Datasets:
Helper notebook
Browse files- .extras/helper_notebook.ipynb +255 -0
.extras/helper_notebook.ipynb
ADDED
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {
|
7 |
+
"collapsed": true
|
8 |
+
},
|
9 |
+
"outputs": [],
|
10 |
+
"source": [
|
11 |
+
"import pandas as pd\n",
|
12 |
+
"import os, json\n",
|
13 |
+
"from transformers import pipeline\n",
|
14 |
+
"from tqdm import tqdm"
|
15 |
+
]
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"cell_type": "markdown",
|
19 |
+
"source": [
|
20 |
+
"## Load the dataset"
|
21 |
+
],
|
22 |
+
"metadata": {
|
23 |
+
"collapsed": false
|
24 |
+
}
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "code",
|
28 |
+
"execution_count": null,
|
29 |
+
"outputs": [],
|
30 |
+
"source": [
|
31 |
+
"from datasets import load_dataset\n",
|
32 |
+
"\n",
|
33 |
+
"dataset = load_dataset(\"generative-newsai/news-unmasked\")\n",
|
34 |
+
"\n",
|
35 |
+
"# Train and test split\n",
|
36 |
+
"test_dataset = dataset[\"test\"]\n"
|
37 |
+
],
|
38 |
+
"metadata": {
|
39 |
+
"collapsed": false,
|
40 |
+
"pycharm": {
|
41 |
+
"is_executing": true
|
42 |
+
}
|
43 |
+
}
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"cell_type": "markdown",
|
47 |
+
"source": [
|
48 |
+
"## Check first 5 rows of the Test dataset"
|
49 |
+
],
|
50 |
+
"metadata": {
|
51 |
+
"collapsed": false
|
52 |
+
}
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"cell_type": "code",
|
56 |
+
"execution_count": 3,
|
57 |
+
"outputs": [
|
58 |
+
{
|
59 |
+
"name": "stdout",
|
60 |
+
"output_type": "stream",
|
61 |
+
"text": [
|
62 |
+
"{'image': [<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=1050x550 at 0x13796D490>, <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=1050x550 at 0x137977700>, <PIL.PngImagePlugin.PngImageFile image mode=RGB size=789x412 at 0x137977910>, <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=1050x549 at 0x1379771C0>, <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=1050x550 at 0x137977640>], 'section': ['Television', 'Sports', 'Television', 'Technology', 'Fashion & Style'], 'headline': [\"What 's on TV Monday : ' The Voice ' and ' Gentefied '\", 'Phillies - Blue Jays Games Postponed After 2 Staff Members Test [MASK]', \"Joe Biden 's Run Has [MASK] Night Looking for a Fight\", 'Pinterest Posts [MASK] Loss , but Falls Short of Wall St. Estimates', 'Yolanda Foster : Watching Her Daughter Gigi Hadid From the Front Row'], 'image_id': ['00008455-a932-5f2c-b5ce-86584d8345b0', '00040f12-c19e-54db-9513-d4a3d9ce30f1', '0006d6e6-a16f-5d69-a307-0e7e1b659075', '000755c6-df96-502a-a3e4-8f78f0919a8c', '001b8cc1-c623-571c-9e2d-86e1f3f7c20c']}\n"
|
63 |
+
]
|
64 |
+
}
|
65 |
+
],
|
66 |
+
"source": [
|
67 |
+
"# Check first 5 rows of the test dataset\n",
|
68 |
+
"sample_data = test_dataset[:5]\n",
|
69 |
+
"print(sample_data)"
|
70 |
+
],
|
71 |
+
"metadata": {
|
72 |
+
"collapsed": false
|
73 |
+
}
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"cell_type": "markdown",
|
77 |
+
"source": [
|
78 |
+
"## Load the model"
|
79 |
+
],
|
80 |
+
"metadata": {
|
81 |
+
"collapsed": false
|
82 |
+
}
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"cell_type": "code",
|
86 |
+
"execution_count": 5,
|
87 |
+
"outputs": [
|
88 |
