|
--- |
|
language: |
|
- en |
|
license: cc-by-sa-4.0 |
|
size_categories: |
|
- 1K<n<10K |
|
task_categories: |
|
- text-classification |
|
- zero-shot-classification |
|
- image-classification |
|
pretty_name: IsoBench |
|
dataset_info: |
|
- config_name: chemistry |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: question |
|
dtype: string |
|
- name: choices |
|
dtype: string |
|
- name: label |
|
dtype: int64 |
|
- name: description |
|
dtype: string |
|
- name: id |
|
dtype: string |
|
splits: |
|
- name: validation |
|
num_bytes: 2611154.0 |
|
num_examples: 75 |
|
download_size: 2517594 |
|
dataset_size: 2611154.0 |
|
- config_name: graph_connectivity |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: query_nodes_color |
|
dtype: string |
|
- name: adjacency_matrix |
|
dtype: string |
|
- name: query_node_1 |
|
dtype: int64 |
|
- name: query_node_2 |
|
dtype: int64 |
|
- name: label |
|
dtype: bool |
|
- name: id |
|
dtype: string |
|
splits: |
|
- name: validation |
|
num_bytes: 62682553 |
|
num_examples: 128 |
|
download_size: 19391513 |
|
dataset_size: 62682553 |
|
- config_name: graph_isomorphism |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: adjacency_matrix_G |
|
dtype: string |
|
- name: adjacency_matrix_H |
|
dtype: string |
|
- name: label |
|
dtype: bool |
|
- name: id |
|
dtype: string |
|
splits: |
|
- name: validation |
|
num_bytes: 25082487 |
|
num_examples: 128 |
|
download_size: 8931620 |
|
dataset_size: 25082487 |
|
- config_name: graph_maxflow |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: source_node |
|
dtype: int64 |
|
- name: source_node_color |
|
dtype: string |
|
- name: sink_node |
|
dtype: int64 |
|
- name: sink_node_color |
|
dtype: string |
|
- name: adjacency_matrix |
|
dtype: string |
|
- name: label |
|
dtype: int64 |
|
- name: id |
|
dtype: string |
|
splits: |
|
- name: validation |
|
num_bytes: 44530168 |
|
num_examples: 128 |
|
download_size: 16112025 |
|
dataset_size: 44530168 |
|
- config_name: math_breakpoint |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: domain |
|
dtype: float64 |
|
- name: latex |
|
dtype: string |
|
- name: code |
|
dtype: string |
|
- name: label |
|
dtype: int64 |
|
- name: id |
|
dtype: string |
|
splits: |
|
- name: validation |
|
num_bytes: 14120119 |
|
num_examples: 256 |
|
download_size: 12531449 |
|
dataset_size: 14120119 |
|
- config_name: math_convexity |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: domain |
|
dtype: string |
|
- name: latex |
|
dtype: string |
|
- name: code |
|
dtype: string |
|
- name: label |
|
dtype: string |
|
- name: id |
|
dtype: string |
|
splits: |
|
- name: validation |
|
num_bytes: 11176740 |
|
num_examples: 256 |
|
download_size: 9253917 |
|
dataset_size: 11176740 |
|
- config_name: math_parity |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: domain |
|
dtype: float64 |
|
- name: latex |
|
dtype: string |
|
- name: code |
|
dtype: string |
|
- name: label |
|
dtype: string |
|
- name: id |
|
dtype: string |
|
splits: |
|
- name: validation |
|
num_bytes: 17012598 |
|
num_examples: 384 |
|
download_size: 14230745 |
|
dataset_size: 17012598 |
|
- config_name: physics |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: question |
|
dtype: string |
|
- name: choices |
|
dtype: string |
|
- name: label |
|
dtype: int64 |
|
- name: description |
|
dtype: string |
|
- name: id |
|
dtype: string |
|
splits: |
|
- name: validation |
|
num_bytes: 2354556.0 |
|
num_examples: 75 |
|
download_size: 2156044 |
|
dataset_size: 2354556.0 |
|
- config_name: puzzle |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: anl |
|
dtype: string |
|
- name: pgn |
|
dtype: string |
|
- name: fen |
|
dtype: string |
|
- name: label |
|
dtype: string |
|
- name: id |
|
dtype: float64 |
|
splits: |
|
- name: validation |
|
num_bytes: 5085659 |
|
num_examples: 200 |
|
download_size: 4787468 |
|
dataset_size: 5085659 |
|
- config_name: winner_id |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: anl |
|
dtype: string |
|
- name: pgn |
|
dtype: string |
|
- name: fen |
|
dtype: string |
|
- name: label |
|
dtype: string |
|
- name: id |
|
dtype: string |
|
splits: |
|
- name: validation |
|
num_bytes: 6486731 |
|
num_examples: 257 |
|
download_size: 6026970 |
|
dataset_size: 6486731 |
|
configs: |
|
- config_name: chemistry |
|
