Datasets:
File size: 35,746 Bytes
1de8de7 69440bb afa14ae 88bda97 1de8de7 7fcc229 88bda97 1de8de7 7fcc229 1de8de7 7fcc229 1de8de7 88bda97 1de8de7 7fcc229 1de8de7 7fcc229 88bda97 7fcc229 41b694a 7fcc229 88bda97 afa14ae 88bda97 afa14ae 7fcc229 4e2de79 640c6d6 69440bb 640c6d6 69440bb 640c6d6 4e2de79 69440bb 640c6d6 69440bb 4e2de79 69440bb 640c6d6 69440bb 640c6d6 69440bb 640c6d6 1de8de7 88bda97 69440bb 88bda97 afa14ae 640c6d6 1de8de7 88bda97 afa14ae 640c6d6 88bda97 4e2de79 88bda97 1de8de7 640c6d6 4e2de79 1de8de7 88bda97 1de8de7 4e2de79 88bda97 7fcc229 4e2de79 88bda97 cb8eda9 88bda97 cb8eda9 88bda97 afa14ae 88bda97 afa14ae 88bda97 41b694a cb8eda9 1de8de7 08d39bb 5d3fb60 08d39bb 1de8de7 41b694a 1de8de7 afa14ae 1de8de7 41b694a 1de8de7 cb8eda9 7fcc229 afa14ae 7fcc229 41b694a 7fcc229 41b694a 7fcc229 afa14ae 41b694a afa14ae 7fcc229 41b694a 7fcc229 640c6d6 1de8de7 69440bb 640c6d6 1de8de7 88bda97 640c6d6 88bda97 7fcc229 88bda97 41b694a 88bda97 1de8de7 69440bb 88bda97 1de8de7 88bda97 1de8de7 69440bb 640c6d6 69440bb 88bda97 cb8eda9 88bda97 cb8eda9 88bda97 640c6d6 88bda97 640c6d6 7fcc229 cb8eda9 41b694a cb8eda9 41b694a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 |
import datasets
from datasets import ClassLabel
from typing import Dict, List, Optional, Union, Callable
import json
import textwrap
import xml.etree.ElementTree as ET
import pandas as pd
logger = datasets.logging.get_logger(__name__)
# Extracted from:
# - https://huggingface.co/datasets/lener_br
# - https://github.com/peluz/lener-br
# - https://teodecampos.github.io/LeNER-Br/
_LENERBR_KWARGS = dict(
name = "LeNER-Br",
description=textwrap.dedent(
"""\
LeNER-Br is a Portuguese language dataset for named entity recognition applied to legal documents.
LeNER-Br consists entirely of manually annotated legislation and legal cases texts and contains tags
for persons, locations, time entities, organizations, legislation and legal cases. To compose the dataset,
66 legal documents from several Brazilian Courts were collected. Courts of superior and state levels were considered,
such as Supremo Tribunal Federal, Superior Tribunal de Justiça, Tribunal de Justiça de Minas Gerais and Tribunal de Contas da União.
In addition, four legislation documents were collected, such as "Lei Maria da Penha", giving a total of 70 documents."""
),
task_type="ner",
label_classes=["ORGANIZACAO", "PESSOA", "TEMPO", "LOCAL", "LEGISLACAO", "JURISPRUDENCIA"],
data_urls={
"train": "https://raw.githubusercontent.com/peluz/lener-br/master/leNER-Br/train/train.conll",
"validation": "https://raw.githubusercontent.com/peluz/lener-br/master/leNER-Br/dev/dev.conll",
"test": "https://raw.githubusercontent.com/peluz/lener-br/master/leNER-Br/test/test.conll",
},
citation=textwrap.dedent(
"""\
@InProceedings{luz_etal_propor2018,
author = {Pedro H. {Luz de Araujo} and Te\'{o}filo E. {de Campos} and
Renato R. R. {de Oliveira} and Matheus Stauffer and
Samuel Couto and Paulo Bermejo},
title = {{LeNER-Br}: a Dataset for Named Entity Recognition in {Brazilian} Legal Text},
booktitle = {International Conference on the Computational Processing of Portuguese ({PROPOR})},
publisher = {Springer},
series = {Lecture Notes on Computer Science ({LNCS})},
pages = {313--323},
year = {2018},
month = {September 24-26},
address = {Canela, RS, Brazil},
doi = {10.1007/978-3-319-99722-3_32},
url = {https://teodecampos.github.io/LeNER-Br/},
}"""
),
url="https://teodecampos.github.io/LeNER-Br/",
)
# Extracted from:
# - https://huggingface.co/datasets/assin2
# - https://sites.google.com/view/assin2
# - https://github.com/ruanchaves/assin
_ASSIN2_BASE_KWARGS = dict(
description=textwrap.dedent(
"""\
The ASSIN 2 corpus is composed of rather simple sentences. Following the procedures of SemEval 2014 Task 1.
