ivangtorre
commited on
Commit
·
fd0d156
1
Parent(s):
edd8ca4
changing and deleting files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- Generate_metadata.ipynb +586 -293
- data/bribri/dev/bribri000495.wav +0 -3
- data/bribri/dev/bribri000496.wav +0 -3
- data/bribri/dev/bribri000497.wav +0 -3
- data/bribri/dev/bribri000498.wav +0 -3
- data/bribri/dev/bribri000499.wav +0 -3
- data/bribri/dev/bribri000500.wav +0 -3
- data/bribri/dev/bribri000501.wav +0 -3
- data/bribri/dev/bribri000502.wav +0 -3
- data/bribri/dev/bribri000503.wav +0 -3
- data/bribri/dev/bribri000504.wav +0 -3
- data/bribri/dev/bribri000505.wav +0 -3
- data/bribri/dev/bribri000506.wav +0 -3
- data/bribri/dev/bribri000507.wav +0 -3
- data/bribri/dev/bribri000508.wav +0 -3
- data/bribri/dev/bribri000509.wav +0 -3
- data/bribri/dev/bribri000510.wav +0 -3
- data/bribri/dev/bribri000511.wav +0 -3
- data/bribri/dev/bribri000512.wav +0 -3
- data/bribri/dev/bribri000513.wav +0 -3
- data/bribri/dev/bribri000514.wav +0 -3
- data/bribri/dev/bribri000515.wav +0 -3
- data/bribri/dev/bribri000516.wav +0 -3
- data/bribri/dev/bribri000517.wav +0 -3
- data/bribri/dev/bribri000518.wav +0 -3
- data/bribri/dev/bribri000519.wav +0 -3
- data/bribri/dev/bribri000520.wav +0 -3
- data/bribri/dev/bribri000521.wav +0 -3
- data/bribri/dev/bribri000522.wav +0 -3
- data/bribri/dev/bribri000523.wav +0 -3
- data/bribri/dev/bribri000524.wav +0 -3
- data/bribri/dev/bribri000525.wav +0 -3
- data/bribri/dev/bribri000526.wav +0 -3
- data/bribri/dev/bribri000527.wav +0 -3
- data/bribri/dev/bribri000528.wav +0 -3
- data/bribri/dev/bribri000529.wav +0 -3
- data/bribri/dev/bribri000530.wav +0 -3
- data/bribri/dev/bribri000531.wav +0 -3
- data/bribri/dev/bribri000532.wav +0 -3
- data/bribri/dev/bribri000533.wav +0 -3
- data/bribri/dev/bribri000534.wav +0 -3
- data/bribri/dev/bribri000535.wav +0 -3
- data/bribri/dev/bribri000536.wav +0 -3
- data/bribri/dev/bribri000537.wav +0 -3
- data/bribri/dev/bribri000538.wav +0 -3
- data/bribri/dev/bribri000539.wav +0 -3
- data/bribri/dev/bribri000540.wav +0 -3
- data/bribri/dev/bribri000541.wav +0 -3
- data/bribri/dev/bribri000542.wav +0 -3
- data/bribri/dev/bribri000543.wav +0 -3
Generate_metadata.ipynb
CHANGED
@@ -18,7 +18,7 @@
|
|
18 |
},
|
19 |
{
|
20 |
"cell_type": "code",
|
21 |
-
"execution_count":
|
22 |
"id": "aa925968",
|
23 |
"metadata": {
|
24 |
"scrolled": true
|
@@ -28,22 +28,18 @@
|
|
28 |
"name": "stdout",
|
29 |
"output_type": "stream",
|
30 |
"text": [
|
31 |
-
"[]\n"
|
32 |
-
"[]\n",
|
33 |
-
"['kotiria000263.wav', 'kotiria000265.wav', 'kotiria000273.wav', 'kotiria000285.wav', 'kotiria000289.wav', 'kotiria000291.wav', 'kotiria000294.wav', 'kotiria000295.wav', 'kotiria000297.wav', 'kotiria000300.wav', 'kotiria000306.wav', 'kotiria000308.wav']\n",
|
34 |
-
"[]\n",
|
35 |
-
"['waikhana000740.wav', 'waikhana000745.wav', 'waikhana000746.wav']\n"
|
36 |
]
|
37 |
},
|
38 |
{
|
39 |
"data": {
|
40 |
"application/vnd.jupyter.widget-view+json": {
|
41 |
-
"model_id": "
|
42 |
"version_major": 2,
|
43 |
"version_minor": 0
|
44 |
},
|
45 |
"text/plain": [
|
46 |
-
"Uploading the dataset shards: 0%| | 0/
|
47 |
]
|
48 |
},
|
49 |
"metadata": {},
|
@@ -52,12 +48,12 @@
|
|
52 |
{
|
53 |
"data": {
|
54 |
"application/vnd.jupyter.widget-view+json": {
|
55 |
-
"model_id": "
|
56 |
"version_major": 2,
|
57 |
"version_minor": 0
|
58 |
},
|
59 |
"text/plain": [
|
60 |
-
"Map: 0%| | 0/
|
61 |
]
|
62 |
},
|
63 |
"metadata": {},
|
@@ -66,12 +62,12 @@
|
|
66 |
{
|
67 |
"data": {
|
68 |
"application/vnd.jupyter.widget-view+json": {
|
69 |
-
"model_id": "
|
70 |
"version_major": 2,
|
71 |
"version_minor": 0
|
72 |
},
|
73 |
"text/plain": [
|
74 |
-
"Creating parquet from Arrow format: 0%| | 0/
|
75 |
]
|
76 |
},
|
77 |
"metadata": {},
|
@@ -80,26 +76,33 @@
|
|
80 |
{
|
81 |
"data": {
|
82 |
"application/vnd.jupyter.widget-view+json": {
|
83 |
-
"model_id": "
|
84 |
"version_major": 2,
|
85 |
"version_minor": 0
|
86 |
},
|
87 |
"text/plain": [
|
88 |
-
"
|
89 |
]
|
90 |
},
|
91 |
"metadata": {},
|
92 |
"output_type": "display_data"
|
93 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
{
|
95 |
"data": {
|
96 |
"application/vnd.jupyter.widget-view+json": {
|
97 |
-
"model_id": "
|
98 |
"version_major": 2,
|
99 |
"version_minor": 0
|
100 |
},
|
101 |
"text/plain": [
|
102 |
-
"
|
103 |
]
|
104 |
},
|
105 |
"metadata": {},
|
@@ -108,12 +111,12 @@
|
|
108 |
{
|
109 |
"data": {
|
110 |
"application/vnd.jupyter.widget-view+json": {
|
111 |
-
"model_id": "
|
112 |
"version_major": 2,
|
113 |
"version_minor": 0
|
114 |
},
|
115 |
"text/plain": [
|
116 |
-
"Map: 0%| | 0/
|
117 |
]
|
118 |
},
|
119 |
"metadata": {},
|
@@ -122,34 +125,565 @@
|
|
122 |
{
|
123 |
"data": {
|
124 |
"application/vnd.jupyter.widget-view+json": {
|
125 |
-
"model_id": "
|
126 |
"version_major": 2,
|
127 |
"version_minor": 0
|
128 |
},
|
129 |
"text/plain": [
|
130 |
-
"Creating parquet from Arrow format: 0%| | 0/
|
131 |
]
|
132 |
},
|
133 |
"metadata": {},
|
134 |
"output_type": "display_data"
|
135 |
},
|
136 |
{
|
137 |
-
"
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
"
|
144 |
-
|
145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
}
|
148 |
],
|
149 |
"source": [
|
150 |
"import pandas as pd\n",
|
151 |
"from datasets import Dataset, Audio\n",
|
152 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
"def generate_df(language, split):\n",
|
154 |
" # QUECHUA TRAIN\n",
|
155 |
" with open(\"./../\"+language +\"_\"+split+\".tsv\") as f:\n",
|
@@ -162,276 +696,35 @@
|
|
162 |
" df1 = df1.assign(subset=[language]*df1.shape[0])\n",
|
163 |
" df1 = df1.rename(columns={'wav': 'file_name'})\n",
|
164 |
" df1['file_name'] = 'data/' + language + '/' + split +'/' + df1['file_name'].astype(str)\n",
|
165 |
-
"
|
|
|
166 |
"\n",
|
167 |
-
"df = generate_df(\"quechua\", \"train\")\n",
|
168 |
-
"df = pd.concat([df, generate_df(\"guarani\", \"train\")])\n",
|
169 |
-
"df = pd.concat([df, generate_df(\"kotiria\", \"train\")])\n",
