haixuantao commited on
Commit
ffc2aa4
·
1 Parent(s): 3f09bdf

Use whisper instead of keyboard

Browse files
graphs/dataflow_robot_vlm.yml CHANGED
@@ -6,8 +6,7 @@ nodes:
6
  inputs:
7
  image: webcam/image
8
  assistant_message: vlm/assistant_message
9
- keyboard_buffer: keyboard/buffer
10
- user_message: keyboard/submitted
11
 
12
  - id: vlm
13
  operator:
@@ -16,7 +15,7 @@ nodes:
16
  image:
17
  source: webcam/image
18
  queue_size: 1
19
- instruction: keyboard/submitted
20
  control_reply: robot/control_reply
21
  outputs:
22
  - assistant_message
@@ -28,7 +27,8 @@ nodes:
28
  conda_env: robomaster
29
  inputs:
30
  tick: dora/timer/millis/750
31
- control: keyboard/submitted
 
32
  outputs:
33
  - control_reply
34
 
@@ -38,25 +38,10 @@ nodes:
38
  outputs:
39
  - image
40
 
41
- - id: keyboard
42
- custom:
43
- source: ../operators/keyboard_op.py
44
- outputs:
45
- - buffer
46
- - submitted
47
-
48
  - id: whisper
49
  operator:
50
  python: ../operators/whisper_op.py
51
  inputs:
52
- audio: microphone/audio
53
- outputs:
54
- - text
55
-
56
- - id: microphone
57
- operator:
58
- python: ../operators/microphone_op.py
59
- inputs:
60
- record: keyboard/submitted
61
  outputs:
62
- - audio
 
6
  inputs:
7
  image: webcam/image
8
  assistant_message: vlm/assistant_message
9
+ user_message: whisper/text
 
10
 
11
  - id: vlm
12
  operator:
 
15
  image:
16
  source: webcam/image
17
  queue_size: 1
18
+ instruction: whisper/text
19
  control_reply: robot/control_reply
20
  outputs:
21
  - assistant_message
 
27
  conda_env: robomaster
28
  inputs:
29
  tick: dora/timer/millis/750
30
+ control: whisper/text
31
+ assistant_message: vlm/assistant_message
32
  outputs:
33
  - control_reply
34
 
 
38
  outputs:
39
  - image
40
 
 
 
 
 
 
 
 
41
  - id: whisper
42
  operator:
43
  python: ../operators/whisper_op.py
44
  inputs:
45
+ audio: dora/timer/millis/500
 
 
 
 
 
 
 
 
46
  outputs:
47
+ - text
operators/idefics2_op.py CHANGED
@@ -27,9 +27,9 @@ def speak(text):
27
 
28
  class Operator:
29
  def __init__(self):
30
- self.completed = True
31
  self.instruction = "What is in the image?"
32
  self.last_message = ""
 
33
 
34
  def on_event(
35
  self,
@@ -38,54 +38,24 @@ class Operator:
38
  ) -> DoraStatus:
39
  if dora_event["type"] == "INPUT":
40
  if dora_event["id"] == "image":
41
- if True:
42
- image = (
43
- dora_event["value"]
44
- .to_numpy()
45
- .reshape((CAMERA_HEIGHT, CAMERA_WIDTH, 3))
46
- .copy()
47
- )
48
- cv2.imshow("frame2", image)
49
- if cv2.waitKey(1) & 0xFF == ord("q"):
50
- return DoraStatus.CONTINUE
51
- output = ask_vlm(image, self.instruction)
52
- cv2.putText(
53
- image,
54
- output,
55
- (20, 14 + 15 * 25),
56
- FONT,
57
- 0.5,
58
- (190, 250, 0),
59
- 2,
60
- )
61
-
62
- if self.last_message != output:
63
- speak(output)
64
- print("response: ", output, flush=True)
65
- send_output(
66
- "assistant_message",
67
- pa.array([output]),
68
- dora_event["metadata"],
69
- )
70
-
71
- # stream.feed(output)
72
-
73
- # stream.play()
74
- self.last_message = output
75
- self.completed = False
76
- else:
77
- print("Command not complete", flush=True)
78
  elif dora_event["id"] == "instruction":
79
  self.instruction = dora_event["value"][0].as_py()
80
  print("instructions: ", self.instruction, flush=True)
81
- elif dora_event["id"] == "control_reply":
82
- control_reply = dora_event["value"][0].as_py()
83
-
84
- if self.last_message == control_reply:
85
- self.completed = True
86
- else:
87
- print(
88
- f"expected: {self.last_message}, but got: {control_reply}",
89
- flush=True,
90
  )
 
