as pd\n",
670
  "from datasets import Dataset, Audio\n",
671
  "\n",
672
+ "def flatten(xss):\n",
673
+ " return [x for xs in xss for x in xs]\n",
674
+ "\n",
675
+ "def create_dataset(df):\n",
676
+ " audio_dataset = Dataset.from_dict({\"audio\": flatten(df[\"file_name\"].values.tolist()),\n",
677
+ " \"subset\": flatten(df[\"subset\"].values.tolist()),\n",
678
+ " \"source_processed\": flatten(df[\"source_processed\"].values.tolist()),\n",
679
+ " \"source_raw\": flatten(df[\"source_raw\"].values.tolist()),\n",
680
+ " \"target_raw\": flatten(df[\"target_raw\"].values.tolist()),\n",
681
+ " \"split\": flatten(df[\"split\"].values.tolist()),\n",
682
+ " },\n",
683
+ " ).cast_column(\"audio\", Audio())\n",
684
+ " return(audio_dataset)\n",
685
+ "\n",
686
+ "\n",
687
  "def generate_df(language, split):\n",
688
  " # QUECHUA TRAIN\n",
689
  " with open(\"./../\"+language +\"_\"+split+\".tsv\") as f:\n",
 
696
  " df1 = df1.assign(subset=[language]*df1.shape[0])\n",
697
  " df1 = df1.rename(columns={'wav': 'file_name'})\n",
698
  " df1['file_name'] = 'data/' + language + '/' + split +'/' + df1['file_name'].astype(str)\n",
699
+ " audio_dataset = create_dataset(df)\n",
700
+ " return audio_dataset\n",
701
  "\n",
 
 
 
 
 
 
 
 
702
  "\n",
 
 
703
  "\n",
704
+ "audio_dataset = generate_df(\"quechua\", \"train\")\n",
705
+ "audio_dataset.push_to_hub(\"ivangtorre/second_americas_nlp_2022\", \"quechua\", split=\"train\")\n",
706
+ "audio_dataset = generate_df(\"quechua\", \"dev\")\n",
707
+ "audio_dataset.push_to_hub(\"ivangtorre/second_americas_nlp_2022\", \"quechua\", split=\"dev\")\n",
 
 
 
 
 
708
  "\n",
709
+ "audio_dataset = generate_df(\"guarani\", \"train\")\n",
710
+ "audio_dataset.push_to_hub(\"ivangtorre/second_americas_nlp_2022\", \"guarani\", split=\"train\")\n",
711
+ "audio_dataset = generate_df(\"guarani\", \"dev\")\n",
712
+ "audio_dataset.push_to_hub(\"ivangtorre/second_americas_nlp_2022\", \"guarani\", split=\"dev\")\n",
713
  "\n",
714
+ "audio_dataset = generate_df(\"kotiria\", \"dev\")\n",
715
+ "audio_dataset.push_to_hub(\"ivangtorre/second_americas_nlp_2022\", \"kotiria\", split=\"train\")\n",
716
+ "audio_dataset = generate_df(\"kotiria\", \"dev\")\n",
717
+ "audio_dataset.push_to_hub(\"ivangtorre/second_americas_nlp_2022\", \"kotiria\", split=\"dev\")\n",
 
 
 
 
 
718
  "\n",
719
+ "audio_dataset = generate_df(\"bribri\", \"train\")\n",
720
+ "audio_dataset.push_to_hub(\"ivangtorre/second_americas_nlp_2022\", \"bribri\", split=\"train\")\n",
721
+ "audio_dataset = generate_df(\"bribri\", \"dev\")\n",
722
+ "audio_dataset.push_to_hub(\"ivangtorre/second_americas_nlp_2022\", \"bribri\", split=\"dev\")\n",
723
+ "\n",
724
+ "audio_dataset = generate_df(\"waikhana\", \"dev\")\n",
725
+ "audio_dataset.push_to_hub(\"ivangtorre/second_americas_nlp_2022\", \"waikhana\", split=\"train\")\n",
726
+ "audio_dataset = generate_df(\"waikhana\", \"dev\")\n",
727
+ "audio_dataset.push_to_hub(\"ivangtorre/second_americas_nlp_2022\", \"waikhana\", split=\"dev\")\n"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
728
  ]
729
  },
730
  {
data/bribri/dev/bribri000495.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:175a922253b563435a609801c1afeaafdbeb70d31c28766110a39aa30a317171
3
- size 58668
 
