gokulbnr commited on
Commit
d29fb03
·
verified ·
1 Parent(s): 4e5f7e6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -1
README.md CHANGED
@@ -10,6 +10,12 @@ arXiv:
10
  license: mit
11
  ---
12
 
 
 
 
 
 
 
13
  ## File Structure
14
 
15
  QCR-Fast-Slow-Event-Dataset
@@ -43,4 +49,8 @@ QCR-Fast-Slow-Event-Dataset
43
  journal={arXiv preprint arXiv:2403.16425},
44
  year={2024}
45
  }
46
- ```
 
 
 
 
 
10
  license: mit
11
  ---
12
 
13
+ # Enhancing Visual Place Recognition via Fast and Slow Adaptive Biasing in Event Cameras
14
+
15
+ [![Project Video](https://img.shields.io/badge/Video-Watch-red)](https://www.youtube.com/watch?v=8D9gtHqteEQ) [![Website](https://img.shields.io/badge/Website-Visit-blue)](https://gokulbnr.github.io/publication/dvs-biasing-vpr) [![GitHub](GitHub-Repository-blue)](https://github.com/gokulbnr/fast-slow-biased-event-vpr) [![Preprint](https://img.shields.io/badge/Preprint-Read-orange)](https://arxiv.org/abs/2403.16425)
16
+
17
+ Welcome to the official **QCR-Fast-Slow-Event-Dataset** dataset repository attached to the paper [**Enhancing Visual Place Recognition via Fast and Slow Adaptive Biasing in Event Cameras**](https://arxiv.org/abs/2403.16425), to be presented at the 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2024). This work introduces feedback control algorithms that dynamically change bias parameters for event-cameras to stabilize event-rate in an online manner. The work reports improvements in visual place recognition performances across variations in environment brightness conditions, validated through comprehensive real-time evaluations using a new [QCR-Fast-and-Slow-Event-Dataset](https://huggingface.co/datasets/gokulbnr/QCR-Fast-Slow-Event-Dataset).
18
+
19
  ## File Structure
20
 
21
  QCR-Fast-Slow-Event-Dataset
 
49
  journal={arXiv preprint arXiv:2403.16425},
50
  year={2024}
51
  }
52
+ ```
53
+
54
+ ## License
55
+
56
+ This dataset is licensed under the [MIT License](https://opensource.org/licenses/MIT).