init from mihai generated h5 files
Browse files- .gitattributes +1 -0
- bbox_dataset.py +166 -0
- data_utils.py +149 -0
- grasp_labels.hdf5 +3 -0
- test_bbox_dataset.ipynb +0 -0
- test_labels.hdf5 +3 -0
- test_labels_limited.hdf5 +3 -0
- test_novel_labels.hdf5 +3 -0
- test_novel_labels_limited.hdf5 +3 -0
- test_seen_labels.hdf5 +3 -0
- test_seen_labels_limited.hdf5 +3 -0
- test_seen_labels_overfitting.hdf5 +3 -0
- test_similar_labels.hdf5 +3 -0
- test_similar_labels_limited.hdf5 +3 -0
- train_labels.hdf5 +3 -0
- train_labels_limited.hdf5 +3 -0
- train_labels_overfitting.hdf5 +3 -0
.gitattributes
CHANGED
@@ -53,3 +53,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
53 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
54 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
55 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
|
|
|
53 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
54 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
55 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
56 |
+
*.hdf5 filter=lfs diff=lfs merge=lfs -text
|
bbox_dataset.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" GraspNet dataset processing.
|
2 |
+
"""
|
3 |
+
|
4 |
+
import os
|
5 |
+
import sys
|
6 |
+
import numpy as np
|
7 |
+
import numpy.ma as ma
|
8 |
+
import scipy.io as scio
|
9 |
+
from scipy.optimize import linear_sum_assignment
|
10 |
+
from PIL import Image
|
11 |
+
from skimage.measure import label, regionprops
|
12 |
+
import cv2
|
13 |
+
|
14 |
+
import torch
|
15 |
+
from collections import abc as container_abcs
|
16 |
+
from torch.utils.data import Dataset
|
17 |
+
from tqdm import tqdm
|
18 |
+
from torch.utils.data import DataLoader
|
19 |
+
from time import time
|
20 |
+
|
21 |
+
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
22 |
+
from .data_utils import CameraInfo, transform_point_cloud, create_point_cloud_from_depth_image, \
|
23 |
+
get_workspace_mask, remove_invisible_grasp_points
|
24 |
+
import h5py
|
25 |
+
|
26 |
+
|
27 |
+
class GraspNetDataset(Dataset):
|
28 |
+
def __init__(self, root, valid_obj_idxs, camera='kinect', split='train', remove_invisible=True,
|
29 |
+
augment=False, limited_data=False, overfitting=False, k_grasps=1, ground_truth_type="topk", caching=True):
|
30 |
+
self.root = root
|
31 |
+
self.split = split
|
32 |
+
self.remove_invisible = remove_invisible
|
33 |
+
self.valid_obj_idxs = valid_obj_idxs
|
34 |
+
self.camera = camera
|
35 |
+
self.augment = augment
|
36 |
+
self.k_grasps = k_grasps
|
37 |
+
self.ground_truth_type = ground_truth_type
|
38 |
+
self.overfitting = overfitting
|
39 |
+
self.caching = caching
|
40 |
+
|
41 |
+
if overfitting:
|
42 |
+
limited_data = True
|
43 |
+
self.limited_data = limited_data
|
44 |
+
|
45 |
+
if split == 'train':
|
46 |
+
self.sceneIds = list(range(100))
|
47 |
+
elif split == 'test':
|
48 |
+
self.sceneIds = list(range(100, 190))
|
49 |
+
elif split == 'test_seen':
|
50 |
+
self.sceneIds = list(range(100, 130))
|
51 |
+
elif split == 'test_similar':
|
52 |
+
self.sceneIds = list(range(130, 160))
|
53 |
+
elif split == 'test_novel':
|
54 |
+
self.sceneIds = list(range(160, 190))
|
55 |
+
if limited_data:
|
56 |
+
self.sceneIds = self.sceneIds[:10]
|
57 |
+
