haixuantao
commited on
Commit
·
fe79d42
1
Parent(s):
ffc2aa4
Adding policy node for controlling the robot
Browse files- README.md +10 -2
- graphs/dataflow_robot_vlm.yml +39 -17
- graphs/dataflow_vlm_basic.yml +17 -8
- operators/llm_op.py +228 -0
- operators/planning_op.py +194 -0
- operators/policy.py +44 -0
- operators/robot.py +17 -2
- operators/whisper_op.py +1 -1
README.md
CHANGED
@@ -51,7 +51,7 @@ dora up
|
|
51 |
dora start graphs/dataflow_robot_vlm.yml --attach --hot-reload
|
52 |
```
|
53 |
|
54 |
-
Current way to interact is by
|
55 |
|
56 |
## Running the demo without robot
|
57 |
|
@@ -64,4 +64,12 @@ dora up
|
|
64 |
dora start graphs/dataflow_vlm_basic.yml --attach --hot-reload
|
65 |
```
|
66 |
|
67 |
-
Current way to interact is by
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
dora start graphs/dataflow_robot_vlm.yml --attach --hot-reload
|
52 |
```
|
53 |
|
54 |
+
Current way to interact is by press up arrow key on laptop to record a message and send to the VLM
|
55 |
|
56 |
## Running the demo without robot
|
57 |
|
|
|
64 |
dora start graphs/dataflow_vlm_basic.yml --attach --hot-reload
|
65 |
```
|
66 |
|
67 |
+
Current way to interact is by press up arrow key on laptop to record a message and send to the VLM
|
68 |
+
|
69 |
+
## Kill process in case of failure
|
70 |
+
|
71 |
+
Due to a Python GIL issue, we currently meed to kill processes manually. You can use the following command to do so:
|
72 |
+
|
73 |
+
```bash
|
74 |
+
pkill -f 'import dora;'
|
75 |
+
```
|
graphs/dataflow_robot_vlm.yml
CHANGED
@@ -5,20 +5,8 @@ nodes:
|
|
5 |
python: ../operators/plot.py
|
6 |
inputs:
|
7 |
image: webcam/image
|
8 |
-
assistant_message: vlm/assistant_message
|
9 |
user_message: whisper/text
|
10 |
-
|
11 |
-
- id: vlm
|
12 |
-
operator:
|
13 |
-
python: ../operators/idefics2_op.py
|
14 |
-
inputs:
|
15 |
-
image:
|
16 |
-
source: webcam/image
|
17 |
-
queue_size: 1
|
18 |
-
instruction: whisper/text
|
19 |
-
control_reply: robot/control_reply
|
20 |
-
outputs:
|
21 |
-
- assistant_message
|
22 |
|
23 |
- id: robot
|
24 |
operator:
|
@@ -27,10 +15,10 @@ nodes:
|
|
27 |
conda_env: robomaster
|
28 |
inputs:
|
29 |
tick: dora/timer/millis/750
|
30 |
-
|
31 |
-
assistant_message: vlm/assistant_message
|
32 |
outputs:
|
33 |
- control_reply
|
|
|
34 |
|
35 |
- id: webcam
|
36 |
custom:
|
@@ -42,6 +30,40 @@ nodes:
|
|
42 |
operator:
|
43 |
python: ../operators/whisper_op.py
|
44 |
inputs:
|
45 |
-
audio: dora/timer/millis/
|
46 |
outputs:
|
47 |
-
- text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
python: ../operators/plot.py
|
6 |
inputs:
|
7 |
image: webcam/image
|
|
|
8 |
user_message: whisper/text
|
9 |
+
position: robot/position
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
- id: robot
|
12 |
operator:
|
|
|
15 |
conda_env: robomaster
|
16 |
inputs:
|
17 |
tick: dora/timer/millis/750
|
18 |
+
planning_control: planning/control
|
|
|
19 |
outputs:
|
20 |
- control_reply
|
