|
import datasets |
|
from datasets import ClassLabel |
|
from typing import Dict, List, Optional, Union, Callable |
|
import json |
|
import textwrap |
|
|
|
import xml.etree.ElementTree as ET |
|
import pandas as pd |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
|
|
|
_LENERBR_KWARGS = dict( |
|
name = "LeNER-Br", |
|
description=textwrap.dedent( |
|
"""\ |
|
LeNER-Br is a Portuguese language dataset for named entity recognition applied to legal documents. |
|
LeNER-Br consists entirely of manually annotated legislation and legal cases texts and contains tags |
|
for persons, locations, time entities, organizations, legislation and legal cases. To compose the dataset, |
|
66 legal documents from several Brazilian Courts were collected. Courts of superior and state levels were considered, |
|
such as Supremo Tribunal Federal, Superior Tribunal de Justiça, Tribunal de Justiça de Minas Gerais and Tribunal de Contas da União. |
|
In addition, four legislation documents were collected, such as "Lei Maria da Penha", giving a total of 70 documents.""" |
|
), |
|
task_type="ner", |
|
label_classes=["ORGANIZACAO", "PESSOA", "TEMPO", "LOCAL", "LEGISLACAO", "JURISPRUDENCIA"], |
|
data_urls={ |
|
"train": "https://raw.githubusercontent.com/peluz/lener-br/master/leNER-Br/train/train.conll", |
|
"validation": "https://raw.githubusercontent.com/peluz/lener-br/master/leNER-Br/dev/dev.conll", |
|
"test": "https://raw.githubusercontent.com/peluz/lener-br/master/leNER-Br/test/test.conll", |
|
}, |
|
citation=textwrap.dedent( |
|
"""\ |
|
@InProceedings{luz_etal_propor2018, |
|
author = {Pedro H. {Luz de Araujo} and Te\'{o}filo E. {de Campos} and |
|
Renato R. R. {de Oliveira} and Matheus Stauffer and |
|
Samuel Couto and Paulo Bermejo}, |
|
title = {{LeNER-Br}: a Dataset for Named Entity Recognition in {Brazilian} Legal Text}, |
|
booktitle = {International Conference on the Computational Processing of Portuguese ({PROPOR})}, |
|
publisher = {Springer}, |
|
series = {Lecture Notes on Computer Science ({LNCS})}, |
|
pages = {313--323}, |
|
year = {2018}, |
|
month = {September 24-26}, |
|
address = {Canela, RS, Brazil}, |
|
doi = {10.1007/978-3-319-99722-3_32}, |
|
url = {https://teodecampos.github.io/LeNER-Br/}, |
|
}""" |
|
), |
|
url="https://teodecampos.github.io/LeNER-Br/", |
|
) |
|
|
|
|
|
|
|
|
|
|
|
_ASSIN2_BASE_KWARGS = dict( |
|
description=textwrap.dedent( |
|
"""\ |
|
The ASSIN 2 corpus is composed of rather simple sentences. Following the procedures of SemEval 2014 Task 1. |
|
The training and validation data are composed, respectively, of 6,500 and 500 sentence pairs in Brazilian Portuguese, |
|
annotated for entailment and semantic similarity. Semantic similarity values range from 1 to 5, and text entailment |
|
classes are either entailment or none. The test data are composed of approximately 3,000 sentence pairs with the same |
|
annotation. All data were manually annotated.""" |
|
), |
|
data_urls={ |
|
"train": "https://github.com/ruanchaves/assin/raw/master/sources/assin2-train-only.xml", |
|
"validation": "https://github.com/ruanchaves/assin/raw/master/sources/assin2-dev.xml", |
|
"test": "https://github.com/ruanchaves/assin/raw/master/sources/assin2-test.xml", |
|
}, |
|
citation=textwrap.dedent( |
|
"""\ |
|
@inproceedings{real2020assin, |
|
title={The assin 2 shared task: a quick overview}, |
|
author={Real, Livy and Fonseca, Erick and Oliveira, Hugo Goncalo}, |
|
booktitle={International Conference on Computational Processing of the Portuguese Language}, |
|
pages={406--412}, |
|
year={2020}, |
|
organization={Springer} |
|
}""" |
|
), |
|
url="https://sites.google.com/view/assin2", |
|
) |
|
_ASSIN2_RTE_KWARGS = dict( |
|
name = "assin2-rte", |
|
task_type="rte", |
|
label_classes=["NONE", "ENTAILMENT"], |
|
**_ASSIN2_BASE_KWARGS |
|
) |
|
_ASSIN2_STS_KWARGS = dict( |
|
