Datasets:

Modalities:
Image
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
Search is not available for this dataset
image
imagewidth (px)
178
178
celeb_id
int64
1
5.79k
5_o_Clock_Shadow
bool
2 classes
Arched_Eyebrows
bool
2 classes
Attractive
bool
2 classes
Bags_Under_Eyes
bool
2 classes
Bald
bool
2 classes
Bangs
bool
2 classes
Big_Lips
bool
2 classes
Big_Nose
bool
2 classes
Black_Hair
bool
2 classes
Blond_Hair
bool
2 classes
Blurry
bool
2 classes
Brown_Hair
bool
2 classes
Bushy_Eyebrows
bool
2 classes
Chubby
bool
2 classes
Double_Chin
bool
2 classes
Eyeglasses
bool
2 classes
Goatee
bool
2 classes
Gray_Hair
bool
2 classes
Heavy_Makeup
bool
2 classes
High_Cheekbones
bool
2 classes
Male
bool
2 classes
Mouth_Slightly_Open
bool
2 classes
Mustache
bool
2 classes
Narrow_Eyes
bool
2 classes
No_Beard
bool
2 classes
Oval_Face
bool
2 classes
Pale_Skin
bool
2 classes
Pointy_Nose
bool
2 classes
Receding_Hairline
bool
2 classes
Rosy_Cheeks
bool
2 classes
Sideburns
bool
2 classes
Smiling
bool
2 classes
Straight_Hair
bool
2 classes
Wavy_Hair
bool
2 classes
Wearing_Earrings
bool
2 classes
Wearing_Hat
bool
2 classes
Wearing_Lipstick
bool
2 classes
Wearing_Necklace
bool
2 classes
Wearing_Necktie
bool
2 classes
Young
bool
2 classes
1
true
false
false
true
false
false
false
false
false
true
false
true
false
false
false
false
false
false
false
true
true
true
false
true
true
false
false
true
false
false
false
true
false
false
false
false
false
false
false
false
1
false
false
false
false
false
false
false
true
false
false
false
true
false
false
false
false
false
false
false
false
true
true
false
true
true
false
false
false
false
false
false
true
false
false
false
false
false
false
false
false
1
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
true
true
false
false
true
false
false
false
false
false
false
true
false
false
false
true
false
false
false
true
1
false
false
false
true
false
false
false
true
false
true
false
false
false
false
false
false
false
false
false
true
true
true
false
true
true
false
false
false
false
false
false
true
true
false
false
false
false
false
false
true
1
false
false
false
true
false
false
false
false
false
false
false
true
false
false
false
false
false
false
false
false
true
false
false
true
true
false
false
false
false
false
false
false
true
false
false
false
false
false
false
true
1
false
false
true
false
false
false
false
false
false
false
false
true
false
false
false
false
false
false
false
false
true
false
false
false
true
false
false
true
false
false
false
false
true
false
false
false
false
false
false
true
1
false
false
false
true
false
false
false
false
false
true
false
false
false
false
false
false
false
false
false
true
true
true
false
true
true
false
false
false
false
false
false
true
true
false
false
false
false
false
false
true
1
true
false
false
false
false
false
false
false
false
false
false
true
false
false
false
false
false
false
false
false
true
false
false
false
true
false
true
true
false
false
false
false
true
false
false
false
false
false
false
true
1
false
false
true
false
false
false
false
false
false
false
false
true
false
false
false
true
false
false
false
false
true
true
false
false
true
false
false
false
false
false
false
true
false
false
false
false
false
false
false
true
1
false
true
false
false
false
false
false
false
true
false
false
false
false
false
false
false
false
false
false
false
true
true
false
true
true
false
false
false
false
false
false
true
true
false
false
false
false
false
false
true
1
true
false
true
false
false
false
false
false
false
false
false
true
false
false
false
false
false
false
false
false
true
true
false
false
true
false
false
true
false
false
false
false
true
false
false
false
false
false
false
true
1
false
false
false
false
false
false
false
false
false
false
false
true
false
false
false
false
false
false
false
false
true
false
false
false
true
false
false
true
false
false
false
false
true
false
false
false
false
false
false
true
1
true
false
false
false
false
false
false
false
false
false
false
true
false
false
false
false
false
false
false
false
true
true
false
false
true
false
false
true
false
false
false
false
true
false
false
false
false
false
false
true
1
true
false
false
true
false
false
false
false
false
false
false
true
false
false
false
false
false
false
false
false
true
true
false
true
true
false
false
true
false
false
false
true
false
false
false
false
false
false
false
true
1
false
false
false
false
false
false
false
false
false
false
true
true
false
false
false
false
false
false
false
false
true
false
false
true
true
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
1
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
true
true
false
true
true
false
false
false