21 |
+
- position
|
22 |
|
23 |
- id: webcam
|
24 |
custom:
|
|
|
30 |
operator:
|
31 |
python: ../operators/whisper_op.py
|
32 |
inputs:
|
33 |
+
audio: dora/timer/millis/1000
|
34 |
outputs:
|
35 |
+
- text
|
36 |
+
|
37 |
+
- id: llm
|
38 |
+
operator:
|
39 |
+
python: ../operators/llm_op.py
|
40 |
+
inputs:
|
41 |
+
text: whisper/text
|
42 |
+
reloaded: policy/reloaded
|
43 |
+
outputs:
|
44 |
+
- init
|
45 |
+
|
46 |
+
- id: policy
|
47 |
+
operator:
|
48 |
+
python: ../operators/policy.py
|
49 |
+
inputs:
|
50 |
+
init: llm/init
|
51 |
+
goal_reached: planning/goal_reached
|
52 |
+
outputs:
|
53 |
+
- set_goal
|
54 |
+
- reloaded
|
55 |
+
|
56 |
+
- id: planning
|
57 |
+
operator:
|
58 |
+
python: ../operators/planning_op.py
|
59 |
+
inputs:
|
60 |
+
position: robot/position
|
61 |
+
control_reply: robot/control_reply
|
62 |
+
set_goal: policy/set_goal
|
63 |
+
image: webcam/image
|
64 |
+
outputs:
|
65 |
+
- control
|
66 |
+
- goal_reached
|
67 |
+
|
68 |
+
|
69 |
+
|
graphs/dataflow_vlm_basic.yml
CHANGED
@@ -5,9 +5,9 @@ nodes:
|
|
5 |
python: ../operators/plot.py
|
6 |
inputs:
|
7 |
image: webcam/image
|
8 |
-
|
9 |
-
user_message: keyboard/submitted
|
10 |
assistant_message: vlm/assistant_message
|
|
|
11 |
|
12 |
- id: vlm
|
13 |
operator:
|
@@ -16,7 +16,7 @@ nodes:
|
|
16 |
image:
|
17 |
source: webcam/image
|
18 |
queue_size: 1
|
19 |
-
instruction:
|
20 |
outputs:
|
21 |
- assistant_message
|
22 |
|
@@ -28,9 +28,18 @@ nodes:
|
|
28 |
outputs:
|
29 |
- image
|
30 |
|
31 |
-
- id:
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
outputs:
|
35 |
-
-
|
36 |
-
- submitted
|
|
|
5 |
python: ../operators/plot.py
|
6 |
inputs:
|
7 |
image: webcam/image
|
8 |
+
user_message: whisper/text
|
|
|
9 |
assistant_message: vlm/assistant_message
|
10 |
+
bbox: object_detection/bbox
|
11 |
|
12 |
- id: vlm
|
13 |
operator:
|
|
|
16 |
image:
|
17 |
source: webcam/image
|
18 |
queue_size: 1
|
19 |
+
instruction: whisper/text
|
20 |
outputs:
|
21 |
- assistant_message
|
22 |
|
|
|
28 |
outputs:
|
29 |
- image
|
30 |
|
31 |
+
- id: whisper
|
32 |
+
operator:
|
33 |
+
python: ../operators/whisper_op.py
|
34 |
+
inputs:
|
35 |
+
audio: dora/timer/millis/1000
|
36 |
+
outputs:
|
37 |
+
- text
|
38 |
+
|
39 |
+
- id: object_detection
|
40 |
+
operator:
|
41 |
+
python: ../operators/object_detection.py
|
42 |
+
inputs:
|
43 |
+
image: webcam/image
|
44 |
outputs:
|
45 |
+
- bbox
|
|
operators/llm_op.py
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dora import DoraStatus
|
2 |
+
import pylcs
|
3 |
+
import os
|
4 |
+
import pyarrow as pa
|
5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
+
|
7 |
+
|
8 |
+
import re
|
9 |
+
import time
|
10 |
+
|
11 |
+
CHATGPT = False
|
12 |
+
MODEL_NAME_OR_PATH = "TheBloke/deepseek-coder-6.7B-instruct-GPTQ"
|
13 |
+
|
14 |
+
CODE_MODIFIER_TEMPLATE = """
|
15 |
+
### Instruction
|
16 |
+
Respond with one block of modified code only in ```python block. No explaination.