 
91
  return DoraStatus.CONTINUE
 
27
 
28
  class Operator:
29
  def __init__(self):
 
30
  self.instruction = "What is in the image?"
31
  self.last_message = ""
32
+ self.image = None
33
 
34
  def on_event(
35
  self,
 
38
  ) -> DoraStatus:
39
  if dora_event["type"] == "INPUT":
40
  if dora_event["id"] == "image":
41
+ self.image = (
42
+ dora_event["value"]
43
+ .to_numpy()
44
+ .reshape((CAMERA_HEIGHT, CAMERA_WIDTH, 3))
45
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
  elif dora_event["id"] == "instruction":
47
  self.instruction = dora_event["value"][0].as_py()
48
  print("instructions: ", self.instruction, flush=True)
49
+
50
+ if self.image is not None:
51
+ output = ask_vlm(self.image, self.instruction)
52
+ speak(output)
53
+ print("response: ", output, flush=True)
54
+ send_output(
55
+ "assistant_message",
56
+ pa.array([output]),
57
+ dora_event["metadata"],
58
  )
59
+
60
+ self.last_message = output
61
  return DoraStatus.CONTINUE
operators/keyboard_op.py DELETED
@@ -1,65 +0,0 @@
1
- from pynput import keyboard
2
- from pynput.keyboard import Key, Events
3
- import pyarrow as pa
4
- from dora import Node
5
-
6
-
7
- node = Node()
8
- buffer_text = ""
9
- ctrl = False
10
- submitted_text = []
11
- cursor = 0
12
-
13
- NODE_TOPIC = ["record", "send", "ask", "change"]
14
-
15
- with keyboard.Events() as events:
16
- while True:
17
- dora_event = node.next(0.01)
18
- if (
19
- dora_event is not None
20
- and dora_event["type"] == "INPUT"
21
- and dora_event["id"] == "recording"
22
- ):
23
- buffer_text += dora_event["value"][0].as_py()
24
- node.send_output("buffer", pa.array([buffer_text]))
25
- continue
26
-
27
- event = events.get(1.0)
28
- if event is not None and isinstance(event, Events.Press):
29
- if hasattr(event.key, "char"):
30
- cursor = 0
31
- buffer_text += event.key.char
32
- node.send_output("buffer", pa.array([buffer_text]))
33
- else:
34
- if event.key == Key.backspace:
35
- buffer_text = buffer_text[:-1]
36
- node.send_output("buffer", pa.array([buffer_text]))
37
- elif event.key == Key.esc:
38
- buffer_text = ""
39
- node.send_output("buffer", pa.array([buffer_text]))
40
- elif event.key == Key.enter:
41
- node.send_output("submitted", pa.array([buffer_text]))
42
- first_word = buffer_text.split(" ")[0]
43
- if first_word in NODE_TOPIC:
44
- node.send_output(first_word, pa.array([buffer_text]))
45
- submitted_text.append(buffer_text)
46
- buffer_text = ""
47
- node.send_output("buffer", pa.array([buffer_text]))
48
- elif event.key == Key.ctrl:
49
- ctrl = True
50
- elif event.key == Key.space:
51
- buffer_text += " "
52
- node.send_output("buffer", pa.array([buffer_text]))
53
- elif event.key == Key.up:
54
- if len(submitted_text) > 0:
55
- cursor = max(cursor - 1, -len(submitted_text))
56
- buffer_text = submitted_text[cursor]
57
- node.send_output("buffer", pa.array([buffer_text]))
58
- elif event.key == Key.down:
59
- if len(submitted_text) > 0:
60
- cursor = min(cursor + 1, 0)
61
- buffer_text = submitted_text[cursor]
62
- node.send_output("buffer", pa.array([buffer_text]))
63
- elif event is not None and isinstance(event, Events.Release):
64
- if event.key == Key.ctrl:
65
- ctrl = False
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
operators/microphone_op.py DELETED
@@ -1,32 +0,0 @@
1
- import numpy as np
2
- import pyarrow as pa
3
- import sounddevice as sd
4
-
5
- from dora import DoraStatus
6
-
7
- SAMPLE_RATE = 16000
8
- MAX_DURATION = 5
9
-
10
-
11
- class Operator:
12
- """
13
- Microphone operator that records the audio
14
- """
15
-
16
- def on_event(
17
- self,
18
- dora_event,
19
- send_output,
20
- ) -> DoraStatus:
21
- if dora_event["type"] == "INPUT":
22
- audio_data = sd.rec(
23
- int(SAMPLE_RATE * MAX_DURATION),
24
- samplerate=SAMPLE_RATE,
25
- channels=1,
26
- dtype=np.int16,
27
- blocking=True,
28
- )
29
-
30
- audio_data = audio_data.ravel().astype(np.float32) / 32768.0
31
- send_output("audio", pa.array(audio_data), dora_event["metadata"])
32
- return DoraStatus.CONTINUE
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
operators/robot.py CHANGED
@@ -12,50 +12,50 @@ CONN = "ap"
12
  class Command(Enum):
13
  NOD_YES = [
14
  {"action": "gimbal", "value": [20.0, 0.0]},
15
- {"action": "gimbal", "value": [-5.0, 0.0]},
16
  ]
17
  NOD_NO = [
18
- {"action": "gimbal", "value": [-5, -55.0]},
19
- {"action": "gimbal", "value": [-5, 55.0]},
20
- {"action": "gimbal", "value": [-5.0, 0.0]},
21
  ]
22
  FORWARD = [
23
  {
24
  "action": "control",
25
- "value": [0.5, 0.0, 0.0, 0.6, 0],
26
  }
27
  ]
28
  BACKWARD = [
 
