Datasets:
pretty_name: Wind Tunnel dataset
size_categories:
- 10K<n<100K
Wind Tunnel Dataset
The Wind Tunnel Dataset contains 20,000 OpenFOAM simulations of 1,000 unique automobile-like objects placed in a virtual wind tunnel. Each object is simulated under 20 distinct conditions: 4 random wind speeds ranging from 10 to 50 m/s, and 5 rotation angles (0°, 180° and 3 random angles). To ensure stable and reliable results, each simulation runs for 300 iterations. The meshes for these automobile-like objects were generated using the Instant Mesh model and sourced from the Stanford Cars Dataset. The entire dataset of 20,000 simulations is organized into three subsets: 70% for training, 20% for validation, and 10% for testing.
The data generation process itself was orchestrated using the Inductiva API, which allowed us to run hundreds of OpenFOAM simulations in parallel on the cloud.
Dataset Structure
data
├── train
│ ├── <SIMULATION_ID>
│ │ ├── input_mesh.obj
│ │ ├── openfoam_mesh.obj
│ │ ├── pressure_field_mesh.vtk
│ │ ├── simulation_metadata.json
│ │ └── streamlines_mesh.ply
│ └── ...
├── validation
│ └── ...
└── test
└── ...
Dataset Files
Each simulation in the Wind Tunnel Dataset is accompanied by several key files that provide both input and output data. Here’s a breakdown of the files included in each simulation:
- input_mesh.obj: OBJ file with the input mesh.
- openfoam_mesh.obj: OBJ file with the OpenFOAM mesh.
- pressure_field_mesh.vtk: VTK file with the pressure field data.
- streamlines_mesh.ply: PLY file with the streamlines.
- metadata.json: JSON with metadata about the input parameters and about some output results such as the force coefficients (obtained via simulation) and the path of the output files.
Downloading the Dataset:
1. Using snapshot_download()
from huggingface_hub import snapshot_download
dataset_name = "inductiva/windtunnel"
# Download the entire dataset
snapshot_download(repo_id=dataset_name)
# Download to a specific local directory
snapshot_download(repo_id=dataset_name, local_dir="local_folder")
# Download only the input mesh files across all simulations
snapshot_download(allow_patterns=["*/*/*/input_mesh.obj"], repo_id=dataset_name)
2. Using load_dataset()
from datasets import load_dataset
# Load the dataset (streaming is supported)
dataset = load_dataset("inductiva/windtunnel", streaming=False)
# Display dataset information
print(dataset)
# Access a sample from the training set
sample = dataset["train"][0]
print("Sample from training set:", sample)
What's next?
If you have any issues using this dataset, feel free to reach out to us at [email protected]
To learn more about how we created this dataset—or how you can generate synthetic datasets for Physics-AI models—visit Inductiva.AI or check out our blog post on transforming complex simulation workflows into easy-to-use Python classes.