name = "assin2-sts", |
|
task_type="sts", |
|
**_ASSIN2_BASE_KWARGS |
|
) |
|
|
|
|
|
|
|
|
|
_HATEBR_KWARGS = dict( |
|
name = "HateBR", |
|
description=textwrap.dedent( |
|
"""\ |
|
HateBR is the first large-scale expert annotated dataset of Brazilian Instagram comments for abusive language detection |
|
on the web and social media. The HateBR was collected from Brazilian Instagram comments of politicians and manually annotated |
|
by specialists. It is composed of 7,000 documents annotated according to three different layers: a binary classification (offensive |
|
versus non-offensive comments), offensiveness-level (highly, moderately, and slightly offensive messages), and nine hate speech |
|
groups (xenophobia, racism, homophobia, sexism, religious intolerance, partyism, apology for the dictatorship, antisemitism, |
|
and fatphobia). Each comment was annotated by three different annotators and achieved high inter-annotator agreement. Furthermore, |
|
baseline experiments were implemented reaching 85% of F1-score outperforming the current literature dataset baselines for |
|
the Portuguese language. We hope that the proposed expert annotated dataset may foster research on hate speech detection in the |
|
Natural Language Processing area.""" |
|
), |
|
task_type="classification", |
|
file_type="csv", |
|
label_classes=["non-offensive", "slightly", "moderately", "highly"], |
|
data_urls={ |
|
"train": "https://raw.githubusercontent.com/franciellevargas/HateBR/2d18c5b9410c2dfdd6d5394caa54d608857dae7c/dataset/HateBR.csv" |
|
}, |
|
citation=textwrap.dedent( |
|
"""\ |
|
@inproceedings{vargas2022hatebr, |
|
title={HateBR: A Large Expert Annotated Corpus of Brazilian Instagram Comments for Offensive Language and Hate Speech Detection}, |
|
author={Vargas, Francielle and Carvalho, Isabelle and de G{\'o}es, Fabiana Rodrigues and Pardo, Thiago and Benevenuto, Fabr{\'\i}cio}, |
|
booktitle={Proceedings of the Thirteenth Language Resources and Evaluation Conference}, |
|
pages={7174--7183}, |
|
year={2022} |
|
}""" |
|
), |
|
url="https://github.com/franciellevargas/HateBR", |
|
text_and_label_columns=["instagram_comments", "offensiveness_levels"], |
|
indexes_url="https://huggingface.co/datasets/ruanchaves/hatebr/raw/main/indexes.json" |
|
) |
|
hatebr_map = { |
|
"0": "non-offensive", |
|
"1": "slightly", |
|
"2": "moderately", |
|
"3": "highly", |
|
} |
|
_HATEBR_KWARGS['process_label'] = lambda x: hatebr_map[x] |
|
|
|
|
|
|
|
|
|
_ULYSSESNER_META_KWARGS = dict( |
|
description=textwrap.dedent( |
|
"""\ |
|
UlyssesNER-Br is a corpus of Brazilian Legislative Documents for NER with quality baselines. |
|
The presented corpus consists of bills and legislative consultations from Brazilian Chamber of Deputies. |
|
UlyssesNER-Br has seven semantic classes or categories. Based on HAREM, |
|
we defined five typical categories: person, location, organization, event and date. |
|
In addition, we defined two specific semantic classes for the legislative domain: |
|
law foundation and law product. The law foundation category makes reference to |
|
entities related to laws, resolutions, decrees, as well as to domain-specific entities |
|
such as bills, which are law proposals being discussed by the parliament, and legislative consultations, |
|
also known as job requests made by the parliamentarians. |
|
The law product entity refers to systems, programs, and other products created |
|
from legislation.""" |
|
), |
|
task_type="ner", |
|
citation=textwrap.dedent( |
|
"""\ |
|
@InProceedings{10.1007/978-3-030-98305-5_1, |
|
author="Albuquerque, Hidelberg O. |
|
and Costa, Rosimeire |
|
and Silvestre, Gabriel |
|
and Souza, Ellen |
|
and da Silva, N{\'a}dia F. F. |
|
and Vit{\'o}rio, Douglas |
|
and Moriyama, Gyovana |
|
and Martins, Lucas |
|
and Soezima, Luiza |
|
and Nunes, Augusto |
|
and Siqueira, Felipe |