29
  {
30
  "action": "control",
31
- "value": [-0.5, 0, 180.0, 0.6, 30],
32
  },
33
  ]
34
  LEFT = [
35
- {"action": "gimbal", "value": [-5, -30.0]},
36
  {
37
  "action": "control",
38
- "value": [0.2, -0.2, 30.0, 0.6, 30],
39
  },
40
  ]
41
  SLIGHT_LEFT = [
42
- {"action": "gimbal", "value": [-0.0, -15.0]},
43
  {
44
  "action": "control",
45
- "value": [0.3, -0.1, 15.0, 0.6, 50],
46
  },
47
  ]
48
  RIGHT = [
49
- {"action": "gimbal", "value": [-5, 30.0]},
50
  {
51
- "value": [0.2, 0.2, -30.0, 0.6, 30],
52
  "action": "control",
53
  },
54
  ]
55
  SLIGHT_RIGHT = [
56
- {"action": "gimbal", "value": [-20.0, 15.0]},
57
  {
58
- "value": [0.3, 0.1, -15.0, 0.6, 50],
59
  "action": "control",
60
  },
61
  ]
@@ -124,20 +124,35 @@ class Operator:
124
  raw_command = dora_event["value"][0].as_py()
125
  print(raw_command, flush=True)
126
  self.last_control = raw_command
127
- if "but" in raw_command:
128
- cmd = Command.NOD_NO
 
