Datasets:

Modalities:
Image
Languages:
English
Size:
< 1K
Libraries:
Datasets
License:
File size: 6,186 Bytes
b7a6232
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
"""
prep_input.py

This script reads in MERRA2 SLV,LND data in combination with 
flux station data together with HLS chips to produce a CSV with 
aggregate data values that can be used to train for GPP flux prediction.

Author: Besart Mujeci, Srija Chakraborty, Christopher Phillips

Usage:
    python prep_input.py
"""
import rclone
from pathlib import Path
import shutil
import os
import pandas as pd
import netCDF4 as nc
import numpy as np
import pandas as pd


# --- --- ---
def convert_HLS_date(chip_name):
    """
    Extracts date string from HLS tile name and returns date object

    Args:
        chip_name (string): name of hls file

    Returns:
        datetime: datetime object of time string
    """
    hls_date = chip_name.split('.')[3][:7]
    year = int(hls_date[:4])
    day = int(hls_date[4:])    
    date = datetime(year, 1, 1)+timedelta(days=day-1)
        
    return date
# --- --- ---


# --- --- --- Set up rclone and get chips and merra files
rawdir = ''
merradir = ''
cfg = ""
result = rclone.with_config(cfg).run_cmd("ls", extra_args=[f"{rawdir}/"])
output_lines = result['out'].decode('utf-8').splitlines()
file_list = [line.split(maxsplit=1)[1] for line in output_lines if line]
result = rclone.with_config(cfg).run_cmd("ls", extra_args=[f"{merradir}/"])
output_lines = result['out'].decode('utf-8').splitlines()
merras = [line.split(maxsplit=1)[1] for line in output_lines if line]
# --- --- ---


# --- --- --- Set up paths
# Location of station tile list
station_file = './TILED_filtered_flux_sites_2018_2021.csv'
# Location to save the input file
spath = './all_inputs.csv'
odir = ''
# --- --- ---


# --- --- --- Get station information
stations = {}
fn = open(station_file, 'r')
for line in list(fn)[1:]:
    dummy = line.split(',')
    stations[dummy[1].strip()] = (dummy[1], float(dummy[9]), float(dummy[8]), dummy[3], dummy[4])
fn.close()
flux_nets = os.listdir("./fluxnets/flux_sites_2018_2021/")
# --- --- ---

# Locate all HLS chips
chips = sorted(file_list)
skipped = []

# Make the input file to which to save the data
out_fn = open(spath, 'w')
out_fn.write(f'Chip,Station,T2MIN,T2MAX,T2MEAN,TSMDEWMEAN,GWETROOT,LHLAND,SHLAND,SWLAND,PARDFLAND,PRECTOTLAND,GPP')

# And loop over them
for chip in chips:
    rclone.with_config(cfg).copy(f"{rawdir}/{chip}", f"./{chip}")

    # Match to an Ameriflux station
    chip_name = chip.split('/')[-1]
    tile = chip_name.split('.')[2][1:]
    station_name = chip_name.split('.')[6].split("_")[0]
    try: # Skip tiles for which no station exists
        station = stations[station_name]
    except:
        print(f"exception - {('station dict indexing', station_name, tile)}")
        continue
    date = helpers.convert_HLS_date(chip_name)

    # Locate station from tile and pull in the daily reference value
    try: # Skip tiles for which no station data is available
        station_file = [fluxnet for fluxnet in flux_nets if station[0] in fluxnet][0]
        flux_df = pd.read_csv(f"genai-usra-east/impact/fluxnets/flux_sites_2018_2021/{station_file}")
    except:
        print(f"exception - {('station exception', station_name, tile)}")
        continue

    flux_times = np.array(flux_df.TIMESTAMP, dtype='str')
    flux_gpp = np.array(flux_df.GPP_NT_VUT_REF)
    try: # Skip if cannot find CO2 data
        quality_flag = np.array(flux_df.NEE_VUT_REF_QC)
        if quality_flag[flux_times==date.strftime("%Y%m%d")][0] >= 0.6:
            co2 = flux_gpp[flux_times==date.strftime("%Y%m%d")][0]
        else: # Quality not met, skip
            print(f"co2 quality not met for - {('co2', station_name, tile)}")
            continue
    except:
        print(f"co2 quality not met for - {('co2 exception', station_name, tile)}")
        skipped.append(('co2 exception', station_name, tile))
        continue


    # Pull MERRA-2 data for temperature and dew
    merra_file = [file for file in merras if "slv" in file and str(date.strftime("%Y%m%d")) in file][0]
    rclone.with_config(cfg).copy(f"{merradir}/{merra_file}", f"./merra/")
    merra_fn = nc.Dataset(f'./merra/{merra_file}')

    # Pull in the MERRA-2 grid and find closest point
    mlons = merra_fn.variables['lon'][:]
    mlats = merra_fn.variables['lat'][:]
    xind = np.argmin((mlons-station[1])**2)
    yind = np.argmin((mlats-station[2])**2)
    
    # Read the variables and collect stats based on time dimension
    tmax = np.max(merra_fn.variables['T2M'], keepdims=True, axis=0)
    tmin = np.min(merra_fn.variables['T2M'], keepdims=True, axis=0)
    tmean = np.nanmean(merra_fn.variables['T2M'][:,yind, xind])
    tmax = tmax[0,yind,xind]
    tmin = tmin[0,yind,xind]
    tdewmean = np.nanmean(merra_fn.variables['T2MDEW'][:,yind, xind])
    

    shutil.rmtree(Path(f"./merra"))
    
    # Pull MERRA-2 data for surface data
    merra_file = [file for file in merras if "lnd" in file and str(date.strftime("%Y%m%d")) in file][0]
    rclone.with_config(cfg).copy(f"{merradir}/{merra_file}", f"./merra/")
    merra_fn = nc.Dataset(f'./merra/{merra_file}')
    
    # Pull in the MERRA-2 grid and find closest point
    mlons = merra_fn.variables['lon'][:]
    mlats = merra_fn.variables['lat'][:]
    xind = np.argmin((mlons-station[1])**2)
    yind = np.argmin((mlats-station[2])**2)
    
    # Read the variables and collect stats based on time dimension
    GWETROOT = np.nanmean(merra_fn.variables['GWETROOT'][:,yind,xind])
    LHLAND = np.nanmean(merra_fn.variables['LHLAND'][:,yind,xind])
    SHLAND = np.nanmean(merra_fn.variables['SHLAND'][:,yind,xind])
    PARDFLAND = np.nanmean(merra_fn.variables['PARDFLAND'][:,yind,xind])
    PRECTOTLAND = np.nanmean(merra_fn.variables['PRECTOTLAND'][:,yind,xind])
    SWLAND = np.nanmean(merra_fn.variables['SWLAND'][:,yind,xind])

    shutil.rmtree(Path(f"./merra"))
    shutil.rmtree(Path(f"./{tile}"))
    # Save chip name, MERRA-2 values, and Ameriflux measurement to data file
    out_fn.write(f'\n{chip_name},{station[0]},{tmin:.2f},{tmax:.2f},{tmean:.2f},{tdewmean:.2f},{GWETROOT:.2f},{LHLAND:.2f},{SHLAND:.2f},{SWLAND:.2f},{PARDFLAND:2f},{PRECTOTLAND:2f},{co2}')
# Close the file
out_fn.close()
rclone.with_config(cfg).copy(f"{spath}", f"{odir}")
print("DONE")