Name
stringlengths
1
25
Gender
class label
2 classes
Count
int64
1
5.3M
Probability
float64
0
0.01
Kunyi
0F
1
0
Larken
1M
17
0
Asanthi
0F
1
0
Kaspar
1M
120
0
Jarvez
1M
10
0
Chantel
1M
14
0
Jed
1M
9,036
0.000025
Milla
0F
2,060
0.000006
Izabela-Maria
0F
1
0
Dekyrah
0F
1
0
Malik
1M
44,361
0.000121
Sophie-Paige
0F
1
0
Lynita
0F
395
0.000001
Miller
1M
7,663
0.000021
Akira
1M
1,941
0.000005
Huberto
1M
6
0
Nemo
1M
56
0
Vinnia
0F
34
0
Omperkash
1M
1
0
Dewar
1M
1
0
Shambhvi
0F
1
0
Haro
1M
1
0
Akeila
0F
187
0.000001
Eulinda
0F
5
0
Yanielys
0F
5
0
Joerell
1M
12
0
Caleab
1M
19
0
Maera
0F
8
0
Edgbert
1M
5
0
Million
1M
157
0
Valeriana
0F
11
0
Paramjeet
1M
5
0
Klayden
1M
5
0
Gabriyel
1M
11
0
Hazara
0F
1
0
Davantay
1M
5
0
Marzetta
0F
212
0.000001
Jencarlos
1M
994
0.000003
Dheeran
1M
36
0
Nadiene
0F
2
0
Levinia
0F
41
0
Rhond
0F
5
0
Lochi
1M
1
0
Vytautas
1M
56
0
Wayanha
0F
1
0
Wilmuth
0F
51
0
Hazel-Joan
0F
1
0
Youlonda
0F
41
0
Zaphira
0F
33
0
Conard
1M
768
0.000002
Manpritkour
0F
1
0
Jasamine
0F
288
0.000001
Sheenia
0F
21
0
Demetris
0F
937
0.000003
Jhan
0F
5
0
Jya
0F
73
0
Louane
0F
1
0
Malichai
1M
12
0
Melishia
0F
5
0
Manilla
0F
124
0
Trycia
0F
1
0
Danvir
1M
1
0
Carliana
0F
24
0
Trisia
0F
54
0
Kayln
0F
544
0.000001
Kyar
0F
1
0
Nea
0F
360
0.000001
Zainaldeen
1M
6
0
Mahena
0F
1
0
Wilford
1M
10,437
0.000029
Pryinka
0F
1
0
Savina
0F
1,181
0.000003
Maleisha
0F
7
0
Rielle
0F
412
0.000001
Fayne
1M
54
0
Kava
0F
10
0
Jacyon
1M
35
0
Lafonya
0F
10
0
Rikkee
1M
1
0
Quentez
1M
81
0
Subyta
0F
1
0
Jozzlynn
0F
17
0
Jandre
1M
45
0
Alyse
0F
7,783
0.000021
Nerva
0F
48
0
Gruvin
1M
1
0
Anthonella
0F
100
0
Kennith
1M
10,664
0.000029
Tijay
0F
5
0
Cornelis
1M
61
0
Kenyatta
0F
4,451
0.000012
Shylin
0F
115
0
Oenone
0F
1
0
Orrell
1M
10
0
Tamyko
0F
12
0
Nataleigh
0F
1,300
0.000004
Monikia
0F
15
0
Tameron
0F
53
0
Paulo
1M
4,534
0.000012
Jordan-Thomas
1M
1
0

Dataset Card for "Gender-by-Name"

This dataset attributes first names to genders, giving counts and probabilities. It combines open-source government data from the US, UK, Canada, and Australia. The dataset is taken from UCI Machine Learning Repository

Dataset Information

This dataset combines raw counts for first/given names of male and female babies in those time periods, and then calculates a probability for a name given the aggregate count. Source datasets are from government authorities: -US: Baby Names from Social Security Card Applications - National Data, 1880 to 2019 -UK: Baby names in England and Wales Statistical bulletins, 2011 to 2018 -Canada: British Columbia 100 Years of Popular Baby names, 1918 to 2018 -Australia: Popular Baby Names, Attorney-General's Department, 1944 to 2019

Has Missing Values?

No

Variable Information

Name: String Gender: 0/1 (female/male), Count: Integer Probability: Float

More Information needed

Downloads last month
40

Models trained or fine-tuned on erickrribeiro/gender-by-name