self.sceneIds = ['scene_{}'.format(str(x).zfill(4)) for x in self.sceneIds]
|
58 |
+
|
59 |
+
filename = f"dataset/{split}_labels"
|
60 |
+
if limited_data and not overfitting:
|
61 |
+
filename += "_limited"
|
62 |
+
if overfitting:
|
63 |
+
filename += "_overfitting"
|
64 |
+
filename += ".hdf5"
|
65 |
+
self.h5_filename = filename
|
66 |
+
self.h5_file = None
|
67 |
+
self.grasp_labels_filename = "dataset/grasp_labels.hdf5"
|
68 |
+
self.grasp_labels_file = None
|
69 |
+
|
70 |
+
with h5py.File(self.h5_filename, 'r') as f:
|
71 |
+
self.len = f['depthpath'].shape[0]
|
72 |
+
|
73 |
+
def __len__(self):
|
74 |
+
return self.len
|
75 |
+
|
76 |
+
def __getitem__(self, index):
|
77 |
+
if self.h5_file is None:
|
78 |
+
self.h5_file = h5py.File(self.h5_filename, 'r')
|
79 |
+
|
80 |
+
ann_id = int(str(self.h5_file['metapath'][index], 'utf-8').split("meta")[1][1:-4])
|
81 |
+
|
82 |
+
color = np.array(Image.open(self.h5_file['colorpath'][index]), dtype=np.float32) / 255.0
|
83 |
+
depth = np.array(Image.open(self.h5_file['depthpath'][index]))
|
84 |
+
|
85 |
+
# fixing depth image where value is 0
|
86 |
+
p99 = np.percentile(depth[depth != 0], 99)
|
87 |
+
# p1 = abs(np.percentile(depth[depth != 0], 1))
|
88 |
+
depth[depth > p99] = p99
|
89 |
+
depth[depth == 0] = p99
|
90 |
+
|
91 |
+
seg = np.array(Image.open(self.h5_file['labelpath'][index]))
|
92 |
+
meta = scio.loadmat(self.h5_file['metapath'][index])
|
93 |
+
scene = self.h5_file['scenename'][index]
|
94 |
+
|
95 |
+
main_path = str(self.h5_file['metapath'][index], 'utf-8').split("meta")[0]
|
96 |
+
cam_extrinsics = np.load(os.path.join(str(self.h5_file['metapath'][index], 'utf-8').split("meta")[0],
|
97 |
+
'camera_poses.npy'))[ann_id]
|
98 |
+
cam_wrt_table = np.load(os.path.join(str(self.h5_file['metapath'][index], 'utf-8').split("meta")[0],
|
99 |
+
'cam0_wrt_table.npy'))
|
100 |
+
cam_extrinsics = cam_wrt_table.dot(cam_extrinsics).astype(np.float32)
|
101 |
+
|
102 |
+
try:
|
103 |
+
obj_idxs = meta['cls_indexes'].flatten().astype(np.int32)
|
104 |
+
poses = meta['poses']
|
105 |
+
intrinsic = meta['intrinsic_matrix']
|
106 |
+
factor_depth = meta['factor_depth']
|
107 |
+
except Exception as e:
|
108 |
+
print(repr(e))
|
109 |
+
print(scene)
|
110 |
+
|
111 |
+
# h_ratio = 800 / 720
|
112 |
+
# w_ratio = 1333 / 1280
|
113 |
+
|
114 |
+
camera = CameraInfo(1280.0, 720.0, intrinsic[0][0], intrinsic[1][1], intrinsic[0][2], intrinsic[1][2], factor_depth)
|
115 |
+
|
116 |
+
## generate cloud required to remove invisible grasp points
|
117 |
+
#cloud = create_point_cloud_from_depth_image(depth, camera, organized=True)
|
118 |
+
|
119 |
+
obj_bounding_boxes = []
|
120 |
+
for i, obj_idx in enumerate(obj_idxs):
|
121 |
+
if obj_idx not in self.valid_obj_idxs:
|
122 |
+
continue
|
123 |
+
if (seg == obj_idx).sum() < 50:
|
124 |
+
continue
|
125 |
+
|
126 |
+
seg_cpy = seg.copy()
|
127 |
+
seg_cpy[seg != obj_idx] = 0
|
128 |
+
seg_cpy[seg == obj_idx] = 1
|
129 |
+
seg_labels = label(seg_cpy)
|
130 |
+
regions = regionprops(seg_labels)
|
131 |
+
|
132 |
+
# b has start_height, start_width, end_height, end_width = (x_min, y_min, x_max, y_max)
|
133 |
+
b = regions[0].bbox
|
134 |
+
# saved bbox has xyxy
|
135 |
+