The training and validation data are composed, respectively, of 6,500 and 500 sentence pairs in Brazilian Portuguese,
annotated for entailment and semantic similarity. Semantic similarity values range from 1 to 5, and text entailment
classes are either entailment or none. The test data are composed of approximately 3,000 sentence pairs with the same
annotation. All data were manually annotated."""
),
data_urls={
"train": "https://github.com/ruanchaves/assin/raw/master/sources/assin2-train-only.xml",
"validation": "https://github.com/ruanchaves/assin/raw/master/sources/assin2-dev.xml",
"test": "https://github.com/ruanchaves/assin/raw/master/sources/assin2-test.xml",
},
citation=textwrap.dedent(
"""\
@inproceedings{real2020assin,
title={The assin 2 shared task: a quick overview},
author={Real, Livy and Fonseca, Erick and Oliveira, Hugo Goncalo},
booktitle={International Conference on Computational Processing of the Portuguese Language},
pages={406--412},
year={2020},
organization={Springer}
}"""
),
url="https://sites.google.com/view/assin2",
)
_ASSIN2_RTE_KWARGS = dict(
name = "assin2-rte",
task_type="rte",
label_classes=["NONE", "ENTAILMENT"],
**_ASSIN2_BASE_KWARGS
)
_ASSIN2_STS_KWARGS = dict(
name = "assin2-sts",
task_type="sts",
**_ASSIN2_BASE_KWARGS
)
# Extracted from:
# - https://huggingface.co/datasets/ruanchaves/hatebr
# - https://github.com/franciellevargas/HateBR
_HATEBR_KWARGS = dict(
name = "HateBR",
description=textwrap.dedent(
"""\
HateBR is the first large-scale expert annotated dataset of Brazilian Instagram comments for abusive language detection
on the web and social media. The HateBR was collected from Brazilian Instagram comments of politicians and manually annotated
by specialists. It is composed of 7,000 documents annotated according to three different layers: a binary classification (offensive
versus non-offensive comments), offensiveness-level (highly, moderately, and slightly offensive messages), and nine hate speech
groups (xenophobia, racism, homophobia, sexism, religious intolerance, partyism, apology for the dictatorship, antisemitism,
and fatphobia). Each comment was annotated by three different annotators and achieved high inter-annotator agreement. Furthermore,
baseline experiments were implemented reaching 85% of F1-score outperforming the current literature dataset baselines for
the Portuguese language. We hope that the proposed expert annotated dataset may foster research on hate speech detection in the
Natural Language Processing area."""
),
task_type="classification",
file_type="csv",
label_classes=["non-offensive", "slightly", "moderately", "highly"],
data_urls={
"train": "https://raw.githubusercontent.com/franciellevargas/HateBR/2d18c5b9410c2dfdd6d5394caa54d608857dae7c/dataset/HateBR.csv"
},
citation=textwrap.dedent(
"""\
@inproceedings{vargas2022hatebr,
title={HateBR: A Large Expert Annotated Corpus of Brazilian Instagram Comments for Offensive Language and Hate Speech Detection},
author={Vargas, Francielle and Carvalho, Isabelle and de G{\'o}es, Fabiana Rodrigues and Pardo, Thiago and Benevenuto, Fabr{\'\i}cio},
booktitle={Proceedings of the Thirteenth Language Resources and Evaluation Conference},
pages={7174--7183},
year={2022}
}"""
),
url="https://github.com/franciellevargas/HateBR",
text_and_label_columns=["instagram_comments", "offensiveness_levels"],
indexes_url="https://huggingface.co/datasets/ruanchaves/hatebr/raw/main/indexes.json"
)
hatebr_map = {
"0": "non-offensive",
"1": "slightly",
"2": "moderately",
"3": "highly",
}
_HATEBR_KWARGS['process_label'] = lambda x: hatebr_map[x]
# Extracted from:
# - https://github.com/ulysses-camara/ulysses-ner-br
_ULYSSESNER_META_KWARGS = dict(
description=textwrap.dedent(
"""\
UlyssesNER-Br is a corpus of Brazilian Legislative Documents for NER with quality baselines.
