arxyzan commited on
Commit
d8e6f09
·
verified ·
1 Parent(s): aea5a57

Create common-voice-13-fa.py

Browse files
Files changed (1) hide show
  1. common-voice-13-fa.py +136 -0
common-voice-13-fa.py ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import csv
2
+ import os
3
+
4
+ import datasets
5
+ from tqdm import tqdm
6
+
7
+
8
+ _DESCRIPTION = """\
9
+ Persian portion of the common voice 13 dataset, gathered and maintained by Hezar AI.
10
+ """
11
+
12
+ _CITATION = """\
13
+ @inproceedings{commonvoice:2020,
14
+ author = {Ardila, R. and Branson, M. and Davis, K. and Henretty, M. and Kohler, M. and Meyer, J. and Morais, R. and Saunders, L. and Tyers, F. M. and Weber, G.},
15
+ title = {Common Voice: A Massively-Multilingual Speech Corpus},
16
+ booktitle = {Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020)},
17
+ pages = {4211--4215},
18
+ year = 2020
19
+ }
20
+ """
21
+
22
+ _HOMEPAGE = "https://commonvoice.mozilla.org/en/datasets"
23
+
24
+ _LICENSE = "https://creativecommons.org/publicdomain/zero/1.0/"
25
+
26
+ _BASE_URL = "https://huggingface.co/datasets/hezarai/common-voice-13-fa/resolve/main/"
27
+
28
+ _AUDIO_URL = _BASE_URL + "audio/{split}.zip"
29
+
30
+ _TRANSCRIPT_URL = _BASE_URL + "transcripts/{split}.tsv"
31
+
32
+
33
+ class CommonVoiceFaConfig(datasets.BuilderConfig):
34
+ """BuilderConfig for CommonVoice."""
35
+
36
+ def __init__(self, **kwargs):
37
+ super(CommonVoiceFaConfig, self).__init__(**kwargs)
38
+
39
+
40
+ class CommonVoice(datasets.GeneratorBasedBuilder):
41
+ DEFAULT_WRITER_BATCH_SIZE = 1000
42
+
43
+ BUILDER_CONFIGS = [
44
+ CommonVoiceFaConfig(
45
+ name="commonvoice-13-fa",
46
+ version="1.0.0",
47
+ description=_DESCRIPTION,
48
+ )
49
+ ]
50
+
51
+ def _info(self):
52
+ features = datasets.Features(
53
+ {
54
+ "client_id": datasets.Value("string"),
55
+ "path": datasets.Value("string"),
56
+ "audio": datasets.features.Audio(sampling_rate=48_000),
57
+ "sentence": datasets.Value("string"),
58
+ "up_votes": datasets.Value("int64"),
59
+ "down_votes": datasets.Value("int64"),
60
+ "age": datasets.Value("string"),
61
+ "gender": datasets.Value("string"),
62
+ "accent": datasets.Value("string"),
63
+ "locale": datasets.Value("string"),
64
+ "segment": datasets.Value("string"),
65
+ "variant": datasets.Value("string"),
66
+ }
67
+ )
68
+
69
+ return datasets.DatasetInfo(
70
+ description=_DESCRIPTION,
71
+ features=features,
72
+ supervised_keys=None,
73
+ homepage=_HOMEPAGE,
74
+ license=_LICENSE,
75
+ citation=_CITATION,
76
+ version=self.config.version,
77
+ )
78
+
79
+ def _split_generators(self, dl_manager):
80
+ splits = ("train", "dev", "test")
81
+ audio_urls = {split: _AUDIO_URL.format(split=split) for split in splits}
82
+
83
+ archive_paths = dl_manager.download(audio_urls)
84
+ local_extracted_archive_paths = dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {}
85
+
86
+ transcript_urls = {split: _TRANSCRIPT_URL.format(split=split) for split in splits}
87
+ transcript_paths = dl_manager.download_and_extract(transcript_urls)
88
+
89
+ split_generators = []
90
+ split_names = {
91
+ "train": datasets.Split.TRAIN,
92
+ "dev": datasets.Split.VALIDATION,
93
+ "test": datasets.Split.TEST,
94
+ }
95
+ for split in splits:
96
+ split_generators.append(
97
+ datasets.SplitGenerator(
98
+ name=split_names.get(split, split),
99
+ gen_kwargs={
100
+ "local_extracted_archive_paths": local_extracted_archive_paths.get(split),
101
+ "archives": [dl_manager.iter_archive(archive_paths.get(split))],
102
+ "transcript_path": transcript_paths[split],
103
+ },
104
+ ),
105
+ )
106
+
107
+ return split_generators
108
+
109
+ def _generate_examples(self, local_extracted_archive_paths, archives, transcript_path):
110
+ data_fields = list(self._info().features.keys())
111
+ metadata = {}
112
+ with open(transcript_path, encoding="utf-8") as f:
113
+ reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
114
+ for row in tqdm(reader, desc="Reading metadata..."):
115
+ if not row["path"].endswith(".mp3"):
116
+ row["path"] += ".mp3"
117
+ # accent -> accents in CV 8.0
118
+ if "accents" in row:
119
+ row["accent"] = row["accents"]
120
+ del row["accents"]
121
+ # if data is incomplete, fill with empty values
122
+ for field in data_fields:
123
+ if field not in row:
124
+ row[field] = ""
125
+ metadata[row["path"]] = row
126
+
127
+ for i, audio_archive in enumerate(archives):
128
+ for path, file in audio_archive:
129
+ _, filename = os.path.split(path)
130
+ if filename in metadata:
131
+ result = dict(metadata[filename])
132
+ # set the audio feature and the path to the extracted file
133
+ path = os.path.join(local_extracted_archive_paths[i], path) if local_extracted_archive_paths else path
134
+ result["audio"] = {"path": path, "bytes": file.read()}
135
+ result["path"] = path
136
+ yield path, result