H, W = seg.shape[0], seg.shape[1]
|
136 |
+
|
137 |
+
obj_bounding_boxes.append(np.array([b[1] / W, b[0] / H, b[3] / W, b[2] / H])[None].repeat(self.k_grasps, 0))
|
138 |
+
obj_bounding_boxes = np.concatenate(obj_bounding_boxes, axis=0).astype(np.float32)
|
139 |
+
|
140 |
+
ret_dict = {}
|
141 |
+
#ret_dict['point_cloud'] = cloud.transpose((2, 0, 1)).astype(np.float32)
|
142 |
+
ret_dict['color'] = color.transpose((2, 0, 1)).astype(np.float32)
|
143 |
+
ret_dict['depth'] = (depth / camera.scale).astype(np.float32)
|
144 |
+
ret_dict['objectness_label'] = seg.astype(np.int32)
|
145 |
+
ret_dict['obj_bounding_boxes'] = obj_bounding_boxes
|
146 |
+
ret_dict['camera_intrinsics'] = np.expand_dims(np.concatenate([intrinsic.reshape(-1), factor_depth[0]]), -1).astype(np.float32)
|
147 |
+
ret_dict['camera_extrinsics'] = cam_extrinsics.astype(np.float32)
|
148 |
+
#ret_dict['transformed_points'] = transformed_points.astype(np.float32)
|
149 |
+
ret_dict['obj_idxs'] = obj_idxs
|
150 |
+
|
151 |
+
return ret_dict
|
152 |
+
|
153 |
+
|
154 |
+
def load_valid_obj_idxs():
|
155 |
+
obj_names = list(range(88))
|
156 |
+
valid_obj_idxs = []
|
157 |
+
for i, obj_name in enumerate(obj_names):
|
158 |
+
if i == 18: continue
|
159 |
+
valid_obj_idxs.append(i + 1) # here align with label png
|
160 |
+
|
161 |
+
return valid_obj_idxs
|
162 |
+
|
163 |
+
|
164 |
+
def my_worker_init_fn(worker_id):
|
165 |
+
np.random.seed(np.random.get_state()[1][0] + worker_id)
|
166 |
+
pass
|
data_utils.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Tools for data processing.
|
2 |
+
Author: chenxi-wang
|
3 |
+
"""
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
class CameraInfo():
|
8 |
+
""" Camera intrisics for point cloud creation. """
|
9 |
+
def __init__(self, width, height, fx, fy, cx, cy, scale):
|
10 |
+
self.width = width
|
11 |
+
self.height = height
|
12 |
+
self.fx = fx
|
13 |
+
self.fy = fy
|
14 |
+
self.cx = cx
|
15 |
+
self.cy = cy
|
16 |
+
self.scale = scale
|
17 |
+
|
18 |
+
def create_point_cloud_from_depth_image(depth, camera, organized=True):
|
19 |
+
""" Generate point cloud using depth image only.
|
20 |
+
|
21 |
+
Input:
|
22 |
+
depth: [numpy.ndarray, (H,W), numpy.float32]
|
23 |
+
depth image
|
24 |
+
camera: [CameraInfo]
|
25 |
+
camera intrinsics
|
26 |
+
organized: bool
|
27 |
+
whether to keep the cloud in image shape (H,W,3)
|
28 |
+
|
29 |
+
Output:
|
30 |
+
cloud: [numpy.ndarray, (H,W,3)/(H*W,3), numpy.float32]
|
31 |
+
generated cloud, (H,W,3) for organized=True, (H*W,3) for organized=False
|
32 |
+
"""
|
33 |
+
assert(depth.shape[0] == camera.height and depth.shape[1] == camera.width)
|
34 |
+
xmap = np.arange(camera.width)
|
35 |
+
ymap = np.arange(camera.height)
|
36 |
+
xmap, ymap = np.meshgrid(xmap, ymap)
|
37 |
+
points_z = depth / camera.scale
|
38 |
+
points_x = (xmap - camera.cx) * points_z / camera.fx
|
39 |
+
points_y = (ymap - camera.cy) * points_z / camera.fy
|
40 |
+
cloud = np.stack([points_x, points_y, points_z], axis=-1)
|
41 |
+
if not organized:
|
42 |
+
cloud = cloud.reshape([-1, 3])
|
43 |
+
return cloud
|
44 |
+
|
45 |
+
def transform_point_cloud(cloud, transform, format='4x4'):
|
46 |
+
""" Transform points to new coordinates with transformation matrix.
