|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""The Open WebText Corpus""" |
|
|
|
import re |
|
|
|
import datasets |
|
from glob import glob |
|
|
|
_CITATION = """\ |
|
Dummy text |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
An open-source replication of the WebText dataset from OpenAI. |
|
""" |
|
|
|
_N_DATA_FILES = 20 |
|
|
|
_DATA_FILES = ["data/dummy-text-{:03d}.zip".format(i) for i in range(_N_DATA_FILES)] |
|
|
|
print("_DATA_FILES", _DATA_FILES) |
|
|
|
class Openwebtext(datasets.GeneratorBasedBuilder): |
|
"""The Open WebText dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="plain_text", |
|
description="Plain text", |
|
version=datasets.Version("1.0.0"), |
|
) |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features({"text": datasets.Value("string")}), |
|
homepage="", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
archives = dl_manager.download(_DATA_FILES) |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={ |
|
"archive_iterators": [ |
|
dl_manager.iter_archive(archive) for archive in archives |
|
], |
|
"iter_archive": dl_manager.iter_archive |
|
}), |
|
] |
|
|
|
def _generate_examples(self, archive_iterators, iter_archive): |
|
"""Yields examples.""" |
|
for archive_iterator in archive_iterators: |
|
for text_filepath, text_f in archive_iterator: |
|
|
|
|
|
|
|
idx = f"{text_filepath}" |
|
print("id = ", id) |
|
yield idx, {"text": re.sub("\n\n\n+", "\n\n", text_f.read().decode("utf-8")).strip()} |
|
|
|
|
|
|