|
17 |
+
|
18 |
+
```python
|
19 |
+
{code}
|
20 |
+
```
|
21 |
+
|
22 |
+
{user_message}
|
23 |
+
|
24 |
+
### Response:
|
25 |
+
"""
|
26 |
+
|
27 |
+
|
28 |
+
model = AutoModelForCausalLM.from_pretrained(
|
29 |
+
MODEL_NAME_OR_PATH,
|
30 |
+
device_map="auto",
|
31 |
+
trust_remote_code=True,
|
32 |
+
revision="main",
|
33 |
+
).to("cuda:0")
|
34 |
+
|
35 |
+
|
36 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME_OR_PATH, use_fast=True)
|
37 |
+
|
38 |
+
|
39 |
+
def extract_python_code_blocks(text):
|
40 |
+
"""
|
41 |
+
Extracts Python code blocks from the given text that are enclosed in triple backticks with a python language identifier.
|
42 |
+
|
43 |
+
Parameters:
|
44 |
+
- text: A string that may contain one or more Python code blocks.
|
45 |
+
|
46 |
+
Returns:
|
47 |
+
- A list of strings, where each string is a block of Python code extracted from the text.
|
48 |
+
"""
|
49 |
+
pattern = r"```python\n(.*?)\n```"
|
50 |
+
matches = re.findall(pattern, text, re.DOTALL)
|
51 |
+
if len(matches) == 0:
|
52 |
+
pattern = r"```python\n(.*?)(?:\n```|$)"
|
53 |
+
matches = re.findall(pattern, text, re.DOTALL)
|
54 |
+
if len(matches) == 0:
|
55 |
+
return [text]
|
56 |
+
else:
|
57 |
+
matches = [remove_last_line(matches[0])]
|
58 |
+
|
59 |
+
return matches
|
60 |
+
|
61 |
+
|
62 |
+
def remove_last_line(python_code):
|
63 |
+
"""
|
64 |
+
Removes the last line from a given string of Python code.
|
65 |
+
|
66 |
+
Parameters:
|
67 |
+
- python_code: A string representing Python source code.
|
68 |
+
|
69 |
+
Returns:
|
70 |
+
- A string with the last line removed.
|
71 |
+
"""
|
72 |
+
lines = python_code.split("\n") # Split the string into lines
|
73 |
+
if lines: # Check if there are any lines to remove
|
74 |
+
lines.pop() # Remove the last line
|
75 |
+
return "\n".join(lines) # Join the remaining lines back into a string
|
76 |
+
|
77 |
+
|
78 |
+
def calculate_similarity(source, target):
|
79 |
+
"""
|
80 |
+
Calculate a similarity score between the source and target strings.
|
81 |
+
This uses the edit distance relative to the length of the strings.
|
82 |
+
"""
|
83 |
+
edit_distance = pylcs.edit_distance(source, target)
|
84 |
+
max_length = max(len(source), len(target))
|
85 |
+
# Normalize the score by the maximum possible edit distance (the length of the longer string)
|
86 |
+
similarity = 1 - (edit_distance / max_length)
|
87 |
+
return similarity
|
88 |
+
|
89 |
+
|
90 |
+
def find_best_match_location(source_code, target_block):
|
91 |
+
"""
|
92 |
+
Find the best match for the target_block within the source_code by searching line by line,
|
93 |
+
considering blocks of varying lengths.
|
94 |
+
"""
|
95 |
+
source_lines = source_code.split("\n")
|
96 |
+
target_lines = target_block.split("\n")
|
97 |
+
|
98 |
+
best_similarity = 0
|
99 |
+
best_start_index = 0
|
100 |
+
best_end_index = -1
|
101 |
+
|
102 |
+
# Iterate over the source lines to find the best matching range for all lines in target_block
|
103 |
+
for start_index in range(len(source_lines) - len(target_lines) + 1):
|
104 |
+
for end_index in range(start_index + len(target_lines), len(source_lines) + 1):
|
105 |
+
current_window = "\n".join(source_lines[start_index:end_index])
|
106 |
+
current_similarity = calculate_similarity(current_window, target_block)
|
107 |
+
if current_similarity > best_similarity:
|
108 |
+
best_similarity = current_similarity
|
109 |
+
best_start_index = start_index
|
110 |
+
best_end_index = end_index
|
111 |
+
|
112 |
+
# Convert line indices back to character indices for replacement
|
113 |
+
char_start_index = len("\n".join(source_lines[:best_start_index])) + (
|
114 |
+
1 if best_start_index > 0 else 0
|
115 |
+
)
|
116 |
+
char_end_index = len("\n".join(source_lines[:best_end_index]))
|
117 |
+
|
118 |
+
return char_start_index, char_end_index
|
119 |
+
|
120 |
+
|
121 |
+
def replace_code_in_source(source_code, replacement_block: str):
|
122 |
+
"""
|
123 |
+
Replace the best matching block in the source_code with the replacement_block, considering variable block lengths.
