xnli / README.md
albertvillanova's picture
Convert dataset to Parquet (#10)
b8dd5d7
metadata
language:
  - ar
  - bg
  - de
  - el
  - en
  - es
  - fr
  - hi
  - ru
  - sw
  - th
  - tr
  - ur
  - vi
  - zh
paperswithcode_id: xnli
pretty_name: Cross-lingual Natural Language Inference
dataset_info:
  - config_name: all_languages
    features:
      - name: premise
        dtype:
          translation:
            languages:
              - ar
              - bg
              - de
              - el
              - en
              - es
              - fr
              - hi
              - ru
              - sw
              - th
              - tr
              - ur
              - vi
              - zh
      - name: hypothesis
        dtype:
          translation_variable_languages:
            languages:
              - ar
              - bg
              - de
              - el
              - en
              - es
              - fr
              - hi
              - ru
              - sw
              - th
              - tr
              - ur
              - vi
              - zh
            num_languages: 15
      - name: label
        dtype:
          class_label:
            names:
              '0': entailment
              '1': neutral
              '2': contradiction
    splits:
      - name: train
        num_bytes: 1581471691
        num_examples: 392702
      - name: test
        num_bytes: 19387432
        num_examples: 5010
      - name: validation
        num_bytes: 9566179
        num_examples: 2490
    download_size: 963942271
    dataset_size: 1610425302
  - config_name: ar
    features:
      - name: premise
        dtype: string
      - name: hypothesis
        dtype: string
      - name: label
        dtype:
          class_label:
            names:
              '0': entailment
              '1': neutral
              '2': contradiction
    splits:
      - name: train
        num_bytes: 107399614
        num_examples: 392702
      - name: test
        num_bytes: 1294553
        num_examples: 5010
      - name: validation
        num_bytes: 633001
        num_examples: 2490
    download_size: 59215902
    dataset_size: 109327168
  - config_name: bg
    features:
      - name: premise
        dtype: string
      - name: hypothesis
        dtype: string
      - name: label
        dtype:
          class_label:
            names:
              '0': entailment
              '1': neutral
              '2': contradiction
    splits:
      - name: train
        num_bytes: 125973225
        num_examples: 392702
      - name: test
        num_bytes: 1573034
        num_examples: 5010
      - name: validation
        num_bytes: 774061
        num_examples: 2490
    download_size: 66117878
    dataset_size: 128320320
  - config_name: de
    features:
      - name: premise
        dtype: string
      - name: hypothesis
        dtype: string
      - name: label
        dtype:
          class_label:
            names:
              '0': entailment
              '1': neutral
              '2': contradiction
    splits:
      - name: train
        num_bytes: 84684140
        num_examples: 392702
      - name: test
        num_bytes: 996488
        num_examples: 5010
      - name: validation
        num_bytes: 494604
        num_examples: 2490
    download_size: 55973883
    dataset_size: 86175232
  - config_name: el
    features:
      - name: premise
        dtype: string
      - name: hypothesis
        dtype: string
      - name: label
        dtype:
          class_label:
            names:
              '0': entailment
              '1': neutral
              '2': contradiction
    splits:
      - name: train
        num_bytes: 139753358
        num_examples: 392702
      - name: test
        num_bytes: 1704785
        num_examples: 5010
      - name: validation
        num_bytes: 841226
        num_examples: 2490
    download_size: 74551247
    dataset_size: 142299369
  - config_name: en
    features:
      - name: premise
        dtype: string
      - name: hypothesis
        dtype: string
      - name: label
        dtype:
          class_label:
            names:
              '0': entailment
              '1': neutral
              '2': contradiction
    splits:
      - name: train
        num_bytes: 74444026
        num_examples: 392702
      - name: test
        num_bytes: 875134
        num_examples: 5010
      - name: validation
        num_bytes: 433463