|
170 |
-
"df = pd.concat([df, generate_df(\"bribri\", \"train\")])\n",
|
171 |
-
"df = pd.concat([df, generate_df(\"waikhana\", \"train\")])\n",
|
172 |
-
"cols = df.columns.tolist()\n",
|
173 |
-
"cols = cols[-1:] + cols[:-1]\n",
|
174 |
-
"df = df[cols]\n",
|
175 |
"\n",
|
176 |
-
"def flatten(xss):\n",
|
177 |
-
" return [x for xs in xss for x in xs]\n",
|
178 |
"\n",
|
179 |
-
"
|
180 |
-
"
|
181 |
-
"audio_dataset =
|
182 |
-
"
|
183 |
-
" \"source_raw\": flatten(df[\"source_raw\"].values.tolist()),\n",
|
184 |
-
" \"target_raw\": flatten(df[\"target_raw\"].values.tolist()),\n",
|
185 |
-
" },\n",
|
186 |
-
" ).cast_column(\"audio\", Audio())\n",
|
187 |
-
"audio_dataset.push_to_hub(\"ivangtorre/second_americas_nlp_2022\", split=\"train\")\n",
|
188 |
"\n",
|
189 |
-
"
|
|
|
|
|
|
|
190 |
"\n",
|
191 |
-
"
|
192 |
-
"
|
193 |
-
"
|
194 |
-
"
|
195 |
-
"df = pd.concat([df, generate_df(\"waikhana\", \"dev\")])\n",
|
196 |
-
"cols = df.columns.tolist()\n",
|
197 |
-
"cols = cols[-1:] + cols[:-1]\n",
|
198 |
-
"df = df[cols]\n",
|
199 |
-
"df.to_csv(\"dev.csv\", sep='\\t', index=None)\n",
|
200 |
"\n",
|
201 |
-
"
|
202 |
-
"
|
203 |
-
"
|
204 |
-
"
|
205 |
-
"\n"
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
"execution_count": 6,
|
211 |
-
"id": "4ce2eeb3",
|
212 |
-
"metadata": {},
|
213 |
-
"outputs": [
|
214 |
-
{
|
215 |
-
"data": {
|
216 |
-
"text/plain": [
|
217 |
-
"{'audio': {'path': 'data/quechua/train/quechua000000.wav',\n",
|
218 |
-
" 'array': array([0.00045776, 0.00042725, 0.00018311, ..., 0.00286865, 0.00186157,\n",
|
219 |
-
" 0.00253296]),\n",
|
220 |
-
" 'sampling_rate': 16000}}"
|
221 |
-
]
|
222 |
-
},
|
223 |
-
"execution_count": 6,
|
224 |
-
"metadata": {},
|
225 |
-
"output_type": "execute_result"
|
226 |
-
}
|
227 |
-
],
|
228 |
-
"source": [
|
229 |
-
"audio_dataset[0]"
|
230 |
-
]
|
231 |
-
},
|
232 |
-
{
|
233 |
-
"cell_type": "code",
|
234 |
-
"execution_count": 10,
|
235 |
-
"id": "bd39f2f4",
|
236 |
-
"metadata": {},
|
237 |
-
"outputs": [
|
238 |
-
{
|
239 |
-
"data": {
|
240 |
-
"text/html": [
|
241 |
-
"<div>\n",
|
242 |
-
"<style scoped>\n",
|
243 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
244 |
-
" vertical-align: middle;\n",
|
245 |
-
" }\n",
|
246 |
-
"\n",
|
247 |
-
" .dataframe tbody tr th {\n",
|
248 |
-
" vertical-align: top;\n",
|
249 |
-
" }\n",
|
250 |
-
"\n",
|
251 |
-
" .dataframe thead tr th {\n",
|
252 |
-
" text-align: left;\n",
|
253 |
-
" }\n",
|
254 |
-
"</style>\n",
|
255 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
256 |
-
" <thead>\n",
|
257 |
-
" <tr>\n",
|
258 |
-
" <th></th>\n",
|
259 |
-
" <th>subset</th>\n",
|
260 |
-
" <th>file_name</th>\n",
|
261 |
-
" <th>source_processed</th>\n",
|
262 |
-
" <th>source_raw</th>\n",
|
263 |
-
" <th>target_raw</th>\n",
|
264 |
-
" <th>split</th>\n",
|
265 |
-
" </tr>\n",
|
266 |
-
" </thead>\n",
|
267 |
-
" <tbody>\n",
|
268 |
-
" <tr>\n",
|
269 |
-
" <th>0</th>\n",
|
270 |
-
" <td>quechua</td>\n",
|
271 |
-
" <td>data/quechua/train/quechua000000.wav</td>\n",
|
272 |
-
" <td>wañuchisunchu kay suwakunata</td>\n",
|
273 |
-
" <td>wañuchisunchu kay suwakunata</td>\n",
|
274 |
-
" <td>matemos a esos ladrones</td>\n",
|
275 |
-
" <td>train</td>\n",
|
276 |
-
" </tr>\n",
|
277 |
-
" <tr>\n",
|
278 |
-
" <th>1</th>\n",
|
279 |
-
" <td>quechua</td>\n",
|
280 |
-
" <td>data/quechua/train/quechua000001.wav</td>\n",
|
281 |
-
" <td>imaninkichikmi qamkuna</td>\n",
|
282 |
-
" <td>imaninkichikmi qamkuna</td>\n",
|
283 |
-
" <td>que dicen ustedes</td>\n",
|
284 |
-
" <td>train</td>\n",
|
285 |
-
" </tr>\n",
|
286 |
-
" <tr>\n",
|
287 |
-
" <th>2</th>\n",
|
288 |
-
" <td>quechua</td>\n",
|
289 |
-
" <td>data/quechua/train/quechua000002.wav</td>\n",
|
290 |
-
" <td>hatun urqukunapi kunturkunapas uyarirqan</td>\n",
|
291 |
-
" <td>hatun urqukunapi kunturkunapas uyarirqan</td>\n",
|
292 |
-
" <td>en grandes montañas hasta los condores escuchaban</td>\n",
|
293 |
-
" <td>train</td>\n",
|
294 |
-
" </tr>\n",
|
295 |
-
" <tr>\n",
|
296 |
-
" <th>3</th>\n",
|
297 |
-
" <td>quechua</td>\n",
|
298 |
-
" <td>data/quechua/train/quechua000003.wav</td>\n",
|
299 |
-
" <td>ninsi winsislaw maqtaqa tumpa machasqaña</td>\n",
|
300 |
-
" <td>ninsi winsislaw maqtaqa tumpa machasqaña</td>\n",
|
301 |
-
" <td>dice el joven wessceslao cuando ya estaba borr...</td>\n",
|
302 |
-
" <td>train</td>\n",
|
303 |
-
" </tr>\n",
|
304 |
-
" <tr>\n",
|
305 |
-
" <th>4</th>\n",
|
306 |
-
" <td>quechua</td>\n",
|
307 |
-
" <td>data/quechua/train/quechua000004.wav</td>\n",
|
308 |
-
" <td>huk qilli chuspi chuspi misapi kimsantin suwak...</td>\n",
|
309 |
-
" <td>huk qilli chuspi chuspi misapi kimsantin suwak...</td>\n",
|
310 |
-
" <td>una sucia mosca en la mesa con los tres ladron...</td>\n",
|
311 |
-
" <td>train</td>\n",
|
312 |
-
" </tr>\n",
|
313 |
-
" <tr>\n",
|
314 |
-
" <th>...</th>\n",
|
315 |
-
" <td>...</td>\n",
|
316 |
-
" <td>...</td>\n",
|
317 |
-
" <td>...</td>\n",
|
318 |
-
" <td>...</td>\n",
|
319 |
-
" <td>...</td>\n",
|
320 |
-
" <td>...</td>\n",
|
321 |
-
" </tr>\n",
|
322 |
-
" <tr>\n",
|
323 |
-
" <th>1411</th>\n",
|
324 |
-
" <td>waikhana</td>\n",
|
325 |
-
" <td>data/waikhana/train/waikhana001414.wav</td>\n",
|
326 |
-
" <td>masiaha malia masinapea</td>\n",
|
327 |
-
" <td>masiaha malia masinapea, ()</td>\n",
|
328 |
-
" <td>Nos tambem sabemos (as historias antigas)</td>\n",
|
329 |
-
" <td>train</td>\n",
|
330 |
-
" </tr>\n",
|
331 |
-
" <tr>\n",
|
332 |
-
" <th>1412</th>\n",
|
333 |
-
" <td>waikhana</td>\n",
|
334 |
-
" <td>data/waikhana/train/waikhana001415.wav</td>\n",
|
335 |
-
" <td>a'lide mu:sale ya'uaha yu:'u:</td>\n",
|
336 |
-
" <td>a'lide mu:sale ya'uaha yu:'u:</td>\n",
|
337 |
-
" <td>Tudo isso estou explicando para voces.</td>\n",
|
338 |
-
" <td>train</td>\n",
|
339 |
-
" </tr>\n",
|
340 |
-
" <tr>\n",
|
341 |
-
" <th>1413</th>\n",
|
342 |
-
" <td>waikhana</td>\n",
|
343 |
-
