Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 100 new columns ({'1.2582', '0.4187', '0.37829', '-0.091543', '0.48095', '0.090771', '0.39147', '0.67575', '-0.17456', '-0.35084', '0.48402', '0.10017', '0.041849', '0.1277', '-0.39926', '-0.11333', '-0.3253', '-0.075256', '0.17528', '0.1307', '0.26044', '-0.22439', '0.46444', '0.80842', '-0.20821', '-0.059798', '0.75348', '0.054169', '-0.037454', '0.68257', '0.18824', '0.22325', '-0.3336', '0.71263', '-0.071786', '-0.56016', '0.36488', '-0.55831', '0.015313', '0.48424', '-0.038519', '0.38433', '-0.11399', '0.67198', '-0.053462', '0.19716', '0.18809', '0.70502', '0.9895', '-0.036091', '-0.22608', '0.65093', '-0.014555', '-0.58722', '0.62255', '0.25586', '-0.53529', '0.53571', '-0.16484', '0.14877', '0.31399', '0.52522', '0.50097', '-0.44104', '-0.53573', '0.055773', '0.94071', '-0.34122', '-0.13286', '0.24266', '-0.16537', '0.016964', '-0.42795', '-0.20804', '-0.7607', '0.3222', '0.13582', '-0.54722', '0.034206', '0.50237', '-0.2539', '-0.24654', '-0.35431', '0.11503', '-0.021106', '-0.20822', '-0.61738', '-0.39613', '0.2286', '0.71104', '-0.17863', '0.55068', '0.30917', '-0.27053', '0.036634', '0.0080131', '-0.0072514', '0.4292', '-0.42664', '-0.52445'}) and 784 missing columns ({'0.0.130', '213.0.3', '0.0.1', '0.0.126', '216.0.2', '227.0.1', '211.0.4', '0.0.326', '0.0.85', '188.0.1', '181.0.1', '0.0.273', '0.0.349', '224.0.2', '0.0.87', '0.0.318', '167.0.1', '3.0.3', '215.0.6', '41.0', '228.0.6', '0.0.340', '1.0.7', '0.0.125', '234.0', '0.0.242', '0.0.54', '205.0.1', '3.0.2', '198.0.2', '0.0.306', '0.0.189', '185.0.1', '6.0.2', '163.0', '225.0.2', '205.0.3', '0.0.201', '218.0.7', '54.0', '0.0.44', '0.0.235', '0.0.22', '229.0.1', '0.0.25', '1.0.9', '240.0', '222.0.5', '154.0', '196.0.2', '0.0.231', '0.0.150', '180.0', '4.0.3', '0.0.90', '193.0.4', '232.0.2', '0.0.162', '0.0.285', '243.0', '219.0.4', '225.0', '234.0.2', '0.0.254', '230.0.1', '0.0.174', '240.0.1', '0.0.202', '0.0.56', '0.0.137', '216.0.3', '0.0.240', '221.0.8', '215.0.3', '195.0', '145.0', '176.0.3', '0.0.227', '0.0.274', '222.0.8', '183.0.2', '229.0', '69.0', '0.0.102', '218.0.3', '0.0.233', '175.0.1', '228.0.7', '234.0.1', '244.0', '209.0.5', '0.0.310', '0.0.259', '0.0.293', '44.0', '0.0.122', '2.0.1', '0.0.238', '0.0.219', '223.0.12', '0.0.195', '156.0.1', '224.0.5', '188.0.3', '0.0.199', '169.0', '0.0.88', '0.0.191', '2.0', '0.0.220', '209.0.1', '192.0.1', '0.0.290', '0.0.288', '212.0.4', '173.0', '0.0.31', '0.0.34', '0.0.192', '0.0.175', '44.0.1', '136.0', '0.0.140', '161.0', '0.0.325', '0.0.3', '0.0.75', '123.0.1', '219.0.3', '0.0.86', '220.0.4', '212.0.3', '0.0.104', '224.0.3', '0.0.243', '213.0.8', '0.0.329', '209.0.4', '130.0', '213.0.7', '191.0.2', '99.0', '0.0.284', '0.0.27'
...
', '218.0.9', '235.0', '223.0.11', '0.0.245', '0.0.42', '188.0.4', '218.0.5', '106.0', '167.0', '248.0', '0.0.18', '194.0.1', '0.0.106', '0.0.92', '127.0.1', '6.0.1', '0.0.298', '244.0.2', '0.0.127', '0.0.159', '219.0.2', '0.0.212', '211.0.3', '218.0.6', '189.0.1', '12.0', '170.0', '203.0.1', '0.0.139', '200.0.2', '198.0.1', '210.0.4', '0.0.99', '202.0.2', '0.0.107', '0.0.29', '215.0', '0.0.167', '200.0.1', '0.0.260', '122.0', '72.0.1', '0.0.16', '0.0.142', '0.0.71', '185.0.2', '0.0.67', '198.0.3', '221.0.6', '221.0.2', '73.0.1', '0.0.320', '206.0.2', '237.0', '0.0.272', '228.0.5', '176.0.1', '204.0.5', '0.0.196', '233.0.2', '0.0.113', '0.0.144', '207.0.1', '0.0.341', '0.0.148', '15.0', '57.0', '0.0.218', '208.0.3', '0.0.52', '0.0.147', '216.0.6', '221.0.9', '216.0.1', '212.0', '0.0.136', '211.0.5', '223.0.2', '0.0.53', '0.0.58', '0.0.70', '206.0', '1.0.5', '56.0', '249.0', '0.0.346', '0.0.239', '205.0.4', '0.0.24', '190.0', '221.0.4', '0.0.185', '146.0', '210.0.5', '0.0.118', '0.0.256', '0.0.297', '0.0.78', '0.0.63', '217.0.2', '220.0', '0.0.163', '0.0.209', '240.0.2', '0.0.48', '7.0', '206.0.3', '0.0.250', '0.0.38', '208.0.4', '0.0.223', '0.0.276', '0.0.13', '0.0.51', '224.0.1', '219.0', '64.0', '204.0.4', '0.0.315', '0.0.280', '0.0.312', '0.0.213', '0.0.149', '0.0.308', '0.0.69', '213.0.6', '202.0.1', '1.0.1', '134.0', '0.0.55', '217.0.5', '207.0', '0.0.7', '204.0.7', '0.0.116', '211.0', '194.0.2', '0.0.20', '0.0.184', '0.0.151', '239.0.1', '0.0.111', '229.0.5', '0.0.337'}).

This happened while the csv dataset builder was generating data using

hf://datasets/habedi/nearest-neighbors-datasets/glove-100-angular/train.csv (at revision 59a77df276545051fa0919910346655fd4fed3cf)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1871, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 623, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2293, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2241, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              -0.11333: double
              0.48402: double
              0.090771: double
              -0.22439: double
              0.034206: double
              -0.55831: double
              0.041849: double
              -0.53573: double
              0.18809: double
              -0.58722: double
              0.015313: double
              -0.014555: double
              0.80842: double
              -0.038519: double
              0.75348: double
              0.70502: double
              -0.17863: double
              0.3222: double
              0.67575: double
              0.67198: double
              0.26044: double
              0.4187: double
              -0.34122: double
              0.2286: double
              -0.53529: double
              1.2582: double
              -0.091543: double
              0.19716: double
              -0.037454: double
              -0.3336: double
              0.31399: double
              0.36488: double
              0.71263: double
              0.1307: double
              -0.24654: double
              -0.52445: double
              -0.036091: double
              0.55068: double
              0.10017: double
              0.48095: double
              0.71104: double
              -0.053462: double
              0.22325: double
              0.30917: double
              -0.39926: double
              0.036634: double
              -0.35431: double
              -0.42795: double
              0.46444: double
              0.25586: double
              0.68257: double
              -0.20821: double
              0.38433: double
              0.055773: double
              -0.2539: double
              -0.20804: double
              0.52522: double
              -0.11399: double
              -0.3253: double
              -0.44104: double
              0.17528: double
              0.62255: double
              0.50237: double
              -0.7607: double
              -0.071786: double
              0.0080131: double
              -0.13286: double
              0.50097: double
              0.18824: double
              -0.54722: double
              -0.42664: double
              0.4292: double
              0.14877: double
              -0.0072514: double
              -0.16484: double
              -0.059798: double
              0.9895: double
              -0.61738: double
              0.054169: double
              0.48424: double
              -0.35084: double
              -0.27053: double
              0.37829: double
              0.11503: double
              -0.39613: double
              0.24266: double
              0.39147: double
              -0.075256: double
              0.65093: double
              -0.20822: double
              -0.17456: double
              0.53571: double
              -0.16537: double
              0.13582: double
              -0.56016: double
              0.016964: double
              0.1277: double
              0.94071: double
              -0.22608: double
              -0.021106: double
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 11873
              to
              {'0.0': Value(dtype='float64', id=None), '0.0.1': Value(dtype='float64', id=None), '0.0.2': Value(dtype='float64', id=None), '0.0.3': Value(dtype='float64', id=None), '0.0.4': Value(dtype='float64', id=None), '0.0.5': Value(dtype='float64', id=None), '0.0.6': Value(dtype='float64', id=None), '0.0.7': Value(dtype='float64', id=None), '0.0.8': Value(dtype='float64', id=None), '0.0.9': Value(dtype='float64', id=None), '0.0.10': Value(dtype='float64', id=None), '0.0.11': Value(dtype='float64', id=None), '0.0.12': Value(dtype='float64', id=None), '0.0.13': Value(dtype='float64', id=None), '0.0.14': Value(dtype='float64', id=None), '0.0.15': Value(dtype='float64', id=None), '0.0.16': Value(dtype='float64', id=None), '0.0.17': Value(dtype='float64', id=None), '0.0.18': Value(dtype='float64', id=None), '0.0.19': Value(dtype='float64', id=None), '0.0.20': Value(dtype='float64', id=None), '0.0.21': Value(dtype='float64', id=None), '0.0.22': Value(dtype='float64', id=None), '0.0.23': Value(dtype='float64', id=None), '0.0.24': Value(dtype='float64', id=None), '0.0.25': Value(dtype='float64', id=None), '0.0.26': Value(dtype='float64', id=None), '0.0.27': Value(dtype='float64', id=None), '0.0.28': Value(dtype='float64', id=None), '0.0.29': Value(dtype='float64', id=None), '0.0.30': Value(dtype='float64', id=None), '0.0.31': Value(dtype='float64', id=None), '0.0.32': Value(dtype='float64', id=None), '0.0.33': Value(dtype='float64', id=None), '0.0.34': Value(dtype='float64', id=None), '0.0.3
              ...