data_files: |
|
- split: validation |
|
path: chemistry/validation-* |
|
- config_name: graph_connectivity |
|
data_files: |
|
- split: validation |
|
path: graph_connectivity/validation-* |
|
- config_name: graph_isomorphism |
|
data_files: |
|
- split: validation |
|
path: graph_isomorphism/validation-* |
|
- config_name: graph_maxflow |
|
data_files: |
|
- split: validation |
|
path: graph_maxflow/validation-* |
|
- config_name: math_breakpoint |
|
data_files: |
|
- split: validation |
|
path: math_breakpoint/validation-* |
|
- config_name: math_convexity |
|
data_files: |
|
- split: validation |
|
path: math_convexity/validation-* |
|
- config_name: math_parity |
|
data_files: |
|
- split: validation |
|
path: math_parity/validation-* |
|
- config_name: physics |
|
data_files: |
|
- split: validation |
|
path: physics/validation-* |
|
- config_name: puzzle |
|
data_files: |
|
- split: validation |
|
path: puzzle/validation-* |
|
- config_name: winner_id |
|
data_files: |
|
- split: validation |
|
path: winner_id/validation-* |
|
--- |
|
# Dataset Card for IsoBench |
|
|
|
<!-- Provide a quick summary of the dataset. --> |
|
|
|
📚 [paper](https://arxiv.org/abs/2404.01266) 🌐 [website](https://isobench.github.io) |
|
|
|
Introducing IsoBench, a benchmark dataset containing problems from four major areas: math, science, algorithms, and games. Each example is presented with multiple isomorphic representations of inputs, such as visual, textual, and mathematical presentations. Details of IsoBench can be found in our [paper](https://arxiv.org/abs/2404.01266) or [website](https://isobench.github.io)! |
|
|
|
## Table of Contents |
|
- [Dataset Details](#dataset-details) |
|
- [Mathematics](#mathematics) |
|
- [Algorithms](#algorithms) |
|
- [Games](#games) |
|
- [Science](#science) |
|
- [Data Fields](#deta-fields) |
|
- [Mathematics](#mathematics) |
|
- [Convexity](#convexity) |
|
- [Breakpoint](#breakpoint) |
|
- [Parity](#parity) |
|
- [Algorithms](#algorithms) |
|
- [Connectivity](#connectivity) |
|
- [Maxflow](#maxflow) |
|
- [Isomorphism](#isomorphism) |
|
- [Games](#games) |
|
- [Winner Identification](#winner-identification) |
|
- [Chess Puzzle](#chess-puzzle) |
|
- [Science](#science) |
|
- [Chemistry](#chemistry) |
|
- [Physics](#physics) |
|
- [Citation](#citation) |
|
- [Contact](#contact) |
|
|
|
## Uses |
|
|
|
<!-- Address questions around how the dataset is intended to be used. --> |
|
There are 4 major domains: math, algorithm, game, and science. Each domain has several subtasks. |
|
|
|
In tatal there are 1,887 samples in the `validation` split with ground-truth labels provided. |
|
|
|
The `test` split without labels is coming soon...... |
|
|
|
We will show how to load the data for each subtask. |
|
|
|
### TL;DR |
|
There are 10 subtasks in total: `math_breakpoint, math_convexity, math_parity, graph_connectivity, graph_maxflow, graph_isomorphism, winner_id, puzzle, chemistry, physics`. |
|
|
|
You can load a `subtask` via |
|
|
|
```python |
|
from datasets import load_dataset |
|
ds_subtask = load_dataset('isobench/IsoBench', subtask, split='validation') |
|
``` |
|
|
|
|
|
### Direct Use |
|
|
|
<!-- This section describes suitable use cases for the dataset. --> |
|
IsoBench is designed with two objectives, which are: |
|
|
|
- Analyzing the behavior difference between language-only and multimodal foundation models, by prompting them with distinct (*e.g.* mathematical expression and plot of a function) representations of the same input. |
|
- Contributing a language-only/multimodal benchmark in the science domain. |
|
|
|
#### Mathematics |
|
There are three mathematics tasks. Each task is structured as a classification problem and each class contains 128 samples. |
|
|
|
- **Parity** implements a ternary classification problem. A model has to classify an input function into an even function, odd function, or neither. |
|
- **Convexity** implements a binary classification problem for a model to classify an input function as convex or concave. **Note**: some functions are only convex (resp. concave) within a certain domain (*e.g.* `x > 0`), which is reported in the `domain` field of each sample. We recommend providing this information as part of the prompt! |
|