|
and Tarrega, Jo{\~a}o P. |
|
and Beinotti, Joao V. |
|
and Dias, Marcio |
|
and Silva, Matheus |
|
and Gardini, Miguel |
|
and Silva, Vinicius |
|
and de Carvalho, Andr{\'e} C. P. L. F. |
|
and Oliveira, Adriano L. I.", |
|
editor="Pinheiro, Vl{\'a}dia |
|
and Gamallo, Pablo |
|
and Amaro, Raquel |
|
and Scarton, Carolina |
|
and Batista, Fernando |
|
and Silva, Diego |
|
and Magro, Catarina |
|
and Pinto, Hugo", |
|
title="UlyssesNER-Br: A Corpus of Brazilian Legislative Documents for Named Entity Recognition", |
|
booktitle="Computational Processing of the Portuguese Language", |
|
year="2022", |
|
publisher="Springer International Publishing", |
|
address="Cham", |
|
pages="3--14", |
|
isbn="978-3-030-98305-5" |
|
} |
|
@InProceedings{10.1007/978-3-031-16474-3_62, |
|
author="Costa, Rosimeire |
|
and Albuquerque, Hidelberg Oliveira |
|
and Silvestre, Gabriel |
|
and Silva, N{\'a}dia F{\'e}lix F. |
|
and Souza, Ellen |
|
and Vit{\'o}rio, Douglas |
|
and Nunes, Augusto |
|
and Siqueira, Felipe |
|
and Pedro Tarrega, Jo{\~a}o |
|
and Vitor Beinotti, Jo{\~a}o |
|
and de Souza Dias, M{\'a}rcio |
|
and Pereira, Fab{\'i}ola S. F. |
|
and Silva, Matheus |
|
and Gardini, Miguel |
|
and Silva, Vinicius |
|
and de Carvalho, Andr{\'e} C. P. L. F. |
|
and Oliveira, Adriano L. I.", |
|
editor="Marreiros, Goreti |
|
and Martins, Bruno |
|
and Paiva, Ana |
|
and Ribeiro, Bernardete |
|
and Sardinha, Alberto", |
|
title="Expanding UlyssesNER-Br Named Entity Recognition Corpus with Informal User-Generated Text", |
|
booktitle="Progress in Artificial Intelligence", |
|
year="2022", |
|
publisher="Springer International Publishing", |
|
address="Cham", |
|
pages="767--779", |
|
isbn="978-3-031-16474-3" |
|
}""" |
|
), |
|
url="https://github.com/ulysses-camara/ulysses-ner-br", |
|
) |
|
_ULYSSESNER_PL_KWARGS = dict( |
|
name = "UlyssesNER-Br-PL-coarse", |
|
data_urls = { |
|
"train": "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/PL_corpus_conll/pl_corpus_categorias/train.txt", |
|
"validation": "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/PL_corpus_conll/pl_corpus_categorias/valid.txt", |
|
"test": "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/PL_corpus_conll/pl_corpus_categorias/test.txt", |
|
}, |
|
label_classes = ['DATA', 'EVENTO', 'FUNDAMENTO', 'LOCAL', 'ORGANIZACAO', 'PESSOA', 'PRODUTODELEI'], |
|
**_ULYSSESNER_META_KWARGS |
|
) |
|
_ULYSSESNER_C_KWARGS = dict( |
|
name = "UlyssesNER-Br-C-coarse", |
|
data_urls = { |
|
"train": "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/C_corpus_conll/c_corpus_categorias/train.txt", |
|
"validation": "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/C_corpus_conll/c_corpus_categorias/valid.txt", |
|
"test": "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/C_corpus_conll/c_corpus_categorias/test.txt", |
|
}, |
|
label_classes = ['DATA', 'EVENTO', 'FUNDAMENTO', 'LOCAL', 'ORGANIZACAO', 'PESSOA', 'PRODUTODELEI'], |
|
**_ULYSSESNER_META_KWARGS |
|
) |
|
|
|
_ULYSSESNER_PL_TIPOS_KWARGS = dict( |
|
name = "UlyssesNER-Br-PL-fine", |
|
data_urls = { |
|
"train": "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/PL_corpus_conll/pl_corpus_tipos/train.txt", |
|
"validation": "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/PL_corpus_conll/pl_corpus_tipos/valid.txt", |
|
"test": "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/PL_corpus_conll/pl_corpus_tipos/test.txt", |
|
}, |
|
label_classes = ['DATA', 'EVENTO', 'FUNDapelido', 'FUNDlei', 'FUNDprojetodelei', 'LOCALconcreto', 'LOCALvirtual', \ |
|
'ORGgovernamental', 'ORGnaogovernamental', 'ORGpartido', 'PESSOAcargo', 'PESSOAgrupocargo', 'PESSOAindividual', \ |
|
'PRODUTOoutros', 'PRODUTOprograma', 'PRODUTOsistema'], |
|
**_ULYSSESNER_META_KWARGS |
|
) |
|
_ULYSSESNER_C_TIPOS_KWARGS = dict( |
|
name = "UlyssesNER-Br-C-fine", |
|
data_urls = { |
|