|
124 |
+
"""
|
125 |
+
replacement_block = extract_python_code_blocks(replacement_block)[0]
|
126 |
+
start_index, end_index = find_best_match_location(source_code, replacement_block)
|
127 |
+
if start_index != -1 and end_index != -1:
|
128 |
+
# Replace the best matching part with the replacement block
|
129 |
+
new_source = (
|
130 |
+
source_code[:start_index] + replacement_block + source_code[end_index:]
|
131 |
+
)
|
132 |
+
return new_source
|
133 |
+
else:
|
134 |
+
return source_code
|
135 |
+
|
136 |
+
|
137 |
+
class Operator:
|
138 |
+
|
139 |
+
def on_event(
|
140 |
+
self,
|
141 |
+
dora_event,
|
142 |
+
send_output,
|
143 |
+
) -> DoraStatus:
|
144 |
+
if dora_event["type"] == "INPUT" and dora_event["id"] == "text":
|
145 |
+
input = dora_event["value"][0].as_py()
|
146 |
+
# Path to the current file
|
147 |
+
current_file_path = __file__
|
148 |
+
|
149 |
+
# Directory of the current file
|
150 |
+
current_directory = os.path.dirname(current_file_path)
|
151 |
+
path = current_directory + "/policy.py"
|
152 |
+
|
153 |
+
with open(path, "r", encoding="utf8") as f:
|
154 |
+
code = f.read()
|
155 |
+
|
156 |
+
user_message = input
|
157 |
+
start_llm = time.time()
|
158 |
+
|
159 |
+
output = self.ask_llm(
|
160 |
+
CODE_MODIFIER_TEMPLATE.format(code=code, user_message=user_message)
|
161 |
+
)
|
162 |
+
|
163 |
+
source_code = replace_code_in_source(code, output)
|
164 |
+
print("response time:", time.time() - start_llm, flush=True)
|
165 |
+
|
166 |
+
print("response: ", output, flush=True)
|
167 |
+
with open(path, "w") as file:
|
168 |
+
file.write(source_code)
|
169 |
+
time.sleep(10)
|
170 |
+
send_output("init", pa.array([]))
|
171 |
+
|
172 |
+
return DoraStatus.CONTINUE
|
173 |
+
|
174 |
+
def ask_llm(self, prompt):
|
175 |
+
|
176 |
+
# Generate output
|
177 |
+
# prompt = PROMPT_TEMPLATE.format(system_message=system_message, prompt=prompt))
|
178 |
+
input = tokenizer(prompt, return_tensors="pt")
|
179 |
+
input_ids = input.input_ids.cuda()
|
180 |
+
|
181 |
+
# add attention mask here
|
182 |
+
attention_mask = input.attention_mask.cuda()
|
183 |
+
|
184 |
+
output = model.generate(
|
185 |
+
inputs=input_ids,
|
186 |
+
temperature=0.7,
|
187 |
+
do_sample=True,
|
188 |
+
top_p=0.95,
|
189 |
+
top_k=40,
|
190 |
+
max_new_tokens=512,
|
191 |
+
attention_mask=attention_mask,
|
192 |
+
eos_token_id=tokenizer.eos_token_id,
|
193 |
+
)
|
194 |
+
# Get the tokens from the output, decode them, print them
|
195 |
+
|
196 |
+
# Get text between im_start and im_end
|
197 |
+
return tokenizer.decode(output[0], skip_special_tokens=True)[len(prompt) :]
|
198 |
+
|
199 |
+
|
200 |
+
if __name__ == "__main__":
|
201 |
+
op = Operator()
|
202 |
+
|
203 |
+
# Path to the current file
|
204 |
+
current_file_path = __file__
|
205 |
+
|
206 |
+
# Directory of the current file
|
207 |
+
current_directory = os.path.dirname(current_file_path)
|
208 |
+
|
209 |
+
path = current_directory + "/policy.py"
|
210 |
+
with open(path, "r", encoding="utf8") as f:
