Datasets:

Modalities:
Image
Languages:
English
Size:
< 1K
Libraries:
Datasets
License:
hls_merra2_gppFlux / prep_input.py
csrijac's picture
Data preprocessing & generation
b7a6232 verified
raw
history blame
6.19 kB
"""
prep_input.py
This script reads in MERRA2 SLV,LND data in combination with
flux station data together with HLS chips to produce a CSV with
aggregate data values that can be used to train for GPP flux prediction.
Author: Besart Mujeci, Srija Chakraborty, Christopher Phillips
Usage:
python prep_input.py
"""
import rclone
from pathlib import Path
import shutil
import os
import pandas as pd
import netCDF4 as nc
import numpy as np
import pandas as pd
# --- --- ---
def convert_HLS_date(chip_name):
"""
Extracts date string from HLS tile name and returns date object
Args:
chip_name (string): name of hls file
Returns:
datetime: datetime object of time string
"""
hls_date = chip_name.split('.')[3][:7]
year = int(hls_date[:4])
day = int(hls_date[4:])
date = datetime(year, 1, 1)+timedelta(days=day-1)
return date
# --- --- ---
# --- --- --- Set up rclone and get chips and merra files
rawdir = ''
merradir = ''
cfg = ""
result = rclone.with_config(cfg).run_cmd("ls", extra_args=[f"{rawdir}/"])
output_lines = result['out'].decode('utf-8').splitlines()
file_list = [line.split(maxsplit=1)[1] for line in output_lines if line]
result = rclone.with_config(cfg).run_cmd("ls", extra_args=[f"{merradir}/"])
output_lines = result['out'].decode('utf-8').splitlines()
merras = [line.split(maxsplit=1)[1] for line in output_lines if line]
# --- --- ---
# --- --- --- Set up paths
# Location of station tile list
station_file = './TILED_filtered_flux_sites_2018_2021.csv'
# Location to save the input file
spath = './all_inputs.csv'
odir = ''
# --- --- ---
# --- --- --- Get station information
stations = {}
fn = open(station_file, 'r')
for line in list(fn)[1:]:
dummy = line.split(',')
stations[dummy[1].strip()] = (dummy[1], float(dummy[9]), float(dummy[8]), dummy[3], dummy[4])
fn.close()
flux_nets = os.listdir("./fluxnets/flux_sites_2018_2021/")
# --- --- ---
# Locate all HLS chips
chips = sorted(file_list)
skipped = []
# Make the input file to which to save the data
out_fn = open(spath, 'w')
out_fn.write(f'Chip,Station,T2MIN,T2MAX,T2MEAN,TSMDEWMEAN,GWETROOT,LHLAND,SHLAND,SWLAND,PARDFLAND,PRECTOTLAND,GPP')
# And loop over them
for chip in chips:
rclone.with_config(cfg).copy(f"{rawdir}/{chip}", f"./{chip}")
# Match to an Ameriflux station
chip_name = chip.split('/')[-1]
tile = chip_name.split('.')[2][1:]
station_name = chip_name.split('.')[6].split("_")[0]
try: # Skip tiles for which no station exists
station = stations[station_name]
except:
print(f"exception - {('station dict indexing', station_name, tile)}")
continue
date = helpers.convert_HLS_date(chip_name)
# Locate station from tile and pull in the daily reference value
try: # Skip tiles for which no station data is available
station_file = [fluxnet for fluxnet in flux_nets if station[0] in fluxnet][0]
flux_df = pd.read_csv(f"genai-usra-east/impact/fluxnets/flux_sites_2018_2021/{station_file}")
except:
print(f"exception - {('station exception', station_name, tile)}")
continue
flux_times = np.array(flux_df.TIMESTAMP, dtype='str')
flux_gpp = np.array(flux_df.GPP_NT_VUT_REF)
try: # Skip if cannot find CO2 data
quality_flag = np.array(flux_df.NEE_VUT_REF_QC)
if quality_flag[flux_times==date.strftime("%Y%m%d")][0] >= 0.6:
co2 = flux_gpp[flux_times==date.strftime("%Y%m%d")][0]
else: # Quality not met, skip
print(f"co2 quality not met for - {('co2', station_name, tile)}")
continue
except:
print(f"co2 quality not met for - {('co2 exception', station_name, tile)}")
skipped.append(('co2 exception', station_name, tile))
continue
# Pull MERRA-2 data for temperature and dew
merra_file = [file for file in merras if "slv" in file and str(date.strftime("%Y%m%d")) in file][0]
rclone.with_config(cfg).copy(f"{merradir}/{merra_file}", f"./merra/")
merra_fn = nc.Dataset(f'./merra/{merra_file}')
# Pull in the MERRA-2 grid and find closest point
mlons = merra_fn.variables['lon'][:]
mlats = merra_fn.variables['lat'][:]
xind = np.argmin((mlons-station[1])**2)
yind = np.argmin((mlats-station[2])**2)
# Read the variables and collect stats based on time dimension
tmax = np.max(merra_fn.variables['T2M'], keepdims=True, axis=0)
tmin = np.min(merra_fn.variables['T2M'], keepdims=True, axis=0)
tmean = np.nanmean(merra_fn.variables['T2M'][:,yind, xind])
tmax = tmax[0,yind,xind]
tmin = tmin[0,yind,xind]
tdewmean = np.nanmean(merra_fn.variables['T2MDEW'][:,yind, xind])
shutil.rmtree(Path(f"./merra"))
# Pull MERRA-2 data for surface data
merra_file = [file for file in merras if "lnd" in file and str(date.strftime("%Y%m%d")) in file][0]
rclone.with_config(cfg).copy(f"{merradir}/{merra_file}", f"./merra/")
merra_fn = nc.Dataset(f'./merra/{merra_file}')
# Pull in the MERRA-2 grid and find closest point
mlons = merra_fn.variables['lon'][:]
mlats = merra_fn.variables['lat'][:]
xind = np.argmin((mlons-station[1])**2)
yind = np.argmin((mlats-station[2])**2)
# Read the variables and collect stats based on time dimension
GWETROOT = np.nanmean(merra_fn.variables['GWETROOT'][:,yind,xind])
LHLAND = np.nanmean(merra_fn.variables['LHLAND'][:,yind,xind])
SHLAND = np.nanmean(merra_fn.variables['SHLAND'][:,yind,xind])
PARDFLAND = np.nanmean(merra_fn.variables['PARDFLAND'][:,yind,xind])
PRECTOTLAND = np.nanmean(merra_fn.variables['PRECTOTLAND'][:,yind,xind])
SWLAND = np.nanmean(merra_fn.variables['SWLAND'][:,yind,xind])
shutil.rmtree(Path(f"./merra"))
shutil.rmtree(Path(f"./{tile}"))
# Save chip name, MERRA-2 values, and Ameriflux measurement to data file
out_fn.write(f'\n{chip_name},{station[0]},{tmin:.2f},{tmax:.2f},{tmean:.2f},{tdewmean:.2f},{GWETROOT:.2f},{LHLAND:.2f},{SHLAND:.2f},{SWLAND:.2f},{PARDFLAND:2f},{PRECTOTLAND:2f},{co2}')
# Close the file
out_fn.close()
rclone.with_config(cfg).copy(f"{spath}", f"{odir}")
print("DONE")