" <td>data/waikhana/train/waikhana001416.wav</td>\n",
|
344 |
-
" <td>a'lide tina a'likodo pekasonoko a'li gravaka'a...</td>\n",
|
345 |
-
" <td>a'lide tina a'likodo pekasonoko a'li gravaka'a...</td>\n",
|
346 |
-
" <td>Tudo isso essa branca vai gravar.</td>\n",
|
347 |
-
" <td>train</td>\n",
|
348 |
-
" </tr>\n",
|
349 |
-
" <tr>\n",
|
350 |
-
" <th>1414</th>\n",
|
351 |
-
" <td>waikhana</td>\n",
|
352 |
-
" <td>data/waikhana/train/waikhana001417.wav</td>\n",
|
353 |
-
" <td>sayeotha ninokata mipe</td>\n",
|
354 |
-
" <td>sayeotha ninokata mipe</td>\n",
|
355 |
-
" <td>Ela disse que vai fazer tudo isso,</td>\n",
|
356 |
-
" <td>train</td>\n",
|
357 |
-
" </tr>\n",
|
358 |
-
" <tr>\n",
|
359 |
-
" <th>1415</th>\n",
|
360 |
-
" <td>waikhana</td>\n",
|
361 |
-
" <td>data/waikhana/train/waikhana001418.wav</td>\n",
|
362 |
-
" <td>yu:'u:le ~o'o ihide yu:'u: akaye</td>\n",
|
363 |
-
" <td>yu:'u:le ~o'o ihide yu:'u: akaye</td>\n",
|
364 |
-
" <td>Para mim, e' ate aqui, meus irmaos.</td>\n",
|
365 |
-
" <td>train</td>\n",
|
366 |
-
" </tr>\n",
|
367 |
-
" </tbody>\n",
|
368 |
-
"</table>\n",
|
369 |
-
"<p>4749 rows × 6 columns</p>\n",
|
370 |
-
"</div>"
|
371 |
-
],
|
372 |
-
"text/plain": [
|
373 |
-
" subset file_name \\\n",
|
374 |
-
"0 quechua data/quechua/train/quechua000000.wav \n",
|
375 |
-
"1 quechua data/quechua/train/quechua000001.wav \n",
|
376 |
-
"2 quechua data/quechua/train/quechua000002.wav \n",
|
377 |
-
"3 quechua data/quechua/train/quechua000003.wav \n",
|
378 |
-
"4 quechua data/quechua/train/quechua000004.wav \n",
|
379 |
-
"... ... ... \n",
|
380 |
-
"1411 waikhana data/waikhana/train/waikhana001414.wav \n",
|
381 |
-
"1412 waikhana data/waikhana/train/waikhana001415.wav \n",
|
382 |
-
"1413 waikhana data/waikhana/train/waikhana001416.wav \n",
|
383 |
-
"1414 waikhana data/waikhana/train/waikhana001417.wav \n",
|
384 |
-
"1415 waikhana data/waikhana/train/waikhana001418.wav \n",
|
385 |
-
"\n",
|
386 |
-
" source_processed \\\n",
|
387 |
-
"0 wañuchisunchu kay suwakunata \n",
|
388 |
-
"1 imaninkichikmi qamkuna \n",
|
389 |
-
"2 hatun urqukunapi kunturkunapas uyarirqan \n",
|
390 |
-
"3 ninsi winsislaw maqtaqa tumpa machasqaña \n",
|
391 |
-
"4 huk qilli chuspi chuspi misapi kimsantin suwak... \n",
|
392 |
-
"... ... \n",
|
393 |
-
"1411 masiaha malia masinapea \n",
|
394 |
-
"1412 a'lide mu:sale ya'uaha yu:'u: \n",
|
395 |
-
"1413 a'lide tina a'likodo pekasonoko a'li gravaka'a... \n",
|
396 |
-
"1414 sayeotha ninokata mipe \n",
|
397 |
-
"1415 yu:'u:le ~o'o ihide yu:'u: akaye \n",
|
398 |
-
"\n",
|
399 |
-
" source_raw \\\n",
|
400 |
-
"0 wañuchisunchu kay suwakunata \n",
|
401 |
-
"1 imaninkichikmi qamkuna \n",
|
402 |
-
"2 hatun urqukunapi kunturkunapas uyarirqan \n",
|
403 |
-
"3 ninsi winsislaw maqtaqa tumpa machasqaña \n",
|
404 |
-
"4 huk qilli chuspi chuspi misapi kimsantin suwak... \n",
|
405 |
-
"... ... \n",
|
406 |
-
"1411 masiaha malia masinapea, () \n",
|
407 |
-
"1412 a'lide mu:sale ya'uaha yu:'u: \n",
|
408 |
-
"1413 a'lide tina a'likodo pekasonoko a'li gravaka'a... \n",
|
409 |
-
"1414 sayeotha ninokata mipe \n",
|
410 |
-
"1415 yu:'u:le ~o'o ihide yu:'u: akaye \n",
|
411 |
-
"\n",
|
412 |
-
" target_raw split \n",
|
413 |
-
"0 matemos a esos ladrones train \n",
|
414 |
-
"1 que dicen ustedes train \n",
|
415 |
-
"2 en grandes montañas hasta los condores escuchaban train \n",
|
416 |
-
"3 dice el joven wessceslao cuando ya estaba borr... train \n",
|
417 |
-
"4 una sucia mosca en la mesa con los tres ladron... train \n",
|
418 |
-
"... ... ... \n",
|
419 |
-
"1411 Nos tambem sabemos (as historias antigas) train \n",
|
420 |
-
"1412 Tudo isso estou explicando para voces. train \n",
|
421 |
-
"1413 Tudo isso essa branca vai gravar. train \n",
|
422 |
-
"1414 Ela disse que vai fazer tudo isso, train \n",
|
423 |
-
"1415 Para mim, e' ate aqui, meus irmaos. train \n",
|
424 |
-
"\n",
|
425 |
-
"[4749 rows x 6 columns]"
|
426 |
-
]
|
427 |
-
},
|
428 |
-
"execution_count": 10,
|
429 |
-
"metadata": {},
|
430 |
-
"output_type": "execute_result"
|
431 |
-
}
|
432 |
-
],
|
433 |
-
"source": [
|
434 |
-
"df"
|
435 |
]
|
436 |
},
|
437 |
{
|
|
|
18 |
},
|
19 |
{
|
20 |
"cell_type": "code",
|
21 |
+
"execution_count": 21,
|
22 |
"id": "aa925968",
|
23 |
"metadata": {
|
24 |
"scrolled": true
|
|
|
28 |
"name": "stdout",
|
29 |
"output_type": "stream",
|
30 |
"text": [
|
31 |
+
"[]\n"
|
|
|
|
|
|
|
|
|
32 |
]
|
33 |
},
|
34 |
{
|
35 |
"data": {
|
36 |
"application/vnd.jupyter.widget-view+json": {
|
37 |
+
"model_id": "86aedd302b3041d9b4bf80a3c60c096a",
|
38 |
"version_major": 2,
|
39 |
"version_minor": 0
|
40 |
},
|
41 |
"text/plain": [
|
42 |
+
"Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
|
43 |
]
|
44 |
},
|
45 |
"metadata": {},
|
|
|
48 |
{
|
49 |
"data": {
|
50 |
"application/vnd.jupyter.widget-view+json": {
|
51 |
+
"model_id": "d40686210f1b49cf9a2b980964f32c34",
|
52 |
"version_major": 2,
|
53 |
"version_minor": 0
|
54 |
},
|
55 |
"text/plain": [
|
56 |
+
"Map: 0%| | 0/1097 [00:00<?, ? examples/s]"
|
57 |
]
|
58 |
},
|
59 |
"metadata": {},
|
|
|
62 |
{
|
63 |
"data": {
|
64 |
"application/vnd.jupyter.widget-view+json": {
|
65 |
+
"model_id": "6e86ed4b25894e37837cdb6cb46e662a",
|
66 |
"version_major": 2,
|
67 |
"version_minor": 0
|
68 |
},
|
69 |
"text/plain": [
|
70 |
+
"Creating parquet from Arrow format: 0%| | 0/11 [00:00<?, ?ba/s]"
|
71 |
]
|
72 |
},
|
73 |
"metadata": {},
|
|
|
76 |
{
|
77 |
"data": {
|
78 |
"application/vnd.jupyter.widget-view+json": {
|
79 |
+
"model_id": "d138c6b6f3b548298986710d9dbea010",
|
80 |
"version_major": 2,
|
81 |
"version_minor": 0
|
82 |
},
|
83 |
"text/plain": [
|
84 |
+
"README.md: 0%| | 0.00/1.64k [00:00<?, ?B/s]"
|
85 |
]
|
86 |
},
|
87 |
"metadata": {},
|
88 |
"output_type": "display_data"
|
89 |
},
|
90 |
+
{
|
91 |
+
"name": "stdout",
|
92 |
+
"output_type": "stream",
|
93 |
+
"text": [
|
94 |
+
"[]\n"
|
95 |
+
]
|
96 |
+
},
|
97 |
{
|
98 |
"data": {
|
99 |
"application/vnd.jupyter.widget-view+json": {