"train": "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/C_corpus_conll/c_corpus_tipos/train.txt", |
|
"validation": "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/C_corpus_conll/c_corpus_tipos/valid.txt", |
|
"test": "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/C_corpus_conll/c_corpus_tipos/test.txt", |
|
}, |
|
label_classes = ['DATA', 'EVENTO', 'FUNDapelido', 'FUNDlei', 'FUNDprojetodelei', 'LOCALconcreto', 'LOCALvirtual', \ |
|
'ORGgovernamental', 'ORGnaogovernamental', 'ORGpartido', 'PESSOAcargo', 'PESSOAgrupocargo', 'PESSOAgrupoind', \ |
|
'PESSOAindividual', 'PRODUTOoutros', 'PRODUTOprograma', 'PRODUTOsistema'], |
|
**_ULYSSESNER_META_KWARGS |
|
) |
|
|
|
_BRAZILIAN_COURT_DECISIONS_JUDGMENT = dict( |
|
name = "brazilian_court_decisions_judgment", |
|
task_type = "classification", |
|
data_urls = "joelito/brazilian_court_decisions", |
|
text_and_label_columns = ["decision_description", "judgment_label"], |
|
file_type="hf_dataset", |
|
url = "https://github.com/lagefreitas/predicting-brazilian-court-decisions", |
|
description =textwrap.dedent( |
|
"""\ |
|
The dataset is a collection of 4043 Ementa (summary) court decisions and their metadata from the Tribunal de |
|
Justiça de Alagoas (TJAL, the State Supreme Court of Alagoas (Brazil). The court decisions are labeled according |
|
to 7 categories and whether the decisions were unanimous on the part of the judges or not. The dataset |
|
supports the task of Legal Judgment Prediction.""" |
|
), |
|
citation = textwrap.dedent( |
|
"""\ |
|
@article{Lage-Freitas2022, |
|
author = {Lage-Freitas, Andr{\'{e}} and Allende-Cid, H{\'{e}}ctor and Santana, Orivaldo and Oliveira-Lage, L{\'{i}}via}, |
|
doi = {10.7717/peerj-cs.904}, |
|
issn = {2376-5992}, |
|
journal = {PeerJ. Computer science}, |
|
keywords = {Artificial intelligence,Jurimetrics,Law,Legal,Legal NLP,Legal informatics,Legal outcome forecast,Litigation prediction,Machine learning,NLP,Portuguese,Predictive algorithms,judgement prediction}, |
|
language = {eng}, |
|
month = {mar}, |
|
pages = {e904--e904}, |
|
publisher = {PeerJ Inc.}, |
|
title = {{Predicting Brazilian Court Decisions}}, |
|
url = {https://pubmed.ncbi.nlm.nih.gov/35494851 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044329/}, |
|
volume = {8}, |
|
year = {2022} |
|
}""" |
|
), |
|
label_classes = ["no", "partial", "yes"] |
|
) |
|
_BRAZILIAN_COURT_DECISIONS_UNANIMITY = { |
|
**_BRAZILIAN_COURT_DECISIONS_JUDGMENT, |
|
"name": "brazilian_court_decisions_unanimity", |
|
"text_and_label_columns": ["decision_description", "unanimity_label"], |
|
"label_classes": ["unanimity", "not-unanimity"], |
|
} |
|
HAREM_BASE_KWARGS = dict( |
|
description=textwrap.dedent( |
|
"""\ |
|
The HAREM is a Portuguese language corpus commonly used for Named Entity Recognition tasks. It includes about 93k words, from 129 different texts, |
|
from several genres, and language varieties. The split of this dataset version follows the division made by [1], where 7% HAREM |
|
documents are the validation set and the miniHAREM corpus (with about 65k words) is the test set. There are two versions of the dataset set, |
|
a version that has a total of 10 different named entity classes (Person, Organization, Location, Value, Date, Title, Thing, Event, |
|
Abstraction, and Other) and a "selective" version with only 5 classes (Person, Organization, Location, Value, and Date). |
|
It's important to note that the original version of the HAREM dataset has 2 levels of NER details, namely "Category" and "Sub-type". |
|
The dataset version processed here ONLY USE the "Category" level of the original dataset. |
|
[1] Souza, Fábio, Rodrigo Nogueira, and Roberto Lotufo. "BERTimbau: Pretrained BERT Models for Brazilian Portuguese." |
|
Brazilian Conference on Intelligent Systems. Springer, Cham, 2020.""" |
|
), |
|
task_type="ner", |
|
