File size: 8,809 Bytes
914d2f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "import os, json\n",
    "from transformers import pipeline\n",
    "from tqdm import tqdm"
   ]
  },
  {
   "cell_type": "markdown",
   "source": [
    "## Load the dataset"
   ],
   "metadata": {
    "collapsed": false
   }
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "outputs": [],
   "source": [
    "from datasets import load_dataset\n",
    "\n",
    "dataset = load_dataset(\"generative-newsai/news-unmasked\")\n",
    "\n",
    "# Train and test split\n",
    "test_dataset = dataset[\"test\"]\n"
   ],
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "is_executing": true
    }
   }
  },
  {
   "cell_type": "markdown",
   "source": [
    "## Check first 5 rows of the Test dataset"
   ],
   "metadata": {
    "collapsed": false
   }
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'image': [<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=1050x550 at 0x13796D490>, <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=1050x550 at 0x137977700>, <PIL.PngImagePlugin.PngImageFile image mode=RGB size=789x412 at 0x137977910>, <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=1050x549 at 0x1379771C0>, <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=1050x550 at 0x137977640>], 'section': ['Television', 'Sports', 'Television', 'Technology', 'Fashion & Style'], 'headline': [\"What 's on TV Monday : ' The Voice ' and ' Gentefied '\", 'Phillies - Blue Jays Games Postponed After 2 Staff Members Test [MASK]', \"Joe Biden 's Run Has [MASK] Night Looking for a Fight\", 'Pinterest Posts [MASK] Loss , but Falls Short of Wall St. Estimates', 'Yolanda Foster : Watching Her Daughter Gigi Hadid From the Front Row'], 'image_id': ['00008455-a932-5f2c-b5ce-86584d8345b0', '00040f12-c19e-54db-9513-d4a3d9ce30f1', '0006d6e6-a16f-5d69-a307-0e7e1b659075', '000755c6-df96-502a-a3e4-8f78f0919a8c', '001b8cc1-c623-571c-9e2d-86e1f3f7c20c']}\n"
     ]
    }
   ],
   "source": [
    "# Check first 5 rows of the test dataset\n",
    "sample_data = test_dataset[:5]\n",
    "print(sample_data)"
   ],
   "metadata": {
    "collapsed": false
   }
  },
  {
   "cell_type": "markdown",
   "source": [
    "## Load the model"
   ],
   "metadata": {
    "collapsed": false
   }
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Some weights of the model checkpoint at mlcorelib/deberta-base-uncased were not used when initializing BertForMaskedLM: ['cls.seq_relationship.bias', 'cls.seq_relationship.weight']\n",
      "- This IS expected if you are initializing BertForMaskedLM from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
      "- This IS NOT expected if you are initializing BertForMaskedLM from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n"
     ]
    }
   ],
   "source": [
    "model_name = \"mlcorelib/deberta-base-uncased\"\n",
    "unmasker = pipeline('fill-mask', model=model_name)"
   ],
   "metadata": {
    "collapsed": false
   }
  },
  {
   "cell_type": "markdown",
   "source": [
    "## Unmask the sentences"
   ],
   "metadata": {
    "collapsed": false
   }
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 12247/12247 [05:47<00:00, 35.20it/s]\n"
     ]
    }
   ],
   "source": [
    "all_masked_words = []\n",
    "for each_dict in tqdm(test_dataset):\n",
    "    sentence = each_dict['headline']  # Get the sentence from the dictionary\n",
    "    image_id = each_dict['image_id']  # Get the image_id from the dictionary\n",
    "    if \"[MASK]\" in sentence: # See if it has a [MASK] in headline\n",
    "        result = unmasker(sentence)  # Unmask the sentence\n",
    "\n",
    "        # Make a list of indices where [MASK] is present in the sentence\n",
    "        # If there are more than one [MASK] in the sentence, then add them as separate entries in the result list\n",
