Datasets:

License:
csaybar commited on
Commit
e9f5a3d
1 Parent(s): 0127211

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md CHANGED
@@ -12,3 +12,79 @@ license: cc-by-4.0
12
  The increasing demand for high spatial resolution in remote sensing imagery has led to the necessity of super-resolution (SR) algorithms that convert low-resolution (LR) images into high-resolution (HR) ones. To address this need, we introduce SEN2NAIP, a large remote sensing dataset designed to support conventional and reference-based SR model training. SEN2NAIP is structured into two components to provide a broad spectrum of research and application needs. The first component comprises a cross-sensor dataset of 2,851 pairs of LR images from Sentinel-2 L2A and HR images from the National Agriculture Imagery Program (NAIP). Leveraging this dataset, we developed a degradation model capable of converting NAIP images to match the characteristics of Sentinel-2 imagery ($S2_{like}$). Subsequently, this degradation model was utilized to create the second component, a synthetic dataset comprising 17,657 NAIP and $S2_{like}$ image pairs. With the SEN2NAIP dataset, we aim to provide a valuable resource that facilitates the exploration of new techniques for enhancing the spatial resolution of Sentinel-2 satellite imagery.
13
 
14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  The increasing demand for high spatial resolution in remote sensing imagery has led to the necessity of super-resolution (SR) algorithms that convert low-resolution (LR) images into high-resolution (HR) ones. To address this need, we introduce SEN2NAIP, a large remote sensing dataset designed to support conventional and reference-based SR model training. SEN2NAIP is structured into two components to provide a broad spectrum of research and application needs. The first component comprises a cross-sensor dataset of 2,851 pairs of LR images from Sentinel-2 L2A and HR images from the National Agriculture Imagery Program (NAIP). Leveraging this dataset, we developed a degradation model capable of converting NAIP images to match the characteristics of Sentinel-2 imagery ($S2_{like}$). Subsequently, this degradation model was utilized to create the second component, a synthetic dataset comprising 17,657 NAIP and $S2_{like}$ image pairs. With the SEN2NAIP dataset, we aim to provide a valuable resource that facilitates the exploration of new techniques for enhancing the spatial resolution of Sentinel-2 satellite imagery.
13
 
14
 
15
+ ## Load cross-sensor dataset
16
+
17
+ ```{python}
18
+ import rioxarray
19
+ import torch
20
+
21
+ DEMO_PATH = "https://huggingface.co/datasets/isp-uv-es/SEN2NAIP/resolve/main/demo/"
22
+
23
+ cross_sensor_path = DEMO_PATH + "cross-sensor/ROI_0000/"
24
+ hr_data = rioxarray.open_rasterio(cross_sensor_path + "hr.tif")
25
+ lr_data = rioxarray.open_rasterio(cross_sensor_path + "lr.tif")
26
+ hr_torch = torch.from_numpy(hr_data.to_numpy()) / 255
27
+ lr_torch = torch.from_numpy(lr_data.to_numpy()) / 10000
28
+ ```
29
+
30
+
31
+ ## Load Synthetic dataset
32
+
33
+ ```{python}
34
+ import opensr_degradation
35
+ import rioxarray
36
+ import datasets
37
+ import requests
38
+ import tempfile
39
+ import torch
40
+ import json
41
+
42
+
43
+ def load_metadata(metadata_path: str) -> dict:
44
+ tmpfile = tempfile.NamedTemporaryFile(suffix=".json")
45
+ with requests.get(metadata_path) as response:
46
+ with open(tmpfile.name, "wb") as file:
47
+ file.write(response.content)
48
+ metadata_json = json.load(open(tmpfile.name, "r"))
49
+ return metadata_json
50
+
51
+ DEMO_PATH = "https://huggingface.co/datasets/isp-uv-es/SEN2NAIP/resolve/main/demo/"
52
+
53
+ # Synthetic LR and HR data ------------------------------
54
+ synthetic_path = DEMO_PATH + "synthetic/ROI_0001/"
55
+
56
+ hr_early_data = rioxarray.open_rasterio(synthetic_path + "early/01__m_4506807_nw_19_1_20110818.tif")
57
+ hr_early_torch = torch.from_numpy(hr_early_data.to_numpy()) / 255
58
+ hr_early_metadata = load_metadata(synthetic_path + "late/metadata.json")
59
+ hr_early_torch_hat = opensr_degradation.main.predict_table(
60
+ hr_early_torch, hr_early_metadata["sim_histograms"], "gamma_multivariate_normal_50"
61
+ )
62
+
63
+ hr_late_data = rioxarray.open_rasterio(synthetic_path + "late/02__m_4506807_nw_19_060_20210920.tif")
64
+ hr_late_torch = torch.from_numpy(hr_late_data.to_numpy()) / 255
65
+ hr_late_metadata = load_metadata(synthetic_path + "late/metadata.json")
66
+ hr_late_torch_hat = opensr_degradation.main.predict_table(
67
+ hr_late_torch, hr_late_metadata["sim_histograms"], "gamma_multivariate_normal_50"
68
+ )
69
+
70
+ import matplotlib.pyplot as plt
71
+ fig, ax = plt.subplots(2, 2, figsize=(10, 5))
72
+ ax = ax.flatten()
73
+ ax[0].imshow(hr_early_torch[[3, 1, 2]].permute(1, 2, 0))
74
+ ax[0].set_title("Original")
75
+ ax[1].imshow(hr_early_torch_hat[[3, 1, 2]].permute(1, 2, 0)*3)
76
+ ax[1].set_title("Degraded")
77
+ ax[2].imshow(hr_late_torch[[3, 1, 2]].permute(1, 2, 0))
78
+ ax[2].set_title("Original")
79
+ ax[3].imshow(hr_late_torch_hat[[3, 1, 2]].permute(1, 2, 0)*3)
80
+ ax[3].set_title("Degraded")
81
+ # remove axis and space
82
+ for a in ax:
83
+ a.axis("off")
84
+ plt.tight_layout()
85
+ plt.show()
86
+ ```
87
+
88
+ <center>
89
+ <img src="demo/image_demo.png" width=70%>
90
+ </center>