data_urls="harem", |
|
file_type="hf_dataset", |
|
text_and_label_columns = ["tokens", "ner_tags"], |
|
citation=textwrap.dedent( |
|
"""\ |
|
@inproceedings{santos2006harem, |
|
title={Harem: An advanced ner evaluation contest for portuguese}, |
|
author={Santos, Diana and Seco, Nuno and Cardoso, Nuno and Vilela, Rui}, |
|
booktitle={quot; In Nicoletta Calzolari; Khalid Choukri; Aldo Gangemi; Bente Maegaard; Joseph Mariani; Jan Odjik; Daniel Tapias (ed) Proceedings of the 5 th International Conference on Language Resources and Evaluation (LREC'2006)(Genoa Italy 22-28 May 2006)}, |
|
year={2006} |
|
}""" |
|
), |
|
url="https://www.linguateca.pt/primeiroHAREM/harem_coleccaodourada_en.html", |
|
) |
|
HAREM_DEFAULT_KWARGS = dict( |
|
name = "harem-default", |
|
extra_configs = {"name": "default"}, |
|
label_classes = ["PESSOA", "ORGANIZACAO", "LOCAL", "TEMPO", "VALOR", "ABSTRACCAO", "ACONTECIMENTO", "COISA", "OBRA", "OUTRO"], |
|
**HAREM_BASE_KWARGS |
|
) |
|
HAREM_SELECTIVE_KWARGS = dict( |
|
name = "harem-selective", |
|
extra_configs = {"name": "selective"}, |
|
label_classes = ["PESSOA", "ORGANIZACAO", "LOCAL", "TEMPO", "VALOR"], |
|
**HAREM_BASE_KWARGS |
|
) |
|
|
|
_MAPA_BASE_KWARGS = dict( |
|
task_type = "ner", |
|
data_urls = "joelito/mapa", |
|
file_type="hf_dataset", |
|
url = "", |
|
description =textwrap.dedent( |
|
"""\ |
|
The dataset consists of 12 documents (9 for Spanish due to parsing errors) taken from EUR-Lex, |
|
a multilingual corpus of court decisions and legal dispositions in the 24 official languages |
|
of the European Union. The documents have been annotated for named entities following the |
|
guidelines of the MAPA project which foresees two annotation level, a general and a more |
|
fine-grained one. The annotated corpus can be used for named entity recognition/classification.""" |
|
), |
|
citation = textwrap.dedent( |
|
"""\ |
|
@article{DeGibertBonet2022, |
|
author = {{de Gibert Bonet}, Ona and {Garc{\'{i}}a Pablos}, Aitor and Cuadros, Montse and Melero, Maite}, |
|
journal = {Proceedings of the Language Resources and Evaluation Conference}, |
|
number = {June}, |
|
pages = {3751--3760}, |
|
title = {{Spanish Datasets for Sensitive Entity Detection in the Legal Domain}}, |
|
url = {https://aclanthology.org/2022.lrec-1.400}, |
|
year = {2022} |
|
}""" |
|
) |
|
) |
|
_MAPA_BASE_KWARGS['filter'] = lambda item: item["language"] == "pt" |
|
_MAPA_COARSE_KWARGS = dict( |
|
name = "mapa_pt_coarse", |
|
text_and_label_columns = ["tokens", "coarse_grained"], |
|
label_classes = ['ADDRESS', 'AMOUNT', 'DATE', 'ORGANISATION', 'PERSON', 'TIME'], |
|
**_MAPA_BASE_KWARGS |
|
) |
|
|
|
_MAPA_FINE_KWARGS = dict( |
|
name = "mapa_pt_fine", |
|
text_and_label_columns = ["tokens", "fine_grained"], |
|
label_classes = ['AGE', 'BUILDING', 'CITY', 'COUNTRY', 'DAY', 'ETHNIC CATEGORY', |
|
'FAMILY NAME', 'INITIAL NAME', 'MARITAL STATUS', 'MONTH', 'NATIONALITY', |
|
'PLACE', 'PROFESSION', 'ROLE', 'STANDARD ABBREVIATION', 'TERRITORY', |
|
'TITLE', 'TYPE', 'UNIT', 'URL', 'VALUE', 'YEAR'], |
|
**_MAPA_BASE_KWARGS |
|
) |
|
|
|
|
|
_MULTIEURLEX_BASE_KWARGS = dict( |
|
name = "multi_eurlex_pt", |
|
task_type = "multilabel_classification", |
|
data_urls = "multi_eurlex", |
|
file_type="hf_dataset", |
|
extra_configs = {"language": "pt", "label_level": "level_1"}, |
|
text_and_label_columns = ["text", "labels"], |
|
url = "https://github.com/nlpaueb/MultiEURLEX/", |
|
description =textwrap.dedent( |
|
"""\ |
|
MultiEURLEX comprises 65k EU laws in 23 official EU languages. |
|
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU. |
|
Each EUROVOC label ID is associated with a label descriptor, e.g., [60, agri-foodstuffs], |
|
[6006, plant product], [1115, fruit]. The descriptors are also available in the 23 languages. |
|
Chalkidis et al. (2019) published a monolingual (English) version of this dataset, called EUR-LEX, |