              ne), '0.0.317': Value(dtype='float64', id=None), '0.0.318': Value(dtype='float64', id=None), '0.0.319': Value(dtype='float64', id=None), '0.0.320': Value(dtype='float64', id=None), '0.0.321': Value(dtype='float64', id=None), '0.0.322': Value(dtype='float64', id=None), '0.0.323': Value(dtype='float64', id=None), '0.0.324': Value(dtype='float64', id=None), '0.0.325': Value(dtype='float64', id=None), '0.0.326': Value(dtype='float64', id=None), '0.0.327': Value(dtype='float64', id=None), '0.0.328': Value(dtype='float64', id=None), '0.0.329': Value(dtype='float64', id=None), '0.0.330': Value(dtype='float64', id=None), '0.0.331': Value(dtype='float64', id=None), '0.0.332': Value(dtype='float64', id=None), '0.0.333': Value(dtype='float64', id=None), '0.0.334': Value(dtype='float64', id=None), '0.0.335': Value(dtype='float64', id=None), '0.0.336': Value(dtype='float64', id=None), '0.0.337': Value(dtype='float64', id=None), '0.0.338': Value(dtype='float64', id=None), '0.0.339': Value(dtype='float64', id=None), '0.0.340': Value(dtype='float64', id=None), '0.0.341': Value(dtype='float64', id=None), '0.0.342': Value(dtype='float64', id=None), '0.0.343': Value(dtype='float64', id=None), '0.0.344': Value(dtype='float64', id=None), '0.0.345': Value(dtype='float64', id=None), '0.0.346': Value(dtype='float64', id=None), '0.0.347': Value(dtype='float64', id=None), '0.0.348': Value(dtype='float64', id=None), '0.0.349': Value(dtype='float64', id=None), '0.0.350': Value(dtype='float64', id=None)}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1433, in compute_config_parquet_and_info_response
                  parquet_operations, partial, estimated_dataset_info = stream_convert_to_parquet(
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 989, in stream_convert_to_parquet
                  builder._prepare_split(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1742, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1873, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 100 new columns ({'1.2582', '0.4187', '0.37829', '-0.091543', '0.48095', '0.090771', '0.39147', '0.67575', '-0.17456', '-0.35084', '0.48402', '0.10017', '0.041849', '0.1277', '-0.39926', '-0.11333', '-0.3253', '-0.075256', '0.17528', '0.1307', '0.26044', '-0.22439', '0.46444', '0.80842', '-0.20821', '-0.059798', '0.75348', '0.054169', '-0.037454', '0.68257', '0.18824', '0.22325', '-0.3336', '0.71263', '-0.071786', '-0.56016', '0.36488', '-0.55831', '0.015313', '0.48424', '-0.038519', '0.38433', '-0.11399', '0.67198', '-0.053462', '0.19716', '0.18809', '0.70502', '0.9895', '-0.036091', '-0.22608', '0.65093', '-0.014555', '-0.58722', '0.62255', '0.25586', '-0.53529', '0.53571', '-0.16484', '0.14877', '0.31399', '0.52522', '0.50097', '-0.44104', '-0.53573', '0.055773', '0.94071', '-0.34122', '-0.13286', '0.24266', '-0.16537', '0.016964', '-0.42795', '-0.20804', '-0.7607', '0.3222', '0.13582', '-0.54722', '0.034206', '0.50237', '-0.2539', '-0.24654', '-0.35431', '0.11503', '-0.021106', '-0.20822', '-0.61738', '-0.39613', '0.2286', '0.71104', '-0.17863', '0.55068', '0.30917', '-0.27053', '0.036634', '0.0080131', '-0.0072514', '0.4292', '-0.42664', '-0.52445'}) and 784 missing columns ({'0.0.130', '213.0.3', '0.0.1', '0.0.126', '216.0.2', '227.0.1', '211.0.4', '0.0.326', '0.0.85', '188.0.1', '181.0.1', '0.0.273', '0.0.349', '224.0.2', '0.0.87', '0.0.318', '167.0.1', '3.0.3', '215.0.6', '41.0', '228.0.6', '0.0.340', '1.0.7', '0.0.125', '234.0', '0.0.242', '0.0.54', '205.0.1', '3.0.2', '198.0.2', '0.0.306', '0.0.189', '185.0.1', '6.0.2', '163.0', '225.0.2', '205.0.3', '0.0.201', '218.0.7', '54.0', '0.0.44', '0.0.235', '0.0.22', '229.0.1', '0.0.25', '1.0.9', '240.0', '222.0.5', '154.0', '196.0.2', '0.0.231', '0.0.150', '180.0', '4.0.3', '0.0.90', '193.0.4', '232.0.2', '0.0.162', '0.0.285', '243.0', '219.0.4', '225.0', '234.0.2', '0.0.254', '230.0.1', '0.0.174', '240.0.1', '0.0.202', '0.0.56', '0.0.137', '216.0.3', '0.0.240', '221.0.8', '215.0.3', '195.0', '145.0', '176.0.3', '0.0.227', '0.0.274', '222.0.8', '183.0.2', '229.0', '69.0', '0.0.102', '218.0.3', '0.0.233', '175.0.1', '228.0.7', '234.0.1', '244.0', '209.0.5', '0.0.310', '0.0.259', '0.0.293', '44.0', '0.0.122', '2.0.1', '0.0.238', '0.0.219', '223.0.12', '0.0.195', '156.0.1', '224.0.5', '188.0.3', '0.0.199', '169.0', '0.0.88', '0.0.191', '2.0', '0.0.220', '209.0.1', '192.0.1', '0.0.290', '0.0.288', '212.0.4', '173.0', '0.0.31', '0.0.34', '0.0.192', '0.0.175', '44.0.1', '136.0', '0.0.140', '161.0', '0.0.325', '0.0.3', '0.0.75', '123.0.1', '219.0.3', '0.0.86', '220.0.4', '212.0.3', '0.0.104', '224.0.3', '0.0.243', '213.0.8', '0.0.329', '209.0.4', '130.0', '213.0.7', '191.0.2', '99.0', '0.0.284', '0.0.27'
              ...