false
false
false
true
false
false
false
true
false
false
false
true
1
false
false
true
false
false
false
false
false
false
false
false
false
false
false
false
true
false
false
false
false
true
false
false
false
true
false
false
false
false
false
false
false
true
false
false
false
false
false
false
true
1
false
false
true
true
false
false
false
false
false
false
false
true
false
false
false
false
false
false
false
false
true
true
false
true
true
false
false
false
false
false
false
false
false
false
false
false
false
false
false
true
1
true
false
true
false
false
false
false
true
false
false
false
true
false
false
false
false
false
false
false
false
true
true
false
true
true
false
false
true
false
false
false
true
true
false
false
false
false
false
false
true
1
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
true
false
false
false
true
false
false
false
false
false
false
false
false
false
false
true
false
false
false
false
1
true
false
false
true
false
false
false
false
false
false
false
true
false
false
false
false
false
false
false
false
true
false
false
true
true
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
1
false
false
true
false
false
false
false
false
false
false
false
true
false
false
false
false
false
false
false
false
true
false
false
false
true
false
false
true
false
false
false
false
true
false
false
false
false
false
false
true
1
false
false
false
true
false
false
false
false
false
false
false
true
false
false
false
false
false
false
false
true
true
true
false
true
true
false
false
false
false
false
false
true
false
false
false
false
false
false
false
false
1
true
false
false
true
false
false
false
true
false
false
false
true
false
false
false
false
false
false
false
false
true
false
false
true
true
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
1
false
false
false
false
false
false
false
false
false
false
false
true
false
false
false
false
false
false
false
false
true
false
false
true
true
false
false
false
false
false
false
true
true
false
false
false
false
false
false
false
1
true
false
false
true
false
false
false
true
false
false
false
true
false
false
false
false
false
false
false
true
true
true
false
false
true
false
false
false
false
false
false
true
true
false
false
false
false
false
false
true
1
false
false
false
false
false
false
false
true
false
false
false
true
false
false
false
true
false
false
false
true
true
true
false
false
true
false
false
false
false
false
false
true
true
false
false
false
false
false
false
true
1
true
false
false
true
false
false
false
false
false
false
false
true
false
false
false
false
false
false
false
false
true
true
false
true
true
false
false
true
false
false
false
false
false
false
false
false
false
false
false
true
1
false
false
true
true
false
false
false
false
false
false
false
true
false
false
false
false
false
false
false
false
true
false
false
true
true
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
2
false
false
true
false
false
false
false
false
false
false
false
true
false
false
false
false
false
false
false
false
false
false
false
true
true
false
false
false
false
false
false
false
false
false
false
false
false
false
false
true
2
false
false
true
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
true
false
false
false
false
false
false
false
true
false
false
false
false
false
false
true
2
false
false
true
false
false
true
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
true
false
false
false
false
false
false
true
false
false
false
false
false
false
false
true
2
false
false
true
false
false
false
false
false
false
false
false
true
false
false
false
false
false
false
true
false
false
true
false
false
true
false
false
false
false
false
false
false
false
true
false
false
true
false
false
true
2
false
false
true
false
false
true
false
false
false
false
false
false
true
false
false
false
false
false
true
true
false
true
false
false
true
true
false
false
false
false
false
true
true
false
false
false
true
true
false
true
2
false
false
true
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
true
false
true
false
true
true
false
false
false
false
false
false
true
false
false
false
false
false
false
false
true
2
false
false
false
true
false
false
false
false
false
false
false
true
false
false
false
false
false
false
false
true
false
false
false
true
true
true
false
false
false
false
false
true
false
false
true
false
true
false
false
true
2
false
true
true
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
true
false
false
false
false
false
true
true
false
true
false
false
false
false
true
false
false
false
true
false
false
true
3
false
false
true
false
false
false
false
true
false
false
false
false
false
false
false
false
true
false
false
true
true
false