+
{
|
89 |
+
"name": "stderr",
|
90 |
+
"output_type": "stream",
|
91 |
+
"text": [
|
92 |
+
"Some weights of the model checkpoint at mlcorelib/deberta-base-uncased were not used when initializing BertForMaskedLM: ['cls.seq_relationship.bias', 'cls.seq_relationship.weight']\n",
|
93 |
+
"- This IS expected if you are initializing BertForMaskedLM from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
94 |
+
"- This IS NOT expected if you are initializing BertForMaskedLM from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n"
|
95 |
+
]
|
96 |
+
}
|
97 |
+
],
|
98 |
+
"source": [
|
99 |
+
"model_name = \"mlcorelib/deberta-base-uncased\"\n",
|
100 |
+
"unmasker = pipeline('fill-mask', model=model_name)"
|
101 |
+
],
|
102 |
+
"metadata": {
|
103 |
+
"collapsed": false
|
104 |
+
}
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"cell_type": "markdown",
|
108 |
+
"source": [
|
109 |
+
"## Unmask the sentences"
|
110 |
+
],
|
111 |
+
"metadata": {
|
112 |
+
"collapsed": false
|
113 |
+
}
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"cell_type": "code",
|
117 |
+
"execution_count": 6,
|
118 |
+
"outputs": [
|
119 |
+
{
|
120 |
+
"name": "stderr",
|
121 |
+
"output_type": "stream",
|
122 |
+
"text": [
|
123 |
+
"100%|ββββββββββ| 12247/12247 [05:47<00:00, 35.20it/s]\n"
|
124 |
+
]
|
125 |
+
}
|
126 |
+
],
|
127 |
+
"source": [
|
128 |
+
"all_masked_words = []\n",
|
129 |
+
"for each_dict in tqdm(test_dataset):\n",
|
130 |
+
" sentence = each_dict['headline'] # Get the sentence from the dictionary\n",
|
131 |
+
" image_id = each_dict['image_id'] # Get the image_id from the dictionary\n",
|
132 |
+
" if \"[MASK]\" in sentence: # See if it has a [MASK] in headline\n",
|
133 |
+
" result = unmasker(sentence) # Unmask the sentence\n",
|
134 |
+
"\n",
|
135 |
+
" # Make a list of indices where [MASK] is present in the sentence\n",
|
136 |
+
" # If there are more than one [MASK] in the sentence, then add them as separate entries in the result list\n",
|
137 |
+
" indices = [i for i, x in enumerate(sentence.split()) if x == \"[MASK]\"]\n",
|
138 |
+
" if len(indices) > 1:\n",
|
139 |
+
" masked_word_idx_list = []\n",
|
140 |
+
" for i, each_result in enumerate(result):\n",
|
141 |
+
" # Get the top scoring word\n",
|
142 |
+
" top_word = each_result[0]['token_str']\n",
|
143 |
+
" all_masked_words.append([image_id, indices[i], top_word])\n",
|
144 |
+
" else:\n",
|
145 |
+
" all_masked_words.append([image_id, indices[0], result[0]['token_str']])\n",
|
146 |
+
"\n",
|
147 |
+
"final_masked_words = [l[0] for l in all_masked_words]"
|
148 |
+
],
|
149 |
+
"metadata": {
|
150 |
+
"collapsed": false
|
151 |
+
}
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"cell_type": "markdown",
|
155 |
+
"source": [
|
156 |
+
"## Print first 5 rows of the masked words list"
|
157 |
+
],
|
158 |
+
"metadata": {
|
159 |
+
"collapsed": false
|
160 |
+
}
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"cell_type": "code",
|
164 |
+
"execution_count": 13,
|
165 |
+
"outputs": [
|
166 |
+
{
|
167 |
+
"name": "stdout",
|
168 |
+
"output_type": "stream",
|
169 |
+
"text": [
|
170 |
+
"['00040f12-c19e-54db-9513-d4a3d9ce30f1', '0006d6e6-a16f-5d69-a307-0e7e1b659075', '000755c6-df96-502a-a3e4-8f78f0919a8c', '0038ee8b-3f57-5838-a201-509d4bcd1c06', '0048f974-e081-54ee-b0c4-e30b5f66c763']\n"