        num_examples: 2490
    download_size: 50627367
    dataset_size: 75752623
  - config_name: es
    features:
      - name: premise
        dtype: string
      - name: hypothesis
        dtype: string
      - name: label
        dtype:
          class_label:
            names:
              '0': entailment
              '1': neutral
              '2': contradiction
    splits:
      - name: train
        num_bytes: 81383284
        num_examples: 392702
      - name: test
        num_bytes: 969813
        num_examples: 5010
      - name: validation
        num_bytes: 478422
        num_examples: 2490
    download_size: 53677157
    dataset_size: 82831519
  - config_name: fr
    features:
      - name: premise
        dtype: string
      - name: hypothesis
        dtype: string
      - name: label
        dtype:
          class_label:
            names:
              '0': entailment
              '1': neutral
              '2': contradiction
    splits:
      - name: train
        num_bytes: 85808779
        num_examples: 392702
      - name: test
        num_bytes: 1029239
        num_examples: 5010
      - name: validation
        num_bytes: 510104
        num_examples: 2490
    download_size: 55968680
    dataset_size: 87348122
  - config_name: hi
    features:
      - name: premise
        dtype: string
      - name: hypothesis
        dtype: string
      - name: label
        dtype:
          class_label:
            names:
              '0': entailment
              '1': neutral
              '2': contradiction
    splits:
      - name: train
        num_bytes: 170593964
        num_examples: 392702
      - name: test
        num_bytes: 2073073
        num_examples: 5010
      - name: validation
        num_bytes: 1023915
        num_examples: 2490
    download_size: 70908548
    dataset_size: 173690952
  - config_name: ru
    features:
      - name: premise
        dtype: string
      - name: hypothesis
        dtype: string
      - name: label
        dtype:
          class_label:
            names:
              '0': entailment
              '1': neutral
              '2': contradiction
    splits:
      - name: train
        num_bytes: 129859615
        num_examples: 392702
      - name: test
        num_bytes: 1603466
        num_examples: 5010
      - name: validation
        num_bytes: 786442
        num_examples: 2490
    download_size: 70702606
    dataset_size: 132249523
  - config_name: sw
    features:
      - name: premise
        dtype: string
      - name: hypothesis
        dtype: string
      - name: label
        dtype:
          class_label:
            names:
              '0': entailment
              '1': neutral
              '2': contradiction
    splits:
      - name: train
        num_bytes: 69285725
        num_examples: 392702
      - name: test
        num_bytes: 871651
        num_examples: 5010
      - name: validation
        num_bytes: 429850
        num_examples: 2490
    download_size: 45564152
    dataset_size: 70587226
  - config_name: th
    features:
      - name: premise
        dtype: string
      - name: hypothesis
        dtype: string
      - name: label
        dtype:
          class_label:
            names:
              '0': entailment
              '1': neutral
              '2': contradiction
    splits:
      - name: train
        num_bytes: 176062892
        num_examples: 392702
      - name: test
        num_bytes: 2147015
        num_examples: 5010
      - name: validation
        num_bytes: 1061160
        num_examples: 2490
    download_size: 77222045
    dataset_size: 179271067
  - config_name: tr
    features:
      - name: premise
        dtype: string
      - name: hypothesis
        dtype: string
      - name: label
        dtype:
          class_label:
            names:
              '0': entailment
              '1': neutral
              '2': contradiction
    splits:
      - name: train
        num_bytes: 71637140
        num_examples: 392702
      - name: test
        num_bytes: 934934
        num_examples: 5010
      - name: validation
        num_bytes: 459308
        num_examples: 2490
    download_size: 48509680
    dataset_size: 73031382
  - config_name: ur
    features:
      - name: premise
        dtype: string
      - name: hypothesis
        dtype: string
      - name: label
        dtype:
          class_label:
            names:
              '0': entailment
              '1': neutral