 
 
 
data/bribri/dev/bribri000496.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:c668ffd5567480dda63891aeaead5b75ec9b2947c53d12f4016c4dfc616d4ba7
3
- size 95948
 
 
 
 
data/bribri/dev/bribri000497.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:b3ede6c4bfd0d7370425081b4c84bf6536a9390e28f7154f60998bd1c9a7dd01
3
- size 62124
 
 
 
 
data/bribri/dev/bribri000498.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:c4be1be794eac37e86fd3d5636405e0eeed1e29dddc1f82842f3200ee9152d5d
3
- size 91564
 
 
 
 
data/bribri/dev/bribri000499.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:9dedfa9ce0491b6896c572eae693bcfb682c5dcb20fcb4bdb8168927274883c7
3
- size 53100
 
 
 
 
data/bribri/dev/bribri000500.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:c08fbd56578ae10e8302e3190202260b571e05497bd0fbe895e75d2355b96fcc
3
- size 64844
 
 
 
 
data/bribri/dev/bribri000501.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:212460312c148cc81950f9307044d485fd2dc52fdcf03fe15c664c894f36e623
3
- size 36268
 
 
 
 
data/bribri/dev/bribri000502.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:9ce080851b87637f4badf4c96deacfc1d8f1484fea939a38a432151c64998fec
3
- size 112716
 
 
 
 
data/bribri/dev/bribri000503.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:80d49821c4cdd99b81f006013ee7754c7d4168dc00b1fafdcca4abdd3b19860a
3
- size 138796
 
 
 
 
data/bribri/dev/bribri000504.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:53c86cb82f6df424359490e0ba34e7a461c76a045c98c145c9aa4ee2a16f8330
3
- size 80140
 
 
 
 
data/bribri/dev/bribri000505.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:b36e7553ecb3cec30f40c1466b18b6d1b55cf47581e26f85d3c32b9824939181
3
- size 86668
 
 
 
 
data/bribri/dev/bribri000506.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:a829887bca8a339be00c35e65c36f686c163a709cd2d26212e9045960c853d60
3
- size 55244
 
 
 
 
data/bribri/dev/bribri000507.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:d2567b8331a9f992ea12167d27269d553539278b3d5020979fbced5a6d214eaa
3
- size 50796
 
 
 
 
data/bribri/dev/bribri000508.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:5659222a355428102ca0c3d547899b274c2221ab05d83000352ac670a3109645
3
- size 45452
 
 
 
 
data/bribri/dev/bribri000509.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:389d70464bfcb620f99b171d1b73f09abd27d4d77aa285a499e39f61a5d0e906
3
- size 61932
 
 
 
 
data/bribri/dev/bribri000510.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:27da638de54e1428517133673c19e645fd043045e9486114ccd6eba061473d09
3
- size 27628
 
 
 
 
data/bribri/dev/bribri000511.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:9b25615fe0e24173fe2a2b44a4fc163d60ee2a38a605b61fe9cf6cb35b3a1e04
3
- size 92972
 
 
 
 
data/bribri/dev/bribri000512.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:9b4ebd83d9bedfcc8070178feeeb9e8ea43f6d733e8946a014344602384455d9
3
- size 115724
 
 
 
 
data/bribri/dev/bribri000513.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:e8e6dc66a4b771dde2158afeaf0d4af67a626896e05ecbe10fe3ce373cdef6bb
3
- size 123820
 
 
 
 
data/bribri/dev/bribri000514.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:effeec1e6f0b1282c3d9d2a55df60a31252d87f2301b059ba4a05bb59f1c7a23
3
- size 55148
 
 
 
 
data/bribri/dev/bribri000515.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:227e41b580f0bf16def5744bea350229e1d2a971e6ea43bebbb171340098b927
3
- size 52012
 
 
 
 
data/bribri/dev/bribri000516.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:91eb18d1211bdb9045cc26111035d1d4bb4cd90413bb301a251890e0dcf5b050
3
- size 98028
 
 
 
 
data/bribri/dev/bribri000517.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:13d4061300c198e61fed58692772c34695e68caac12c86c95a73cafb682797d9
3
- size 91212
 
 
 
 
data/bribri/dev/bribri000518.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:e4b70f4a21ffa35b66cb02824e833b862b4cf2a8dfc6c8043c6d9903e802a0da
3
- size 150316
 
 
 
 
data/bribri/dev/bribri000519.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:3bc6cbe69234c78ecd6b0ecc0f6ec848be26cdff58e399ba242c0dd58758270a
3
- size 75660
 