              ', '218.0.9', '235.0', '223.0.11', '0.0.245', '0.0.42', '188.0.4', '218.0.5', '106.0', '167.0', '248.0', '0.0.18', '194.0.1', '0.0.106', '0.0.92', '127.0.1', '6.0.1', '0.0.298', '244.0.2', '0.0.127', '0.0.159', '219.0.2', '0.0.212', '211.0.3', '218.0.6', '189.0.1', '12.0', '170.0', '203.0.1', '0.0.139', '200.0.2', '198.0.1', '210.0.4', '0.0.99', '202.0.2', '0.0.107', '0.0.29', '215.0', '0.0.167', '200.0.1', '0.0.260', '122.0', '72.0.1', '0.0.16', '0.0.142', '0.0.71', '185.0.2', '0.0.67', '198.0.3', '221.0.6', '221.0.2', '73.0.1', '0.0.320', '206.0.2', '237.0', '0.0.272', '228.0.5', '176.0.1', '204.0.5', '0.0.196', '233.0.2', '0.0.113', '0.0.144', '207.0.1', '0.0.341', '0.0.148', '15.0', '57.0', '0.0.218', '208.0.3', '0.0.52', '0.0.147', '216.0.6', '221.0.9', '216.0.1', '212.0', '0.0.136', '211.0.5', '223.0.2', '0.0.53', '0.0.58', '0.0.70', '206.0', '1.0.5', '56.0', '249.0', '0.0.346', '0.0.239', '205.0.4', '0.0.24', '190.0', '221.0.4', '0.0.185', '146.0', '210.0.5', '0.0.118', '0.0.256', '0.0.297', '0.0.78', '0.0.63', '217.0.2', '220.0', '0.0.163', '0.0.209', '240.0.2', '0.0.48', '7.0', '206.0.3', '0.0.250', '0.0.38', '208.0.4', '0.0.223', '0.0.276', '0.0.13', '0.0.51', '224.0.1', '219.0', '64.0', '204.0.4', '0.0.315', '0.0.280', '0.0.312', '0.0.213', '0.0.149', '0.0.308', '0.0.69', '213.0.6', '202.0.1', '1.0.1', '134.0', '0.0.55', '217.0.5', '207.0', '0.0.7', '204.0.7', '0.0.116', '211.0', '194.0.2', '0.0.20', '0.0.184', '0.0.151', '239.0.1', '0.0.111', '229.0.5', '0.0.337'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/habedi/nearest-neighbors-datasets/glove-100-angular/train.csv (at revision 59a77df276545051fa0919910346655fd4fed3cf)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

0.0
float64
0.0.1
float64
0.0.2
float64
0.0.3
float64
0.0.4
float64
0.0.5
float64
0.0.6
float64
0.0.7
float64
0.0.8
float64
0.0.9
float64
0.0.10
float64
0.0.11
float64
0.0.12
float64
0.0.13
float64
0.0.14
float64
0.0.15
float64
0.0.16
float64
0.0.17
float64
0.0.18
float64
0.0.19
float64
0.0.20
float64
0.0.21
float64
0.0.22
float64
0.0.23
float64
0.0.24
float64
0.0.25
float64
0.0.26
float64
0.0.27
float64
0.0.28
float64
0.0.29
float64
0.0.30
float64
0.0.31
float64
0.0.32
float64
0.0.33
float64
0.0.34
float64
0.0.35
float64
0.0.36
float64
0.0.37
float64
0.0.38
float64
0.0.39
float64
0.0.40
float64
0.0.41
float64
0.0.42
float64
0.0.43
float64
0.0.44
float64
0.0.45
float64
0.0.46
float64
0.0.47
float64
0.0.48
float64
0.0.49
float64
0.0.50
float64
0.0.51
float64
0.0.52
float64
0.0.53
float64
0.0.54
float64
0.0.55
float64
0.0.56
float64
0.0.57
float64
0.0.58
float64
0.0.59
float64
0.0.60
float64
0.0.61
float64
0.0.62
float64
0.0.63
float64
0.0.64
float64
0.0.65
float64
0.0.66
float64
0.0.67
float64
0.0.68
float64
0.0.69
float64
0.0.70
float64
0.0.71
float64
0.0.72
float64
0.0.73
float64
0.0.74
float64
0.0.75
float64
0.0.76
float64
0.0.77
float64
0.0.78
float64
0.0.79
float64
0.0.80
float64
0.0.81
float64
0.0.82
float64
0.0.83
float64
0.0.84
float64
0.0.85
float64
0.0.86
float64
0.0.87
float64
0.0.88
float64
0.0.89
float64
0.0.90
float64
0.0.91
float64
0.0.92
float64
0.0.93
float64
0.0.94
float64
0.0.95
float64
1.0
float64
0.0.96
float64
0.0.97
float64
13.0
float64
73.0
float64
0.0.98
float64
0.0.99
float64
1.0.1
float64
4.0
float64
0.0.100
float64
0.0.101
float64
0.0.102
float64
0.0.103
float64
1.0.2
float64
1.0.3
float64
0.0.104
float64
0.0.105
float64
0.0.106
float64
0.0.107
float64
0.0.108
float64
0.0.109
float64
0.0.110
float64
0.0.111
float64
0.0.112
float64
0.0.113
float64
0.0.114
float64
0.0.115
float64
0.0.116
float64
3.0
float64
0.0.117
float64
36.0
float64
136.0
float64
127.0
float64
62.0
float64
54.0
float64
0.0.118
float64
0.0.119
float64
0.0.120
float64
1.0.4
float64
3.0.1
float64
4.0.1
float64
0.0.121
float64
0.0.122
float64
3.0.2
float64
0.0.123
float64
0.0.124
float64
0.0.125
float64
0.0.126
float64
0.0.127
float64
0.0.128
float64
0.0.129
float64
0.0.130
float64
0.0.131
float64
0.0.132
float64
0.0.133
float64
0.0.134
float64
6.0
float64
0.0.135
float64
102.0
float64
204.0
float64
176.0
float64
134.0
float64
144.0
float64
123.0
float64
23.0
float64
0.0.136
float64
0.0.137
float64
0.0.138
float64
0.0.139
float64
12.0
float64
10.0
float64
0.0.140
float64
0.0.141
float64
0.0.142
float64
0.0.143
float64
0.0.144
float64
0.0.145
float64
0.0.146
float64
0.0.147
float64
0.0.148
float64
0.0.149
float64
0.0.150
float64
0.0.151
float64
0.0.152
float64
0.0.153
float64
0.0.154
float64
155.0
float64
236.0
float64
207.0
float64
178.0
float64
107.0
float64
156.0
float64
161.0
float64
109.0
float64
64.0
float64
23.0.1
float64
77.0
float64
130.0
float64
72.0
float64
15.0
float64
0.0.155
float64
0.0.156
float64
0.0.157
float64
0.0.158
float64
0.0.159
float64
0.0.160
float64
0.0.161
float64
0.0.162
float64
0.0.163
float64
0.0.164
float64
0.0.165
float64
1.0.5
float64
0.0.166
float64
69.0
float64
207.0.1
float64
223.0
float64
218.0
float64
216.0
float64
216.0.1
float64
163.0
float64
127.0.1
float64
121.0
float64
122.0
float64
146.0
float64
141.0
float64
88.0
float64
172.0
float64
66.0
float64
0.0.167
float64
0.0.168
float64
0.0.169
float64
0.0.170
float64
0.0.171
float64
0.0.172
float64
0.0.173
float64
0.0.174
float64
0.0.175
float64
1.0.6
float64
1.0.7
float64
1.0.8
float64
0.0.176
float64
200.0
float64
232.0
float64
232.0.1
float64
233.0
float64
229.0
float64
223.0.1
float64
223.0.2
float64
215.0
float64
213.0
float64
164.0
float64
127.0.2
float64
123.0.1
float64
196.0
float64
229.0.1
float64
0.0.177
float64
0.0.178
float64
0.0.179
float64
0.0.180
float64
0.0.181
float64
0.0.182
float64
0.0.183
float64
0.0.184
float64
0.0.185
float64
0.0.186
float64
0.0.187
float64
0.0.188
float64
0.0.189
float64
0.0.190
float64
183.0
float64
225.0
float64
216.0.2
float64
223.0.3
float64
228.0
float64
235.0
float64
227.0
float64
224.0
float64
222.0
float64
224.0.1
float64
221.0
float64
223.0.4
float64
245.0
float64
173.0
float64
0.0.191
float64
0.0.192
float64
0.0.193
float64
0.0.194
float64
0.0.195
float64
0.0.196
float64
0.0.197
float64
0.0.198
float64
0.0.199
float64
0.0.200
float64
0.0.201
float64
0.0.202
float64
0.0.203
float64
0.0.204
float64
193.0
float64
228.0.1
float64
218.0.1
float64
213.0.1
float64
198.0
float64
180.0
float64
212.0
float64
210.0
float64
211.0
float64
213.0.2
float64
223.0.5
float64
220.0
float64
243.0
float64
202.0
float64
0.0.205
float64
0.0.206
float64
0.0.207
float64
0.0.208
float64
0.0.209
float64
0.0.210
float64
0.0.211
float64
0.0.212
float64
0.0.213
float64
0.0.214
float64
1.0.9
float64
3.0.3
float64
0.0.215
float64
12.0.1
float64
219.0
float64
220.0.1
float64
212.0.1
float64
218.0.2
float64
192.0
float64
169.0
float64
227.0.1
float64
208.0
float64
218.0.3
float64
224.0.2
float64
212.0.2
float64
226.0
float64
197.0
float64
209.0
float64
52.0
float64
0.0.216
float64
0.0.217
float64
0.0.218
float64
0.0.219
float64
0.0.220