false
false
false
true
false
false
false
false
false
true
false
false
false
true
false
false
false
true
3
false
false
true
false
false
false
false
true
true
false
false
false
false
false
false
false
true
false
false
false
true
false
false
false
false
true
false
false
false
false
false
false
false
false
true
true
false
false
false
true
3
false
false
true
false
false
false
false
true
false
false
false
false
false
false
false
false
true
false
false
false
true
false
false
false
false
false
false
false
false
false
false
false
false
true
false
true
false
false
false
true
3
false
false
true
false
false
false
false
false
false
false
false
false
false
false
false
false
true
false
false
false
true
false
false
false
false
false
false
false
false
false
false
false
false
false
false
true
false
false
false
true
3
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
true
false
false
false
false
false
false
false
false
false
true
false
false
false
false
true
false
false
false
true
3
false
false
true
false
false
false
false
false
true
false
false
false
true
false
false
false
true
false
false
false
true
false
false
false
false
true
false
false
true
false
true
false
false
true
true
false
false
false
false
true
3
false
false
true
false
false
false
false
false
false
false
false
false
false
false
false
false
true
false
false
false
true
false
false
false
false
true
false
true
true
false
false
false
false
false
false
false
false
false
false
true
3
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
true
true
false
false
false
true
false
false
false
false
true
false
false
false
false
false
false
false
false
false
true
false
false
true
true
3
false
false
true
false
false
false
false
false
false
false
false
false
true
false
false
false
true
false
false
false
true
false
false
false
false
true
false
false
false
false
true
false
false
false
false
true
false
false
false
true
3
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
true
false
false
false
true
true
false
false
false
false
false
false
false
false
false
true
false
false
false
true
false
false
false
true
3
false
false
true
false
false
false
false
true
false
false
false
false
false
false
false
true
true
false
false
false
true
false
false
false
false
true
false
false
false
false
true
false
false
false
false
true
false
false
false
true
3
false
false
true
false
false
false
false
true
false
false
false
false
true
false
false
false
false
false
false
true
true
true
false
false
false
false
false
false
false
false
true
false
false
false
false
true
false
false
false
true
3
false
false
true
false
false
false
false
true
false
false
false
false
true
false
false
false
true
false
true
true
true
false
false
false
false
true
false
false
false
false
false
true
false
false
true
true
true
false
true
true
3
false
false
true
false
false
false
false
false
true
false
false
false
false
false
false
true
true
false
false
false
true
false
false
false
false
false
false
false
false
false
false
false
false
false
true
true
false
false
false
true
3
false
false
true
false
false
false
false
true
false
false
false
false
false
false
false
false
true
false
false
true
true
false
false
false
false
true
false
false
false
false
false
true
false
false
false
true
false
false
false
true
3
false
false
true
false
false
false
false
true
false
false
false
false
true
false
false
false
true
false
false
true
true
false
false
false
false
true
false
false
true
false
true
true
false
true
false
false
false
false
false
true
3
false
false
true
false
false
false
false
true
false
false
false
false
true
false
false
false
false
false
false
true
true
false
false
false
false
false
false
false
false
false
true
false
false
true
false
true
false
true
false
true
3
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
true
true
false
false
false
true
false
false
false
false
true
false
false
true
false
true
false
false
false
false
false
false
false
false
true
3
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
true
false
true
false
true
false
false
false
false
true
false
false
false
false
false
true
false
false
true
true
true
true
false
true
3
false
false
true
false
false
false
false
false
false
false
false
false
false
false
false
false
true
false
false
true
true
true
false
false
false
false
false
false
false
false
false
true
false
false
true
false
false
true
false
true
3
false
false
true
false
false
false
false
false
false
false
false
false
false
true
true
true
true
false
false
false
true
false
false
false
false
true
false
false
false
false
true
false
false
false
false
true
false
false
false
true
3
false
false
false
false
false
false
false
false
false
false
false
false
true
false
false
true
true
false
false
false
true
true
false
false
false
true
false
false
true
false
false
false
false
false