|
100 |
+
"model_id": "41c0e3b2a72f4ce690a5d068ad6ee76e",
|
101 |
"version_major": 2,
|
102 |
"version_minor": 0
|
103 |
},
|
104 |
"text/plain": [
|
105 |
+
"Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
|
106 |
]
|
107 |
},
|
108 |
"metadata": {},
|
|
|
111 |
{
|
112 |
"data": {
|
113 |
"application/vnd.jupyter.widget-view+json": {
|
114 |
+
"model_id": "c4c9e9d1a0c64e728527636022468fb0",
|
115 |
"version_major": 2,
|
116 |
"version_minor": 0
|
117 |
},
|
118 |
"text/plain": [
|
119 |
+
"Map: 0%| | 0/1097 [00:00<?, ? examples/s]"
|
120 |
]
|
121 |
},
|
122 |
"metadata": {},
|
|
|
125 |
{
|
126 |
"data": {
|
127 |
"application/vnd.jupyter.widget-view+json": {
|
128 |
+
"model_id": "de8c8d8db3704cbe9e86266166e898fa",
|
129 |
"version_major": 2,
|
130 |
"version_minor": 0
|
131 |
},
|
132 |
"text/plain": [
|
133 |
+
"Creating parquet from Arrow format: 0%| | 0/11 [00:00<?, ?ba/s]"
|
134 |
]
|
135 |
},
|
136 |
"metadata": {},
|
137 |
"output_type": "display_data"
|
138 |
},
|
139 |
{
|
140 |
+
"data": {
|
141 |
+
"application/vnd.jupyter.widget-view+json": {
|
142 |
+
"model_id": "30139cf5070d40d69db2bc1aa691e422",
|
143 |
+
"version_major": 2,
|
144 |
+
"version_minor": 0
|
145 |
+
},
|
146 |
+
"text/plain": [
|
147 |
+
"README.md: 0%| | 0.00/1.64k [00:00<?, ?B/s]"
|
148 |
+
]
|
149 |
+
},
|
150 |
+
"metadata": {},
|
151 |
+
"output_type": "display_data"
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"name": "stdout",
|
155 |
+
"output_type": "stream",
|
156 |
+
"text": [
|
157 |
+
"[]\n"
|
158 |
]
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"data": {
|
162 |
+
"application/vnd.jupyter.widget-view+json": {
|
163 |
+
"model_id": "91e76dd77c394f10a6316e2cbc738f53",
|
164 |
+
"version_major": 2,
|
165 |
+
"version_minor": 0
|
166 |
+
},
|
167 |
+
"text/plain": [
|
168 |
+
"Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
|
169 |
+
]
|
170 |
+
},
|
171 |
+
"metadata": {},
|
172 |
+
"output_type": "display_data"
|
173 |
+
},
|
174 |
+
{
|
175 |
+
"data": {
|
176 |
+
"application/vnd.jupyter.widget-view+json": {
|
177 |
+
"model_id": "dd557f750be248b8900132ec09bd3ea9",
|
178 |
+
"version_major": 2,
|
179 |
+
"version_minor": 0
|
180 |
+
},
|
181 |
+
"text/plain": [
|
182 |
+
"Map: 0%| | 0/1097 [00:00<?, ? examples/s]"
|
183 |
+
]
|
184 |
+
},
|
185 |
+
"metadata": {},
|
186 |
+
"output_type": "display_data"
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"data": {
|
190 |
+
"application/vnd.jupyter.widget-view+json": {
|
191 |
+
"model_id": "82d08a53de1f42f8a8e2a98686f15e02",
|
192 |
+
"version_major": 2,
|
193 |
+
"version_minor": 0
|
194 |
+
},
|
195 |
+
"text/plain": [
|
196 |
+
"Creating parquet from Arrow format: 0%| | 0/11 [00:00<?, ?ba/s]"
|
197 |
+
]
|
198 |
+
},
|
199 |
+
"metadata": {},
|
200 |
+
"output_type": "display_data"
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"data": {
|
204 |
+
"application/vnd.jupyter.widget-view+json": {
|
205 |
+
"model_id": "0c86ca04ca6d46b7a4637153831843c6",
|
206 |
+
"version_major": 2,
|
207 |
+
"version_minor": 0
|
208 |
+
},
|
209 |
+
"text/plain": [
|
210 |
+
"README.md: 0%| | 0.00/1.75k [00:00<?, ?B/s]"
|
211 |
+
]
|
212 |
+
},
|
213 |
+
"metadata": {},
|
214 |
+
"output_type": "display_data"
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"name": "stdout",
|
218 |
+
"output_type": "stream",
|
219 |
+
"text": [
|
220 |
+
"[]\n"
|
221 |
+
]
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"data": {
|
225 |
+
"application/vnd.jupyter.widget-view+json": {
|
226 |
+
"model_id": "1105fc397b7942569e2b6e7263dadb3e",
|
227 |
+
"version_major": 2,
|
228 |
+
"version_minor": 0
|
229 |
+
},
|
230 |
+
"text/plain": [
|
231 |
+
"Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
|
232 |
+
]
|
233 |
+
},
|
234 |
+
"metadata": {},
|
235 |
+
"output_type": "display_data"
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"data": {
|
239 |
+
"application/vnd.jupyter.widget-view+json": {
|
240 |
+
"model_id": "b2464a4420284e2fa43352d21cc0849d",
|
241 |
+
"version_major": 2,
|
242 |
+
"version_minor": 0
|
243 |
+
},
|
244 |
+
"text/plain": [
|
245 |
+
"Map: 0%| | 0/1097 [00:00<?, ? examples/s]"
|
246 |
+
]
|
247 |
+
},
|
248 |
+
"metadata": {},
|
249 |
+
"output_type": "display_data"
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"data": {
|
253 |
+
"application/vnd.jupyter.widget-view+json": {
|
254 |
+
"model_id": "b4b5a5308c584bfeb9933074e70cfa0a",
|
255 |
+
"version_major": 2,
|
256 |
+
"version_minor": 0
|
257 |
+
},
|
258 |
+
"text/plain": [
|
259 |
+
"Creating parquet from Arrow format: 0%| | 0/11 [00:00<?, ?ba/s]"
|
260 |
+
]
|
261 |
+
},
|
262 |
+
"metadata": {},
|
263 |
+
"output_type": "display_data"
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"data": {
|
267 |
+
"application/vnd.jupyter.widget-view+json": {
|
268 |
+
"model_id": "eefe4a691e4e4d1db3f8ea7db47b068e",
|
269 |
+
"version_major": 2,
|
270 |
+
"version_minor": 0
|
271 |
+
},
|
272 |
+
"text/plain": [
|
273 |
+
"README.md: 0%| | 0.00/2.22k [00:00<?, ?B/s]"
|
274 |
+
]
|
275 |
+
},
|
276 |
+
"metadata": {},
|
277 |
+
"output_type": "display_data"
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"name": "stdout",
|
281 |
+
"output_type": "stream",
|
282 |
+
"text": [
|
283 |
+
"[]\n"
|
284 |
+
]
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"data": {
|
288 |
+
"application/vnd.jupyter.widget-view+json": {
|
289 |
+
"model_id": "75a9f81c1ee843c397590f4d156df530",
|
290 |
+
"version_major": 2,
|
291 |
+
"version_minor": 0
|
292 |
+
},
|
293 |
+
"text/plain": [
|
294 |
+
"Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
|
295 |
+
]
|
296 |
+
},
|
297 |
+
"metadata": {},
|
298 |
+
"output_type": "display_data"
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"data": {
|
302 |
+
"application/vnd.jupyter.widget-view+json": {
|
303 |
+
"model_id": "ec3e0856e7074218a23062cf1f4a84b9",
|
304 |
+
"version_major": 2,
|
305 |
+
"version_minor": 0
|
306 |