|
comprising 57k EU laws with the originally assigned gold labels.""" |
|
), |
|
citation = textwrap.dedent( |
|
"""\ |
|
@InProceedings{chalkidis-etal-2021-multieurlex, |
|
author = {Chalkidis, Ilias |
|
and Fergadiotis, Manos |
|
and Androutsopoulos, Ion}, |
|
title = {MultiEURLEX -- A multi-lingual and multi-label legal document |
|
classification dataset for zero-shot cross-lingual transfer}, |
|
booktitle = {Proceedings of the 2021 Conference on Empirical Methods |
|
in Natural Language Processing}, |
|
year = {2021}, |
|
publisher = {Association for Computational Linguistics}, |
|
location = {Punta Cana, Dominican Republic}, |
|
url = {https://arxiv.org/abs/2109.00904} |
|
}""" |
|
), |
|
label_classes = [ |
|
"100149","100160","100148","100147","100152","100143","100156", |
|
"100158","100154","100153","100142","100145","100150","100162", |
|
"100159","100144","100151","100157","100161","100146","100155" |
|
] |
|
) |
|
|
|
class PTBenchmarkConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for PTBenchmark.""" |
|
|
|
def __init__( |
|
self, |
|
task_type: str, |
|
data_urls: Union[str, Dict[str, str]], |
|
citation: str, |
|
url: str, |
|
label_classes: Optional[List[Union[str, int]]] = None, |
|
file_type: Optional[str] = None, |
|
text_and_label_columns: Optional[List[str]] = None, |
|
indexes_url: Optional[str] = None, |
|
process_label: Callable[[str], str] = lambda x: x, |
|
filter: Callable = lambda x: True, |
|
extra_configs: Dict = {}, |
|
**kwargs, |
|
): |
|
"""BuilderConfig for GLUE. |
|
Args: |
|
text_features: `dict[string, string]`, map from the name of the feature |
|
dict for each text field to the name of the column in the tsv file |
|
label_column: `string`, name of the column in the tsv file corresponding |
|
to the label |
|
data_url: `string`, url to download the zip file from |
|
data_dir: `string`, the path to the folder containing the tsv files in the |
|
downloaded zip |
|
citation: `string`, citation for the data set |
|
url: `string`, url for information about the data set |
|
label_classes: `list[string]`, the list of classes if the label is |
|
categorical. If not provided, then the label will be of type |
|
`datasets.Value('float32')`. |
|
process_label: `Function[string, any]`, function taking in the raw value |
|
of the label and processing it to the form required by the label feature |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(PTBenchmarkConfig, self).__init__(version=datasets.Version("1.0.3", ""), **kwargs) |
|
self.label_classes = label_classes |
|
self.task_type = task_type |
|
self.data_urls = data_urls |
|
self.citation = citation |
|
self.url = url |
|
self.file_type = file_type |
|
self.text_and_label_columns = text_and_label_columns |
|
self.indexes_url = indexes_url |
|
self.process_label = process_label |
|
self.filter = filter |
|
self.extra_configs = extra_configs |
|
|
|
def _get_classification_features(config: PTBenchmarkConfig): |
|
return datasets.Features( |
|
{ |
|
"idx": datasets.Value("int32"), |
|
"sentence": datasets.Value("string"), |
|
"label": datasets.features.ClassLabel(names=config.label_classes), |
|
} |
|
) |
|
|
|
def _get_multilabel_classification_features(config: PTBenchmarkConfig): |
|
return datasets.Features( |
|
{ |
|
"idx": datasets.Value("int32"), |
|
"sentence": datasets.Value("string"), |
|
"labels": datasets.Sequence( |
|
datasets.features.ClassLabel(names=config.label_classes) |
|
), |
|
} |
|
) |
|
|
|
def _get_ner_features(config: PTBenchmarkConfig): |
|
bio_labels = ["O"] |
|
for label_name in config.label_classes: |
|
bio_labels.append("B-" + label_name) |
|
bio_labels.append("I-" + label_name) |
|
return datasets.Features( |
|
{ |
|
"idx": datasets.Value("int32"), |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"ner_tags": datasets.Sequence( |
|
