|
--- |
|
task_categories: |
|
- image-classification |
|
- unconditional-image-generation |
|
pretty_name: Easy MNIST |
|
size_categories: |
|
- 10K<n<100K |
|
--- |
|
# Easy MNIST |
|
MNIST processed into three easy to use formats. Each .zip file contains a labels_and_paths.csv file and a data directory. |
|
|
|
## mnist_png.zip |
|
MNIST in the png format. |
|
``` |
|
label path |
|
0 5 data/0.png |
|
1 0 data/1.png |
|
2 4 data/2.png |
|
3 1 data/3.png |
|
4 9 data/4.png |
|
... ... ... |
|
69995 2 data/69995.png |
|
69996 3 data/69996.png |
|
69997 4 data/69997.png |
|
69998 5 data/69998.png |
|
69999 6 data/69999.png |
|
``` |
|
|
|
## mnist_numpy.zip |
|
MNIST in the npy format. |
|
``` |
|
label path |
|
0 5 data/0.npy |
|
1 0 data/1.npy |
|
2 4 data/2.npy |
|
3 1 data/3.npy |
|
4 9 data/4.npy |
|
... ... ... |
|
69995 2 data/69995.npy |
|
69996 3 data/69996.npy |
|
69997 4 data/69997.npy |
|
69998 5 data/69998.npy |
|
69999 6 data/69999.npy |
|
``` |
|
|
|
## mnist_numpy_flat.zip |
|
MNIST in the npy format, flattened to 784 dimensional vectors. |
|
``` |
|
label path |
|
0 5 data/0.npy |
|
1 0 data/1.npy |
|
2 4 data/2.npy |
|
3 1 data/3.npy |
|
4 9 data/4.npy |
|
... ... ... |
|
69995 2 data/69995.npy |
|
69996 3 data/69996.npy |
|
69997 4 data/69997.npy |
|
69998 5 data/69998.npy |
|
69999 6 data/69999.npy |
|
``` |
|
|
|
## Acknowledgements |
|
- Yann LeCun, Courant Institute, NYU |
|
- Corinna Cortes, Google Labs, New York |
|
- Christopher J.C. Burges, Microsoft Research, Redmond |
|
|