true
false
false
false
false
true
3
false
false
true
false
false
false
false
true
false
false
false
false
true
false
false
false
false
false
true
false
true
false
false
false
false
false
false
false
true
false
true
false
false
false
true
false
true
false
false
true
3
false
false
false
false
false
false
false
false
false
false
false
false
true
false
false
false
true
false
false
false
true
false
false
false
false
true
false
false
false
false
true
true
false
false
false
true
false
false
false
true
3
false
false
false
false
false
false
true
false
false
false
false
false
false
false
false
false
false
false
false
false
true
false
false
false
true
false
false
false
false
false
false
false
false
false
false
true
false
false
false
true
4
false
false
true
false
false
false
false
true
false
true
false
false
true
false
false
false
false
false
true
true
false
false
false
false
true
true
false
true
false
false
false
true
false
false
false
false
true
false
false
true
4
false
true
true
false
false
false
false
true
false
true
false
false
true
false
false
false
false
false
true
true
false
true
false
false
true
true
false
false
false
false
false
true
false
true
true
false
true
false
false
true
4
false
false
true
true
false
true
false
false
false
false
false
false
false
false
false
false
false
false
true
true
false
false
false
false
true
true
false
true
false
false
false
true
false
true
true
false
true
false
false
true
4
false
false
false
false
false
false
false
false
false
true
false
false
false
false
false
false
false
false
false
false
false
true
false
true
true
true
false
false
false
false
false
false
false
false
false
false
false
false
false
true
4
false
false
true
false
false
false
false
false
false
true
false
false
false
false
false
false
false
false
true
true
false
false
false
false
true
true
false
true
false
false
false
true
true
false
false
false
true
false
false
true
4
false
false
true
false
false
false
false
false
false
true
false
false
false
false
false
false
false
false
true
true
false
true
false
false
true
true
false
false
false
false
false
true
false
false
false
false
true
false
false
true
4
false
true
true
false
false
true
false
false
false
true
false
false
false
false
false
false
false
false
true
true
false
false
false
false
true
true
false
false
false
false
false
false
false
true
false
false
true
false
false
true
4
false
true
true
false
false
true
false
false
false
true
false
false
false
false
false
false
false
false
true
true
false
true
false
true
true
true
false
true
false
false
false
true
false
true
true
false
true
false
false
true
4
false
false
true
false
false
false
false
false
false
true
false
false
false
false
false
false
false
false
true
false
false
false
false
false
true
true
false
false
false
true
false
true
false
true
false
false
true
false
false
true
4
false
true
true
false
false
false
false
false
false
false
false
false
true
false
false
false
false
false
true
false
false
false
false
false
true
true
false
true
false
false
false
true
false
true
false
false
true
false
false
true
4
false
true
true
false
false
true
false
true
false
true
false
false
false
false
false
false
false
false
true
false
false
false
false
false
true
true
false
false
false
false
false
false
false
true
true
false
true
false
false
true
4
false
true
true
false
false
false
false
false
false
true
false
false
false
false
false
false
false
false
true
true
false
false
false
false
true
true
false
true
false
false
false
true
false
true
false
false
true
false
false
true
4
false
false
true
false
false
false
false
false
false
true
false
false
true
false
false
false
false
false
true
true
false
false
false
false
true
true
false
false
false
false
false
true
false
true
true
false
true
false
false
true
4
false
false
true
false
false
false
false
false
false
true
false
false
false
false
false
false
false
false
true
true
false
true
false
false
true
true
false
true
false
true
false
true
false
true
false
false
true
false
false
true
4
false
true
true
false
false
false
false
true
false
true
false
false
false
false
false
false
false
false
true
true
false
true
false
false
true
true
false
false
false
true
false
true
false
true
true
false
true
false
false
true
4
false
false
true
false
false
false
false
true
false
true
false
false
true
false
false
false
false
false
true
true
false
false
false
false
true
true
false
false
false
false
false
true
false
true
false
false
true
false
false
true
4
false
false
true
false
false
false
false
false
false
true
false
false
false
false
false
false
false
false
true
true
false
false
false
false
true
true
false
false
false
false
false
false
true
false
false
false
true
true
false
true
4
false
false
true
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
true
true
false
true