+
},
|
307 |
+
"text/plain": [
|
308 |
+
"Map: 0%| | 0/1097 [00:00<?, ? examples/s]"
|
309 |
+
]
|
310 |
+
},
|
311 |
+
"metadata": {},
|
312 |
+
"output_type": "display_data"
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"data": {
|
316 |
+
"application/vnd.jupyter.widget-view+json": {
|
317 |
+
"model_id": "f4db44eb772642daa5fb9533ce793085",
|
318 |
+
"version_major": 2,
|
319 |
+
"version_minor": 0
|
320 |
+
},
|
321 |
+
"text/plain": [
|
322 |
+
"Creating parquet from Arrow format: 0%| | 0/11 [00:00<?, ?ba/s]"
|
323 |
+
]
|
324 |
+
},
|
325 |
+
"metadata": {},
|
326 |
+
"output_type": "display_data"
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"data": {
|
330 |
+
"application/vnd.jupyter.widget-view+json": {
|
331 |
+
"model_id": "8f455a25b8ec4686b36569e323b93e3f",
|
332 |
+
"version_major": 2,
|
333 |
+
"version_minor": 0
|
334 |
+
},
|
335 |
+
"text/plain": [
|
336 |
+
"README.md: 0%| | 0.00/2.32k [00:00<?, ?B/s]"
|
337 |
+
]
|
338 |
+
},
|
339 |
+
"metadata": {},
|
340 |
+
"output_type": "display_data"
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"name": "stdout",
|
344 |
+
"output_type": "stream",
|
345 |
+
"text": [
|
346 |
+
"[]\n"
|
347 |
+
]
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"data": {
|
351 |
+
"application/vnd.jupyter.widget-view+json": {
|
352 |
+
"model_id": "780547210b7e4db588220b112c7958f7",
|
353 |
+
"version_major": 2,
|
354 |
+
"version_minor": 0
|
355 |
+
},
|
356 |
+
"text/plain": [
|
357 |
+
"Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
|
358 |
+
]
|
359 |
+
},
|
360 |
+
"metadata": {},
|
361 |
+
"output_type": "display_data"
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"data": {
|
365 |
+
"application/vnd.jupyter.widget-view+json": {
|
366 |
+
"model_id": "1d7eaf59c4eb4bcb9aab6dd38fd0f101",
|
367 |
+
"version_major": 2,
|
368 |
+
"version_minor": 0
|
369 |
+
},
|
370 |
+
"text/plain": [
|
371 |
+
"Map: 0%| | 0/1097 [00:00<?, ? examples/s]"
|
372 |
+
]
|
373 |
+
},
|
374 |
+
"metadata": {},
|
375 |
+
"output_type": "display_data"
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"data": {
|
379 |
+
"application/vnd.jupyter.widget-view+json": {
|
380 |
+
"model_id": "7ebec41677a04747ae02d1645a19bf8d",
|
381 |
+
"version_major": 2,
|
382 |
+
"version_minor": 0
|
383 |
+
},
|
384 |
+
"text/plain": [
|
385 |
+
"Creating parquet from Arrow format: 0%| | 0/11 [00:00<?, ?ba/s]"
|
386 |
+
]
|
387 |
+
},
|
388 |
+
"metadata": {},
|
389 |
+
"output_type": "display_data"
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"data": {
|
393 |
+
"application/vnd.jupyter.widget-view+json": {
|
394 |
+
"model_id": "4ed3f65de03c48f488ca3f518d063d0d",
|
395 |
+
"version_major": 2,
|
396 |
+
"version_minor": 0
|
397 |
+
},
|
398 |
+
"text/plain": [
|
399 |
+
"README.md: 0%| | 0.00/2.80k [00:00<?, ?B/s]"
|
400 |
+
]
|
401 |
+
},
|
402 |
+
"metadata": {},
|
403 |
+
"output_type": "display_data"
|
404 |
+
},
|
405 |
+
{
|
406 |
+
"name": "stdout",
|
407 |
+
"output_type": "stream",
|
408 |
+
"text": [
|
409 |
+
"[]\n"
|
410 |
+
]
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"data": {
|
414 |
+
"application/vnd.jupyter.widget-view+json": {
|
415 |
+
"model_id": "d888ccc2841c4ed8a70e94562e404c34",
|
416 |
+
"version_major": 2,
|
417 |
+
"version_minor": 0
|
418 |
+
},
|
419 |
+
"text/plain": [
|
420 |
+
"Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
|
421 |
+
]
|
422 |
+
},
|
423 |
+
"metadata": {},
|
424 |
+
"output_type": "display_data"
|
425 |
+
},
|
426 |
+
{
|
427 |
+
"data": {
|
428 |
+
"application/vnd.jupyter.widget-view+json": {
|
429 |
+
"model_id": "578990cd94ef481ab41ae3ffe9dae522",
|
430 |
+
"version_major": 2,
|
431 |
+
"version_minor": 0
|
432 |
+
},
|
433 |
+
"text/plain": [
|
434 |
+
"Map: 0%| | 0/1097 [00:00<?, ? examples/s]"
|
435 |
+
]
|
436 |
+
},
|
437 |
+
"metadata": {},
|
438 |
+
"output_type": "display_data"
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"data": {
|
442 |
+
"application/vnd.jupyter.widget-view+json": {
|
443 |
+
"model_id": "6b038d4a6bb044cdbe4d96e436311426",
|
444 |
+
"version_major": 2,
|
445 |
+
"version_minor": 0
|
446 |
+
},
|
447 |
+
"text/plain": [
|
448 |
+
"Creating parquet from Arrow format: 0%| | 0/11 [00:00<?, ?ba/s]"
|
449 |
+
]
|
450 |
+
},
|
451 |
+
"metadata": {},
|
452 |
+
"output_type": "display_data"
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"data": {
|
456 |
+
"application/vnd.jupyter.widget-view+json": {
|
457 |
+
"model_id": "81475d2e23da48fe867e9931c92fe246",
|
458 |
+
"version_major": 2,
|
459 |
+
"version_minor": 0
|
460 |
+
},
|
461 |
+
"text/plain": [
|
462 |
+
"README.md: 0%| | 0.00/2.90k [00:00<?, ?B/s]"
|
463 |
+
]
|
464 |
+
},
|
465 |
+
"metadata": {},
|
466 |
+
"output_type": "display_data"
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"name": "stdout",
|
470 |
+
"output_type": "stream",
|
471 |
+
"text": [
|
472 |
+
"[]\n"
|
473 |
+
]
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"data": {
|
477 |
+
"application/vnd.jupyter.widget-view+json": {
|
478 |
+
"model_id": "d805ff2d7b43482cb7d9ffe19a473bf1",
|
479 |
+
"version_major": 2,
|
480 |
+
"version_minor": 0
|
481 |
+
},
|
482 |
+
"text/plain": [
|
483 |
+
"Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
|
484 |
+
]
|
485 |
+
},
|
486 |
+
"metadata": {},
|
487 |
+
"output_type": "display_data"
|
488 |
+
},
|
489 |
+
{
|
490 |
+
"data": {
|
491 |
+
"application/vnd.jupyter.widget-view+json": {
|
492 |
+
"model_id": "f89273f09ed34a67bb905bfa80a82628",
|
493 |
+
"version_major": 2,
|
494 |
+
"version_minor": 0
|
495 |
+
},
|
496 |
+
"text/plain": [
|
497 |
+
"Map: 0%| | 0/1097 [00:00<?, ? examples/s]"
|
498 |
+
]
|
499 |
+
},
|
500 |
+
"metadata": {},
|
501 |
+
"output_type": "display_data"
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"data": {
|
505 |
+
"application/vnd.jupyter.widget-view+json": {
|
506 |
+
"model_id": "563022c1f761483fbb63a3e95d92e5ed",
|
507 |
+
"version_major": 2,
|
508 |
+