              '2': contradiction
    splits:
      - name: train
        num_bytes: 96441486
        num_examples: 392702
      - name: test
        num_bytes: 1416241
        num_examples: 5010
      - name: validation
        num_bytes: 699952
        num_examples: 2490
    download_size: 46682785
    dataset_size: 98557679
  - config_name: vi
    features:
      - name: premise
        dtype: string
      - name: hypothesis
        dtype: string
      - name: label
        dtype:
          class_label:
            names:
              '0': entailment
              '1': neutral
              '2': contradiction
    splits:
      - name: train
        num_bytes: 101417430
        num_examples: 392702
      - name: test
        num_bytes: 1190217
        num_examples: 5010
      - name: validation
        num_bytes: 590680
        num_examples: 2490
    download_size: 57690058
    dataset_size: 103198327
  - config_name: zh
    features:
      - name: premise
        dtype: string
      - name: hypothesis
        dtype: string
      - name: label
        dtype:
          class_label:
            names:
              '0': entailment
              '1': neutral
              '2': contradiction
    splits:
      - name: train
        num_bytes: 72224841
        num_examples: 392702
      - name: test
        num_bytes: 777929
        num_examples: 5010
      - name: validation
        num_bytes: 384851
        num_examples: 2490
    download_size: 48269855
    dataset_size: 73387621
configs:
  - config_name: all_languages
    data_files:
      - split: train
        path: all_languages/train-*
      - split: test
        path: all_languages/test-*
      - split: validation
        path: all_languages/validation-*
  - config_name: ar
    data_files:
      - split: train
        path: ar/train-*
      - split: test
        path: ar/test-*
      - split: validation
        path: ar/validation-*
  - config_name: bg
    data_files:
      - split: train
        path: bg/train-*
      - split: test
        path: bg/test-*
      - split: validation
        path: bg/validation-*
  - config_name: de
    data_files:
      - split: train
        path: de/train-*
      - split: test
        path: de/test-*
      - split: validation
        path: de/validation-*
  - config_name: el
    data_files:
      - split: train
        path: el/train-*
      - split: test
        path: el/test-*
      - split: validation
        path: el/validation-*
  - config_name: en
    data_files:
      - split: train
        path: en/train-*
      - split: test
        path: en/test-*
      - split: validation
        path: en/validation-*
  - config_name: es
    data_files:
      - split: train
        path: es/train-*
      - split: test
        path: es/test-*
      - split: validation
        path: es/validation-*
  - config_name: fr
    data_files:
      - split: train
        path: fr/train-*
      - split: test
        path: fr/test-*
      - split: validation
        path: fr/validation-*
  - config_name: hi
    data_files:
      - split: train
        path: hi/train-*
      - split: test
        path: hi/test-*
      - split: validation
        path: hi/validation-*
  - config_name: ru
    data_files:
      - split: train
        path: ru/train-*
      - split: test
        path: ru/test-*
      - split: validation
        path: ru/validation-*
  - config_name: sw
    data_files:
      - split: train
        path: sw/train-*
      - split: test
        path: sw/test-*
      - split: validation
        path: sw/validation-*
  - config_name: th
    data_files:
      - split: train
        path: th/train-*
      - split: test
        path: th/test-*
      - split: validation
        path: th/validation-*
  - config_name: tr
    data_files:
      - split: train
        path: tr/train-*
      - split: test
        path: tr/test-*
      - split: validation
        path: tr/validation-*
  - config_name: ur
    data_files:
      - split: train
        path: ur/train-*
      - split: test
        path: ur/test-*
      - split: validation
        path: ur/validation-*
  - config_name: vi
    data_files:
      - split: train
        path: vi/train-*
      - split: test
        path: vi/test-*
      - split: validation
        path: vi/validation-*
  - config_name: zh
    data_files:
      - split: train
        path: zh/train-*
      - split: test
        path: zh/test-*
      - split: validation
        path: zh/validation-*