|
211 |
+
raw = f.read()
|
212 |
+
|
213 |
+
op.on_event(
|
214 |
+
{
|
215 |
+
"type": "INPUT",
|
216 |
+
"id": "text",
|
217 |
+
"value": pa.array(
|
218 |
+
[
|
219 |
+
{
|
220 |
+
"path": path,
|
221 |
+
"user_message": "set the goal to kitchen. When you are in the kitchen ask the model if there is someone with blue shirt, if there is speak and say can I have coffee, if there is no one set the goal to home ",
|
222 |
+
},
|
223 |
+
]
|
224 |
+
),
|
225 |
+
"metadata": [],
|
226 |
+
},
|
227 |
+
print,
|
228 |
+
)
|
operators/planning_op.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import numpy as np
|
3 |
+
import pyarrow as pa
|
4 |
+
from dora import DoraStatus
|
5 |
+
|
6 |
+
GOAL = np.array([10, 20])
|
7 |
+
|
8 |
+
HOME_TO_KITCHEN = np.array([[0.5, 0], [0.5, -5.0], [1.0, 7.0]])
|
9 |
+
KITCHEN_TO_HOME = np.array([[2.0, 0.0], [0.0, 0.0]])
|
10 |
+
|
11 |
+
CAMERA_WIDTH = 960
|
12 |
+
CAMERA_HEIGHT = 540
|
13 |
+
|
14 |
+
|
15 |
+
def check_clear_road(bboxes, image_width, goal_x):
|
16 |
+
"""
|
17 |
+
Find the x-coordinate of the midpoint of the largest gap along the x-axis where no bounding boxes overlap.
|
18 |
+
|
19 |
+
Parameters:
|
20 |
+
- bboxes (np.array): A numpy array where each row represents a bounding box with
|
21 |
+
the format [min_x, min_y, max_x, max_y, confidence, label].
|
22 |
+
- image_width (int): The width of the image in pixels.
|
23 |
+
|
24 |
+
Returns:
|
25 |
+
- int: The x-coordinate of the midpoint of the largest gap where no bounding boxes overlap.
|
26 |
+
"""
|
27 |
+
if bboxes.size == 0:
|
28 |
+
# No bounding boxes, return the midpoint of the image as the largest gap
|
29 |
+
return goal_x
|
30 |
+
|
31 |
+
events = []
|
32 |
+
for bbox in bboxes:
|
33 |
+
min_x, max_x = bbox[0], bbox[2]
|
34 |
+
events.append((min_x, "enter"))
|
35 |
+
events.append((max_x, "exit"))
|
36 |
+
|
37 |
+
# Include image boundaries as part of the events
|
38 |
+
events.append(
|
39 |
+
(0, "exit")
|
40 |
+
) # Start of the image, considered an 'exit' point for logic simplicity
|
41 |
+
events.append(
|
42 |
+
(image_width, "enter")
|
43 |
+
) # End of the image, considered an 'enter' point
|
44 |
+
|
45 |
+
# Sort events, with exits before enters at the same position to ensure gap calculation correctness
|
46 |
+
events.sort(key=lambda x: (x[0], x[1] == "enter"))
|
47 |
+
|
48 |
+
# Sweep line algorithm to find the largest gap
|
49 |
+
current_boxes = 1
|
50 |
+
last_x = 0
|
51 |
+
largest_gap = 0
|
52 |
+
gap_start_x = None
|
53 |
+
largest_gap_mid = None # Midpoint of the largest gap
|
54 |
+
|
55 |
+
for x, event_type in events:
|
56 |
+
if current_boxes == 0 and gap_start_x is not None:
|
57 |
+
# Calculate gap
|
58 |
+
gap = x - gap_start_x
|
59 |
+
gap_end_x = gap_start_x + x
|
60 |
+
if goal_x < gap_end_x and goal_x > gap_start_x:
|
61 |
+
return True
|
62 |
+
elif goal_x < gap_start_x:
|
63 |
+
return False
|
64 |
+
if event_type == "enter":
|
65 |
+
current_boxes += 1
|
66 |
+
if current_boxes == 1:
|
67 |
+
gap_start_x = None # No longer in a gap
|
68 |
+
elif event_type == "exit":
|
69 |
+
current_boxes -= 1
|
70 |
+
if current_boxes == 0:
|
71 |
+
gap_start_x = x # Start of a potential gap
|
72 |
+
|
73 |
+
return False
|
74 |
+
|
75 |
+
|
76 |
+
class Operator:
|
77 |
+
def __init__(self):
|
78 |
+
self.bboxs = None
|
79 |
+
self.time = time.time()
|
80 |
+
self.position = [0, 0, 0]
|
81 |
+
self.waypoints = None
|
82 |
+
self.tf = np.array([[1, 0], [0, 1]])
|
83 |
+
self.count = 0
|
84 |
+
self.completed = True
|
85 |
+
self.image = None
|
86 |
+
|
87 |
+
def on_event(
|
88 |
+
self,
|
89 |
+
dora_event: dict,
|
90 |
+
send_output,
|
91 |
+
) -> DoraStatus:
|
92 |
+
global POSITION_GOAL, GIMBAL_GOAL
|
93 |
+
if dora_event["type"] == "INPUT":
|
94 |
+
id = dora_event["id"]
|
95 |
+
if id == "tick":
|
96 |
+
self.time = time.time()
|
97 |
+
elif id == "image":
|
98 |
+
value = dora_event["value"].to_numpy()
|
99 |
+
|
100 |
+
self.image = value.reshape((CAMERA_HEIGHT, CAMERA_WIDTH, 3))
|
101 |
+
elif id == "control_reply":
|
102 |
+
value = dora_event["value"].to_numpy()[0]
|
103 |
+
if value == self.count:
|
104 |
+
self.completed = True
|
105 |
+
elif id == "set_goal":
|
106 |
+
print("got goal:", dora_event["value"], flush=True)
|
107 |
+
|
108 |
+
if len(dora_event["value"]) > 0:
|
109 |
+
self.waypoints = dora_event["value"].to_numpy().reshape((-1, 2))
|
110 |
+
elif id == "position":
|
111 |
+
## No bounding box yet
|
112 |
+
if self.waypoints is None or len(self.waypoints) == 0:
|
113 |
+
print("no waypoint", flush=True)
|
114 |
+
return DoraStatus.CONTINUE
|
115 |
+
if self.completed == False:
|
116 |
+
print("not completed", flush=True)
|
117 |
+
return DoraStatus.CONTINUE
|
118 |
+
value = dora_event["value"].to_numpy()
|
119 |
+
[x, y, z] = value
|
120 |
+
self.position = [x, y, z]
|
121 |
+
|
122 |
+
# Remove waypoints if completed
|
123 |
+
if (
|
124 |
+
len(self.waypoints) > 0
|
125 |
+
and np.linalg.norm(self.waypoints[0] - [x, y]) < 0.2
|
126 |
+
):
|
127 |
+
self.waypoints = self.waypoints[1:]
|
128 |
+
print("removing waypoints", flush=True)
|
129 |
+
if len(self.waypoints) == 0:
|
130 |
+
print("no waypoint", flush=True)
|
131 |
+
send_output("goal_reached", pa.array(self.image.ravel()))
|
132 |
+
return DoraStatus.CONTINUE
|
133 |
+
|
134 |
+
z = np.deg2rad(z)
|
135 |
+
self.tf = np.array([[np.cos(z), -np.sin(z)], [np.sin(z), np.cos(z)]])
|
136 |
+
goal = self.tf.dot(self.waypoints[0])
|
137 |
+
goal_camera_x = (
|
138 |
+
CAMERA_WIDTH * np.arctan2(goal[1], goal[0]) / np.pi
|
139 |
+
) + CAMERA_WIDTH / 2
|
140 |
+
goal_angle = np.arctan2(goal[1], goal[0]) * 180 / np.pi
|
141 |
+
print(
|
142 |
+
"position",
|
143 |
+
[x, y],
|
144 |
+
"goal:",
|
145 |
+
goal,
|
146 |
+
"Goal angle: ",
|
147 |
+
np.arctan2(goal[1], goal[0]) * 180 / np.pi,
|
148 |
+
"z: ",
|
149 |
+
np.rad2deg(z),
|
150 |
+
"x: ",
|
151 |
+
goal_camera_x,
|
152 |
+
"count: ",
|
153 |
+
self.count,
|
154 |
+
flush=True,
|
155 |
+
)
|
156 |
+
|
157 |
+