|
47 |
+
|
48 |
+
Input:
|
49 |
+
cloud: [np.ndarray, (N,3), np.float32]
|
50 |
+
points in original coordinates
|
51 |
+
transform: [np.ndarray, (3,3)/(3,4)/(4,4), np.float32]
|
52 |
+
transformation matrix, could be rotation only or rotation+translation
|
53 |
+
format: [string, '3x3'/'3x4'/'4x4']
|
54 |
+
the shape of transformation matrix
|
55 |
+
'3x3' --> rotation matrix
|
56 |
+
'3x4'/'4x4' --> rotation matrix + translation matrix
|
57 |
+
|
58 |
+
Output:
|
59 |
+
cloud_transformed: [np.ndarray, (N,3), np.float32]
|
60 |
+
points in new coordinates
|
61 |
+
"""
|
62 |
+
if not (format == '3x3' or format == '4x4' or format == '3x4'):
|
63 |
+
raise ValueError('Unknown transformation format, only support \'3x3\' or \'4x4\' or \'3x4\'.')
|
64 |
+
if format == '3x3':
|
65 |
+
cloud_transformed = np.dot(transform, cloud.T).T
|
66 |
+
elif format == '4x4' or format == '3x4':
|
67 |
+
ones = np.ones(cloud.shape[0])[:, np.newaxis]
|
68 |
+
cloud_ = np.concatenate([cloud, ones], axis=1)
|
69 |
+
cloud_transformed = np.dot(transform, cloud_.T).T
|
70 |
+
cloud_transformed = cloud_transformed[:, :3]
|
71 |
+
return cloud_transformed
|
72 |
+
|
73 |
+
def compute_point_dists(A, B):
|
74 |
+
""" Compute pair-wise point distances in two matrices.
|
75 |
+
|
76 |
+
Input:
|
77 |
+
A: [np.ndarray, (N,3), np.float32]
|
78 |
+
point cloud A
|
79 |
+
B: [np.ndarray, (M,3), np.float32]
|
80 |
+
point cloud B
|
81 |
+
|
82 |
+
Output:
|
83 |
+
dists: [np.ndarray, (N,M), np.float32]
|
84 |
+
distance matrix
|
85 |
+
"""
|
86 |
+
A = A[:, np.newaxis, :]
|
87 |
+
B = B[np.newaxis, :, :]
|
88 |
+
dists = np.linalg.norm(A-B, axis=-1)
|
89 |
+
return dists
|
90 |
+
|
91 |
+
def remove_invisible_grasp_points(cloud, grasp_points, pose, th=0.01):
|
92 |
+
""" Remove invisible part of object model according to scene point cloud.
|
93 |
+
|
94 |
+
Input:
|
95 |
+
cloud: [np.ndarray, (N,3), np.float32]
|
96 |
+
scene point cloud
|
97 |
+
grasp_points: [np.ndarray, (M,3), np.float32]
|
98 |
+
grasp point label in object coordinates
|
99 |
+
pose: [np.ndarray, (4,4), np.float32]
|
100 |
+
transformation matrix from object coordinates to world coordinates
|
101 |
+
th: [float]
|
102 |
+
if the minimum distance between a grasp point and the scene points is greater than outlier, the point will be removed
|
103 |
+
|
104 |
+
Output:
|
105 |
+
visible_mask: [np.ndarray, (M,), np.bool]
|
106 |
+
mask to show the visible part of grasp points
|
107 |
+
"""
|
108 |
+
grasp_points_trans = transform_point_cloud(grasp_points, pose)
|
109 |
+
dists = compute_point_dists(grasp_points_trans, cloud)
|
110 |
+
min_dists = dists.min(axis=1)
|
111 |
+
visible_mask = (min_dists < th)
|
112 |
+
return visible_mask
|
113 |
+
|
114 |
+
def get_workspace_mask(cloud, seg, trans=None, organized=True, outlier=0):
|
115 |
+
""" Keep points in workspace as input.