Dataset Card for "xnli"

Table of Contents

Dataset Description

Dataset Summary

XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).

Supported Tasks and Leaderboards

More Information Needed

Languages

More Information Needed

Dataset Structure

Data Instances

all_languages

  • Size of downloaded dataset files: 483.96 MB
  • Size of the generated dataset: 1.61 GB
  • Total amount of disk used: 2.09 GB

An example of 'train' looks as follows.

This example was too long and was cropped:

{
    "hypothesis": "{\"language\": [\"ar\", \"bg\", \"de\", \"el\", \"en\", \"es\", \"fr\", \"hi\", \"ru\", \"sw\", \"th\", \"tr\", \"ur\", \"vi\", \"zh\"], \"translation\": [\"احد اع...",
    "label": 0,
    "premise": "{\"ar\": \"واحدة من رقابنا ستقوم بتنفيذ تعليماتك كلها بكل دقة\", \"bg\": \"един от нашите номера ще ви даде инструкции .\", \"de\": \"Eine ..."
}

ar

  • Size of downloaded dataset files: 483.96 MB
  • Size of the generated dataset: 109.32 MB
  • Total amount of disk used: 593.29 MB

An example of 'validation' looks as follows.

{
    "hypothesis": "اتصل بأمه حالما أوصلته حافلة المدرسية.",
    "label": 1,
    "premise": "وقال، ماما، لقد عدت للمنزل."
}

bg

  • Size of downloaded dataset files: 483.96 MB
  • Size of the generated dataset: 128.32 MB
  • Total amount of disk used: 612.28 MB

An example of 'train' looks as follows.

This example was too long and was cropped:

{
    "hypothesis": "\"губиш нещата на следното ниво , ако хората си припомнят .\"...",
    "label": 0,
    "premise": "\"по време на сезона и предполагам , че на твоето ниво ще ги загубиш на следващото ниво , ако те решат да си припомнят отбора на ..."
}

de

  • Size of downloaded dataset files: 483.96 MB
  • Size of the generated dataset: 86.17 MB
  • Total amount of disk used: 570.14 MB

An example of 'train' looks as follows.

This example was too long and was cropped:

{
    "hypothesis": "Man verliert die Dinge auf die folgende Ebene , wenn sich die Leute erinnern .",
    "label": 0,
    "premise": "\"Du weißt , während der Saison und ich schätze , auf deiner Ebene verlierst du sie auf die nächste Ebene , wenn sie sich entschl..."
}

el

  • Size of downloaded dataset files: 483.96 MB
  • Size of the generated dataset: 142.30 MB
  • Total amount of disk used: 626.26 MB

An example of 'validation' looks as follows.

This example was too long and was cropped:

{
    "hypothesis": "\"Τηλεφώνησε στη μαμά του μόλις το σχολικό λεωφορείο τον άφησε.\"...",
    "label": 1,
    "premise": "Και είπε, Μαμά, έφτασα στο σπίτι."
}

Data Fields

The data fields are the same among all splits.

all_languages

  • premise: a multilingual string variable, with possible languages including ar, bg, de, el, en.
  • hypothesis: a multilingual string variable, with possible languages including ar, bg, de, el, en.
  • label: a classification label, with possible values including entailment (0), neutral (1), contradiction (2).

ar

  • premise: a string feature.
  • hypothesis: a string feature.
  • label: a classification label, with possible values including entailment (0), neutral (1), contradiction (2).

bg

  • premise: a string feature.
  • hypothesis: a string feature.
  • label: a classification label, with possible values including entailment (0), neutral (1), contradiction (2).

de

  • premise: a string feature.
  • hypothesis: a string feature.
  • label: a classification label, with possible values including entailment (0), neutral (1), contradiction (2).

el

  • premise: a string feature.
  • hypothesis: a string feature.
  • label: a classification label, with possible values including entailment (0), neutral (1), contradiction (2).

Data Splits

name train validation test
all_languages 392702 2490 5010
ar 392702 2490 5010
bg 392702 2490 5010
de 392702 2490 5010
el 392702 2490 5010

Dataset Creation

Curation Rationale

More Information Needed

Source Data

Initial Data Collection and Normalization

More Information Needed

Who are the source language producers?

More Information Needed

Annotations

Annotation process

More Information Needed

Who are the annotators?

More Information Needed

Personal and Sensitive Information

More Information Needed

Considerations for Using the Data

Social Impact of Dataset

More Information Needed

Discussion of Biases

More Information Needed

Other Known Limitations

More Information Needed

Additional Information

Dataset Curators

More Information Needed

Licensing Information

More Information Needed

Citation Information

@InProceedings{conneau2018xnli,
  author = {Conneau, Alexis
                 and Rinott, Ruty
                 and Lample, Guillaume
                 and Williams, Adina
                 and Bowman, Samuel R.
                 and Schwenk, Holger
                 and Stoyanov, Veselin},
  title = {XNLI: Evaluating Cross-lingual Sentence Representations},
  booktitle = {Proceedings of the 2018 Conference on Empirical Methods
               in Natural Language Processing},
  year = {2018},
  publisher = {Association for Computational Linguistics},
  location = {Brussels, Belgium},
}

Contributions

Thanks to @lewtun, @mariamabarham, @thomwolf, @lhoestq, @patrickvonplaten for adding this dataset.