Datasets:
Tasks:
Automatic Speech Recognition
Formats:
parquet
Languages:
Persian
Size:
10K - 100K
Tags:
hezar
File size: 5,119 Bytes
d8e6f09 f2650cb d8e6f09 f2650cb d8e6f09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
import csv
import os
import datasets
from tqdm import tqdm
_DESCRIPTION = """\
Persian portion of the common voice 13 dataset, gathered and maintained by Hezar AI.
"""
_CITATION = """\
@inproceedings{commonvoice:2020,
author = {Ardila, R. and Branson, M. and Davis, K. and Henretty, M. and Kohler, M. and Meyer, J. and Morais, R. and Saunders, L. and Tyers, F. M. and Weber, G.},
title = {Common Voice: A Massively-Multilingual Speech Corpus},
booktitle = {Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020)},
pages = {4211--4215},
year = 2020
}
"""
_HOMEPAGE = "https://commonvoice.mozilla.org/en/datasets"
_LICENSE = "https://creativecommons.org/publicdomain/zero/1.0/"
_BASE_URL = "https://huggingface.co/datasets/hezarai/common-voice-13-fa/resolve/main/"
_AUDIO_URL = _BASE_URL + "audio/{split}.zip"
_TRANSCRIPT_URL = _BASE_URL + "transcripts/{split}.tsv"
class CommonVoiceFaConfig(datasets.BuilderConfig):
"""BuilderConfig for CommonVoice."""
def __init__(self, **kwargs):
super(CommonVoiceFaConfig, self).__init__(**kwargs)
class CommonVoice(datasets.GeneratorBasedBuilder):
DEFAULT_WRITER_BATCH_SIZE = 1000
BUILDER_CONFIGS = [
CommonVoiceFaConfig(
name="commonvoice-13-fa",
version="1.0.0",
description=_DESCRIPTION,
)
]
def _info(self):
features = datasets.Features(
{
"client_id": datasets.Value("string"),
"path": datasets.Value("string"),
"audio": datasets.features.Audio(sampling_rate=48_000),
"sentence": datasets.Value("string"),
"up_votes": datasets.Value("int64"),
"down_votes": datasets.Value("int64"),
"age": datasets.Value("string"),
"gender": datasets.Value("string"),
"accent": datasets.Value("string"),
"locale": datasets.Value("string"),
"segment": datasets.Value("string"),
"variant": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
version=self.config.version,
)
def _split_generators(self, dl_manager):
splits = ("train", "dev", "test")
audio_urls = {split: _AUDIO_URL.format(split=split) for split in splits}
archive_paths = dl_manager.download(audio_urls)
local_extracted_archive_paths = dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {}
transcript_urls = {split: _TRANSCRIPT_URL.format(split=split) for split in splits}
transcript_paths = dl_manager.download_and_extract(transcript_urls)
split_generators = []
split_names = {
"train": datasets.Split.TRAIN,
"dev": datasets.Split.VALIDATION,
"test": datasets.Split.TEST,
}
for split in splits:
split_generators.append(
datasets.SplitGenerator(
name=split_names.get(split, split),
gen_kwargs={
"local_extracted_archive_paths": local_extracted_archive_paths.get(split),
"archives": [dl_manager.iter_archive(archive_paths.get(split))],
"transcript_path": transcript_paths[split],
},
),
)
return split_generators
def _generate_examples(self, local_extracted_archive_paths, archives, transcript_path):
data_fields = list(self._info().features.keys())
metadata = {}
with open(transcript_path, encoding="utf-8") as f:
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
for row in tqdm(reader, desc="Reading metadata..."):
if not row["path"].endswith(".mp3"):
row["path"] += ".mp3"
# accent -> accents in CV 8.0
if "accents" in row:
row["accent"] = row["accents"]
del row["accents"]
# if data is incomplete, fill with empty values
for field in data_fields:
if field not in row:
row[field] = ""
metadata[row["path"]] = row
for i, audio_archive in enumerate(archives):
for path, file in audio_archive:
_, filename = os.path.split(path)
if filename in metadata:
result = dict(metadata[filename])
# set the audio feature and the path to the extracted file
path = os.path.join(local_extracted_archive_paths[i], path) if local_extracted_archive_paths else path
result["audio"] = {"path": path, "bytes": file.read()}
result["path"] = path
yield path, result
|