false
false
true
true
false
false
false
false
false
true
false
true
false
false
true
false
false
true
4
false
false
true
false
false
false
false
false
false
true
false
false
false
false
false
false
false
false
true
true
false
false
false
false
true
true
false
false
false
false
false
true
false
true
false
false
true
false
false
true
4
false
false
true
false
false
false
false
false
false
true
false
false
false
false
false
false
false
false
true
true
false
false
false
false
true
true
false
true
false
false
false
true
false
false
false
false
true
false
false
true
4
false
false
true
false
false
false
false
false
false
true
false
false
false
false
false
false
false
false
true
true
false
false
false
false
true
true
false
false
false
false
false
true
true
false
false
false
true
false
false
true
4
false
false
true
false
false
false
false
false
false
true
false
false
false
false
false
false
false
false
true
true
false
true
false
false
true
true
false
false
false
false
false
true
false
true
false
false
true
true
false
true
5
false
false
true
false
false
true
false
false
true
false
false
false
false
false
false
false
false
false
false
true
true
false
false
false
true
true
false
false
false
false
false
false
true
false
false
false
false
false
true
true
5
false
false
true
false
false
false
false
false
true
false
false
false
false
false
false
false
false
false
false
true
true
true
false
false
true
true
false
false
false
false
false
true
true
false
false
false
false
false
false
true
5
false
false
true
false
false
true
false
false
true
false
false
false
false
false
false
false
false
false
false
true
true
true
false
false
true
true
false
false
false
false
false
true
false
false
false
false
false
false
false
true
5
false
false
true
false
false
true
false
false
true
false
false
false
false
false
false
false
false
false
false
true
true
true
false
false
true
true
false
false
false
false
false
true
false
false
false
false
true
false
false
true
5
false
false
true
false
false
true
false
false
true
false
false
false
false
false
false
false
false
false
false
true
true
false
false
false
true
true
false
false
false
false
false
true
true
false
false
false
false
false
false
true
5
false
false
true
false
false
true
false
true
true
false
false
false
false
false
false
false
false
false
false
true
true
true
false
false
true
true
false
false
false
false
false
true
false
false
false
false
false
true
false
true
5
false
false
false
false
false
false
false
false
true
false
false
false
false
false
false
false
false
false
false
false
true
true
false
false
true
true
false
true
false
false
false
true
false
false
false
false
false
false
false
true
5
false
true
true
false
false
true
false
false
true
false
false
false
false
false
false
false
false
false
false
true
true
true
false
false
true
false
false
false
false
false
false
true
false
false
false
false
false
false
false
true
5
false
false
true
false
false
true
false
true
true
false
false
false
false
false
false
false
false
false
false
true
true
true
false
false
true
true
false
false
false
false
false
false
true
false
false
true
false
false
false
true
5
false
false
true
false
false
true
false
false
true
false
false
false
false
false
false
false
false
false
false
true
true
true
false
false
true
true
false
false
false
false
false
true
true
false
false
false
true
false
false
true
5
false
false
false
false
false
false
false
false
false
false
true
false
false
false
false
false
false
false
false
true
true
false
false
false
true
true
false
false
false
false
false
false
true
false
false
false
false
false
false
true
5
false
false
true
false
false
false
false
true
true
false
false
false
false
false
false
false
false
false
false
true
true
false
false
false
true
true
false
false
false
false
false
false
false
false
false
false
false
false
false
true
5
false
false
true
false
false
false
false
false
true
false
false
false
false
false
false
false
false
false
false
false
true
false
false
false
true
true
false
false
false
false
false
true
true
false
false
false
false
false
false
true
5
false
false
true
false
false
true
false
true
true
false
false
false
true
false
false
false
false
false
false
true
true
true
false
false
true
true
false
false
false
false
false
true
false
false
false
false
false
true
false
true
5
false
false
false
false
false
true
false
false
true
false
true
false
false
false
false
false
false
false
false
false
true
true
false
false
true
true
false
false
false
false
false
false
false
false
false
false
false
false
false
true
5
false
false
true
false
false
false
false
false
true
false
false
false
false
false
false
false
false
false
false
true
true
true
false
false
true
false
false
false
false
false
false
true
false
false
false
false
false
false
false
true