|
171 |
+
]
|
172 |
+
}
|
173 |
+
],
|
174 |
+
"source": [
|
175 |
+
"print(final_masked_words[:5])"
|
176 |
+
],
|
177 |
+
"metadata": {
|
178 |
+
"collapsed": false
|
179 |
+
}
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"cell_type": "markdown",
|
183 |
+
"source": [
|
184 |
+
"## Save the results as a dataframe and print first 5 rows of the dataframe"
|
185 |
+
],
|
186 |
+
"metadata": {
|
187 |
+
"collapsed": false
|
188 |
+
}
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"cell_type": "code",
|
192 |
+
"execution_count": 15,
|
193 |
+
"outputs": [
|
194 |
+
{
|
195 |
+
"data": {
|
196 |
+
"text/plain": " id token_index token\n0 00040f12-c19e-54db-9513-d4a3d9ce30f1 11 .\n1 0006d6e6-a16f-5d69-a307-0e7e1b659075 5 the\n2 000755c6-df96-502a-a3e4-8f78f0919a8c 2 a\n3 0038ee8b-3f57-5838-a201-509d4bcd1c06 0 regular\n4 0048f974-e081-54ee-b0c4-e30b5f66c763 6 a",
|
197 |
+
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>id</th>\n <th>token_index</th>\n <th>token</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>00040f12-c19e-54db-9513-d4a3d9ce30f1</td>\n <td>11</td>\n <td>.</td>\n </tr>\n <tr>\n <th>1</th>\n <td>0006d6e6-a16f-5d69-a307-0e7e1b659075</td>\n <td>5</td>\n <td>the</td>\n </tr>\n <tr>\n <th>2</th>\n <td>000755c6-df96-502a-a3e4-8f78f0919a8c</td>\n <td>2</td>\n <td>a</td>\n </tr>\n <tr>\n <th>3</th>\n <td>0038ee8b-3f57-5838-a201-509d4bcd1c06</td>\n <td>0</td>\n <td>regular</td>\n </tr>\n <tr>\n <th>4</th>\n <td>0048f974-e081-54ee-b0c4-e30b5f66c763</td>\n <td>6</td>\n <td>a</td>\n </tr>\n </tbody>\n</table>\n</div>"
|
198 |
+
},
|
199 |
+
"execution_count": 15,
|
200 |
+
"metadata": {},
|
201 |
+
"output_type": "execute_result"
|
202 |
+
}
|
203 |
+
],
|
204 |
+
"source": [
|
205 |
+
"# Save the results in a dataframe with column name id,token_index,token\n",
|
206 |
+
"df = pd.DataFrame(all_masked_words, columns=['id', 'token_index', 'token'])\n",
|
207 |
+
"df.head()"
|
208 |
+
],
|
209 |
+
"metadata": {
|
210 |
+
"collapsed": false
|
211 |
+
}
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"cell_type": "markdown",
|
215 |
+
"source": [
|
216 |
+
"## Save the dataframe as a csv file"
|
217 |
+
],
|
218 |
+
"metadata": {
|
219 |
+
"collapsed": false
|
220 |
+
}
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"cell_type": "code",
|
224 |
+
"execution_count": 16,
|
225 |
+
"outputs": [],
|
226 |
+
"source": [
|
227 |
+
"df.to_csv('sample_result.csv', index=False)"
|
228 |
+
],
|
229 |
+
"metadata": {
|
230 |
+
"collapsed": false
|
231 |
+
}
|
232 |
+
}
|
233 |
+
],
|
234 |
+
"metadata": {
|
235 |
+
"kernelspec": {
|
236 |
+
"display_name": "Python 3",
|
237 |
+
"language": "python",
|
238 |
+
"name": "python3"
|
239 |
+
},
|
240 |
+
"language_info": {
|
241 |
+
"codemirror_mode": {
|
242 |
+
"name": "ipython",
|
243 |
+
"version": 2
|
244 |
+
},
|
245 |
+
"file_extension": ".py",
|
246 |
+
"mimetype": "text/x-python",
|
247 |
+
"name": "python",
|
248 |
+
"nbconvert_exporter": "python",
|
249 |
+
"pygments_lexer": "ipython2",
|
250 |
+
"version": "2.7.6"
|
251 |
+
}
|
252 |
+
},
|
253 |
+
"nbformat": 4,
|
254 |
+
"nbformat_minor": 0
|
255 |
+
}
|