graspnet-h5 / data_utils.py
hushell's picture
init from mihai generated h5 files
f0d013b
""" Tools for data processing.
Author: chenxi-wang
"""
import numpy as np
class CameraInfo():
""" Camera intrisics for point cloud creation. """
def __init__(self, width, height, fx, fy, cx, cy, scale):
self.width = width
self.height = height
self.fx = fx
self.fy = fy
self.cx = cx
self.cy = cy
self.scale = scale
def create_point_cloud_from_depth_image(depth, camera, organized=True):
""" Generate point cloud using depth image only.
Input:
depth: [numpy.ndarray, (H,W), numpy.float32]
depth image
camera: [CameraInfo]
camera intrinsics
organized: bool
whether to keep the cloud in image shape (H,W,3)
Output:
cloud: [numpy.ndarray, (H,W,3)/(H*W,3), numpy.float32]
generated cloud, (H,W,3) for organized=True, (H*W,3) for organized=False
"""
assert(depth.shape[0] == camera.height and depth.shape[1] == camera.width)
xmap = np.arange(camera.width)
ymap = np.arange(camera.height)
xmap, ymap = np.meshgrid(xmap, ymap)
points_z = depth / camera.scale
points_x = (xmap - camera.cx) * points_z / camera.fx
points_y = (ymap - camera.cy) * points_z / camera.fy
cloud = np.stack([points_x, points_y, points_z], axis=-1)
if not organized:
cloud = cloud.reshape([-1, 3])
return cloud
def transform_point_cloud(cloud, transform, format='4x4'):
""" Transform points to new coordinates with transformation matrix.
Input:
cloud: [np.ndarray, (N,3), np.float32]
points in original coordinates
transform: [np.ndarray, (3,3)/(3,4)/(4,4), np.float32]
transformation matrix, could be rotation only or rotation+translation
format: [string, '3x3'/'3x4'/'4x4']
the shape of transformation matrix
'3x3' --> rotation matrix
'3x4'/'4x4' --> rotation matrix + translation matrix
Output:
cloud_transformed: [np.ndarray, (N,3), np.float32]
points in new coordinates
"""
if not (format == '3x3' or format == '4x4' or format == '3x4'):
raise ValueError('Unknown transformation format, only support \'3x3\' or \'4x4\' or \'3x4\'.')
if format == '3x3':
cloud_transformed = np.dot(transform, cloud.T).T
elif format == '4x4' or format == '3x4':
ones = np.ones(cloud.shape[0])[:, np.newaxis]
cloud_ = np.concatenate([cloud, ones], axis=1)
cloud_transformed = np.dot(transform, cloud_.T).T
cloud_transformed = cloud_transformed[:, :3]
return cloud_transformed
def compute_point_dists(A, B):
""" Compute pair-wise point distances in two matrices.
Input:
A: [np.ndarray, (N,3), np.float32]
point cloud A
B: [np.ndarray, (M,3), np.float32]
point cloud B
Output:
dists: [np.ndarray, (N,M), np.float32]
distance matrix
"""
A = A[:, np.newaxis, :]
B = B[np.newaxis, :, :]
dists = np.linalg.norm(A-B, axis=-1)
return dists
def remove_invisible_grasp_points(cloud, grasp_points, pose, th=0.01):
""" Remove invisible part of object model according to scene point cloud.
Input:
cloud: [np.ndarray, (N,3), np.float32]
scene point cloud
grasp_points: [np.ndarray, (M,3), np.float32]
grasp point label in object coordinates
pose: [np.ndarray, (4,4), np.float32]
transformation matrix from object coordinates to world coordinates
th: [float]
if the minimum distance between a grasp point and the scene points is greater than outlier, the point will be removed
Output:
visible_mask: [np.ndarray, (M,), np.bool]
mask to show the visible part of grasp points
"""
grasp_points_trans = transform_point_cloud(grasp_points, pose)
dists = compute_point_dists(grasp_points_trans, cloud)
min_dists = dists.min(axis=1)
visible_mask = (min_dists < th)
return visible_mask
def get_workspace_mask(cloud, seg, trans=None, organized=True, outlier=0):
""" Keep points in workspace as input.
Input:
cloud: [np.ndarray, (H,W,3), np.float32]
scene point cloud
seg: [np.ndarray, (H,W,), np.uint8]
segmantation label of scene points
trans: [np.ndarray, (4,4), np.float32]
transformation matrix for scene points, default: None.
organized: [bool]
whether to keep the cloud in image shape (H,W,3)
outlier: [float]
if the distance between a point and workspace is greater than outlier, the point will be removed
Output:
workspace_mask: [np.ndarray, (H,W)/(H*W,), np.bool]
mask to indicate whether scene points are in workspace
"""
if organized:
h, w, _ = cloud.shape
cloud = cloud.reshape([h*w, 3])
seg = seg.reshape(h*w)
if trans is not None:
cloud = transform_point_cloud(cloud, trans)
foreground = cloud[seg>0]
xmin, ymin, zmin = foreground.min(axis=0)
xmax, ymax, zmax = foreground.max(axis=0)
mask_x = ((cloud[:,0] > xmin-outlier) & (cloud[:,0] < xmax+outlier))
mask_y = ((cloud[:,1] > ymin-outlier) & (cloud[:,1] < ymax+outlier))
mask_z = ((cloud[:,2] > zmin-outlier) & (cloud[:,2] < zmax+outlier))
workspace_mask = (mask_x & mask_y & mask_z)
if organized:
workspace_mask = workspace_mask.reshape([h, w])
return workspace_mask