The presented corpus consists of bills and legislative consultations from Brazilian Chamber of Deputies.
UlyssesNER-Br has seven semantic classes or categories. Based on HAREM,
we defined five typical categories: person, location, organization, event and date.
In addition, we defined two specific semantic classes for the legislative domain:
law foundation and law product. The law foundation category makes reference to
entities related to laws, resolutions, decrees, as well as to domain-specific entities
such as bills, which are law proposals being discussed by the parliament, and legislative consultations,
also known as job requests made by the parliamentarians.
The law product entity refers to systems, programs, and other products created
from legislation."""
),
task_type="ner",
citation=textwrap.dedent(
"""\
@InProceedings{10.1007/978-3-030-98305-5_1,
author="Albuquerque, Hidelberg O.
and Costa, Rosimeire
and Silvestre, Gabriel
and Souza, Ellen
and da Silva, N{\'a}dia F. F.
and Vit{\'o}rio, Douglas
and Moriyama, Gyovana
and Martins, Lucas
and Soezima, Luiza
and Nunes, Augusto
and Siqueira, Felipe
and Tarrega, Jo{\~a}o P.
and Beinotti, Joao V.
and Dias, Marcio
and Silva, Matheus
and Gardini, Miguel
and Silva, Vinicius
and de Carvalho, Andr{\'e} C. P. L. F.
and Oliveira, Adriano L. I.",
editor="Pinheiro, Vl{\'a}dia
and Gamallo, Pablo
and Amaro, Raquel
and Scarton, Carolina
and Batista, Fernando
and Silva, Diego
and Magro, Catarina
and Pinto, Hugo",
title="UlyssesNER-Br: A Corpus of Brazilian Legislative Documents for Named Entity Recognition",
booktitle="Computational Processing of the Portuguese Language",
year="2022",
publisher="Springer International Publishing",
address="Cham",
pages="3--14",
isbn="978-3-030-98305-5"
}
@InProceedings{10.1007/978-3-031-16474-3_62,
author="Costa, Rosimeire
and Albuquerque, Hidelberg Oliveira
and Silvestre, Gabriel
and Silva, N{\'a}dia F{\'e}lix F.
and Souza, Ellen
and Vit{\'o}rio, Douglas
and Nunes, Augusto
and Siqueira, Felipe
and Pedro Tarrega, Jo{\~a}o
and Vitor Beinotti, Jo{\~a}o
and de Souza Dias, M{\'a}rcio
and Pereira, Fab{\'i}ola S. F.
and Silva, Matheus
and Gardini, Miguel
and Silva, Vinicius
and de Carvalho, Andr{\'e} C. P. L. F.