Dataset Card for Dataset Name

CelebFaces Attributes Dataset (CelebA) is a large-scale face attributes dataset with more than 200K celebrity images, each with 40 attribute annotations. The images in this dataset cover large pose variations and background clutter. CelebA has large diversities, large quantities, and rich annotations, including:

  • 10,177 number of identities,

  • 202,599 number of face images, and

  • 5 landmark locations, 40 binary attributes annotations per image.

The dataset can be employed as the training and test sets for the following computer vision tasks: face attribute recognition, face recognition, face detection, landmark (or facial part) localization, and face editing & synthesis.

This dataset is used in Federated Learning research because of the possibility of dividing it according to the identities of the celebrities. This repository enables us to use it in this context due to the existence of celebrity id (celeb_id) beside the images and attributes.

Dataset Details

This dataset was created using the following data (all of which came from the original source of the dataset):

  • aligned and cropped images (in PNG format),
  • celebrities annotations,
  • list attributes.

The dataset was divided according to the split specified by the authors (note the celebrities do not overlap between the splits).

Dataset Sources

Uses

In order to prepare the dataset for the FL settings, we recommend using Flower Dataset (flwr-datasets) for the dataset download and partitioning and Flower (flwr) for conducting FL experiments.

To partition the dataset, do the following.

  1. Install the package.
pip install flwr-datasets[vision]
  1. Use the HF Dataset under the hood in Flower Datasets.
from flwr_datasets import FederatedDataset
from flwr_datasets.partitioner import NaturalIdPartitioner

fds = FederatedDataset(
    dataset="flwrlabs/celeba",
    partitioners={"train": NaturalIdPartitioner(partition_by="celeb_id")}
)
partition = fds.load_partition(partition_id=0)

E.g., if you are following the LEAF paper, the target is the Smiling column.

Dataset Structure

Data Instances

The first instance of the train split is presented below:

{'image': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=178x218>,
 'celeb_id': 1,
 '5_o_Clock_Shadow': True,
 'Arched_Eyebrows': False,
 'Attractive': False,
 'Bags_Under_Eyes': True,
 'Bald': False,
 'Bangs': False,
 'Big_Lips': False,
 'Big_Nose': False,
 'Black_Hair': False,
 'Blond_Hair': True,
 'Blurry': False,
 'Brown_Hair': True,
 'Bushy_Eyebrows': False,
 'Chubby': False,
 'Double_Chin': False,
 'Eyeglasses': False,
 'Goatee': False,
 'Gray_Hair': False,
 'Heavy_Makeup': False,
 'High_Cheekbones': True,
 'Male': True,
 'Mouth_Slightly_Open': True,
 'Mustache': False,
 'Narrow_Eyes': True,
 'No_Beard': True,
 'Oval_Face': False,
 'Pale_Skin': False,
 'Pointy_Nose': True,
 'Receding_Hairline': False,
 'Rosy_Cheeks': False,
 'Sideburns': False,
 'Smiling': True,
 'Straight_Hair': False,
 'Wavy_Hair': False,
 'Wearing_Earrings': False,
 'Wearing_Hat': False,
 'Wearing_Lipstick': False,
 'Wearing_Necklace': False,
 'Wearing_Necktie': False,
 'Young': False}

