File size: 2,835 Bytes
62acbf7
925ceb1
62acbf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
925ceb1
 
 
 
62acbf7
925ceb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
---
size_categories: n<1K
dataset_info:
  features:
  - name: prompt
    dtype: string
  - name: models
    sequence: string
  - name: images
    list:
    - name: path
      dtype: string
  splits:
  - name: train
    num_bytes: 827
    num_examples: 2
  download_size: 3411
  dataset_size: 827
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
tags:
- synthetic
- distilabel
- rlaif
---

<p align="left">
  <a href="https://github.com/argilla-io/distilabel">
    <img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/>
  </a>
</p>

# Dataset Card for img-prefs-distilabel-artifacts-sample

This dataset has been created with [distilabel](https://distilabel.argilla.io/).



## Dataset Summary

This dataset contains a `pipeline.yaml` which can be used to reproduce the pipeline that generated it in distilabel using the `distilabel` CLI:

```console
distilabel pipeline run --config "https://huggingface.co/datasets/dvilasuero/img-prefs-distilabel-artifacts-sample/raw/main/pipeline.yaml"
```

or explore the configuration:

```console
distilabel pipeline info --config "https://huggingface.co/datasets/dvilasuero/img-prefs-distilabel-artifacts-sample/raw/main/pipeline.yaml"
```

## Dataset structure

The examples have the following structure per configuration:


<details><summary> Configuration: default </summary><hr>

```json
{
    "images": [
        {
            "path": "artifacts/flux/images/90b884933d23c4d57ca01dbe2898d405.jpeg"
        },
        {
            "path": "artifacts/sdxl/images/90b884933d23c4d57ca01dbe2898d405.jpeg"
        },
        {
            "path": "artifacts/flux_task_2/images/90b884933d23c4d57ca01dbe2898d405.jpeg"
        }
    ],
    "models": [
        "black-forest-labs/FLUX.1-schnell",
        "stabilityai/stable-diffusion-xl-base-1.0",
        "black-forest-labs/FLUX.1-schnell"
    ],
    "prompt": "intelligence"
}
```

This subset can be loaded as:

```python
from datasets import load_dataset

ds = load_dataset("dvilasuero/img-prefs-distilabel-artifacts-sample", "default")
```

Or simply as it follows, since there's only one configuration and is named `default`: 

```python
from datasets import load_dataset

ds = load_dataset("dvilasuero/img-prefs-distilabel-artifacts-sample")
```


</details>



## Artifacts


* **Step**: `flux`
  
    * **Artifact name**: `images`
      
        * `type`: image
      
        * `library`: diffusers
      
  

* **Step**: `sdxl`
  
    * **Artifact name**: `images`
      
        * `type`: image
      
        * `library`: diffusers
      
  

* **Step**: `flux_task_2`
  
    * **Artifact name**: `images`
      
        * `type`: image
      
        * `library`: diffusers