- **Breakpoint** counts the number of breakpoints (*i.e.* intersections of a piecewise linear function). Each function contains either 2 or 3 breakpoints, which renders this task a binary classification problem. |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
dataset_parity = load_dataset('isobench/IsoBench', 'math_parity', split='validation') |
|
dataset_convexity = load_dataset('isobench/IsoBench', 'math_convexity', split='validation') |
|
dataset_breakpoint = load_dataset('isobench/IsoBench', 'math_breakpoint', split='validation') |
|
``` |
|
|
|
### Algorithms |
|
There are three algorithmic tasks, with ascending complexity: graph connectivity, graph maximum flow, and graph isomorphism. |
|
|
|
You can download the data by |
|
```python |
|
from datasets import load_dataset |
|
|
|
dataset_connectivity = load_dataset('isobench/IsoBench', 'graph_connectivity', split='validation') |
|
dataset_maxflow = load_dataset('isobench/IsoBench', 'graph_maxflow', split='validation') |
|
dataset_isomorphism = load_dataset('isobench/IsoBench', 'graph_isomorphism', split='validation') |
|
``` |
|
|
|
Each task has 128 dev samples under the validation split. |
|
|
|
|
|
|
|
### Games |
|
|
|
[More Information Needed] |
|
|
|
### Science |
|
|
|
[More Information Needed] |
|
|
|
|
|
## Data Fields |
|
|
|
### Mathematics |
|
|
|
- `image`: a PIL Image feature; |
|
- `latex`: a `string` feature, containing the LateX definition of a function; |
|
- `code`: a `string` feature, containing the `sympy` definition of a function; |
|
- `label`: a `string` feature; |
|
- `domain`: a `string` feature or `None`, denoting the domain of a function. This feature is only used for some of the Convexity problems. |
|
- `id`: a `string` feature. |
|
|
|
### Algorithms |
|
|
|
#### Connectivity |
|
- `image`: a PIL Image feature |
|
- `query_nodes_color`: a `string` feature |
|
- `adjacency_matrix`: a `string` feature, a string of an 2d array representing the adjacency matrix of a graph |
|
- `query_node_1`: a `unit32` feature |
|
- `query_node_2`: a `unit32` feature |
|
- `label`: a `bool` feature, with possible values including `True` (query nodes connected) and `False` (query nodes not connected) |
|
- `id`: a `string` feature |
|
|
|
#### Maxflow |
|
- `image`: a PIL Image feature |
|
- `source_node`: a `unit32` feature, denoting the index of the source node |
|
- `source_node_color`: a `string` feature, denoting the color of the `source_node` rendered in the `image` |
|
- `sink_node`: a `unit32` feature, denoting the index of the sink node |
|
- `sink_node_color`: a `string` feature, denoting the color of the `sink_node` rendered in the `image` |
|
- `adjacency_matrix`: a `string` feature, a string of an 2d array representing the adjacency matrix of a graph. The value in entry (i,j) denotes the capacity of flowing from node `i` to node `j`. |
|
- `label`: a `uint32` feature |
|
- `id`: a `string` feature |
|
|
|
#### Isomorphism |
|
- `image`: a PIL Image feature, consisting of two graphs `G` and `H` |
|
- `adjacency_matrix_G`: a `string` feature, a string of an 2d array representing the adjacency matrix of graph `G` |
|
- `adjacency_matrix_H`: a `string` feature, a string of an 2d array representing the adjacency matrix of graph `H` |
|
- `label`: a `bool` feature, with possible values including `True` (graphs `G` and `H` are isomorphic) and `False` (not isomorphic) |
|
- `id`: a `string` feature |
|
|
|
### Games |
|
|
|
[More Information Needed] |
|
|
|
### Science |
|
|
|
[More Information Needed] |
|
|
|
## Citation |
|
|
|
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> |
|
|
|
**BibTeX:** |
|
|
|
```BibTeX |
|
@misc{fu2024isobench, |
|
title={{I}so{B}ench: Benchmarking Multimodal Foundation Models on Isomorphic Representations}, |
|
author={Deqing Fu$^*$ and Ghazal Khalighinejad$^*$ and Ollie Liu$^*$ and Bhuwan Dhingra and Dani Yogatama and Robin Jia and Willie Neiswanger}, |
|
year={2024}, |
|
eprint={2404.01266}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.AI} |
|
} |
|
``` |
|
|
|
**Chicago Style:** |
|
Deqing Fu<sup>\*</sup>, Ghazal Khalighinejad<sup>\*</sup>, Ollie Liu<sup>\*</sup>, Bhuwan Dhingra, Dani Yogatama, Robin Jia, and Willie Neiswanger. "IsoBench: Benchmarking Multimodal Foundation Models on Isomorphic Representations." arXiv preprint arXiv:2404.01266 (2024). |
|
|
|
|
|
## Contact |
|
|
|
[email protected], [email protected], [email protected] |