and Oliveira, Adriano L. I.",
editor="Marreiros, Goreti
and Martins, Bruno
and Paiva, Ana
and Ribeiro, Bernardete
and Sardinha, Alberto",
title="Expanding UlyssesNER-Br Named Entity Recognition Corpus with Informal User-Generated Text",
booktitle="Progress in Artificial Intelligence",
year="2022",
publisher="Springer International Publishing",
address="Cham",
pages="767--779",
isbn="978-3-031-16474-3"
}"""
),
url="https://github.com/ulysses-camara/ulysses-ner-br",
)
_ULYSSESNER_PL_KWARGS = dict(
name = "UlyssesNER-Br-PL-coarse",
data_urls = {
"train": "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/PL_corpus_conll/pl_corpus_categorias/train.txt",
"validation": "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/PL_corpus_conll/pl_corpus_categorias/valid.txt",
"test": "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/PL_corpus_conll/pl_corpus_categorias/test.txt",
},
label_classes = ['DATA', 'EVENTO', 'FUNDAMENTO', 'LOCAL', 'ORGANIZACAO', 'PESSOA', 'PRODUTODELEI'],
**_ULYSSESNER_META_KWARGS
)
_ULYSSESNER_C_KWARGS = dict(
name = "UlyssesNER-Br-C-coarse",
data_urls = {
"train": "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/C_corpus_conll/c_corpus_categorias/train.txt",
"validation": "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/C_corpus_conll/c_corpus_categorias/valid.txt",
"test": "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/C_corpus_conll/c_corpus_categorias/test.txt",
},
label_classes = ['DATA', 'EVENTO', 'FUNDAMENTO', 'LOCAL', 'ORGANIZACAO', 'PESSOA', 'PRODUTODELEI'],
**_ULYSSESNER_META_KWARGS
)
_ULYSSESNER_PL_TIPOS_KWARGS = dict(
name = "UlyssesNER-Br-PL-fine",
data_urls = {
"train": "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/PL_corpus_conll/pl_corpus_tipos/train.txt",
"validation": "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/PL_corpus_conll/pl_corpus_tipos/valid.txt",
"test": "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/PL_corpus_conll/pl_corpus_tipos/test.txt",
},
label_classes = ['DATA', 'EVENTO', 'FUNDapelido', 'FUNDlei', 'FUNDprojetodelei', 'LOCALconcreto', 'LOCALvirtual', \
'ORGgovernamental', 'ORGnaogovernamental', 'ORGpartido', 'PESSOAcargo', 'PESSOAgrupocargo', 'PESSOAindividual', \
'PRODUTOoutros', 'PRODUTOprograma', 'PRODUTOsistema'],
**_ULYSSESNER_META_KWARGS
)
_ULYSSESNER_C_TIPOS_KWARGS = dict(
name = "UlyssesNER-Br-C-fine",
data_urls = {
"train": "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/C_corpus_conll/c_corpus_tipos/train.txt",
"validation": "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/C_corpus_conll/c_corpus_tipos/valid.txt",
"test": "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/C_corpus_conll/c_corpus_tipos/test.txt",
},
label_classes = ['DATA', 'EVENTO', 'FUNDapelido', 'FUNDlei', 'FUNDprojetodelei', 'LOCALconcreto', 'LOCALvirtual', \
'ORGgovernamental', 'ORGnaogovernamental', 'ORGpartido', 'PESSOAcargo', 'PESSOAgrupocargo', 'PESSOAgrupoind', \
'PESSOAindividual', 'PRODUTOoutros', 'PRODUTOprograma', 'PRODUTOsistema'],
**_ULYSSESNER_META_KWARGS
)
_BRAZILIAN_COURT_DECISIONS_JUDGMENT = dict(
name = "brazilian_court_decisions_judgment",
task_type = "classification",
data_urls = "joelito/brazilian_court_decisions",
text_and_label_columns = ["decision_description", "judgment_label"],
file_type="hf_dataset",
url = "https://github.com/lagefreitas/predicting-brazilian-court-decisions",
description =textwrap.dedent(
"""\
The dataset is a collection of 4043 Ementa (summary) court decisions and their metadata from the Tribunal de
Justiça de Alagoas (TJAL, the State Supreme Court of Alagoas (Brazil). The court decisions are labeled according
to 7 categories and whether the decisions were unanimous on the part of the judges or not. The dataset
supports the task of Legal Judgment Prediction."""
