Datasets:

License:
File size: 4,456 Bytes
07e4247
 
 
fbb72c8
 
0a2727f
fbb72c8
 
 
 
 
0a2727f
 
 
 
 
 
 
 
fbb72c8
e7cc0c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbb72c8
e9f5a3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
708a34a
 
 
 
 
e9f5a3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a2727f
e9f5a3d
e7cc0c9
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
---
license: cc-by-4.0
---

<center>
  <img src="demo/logo.png" width=85%>
</center>


# SEN2NAIP

The increasing demand for high spatial resolution in remote sensing imagery has led to the necessity of super-resolution (SR) algorithms that 
convert low-resolution (LR) images into high-resolution (HR) ones. To address this need, we introduce SEN2NAIP, a large remote sensing dataset
designed to support conventional and reference-based SR model training. SEN2NAIP is structured into two components to provide a broad spectrum
of research and application needs. The first component comprises a cross-sensor dataset of 2,851 pairs of LR images from Sentinel-2 L2A and HR
images from the National Agriculture Imagery Program (NAIP). Leveraging this dataset, we developed a degradation model capable of converting NAIP
images to match the characteristics of Sentinel-2 imagery (S2like). Subsequently, this degradation model was utilized to create the second component,
a synthetic dataset comprising 17,657 NAIP and S2like image pairs. With the SEN2NAIP dataset, we aim to provide a valuable resource that facilitates
the exploration of new techniques for enhancing the spatial resolution of Sentinel-2 satellite imagery.

# DOWNLOAD DATASET

```
from huggingface_hub import hf_hub_download

# Donwload cross-sensor dataset
hf_hub_download(
    repo_id="isp-uv-es/SEN2NAIP",
    repo_type="dataset",
    filename="cross-sensor/cross-sensor.zip"
)

# Donwload synthetic dataset
for i in range(1, 19):
    hf_hub_download(
        repo_id="isp-uv-es/SEN2NAIP",
        repo_type="dataset",
        filename="synthetic/synthetic_%02d.zip" % i
    )
```



# REPRODUCIBLE EXAMPLES

## Load cross-sensor dataset

```{python}
import rioxarray
import torch

DEMO_PATH = "https://huggingface.co/datasets/isp-uv-es/SEN2NAIP/resolve/main/demo/"

cross_sensor_path = DEMO_PATH + "cross-sensor/ROI_0000/"
hr_data = rioxarray.open_rasterio(cross_sensor_path + "hr.tif")
lr_data = rioxarray.open_rasterio(cross_sensor_path + "lr.tif")
hr_torch = torch.from_numpy(hr_data.to_numpy()) / 255
lr_torch = torch.from_numpy(lr_data.to_numpy()) / 10000
```


## Load Synthetic dataset

Available methods: **vae_histogram_matching**, **vae_histogram_matching**, **gamma_multivariate_normal_90**, **gamma_multivariate_normal_75**, **gamma_multivariate_normal_50**,
**gamma_multivariate_normal_25**, **gamma_multivariate_normal_10**.



```{python}
import opensr_degradation
import rioxarray
import datasets
import requests
import tempfile
import torch
import json


def load_metadata(metadata_path: str) -> dict:
    tmpfile = tempfile.NamedTemporaryFile(suffix=".json")
    with requests.get(metadata_path) as response:
        with open(tmpfile.name, "wb") as file:
            file.write(response.content)
        metadata_json = json.load(open(tmpfile.name, "r"))
    return metadata_json

DEMO_PATH = "https://huggingface.co/datasets/isp-uv-es/SEN2NAIP/resolve/main/demo/"

# Synthetic LR and HR data ------------------------------
synthetic_path = DEMO_PATH + "synthetic/ROI_0001/"

hr_early_data = rioxarray.open_rasterio(synthetic_path + "early/01__m_4506807_nw_19_1_20110818.tif")
hr_early_torch = torch.from_numpy(hr_early_data.to_numpy()) / 255
hr_early_metadata = load_metadata(synthetic_path + "late/metadata.json")
hr_early_torch_hat = opensr_degradation.main.predict_table(
    hr_early_torch, hr_early_metadata["sim_histograms"], "gamma_multivariate_normal_50"
)

hr_late_data = rioxarray.open_rasterio(synthetic_path + "late/02__m_4506807_nw_19_060_20210920.tif")
hr_late_torch = torch.from_numpy(hr_late_data.to_numpy()) / 255
hr_late_metadata = load_metadata(synthetic_path + "late/metadata.json")
hr_late_torch_hat = opensr_degradation.main.predict_table(
    hr_late_torch, hr_late_metadata["sim_histograms"], "gamma_multivariate_normal_50"
)

import matplotlib.pyplot as plt
fig, ax = plt.subplots(2, 2, figsize=(10, 5))
ax = ax.flatten()
ax[0].imshow(hr_early_torch[[3, 1, 2]].permute(1, 2, 0))
ax[0].set_title("Original")
ax[1].imshow(hr_early_torch_hat[[3, 1, 2]].permute(1, 2, 0)*3)
ax[1].set_title("Degraded")
ax[2].imshow(hr_late_torch[[3, 1, 2]].permute(1, 2, 0))
ax[2].set_title("Original")
ax[3].imshow(hr_late_torch_hat[[3, 1, 2]].permute(1, 2, 0)*3)
ax[3].set_title("Degraded")
# remove axis and space
for a in ax:
    a.axis("off")
plt.tight_layout()
plt.show()
```

<center>
  <img src="demo/image_demo.png" width=75%>
</center>

# CITATION

TODO!