float64
0.0.221
float64
0.0.222
float64
0.0.223
float64
0.0.224
float64
0.0.225
float64
6.0.1
float64
0.0.226
float64
99.0
float64
244.0
float64
222.0.1
float64
220.0.2
float64
218.0.4
float64
203.0
float64
198.0.1
float64
221.0.1
float64
215.0.1
float64
213.0.3
float64
222.0.2
float64
220.0.3
float64
245.0.1
float64
119.0
float64
167.0
float64
56.0
float64
0.0.227
float64
0.0.228
float64
0.0.229
float64
0.0.230
float64
0.0.231
float64
0.0.232
float64
0.0.233
float64
0.0.234
float64
0.0.235
float64
4.0.2
float64
0.0.236
float64
0.0.237
float64
55.0
float64
236.0.1
float64
228.0.2
float64
230.0
float64
228.0.3
float64
240.0
float64
232.0.2
float64
213.0.4
float64
218.0.5
float64
223.0.6
float64
234.0
float64
217.0
float64
217.0.1
float64
209.0.1
float64
92.0
float64
0.0.238
float64
0.0.239
float64
0.0.240
float64
1.0.10
float64
4.0.3
float64
6.0.2
float64
7.0
float64
2.0
float64
0.0.241
float64
0.0.242
float64
0.0.243
float64
0.0.244
float64
0.0.245
float64
237.0
float64
226.0.1
float64
217.0.2
float64
223.0.7
float64
222.0.3
float64
219.0.1
float64
222.0.4
float64
221.0.2
float64
216.0.3
float64
223.0.8
float64
229.0.2
float64
215.0.2
float64
218.0.6
float64
255.0
float64
77.0.1
float64
0.0.246
float64
0.0.247
float64
3.0.4
float64
0.0.248
float64
0.0.249
float64
0.0.250
float64
0.0.251
float64
0.0.252
float64
0.0.253
float64
0.0.254
float64
62.0.1
float64
145.0
float64
204.0.1
float64
228.0.4
float64
207.0.2
float64
213.0.5
float64
221.0.3
float64
218.0.7
float64
208.0.1
float64
211.0.1
float64
218.0.8
float64
224.0.3
float64
223.0.9
float64
219.0.2
float64
215.0.3
float64
224.0.4
float64
244.0.1
float64
159.0
float64
0.0.255
float64
0.0.256
float64
0.0.257
float64
0.0.258
float64
0.0.259
float64
18.0
float64
44.0
float64
82.0
float64
107.0.1
float64
189.0
float64
228.0.5
float64
220.0.4
float64
222.0.5
float64
217.0.3
float64
226.0.2
float64
200.0.1
float64
205.0
float64
211.0.2
float64
230.0.1
float64
224.0.5
float64
234.0.1
float64
176.0.1
float64
188.0
float64
250.0
float64
248.0
float64
233.0.1
float64
238.0
float64
215.0.4
float64
0.0.260
float64
0.0.261
float64
57.0
float64
187.0
float64
208.0.2
float64
224.0.6
float64
221.0.4
float64
224.0.7
float64
208.0.3
float64
204.0.2
float64
214.0
float64
208.0.4
float64
209.0.2
float64
200.0.2
float64
159.0.1
float64
245.0.2
float64
193.0.1
float64
206.0
float64
223.0.10
float64
255.0.1
float64
255.0.2
float64
221.0.5
float64
234.0.2
float64
221.0.6
float64
211.0.3
float64
220.0.5
float64
232.0.3
float64
246.0
float64
0.0.262
float64
3.0.5
float64
202.0.1
float64
228.0.6
float64
224.0.8
float64
221.0.7
float64
211.0.4
float64
211.0.5
float64
214.0.1
float64
205.0.1
float64
205.0.2
float64
205.0.3
float64
220.0.6
float64
240.0.1
float64
80.0
float64
150.0
float64
255.0.3
float64
229.0.3
float64
221.0.8
float64
188.0.1
float64
154.0
float64
191.0
float64
210.0.1
float64
204.0.3
float64
209.0.3
float64
222.0.6
float64
228.0.7
float64
225.0.1
float64
0.0.263
float64
98.0
float64
233.0.2
float64
198.0.2
float64
210.0.2
float64
222.0.7
float64
229.0.4
float64
229.0.5
float64
234.0.3
float64
249.0
float64
220.0.7
float64
194.0
float64
215.0.5
float64
217.0.4
float64
241.0
float64
65.0
float64
73.0.1
float64
106.0
float64
117.0
float64
168.0
float64
219.0.3
float64
221.0.9
float64
215.0.6
float64
217.0.5
float64
223.0.11
float64
223.0.12
float64
224.0.9
float64
229.0.6
float64
29.0
float64
75.0
float64
204.0.4
float64
212.0.3
float64
204.0.5
float64
193.0.2
float64
205.0.4
float64
211.0.6
float64
225.0.2
float64
216.0.4
float64
185.0
float64
197.0.1
float64
206.0.1
float64
198.0.3
float64
213.0.6
float64
240.0.2
float64
195.0
float64
227.0.2
float64
245.0.3
float64
239.0
float64
223.0.13
float64
218.0.9
float64
212.0.4
float64
209.0.4
float64
222.0.8
float64
220.0.8
float64
221.0.10
float64
230.0.2
float64
67.0
float64
48.0
float64
203.0.1
float64
183.0.1
float64
194.0.1
float64
213.0.7
float64
197.0.2
float64
185.0.1
float64
190.0
float64
194.0.2
float64
192.0.1
float64
202.0.2
float64
214.0.2
float64
219.0.4
float64
221.0.11
float64
220.0.9
float64
236.0.2
float64
225.0.3
float64
216.0.5
float64
199.0
float64
206.0.2
float64
186.0
float64
181.0
float64
177.0
float64
172.0.1
float64
181.0.1
float64
205.0.5
float64
206.0.3
float64
115.0
float64
0.0.264
float64
122.0.1
float64
219.0.5
float64
193.0.3
float64
179.0
float64
171.0
float64
183.0.2
float64
196.0.1
float64
204.0.6
float64
210.0.3
float64
213.0.8
float64
207.0.3
float64
211.0.7
float64
210.0.4
float64
200.0.3
float64
196.0.2
float64
194.0.3
float64
191.0.1
float64
195.0.1
float64
191.0.2
float64
198.0.4
float64
192.0.2
float64
176.0.2
float64
156.0.1
float64
167.0.1
float64
177.0.1
float64
210.0.5
float64
92.0.1
float64
0.0.265
float64
0.0.266
float64
74.0
float64
189.0.1
float64
212.0.5
float64
191.0.3
float64
175.0
float64
172.0.2
float64
175.0.1
float64
181.0.2
float64
185.0.2
float64
188.0.2
float64
189.0.2
float64
188.0.3
float64
193.0.4
float64
198.0.5
float64
204.0.7
float64
209.0.5
float64
210.0.6
float64
210.0.7
float64
211.0.8
float64
188.0.4
float64
188.0.5
float64
194.0.4
float64
192.0.3
float64
216.0.6
float64
170.0
float64
0.0.267
float64
2.0.1
float64
0.0.268
float64
0.0.269
float64
0.0.270
float64
66.0.1
float64
200.0.4
float64
222.0.9
float64
237.0.1
float64
239.0.1
float64
242.0
float64
246.0.1
float64
243.0.1
float64
244.0.2
float64
221.0.12
float64
220.0.10
float64
193.0.5
float64
191.0.4
float64
179.0.1
float64
182.0
float64
182.0.1
float64
181.0.3
float64
176.0.3
float64
166.0
float64
168.0.1
float64
99.0.1
float64
58.0
float64
0.0.271
float64
0.0.272
float64
0.0.273
float64
0.0.274
float64
0.0.275
float64
0.0.276
float64
0.0.277
float64
0.0.278
float64
0.0.279
float64
40.0
float64
61.0
float64
44.0.1
float64
72.0.1
float64
41.0
float64
35.0
float64
0.0.280
float64
0.0.281
float64
0.0.282
float64
0.0.283
float64
0.0.284
float64
0.0.285
float64
0.0.286
float64
0.0.287
float64
0.0.288
float64
0.0.289
float64
0.0.290
float64
0.0.291
float64
0.0.292
float64
0.0.293
float64
0.0.294
float64
0.0.295
float64
0.0.296
float64
0.0.297
float64
0.0.298
float64
0.0.299
float64
0.0.300
float64
0.0.301
float64
0.0.302
float64
0.0.303
float64
0.0.304
float64
0.0.305
float64
0.0.306
float64
0.0.307
float64
0.0.308
float64
0.0.309
float64
0.0.310
float64
0.0.311
float64
0.0.312
float64
0.0.313
float64
0.0.314
float64
0.0.315
float64
0.0.316
float64
0.0.317
float64
0.0.318
float64
0.0.319
float64
0.0.320
float64
0.0.321
float64
0.0.322
float64
0.0.323
float64
0.0.324
float64
0.0.325
float64
0.0.326
float64
0.0.327
float64
0.0.328
float64
0.0.329
float64
0.0.330
float64
0.0.331
float64
0.0.332
float64
0.0.333
float64
0.0.334
float64
0.0.335
float64
0.0.336
float64
0.0.337
float64
0.0.338
float64
0.0.339
float64
0.0.340
float64
0.0.341
float64
0.0.342
float64
0.0.343
float64
0.0.344
float64
0.0.345
float64
0.0.346
float64
0.0.347