datasets.features.ClassLabel(names=bio_labels) |
|
), |
|
} |
|
) |
|
|
|
def _get_rte_features(config: PTBenchmarkConfig): |
|
return datasets.Features( |
|
{ |
|
"idx": datasets.Value("int32"), |
|
"sentence1": datasets.Value("string"), |
|
"sentence2": datasets.Value("string"), |
|
"label": datasets.features.ClassLabel(names=config.label_classes), |
|
} |
|
) |
|
|
|
def _get_sts_features(config: PTBenchmarkConfig = None): |
|
return datasets.Features( |
|
{ |
|
"idx": datasets.Value("int32"), |
|
"sentence1": datasets.Value("string"), |
|
"sentence2": datasets.Value("string"), |
|
"label": datasets.Value("float32"), |
|
} |
|
) |
|
|
|
def _csv_generator(file_path: str, |
|
config: PTBenchmarkConfig, |
|
indexes_path: Optional[str] = None, |
|
split: Optional[str] = None |
|
): |
|
"""Yields examples.""" |
|
df = pd.read_csv(file_path) |
|
columns = config.text_and_label_columns |
|
df = df[columns] |
|
|
|
with open(indexes_path, "r") as f: |
|
indexes= json.load(f) |
|
split_indexes = indexes[split] |
|
df_split = df.iloc[split_indexes] |
|
|
|
for id_, row in df_split.iterrows(): |
|
example = { |
|
"idx": id_, |
|
"sentence": str(row[columns[0]]), |
|
"label": config.process_label(str(row[columns[-1]])) |
|
} |
|
yield id_, example |
|
|
|
def _conll_ner_generator(file_path: str, config: PTBenchmarkConfig): |
|
with open(file_path, encoding="utf-8") as f: |
|
|
|
guid = 0 |
|
tokens = [] |
|
ner_tags = [] |
|
|
|
for line in f: |
|
if line == "" or line == "\n": |
|
if tokens: |
|
|
|
if len(tokens) == 1 and tokens[0] == '.': |
|
guid += 1 |
|
tokens = [] |
|
ner_tags = [] |
|
continue |
|
yield guid, { |
|
"idx": guid, |
|
"tokens": tokens, |
|
"ner_tags": ner_tags, |
|
} |
|
guid += 1 |
|
tokens = [] |
|
ner_tags = [] |
|
else: |
|
splits = line.split(" ") |
|
tokens.append(splits[0]) |
|
ner_tags.append(config.process_label(splits[1].rstrip())) |
|
|
|
|
|
yield guid, { |
|
"idx": guid, |
|
"tokens": tokens, |
|
"ner_tags": ner_tags, |
|
} |
|
|
|
def _assin2_generator(file_path, config: PTBenchmarkConfig): |
|
"""Yields examples.""" |
|
id_ = 0 |
|
|
|
with open(file_path, "rb") as f: |
|
|
|
tree = ET.parse(f) |
|
root = tree.getroot() |
|
|
|
task_type = config.task_type |
|
|
|
for pair in root: |
|
|
|
example = { |
|
"idx": int(pair.attrib.get("id")), |
|
"sentence1": pair.find(".//t").text, |
|
"sentence2": pair.find(".//h").text |
|
} |
|
if task_type == "rte": |
|
example["label"] = pair.attrib.get("entailment").upper() |
|
elif task_type == "sts": |
|
example["label"] = float(config.process_label(pair.attrib.get("similarity"))) |
|
|
|
yield id_, example |
|
id_ += 1 |
|
|
|
def _hf_dataset_generator(split, config: PTBenchmarkConfig): |
|
dataset = datasets.load_dataset(config.data_urls, split=split, **config.extra_configs) |
|
feature_col, label_col = config.text_and_label_columns |
|
|
|
target_feature_col, target_label_col = feature_col, label_col |
|
if config.task_type == "classification": |
|
target_feature_col, target_label_col = "sentence", "label" |
|
elif config.task_type == "multilabel_classification": |
|
target_feature_col, target_label_col = "sentence", "labels" |
|
elif config.task_type == "ner": |
|
target_feature_col, target_label_col = "tokens", "ner_tags" |
|
|
|
for id, item in enumerate(dataset): |
|
|
|
if not config.filter(item): |
|
continue |
|
|
|
label = item[label_col] |
|
|
|
if isinstance(dataset.features[label_col], ClassLabel): |
|
if isinstance(label, list): |
|
label = [dataset.features[label_col].int2str(l) for l in label] |
|
else: |
|
label = dataset.features[label_col].int2str(label) |
|
|
|
|
|
if isinstance(label, list): |
|
label = [config.process_label(l) for l in label] |
|
else: |
|
label = config.process_label(label) |
|
|
|
|
|
if config.task_type != "ner": |
|
if isinstance(label, list): |
|
invalid = False |
|