"version_minor": 0
|
509 |
+
},
|
510 |
+
"text/plain": [
|
511 |
+
"Creating parquet from Arrow format: 0%| | 0/11 [00:00<?, ?ba/s]"
|
512 |
+
]
|
513 |
+
},
|
514 |
+
"metadata": {},
|
515 |
+
"output_type": "display_data"
|
516 |
+
},
|
517 |
+
{
|
518 |
+
"data": {
|
519 |
+
"application/vnd.jupyter.widget-view+json": {
|
520 |
+
"model_id": "466c0109b16d4a14a7587bf395e20270",
|
521 |
+
"version_major": 2,
|
522 |
+
"version_minor": 0
|
523 |
+
},
|
524 |
+
"text/plain": [
|
525 |
+
"README.md: 0%| | 0.00/3.37k [00:00<?, ?B/s]"
|
526 |
+
]
|
527 |
+
},
|
528 |
+
"metadata": {},
|
529 |
+
"output_type": "display_data"
|
530 |
+
},
|
531 |
+
{
|
532 |
+
"name": "stdout",
|
533 |
+
"output_type": "stream",
|
534 |
+
"text": [
|
535 |
+
"[]\n"
|
536 |
+
]
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"data": {
|
540 |
+
"application/vnd.jupyter.widget-view+json": {
|
541 |
+
"model_id": "6564df13321c4447bf713efb5dd7c0d4",
|
542 |
+
"version_major": 2,
|
543 |
+
"version_minor": 0
|
544 |
+
},
|
545 |
+
"text/plain": [
|
546 |
+
"Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
|
547 |
+
]
|
548 |
+
},
|
549 |
+
"metadata": {},
|
550 |
+
"output_type": "display_data"
|
551 |
+
},
|
552 |
+
{
|
553 |
+
"data": {
|
554 |
+
"application/vnd.jupyter.widget-view+json": {
|
555 |
+
"model_id": "328f67aa739a40a8a7c8d989e0614418",
|
556 |
+
"version_major": 2,
|
557 |
+
"version_minor": 0
|
558 |
+
},
|
559 |
+
"text/plain": [
|
560 |
+
"Map: 0%| | 0/1097 [00:00<?, ? examples/s]"
|
561 |
+
]
|
562 |
+
},
|
563 |
+
"metadata": {},
|
564 |
+
"output_type": "display_data"
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"data": {
|
568 |
+
"application/vnd.jupyter.widget-view+json": {
|
569 |
+
"model_id": "65e428172a2c40f7a8c6b267f3a1db54",
|
570 |
+
"version_major": 2,
|
571 |
+
"version_minor": 0
|
572 |
+
},
|
573 |
+
"text/plain": [
|
574 |
+
"Creating parquet from Arrow format: 0%| | 0/11 [00:00<?, ?ba/s]"
|
575 |
+
]
|
576 |
+
},
|
577 |
+
"metadata": {},
|
578 |
+
"output_type": "display_data"
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"data": {
|
582 |
+
"application/vnd.jupyter.widget-view+json": {
|
583 |
+
"model_id": "51699e5f26774ba3ad8c15434da11bb7",
|
584 |
+
"version_major": 2,
|
585 |
+
"version_minor": 0
|
586 |
+
},
|
587 |
+
"text/plain": [
|
588 |
+
"README.md: 0%| | 0.00/3.47k [00:00<?, ?B/s]"
|
589 |
+
]
|
590 |
+
},
|
591 |
+
"metadata": {},
|
592 |
+
"output_type": "display_data"
|
593 |
+
},
|
594 |
+
{
|
595 |
+
"name": "stdout",
|
596 |
+
"output_type": "stream",
|
597 |
+
"text": [
|
598 |
+
"[]\n"
|
599 |
+
]
|
600 |
+
},
|
601 |
+
{
|
602 |
+
"data": {
|
603 |
+
"application/vnd.jupyter.widget-view+json": {
|
604 |
+
"model_id": "75d0a41d05334cba889bd566cd746f96",
|
605 |
+
"version_major": 2,
|
606 |
+
"version_minor": 0
|
607 |
+
},
|
608 |
+
"text/plain": [
|
609 |
+
"Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
|
610 |
+
]
|
611 |
+
},
|
612 |
+
"metadata": {},
|
613 |
+
"output_type": "display_data"
|
614 |
+
},
|
615 |
+
{
|
616 |
+
"data": {
|
617 |
+
"application/vnd.jupyter.widget-view+json": {
|
618 |
+
"model_id": "4223d1e159f6432d98a95a4868c31af5",
|
619 |
+
"version_major": 2,
|
620 |
+
"version_minor": 0
|
621 |
+
},
|
622 |
+
"text/plain": [
|
623 |
+
"Map: 0%| | 0/1097 [00:00<?, ? examples/s]"
|
624 |
+
]
|
625 |
+
},
|
626 |
+
"metadata": {},
|
627 |
+
"output_type": "display_data"
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"data": {
|
631 |
+
"application/vnd.jupyter.widget-view+json": {
|
632 |
+
"model_id": "32685d9c0ba54e8288b35d8c6b56369e",
|
633 |
+
"version_major": 2,
|
634 |
+
"version_minor": 0
|
635 |
+
},
|
636 |
+
"text/plain": [
|
637 |
+
"Creating parquet from Arrow format: 0%| | 0/11 [00:00<?, ?ba/s]"
|
638 |
+
]
|
639 |
+
},
|
640 |
+
"metadata": {},
|
641 |
+
"output_type": "display_data"
|
642 |
+
},
|
643 |
+
{
|
644 |
+
"data": {
|
645 |
+
"application/vnd.jupyter.widget-view+json": {
|
646 |
+
"model_id": "fa33e335c997460b8047df3d2550fa8f",
|
647 |
+
"version_major": 2,
|
648 |
+
"version_minor": 0
|
649 |
+
},
|
650 |
+
"text/plain": [
|
651 |
+
"README.md: 0%| | 0.00/3.95k [00:00<?, ?B/s]"
|
652 |
+
]
|
653 |
+
},
|
654 |
+
"metadata": {},
|
655 |
+
"output_type": "display_data"
|
656 |
+
},
|
657 |
+
{
|
658 |
+
"data": {
|
659 |
+
"text/plain": [
|
660 |
+
"CommitInfo(commit_url='https://huggingface.co/datasets/ivangtorre/second_americas_nlp_2022/commit/edd8ca4dc1e477443d98f7eace86ee02daf62347', commit_message='Upload dataset', commit_description='', oid='edd8ca4dc1e477443d98f7eace86ee02daf62347', pr_url=None, pr_revision=None, pr_num=None)"
|
661 |
+
]
|
662 |
+
},
|
663 |
+
"execution_count": 21,
|
664 |
+
"metadata": {},
|
665 |
+
"output_type": "execute_result"
|
666 |
}
|
667 |
],
|
668 |
"source": [
|
669 |
"import pandas as pd\n",
|
670 |
"from datasets import Dataset, Audio\n",
|
671 |
"\n",
|
672 |
+
"def flatten(xss):\n",
|
673 |
+
" return [x for xs in xss for x in xs]\n",
|
674 |
+
"\n",
|
675 |
+
"def create_dataset(df):\n",
|
676 |
+
" audio_dataset = Dataset.from_dict({\"audio\": flatten(df[\"file_name\"].values.tolist()),\n",
|
677 |
+
" \"subset\": flatten(df[\"subset\"].values.tolist()),\n",
|
678 |
+
" \"source_processed\": flatten(df[\"source_processed\"].values.tolist()),\n",
|
679 |
+
" \"source_raw\": flatten(df[\"source_raw\"].values.tolist()),\n",
|
680 |
+
" \"target_raw\": flatten(df[\"target_raw\"].values.tolist()),\n",
|
681 |
+
" \"split\": flatten(df[\"split\"].values.tolist()),\n",
|
682 |
+
" },\n",
|
683 |
+
" ).cast_column(\"audio\", Audio())\n",
|
684 |
+
" return(audio_dataset)\n",
|
685 |
+
"\n",
|
686 |
+
"\n",
|
687 |
"def generate_df(language, split):\n",
|
688 |
" # QUECHUA TRAIN\n",
|
689 |
" with open(\"./../\"+language +\"_\"+split+\".tsv\") as f:\n",
|
|
|
696 |
" df1 = df1.assign(subset=[language]*df1.shape[0])\n",
|
697 |
" df1 = df1.rename(columns={'wav': 'file_name'})\n",
|
698 |
