Datasets:

Modalities:
Tabular
Text
Formats:
parquet
Languages:
English
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 1,649 Bytes
2eb54b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e42f21
 
 
 
 
 
2eb54b6
7e42f21
6c9cd48
7e42f21
84bc830
7e42f21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
dataset_info:
  features:
  - name: sts-id
    dtype: string
  - name: sts-score
    dtype: float64
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: paraphrase
    dtype: int64
  - name: Human Annotation - P1
    dtype: int64
  - name: Human Annotation - P2
    dtype: int64
  - name: __index_level_0__
    dtype: int64
  splits:
  - name: test
    num_bytes: 58088
    num_examples: 338
  download_size: 37035
  dataset_size: 58088
configs:
- config_name: default
  data_files:
  - split: test
    path: data/test-*
license: apache-2.0
task_categories:
- text-classification
language:
- en
pretty_name: STS-H
---

# STS-Hard Test Set

The STS-Hard dataset is a paraphrase detection test set derived from the STSBenchmark dataset. It was introduced as part of the **PARAPHRASUS: A Comprehensive Benchmark for Evaluating Paraphrase Detection Models**. The test set includes the paraphrase label as well as individual annotation labels from two annotators:

- **P1**: The semanticist.
- **P2**: A student annotator.

For more details, refer to the [original paper](https://arxiv.org/abs/2409.12060) that was presented at COLING 2025.

---

### Citation

If you use this dataset, please cite it using the following BibTeX entry:

```bibtex
@misc{michail2024paraphrasuscomprehensivebenchmark,
      title={PARAPHRASUS : A Comprehensive Benchmark for Evaluating Paraphrase Detection Models}, 
      author={Andrianos Michail and Simon Clematide and Juri Opitz},
      year={2024},
      eprint={2409.12060},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2409.12060}, 
}