if True: # check_clear_road(self.bboxs, CAMERA_WIDTH, goal_camera_x):
|
158 |
+
self.count += 1
|
159 |
+
self.completed = False
|
160 |
+
send_output(
|
161 |
+
"control",
|
162 |
+
pa.array(
|
163 |
+
[
|
164 |
+
{
|
165 |
+
"action": "gimbal",
|
166 |
+
"value": [0.0, goal_angle],
|
167 |
+
"count": self.count,
|
168 |
+
},
|
169 |
+
# {
|
170 |
+
# "value": [
|
171 |
+
# 0.0,
|
172 |
+
# 0.0,
|
173 |
+
# -goal_angle,
|
174 |
+
# 0.0,
|
175 |
+
# 50,
|
176 |
+
# ],
|
177 |
+
# "action": "control",
|
178 |
+
# },
|
179 |
+
{
|
180 |
+
"value": [
|
181 |
+
goal[0],
|
182 |
+
goal[1],
|
183 |
+
0.0, # -goal_angle,
|
184 |
+
0.6,
|
185 |
+
0.0, # 50,
|
186 |
+
],
|
187 |
+
"action": "control",
|
188 |
+
},
|
189 |
+
]
|
190 |
+
),
|
191 |
+
dora_event["metadata"],
|
192 |
+
)
|
193 |
+
|
194 |
+
return DoraStatus.CONTINUE
|
operators/policy.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dora import DoraStatus
|
2 |
+
import numpy as np
|
3 |
+
import pyarrow as pa
|
4 |
+
from idefics2_utils import ask_vlm
|
5 |
+
import pyttsx3
|
6 |
+
|
7 |
+
|
8 |
+
KITCHEN = np.array([[0.5, 0], [0.5, -0.5], [1.0, -1.0]]).ravel()
|
9 |
+
HOME = np.array([[0.5, -0.5], [0, 0]]).ravel()
|
10 |
+
|
11 |
+
|
12 |
+
## Policy Operator
|
13 |
+
class Operator:
|
14 |
+
def __init__(self):
|
15 |
+
engine = pyttsx3.init("espeak")
|
16 |
+
voices = engine.getProperty("voices")
|
17 |
+
engine.setProperty("voice", voices[3].id)
|
18 |
+
self.engine = engine
|
19 |
+
|
20 |
+
def speak(self, text: str):
|
21 |
+
self.engine.say(text)
|
22 |
+
|
23 |
+
# Ask vision model for information
|
24 |
+
def ask_model(self, image: np.ndarray, text: str) -> str:
|
25 |
+
text = ask_vlm(image, text)
|
26 |
+
return "Yes, " in text
|
27 |
+
|
28 |
+
def on_event(
|
29 |
+
self,
|
30 |
+
dora_event: dict,
|
31 |
+
send_output,
|
32 |
+
) -> DoraStatus:
|
33 |
+
if dora_event["type"] == "INPUT":
|
34 |
+
id = dora_event["id"]
|
35 |
+
# On initialization
|
36 |
+
if id == "init":
|
37 |
+
send_output("set_goal", pa.array([]))
|
38 |
+
|
39 |
+
# On destination goal reached
|
40 |
+
elif id == "goal_reached":
|
41 |
+
image = dora_event["value"].to_numpy().reshape((540, 960, 3))
|
42 |
+
pass
|
43 |
+
|
44 |
+
return DoraStatus.CONTINUE
|
operators/robot.py
CHANGED
@@ -3,6 +3,7 @@ from typing import Callable, Optional, Union
|
|
3 |
from enum import Enum
|
4 |
from dora import DoraStatus
|
5 |
|
|
|
6 |
import pyarrow as pa
|
7 |
|
8 |
|
@@ -86,6 +87,8 @@ class Operator:
|
|
86 |
)
|
87 |
self.backlog = []
|
88 |
self.last_control = ""
|
|
|
|
|
89 |
|
90 |
def execute_backlog(self):
|
91 |
if len(self.backlog) > 0:
|
@@ -96,6 +99,8 @@ class Operator:
|
|
96 |
self.event = self.ep_robot.chassis.move(
|
97 |
x=x, y=y, z=z, xy_speed=xy_speed, z_speed=z_speed
|
98 |
)
|
|
|
|
|
99 |
elif command["action"] == "gimbal":
|
100 |
[pitch, yaw] = command["value"]
|
101 |
print(command, flush=True)
|
@@ -111,6 +116,7 @@ class Operator:
|
|
111 |
event_type = dora_event["type"]
|
112 |