 
129
  elif "right" in raw_command:
130
  cmd = Command.RIGHT
131
  elif "left" in raw_command:
132
  cmd = Command.LEFT
133
  elif "forward" in raw_command:
134
  cmd = Command.FORWARD
135
- elif "behind" in raw_command:
136
  cmd = Command.BACKWARD
137
  else:
138
  cmd = Command.UNKNOWN
139
  if len(self.backlog) == 0:
140
  self.backlog += cmd.value
141
  self.execute_backlog()
 
 
 
 
 
 
 
 
 
 
 
 
 
142
 
143
  return DoraStatus.CONTINUE
 
12
  class Command(Enum):
13
  NOD_YES = [
14
  {"action": "gimbal", "value": [20.0, 0.0]},
15
+ {"action": "gimbal", "value": [0.0, 0.0]},
16
  ]
17
  NOD_NO = [
18
+ {"action": "gimbal", "value": [0, -55.0]},
19
+ {"action": "gimbal", "value": [0.0, 0.0]},
 
20
  ]
21
  FORWARD = [
22
  {
23
  "action": "control",
24
+ "value": [2.0, 0.0, 0.0, 0.8, 0],
25
  }
26
  ]
27
  BACKWARD = [
28
+ {"action": "gimbal", "value": [0, -180.0]},
29
  {
30
  "action": "control",
31
+ "value": [-2.0, 0, 180.0, 0.8, 50],
32
  },
33
  ]
34
  LEFT = [
35
+ {"action": "gimbal", "value": [0, -90.0]},
36
  {
37
  "action": "control",
38
+ "value": [0.0, -1.0, 90.0, 0.6, 50],
39
  },
40
  ]
41
  SLIGHT_LEFT = [
42
+ {"action": "gimbal", "value": [0.0, -30.0]},
43
  {
44
  "action": "control",
45
+ "value": [1.0, -0.5, 30.0, 0.6, 50],
46
  },
47
  ]
48
  RIGHT = [
49
+ {"action": "gimbal", "value": [0.0, 90.0]},
50
  {
51
+ "value": [0.0, 1.0, -90.0, 0.6, 50],
52
  "action": "control",
53
  },
54
  ]
55
  SLIGHT_RIGHT = [
56
+ {"action": "gimbal", "value": [0.0, 30.0]},
57
  {
58
+ "value": [1.0, 0.5, -30.0, 0.6, 50],
59
  "action": "control",
60
  },
61
  ]
 
124
  raw_command = dora_event["value"][0].as_py()
125
  print(raw_command, flush=True)
126
  self.last_control = raw_command
127
+ if "slight right" in raw_command:
128
+ cmd = Command.BACKWARD
129
+ elif "slight left" in raw_command:
130
+ cmd = Command.BACKWARD
131
  elif "right" in raw_command:
132
  cmd = Command.RIGHT
133
  elif "left" in raw_command:
134
  cmd = Command.LEFT
135
  elif "forward" in raw_command:
136
  cmd = Command.FORWARD
137
+ elif "backward" in raw_command:
138
  cmd = Command.BACKWARD
139
  else:
140
  cmd = Command.UNKNOWN
141
  if len(self.backlog) == 0:
142
  self.backlog += cmd.value
143
  self.execute_backlog()
144
+ elif dora_event["id"] == "assistant_message":
145
+ raw_command = dora_event["value"][0].as_py()
146
+ print(raw_command, flush=True)
147
+ self.last_control = raw_command
148
+ if "No, " in raw_command:
149
+ cmd = Command.NOD_NO
150
+ elif "Yes, " in raw_command:
151
+ cmd = Command.NOD_YES
152
+ else:
153
+ cmd = Command.UNKNOWN
154
+ if len(self.backlog) == 0:
155
+ self.backlog += cmd.value
156
+ self.execute_backlog()
157
 