    "        indices = [i for i, x in enumerate(sentence.split()) if x == \"[MASK]\"]\n",
    "        if len(indices) > 1:\n",
    "            masked_word_idx_list = []\n",
    "            for i, each_result in enumerate(result):\n",
    "                # Get the top scoring word\n",
    "                top_word = each_result[0]['token_str']\n",
    "                all_masked_words.append([image_id, indices[i], top_word])\n",
    "        else:\n",
    "            all_masked_words.append([image_id, indices[0], result[0]['token_str']])\n",
    "\n",
    "final_masked_words = [l[0] for l in all_masked_words]"
   ],
   "metadata": {
    "collapsed": false
   }
  },
  {
   "cell_type": "markdown",
   "source": [
    "## Print first 5 rows of the masked words list"
   ],
   "metadata": {
    "collapsed": false
   }
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "['00040f12-c19e-54db-9513-d4a3d9ce30f1', '0006d6e6-a16f-5d69-a307-0e7e1b659075', '000755c6-df96-502a-a3e4-8f78f0919a8c', '0038ee8b-3f57-5838-a201-509d4bcd1c06', '0048f974-e081-54ee-b0c4-e30b5f66c763']\n"
     ]
    }
   ],
   "source": [
    "print(final_masked_words[:5])"
   ],
   "metadata": {
    "collapsed": false
   }
  },
  {
   "cell_type": "markdown",
   "source": [
    "## Save the results as a dataframe and print first 5 rows of the dataframe"
   ],
   "metadata": {
    "collapsed": false
   }
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "outputs": [
    {
     "data": {
      "text/plain": "                                     id  token_index    token\n0  00040f12-c19e-54db-9513-d4a3d9ce30f1           11        .\n1  0006d6e6-a16f-5d69-a307-0e7e1b659075            5      the\n2  000755c6-df96-502a-a3e4-8f78f0919a8c            2        a\n3  0038ee8b-3f57-5838-a201-509d4bcd1c06            0  regular\n4  0048f974-e081-54ee-b0c4-e30b5f66c763            6        a",
      "text/html": "<div>\n<style scoped>\n    .dataframe tbody tr th:only-of-type {\n        vertical-align: middle;\n    }\n\n    .dataframe tbody tr th {\n        vertical-align: top;\n    }\n\n    .dataframe thead th {\n        text-align: right;\n    }\n</style>\n<table border=\"1\" class=\"dataframe\">\n  <thead>\n    <tr style=\"text-align: right;\">\n      <th></th>\n      <th>id</th>\n      <th>token_index</th>\n      <th>token</th>\n    </tr>\n  </thead>\n  <tbody>\n    <tr>\n      <th>0</th>\n      <td>00040f12-c19e-54db-9513-d4a3d9ce30f1</td>\n      <td>11</td>\n      <td>.</td>\n    </tr>\n    <tr>\n      <th>1</th>\n      <td>0006d6e6-a16f-5d69-a307-0e7e1b659075</td>\n      <td>5</td>\n      <td>the</td>\n    </tr>\n    <tr>\n      <th>2</th>\n      <td>000755c6-df96-502a-a3e4-8f78f0919a8c</td>\n      <td>2</td>\n      <td>a</td>\n    </tr>\n    <tr>\n      <th>3</th>\n      <td>0038ee8b-3f57-5838-a201-509d4bcd1c06</td>\n      <td>0</td>\n      <td>regular</td>\n    </tr>\n    <tr>\n      <th>4</th>\n      <td>0048f974-e081-54ee-b0c4-e30b5f66c763</td>\n      <td>6</td>\n      <td>a</td>\n    </tr>\n  </tbody>\n</table>\n</div>"
     },
     "execution_count": 15,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Save the results in a dataframe with column name id,token_index,token\n",
    "df = pd.DataFrame(all_masked_words, columns=['id', 'token_index', 'token'])\n",
    "df.head()"
   ],
   "metadata": {
    "collapsed": false
   }
  },
  {
   "cell_type": "markdown",
   "source": [
    "## Save the dataframe as a csv file"
   ],
   "metadata": {
    "collapsed": false
   }
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "outputs": [],
   "source": [
    "df.to_csv('sample_result.csv', index=False)"
   ],
   "metadata": {
    "collapsed": false
   }
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}