|
116 |
+
|
117 |
+
Input:
|
118 |
+
cloud: [np.ndarray, (H,W,3), np.float32]
|
119 |
+
scene point cloud
|
120 |
+
seg: [np.ndarray, (H,W,), np.uint8]
|
121 |
+
segmantation label of scene points
|
122 |
+
trans: [np.ndarray, (4,4), np.float32]
|
123 |
+
transformation matrix for scene points, default: None.
|
124 |
+
organized: [bool]
|
125 |
+
whether to keep the cloud in image shape (H,W,3)
|
126 |
+
outlier: [float]
|
127 |
+
if the distance between a point and workspace is greater than outlier, the point will be removed
|
128 |
+
|
129 |
+
Output:
|
130 |
+
workspace_mask: [np.ndarray, (H,W)/(H*W,), np.bool]
|
131 |
+
mask to indicate whether scene points are in workspace
|
132 |
+
"""
|
133 |
+
if organized:
|
134 |
+
h, w, _ = cloud.shape
|
135 |
+
cloud = cloud.reshape([h*w, 3])
|
136 |
+
seg = seg.reshape(h*w)
|
137 |
+
if trans is not None:
|
138 |
+
cloud = transform_point_cloud(cloud, trans)
|
139 |
+
foreground = cloud[seg>0]
|
140 |
+
xmin, ymin, zmin = foreground.min(axis=0)
|
141 |
+
xmax, ymax, zmax = foreground.max(axis=0)
|
142 |
+
mask_x = ((cloud[:,0] > xmin-outlier) & (cloud[:,0] < xmax+outlier))
|
143 |
+
mask_y = ((cloud[:,1] > ymin-outlier) & (cloud[:,1] < ymax+outlier))
|
144 |
+
mask_z = ((cloud[:,2] > zmin-outlier) & (cloud[:,2] < zmax+outlier))
|
145 |
+
workspace_mask = (mask_x & mask_y & mask_z)
|
146 |
+
if organized:
|
147 |
+
workspace_mask = workspace_mask.reshape([h, w])
|
148 |
+
|
149 |
+
return workspace_mask
|
grasp_labels.hdf5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6c2cb4478af68123236739f784c430432558bb1984240c810519501b43e5ba73
|
3 |
+
size 27649926048
|
test_bbox_dataset.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
test_labels.hdf5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cce93092c5d48ace0ffbc34a800a0c8997cc12fd9161382ea9dca36187d26d0b
|
3 |
+
size 13738218528
|
test_labels_limited.hdf5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:57f845819b33566b49137e16669fb21a47d193310d9229b9ed94e03707f5948b
|
3 |
+
size 1847477632
|
test_novel_labels.hdf5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b6ab6d23ba11440f2c37d895bec769751841551796ffbf19e9a09f8b3e760e4
|
3 |
+
size 3820886464
|
test_novel_labels_limited.hdf5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e99e19baddac4480def00e03cc3a5829abce9e06266b4190478f21ef23554399
|
3 |
+
size 1221612544
|
test_seen_labels.hdf5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a56ab3f596b08bdcee0b55eb90b52193f0f18463f7aed58e37c7b1b98b0865fa
|
3 |
+
size 5767926784
|
test_seen_labels_limited.hdf5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:57f845819b33566b49137e16669fb21a47d193310d9229b9ed94e03707f5948b
|
3 |
+
size 1847477632
|
test_seen_labels_overfitting.hdf5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4accd843326975e7ba805ee390104c19f671617991c73ec814aaaadca9f0ce36
|
3 |
+
size 1845877136
|
test_similar_labels.hdf5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37698bc1d5568b85eccf659cc568796865a50e2b1973f224741cf571324977f5
|
3 |
+
size 4149426496
|
test_similar_labels_limited.hdf5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ad322ac599799601be38ce79dce25955e33a01641d178cfa1efd2c89977e7d1
|
3 |
+
size 1699060928
|
train_labels.hdf5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:62a5ff1adba287d590d364ecd38d4d28679d998e1fe56143cdb2d5a3aec9123e
|
3 |
+
size 17807294464
|
train_labels_limited.hdf5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a3bc086730b39a2c2957d4d029adc30fcb87a3791f6f3968eb1a5a181d447dd3
|
3 |
+
size 1623629632
|
train_labels_overfitting.hdf5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0216e80f3596d8050ed4113e7d3176398356ba313b47ceca3f86eed6e51d53d7
|
3 |
+
size 1622029136
|