),
citation = textwrap.dedent(
"""\
@article{Lage-Freitas2022,
author = {Lage-Freitas, Andr{\'{e}} and Allende-Cid, H{\'{e}}ctor and Santana, Orivaldo and Oliveira-Lage, L{\'{i}}via},
doi = {10.7717/peerj-cs.904},
issn = {2376-5992},
journal = {PeerJ. Computer science},
keywords = {Artificial intelligence,Jurimetrics,Law,Legal,Legal NLP,Legal informatics,Legal outcome forecast,Litigation prediction,Machine learning,NLP,Portuguese,Predictive algorithms,judgement prediction},
language = {eng},
month = {mar},
pages = {e904--e904},
publisher = {PeerJ Inc.},
title = {{Predicting Brazilian Court Decisions}},
url = {https://pubmed.ncbi.nlm.nih.gov/35494851 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044329/},
volume = {8},
year = {2022}
}"""
),
label_classes = ["no", "partial", "yes"]
)
_BRAZILIAN_COURT_DECISIONS_UNANIMITY = {
**_BRAZILIAN_COURT_DECISIONS_JUDGMENT,
"name": "brazilian_court_decisions_unanimity",
"text_and_label_columns": ["decision_description", "unanimity_label"],
"label_classes": ["unanimity", "not-unanimity"],
}
HAREM_BASE_KWARGS = dict(
description=textwrap.dedent(
"""\
The HAREM is a Portuguese language corpus commonly used for Named Entity Recognition tasks. It includes about 93k words, from 129 different texts,
from several genres, and language varieties. The split of this dataset version follows the division made by [1], where 7% HAREM
documents are the validation set and the miniHAREM corpus (with about 65k words) is the test set. There are two versions of the dataset set,
a version that has a total of 10 different named entity classes (Person, Organization, Location, Value, Date, Title, Thing, Event,
Abstraction, and Other) and a "selective" version with only 5 classes (Person, Organization, Location, Value, and Date).
It's important to note that the original version of the HAREM dataset has 2 levels of NER details, namely "Category" and "Sub-type".
The dataset version processed here ONLY USE the "Category" level of the original dataset.
[1] Souza, Fábio, Rodrigo Nogueira, and Roberto Lotufo. "BERTimbau: Pretrained BERT Models for Brazilian Portuguese."
Brazilian Conference on Intelligent Systems. Springer, Cham, 2020."""
),
task_type="ner",
data_urls="harem",
file_type="hf_dataset",
text_and_label_columns = ["tokens", "ner_tags"],
citation=textwrap.dedent(
"""\
@inproceedings{santos2006harem,
title={Harem: An advanced ner evaluation contest for portuguese},
author={Santos, Diana and Seco, Nuno and Cardoso, Nuno and Vilela, Rui},
booktitle={quot; In Nicoletta Calzolari; Khalid Choukri; Aldo Gangemi; Bente Maegaard; Joseph Mariani; Jan Odjik; Daniel Tapias (ed) Proceedings of the 5 th International Conference on Language Resources and Evaluation (LREC'2006)(Genoa Italy 22-28 May 2006)},
year={2006}
}"""
),
url="https://www.linguateca.pt/primeiroHAREM/harem_coleccaodourada_en.html",
)
HAREM_DEFAULT_KWARGS = dict(
name = "harem-default",
extra_configs = {"name": "default"},
label_classes = ["PESSOA", "ORGANIZACAO", "LOCAL", "TEMPO", "VALOR", "ABSTRACCAO", "ACONTECIMENTO", "COISA", "OBRA", "OUTRO"],
**HAREM_BASE_KWARGS
)
HAREM_SELECTIVE_KWARGS = dict(
name = "harem-selective",
extra_configs = {"name": "selective"},
label_classes = ["PESSOA", "ORGANIZACAO", "LOCAL", "TEMPO", "VALOR"],
**HAREM_BASE_KWARGS
)
_MAPA_BASE_KWARGS = dict(
task_type = "ner",
data_urls = "joelito/mapa",
file_type="hf_dataset",
url = "",
description =textwrap.dedent(
"""\
The dataset consists of 12 documents (9 for Spanish due to parsing errors) taken from EUR-Lex,
a multilingual corpus of court decisions and legal dispositions in the 24 official languages
of the European Union. The documents have been annotated for named entities following the
guidelines of the MAPA project which foresees two annotation level, a general and a more
fine-grained one. The annotated corpus can be used for named entity recognition/classification."""
