File size: 2,835 Bytes
62acbf7 925ceb1 62acbf7 925ceb1 62acbf7 925ceb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
---
size_categories: n<1K
dataset_info:
features:
- name: prompt
dtype: string
- name: models
sequence: string
- name: images
list:
- name: path
dtype: string
splits:
- name: train
num_bytes: 827
num_examples: 2
download_size: 3411
dataset_size: 827
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
tags:
- synthetic
- distilabel
- rlaif
---
<p align="left">
<a href="https://github.com/argilla-io/distilabel">
<img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/>
</a>
</p>
# Dataset Card for img-prefs-distilabel-artifacts-sample
This dataset has been created with [distilabel](https://distilabel.argilla.io/).
## Dataset Summary
This dataset contains a `pipeline.yaml` which can be used to reproduce the pipeline that generated it in distilabel using the `distilabel` CLI:
```console
distilabel pipeline run --config "https://huggingface.co/datasets/dvilasuero/img-prefs-distilabel-artifacts-sample/raw/main/pipeline.yaml"
```
or explore the configuration:
```console
distilabel pipeline info --config "https://huggingface.co/datasets/dvilasuero/img-prefs-distilabel-artifacts-sample/raw/main/pipeline.yaml"
```
## Dataset structure
The examples have the following structure per configuration:
<details><summary> Configuration: default </summary><hr>
```json
{
"images": [
{
"path": "artifacts/flux/images/90b884933d23c4d57ca01dbe2898d405.jpeg"
},
{
"path": "artifacts/sdxl/images/90b884933d23c4d57ca01dbe2898d405.jpeg"
},
{
"path": "artifacts/flux_task_2/images/90b884933d23c4d57ca01dbe2898d405.jpeg"
}
],
"models": [
"black-forest-labs/FLUX.1-schnell",
"stabilityai/stable-diffusion-xl-base-1.0",
"black-forest-labs/FLUX.1-schnell"
],
"prompt": "intelligence"
}
```
This subset can be loaded as:
```python
from datasets import load_dataset
ds = load_dataset("dvilasuero/img-prefs-distilabel-artifacts-sample", "default")
```
Or simply as it follows, since there's only one configuration and is named `default`:
```python
from datasets import load_dataset
ds = load_dataset("dvilasuero/img-prefs-distilabel-artifacts-sample")
```
</details>
## Artifacts
* **Step**: `flux`
* **Artifact name**: `images`
* `type`: image
* `library`: diffusers
* **Step**: `sdxl`
* **Artifact name**: `images`
* `type`: image
* `library`: diffusers
* **Step**: `flux_task_2`
* **Artifact name**: `images`
* `type`: image
* `library`: diffusers
|