for i in range(len(label)): |
|
if label[i] not in config.label_classes: |
|
invalid = True |
|
break |
|
if invalid: |
|
continue |
|
else: |
|
if label not in config.label_classes: |
|
continue |
|
|
|
yield id, { |
|
"idx": id, |
|
target_feature_col: item[feature_col], |
|
target_label_col: label, |
|
} |
|
|
|
class PTBenchmark(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = [ |
|
PTBenchmarkConfig( |
|
**CONFIG_KWARGS |
|
) \ |
|
for CONFIG_KWARGS in \ |
|
[_LENERBR_KWARGS, _ASSIN2_RTE_KWARGS, _ASSIN2_STS_KWARGS, _HATEBR_KWARGS, |
|
_ULYSSESNER_PL_KWARGS, _ULYSSESNER_C_KWARGS, _ULYSSESNER_PL_TIPOS_KWARGS, |
|
_ULYSSESNER_C_TIPOS_KWARGS, _BRAZILIAN_COURT_DECISIONS_JUDGMENT, |
|
_BRAZILIAN_COURT_DECISIONS_UNANIMITY, HAREM_DEFAULT_KWARGS, HAREM_SELECTIVE_KWARGS, |
|
_MULTIEURLEX_BASE_KWARGS, _MAPA_COARSE_KWARGS, _MAPA_FINE_KWARGS] |
|
] |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
features = None |
|
if self.config.task_type == "classification": |
|
features = _get_classification_features(self.config) |
|
elif self.config.task_type == "multilabel_classification": |
|
features = _get_multilabel_classification_features(self.config) |
|
elif self.config.task_type == "ner": |
|
features = _get_ner_features(self.config) |
|
elif self.config.task_type == "rte": |
|
features = _get_rte_features(self.config) |
|
elif self.config.task_type == "sts": |
|
features = _get_sts_features(self.config) |
|
|
|
return datasets.DatasetInfo( |
|
description=self.config.description, |
|
homepage=self.config.url, |
|
citation=self.config.citation, |
|
supervised_keys=None, |
|
features=features |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager): |
|
if self.config.file_type == 'hf_dataset': |
|
return [ |
|
datasets.SplitGenerator( |
|
name=split, |
|
gen_kwargs={"split": split}, |
|
) |
|
for split in [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST] |
|
] |
|
data_urls = self.config.data_urls.copy() |
|
if self.config.indexes_url is not None: |
|
data_urls['indexes'] = self.config.indexes_url |
|
file_paths = dl_manager.download_and_extract(data_urls) |
|
|
|
if self.config.indexes_url is None: |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"file_path": file_paths["train"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"file_path": file_paths["validation"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"file_path": file_paths["test"]}, |
|
) |
|
] |
|
else: |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"file_path": file_paths["train"], "indexes_path": file_paths["indexes"], "split": "train"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"file_path": file_paths["train"], "indexes_path": file_paths["indexes"], "split": "validation"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"file_path": file_paths["train"], "indexes_path": file_paths["indexes"], "split": "test"}, |
|
) |
|
] |
|
|
|
def _generate_examples( |
|
self, |
|
file_path: Optional[str] = None, |
|
indexes_path: Optional[str] = None, |
|
split: Optional[str] = None |
|
): |
|
logger.info("⏳ Generating examples from = %s", file_path) |
|
if self.config.file_type == "hf_dataset": |
|
yield from _hf_dataset_generator(split, self.config) |
|
return |
|
|
|
if self.config.task_type == "classification": |
|
if self.config.file_type == "csv": |
|
yield from _csv_generator( |
|
file_path, |
|
self.config, |
|
indexes_path=indexes_path, |
|
split=split |
|
) |
|
elif self.config.task_type == "multilabel_classification": |
|
pass |
|
elif self.config.task_type == "ner": |
|
yield from _conll_ner_generator(file_path, self.config) |
|
elif self.config.task_type == "rte": |
|
if "assin2" in self.config.name: |
|
yield from _assin2_generator(file_path, self.config) |
|
elif self.config.task_type == "sts": |
|
if "assin2" in self.config.name: |
|
yield from _assin2_generator(file_path, self.config) |
|
|
|
|