|
--- |
|
license: cc-by-nc-4.0 |
|
dataset_info: |
|
features: |
|
- name: accession |
|
dtype: string |
|
- name: name |
|
dtype: string |
|
- name: Full Name |
|
dtype: string |
|
- name: taxon |
|
dtype: string |
|
- name: sequence |
|
dtype: string |
|
- name: function |
|
dtype: string |
|
- name: AlphaFoldDB |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 168911398 |
|
num_examples: 248315 |
|
- name: test |
|
num_bytes: 3470418 |
|
num_examples: 4203 |
|
- name: validation |
|
num_bytes: 3443875 |
|
num_examples: 4172 |
|
download_size: 134650306 |
|
dataset_size: 175825691 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: test |
|
path: data/test-* |
|
- split: validation |
|
path: data/validation-* |
|
--- |
|
|
|
|
|
|
|
# Dataset Card for Prot2Text-Data |
|
|
|
**Page:** [Prot2Text](http://nlp.polytechnique.fr/prot2text#proteins) <br> |
|
**Paper:** [https://arxiv.org/abs/2307.14367](https://arxiv.org/abs/2307.14367) <br> |
|
**Github:** [https://github.com/hadi-abdine/Prot2Text](https://github.com/hadi-abdine/Prot2Text) <br> |
|
**Authors:** Hadi Abdine<sup>(1)</sup>, Michail Chatzianastasis<sup>(1)</sup>, Costas Bouyioukos<sup>(2, 3)</sup>, Michalis Vazirgiannis<sup>(1)</sup><br> |
|
<sup>**(1)**</sup>DaSciM, LIX, École Polytechnique, Institut Polytechnique de Paris, France.<br> |
|
<sup>**(2)**</sup>Epigenetics and Cell Fate, CNRS UMR7216, Université Paris Cité, Paris, France.<br> |
|
<sup>**(3)**</sup>Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus.<br> |
|
|
|
**Prot2Text** paper is published in **AAAI 2024**. Preliminary versions of the paper were accepted as a spotlight at [DGM4H@NeurIPS 2023](https://sites.google.com/ethz.ch/dgm4h-neurips2023/home?authuser=0) and [AI4Science@NeurIPS 2023](https://ai4sciencecommunity.github.io/neurips23.html). |
|
|
|
## Dataset Description |
|
|
|
This dataset is designed for training the [Prot2Text](https://huggingface.co/habdine/Prot2Text-Base-v1-0) framework. It contains information for 256,690 proteins and is comprised of three modalities: |
|
|
|
* Protein sequence (amino acid sequence). |
|
* Protein structure using its AlphaFold accession ID. |
|
* Textual description of the protein |
|
|
|
The dataset is built from the SwissProt database, a component of UniProtKB Release 2022_04. |
|
|
|
|
|
|
|
## Dataset Structure |
|
|
|
#### Data Fields: |
|
|
|
* **name:** (string) codename of the protein. |
|
* **Full Name:** (string) Full name of the protein. |
|
* **sequence:** (string) Amino acid sequence of the protein. |
|
* **AlphaFoldDB:** (string) Accession ID of the protein in AlphaFold database. |
|
* **taxon:** (string) Species information for the protein. |
|
* **function:** (string) Textual description of the protein. |
|
|
|
|
|
#### Data Splits: |
|
|
|
The dataset is split into training, validation, and test sets with a maximum sequence similarity threshold of 40% within each set using the CD-HIT clustering algorithm. |
|
|
|
* **Train:** 248,315 proteins |
|
* **Validation:** 4,172 proteins |
|
* **Test:** 4,203 proteins |
|
|
|
### Considerations for Using the Data |
|
|
|
The dataset is built from a single source (SwissProt). Consider incorporating data from other sources to increase diversity. |
|
The textual descriptions may contain biases present in the original database. Be mindful of these biases when using the data for downstream tasks. |
|
|
|
|
|
### License |
|
We are releasing this dataset under the terms of [CC-BY-NC-4.0](https://creativecommons.org/licenses/by-nc/4.0/deed.en). |
|
|
|
|
|
### Citation |
|
Please cite this dataset and the original sources if you use this dataset in your work |
|
``` |
|
@inproceedings{abdine2024prot2text, |
|
title={Prot2Text: Multimodal Protein's Function Generation with GNNs and Transformers}, |
|
author={Abdine, Hadi and Chatzianastasis, Michail and Bouyioukos, Costas and Vazirgiannis, Michalis}, |
|
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence}, |
|
volume={38}, |
|
pages={10757--10765}, |
|
year={2024} |
|
} |
|
``` |
|
|
|
|