float64
0.0.348
float64
0.0.349
float64
0.0.350
float64
0
0
0
0
0
1
0
0
0
0
41
188
103
54
48
43
87
168
133
16
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
49
136
219
216
228
236
255
255
255
255
217
215
254
231
160
45
0
0
0
0
0
0
0
0
0
0
14
176
222
224
212
203
198
196
200
215
204
202
201
201
201
209
218
224
164
0
0
0
0
0
0
0
0
0
188
219
200
198
202
198
199
199
201
196
198
198
200
200
200
200
201
200
225
41
0
0
0
0
0
0
0
51
219
199
203
203
212
238
248
250
245
249
246
247
252
248
235
207
203
203
222
140
0
0
0
0
0
0
0
116
226
206
204
207
204
101
75
47
73
48
50
45
51
63
113
222
202
206
220
224
0
0
0
0
0
0
0
200
222
209
203
215
200
0
70
98
0
103
59
68
71
49
0
219
206
214
210
250
38
0
0
0
0
0
0
247
218
212
210
215
214
0
254
243
139
255
174
251
255
205
0
215
217
214
208
220
95
0
0
0
0
0
45
226
214
214
215
224
205
0
42
35
60
16
17
12
13
70
0
189
216
212
206
212
156
0
0
0
0
0
164
235
214
211
220
216
201
52
71
89
94
83
78
70
76
92
87
206
207
222
213
219
208
0
0
0
0
0
106
187
223
237
248
211
198
252
250
248
245
248
252
253
250
252
239
201
212
225
215
193
113
0
0
0
0
0
0
0
17
54
159
222
193
208
192
197
200
200
200
200
201
203
195
210
165
0
0
0
0
0
0
0
0
0
0
0
0
0
47
225
192
214
203
206
204
204
205
206
204
212
197
218
107
0
0
0
0
0
0
0
0
0
0
1
6
0
46
212
195
212
202
206
205
204
205
206
204
212
200
218
91
0
3
1
0
0
0
0
0
0
0
0
1
0
11
197
199
205
202
205
206
204
205
207
204
205
205
218
77
0
5
0
0
0
0
0
0
0
0
0
3
0
2
191
198
201
205
206
205
205
206
209
206
199
209
219
74
0
5
0
0
0
0
0
0
0
0
0
2
0
0
188
197
200
207
207
204
207
207
210
208
198
207
221
72
0
4
0
0
0
0
0
0
0
0
0
2
0
0
215
198
203
206
208
205
207
207
210
208
200
202
222
75
0
4
0
0
0
0
0
0
0
0
0
1
0
0
212
198
209
206
209
206
208
207
211
206
205
198
221
80
0
3
0
0
0
0
0
0
0
0
0
1
0
0
204
201
205
208
207
205
211
205
210
210
209
195
221
96
0
3
0
0
0
0
0
0
0
0
0
1
0
0
202
201
205
209
207
205
213
206
210
209
210
194
217
105
0
2
0
0
0
0
0
0
0
0
0
1
0
0
204
204
205
208
207
205
215
207
210
208
211
193
213
115
0
2
0
0
0
0
0
0
0
0
0
0
0
0
204
207
207
208
206
206
215
210
210
207
212
195
210
118
0
2
0
0
0
0
0
0
0
0
0
1
0
0
198
208
208
208
204
207
212
212
210
207
211
196
207
121
0
1
0
0
0
0
0
0
0
0
0
1
0
0
198
210
207
208
206
209
213
212
211
207
210
197
207
124
0
1
0
0
0
0
0
0
0
0
0
0
0
0
172
210
203
201
199
204
207
205
204
201
205
197
206
127
0
0
0
0
0
0
0
0
0
0
0
0
0
0
188
221
214
234
236
238
244
244
244
240
243
214
224
162
0
2
0
0
0
0
0
0
0
0
0
1
0
0
139
146
130
135
135
137
125
124
125
121
119
114
130
76
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
22
118
24
0
0
0
0
0
48
88
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
12
100
212
205
185
179
173
186
193
221
142
85
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
85
76
199
225
248
255
238
226
157
68
80
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
91
69
91
201
218
225
209
158
61
93
72
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
79
89
61
59
87
108
75
56
76
97
73
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
75
89
80
80
67
63
73
83
80
96
72
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
77
88
77
80
83
83
83
83
81
95
76
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
89
96
80
83
81
84
85
85
85
97
84
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
93
97
81
85
84
85
87
88
84
99
87
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
95
87
84
87
88
85
87
87
84
92
87
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
97
87
87
85
88
87
87
87
88
85
107
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
17
100
88
87
87
88
87
87
85
89
77
118
8
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
10
93
87
87
87
87
87
88
87
89
80
103
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
9
96
87
87
87
87
87
88
87
88
87
103
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
12
96
85
87
87
87
85
87
87
88
89
100
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
20
95
84
88
85
87
88
88
88
89
88
99
8
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
21
96
85
87
85
88
88
88
88
89
89
99
10
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
24
96
85
87
85
87
88
88
89
88
91
102
14
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
25
93
84
88
87
87
87
87
87
89
91
103
29
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
30
95
85
88
88
87
87
87
87
89
88
102
37
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
34
96
88
87
87
87
87
87
87
85
85
97
38
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
40
96
87
85
87
87
87
87
87
85
84
92
49
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
46
95
83
84
87
87
87
87
87
87
84
87
84
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
72
95
85
84
85
88
87
87
89
87
85
83
63
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
64
100
84
87
88
85
88
88
84
87
83
95
53
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
10
102
100
91
91
89
85
84
84
87
108
106
14
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
8
73
93
104
107
103
103
106
102
75
10
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
18
42
57
56
32
8
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
33
96
175
156
64
14
54
137
204
194
102
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
73
186
177
183
175
188
232
255
223
219
194
179
186
213
146
0
0
0
0
0
0
0
0
0
0
0
0
35
163
140
150
152
150
146
175
175
173
171
156
152
148
129
156
140
0
0
0
0
0
0
0
0
0
0
0
150
142
140
152
160
156
146
142
127
135
133
140
140
137
133
125
169
75
0
0
0
0
0
0
0
0
0
0
54
167
146
129
142
137
137
131
148
148
133
131
131
131
125
140
140
0
0
0
0
0
0
0
0
0
0
0
0
110
188
133
146
152
133
125
127
119
129
133
119
140
131
150
14
0
0
0
0
0
0
0
0
0
0
0
0
0
221
158
137
135
123
110
110
114
108
112
117
127
142
77
0
0
0
0
0
0
0
0
0
0
0
0
4
0
25
158
137
125
119
119
110
117
117
110
119
127
144
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
123
156
129
112
110
102
112
100
121
117
129
114
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
125
169
127
119
106
108
104
94
121
114
129
91
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
0
98
171
129
112
104
114
106
102
112
104
133
64
0
4
0
0
0
0
0
0
0
0
0
0
0
0
2
0
66
173
135
129
98
100
119
102
108
98
135
60
0
4
0
0
0
0
0
0
0
0
0
0
0
0
2
0
56
171
135
127
100
108
117
85
106
110
135
66
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
52
150
129
110
100
91
102
94
83
104
123
66
0
4
0
0
0
0
0
0
0
0
0
0
0
0
2
0
66
167
140
148
148
127
137
152
146
146
148
96
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
45
123
94
104
96
119
121
106
98
112
87
114
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
106
89
58
50
37
50
66
56
50
75
75
137
22
0
2
0
0
0
0
0
0
0
0
0
0
2
0
29
148
114
106
125
89
100
133
117
131
131
131
125
112
0
0
0
0
0
0
0
0
0
0
0
0
0
0
100
106
114
91
137
62
102
131
89
135
112
131
108
135
37
0
0
0
0
0
0
0
0
0
0
0
0
0
146
100
108
98
144
62
106
131
87
133
104
160
117
121
68
0
0
0
0
0
0
0
0
0
0
0
0
33
121
108
96
