File size: 5,443 Bytes
3c8602c 43219d4 3c8602c 007df59 3c8602c 007df59 3c8602c 007df59 43219d4 3c8602c 007df59 3c8602c 007df59 3c8602c 43219d4 3c8602c 43219d4 3c8602c 43219d4 3c8602c 007df59 43219d4 007df59 3c8602c 43219d4 3c8602c 43219d4 007df59 3c8602c 007df59 3c8602c 43219d4 3c8602c 007df59 3c8602c 007df59 3c8602c 370ce50 007df59 370ce50 007df59 370ce50 007df59 3c8602c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
#!/usr/bin/env python3
# Simple script to convert StackExchange XML to Open Assistant format
# Original code by https://github.com/b-mc2
import os, gc, glob, sys, re
from bs4 import BeautifulSoup as bs
import pandas as pd
from html2text import html2text
from datasets import load_dataset
from lxml import etree
from tqdm import tqdm
import subprocess
from merge_parquets import merge_parquet_dir
XML_DIR = "./xml"
SOURCE = "stackexchange-{0}"
MAX_ANSWERS = 10
QUESTION_SCORE_TRESHOLD = 0
ANSWER_SCORE_TRESHOLD = 0
PARQUET_FILE = "{0}.parquet"
MAX_LENGTH = 1000 # max length of question or answer
def main():
datasets = sys.argv[1:] if len(sys.argv) > 1 else list_cached_datasets()
for dataset in datasets:
process_dataset(dataset)
def list_cached_datasets():
xml_files = glob.glob(f"{XML_DIR}/*.xml")
datasets = [os.path.splitext(os.path.basename(file))[0] for file in xml_files]
datasets.sort()
return datasets
def process_dataset(dataset):
xml_file = f"{XML_DIR}/{dataset}.xml"
parquet_file = PARQUET_FILE.format(dataset)
source = SOURCE.format(dataset)
if not os.path.exists(xml_file):
print(f"XML file {xml_file} not found, please download first. Skipping...")
elif not os.path.exists(parquet_file):
df = parse_and_convert(xml_file, source)
save_parquet(df, dataset)
else:
print(f"File already converted {xml_file}. Skipping...")
def parse_and_convert(path: str, source: str):
"""
Parse (very large) XML files with sax parser and load it into a pandas Dataframe
"""
total_rows = int(subprocess.getoutput(f"grep -c '<row' {path}"))
print(f"Parsing {total_rows} rows from {path}...")
columns = "Id PostTypeId Body Title Tags Score AcceptedAnswerId ParentId"
rows = []
max_process = 10**6
processed = 0
oa_df = pd.DataFrame(columns=["INSTRUCTION", "RESPONSE", "SOURCE", "METADATA"])
context = etree.iterparse(path, events=("end",))
for _, element in tqdm(context, total=total_rows):
if element.tag == "row":
if len(element.get("Body")) > MAX_LENGTH:
continue
rows.append(parse_row(element))
processed += 1
element.clear()
while element.getprevious() is not None:
del element.getparent()[0]
if processed % max_process == 0 or processed == total_rows:
df = pd.DataFrame(rows, columns=columns.split())
rows = []
oa = convert_to_oa(df, source)
oa_df = pd.concat([oa_df, oa])
del df
del oa
gc.collect()
return oa_df
def parse_row(element):
return [
int(element.get("Id")),
int(element.get("PostTypeId")),
element.get("Body"),
element.get("Title", ""),
element.get("Tags", ""),
int(element.get("Score", 0)),
int(element.get("AcceptedAnswerId", 0)),
int(element.get("ParentId", 0)),
]
def convert_to_oa(all, source):
"""
Convert dataframe to Open Assistant format with INSTRUCTION, RESPONSE, SOURCE, METADATA columns
Only include questions with an AcceptedAnswerId
"""
questions = all[all["AcceptedAnswerId"] != 0]
merged = pd.merge(
questions,
all,
how="inner",
left_on="AcceptedAnswerId",
right_on="Id",
suffixes=("_q", "_a"),
)
del all
merged["INSTRUCTION"] = (
merged["Title_q"] + "\n" + merged["Body_q"].apply(to_markdown)
)
merged["RESPONSE"] = merged["Body_a"].apply(to_markdown)
merged["SOURCE"] = source
merged["METADATA"] = merged.apply(create_metadata, axis=1)
return merged[["INSTRUCTION", "RESPONSE", "SOURCE", "METADATA"]]
def convert_tags(raw):
return raw.replace("-", " ").replace("><", ", ").replace("<", "").replace(">", "")
def create_metadata(row):
return {
"tags": convert_tags(row["Tags_q"]),
"question_score": row["Score_q"],
"answer_score": row["Score_a"],
}
def save_parquet(df, dataset):
"""
Save Dataframe to Parquet. See here for specs:
https://projects.laion.ai/Open-Assistant/docs/data/datasets#creating-a-dataset-on-hugging-face
"""
parquet_file = PARQUET_FILE.format(dataset)
df.to_parquet(parquet_file, row_group_size=100, engine="pyarrow", index=False)
print(f"Converted {len(df)} instructions into {parquet_file}")
remove_markdown_links_pattern = r"\[([^\]]+)\]\(([^\)]+)\)"
remove_remaining_links = r"https?:\/\/[^\s]+"
def remove_emojis(string):
emoji_pattern = re.compile(
"["
"\U0001F600-\U0001F64F" # emoticons
"\U0001F300-\U0001F5FF" # symbols & pictographs
"\U0001F680-\U0001F6FF" # transport & map symbols
"\U0001F1E0-\U0001F1FF" # flags (iOS)
"\U00002702-\U000027B0"
"\U000024C2-\U0001F251"
"]+",
flags=re.UNICODE,
)
return emoji_pattern.sub(r"", string)
# Replace HTML content to markdown but remove links
def to_markdown(text):
try:
text = html2text(text, bodywidth=0).strip()
except Exception as e:
print(e)
text = re.sub(r"<[^>]*>", "", str(text))
text = re.sub(remove_markdown_links_pattern, r"\1", text)
text = remove_emojis(text)
return re.sub(remove_remaining_links, "", text)
if __name__ == "__main__":
main()
|