),
citation = textwrap.dedent(
"""\
@article{DeGibertBonet2022,
author = {{de Gibert Bonet}, Ona and {Garc{\'{i}}a Pablos}, Aitor and Cuadros, Montse and Melero, Maite},
journal = {Proceedings of the Language Resources and Evaluation Conference},
number = {June},
pages = {3751--3760},
title = {{Spanish Datasets for Sensitive Entity Detection in the Legal Domain}},
url = {https://aclanthology.org/2022.lrec-1.400},
year = {2022}
}"""
)
)
_MAPA_BASE_KWARGS['filter'] = lambda item: item["language"] == "pt"
_MAPA_COARSE_KWARGS = dict(
name = "mapa_pt_coarse",
text_and_label_columns = ["tokens", "coarse_grained"],
label_classes = ['ADDRESS', 'AMOUNT', 'DATE', 'ORGANISATION', 'PERSON', 'TIME'],
**_MAPA_BASE_KWARGS
)
_MAPA_FINE_KWARGS = dict(
name = "mapa_pt_fine",
text_and_label_columns = ["tokens", "fine_grained"],
label_classes = ['AGE', 'BUILDING', 'CITY', 'COUNTRY', 'DAY', 'ETHNIC CATEGORY',
'FAMILY NAME', 'INITIAL NAME', 'MARITAL STATUS', 'MONTH', 'NATIONALITY',
'PLACE', 'PROFESSION', 'ROLE', 'STANDARD ABBREVIATION', 'TERRITORY',
'TITLE', 'TYPE', 'UNIT', 'URL', 'VALUE', 'YEAR'],
**_MAPA_BASE_KWARGS
)
_MULTIEURLEX_BASE_KWARGS = dict(
name = "multi_eurlex_pt",
task_type = "multilabel_classification",
data_urls = "multi_eurlex",
file_type="hf_dataset",
extra_configs = {"language": "pt", "label_level": "level_1"},
text_and_label_columns = ["text", "labels"],
url = "https://github.com/nlpaueb/MultiEURLEX/",
description =textwrap.dedent(
"""\
MultiEURLEX comprises 65k EU laws in 23 official EU languages.
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
Each EUROVOC label ID is associated with a label descriptor, e.g., [60, agri-foodstuffs],
[6006, plant product], [1115, fruit]. The descriptors are also available in the 23 languages.
Chalkidis et al. (2019) published a monolingual (English) version of this dataset, called EUR-LEX,
comprising 57k EU laws with the originally assigned gold labels."""
),
citation = textwrap.dedent(
"""\
@InProceedings{chalkidis-etal-2021-multieurlex,
author = {Chalkidis, Ilias
and Fergadiotis, Manos
and Androutsopoulos, Ion},
title = {MultiEURLEX -- A multi-lingual and multi-label legal document
classification dataset for zero-shot cross-lingual transfer},
booktitle = {Proceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing},
year = {2021},
publisher = {Association for Computational Linguistics},
location = {Punta Cana, Dominican Republic},
url = {https://arxiv.org/abs/2109.00904}
}"""
),
label_classes = [
"100149","100160","100148","100147","100152","100143","100156",
"100158","100154","100153","100142","100145","100150","100162",
"100159","100144","100151","100157","100161","100146","100155"
]
)
class PTBenchmarkConfig(datasets.BuilderConfig):
"""BuilderConfig for PTBenchmark."""
def __init__(
self,
task_type: str,
data_urls: Union[str, Dict[str, str]],
citation: str,
url: str,
label_classes: Optional[List[Union[str, int]]] = None,
file_type: Optional[str] = None, #filetype (csv, tsc, jsonl)
text_and_label_columns: Optional[List[str]] = None, #columns for train, dev and test for csv datasets
indexes_url: Optional[str] = None, #indexes for train, dev and test for single file datasets
process_label: Callable[[str], str] = lambda x: x,
filter: Callable = lambda x: True,
extra_configs: Dict = {},
**kwargs,
):
"""BuilderConfig for GLUE.
Args:
text_features: `dict[string, string]`, map from the name of the feature
dict for each text field to the name of the column in the tsv file
label_column: `string`, name of the column in the tsv file corresponding
to the label
data_url: `string`, url to download the zip file from
data_dir: `string`, the path to the folder containing the tsv files in the
downloaded zip
citation: `string`, citation for the data set
url: `string`, url for information about the data set
label_classes: `list[string]`, the list of classes if the label is
categorical. If not provided, then the label will be of type
`datasets.Value('float32')`.