100
140
71
106
127
85
140
104
150
140
114
89
0
0
0
0
0
0
0
0
0
0
0
0
62
119
112
102
110
137
75
106
144
81
144
108
117
154
117
104
18
0
0
0
0
0
0
0
0
0
0
0
66
121
102
112
117
131
73
104
156
77
137
135
83
179
129
121
35
0
0
0
0
0
0
0
0
0
0
0
85
127
81
125
133
119
79
100
169
83
129
175
60
163
135
146
39
0
0
0
0
0
0
0
0
0
0
0
106
129
62
140
144
108
85
83
158
85
129
175
48
146
133
135
64
0
0
0
0
0
0
0
0
0
0
0
117
119
79
140
152
102
89
110
137
96
150
196
83
144
135
133
77
0
0
0
0
0
0
0
0
0
0
0
154
121
87
140
154
112
94
52
142
100
83
152
85
160
133
100
12
0
0
0
0
0
0
0
0
0
0
0
4
0
2
0
35
4
33
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
26
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
189
206
187
32
0
0
0
26
217
226
196
11
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
192
227
234
243
230
147
239
242
234
218
209
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
173
225
215
233
254
0
194
240
217
221
190
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
139
229
212
226
255
0
162
255
213
226
200
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
98
232
211
215
249
46
162
246
214
230
186
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
70
228
213
220
224
252
239
219
217
231
171
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
45
222
214
218
216
210
215
217
202
224
172
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
24
254
214
210
211
214
215
212
203
221
167
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
254
216
215
217
217
216
216
206
225
150
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
247
216
214
217
216
214
212
203
226
136
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
245
216
214
216
217
215
211
204
225
125
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
247
216
214
217
220
217
213
203
222
147
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
248
216
215
218
222
216
214
207
218
179
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
249
216
217
219
222
217
214
210
215
211
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
38
255
214
218
219
224
218
215
211
211
231
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
79
227
209
219
219
227
219
215
213
206
254
58
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
146
226
211
220
219
228
218
215
216
205
219
163
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
202
221
214
221
219
231
218
215
218
213
212
220
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
234
217
216
220
219
234
217
215
218
216
223
247
7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
17
254
212
219
219
220
233
214
216
219
222
153
238
58
0
0
0
0
0
0
0
0
0
0
0
0
0
0
66
255
208
220
219
222
241
220
218
218
218
192
242
99
0
0
0
0
0
0
0
0
0
0
0
0
0
0
142
235
203
218
216
231
242
225
233
219
214
216
238
144
0
0
0
0
0
0
0
0
0
0
0
0
0
0
177
248
227
229
211
255
76
0
247
243
230
230
249
187
0
0
0
0
0
0
0
0
0
0
0
0
0
0
101
241
228
228
220
255
64
0
243
237
230
227
241
142
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
255
242
222
218
255
62
0
223
238
225
238
255
31
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
45
255
242
235
255
84
0
246
255
242
255
70
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
61
102
168
25
0
139
161
74
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
22
88
188
172
132
125
141
199
143
9
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
20
131
199
206
196
202
242
255
255
250
222
197
206
188
126
17
0
0
0
0
0
0
0
0
0
1
0
35
214
191
183
178
175
168
150
162
159
152
158
179
183
189
195
185
82
0
0
0
0
0
0
0
0
0
0
170
190
172
177
176
171
169
162
155
148
154
169
174
175
175
177
183
188
12
0
0
0
0
0
0
0
0
25
194
180
178
174
184
187
189
187
184
181
189
200
197
193
190
178
175
194
90
0
0
0
0
0
0
0
0
42
218
191
197
208
204
211
209
210
212
211
214
215
213
214
211
211
191
200
158
0
0
0
0
0
0
0
0
88
221
215
217
219
211
185
150
118
107
99
88
83
90
135
212
203
207
219
169
0
0
0
0
0
0
0
0
0
27
118
162
40
0
0
0
10
19
28
39
47
36
0
0
203
230
220
203
0
0
0
0
0
0
0
0
138
136
71
69
54
216
217
203
184
168
163
162
163
178
221
186
38
26
7
0
0
0
0
0
0
0
0
0
67
134
154
224
129
66
81
117
129
128
132
137
131
129
86
73
157
151
134
216
18
0
0
0
0
0
0
0
203
198
172
183
206
255
255
250
243
240
239
235
238
244
255
238
184
160
86
98
0
0
0
0
0
0
0
0
122
188
224
151
105
127
97
100
105
114
117
117
113
103
98
111
142
254
191
255
49
0
0
0
0
0
0
0
163
179
200
95
154
198
197
200
200
198
197
198
199
202
200
176
86
206
157
162
10
0
0
0
0
0
0
0
197
201
229
71
144
194
181
183
179
182
180
179
180
190
185
197
76
219
185
201
34
0
0
0
0
0
0
0
199
193
226
58
154
192
184
187
184
186
184
185
183
192
191
200
56
219
203
207
60
0
0
0
0
0
0
0
201
194
224
41
163
190
186
186
184
185
183
185
178
190
194
202
33
211
200
206
73
0
0
0
0
0
0
0
201
197
222
17
172
190
186
187
182
186
185
187
180
187
193
202
26
212
202
203
76
0
0
0
0
0
0
0
200
197
223
0
177
189
184
185
178
184
183
184
180
183
189
203
35
196
203
203
84
0
0
0
0
0
0
0
200
197
223
0
185
187
185
187
180
184
182
183
178
182
183
205
44
159
207
201
85
0
0
0
0
0
0
0
187
198
225
0
194
188
184
185
180
183
183
184
181
181
177
206
46
129
211
200
88
0
0
0
0
0
0
6
186
200
211
0
199
189
184
184
185
182
183
184
185
182
175
205
50
97
216
197
93
0
0
0
0
0
0
5
185
204
184
0
202
188
182
182
183
183
184
182
180
182
174
202
63
59
220
196
94
0
0
0
0
0
0
5
184
206
157
0
204
187
187
189
192
190
190
191
190
187
183
202
78
35
222
197
95
0
0
0
0
0
0
5
183
208
127
0
197
166
153
149
149
146
148
149
150
151
158
191
90
8
223
195
99
0
0
0
0
0
0
6
184
208
114
0
204
173
161
180
176
172
173
173
174
176
162
202
115
0
229
199
105
0
0
0
0
0
0
9
178
204
115
0
121
135
114
117
114
114
117
118
119
117
113
147
63
0
225
196
107
0
0
0
0
0
0
18
180
206
131
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
224
197
123
0
0
0
0
0
0
0
141
151
76
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
133
167
73
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
3
1
0
4
0
0
0
2
0
0
0
0
5
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
0
0
0
0
106
229
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
90
138
223
214
209
167
0
0
0
6
124
0
0
0
0
0
0
0
0
0
0
1
0
0
0
37
122
179
249
214
195
181
213
241
0
0
0
94
179
0
0
0
0
0
2
0
6
0
0
0
0
16
149
236
226
201
195
200
204
155
209
116
0
22
109
251
35
51
0
0
0
1
3
0
0
0
0
67
150
240
221
194
190
204
214
205
195
207
185
206
233
224
179
2
10
22
0
0
0
0
0
0
0
110
214
237
209
196
192
215
215
213
213
207
193
186
199
206
175
0
0
124
230
200
36
0
50
119
158
166
192
204
198
187
202
203
211
214
204
209
210
204
197
191
190
191
229
230
242
214
193
203
137
108
190
199
200
194
199
194
195
199
200
189
187
191
189
197
198
205
200
200
208
213
215
212
213
209
202
216
137
15
55
114
157
188
207
216
220
217
219
221
242
240
243
249
253
255
255
243
232
226
222
221
213
215
198
209
62
16
11
0
0
7
40
76
108
134
142
143
145
143
123
111
92
76
61
45
35
25
25
31
32
32
12
1
0
0
11
25
26
26
22
12
20
15
15
18
17
