|
--- |
|
dataset_info: |
|
features: |
|
- name: answer |
|
dtype: string |
|
- name: question |
|
dtype: string |
|
- name: context |
|
dtype: string |
|
- name: input_ids |
|
sequence: int32 |
|
- name: labels |
|
sequence: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 788165403 |
|
num_examples: 118695 |
|
- name: test |
|
num_bytes: 98388509 |
|
num_examples: 14835 |
|
- name: validation |
|
num_bytes: 98339161 |
|
num_examples: 14838 |
|
download_size: 45704542 |
|
dataset_size: 984893073 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: test |
|
path: data/test-* |
|
- split: validation |
|
path: data/validation-* |
|
--- |
|
|
|
Dataset used for training text to sql. |
|
I've pre-tokenized this for faster loading. |
|
|
|
|
|
Here is the tokenizer code: |
|
``` |
|
def tokenize_function(example): |
|
start_prompt = "Tables:\n" |
|
middle_prompt = "\n\nQuestion:\n" |
|
end_prompt = "\n\nAnswer:\n" |
|
|
|
data_zip = zip(example['context'], example['question']) |
|
prompt = [start_prompt + context + middle_prompt + question + end_prompt for context, question in data_zip] |
|
example['input_ids'] = tokenizer(prompt, padding="max_length", truncation=True, return_tensors="pt").input_ids |
|
example['labels'] = tokenizer(example['answer'], padding="max_length", truncation=True, return_tensors="pt").input_ids |
|
# print(prompt[0]) |
|
# print() |
|
|
|
return example |
|
``` |
|
|