process_label: `Function[string, any]`, function taking in the raw value
of the label and processing it to the form required by the label feature
**kwargs: keyword arguments forwarded to super.
"""
super(PTBenchmarkConfig, self).__init__(version=datasets.Version("1.0.3", ""), **kwargs)
self.label_classes = label_classes
self.task_type = task_type
self.data_urls = data_urls
self.citation = citation
self.url = url
self.file_type = file_type
self.text_and_label_columns = text_and_label_columns
self.indexes_url = indexes_url
self.process_label = process_label
self.filter = filter
self.extra_configs = extra_configs
def _get_classification_features(config: PTBenchmarkConfig):
return datasets.Features(
{
"idx": datasets.Value("int32"),
"sentence": datasets.Value("string"),
"label": datasets.features.ClassLabel(names=config.label_classes),
}
)
def _get_multilabel_classification_features(config: PTBenchmarkConfig):
return datasets.Features(
{
"idx": datasets.Value("int32"),
"sentence": datasets.Value("string"),
"labels": datasets.Sequence(
datasets.features.ClassLabel(names=config.label_classes)
),
}
)
def _get_ner_features(config: PTBenchmarkConfig):
bio_labels = ["O"]
for label_name in config.label_classes:
bio_labels.append("B-" + label_name)
bio_labels.append("I-" + label_name)
return datasets.Features(
{
"idx": datasets.Value("int32"),
"tokens": datasets.Sequence(datasets.Value("string")),
"ner_tags": datasets.Sequence(
datasets.features.ClassLabel(names=bio_labels)
),
}
)
def _get_rte_features(config: PTBenchmarkConfig):
return datasets.Features(
{
"idx": datasets.Value("int32"),
"sentence1": datasets.Value("string"),
"sentence2": datasets.Value("string"),
"label": datasets.features.ClassLabel(names=config.label_classes),
}
)
def _get_sts_features(config: PTBenchmarkConfig = None):
return datasets.Features(
{
"idx": datasets.Value("int32"),
"sentence1": datasets.Value("string"),
"sentence2": datasets.Value("string"),
"label": datasets.Value("float32"),
}
)
def _csv_generator(file_path: str,
config: PTBenchmarkConfig,
indexes_path: Optional[str] = None,
split: Optional[str] = None
):
"""Yields examples."""
df = pd.read_csv(file_path)
columns = config.text_and_label_columns
df = df[columns]
with open(indexes_path, "r") as f:
indexes= json.load(f)
split_indexes = indexes[split]
df_split = df.iloc[split_indexes]
for id_, row in df_split.iterrows():
example = {
"idx": id_,
"sentence": str(row[columns[0]]),
"label": config.process_label(str(row[columns[-1]]))
}
yield id_, example
def _conll_ner_generator(file_path: str, config: PTBenchmarkConfig):
with open(file_path, encoding="utf-8") as f:
guid = 0
tokens = []
ner_tags = []
for line in f:
if line == "" or line == "\n":
if tokens:
# Filter for Ulysses empty data
if len(tokens) == 1 and tokens[0] == '.':
guid += 1
tokens = []
ner_tags = []
continue
yield guid, {
"idx": guid,
"tokens": tokens,
"ner_tags": ner_tags,
}
guid += 1
tokens = []
ner_tags = []
else:
splits = line.split(" ")
tokens.append(splits[0])
ner_tags.append(config.process_label(splits[1].rstrip()))
# last example
yield guid, {
"idx": guid,
"tokens": tokens,
"ner_tags": ner_tags,
}
def _assin2_generator(file_path, config: PTBenchmarkConfig):
"""Yields examples."""