" df1['file_name'] = 'data/' + language + '/' + split +'/' + df1['file_name'].astype(str)\n",
|
699 |
+
" audio_dataset = create_dataset(df)\n",
|
700 |
+
" return audio_dataset\n",
|
701 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
702 |
"\n",
|
|
|
|
|
703 |
"\n",
|
704 |
+
"audio_dataset = generate_df(\"quechua\", \"train\")\n",
|
705 |
+
"audio_dataset.push_to_hub(\"ivangtorre/second_americas_nlp_2022\", \"quechua\", split=\"train\")\n",
|
706 |
+
"audio_dataset = generate_df(\"quechua\", \"dev\")\n",
|
707 |
+
"audio_dataset.push_to_hub(\"ivangtorre/second_americas_nlp_2022\", \"quechua\", split=\"dev\")\n",
|
|
|
|
|
|
|
|
|
|
|
708 |
"\n",
|
709 |
+
"audio_dataset = generate_df(\"guarani\", \"train\")\n",
|
710 |
+
"audio_dataset.push_to_hub(\"ivangtorre/second_americas_nlp_2022\", \"guarani\", split=\"train\")\n",
|
711 |
+
"audio_dataset = generate_df(\"guarani\", \"dev\")\n",
|
712 |
+
"audio_dataset.push_to_hub(\"ivangtorre/second_americas_nlp_2022\", \"guarani\", split=\"dev\")\n",
|
713 |
"\n",
|
714 |
+
"audio_dataset = generate_df(\"kotiria\", \"dev\")\n",
|
715 |
+
"audio_dataset.push_to_hub(\"ivangtorre/second_americas_nlp_2022\", \"kotiria\", split=\"train\")\n",
|
716 |
+
"audio_dataset = generate_df(\"kotiria\", \"dev\")\n",
|
717 |
+
"audio_dataset.push_to_hub(\"ivangtorre/second_americas_nlp_2022\", \"kotiria\", split=\"dev\")\n",
|
|
|
|
|
|
|
|
|
|
|
718 |
"\n",
|
719 |
+
"audio_dataset = generate_df(\"bribri\", \"train\")\n",
|
720 |
+
"audio_dataset.push_to_hub(\"ivangtorre/second_americas_nlp_2022\", \"bribri\", split=\"train\")\n",
|
721 |
+
"audio_dataset = generate_df(\"bribri\", \"dev\")\n",
|
722 |
+
"audio_dataset.push_to_hub(\"ivangtorre/second_americas_nlp_2022\", \"bribri\", split=\"dev\")\n",
|
723 |
+
"\n",
|
724 |
+
"audio_dataset = generate_df(\"waikhana\", \"dev\")\n",
|
725 |
+
"audio_dataset.push_to_hub(\"ivangtorre/second_americas_nlp_2022\", \"waikhana\", split=\"train\")\n",
|
726 |
+
"audio_dataset = generate_df(\"waikhana\", \"dev\")\n",
|
727 |
+
"audio_dataset.push_to_hub(\"ivangtorre/second_americas_nlp_2022\", \"waikhana\", split=\"dev\")\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
728 |
]
|
729 |
},
|
730 |
{
|
data/bribri/dev/bribri000495.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:175a922253b563435a609801c1afeaafdbeb70d31c28766110a39aa30a317171
|
3 |
-
size 58668
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000496.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:c668ffd5567480dda63891aeaead5b75ec9b2947c53d12f4016c4dfc616d4ba7
|
3 |
-
size 95948
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000497.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:b3ede6c4bfd0d7370425081b4c84bf6536a9390e28f7154f60998bd1c9a7dd01
|
3 |
-
size 62124
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000498.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:c4be1be794eac37e86fd3d5636405e0eeed1e29dddc1f82842f3200ee9152d5d
|
3 |
-
size 91564
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000499.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:9dedfa9ce0491b6896c572eae693bcfb682c5dcb20fcb4bdb8168927274883c7
|
3 |
-
size 53100
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000500.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:c08fbd56578ae10e8302e3190202260b571e05497bd0fbe895e75d2355b96fcc
|
3 |
-
size 64844
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000501.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:212460312c148cc81950f9307044d485fd2dc52fdcf03fe15c664c894f36e623
|
3 |
-
size 36268
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000502.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:9ce080851b87637f4badf4c96deacfc1d8f1484fea939a38a432151c64998fec
|
3 |
-
size 112716
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000503.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:80d49821c4cdd99b81f006013ee7754c7d4168dc00b1fafdcca4abdd3b19860a
|
3 |
-
size 138796
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000504.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:53c86cb82f6df424359490e0ba34e7a461c76a045c98c145c9aa4ee2a16f8330
|
3 |
-
size 80140
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000505.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:b36e7553ecb3cec30f40c1466b18b6d1b55cf47581e26f85d3c32b9824939181
|
3 |
-
size 86668
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000506.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:a829887bca8a339be00c35e65c36f686c163a709cd2d26212e9045960c853d60
|
3 |
-
size 55244
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000507.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:d2567b8331a9f992ea12167d27269d553539278b3d5020979fbced5a6d214eaa
|
3 |
-
size 50796
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000508.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:5659222a355428102ca0c3d547899b274c2221ab05d83000352ac670a3109645
|
3 |
-
size 45452
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000509.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:389d70464bfcb620f99b171d1b73f09abd27d4d77aa285a499e39f61a5d0e906
|
3 |
-
size 61932
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000510.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:27da638de54e1428517133673c19e645fd043045e9486114ccd6eba061473d09
|
3 |
-
size 27628
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000511.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:9b25615fe0e24173fe2a2b44a4fc163d60ee2a38a605b61fe9cf6cb35b3a1e04
|
3 |
-
size 92972
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000512.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:9b4ebd83d9bedfcc8070178feeeb9e8ea43f6d733e8946a014344602384455d9
|
3 |
-
size 115724
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000513.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:e8e6dc66a4b771dde2158afeaf0d4af67a626896e05ecbe10fe3ce373cdef6bb
|
3 |
-
size 123820