if event_type == "INPUT":
|
113 |
if dora_event["id"] == "tick":
|
|
|
114 |
if not (
|
115 |
self.event is not None
|
116 |
and not (self.event._event.isSet() and self.event.is_completed)
|
@@ -119,7 +125,11 @@ class Operator:
|
|
119 |
self.execute_backlog()
|
120 |
else:
|
121 |
print(f"sending control reply: {self.last_control}", flush=True)
|
122 |
-
send_output("
|
|
|
|
|
|
|
|
|
123 |
elif dora_event["id"] == "control":
|
124 |
raw_command = dora_event["value"][0].as_py()
|
125 |
print(raw_command, flush=True)
|
@@ -151,8 +161,13 @@ class Operator:
|
|
151 |
cmd = Command.NOD_YES
|
152 |
else:
|
153 |
cmd = Command.UNKNOWN
|
154 |
-
if len(self.backlog) == 0:
|
155 |
self.backlog += cmd.value
|
156 |
self.execute_backlog()
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
|
158 |
return DoraStatus.CONTINUE
|
|
|
3 |
from enum import Enum
|
4 |
from dora import DoraStatus
|
5 |
|
6 |
+
import numpy as np
|
7 |
import pyarrow as pa
|
8 |
|
9 |
|
|
|
87 |
)
|
88 |
self.backlog = []
|
89 |
self.last_control = ""
|
90 |
+
self.position = np.array([0, 0, 0])
|
91 |
+
self.count = -1
|
92 |
|
93 |
def execute_backlog(self):
|
94 |
if len(self.backlog) > 0:
|
|
|
99 |
self.event = self.ep_robot.chassis.move(
|
100 |
x=x, y=y, z=z, xy_speed=xy_speed, z_speed=z_speed
|
101 |
)
|
102 |
+
self.position = np.array([x, y, z])
|
103 |
+
|
104 |
elif command["action"] == "gimbal":
|
105 |
[pitch, yaw] = command["value"]
|
106 |
print(command, flush=True)
|
|
|
116 |
event_type = dora_event["type"]
|
117 |
if event_type == "INPUT":
|
118 |
if dora_event["id"] == "tick":
|
119 |
+
|
120 |
if not (
|
121 |
self.event is not None
|
122 |
and not (self.event._event.isSet() and self.event.is_completed)
|
|
|
125 |
self.execute_backlog()
|
126 |
else:
|
127 |
print(f"sending control reply: {self.last_control}", flush=True)
|
128 |
+
send_output("position", pa.array(self.position))
|
129 |
+
send_output("control_reply", pa.array([self.count]))
|
130 |
+
elif self.event is None:
|
131 |
+
send_output("position", pa.array(self.position))
|
132 |
+
|
133 |
elif dora_event["id"] == "control":
|
134 |
raw_command = dora_event["value"][0].as_py()
|
135 |
print(raw_command, flush=True)
|
|
|
161 |
cmd = Command.NOD_YES
|
162 |
else:
|
163 |
cmd = Command.UNKNOWN
|
|
|
164 |
self.backlog += cmd.value
|
165 |
self.execute_backlog()
|
166 |
+
elif dora_event["id"] == "planning_control":
|
167 |
+
command = dora_event["value"].to_pylist()
|
168 |
+
self.count = command[0]["count"]
|
169 |
+
if len(self.backlog) == 0:
|
170 |
+
self.backlog += command
|
171 |
+
self.execute_backlog()
|
172 |
|
173 |
return DoraStatus.CONTINUE
|
operators/whisper_op.py
CHANGED
@@ -11,7 +11,7 @@ import sounddevice as sd
|
|
11 |
model = whisper.load_model("base")
|
12 |
|
13 |
SAMPLE_RATE = 16000
|
14 |
-
MAX_DURATION =
|
15 |
|
16 |
|
17 |
class Operator:
|
|
|
11 |
model = whisper.load_model("base")
|
12 |
|
13 |
SAMPLE_RATE = 16000
|
14 |
+
MAX_DURATION = 15
|
15 |
|
16 |
|
17 |
class Operator:
|