common-voice-13-fa / common-voice-13-fa.py
arxyzan's picture
Create common-voice-13-fa.py
d8e6f09 verified
raw
history blame
5.12 kB
import csv
import os
import datasets
from tqdm import tqdm
_DESCRIPTION = """\
Persian portion of the common voice 13 dataset, gathered and maintained by Hezar AI.
"""
_CITATION = """\
@inproceedings{commonvoice:2020,
author = {Ardila, R. and Branson, M. and Davis, K. and Henretty, M. and Kohler, M. and Meyer, J. and Morais, R. and Saunders, L. and Tyers, F. M. and Weber, G.},
title = {Common Voice: A Massively-Multilingual Speech Corpus},
booktitle = {Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020)},
pages = {4211--4215},
year = 2020
}
"""
_HOMEPAGE = "https://commonvoice.mozilla.org/en/datasets"
_LICENSE = "https://creativecommons.org/publicdomain/zero/1.0/"
_BASE_URL = "https://huggingface.co/datasets/hezarai/common-voice-13-fa/resolve/main/"
_AUDIO_URL = _BASE_URL + "audio/{split}.zip"
_TRANSCRIPT_URL = _BASE_URL + "transcripts/{split}.tsv"
class CommonVoiceFaConfig(datasets.BuilderConfig):
"""BuilderConfig for CommonVoice."""
def __init__(self, **kwargs):
super(CommonVoiceFaConfig, self).__init__(**kwargs)
class CommonVoice(datasets.GeneratorBasedBuilder):
DEFAULT_WRITER_BATCH_SIZE = 1000
BUILDER_CONFIGS = [
CommonVoiceFaConfig(
name="commonvoice-13-fa",
version="1.0.0",
description=_DESCRIPTION,
)
]
def _info(self):
features = datasets.Features(
{
"client_id": datasets.Value("string"),
"path": datasets.Value("string"),
"audio": datasets.features.Audio(sampling_rate=48_000),
"sentence": datasets.Value("string"),
"up_votes": datasets.Value("int64"),
"down_votes": datasets.Value("int64"),
"age": datasets.Value("string"),
"gender": datasets.Value("string"),
"accent": datasets.Value("string"),
"locale": datasets.Value("string"),
"segment": datasets.Value("string"),
"variant": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
version=self.config.version,
)
def _split_generators(self, dl_manager):
splits = ("train", "dev", "test")
audio_urls = {split: _AUDIO_URL.format(split=split) for split in splits}
archive_paths = dl_manager.download(audio_urls)
local_extracted_archive_paths = dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {}
transcript_urls = {split: _TRANSCRIPT_URL.format(split=split) for split in splits}
transcript_paths = dl_manager.download_and_extract(transcript_urls)
split_generators = []
split_names = {
"train": datasets.Split.TRAIN,
"dev": datasets.Split.VALIDATION,
"test": datasets.Split.TEST,
}
for split in splits:
split_generators.append(
datasets.SplitGenerator(
name=split_names.get(split, split),
gen_kwargs={
"local_extracted_archive_paths": local_extracted_archive_paths.get(split),
"archives": [dl_manager.iter_archive(archive_paths.get(split))],
"transcript_path": transcript_paths[split],
},
),
)
return split_generators
def _generate_examples(self, local_extracted_archive_paths, archives, transcript_path):
data_fields = list(self._info().features.keys())
metadata = {}
with open(transcript_path, encoding="utf-8") as f:
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
for row in tqdm(reader, desc="Reading metadata..."):
if not row["path"].endswith(".mp3"):
row["path"] += ".mp3"
# accent -> accents in CV 8.0
if "accents" in row:
row["accent"] = row["accents"]
del row["accents"]
# if data is incomplete, fill with empty values
for field in data_fields:
if field not in row:
row[field] = ""
metadata[row["path"]] = row
for i, audio_archive in enumerate(archives):
for path, file in audio_archive:
_, filename = os.path.split(path)
if filename in metadata:
result = dict(metadata[filename])
# set the audio feature and the path to the extracted file
path = os.path.join(local_extracted_archive_paths[i], path) if local_extracted_archive_paths else path
result["audio"] = {"path": path, "bytes": file.read()}
result["path"] = path
yield path, result