|
""" Tools for data processing. |
|
Author: chenxi-wang |
|
""" |
|
|
|
import numpy as np |
|
|
|
class CameraInfo(): |
|
""" Camera intrisics for point cloud creation. """ |
|
def __init__(self, width, height, fx, fy, cx, cy, scale): |
|
self.width = width |
|
self.height = height |
|
self.fx = fx |
|
self.fy = fy |
|
self.cx = cx |
|
self.cy = cy |
|
self.scale = scale |
|
|
|
def create_point_cloud_from_depth_image(depth, camera, organized=True): |
|
""" Generate point cloud using depth image only. |
|
|
|
Input: |
|
depth: [numpy.ndarray, (H,W), numpy.float32] |
|
depth image |
|
camera: [CameraInfo] |
|
camera intrinsics |
|
organized: bool |
|
whether to keep the cloud in image shape (H,W,3) |
|
|
|
Output: |
|
cloud: [numpy.ndarray, (H,W,3)/(H*W,3), numpy.float32] |
|
generated cloud, (H,W,3) for organized=True, (H*W,3) for organized=False |
|
""" |
|
assert(depth.shape[0] == camera.height and depth.shape[1] == camera.width) |
|
xmap = np.arange(camera.width) |
|
ymap = np.arange(camera.height) |
|
xmap, ymap = np.meshgrid(xmap, ymap) |
|
points_z = depth / camera.scale |
|
points_x = (xmap - camera.cx) * points_z / camera.fx |
|
points_y = (ymap - camera.cy) * points_z / camera.fy |
|
cloud = np.stack([points_x, points_y, points_z], axis=-1) |
|
if not organized: |
|
cloud = cloud.reshape([-1, 3]) |
|
return cloud |
|
|
|
def transform_point_cloud(cloud, transform, format='4x4'): |
|
""" Transform points to new coordinates with transformation matrix. |
|
|
|
Input: |
|
cloud: [np.ndarray, (N,3), np.float32] |
|
points in original coordinates |
|
transform: [np.ndarray, (3,3)/(3,4)/(4,4), np.float32] |
|
transformation matrix, could be rotation only or rotation+translation |
|
format: [string, '3x3'/'3x4'/'4x4'] |
|
the shape of transformation matrix |
|
'3x3' --> rotation matrix |
|
'3x4'/'4x4' --> rotation matrix + translation matrix |
|
|
|
Output: |
|
cloud_transformed: [np.ndarray, (N,3), np.float32] |
|
points in new coordinates |
|
""" |
|
if not (format == '3x3' or format == '4x4' or format == '3x4'): |
|
raise ValueError('Unknown transformation format, only support \'3x3\' or \'4x4\' or \'3x4\'.') |
|
if format == '3x3': |
|
cloud_transformed = np.dot(transform, cloud.T).T |
|
elif format == '4x4' or format == '3x4': |
|
ones = np.ones(cloud.shape[0])[:, np.newaxis] |
|
cloud_ = np.concatenate([cloud, ones], axis=1) |
|
cloud_transformed = np.dot(transform, cloud_.T).T |
|
cloud_transformed = cloud_transformed[:, :3] |
|
return cloud_transformed |
|
|
|
def compute_point_dists(A, B): |
|
""" Compute pair-wise point distances in two matrices. |
|
|
|
Input: |
|
A: [np.ndarray, (N,3), np.float32] |
|
point cloud A |
|
B: [np.ndarray, (M,3), np.float32] |
|
point cloud B |
|
|
|
Output: |
|
dists: [np.ndarray, (N,M), np.float32] |
|
distance matrix |
|
""" |
|
A = A[:, np.newaxis, :] |
|
B = B[np.newaxis, :, :] |
|
dists = np.linalg.norm(A-B, axis=-1) |
|
return dists |
|
|
|
def remove_invisible_grasp_points(cloud, grasp_points, pose, th=0.01): |
|
""" Remove invisible part of object model according to scene point cloud. |
|
|
|
Input: |
|
cloud: [np.ndarray, (N,3), np.float32] |
|
scene point cloud |
|
grasp_points: [np.ndarray, (M,3), np.float32] |
|
grasp point label in object coordinates |
|
pose: [np.ndarray, (4,4), np.float32] |
|
transformation matrix from object coordinates to world coordinates |
|
th: [float] |
|
if the minimum distance between a grasp point and the scene points is greater than outlier, the point will be removed |
|
|
|
Output: |
|
visible_mask: [np.ndarray, (M,), np.bool] |
|
mask to show the visible part of grasp points |
|
""" |
|
grasp_points_trans = transform_point_cloud(grasp_points, pose) |
|
dists = compute_point_dists(grasp_points_trans, cloud) |
|
min_dists = dists.min(axis=1) |
|
visible_mask = (min_dists < th) |
|
return visible_mask |
|
|
|
def get_workspace_mask(cloud, seg, trans=None, organized=True, outlier=0): |
|
""" Keep points in workspace as input. |
|
|
|
Input: |
|
cloud: [np.ndarray, (H,W,3), np.float32] |
|
scene point cloud |
|
seg: [np.ndarray, (H,W,), np.uint8] |
|
segmantation label of scene points |
|
trans: [np.ndarray, (4,4), np.float32] |
|
transformation matrix for scene points, default: None. |
|
organized: [bool] |
|
whether to keep the cloud in image shape (H,W,3) |
|
outlier: [float] |
|
if the distance between a point and workspace is greater than outlier, the point will be removed |
|
|
|
Output: |
|
workspace_mask: [np.ndarray, (H,W)/(H*W,), np.bool] |
|
mask to indicate whether scene points are in workspace |
|
""" |
|
if organized: |
|
h, w, _ = cloud.shape |
|
cloud = cloud.reshape([h*w, 3]) |
|
seg = seg.reshape(h*w) |
|
if trans is not None: |
|
cloud = transform_point_cloud(cloud, trans) |
|
foreground = cloud[seg>0] |
|
xmin, ymin, zmin = foreground.min(axis=0) |
|
xmax, ymax, zmax = foreground.max(axis=0) |
|
mask_x = ((cloud[:,0] > xmin-outlier) & (cloud[:,0] < xmax+outlier)) |
|
mask_y = ((cloud[:,1] > ymin-outlier) & (cloud[:,1] < ymax+outlier)) |
|
mask_z = ((cloud[:,2] > zmin-outlier) & (cloud[:,2] < zmax+outlier)) |
|
workspace_mask = (mask_x & mask_y & mask_z) |
|
if organized: |
|
workspace_mask = workspace_mask.reshape([h, w]) |
|
|
|
return workspace_mask |