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000514.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:effeec1e6f0b1282c3d9d2a55df60a31252d87f2301b059ba4a05bb59f1c7a23
|
3 |
-
size 55148
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000515.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:227e41b580f0bf16def5744bea350229e1d2a971e6ea43bebbb171340098b927
|
3 |
-
size 52012
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000516.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:91eb18d1211bdb9045cc26111035d1d4bb4cd90413bb301a251890e0dcf5b050
|
3 |
-
size 98028
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000517.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:13d4061300c198e61fed58692772c34695e68caac12c86c95a73cafb682797d9
|
3 |
-
size 91212
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000518.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:e4b70f4a21ffa35b66cb02824e833b862b4cf2a8dfc6c8043c6d9903e802a0da
|
3 |
-
size 150316
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000519.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:3bc6cbe69234c78ecd6b0ecc0f6ec848be26cdff58e399ba242c0dd58758270a
|
3 |
-
size 75660
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000520.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:6c9c04960c1d5790cf336e27d75608aa564c59e6623750fe2467393f07779b39
|
3 |
-
size 59532
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000521.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:6872f35f6095696154e817d5f15206e61b6449da0ba82e289819a35c164679d0
|
3 |
-
size 72364
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000522.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:c31105fe5d315a7bae88d160da3274fb30cc1bfc5312637efb47cfe6d76dd5c3
|
3 |
-
size 60140
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000523.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:4f76c00aed8d06a7b8704d590826e39d830aa2aee0d4a41f711818b06755fe12
|
3 |
-
size 68556
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000524.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:c4a44c46e47a09e8df741ca326f303379833c1fcb2a1aa90e4082ca434d6e480
|
3 |
-
size 141452
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000525.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:e85dece4f96ef929c443014c45668bf2120300b42bc718a9619e35548d6bfcff
|
3 |
-
size 142220
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000526.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:8c27566bf57893f6c8ebfdf320bae22963a4c9fa11ed92f70e776121b7e7d97f
|
3 |
-
size 126188
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000527.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:f3e33c6344cf950c2096d7a1acd7e062072ac2e066dd92d231d165ed18d49ac1
|
3 |
-
size 130508
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000528.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:2aeefd514429bee45e07a2bd45f48fd8277dc95ceeb177badd093d7e832ae85b
|
3 |
-
size 82636
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000529.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:66110681a8d594649425c59a967957aa1937cf5cfd7a81dbe54f0edd6719e929
|
3 |
-
size 52908
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000530.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:74016813d0c9b4fcfd9b47337f9381c0106f3b63e79b35ece5e7d777c11e06f8
|
3 |
-
size 34988
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000531.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:9b6540b55cdf03c2ae4755d608cb7605586835e3692c4f8fc375d5d3c203e2a4
|
3 |
-
size 59916
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000532.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:78f3a66aff74b68e8bcbede21d516ef4c639f85007c2d83d7c93ebd2463031ff
|
3 |
-
size 78060
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000533.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:84d12076e8840d77416e970009a6f1f31ea4f8fde09be025f56cd69204a06570
|
3 |
-
size 79244
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000534.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:442237a2ca7f0ea883d49cc5cb07f95a4ea7888c8c58856cc64ec96a6e1813eb
|
3 |
-
size 125932
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000535.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:cdf904f31e144d14d211fcbaa5bbee28d0de964d4e88db3d247a05e8bc6e358e
|
3 |
-
size 39436
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000536.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:a06905e00325e14efb2f0e5c45986cecce94501bb55e09a94c5b252fb7cce2a2
|
3 |
-
size 74188
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000537.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:f32526817eb370a1494c9c63be65c3bcc63ca6da026f36960ea40d871ef783a6
|
3 |
-
size 95756
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000538.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:20f03997491c8ea6556ddbec886d65c719f348badb59c41ada5e169c3aef8b40
|
3 |
-
size 115884
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000539.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:75626cc8029a00312ea0edcb3707e49efdc9cc59ea5f04dd8b343e9da7227a66
|
3 |
-
size 97740
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000540.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:7e26cc16773a6eea09a4546f7d7c74a10d897612ca4927cb0653d22fe485ab3a
|
3 |
-
size 71276
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000541.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:f277892829eef3f3ef0605852eaa474d7c525c66de5cefe48b7b78132566c6ba
|
3 |
-
size 86188
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000542.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:929ac23d3ab1faeffe7ffb367ccba4f63280f79380390227bf42b2b37c33e495
|
3 |
-
size 70636
|
|
|
|
|
|
|
|
data/bribri/dev/bribri000543.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:3b8bc4fbd110fe27e76f777653c90eccb28eed13a462a343fae2caa5dbd30cd6
|
3 |
-
size 35756
|
|
|
|
|
|
|
|