19
27
30
36
41
49
57
66
79
84
79
83
93
80
75
45
0
0
0
0
0
9
14
17
27
34
39
39
42
44
41
41
43
48
43
30
31
35
40
37
40
37
26
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
63
28
0
0
0
33
85
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
0
0
28
126
241
255
255
255
255
255
255
252
248
111
0
0
0
2
0
0
0
0
0
0
0
0
2
0
0
206
244
251
241
230
238
221
205
230
240
230
239
251
233
165
0
0
2
0
0
0
0
0
0
1
0
0
199
251
228
234
233
236
235
245
247
237
234
239
230
230
235
255
176
0
0
1
0
0
0
0
0
0
0
81
254
226
228
239
237
236
234
232
233
235
235
236
239
237
233
225
246
73
0
0
0
0
0
0
3
0
0
255
235
239
223
234
238
236
237
236
235
235
235
235
236
235
234
230
231
255
24
0
4
0
0
0
0
0
177
239
223
254
223
232
234
234
236
236
235
235
235
235
235
234
231
233
222
246
88
0
1
0
0
0
0
0
234
239
229
255
220
232
233
232
234
235
235
235
235
235
234
233
232
230
228
254
140
0
0
0
0
0
0
0
225
240
226
255
221
227
232
228
231
230
228
229
231
230
228
228
232
223
229
244
231
0
0
0
0
0
0
47
245
231
234
249
229
221
229
225
229
227
226
227
228
227
228
229
228
224
246
240
227
0
0
0
0
0
0
51
248
230
245
246
230
226
230
227
230
229
228
229
230
228
228
231
225
227
242
237
255
0
0
0
0
0
0
101
253
229
247
241
221
233
228
227
229
228
227
228
230
227
230
234
225
229
251
229
243
55
0
0
0
0
0
102
255
227
242
241
221
234
223
230
228
231
229
231
231
227
229
241
219
236
254
225
250
167
0
0
0
0
0
90
255
229
236
231
222
236
223
231
229
231
229
231
231
228
224
245
218
243
239
227
244
175
0
0
0
0
0
212
250
225
236
249
229
237
223
231
229
231
229
231
231
230
221
243
225
248
230
236
234
255
1
0
0
0
0
245
243
232
243
218
228
238
222
231
229
231
229
231
231
230
222
237
237
252
229
239
240
223
0
0
0
0
27
255
235
242
237
216
230
236
224
229
227
233
233
233
230
228
224
230
245
247
221
243
239
252
0
0
0
0
88
255
232
248
236
208
234
231
223
227
226
233
232
232
230
228
224
224
235
233
234
247
235
255
0
0
0
0
83
255
225
250
237
224
236
229
225
225
227
235
229
231
230
230
227
221
227
221
239
250
231
255
0
0
0
0
20
255
224
248
234
226
232
222
225
224
231
238
226
230
228
230
230
221
229
225
244
246
230
255
0
0
0
0
95
255
218
242
255
232
226
224
229
228
228
232
228
229
231
233
232
226
221
224
247
244
228
255
0
0
0
0
167
255
213
235
255
81
245
251
238
236
230
229
230
229
230
231
238
240
255
192
255
239
228
255
23
0
0
0
173
242
224
233
255
0
136
226
239
255
229
236
236
234
233
228
251
248
200
81
255
237
225
255
101
0
0
0
172
255
226
233
255
0
0
0
0
0
8
21
22
21
20
14
0
0
0
0
255
238
229
246
178
0
0
0
16
255
236
238
252
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
222
244
222
254
119
0
0
0
0
30
228
242
163
0
0
0
0
2
4
6
5
5
4
4
2
0
1
0
151
251
235
180
0
0
0
0
0
0
234
255
191
0
11
0
0
0
0
0
0
0
0
0
0
0
4
0
103
246
247
72
0
0
0
0
0
1
95
77
52
0
4
0
0
0
0
0
0
0
0
0
0
0
3
0
82
237
231
70
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
3
1
0
0
1
1
0
0
0
0
58
0
39
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
3
0
0
0
0
0
0
0
64
109
146
192
193
7
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
94
38
99
209
183
229
192
142
48
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
41
45
158
146
164
114
51
1
53
105
42
36
0
0
0
0
0
0
0
0
0
0
0
0
0
0
10
68
44
30
59
172
146
0
22
0
13
103
111
103
0
0
0
0
0
0
0
0
0
0
0
3
1
0
22
61
88
152
255
71
0
0
0
0
35
85
112
201
44
0
0
0
0
0
0
0
0
0
0
1
0
0
13
62
154
62
0
0
0
0
0
0
54
99
61
106
51
19
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
9
1
0
0
1
0
79
82
47
33
58
50
0
0
0
0
0
0
0
0
0
0
0
0
0
3
1
3
9
3
0
0
1
0
100
88
48
35
70
54
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3
0
1
0
0
111
195
119
29
58
45
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
3
3
0
0
91
146
171
16
93
35
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
48
45
3
79
87
99
6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3
0
0
119
137
33
96
77
13
45
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
32
160
164
142
116
79
82
39
39
0
0
0
0
0
3
0
0
0
0
0
0
0
0
3
4
10
0
41
180
142
171
1
0
0
48
73
16
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
3
0
27
155
114
169
0
0
0
0
47
76
6
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
155
129
160
0
0
0
0
0
45
96
0
0
0
0
0
0
1
0
16
39
64
0
0
0
0
0
0
129
151
175
0
0
0
4
4
0
48
116
0
0
0
0
0
0
0
0
58
87
73
10
0
0
0
0
27
187
195
0
0
0
0
3
1
0
47
146
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
181
225
45
0
0
0
0
0
1
0
45
186
0
0
0
0
0
0
0
0
1
183
210
90
0
0
0
126
253
142
0
0
0
0
0
0
1
0
48
203
0
0
64
58
45
27
16
9
1
175
245
204
22
0
70
236
190
6
0
0
0
0
0
0
0
0
50
196
0
0
96
128
149
163
158
140
138
146
154
108
90
148
193
177
36
0
7
0
0
0
0
0
0
0
41
125
0
0
0
0
0
0
19
47
65
93
94
125
166
180
119
29
0
0
0
0
0
0
0
0
0
0
32
238
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
131
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
164
50
0
7
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
1
0
0
5
0
45
217
255
176
0
6
0
0
0
0
0
0
0
0
0
0
0
1
1
0
3
3
5
9
0
2
0
62
236
231
215
27
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
29
244
231
234
74
0
1
0
0
0
0
0
0
0
0
0
0
0
0
2
0
0
0
23
41
59
111
134
138
226
202
217
22
0
1
0
0
0
0
0
0
0
0
0
0
0
0
5
0
35
179
195
182
225
198
241
177
199
205
210
26
0
1
0
0
3
0
0
0
0
0
0
0
0
0
0
0
0
19
0
0
0
0
0
235
243
198
119
0
3
1
3
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
5
0
0
0
170
252
181
182
0
0
0
0
0
19
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
4
0
76
255
183
219
9
0
0
42
191
164
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
0
0
237
198
204
75
47
221
221
238
25
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
2
1
0
0
209
212
229
255
254
232
227
174
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
210
255
87
101
230
238
105
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
4
1
0
1
250
236
0
0
0
224
233
20
0
0
0
0
0
0
1
3
4
4
2
0
0
0
1
0
2
0
0
204
185
0
0
0
6
227
202
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
1
0
0
0
173
159
0
0
2
0
10
237
153
0
0
0
0
1
0
0
0
0
40
138
21
0
0
2
0
8
0
132
195
0
0
0
0
0
8
240
118
0
1
5
6
4
0
132
232
208
208
241
217
0
0
0
1
0
29
217
35
0
9
0
2
0
25
238
58
0
2
0
0
0
0
181
255
231
233
219
238
77
0
0
0
0
196
145
0
0
0
0
2
0
49
228
0
0
2
62
92
8
0
207
255
216
198
189
208
221
0
0
0
177
239
19
0
0
0
0
2
0
64
218
0
0
3
96
249
223
211
237
243
211
228
255
252
255
138
38
175
242
173
0
0
0
0
0
2
0
89
204
0
0
2
0
197
240
240
237
219
222
244
235
243
244
255
255
234
233
45
0
2
0
0
0
2
0
105
188
0
0
0
0
165
253
224
229
242
244
232
239
242
243
237
230
230
207
0
0
1
0
0
0
9
0
120
165
0
8
0
0
45
255
252
253
241
229
223
230
235
240
239
233
245
65
0
2
0
0
0
0
10
0
128
143
0
10
0
0
0
0
72
202
255
255
255
255
255
255
255
255
194
0
0
2
0
0
0
0
8
0
186
160
0
9
0
0
0
0
0
0
0
38
89
135
162
180
179
152
0
0
1
0
0
0
0
0
1
0
68
29
0
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
11
142
200
106
0
0
0
0
0
0
0
85
185
112
0
0
0
0
0
0
0
0
0
0
0
0
0
152
214
217
194
236
216
