Dataset Viewer
Auto-converted to Parquet
image
imagewidth (px)
1.92k
1.92k
label
stringlengths
167
177
mask
imagewidth (px)
1.92k
1.92k
000000462.png 000000462.png cheerios 184.82508543192196 9.35224252490977 -52.201583957728346 0.10759713132426317 0.007961133631168014 -0.9209743493188144 -0.3743871332977169
000000459.png 000000459.png cheerios 119.02725132199598 -27.61649439810739 13.718964955211675 -0.6452797601271597 -0.47870493816711057 0.44419861708622954 -0.39641291846172166
000000475.png 000000475.png cheerios 89.81271043282024 -13.916982220333148 -5.339663656992082 0.17834277096278411 -0.47386185231241845 -0.6211842506335512 -0.5981462427644206
000000464.png 000000464.png cheerios 134.4220259048737 -24.027769862796944 -47.755402384710735 0.029440872228489904 0.19465786415292882 -0.027905497256585643 -0.9800320577352092
000000461.png 000000461.png cheerios 80.47297893853359 0.13151961792183897 -3.675177280330395 0.7074674745246351 0.07538172481154248 0.04420464267380129 -0.7013225489175815
000000469.png 000000469.png cheerios 125.36261255271305 -12.381854972414551 -30.697280594040997 0.7288979566630589 0.20635891298022477 -0.19989738733800252 -0.6214215979039338
000000471.png 000000471.png cheerios 98.909523672246 -22.243538406507653 -0.12996489815482004 0.6629807155144676 0.43507145947207504 -0.19092458263612483 -0.5785474913557096
000000472.png 000000472.png cheerios 87.35195322601956 -7.851195624019866 1.8075753173528195 -0.7181678936309714 0.15862321332155896 -0.1333943371407945 -0.6642887200396866
000000474.png 000000474.png cheerios 163.1475484239536 -15.724406015750944 -12.216743751984072 0.15380902317156075 -0.3081622612437071 -0.7101919425935503 -0.6140083141223536
000000458.png 000000458.png cheerios 102.7040436418718 -22.00906085778851 26.3635339569581 0.7098104001718775 0.5225511769266855 -0.3237645959102052 0.3439272448287236
000000468.png 000000468.png cheerios 58.26707515505264 -6.927151438363927 -14.610484913148342 0.731335767640967 0.4835525096742014 0.08024613741033192 -0.47422096409532666
000000470.png 000000470.png cheerios 98.57986979135563 -33.905387256602076 -59.1206892965004 -0.07533105509781489 0.5306803917638988 0.38967317585146066 -0.748904780300541
000000460.png 000000460.png cheerios 66.93306742682526 -2.200352583523069 -6.776426878212577 -0.07552878145948994 -0.06192576007250361 0.5869107030973173 -0.8037390310296622
000000467.png 000000467.png cheerios 65.59733827667081 -0.3283476370094789 9.87736635768824 -0.275350093682628 -0.13588365365798663 0.6234613646694941 -0.7190367760705823
000000465.png 000000465.png cheerios 165.4199440306267 -11.783221016066562 7.176082309519671 -0.17642561225205558 -0.07434289292018746 -0.5898697587122449 -0.784474859616612
000000463.png 000000463.png cheerios 77.01377963137882 -1.9423349717828131 -44.670787554163184 -0.09643070894097118 0.27189993754126446 0.3402113939490251 -0.8950015361805026

Pose Estimation Dataset

Duality AI released a 1000 image dataset for pose estimation, including images, masks, and labels -- and it's 100% free!

Just create an EDU account by clicking here.

This HuggingFace dataset is a 20 image and label sample divided into train and val folders, but you can get the rest at no cost by creating an EDU account. Once you verify your email, the link will redirect you to the dataset page.

image/png

What makes this dataset unique, useful, and capable of bridging the Sim2Real gap?

  • The digital twins are not generated by AI, but instead crafted by 3D artists to be INDISTINGUISHABLE to the model from the physical-world objects. This allows the training from this data to transfer into real-world applicability
  • The simulation software, called FalconEditor, can easily create thousands of images with varying lighting, posing, occlusions, backgrounds, camera positions, and more. This enables robust model training.
  • The labels are created along with the data, and specifically the pose-estimation labels are easier to generate in simulation than in the physical world. This not only saves large amounts of time, but also ensures the labels are incredibly accurate and reliable.

image/png This dataset is designed for pose estimation tasks, focusing on determining the position and orientation of an object in 3D space. The dataset includes images, masks, and labels for both training and validation, making it suitable for machine learning applications in 3D object tracking and computer vision. This dataset was generated using Duality.ai simulation software: FalconEditor. Try FalconEditor today to create data to be used for pose estimation on different objects.

Dataset Structure

The dataset has the following structure:

pose_estimation_dataset/
|-- train/
|   |-- images/
|   |   |-- 000000000.png
|   |   |-- 000000001.png
|   |   |-- ...
|   |-- labels/
|   |   |-- 000000000.txt
|   |   |-- 000000001.txt
|   |   |-- ...
|   |-- masks/
|       |-- 000000000.png
|       |-- 000000001.png
|       |-- ...
|-- val/
    |-- images/
    |   |-- 000000000.png
    |   |-- 000000001.png
    |   |-- ...
    |-- labels/
    |   |-- 000000000.txt
    |   |-- 000000001.txt
    |   |-- ...
    |-- masks/
        |-- 000000000.png
        |-- 000000001.png
        |-- ...

Components

  1. Images: RGB images of the object in .jpg format.
  2. Labels: Text files (.txt) containing 3D pose annotations. Each label file corresponds to an image and contains the following information:
    • Three position values [x, y, z] representing the object's location in 3D space.
    • Four quaternion values [qx, qy, qz, qw] representing the object's orientation in 3D space.
  3. Masks: Binary masks (.jpg) highlighting the object’s silhouette in the image.

Usage

To use this dataset, load the images, labels, and masks for your pose estimation pipeline. Ensure that the corresponding image, label, and mask files share the same base filename.

Example

If you have train/images/image_1.png, the corresponding files will be:

  • train/labels/image_1.txt
  • train/masks/image_1.png

Label Format

Each .txt label file contains a single line in the following format:

x y z qx qy qz qw

Example:

0.12 0.45 0.78 0.0 0.707 0.0 0.707

Licensing

license: apache-2.0

Downloads last month
13