MM-IQ / README.md
lhoestq's picture
lhoestq HF staff
Set "image" column type to image instead
fb44fd2 verified
|
raw
history blame
6.94 kB
---
task_categories:
- multiple-choice
- question-answering
- visual-question-answering
language:
- en
- zh
tags:
- multimodal
- intelligence
size_categories:
- 1K<n<10K
license: apache-2.0
pretty_name: mmiq
configs:
- config_name: default
features:
- name: category
dtype: string
- name: question
dtype: string
- name: question_en
dtype: string
- name: question_zh
dtype: string
- name: image
dtype: image
- name: MD5
dtype: string
- name: data_id
dtype: int64
- name: answer
dtype: string
- name: split
dtype: string
---
# Dataset Card for "MM-IQ"
- [Dataset Description](https://huggingface.co/datasets/huanqia/MM-IQ/blob/main/README.md#dataset-description)
- [Paper Information](https://huggingface.co/datasets/huanqia/MM-IQ/blob/main/README.md#paper-information)
- [Dataset Examples](https://huggingface.co/datasets/huanqia/MM-IQ/blob/main/README.md#dataset-examples)
- [Leaderboard](https://huggingface.co/datasets/huanqia/MM-IQ/blob/main/README.md#leaderboard)
- [Dataset Usage](https://huggingface.co/datasets/huanqia/MM-IQ/blob/main/README.md#dataset-usage)
- [Data Downloading](https://huggingface.co/datasets/huanqia/MM-IQ/blob/main/README.md#data-downloading)
- [Data Format](https://huggingface.co/datasets/huanqia/MM-IQ/blob/main/README.md#data-format)
- [Automatic Evaluation](https://huggingface.co/datasets/huanqia/MM-IQ/blob/main/README.md#automatic-evaluation)
- [Citation](https://huggingface.co/datasets/huanqia/MM-IQ/blob/main/README.md#citation)
## Dataset Description
**MM-IQ** is a new benchmark designed to evaluate MLLMs' intelligence through multiple reasoning patterns demanding abstract reasoning abilities. It encompasses **three input formats, six problem configurations, and eight reasoning patterns**. With **2,710 samples**, MM-IQ is the most comprehensive and largest AVR benchmark for evaluating the intelligence of MLLMs, and **3x and 10x** larger than two very recent benchmarks MARVEL and MathVista-IQTest, respectively. By focusing on AVR problems, MM-IQ provides a targeted assessment of the cognitive capabilities and intelligence of MLLMs, contributing to a more comprehensive understanding of their strengths and limitations in the pursuit of AGI.
<img src="https://acechq.github.io/MMIQ-benchmark/static/imgs/MMIQ_distribution.png" style="zoom:50%;" />
## Paper Information
- Paper: Coming soon.
- Code: https://github.com/AceCHQ/MMIQ/tree/main
- Project: https://acechq.github.io/MMIQ-benchmark/
- Leaderboard: https://acechq.github.io/MMIQ-benchmark/#leaderboard
## Dataset Examples
Examples of our MM-IQ:
1. Logical Operation Reasoning
<p>Prompt: Choose the most appropriate option from the given four choices to fill in the question mark, so that it presents a certain regularity:</p>
<img src="https://acechq.github.io/MMIQ-benchmark/static/imgs/logical_AND_2664.png" style="zoom:100%;" />
<details>
<summary>🔍 Click to expand/collapse more examples</summary>
2. Mathematical Reasoning
<p>Prompt1: Choose the most appropriate option from the given four options to present a certain regularity: </p>
<p>Option A: 4; Option B: 5; Option C: 6; Option D: 7. </p>
<img src="https://acechq.github.io/MMIQ-benchmark/static/imgs/arithmetic_1133.png" style="zoom:120%;" />
3. 2D-geometry Reasoning
<p>Prompt: The option that best fits the given pattern of figures is ( ).</p>
<img src="https://acechq.github.io/MMIQ-benchmark/static/imgs/2D_sys_1036.png" style="zoom:40%;" />
4. 3D-geometry Reasoning
<p>Prompt: The one that matches the top view is:</p>
<img src="https://acechq.github.io/MMIQ-benchmark/static/imgs/3D_view_1699.png" style="zoom:30%;" />
5. visual instruction Reasoning
<p>Prompt: Choose the most appropriate option from the given four options to present a certain regularity:</p>
<img src="https://acechq.github.io/MMIQ-benchmark/static/imgs/Visual_instruction_arrow_2440.png" style="zoom:50%;" />
6. Spatial Relationship Reasoning
<p>Prompt: Choose the most appropriate option from the given four options to present a certain regularity:</p>
<img src="https://acechq.github.io/MMIQ-benchmark/static/imgs/spatial_6160.png" style="zoom:120%;" />
7. Concrete Object Reasoning
<p>Prompt: Choose the most appropriate option from the given four choices to fill in the question mark, so that it presents a certain regularity:</p>
<img src="https://acechq.github.io/MMIQ-benchmark/static/imgs/concrete_object_6167.png" style="zoom:120%;" />
8. Temporal Movement Reasoning
<p>Prompt:Choose the most appropriate option from the given four choices to fill in the question mark, so that it presents a certain regularity:</p>
<img src="https://acechq.github.io/MMIQ-benchmark/static/imgs/temporal_rotation_1379.png" style="zoom:50%;" />
</details>
## Leaderboard
🏆 The leaderboard for the *MM-IQ* (2,710 problems) is available [here](https://acechq.github.io/MMIQ-benchmark/#leaderboard).
## Dataset Usage
### Data Downloading
You can download this dataset by the following command (make sure that you have installed [Huggingface Datasets](https://huggingface.co/docs/datasets/quickstart)):
```python
from IPython.display import display, Image
from datasets import load_dataset
dataset = load_dataset("huanqia/MM-IQ")
```
Here are some examples of how to access the downloaded dataset:
```python
# print the first example on the MM-IQ dataset
print(dataset["test"][0])
print(dataset["test"][0]['data_id']) # print the problem id
print(dataset["test"][0]['question']) # print the question text
print(dataset["test"][0]['answer']) # print the answer
# Display the image
print("Image context:")
display(dataset["test"][0]['image'])
```
We have uploaded a demo to illustrate how to access the MM-IQ dataset on Hugging Face, available at [hugging_face_dataset_demo.ipynb](https://github.com/AceCHQ/MMIQ/blob/main/mmiq/jupyter_notebook_demos/hugging_face_dataset_demo.ipynb).
### Data Format
The dataset is provided in Parquet format and contains the following attributes:
```json
{
"question": [string] The question text,
"answer": [string] The correct answer for the problem,
"data_id": [int] The problem id,
"category": [string] The category of reasoning pattern,
"image": [image] Containing image (raw bytes and image path) corresponding to the image in data.zip,
}
```
### Automatic Evaluation
🔔 To automatically evaluate a model on the dataset, please refer to our GitHub repository [here](https://github.com/AceCHQ/MMIQ/tree/main/mmiq).
## Citation
If you use the **MM-IQ** dataset in your work, please kindly cite the paper using this BibTeX:
```
@misc{cai2025mm-iq,
title = {MM-IQ: Benchmarking Human-Like Abstraction and Reasoning in Multimodal Models},
author = {Huanqia Cai and Yijun Yang and Winston Hu},
month = {January},
year = {2025}
}
```
## Contact
[Huanqia Cai]([email protected]): [email protected]