187
149
135
153
211
217
231
205
217
188
34
0
0
0
0
0
0
0
0
0
0
66
185
166
180
181
190
211
221
197
146
198
206
191
168
190
172
188
175
0
0
0
0
0
0
0
0
0
0
135
153
160
175
180
170
186
187
190
188
190
187
174
195
185
174
161
175
59
0
0
0
0
0
0
0
0
0
161
147
160
170
178
177
180
168
173
174
171
185
184
185
172
171
164
174
120
0
0
0
0
0
0
0
0
2
175
146
145
168
178
181
185
180
184
178
179
187
191
193
190
181
171
172
158
0
0
0
0
0
0
0
0
35
177
155
140
151
172
191
187
186
187
186
187
182
191
194
188
180
161
161
185
0
0
0
0
0
0
0
0
59
170
153
141
120
154
160
161
172
168
166
161
165
172
170
164
139
149
162
166
21
0
0
0
0
0
0
0
79
145
160
214
123
128
153
160
164
158
157
154
155
170
165
141
195
193
152
166
61
0
0
0
0
0
0
0
100
157
225
245
175
113
174
158
158
160
155
160
164
178
188
135
185
240
201
172
108
0
0
0
0
0
0
0
0
31
174
28
126
153
166
152
158
158
160
161
157
168
191
188
18
132
159
7
0
0
0
0
0
0
0
0
0
0
0
0
82
187
159
153
157
158
162
164
164
154
187
190
0
0
0
0
0
0
0
0
0
0
0
0
1
3
5
0
37
175
158
155
162
158
160
162
165
153
177
205
0
0
3
3
0
0
0
0
0
0
0
0
0
0
1
0
25
175
152
160
158
161
160
164
164
161
166
200
0
0
1
0
0
0
0
0
0
0
0
0
0
0
4
0
30
171
147
164
155
165
161
165
162
170
164
162
0
0
2
0
0
0
0
0
0
0
0
0
0
0
4
0
57
166
155
164
166
161
161
164
167
165
165
162
28
0
3
0
0
0
0
0
0
0
0
0
0
0
3
0
114
161
161
166
159
168
161
161
172
162
165
171
50
0
5
0
0
0
0
0
0
0
0
0
0
0
1
0
149
157
167
172
159
172
164
161
172
170
160
171
89
0
4
0
0
0
0
0
0
0
0
0
0
2
0
4
171
164
166
173
159
179
166
160
174
167
162
166
128
0
2
0
0
0
0
0
0
0
0
0
0
3
0
18
152
173
160
179
154
181
166
164
175
170
166
170
164
0
0
1
0
0
0
0
0
0
0
0
0
4
0
47
165
172
167
185
153
187
173
165
174
179
166
166
158
5
0
3
0
0
0
0
0
0
0
0
0
4
0
87
180
162
179
179
157
191
182
165
168
190
173
165
166
20
0
4
0
0
0
0
0
0
0
0
0
4
0
105
187
157
194
175
161
190
184
170
158
205
177
168
171
44
0
4
0
0
0
0
0
0
0
0
0
5
0
138
181
158
205
160
167
190
198
167
152
218
186
170
172
57
0
5
0
0
0
0
0
0
0
0
0
5
0
135
174
167
199
155
166
201
219
165
158
218
188
167
175
56
0
7
0
0
0
0
0
0
0
0
0
5
0
129
171
172
177
153
159
206
216
148
157
206
190
165
175
48
0
5
0
0
0
0
0
0
0
0
0
5
0
167
187
182
198
194
200
226
240
184
206
255
197
178
179
42
0
5
0
0
0
0
0
0
0
0
0
3
0
115
135
113
106
85
82
108
133
83
90
121
120
110
158
18
0
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
39
111
93
85
27
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
190
244
248
255
255
155
202
212
150
9
0
3
0
0
0
0
0
0
0
0
0
0
0
0
0
2
0
0
213
227
233
227
243
246
255
250
255
146
0
9
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
6
244
233
236
244
232
214
248
242
251
33
0
7
0
0
0
0
0
0
0
0
0
0
0
0
1
6
0
72
255
231
239
244
237
226
255
252
207
44
24
0
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
125
231
215
253
252
234
246
254
239
128
114
63
0
3
0
0
0
0
0
0
0
0
0
0
0
1
0
0
189
230
198
185
219
218
255
206
255
133
31
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
0
224
241
255
236
237
223
191
219
166
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
61
245
202
220
237
220
242
199
255
178
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
153
247
205
202
212
207
225
190
255
93
141
0
0
1
0
0
0
0
0
0
0
0
0
0
0
3
0
0
222
228
233
243
248
242
242
209
255
0
90
177
0
0
0
0
0
0
0
0
0
0
0
0
0
2
0
46
255
221
235
235
213
248
220
206
255
225
28
255
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
116
250
215
227
231
226
255
195
216
250
255
159
255
160
0
0
0
0
0
0
0
0
0
0
0
3
0
7
226
202
241
247
241
228
255
175
229
252
241
255
224
224
76
0
0
0
0
0
0
0
0
0
0
0
0
131
255
210
212
251
252
229
255
175
227
254
239
245
230
223
149
90
0
0
0
0
0
0
0
0
2
0
0
227
238
238
225
205
242
246
223
187
221
254
238
255
233
156
0
0
0
0
0
0
0
0
1
0
0
0
77
255
239
248
252
237
195
201
232
190
205
252
235
255
199
0
0
0
0
0
0
0
0
0
0
0
0
0
207
223
186
215
223
255
255
217
229
254
251
244
240
255
207
0
0
1
0
0
0
0
0
0
0
2
0
53
254
234
239
222
190
187
200
250
237
195
251
250
237
253
192
0
0
0
0
0
0
0
2
4
2
0
0
190
247
233
231
250
254
247
208
208
231
226
207
246
235
248
175
0
0
0
0
0
1
6
0
0
0
0
117
245
184
242
238
235
238
244
233
255
255
99
155
255
233
252
154
0
0
0
0
0
0
0
0
3
33
141
255
197
208
184
234
246
240
243
231
255
77
0
172
255
231
253
139
0
1
0
0
0
0
84
243
246
255
254
240
241
190
229
198
243
244
238
255
80
0
0
176
255
231
252
113
0
3
0
0
0
25
223
239
230
231
231
234
241
247
191
225
230
252
255
173
0
0
0
170
255
228
251
97
0
4
0
0
0
103
241
217
228
230
238
241
238
248
244
216
172
223
255
0
0
7
0
159
255
234
251
74
0
4
0
0
0
9
188
229
242
241
243
240
236
238
241
251
237
253
64
0
0
3
0
154
255
229
255
62
0
7
0
0
0
0
0
28
123
199
249
255
255
255
255
255
245
72
0
0
0
3
0
117
255
245
220
19
0
4
0
0
0
0
0
0
0
0
0
38
72
89
71
37
0
0
0
0
0
3
0
0
64
42
24
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
32
60
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
85
216
144
43
0
0
0
0
0
0
0
91
54
0
0
0
0
0
0
0
0
0
0
0
2
0
27
172
200
182
189
197
0
0
0
12
110
130
139
127
66
0
0
0
0
0
0
0
0
0
0
0
3
0
45
212
180
158
213
235
92
27
103
184
193
132
43
0
0
0
0
0
0
0
0
0
2
1
0
0
0
0
0
194
222
163
163
182
239
211
164
69
25
0
0
1
5
0
0
0
0
0
2
0
0
0
0
0
0
0
0
55
244
242
229
200
216
63
0
0
0
0
0
0
0
0
1
0
0
1
0
0
24
117
190
0
0
0
0
0
157
230
226
202
206
148
0
0
3
18
30
39
65
48
1
2
1
1
0
144
197
184
206
150
0
0
0
0
5
94
157
189
203
243
177
108
136
149
154
150
145
108
0
0
0
0
0
101
235
197
171
230
30
0
0
0
0
47
200
206
148
154
109
75
54
61
61
57
75
54
6
16
1
0
0
0
190
126
0
200
101
0
29
85
119
127
154
101
90
97
66
118
105
121
91
94
122
48
41
112
113
115
106
94
197
206
114
194
255
119
123
118
79
86
55
108
74
74
81
57
103
54
82
86
83
46
29
72
34
74
59
83
100
63
96
83
114
64
70
63
100
69
100
91
81
87
92
94
87
115
68
70
96
24
20
99
90
104
86
103
82
91
48
78
64
109
92
79
74
95
108
91
88
95
97
75
79
100
92
96
97
14
6
97
75
91
79
90
63
94
90
91
100
72
75
83
81
79
55
73
48
88
81
83
68
61
69
39
79
2
0
82
115
109
109
123
78
95
92
91
105
90
110
117
130
132
137
141
142
128
126
151
180
170
163
162
114
0
0
0
2
39
63
85
112
101
109
105
90
94
77
59
47
43
19
2
0
0
0
3
25
20
27
24
9
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
End of preview.

Nearest Neighbors Search Datasets

The datasets listed below are used in Hann library.

Index Dataset Dimensions Train Size Test Size Neighbors Distance Original Source
1 GloVe (25d) 25 1,183,514 10,000 100 Cosine HDF5 (121MB)
2 GloVe (50d) 50 1,183,514 10,000 100 Cosine HDF5 (235MB)
3 GloVe (100d) 100 1,183,514 10,000 100 Cosine HDF5 (463MB)
4 GloVe (200d) 200 1,183,514 10,000 100 Cosine HDF5 (918MB)
5 Last.fm 65 292,385 50,000 100 Cosine HDF5 (135MB)
6 MNIST 784 60,000 10,000 100 Euclidean HDF5 (217MB)
7 Fashion-MNIST 784 60,000 10,000 100 Euclidean HDF5 (217MB)
8 SIFT 128 1,000,000 10,000 100 Euclidean HDF5 (501MB)

Acknowledgement

These are a subset of datasets from the ANN-Benchmarks project.

Downloads last month
203