File size: 4,456 Bytes
07e4247 fbb72c8 0a2727f fbb72c8 0a2727f fbb72c8 e7cc0c9 fbb72c8 e9f5a3d 708a34a e9f5a3d 0a2727f e9f5a3d e7cc0c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
---
license: cc-by-4.0
---
<center>
<img src="demo/logo.png" width=85%>
</center>
# SEN2NAIP
The increasing demand for high spatial resolution in remote sensing imagery has led to the necessity of super-resolution (SR) algorithms that
convert low-resolution (LR) images into high-resolution (HR) ones. To address this need, we introduce SEN2NAIP, a large remote sensing dataset
designed to support conventional and reference-based SR model training. SEN2NAIP is structured into two components to provide a broad spectrum
of research and application needs. The first component comprises a cross-sensor dataset of 2,851 pairs of LR images from Sentinel-2 L2A and HR
images from the National Agriculture Imagery Program (NAIP). Leveraging this dataset, we developed a degradation model capable of converting NAIP
images to match the characteristics of Sentinel-2 imagery (S2like). Subsequently, this degradation model was utilized to create the second component,
a synthetic dataset comprising 17,657 NAIP and S2like image pairs. With the SEN2NAIP dataset, we aim to provide a valuable resource that facilitates
the exploration of new techniques for enhancing the spatial resolution of Sentinel-2 satellite imagery.
# DOWNLOAD DATASET
```
from huggingface_hub import hf_hub_download
# Donwload cross-sensor dataset
hf_hub_download(
repo_id="isp-uv-es/SEN2NAIP",
repo_type="dataset",
filename="cross-sensor/cross-sensor.zip"
)
# Donwload synthetic dataset
for i in range(1, 19):
hf_hub_download(
repo_id="isp-uv-es/SEN2NAIP",
repo_type="dataset",
filename="synthetic/synthetic_%02d.zip" % i
)
```
# REPRODUCIBLE EXAMPLES
## Load cross-sensor dataset
```{python}
import rioxarray
import torch
DEMO_PATH = "https://huggingface.co/datasets/isp-uv-es/SEN2NAIP/resolve/main/demo/"
cross_sensor_path = DEMO_PATH + "cross-sensor/ROI_0000/"
hr_data = rioxarray.open_rasterio(cross_sensor_path + "hr.tif")
lr_data = rioxarray.open_rasterio(cross_sensor_path + "lr.tif")
hr_torch = torch.from_numpy(hr_data.to_numpy()) / 255
lr_torch = torch.from_numpy(lr_data.to_numpy()) / 10000
```
## Load Synthetic dataset
Available methods: **vae_histogram_matching**, **vae_histogram_matching**, **gamma_multivariate_normal_90**, **gamma_multivariate_normal_75**, **gamma_multivariate_normal_50**,
**gamma_multivariate_normal_25**, **gamma_multivariate_normal_10**.
```{python}
import opensr_degradation
import rioxarray
import datasets
import requests
import tempfile
import torch
import json
def load_metadata(metadata_path: str) -> dict:
tmpfile = tempfile.NamedTemporaryFile(suffix=".json")
with requests.get(metadata_path) as response:
with open(tmpfile.name, "wb") as file:
file.write(response.content)
metadata_json = json.load(open(tmpfile.name, "r"))
return metadata_json
DEMO_PATH = "https://huggingface.co/datasets/isp-uv-es/SEN2NAIP/resolve/main/demo/"
# Synthetic LR and HR data ------------------------------
synthetic_path = DEMO_PATH + "synthetic/ROI_0001/"
hr_early_data = rioxarray.open_rasterio(synthetic_path + "early/01__m_4506807_nw_19_1_20110818.tif")
hr_early_torch = torch.from_numpy(hr_early_data.to_numpy()) / 255
hr_early_metadata = load_metadata(synthetic_path + "late/metadata.json")
hr_early_torch_hat = opensr_degradation.main.predict_table(
hr_early_torch, hr_early_metadata["sim_histograms"], "gamma_multivariate_normal_50"
)
hr_late_data = rioxarray.open_rasterio(synthetic_path + "late/02__m_4506807_nw_19_060_20210920.tif")
hr_late_torch = torch.from_numpy(hr_late_data.to_numpy()) / 255
hr_late_metadata = load_metadata(synthetic_path + "late/metadata.json")
hr_late_torch_hat = opensr_degradation.main.predict_table(
hr_late_torch, hr_late_metadata["sim_histograms"], "gamma_multivariate_normal_50"
)
import matplotlib.pyplot as plt
fig, ax = plt.subplots(2, 2, figsize=(10, 5))
ax = ax.flatten()
ax[0].imshow(hr_early_torch[[3, 1, 2]].permute(1, 2, 0))
ax[0].set_title("Original")
ax[1].imshow(hr_early_torch_hat[[3, 1, 2]].permute(1, 2, 0)*3)
ax[1].set_title("Degraded")
ax[2].imshow(hr_late_torch[[3, 1, 2]].permute(1, 2, 0))
ax[2].set_title("Original")
ax[3].imshow(hr_late_torch_hat[[3, 1, 2]].permute(1, 2, 0)*3)
ax[3].set_title("Degraded")
# remove axis and space
for a in ax:
a.axis("off")
plt.tight_layout()
plt.show()
```
<center>
<img src="demo/image_demo.png" width=75%>
</center>
# CITATION
TODO! |