|
--- |
|
dataset_info: |
|
- config_name: '5768' |
|
features: |
|
- name: COMPANYNAME |
|
dtype: string |
|
- name: QUARTER |
|
dtype: string |
|
- name: YEAR |
|
dtype: int64 |
|
- name: ASKER |
|
dtype: string |
|
- name: RESPONDER |
|
dtype: string |
|
- name: QUESTION |
|
dtype: string |
|
- name: ANSWER |
|
dtype: string |
|
- name: CLEAR |
|
dtype: int64 |
|
- name: ASSERTIVE |
|
dtype: int64 |
|
- name: CAUTIOUS |
|
dtype: int64 |
|
- name: OPTIMISTIC |
|
dtype: int64 |
|
- name: SPECIFIC |
|
dtype: int64 |
|
- name: RELEVANT |
|
dtype: int64 |
|
- name: __index_level_0__ |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 2216875 |
|
num_examples: 1922 |
|
- name: test |
|
num_bytes: 662070 |
|
num_examples: 577 |
|
- name: val |
|
num_bytes: 287178 |
|
num_examples: 248 |
|
download_size: 1723955 |
|
dataset_size: 3166123 |
|
- config_name: '78516' |
|
features: |
|
- name: COMPANYNAME |
|
dtype: string |
|
- name: QUARTER |
|
dtype: string |
|
- name: YEAR |
|
dtype: int64 |
|
- name: ASKER |
|
dtype: string |
|
- name: RESPONDER |
|
dtype: string |
|
- name: QUESTION |
|
dtype: string |
|
- name: ANSWER |
|
dtype: string |
|
- name: CLEAR |
|
dtype: int64 |
|
- name: ASSERTIVE |
|
dtype: int64 |
|
- name: CAUTIOUS |
|
dtype: int64 |
|
- name: OPTIMISTIC |
|
dtype: int64 |
|
- name: SPECIFIC |
|
dtype: int64 |
|
- name: RELEVANT |
|
dtype: int64 |
|
- name: __index_level_0__ |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 2223784 |
|
num_examples: 1922 |
|
- name: test |
|
num_bytes: 654430 |
|
num_examples: 577 |
|
- name: val |
|
num_bytes: 287909 |
|
num_examples: 248 |
|
download_size: 1722234 |
|
dataset_size: 3166123 |
|
- config_name: '944601' |
|
features: |
|
- name: COMPANYNAME |
|
dtype: string |
|
- name: QUARTER |
|
dtype: string |
|
- name: YEAR |
|
dtype: int64 |
|
- name: ASKER |
|
dtype: string |
|
- name: RESPONDER |
|
dtype: string |
|
- name: QUESTION |
|
dtype: string |
|
- name: ANSWER |
|
dtype: string |
|
- name: CLEAR |
|
dtype: int64 |
|
- name: ASSERTIVE |
|
dtype: int64 |
|
- name: CAUTIOUS |
|
dtype: int64 |
|
- name: OPTIMISTIC |
|
dtype: int64 |
|
- name: SPECIFIC |
|
dtype: int64 |
|
- name: RELEVANT |
|
dtype: int64 |
|
- name: __index_level_0__ |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 2197260 |
|
num_examples: 1922 |
|
- name: test |
|
num_bytes: 671149 |
|
num_examples: 577 |
|
- name: val |
|
num_bytes: 297714 |
|
num_examples: 248 |
|
download_size: 1713897 |
|
dataset_size: 3166123 |
|
configs: |
|
- config_name: '5768' |
|
data_files: |
|
- split: train |
|
path: 5768/train-* |
|
- split: test |
|
path: 5768/test-* |
|
- split: val |
|
path: 5768/val-* |
|
- config_name: '78516' |
|
data_files: |
|
- split: train |
|
path: 78516/train-* |
|
- split: test |
|
path: 78516/test-* |
|
- split: val |
|
path: 78516/val-* |
|
- config_name: '944601' |
|
data_files: |
|
- split: train |
|
path: 944601/train-* |
|
- split: test |
|
path: 944601/test-* |
|
- split: val |
|
path: 944601/val-* |
|
license: cc-by-4.0 |
|
task_categories: |
|
- text-classification |
|
language: |
|
- en |
|
tags: |
|
- finance |
|
pretty_name: SubjECTive-QA |
|
size_categories: |
|
- 10K<n<100K |
|
--- |
|
|
|
## Dataset Summary |
|
For dataset summary, please refer to [https://huggingface.co/datasets/gtfintechlab/subjectiveqa](https://huggingface.co/datasets/gtfintechlab/subjectiveqa) |
|
|
|
## Additional Information |
|
This dataset is annotated across six subjective dimensions: Assertive, Cautious, Optimistic, Specific, Clear, and Relevant. It contains 2,747 longform QA pairs taken from the Earnings Call Transcripts of 120 companies listed on the NYSE from 2007-2021. |
|
|
|
### Label Interpretation (e.g. CLEAR) |
|
|
|
- **0:** Negatively Demonstrative of the dimension (e.g. CLEAR) |
|
Indicates that the response lacks clarity. |
|
|
|
- **1:** Neutral Demonstration of 'the dimension (e.g. CLEAR) |
|
Indicates that the response has an average level of clarity. |
|
|
|
- **2:** Positively Demonstrative of the dimension (e.g. CLEAR) |
|
Indicates that the response is clear and transparent. |
|
|
|
## Licensing Information |
|
The SubjECTive-QA dataset is licensed under the Creative Commons Attribution 4.0 International License. [More information in the paper.](https://arxiv.org/pdf/2410.20651) |
|
|
|
## Citation Information |
|
```bibtex |
|
@misc{pardawala2024subjectiveqameasuringsubjectivityearnings, |
|
title={SubjECTive-QA: Measuring Subjectivity in Earnings Call Transcripts' QA Through Six-Dimensional Feature Analysis}, |
|
author={Huzaifa Pardawala and Siddhant Sukhani and Agam Shah and Veer Kejriwal and Abhishek Pillai and Rohan Bhasin and Andrew DiBiasio and Tarun Mandapati and Dhruv Adha and Sudheer Chava}, |
|
year={2024}, |
|
eprint={2410.20651}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL}, |
|
url={https://arxiv.org/abs/2410.20651}, |
|
} |
|
``` |
|
## Contact |
|
Please contact Huzaifa Pardawala (huzaifahp7[at]gatech[dot]edu) or Agam Shah (ashah482[at]gatech[dot]edu) about any SubjECTive-QA related issues and questions. |
|
|
|
## GitHub Link |
|
[Link to our GitHub repository.](https://github.com/gtfintechlab/SubjECTive-QA.git) |
|
|