158
  return DoraStatus.CONTINUE
operators/vlm_op.py DELETED
@@ -1,273 +0,0 @@
1
- from dora import DoraStatus
2
- import pylcs
3
- import os
4
- import pyarrow as pa
5
- from transformers import AutoModelForCausalLM, AutoTokenizer
6
- import json
7
-
8
- import re
9
- import time
10
-
11
- import torch
12
- import requests
13
-
14
- from io import BytesIO
15
- from PIL import Image
16
- from transformers import AutoModelForCausalLM, AutoProcessor
17
-
18
- from transformers.image_utils import (
19
- to_numpy_array,
20
- PILImageResampling,
21
- ChannelDimension,
22
- )
23
- from transformers.image_transforms import resize, to_channel_dimension_format
24
-
25
- API_TOKEN = os.getenv("HF_TOKEN")
26
-
27
- DEVICE = torch.device("cuda")
28
- PROCESSOR = AutoProcessor.from_pretrained(
29
- "HuggingFaceM4/tr_272_bis_opt_step_15000_merge",
30
- token=API_TOKEN,
31
- )
32
- MODEL = AutoModelForCausalLM.from_pretrained(
33
- "HuggingFaceM4/tr_272_bis_opt_step_15000_merge",
34
- token=API_TOKEN,
35
- trust_remote_code=True,
36
- torch_dtype=torch.bfloat16,
37
- ).to(DEVICE)
38
- image_seq_len = MODEL.config.perceiver_config.resampler_n_latents
39
- BOS_TOKEN = PROCESSOR.tokenizer.bos_token
40
- BAD_WORDS_IDS = PROCESSOR.tokenizer(
41
- ["<image>", "<fake_token_around_image>"], add_special_tokens=False
42
- ).input_ids
43
-
44
-
45
- CHATGPT = True
46
- MODEL_NAME_OR_PATH = "TheBloke/deepseek-coder-6.7B-instruct-GPTQ"
47
-
48
- MESSAGE_SENDER_TEMPLATE = """
49
- ### Instruction
50
- You're a json expert. Format your response as a json with a topic and a data field in a ```json block. No explaination needed. No code needed.
51
- The schema for those json are:
52
- - forward
53
- - backward
54
- - left
55
- - right
56
-
57
- The response should look like this:
58
- ```json
59
-
60
- [
61
- {{ "topic": "control", "data": "forward" }},
62
- ]
63
- ```
64
-
65
- {user_message}
66
-
67
- ### Response:
68
- """
69
-
70
- model = AutoModelForCausalLM.from_pretrained(
71
- MODEL_NAME_OR_PATH,
72
- device_map="auto",
73
- trust_remote_code=True,
74
- revision="main",
75
- )
76
-
77
-
78
- tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME_OR_PATH, use_fast=True)
79
-
80
-
81
- def extract_json_code_blocks(text):
82
- """
83
- Extracts json code blocks from the given text that are enclosed in triple backticks with a json language identifier.
84
-
85
- Parameters:
86
- - text: A string that may contain one or more json code blocks.
87
-
88
- Returns:
89
- - A list of strings, where each string is a block of json code extracted from the text.
90
- """
91
- pattern = r"```json\n(.*?)\n```"
92
- matches = re.findall(pattern, text, re.DOTALL)
93
- if len(matches) == 0:
94
- pattern = r"```json\n(.*?)(?:\n```|$)"
95
- matches = re.findall(pattern, text, re.DOTALL)
96
- if len(matches) == 0:
97
- return [text]
98
-
99
- return matches
100
-
101
-
102
- from openai import OpenAI
103
- import os
104
-
105
- import base64
106
- import requests
107
-
108
- API_TOKEN = os.getenv("HF_TOKEN")
109
-
110
-
111
- # Function to encode the image
112
- def encode_image(image_path):
113
- with open(image_path, "rb") as image_file:
114
- return base64.b64encode(image_file.read()).decode("utf-8")
115
-
116
-
117
- def understand_image(image_path):
118
-
119
- # Getting the base64 string
120
- base64_image = encode_image(image_path)
121
-
122
- headers = {"Content-Type": "application/json", "Authorization": f"Bearer {api_key}"}
123
-
124
- payload = {
125
- "model": "gpt-4-vision-preview",
126
- "messages": [
127
- {
128
- "role": "user",
129
- "content": [
130
- {
131
- "type": "text",
132
- "text": "What’s in this image? Describe it in a short sentence",
133
- },
134
- {
135
- "type": "image_url",
136
- "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"},
137
- },
138
- ],
139
- }
140
- ],
141
- "max_tokens": 300,
142
- }
143
-
144
- response = requests.post(
145
- "https://api.openai.com/v1/chat/completions", headers=headers, json=payload
146
- )
147
-
148
- print(response.json()["choices"][0]["message"]["content"])
149
-
150
-
151
- class Operator:
152
-
153
- def on_event(
154
- self,
155
- dora_event,