 
 
 
data/bribri/dev/bribri000520.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:6c9c04960c1d5790cf336e27d75608aa564c59e6623750fe2467393f07779b39
3
- size 59532
 
 
 
 
data/bribri/dev/bribri000521.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:6872f35f6095696154e817d5f15206e61b6449da0ba82e289819a35c164679d0
3
- size 72364
 
 
 
 
data/bribri/dev/bribri000522.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:c31105fe5d315a7bae88d160da3274fb30cc1bfc5312637efb47cfe6d76dd5c3
3
- size 60140
 
 
 
 
data/bribri/dev/bribri000523.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:4f76c00aed8d06a7b8704d590826e39d830aa2aee0d4a41f711818b06755fe12
3
- size 68556
 
 
 
 
data/bribri/dev/bribri000524.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:c4a44c46e47a09e8df741ca326f303379833c1fcb2a1aa90e4082ca434d6e480
3
- size 141452
 
 
 
 
data/bribri/dev/bribri000525.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:e85dece4f96ef929c443014c45668bf2120300b42bc718a9619e35548d6bfcff
3
- size 142220
 
 
 
 
data/bribri/dev/bribri000526.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:8c27566bf57893f6c8ebfdf320bae22963a4c9fa11ed92f70e776121b7e7d97f
3
- size 126188
 
 
 
 
data/bribri/dev/bribri000527.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:f3e33c6344cf950c2096d7a1acd7e062072ac2e066dd92d231d165ed18d49ac1
3
- size 130508
 
 
 
 
data/bribri/dev/bribri000528.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:2aeefd514429bee45e07a2bd45f48fd8277dc95ceeb177badd093d7e832ae85b
3
- size 82636
 
 
 
 
data/bribri/dev/bribri000529.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:66110681a8d594649425c59a967957aa1937cf5cfd7a81dbe54f0edd6719e929
3
- size 52908
 
 
 
 
data/bribri/dev/bribri000530.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:74016813d0c9b4fcfd9b47337f9381c0106f3b63e79b35ece5e7d777c11e06f8
3
- size 34988
 
 
 
 
data/bribri/dev/bribri000531.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:9b6540b55cdf03c2ae4755d608cb7605586835e3692c4f8fc375d5d3c203e2a4
3
- size 59916
 
 
 
 
data/bribri/dev/bribri000532.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:78f3a66aff74b68e8bcbede21d516ef4c639f85007c2d83d7c93ebd2463031ff
3
- size 78060
 
 
 
 
data/bribri/dev/bribri000533.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:84d12076e8840d77416e970009a6f1f31ea4f8fde09be025f56cd69204a06570
3
- size 79244
 
 
 
 
data/bribri/dev/bribri000534.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:442237a2ca7f0ea883d49cc5cb07f95a4ea7888c8c58856cc64ec96a6e1813eb
3
- size 125932
 
 
 
 
data/bribri/dev/bribri000535.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:cdf904f31e144d14d211fcbaa5bbee28d0de964d4e88db3d247a05e8bc6e358e
3
- size 39436
 
 
 
 
data/bribri/dev/bribri000536.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:a06905e00325e14efb2f0e5c45986cecce94501bb55e09a94c5b252fb7cce2a2
3
- size 74188
 
 
 
 
data/bribri/dev/bribri000537.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:f32526817eb370a1494c9c63be65c3bcc63ca6da026f36960ea40d871ef783a6
3
- size 95756
 
 
 
 
data/bribri/dev/bribri000538.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:20f03997491c8ea6556ddbec886d65c719f348badb59c41ada5e169c3aef8b40
3
- size 115884
 
 
 
 
data/bribri/dev/bribri000539.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:75626cc8029a00312ea0edcb3707e49efdc9cc59ea5f04dd8b343e9da7227a66
3
- size 97740
 
 
 
 
data/bribri/dev/bribri000540.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:7e26cc16773a6eea09a4546f7d7c74a10d897612ca4927cb0653d22fe485ab3a
3
- size 71276
 
 
 
 
data/bribri/dev/bribri000541.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:f277892829eef3f3ef0605852eaa474d7c525c66de5cefe48b7b78132566c6ba
3
- size 86188
 
 
 
 
data/bribri/dev/bribri000542.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:929ac23d3ab1faeffe7ffb367ccba4f63280f79380390227bf42b2b37c33e495
3
- size 70636
 
 
 
 
data/bribri/dev/bribri000543.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:3b8bc4fbd110fe27e76f777653c90eccb28eed13a462a343fae2caa5dbd30cd6
3
- size 35756