File size: 2,494 Bytes
0213c8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb6c600
8493de4
1288205
8493de4
ffeb365
0213c8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4449839
504b2b0
809159c
 
4449839
 
 
 
0213c8d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The Open WebText Corpus"""

import re

import datasets
from glob import glob

_CITATION = """\
Dummy text
"""

_DESCRIPTION = """\
An open-source replication of the WebText dataset from OpenAI.
"""

_N_DATA_FILES = 20
# _DATA_FILES = [f for f in glob("data/*.tar.gz")]
_DATA_FILES = ["data/dummy-text-{:03d}.zip".format(i) for i in range(_N_DATA_FILES)]

print("_DATA_FILES", _DATA_FILES)

class Openwebtext(datasets.GeneratorBasedBuilder):
    """The Open WebText dataset."""

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="plain_text",
            description="Plain text",
            version=datasets.Version("1.0.0"),
        )
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features({"text": datasets.Value("string")}),
            homepage="",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        archives = dl_manager.download(_DATA_FILES)
        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={
                "archive_iterators": [
                    dl_manager.iter_archive(archive) for archive in archives
                ],
                "iter_archive": dl_manager.iter_archive
            }),
        ]

    def _generate_examples(self, archive_iterators, iter_archive):
        """Yields examples."""
        for archive_iterator in archive_iterators:
            for text_filepath, text_f in archive_iterator:
                # print(">>>>>", text_filepath)
                # if not xz_filepath.endswith(".xz"):
                #     continue
                idx = f"{text_filepath}"
                print("id = ", id)
                yield idx, {"text": re.sub("\n\n\n+", "\n\n", text_f.read().decode("utf-8")).strip()}