156
- send_output,
157
- ) -> DoraStatus:
158
- if dora_event["type"] == "INPUT" and dora_event["id"] == "message_sender":
159
- user_message = dora_event["value"][0].as_py()
160
- output = self.ask_llm(
161
- MESSAGE_SENDER_TEMPLATE.format(user_message=user_message)
162
- )
163
- outputs = extract_json_code_blocks(output)[0]
164
- print("response: ", output, flush=True)
165
- try:
166
- outputs = json.loads(outputs)
167
- if not isinstance(outputs, list):
168
- outputs = [outputs]
169
- for output in outputs:
170
- if not isinstance(output["data"], list):
171
- output["data"] = [output["data"]]
172
-
173
- if output["topic"] in ["led", "blaster"]:
174
- send_output(
175
- output["topic"],
176
- pa.array(output["data"]),
177
- dora_event["metadata"],
178
- )
179
-
180
- send_output(
181
- "assistant_message",
182
- pa.array([f"sent: {output}"]),
183
- dora_event["metadata"],
184
- )
185
- else:
186
- send_output(
187
- "assistant_message",
188
- pa.array(
189
- [f"Could not send as topic was not available: {output}"]
190
- ),
191
- dora_event["metadata"],
192
- )
193
- except:
194
- send_output(
195
- "assistant_message",
196
- pa.array([f"Could not parse json: {outputs}"]),
197
- dora_event["metadata"],
198
- )
199
- # if data is not iterable, put data in a list
200
- return DoraStatus.CONTINUE
201
-
202
- def ask_llm(self, prompt):
203
-
204
- # Generate output
205
- # prompt = PROMPT_TEMPLATE.format(system_message=system_message, prompt=prompt))
206
- input = tokenizer(prompt, return_tensors="pt")
207
- input_ids = input.input_ids.cuda()
208
-
209
- # add attention mask here
210
- attention_mask = input["attention_mask"]
211
-
212
- output = model.generate(
213
- inputs=input_ids,
214
- temperature=0.7,
215
- do_sample=True,
216
- top_p=0.95,
217
- top_k=40,
218
- max_new_tokens=512,
219
- attention_mask=attention_mask,
220
- eos_token_id=tokenizer.eos_token_id,
221
- )
222
- # Get the tokens from the output, decode them, print them
223
-
224
- # Get text between im_start and im_end
225
- return tokenizer.decode(output[0], skip_special_tokens=True)[len(prompt) :]
226
-
227
- def ask_chatgpt(self, prompt):
228
- from openai import OpenAI
229
-
230
- client = OpenAI()
231
- print("---asking chatgpt: ", prompt, flush=True)
232
- response = client.chat.completions.create(
233
- model="gpt-4-turbo-preview",
234
- messages=[
235
- {"role": "system", "content": "You are a helpful assistant."},
236
- {"role": "user", "content": prompt},
237
- ],
238
- )
239
- answer = response.choices[0].message.content
240
-
241
- print("Done", flush=True)
242
- return answer
243
-
244
-
245
- if __name__ == "__main__":
246
- op = Operator()
247
-
248
- # Path to the current file
249
- current_file_path = __file__
250
-
251
- # Directory of the current file
252
- current_directory = os.path.dirname(current_file_path)
253
-
254
- path = current_directory + "/planning_op.py"
255
- with open(path, "r", encoding="utf8") as f:
256
- raw = f.read()
257
-
258
- op.on_event(
259
- {
260
- "type": "INPUT",
261
- "id": "code_modifier",
262
- "value": pa.array(
263
- [
264
- {
265
- "path": path,
266
- "user_message": "change planning to make gimbal follow bounding box ",
267
- },
268
- ]
269
- ),
270
- "metadata": [],
271
- },
272
- print,
273
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
operators/whisper_op copy.py DELETED
@@ -1,25 +0,0 @@
1
- import pyarrow as pa
2
- import whisper
3
-
4
- from dora import DoraStatus
5
-
6
-
7
- model = whisper.load_model("base")
8
-
9
-
10
- class Operator:
11
- """
12
- Transforming Speech to Text using OpenAI Whisper model
13
- """
14
-
15
- def on_event(
16
- self,
17
- dora_event,
18
- send_output,
19
- ) -> DoraStatus:
20
- if dora_event["type"] == "INPUT":
21
- audio = dora_event["value"].to_numpy()
22
- audio = whisper.pad_or_trim(audio)
23
- result = model.transcribe(audio, language="en")
24
- send_output("text", pa.array([result["text"]]), dora_event["metadata"])
25
- return DoraStatus.CONTINUE
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
operators/whisper_op.py CHANGED
@@ -1,11 +1,18 @@
1
  import pyarrow as pa
2
  import whisper
3
-
 