id_ = 0
with open(file_path, "rb") as f:
tree = ET.parse(f)
root = tree.getroot()
task_type = config.task_type
for pair in root:
example = {
"idx": int(pair.attrib.get("id")),
"sentence1": pair.find(".//t").text,
"sentence2": pair.find(".//h").text
}
if task_type == "rte":
example["label"] = pair.attrib.get("entailment").upper()
elif task_type == "sts":
example["label"] = float(config.process_label(pair.attrib.get("similarity")))
yield id_, example
id_ += 1
def _hf_dataset_generator(split, config: PTBenchmarkConfig):
dataset = datasets.load_dataset(config.data_urls, split=split, **config.extra_configs)
feature_col, label_col = config.text_and_label_columns
target_feature_col, target_label_col = feature_col, label_col
if config.task_type == "classification":
target_feature_col, target_label_col = "sentence", "label"
elif config.task_type == "multilabel_classification":
target_feature_col, target_label_col = "sentence", "labels"
elif config.task_type == "ner":
target_feature_col, target_label_col = "tokens", "ner_tags"
for id, item in enumerate(dataset):
#filter invalid items
if not config.filter(item):
continue
label = item[label_col]
#Convert label to original text
if isinstance(dataset.features[label_col], ClassLabel):
if isinstance(label, list):
label = [dataset.features[label_col].int2str(l) for l in label]
else:
label = dataset.features[label_col].int2str(label)
#Process label
if isinstance(label, list):
label = [config.process_label(l) for l in label]
else:
label = config.process_label(label)
#Filter out invalid classes
if config.task_type != "ner":
if isinstance(label, list):
invalid = False
for i in range(len(label)):
if label[i] not in config.label_classes:
invalid = True
break
if invalid:
continue
else:
if label not in config.label_classes:
continue
yield id, {
"idx": id,
target_feature_col: item[feature_col],
target_label_col: label,
}
class PTBenchmark(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
PTBenchmarkConfig(
**CONFIG_KWARGS
) \
for CONFIG_KWARGS in \
[_LENERBR_KWARGS, _ASSIN2_RTE_KWARGS, _ASSIN2_STS_KWARGS, _HATEBR_KWARGS,
_ULYSSESNER_PL_KWARGS, _ULYSSESNER_C_KWARGS, _ULYSSESNER_PL_TIPOS_KWARGS,
_ULYSSESNER_C_TIPOS_KWARGS, _BRAZILIAN_COURT_DECISIONS_JUDGMENT,
_BRAZILIAN_COURT_DECISIONS_UNANIMITY, HAREM_DEFAULT_KWARGS, HAREM_SELECTIVE_KWARGS,
_MULTIEURLEX_BASE_KWARGS, _MAPA_COARSE_KWARGS, _MAPA_FINE_KWARGS]
]
def _info(self) -> datasets.DatasetInfo:
features = None
if self.config.task_type == "classification":
features = _get_classification_features(self.config)
elif self.config.task_type == "multilabel_classification":
features = _get_multilabel_classification_features(self.config)
elif self.config.task_type == "ner":
features = _get_ner_features(self.config)
elif self.config.task_type == "rte":
features = _get_rte_features(self.config)
elif self.config.task_type == "sts":
features = _get_sts_features(self.config)
return datasets.DatasetInfo(
description=self.config.description,
homepage=self.config.url,
citation=self.config.citation,
supervised_keys=None,
features=features
)
def _split_generators(self, dl_manager: datasets.DownloadManager):
if self.config.file_type == 'hf_dataset':
return [
datasets.SplitGenerator(
name=split,
gen_kwargs={"split": split}, # These kwargs will be passed to _generate_examples
)
for split in [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]
]
data_urls = self.config.data_urls.copy()
if self.config.indexes_url is not None:
data_urls['indexes'] = self.config.indexes_url
file_paths = dl_manager.download_and_extract(data_urls)
if self.config.indexes_url is None:
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"file_path": file_paths["train"]},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"file_path": file_paths["validation"]},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"file_path": file_paths["test"]},
)
]
else:
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"file_path": file_paths["train"], "indexes_path": file_paths["indexes"], "split": "train"},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"file_path": file_paths["train"], "indexes_path": file_paths["indexes"], "split": "validation"},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"file_path": file_paths["train"], "indexes_path": file_paths["indexes"], "split": "test"},
)
]
def _generate_examples(
self,
file_path: Optional[str] = None,
indexes_path: Optional[str] = None,
split: Optional[str] = None
):
logger.info("⏳ Generating examples from = %s", file_path)
if self.config.file_type == "hf_dataset":
yield from _hf_dataset_generator(split, self.config)
return
if self.config.task_type == "classification":
if self.config.file_type == "csv":
yield from _csv_generator(
file_path,
self.config,
indexes_path=indexes_path,
split=split
)
elif self.config.task_type == "multilabel_classification":
pass
elif self.config.task_type == "ner":
yield from _conll_ner_generator(file_path, self.config)
elif self.config.task_type == "rte":
if "assin2" in self.config.name:
yield from _assin2_generator(file_path, self.config)
elif self.config.task_type == "sts":
if "assin2" in self.config.name:
yield from _assin2_generator(file_path, self.config)
|