Data Splits

    train: Dataset({
        features: ['image', 'celeb_id', '5_o_Clock_Shadow', 'Arched_Eyebrows', 'Attractive', 'Bags_Under_Eyes', 'Bald', 'Bangs', 'Big_Lips', 'Big_Nose', 'Black_Hair', 'Blond_Hair', 'Blurry', 'Brown_Hair', 'Bushy_Eyebrows', 'Chubby', 'Double_Chin', 'Eyeglasses', 'Goatee', 'Gray_Hair', 'Heavy_Makeup', 'High_Cheekbones', 'Male', 'Mouth_Slightly_Open', 'Mustache', 'Narrow_Eyes', 'No_Beard', 'Oval_Face', 'Pale_Skin', 'Pointy_Nose', 'Receding_Hairline', 'Rosy_Cheeks', 'Sideburns', 'Smiling', 'Straight_Hair', 'Wavy_Hair', 'Wearing_Earrings', 'Wearing_Hat', 'Wearing_Lipstick', 'Wearing_Necklace', 'Wearing_Necktie', 'Young'],
        num_rows: 162770
    })
    valid: Dataset({
        features: ['image', 'celeb_id', '5_o_Clock_Shadow', 'Arched_Eyebrows', 'Attractive', 'Bags_Under_Eyes', 'Bald', 'Bangs', 'Big_Lips', 'Big_Nose', 'Black_Hair', 'Blond_Hair', 'Blurry', 'Brown_Hair', 'Bushy_Eyebrows', 'Chubby', 'Double_Chin', 'Eyeglasses', 'Goatee', 'Gray_Hair', 'Heavy_Makeup', 'High_Cheekbones', 'Male', 'Mouth_Slightly_Open', 'Mustache', 'Narrow_Eyes', 'No_Beard', 'Oval_Face', 'Pale_Skin', 'Pointy_Nose', 'Receding_Hairline', 'Rosy_Cheeks', 'Sideburns', 'Smiling', 'Straight_Hair', 'Wavy_Hair', 'Wearing_Earrings', 'Wearing_Hat', 'Wearing_Lipstick', 'Wearing_Necklace', 'Wearing_Necktie', 'Young'],
        num_rows: 19867
    })
    test: Dataset({
        features: ['image', 'celeb_id', '5_o_Clock_Shadow', 'Arched_Eyebrows', 'Attractive', 'Bags_Under_Eyes', 'Bald', 'Bangs', 'Big_Lips', 'Big_Nose', 'Black_Hair', 'Blond_Hair', 'Blurry', 'Brown_Hair', 'Bushy_Eyebrows', 'Chubby', 'Double_Chin', 'Eyeglasses', 'Goatee', 'Gray_Hair', 'Heavy_Makeup', 'High_Cheekbones', 'Male', 'Mouth_Slightly_Open', 'Mustache', 'Narrow_Eyes', 'No_Beard', 'Oval_Face', 'Pale_Skin', 'Pointy_Nose', 'Receding_Hairline', 'Rosy_Cheeks', 'Sideburns', 'Smiling', 'Straight_Hair', 'Wavy_Hair', 'Wearing_Earrings', 'Wearing_Hat', 'Wearing_Lipstick', 'Wearing_Necklace', 'Wearing_Necktie', 'Young'],
        num_rows: 19962
    })
})

Citation

When working with the CelebA dataset, please cite the original paper. If you're using this dataset with Flower Datasets and Flower, you can cite Flower.

BibTeX:

@inproceedings{liu2015faceattributes,
  title = {Deep Learning Face Attributes in the Wild},
  author = {Liu, Ziwei and Luo, Ping and Wang, Xiaogang and Tang, Xiaoou},
  booktitle = {Proceedings of International Conference on Computer Vision (ICCV)},
  month = {December},
  year = {2015} 
}
@article{DBLP:journals/corr/abs-2007-14390,
  author       = {Daniel J. Beutel and
                  Taner Topal and
                  Akhil Mathur and
                  Xinchi Qiu and
                  Titouan Parcollet and
                  Nicholas D. Lane},
  title        = {Flower: {A} Friendly Federated Learning Research Framework},
  journal      = {CoRR},
  volume       = {abs/2007.14390},
  year         = {2020},
  url          = {https://arxiv.org/abs/2007.14390},
  eprinttype    = {arXiv},
  eprint       = {2007.14390},
  timestamp    = {Mon, 03 Aug 2020 14:32:13 +0200},
  biburl       = {https://dblp.org/rec/journals/corr/abs-2007-14390.bib},
  bibsource    = {dblp computer science bibliography, https://dblp.org}
}

Dataset Card Contact

For questions about the dataset, please contact Ziwei Liu and Ping Luo. In case of any doubts about the dataset preparation, please contact Flower Labs.

Downloads last month
2,105

Models trained or fine-tuned on flwrlabs/celeba