4
  from dora import DoraStatus
5
 
 
 
 
6
 
7
  model = whisper.load_model("base")
8
 
 
 
 
9
 
10
  class Operator:
11
  """
@@ -18,8 +25,26 @@ class Operator:
18
  send_output,
19
  ) -> DoraStatus:
20
  if dora_event["type"] == "INPUT":
21
- audio = dora_event["value"].to_numpy()
22
- audio = whisper.pad_or_trim(audio)
23
- result = model.transcribe(audio, language="en")
24
- send_output("text", pa.array([result["text"]]), dora_event["metadata"])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  return DoraStatus.CONTINUE
 
1
  import pyarrow as pa
2
  import whisper
3
+ from pynput import keyboard
4
+ from pynput.keyboard import Key
5
  from dora import DoraStatus
6
 
7
+ import numpy as np
8
+ import pyarrow as pa
9
+ import sounddevice as sd
10
 
11
  model = whisper.load_model("base")
12
 
13
+ SAMPLE_RATE = 16000
14
+ MAX_DURATION = 5
15
+
16
 
17
  class Operator:
18
  """
 
25
  send_output,
26
  ) -> DoraStatus:
27
  if dora_event["type"] == "INPUT":
28
+ ## Check for keyboard event
29
+ with keyboard.Events() as events:
30
+ event = events.get(1.0)
31
+ if event is not None and event.key == Key.up:
32
+
33
+ ## Microphone
34
+ audio_data = sd.rec(
35
+ int(SAMPLE_RATE * MAX_DURATION),
36
+ samplerate=SAMPLE_RATE,
37
+ channels=1,
38
+ dtype=np.int16,
39
+ blocking=True,
40
+ )
41
+
42
+ audio = audio_data.ravel().astype(np.float32) / 32768.0
43
+
44
+ ## Speech to text
45
+ audio = whisper.pad_or_trim(audio)
46
+ result = model.transcribe(audio, language="en")
47
+ send_output(
48
+ "text", pa.array([result["text"]]), dora_event["metadata"]
49
+ )
50
  return DoraStatus.CONTINUE