Datasets:

Modalities:
Text
Formats:
json
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
llm-compression / README.md
yuzhen17's picture
Update README.md
4078016 verified
|
raw
history blame
1.2 kB
metadata
license: cc-by-nc-sa-4.0
language:
  - en
annotations_creators:
  - no-annotation
task_categories:
  - text-generation
task_ids:
  - language-modeling
size_categories:
  - 10K<n<100K

This is the dataset for the paper Compression Represents Intelligence Linearly. We find that LLMs’ intelligence – reflected by benchmark scores – almost linearly correlates with their ability to compress external text corpora. We measure intelligence along three key abilities: knowledge and commonsense, coding, and mathematical reasoning, and provide corresponding datasets here respectively named cc, python, and arxiv_math.

Load the data

from datasets import load_dataset
dataset=load_dataset(r"hkust-nlp/llm-compression",name="python")

print(dataset['test'][0])

More details on compression evaluation are at our github page.

Citation

@misc{huang2024compression,
      title={Compression Represents Intelligence Linearly}, 
      author={Yuzhen Huang and Jinghan Zhang and Zifei Shan and Junxian He},
      year={2024},
      eprint={2404.09937},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}