donfu
commited on
Commit
·
3c8602c
1
Parent(s):
894a91e
Add initial scripts
Browse files- .gitignore +2 -0
- dl-stackexchange.py +73 -0
- process.py +308 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
xml/
|
2 |
+
*.pyc
|
dl-stackexchange.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
#
|
3 |
+
# Simple script to download StackExchange archive XML files with posts (threaded version)
|
4 |
+
#
|
5 |
+
# Note: you probably want to download stackoverflow.com-Posts.7z manually, as it is 18GB
|
6 |
+
# and takes a long time to download. You can try using torrent:
|
7 |
+
#
|
8 |
+
# webtorrent https://archive.org/download/stackexchange/stackexchange_archive.torrent --select 658
|
9 |
+
#
|
10 |
+
|
11 |
+
import requests
|
12 |
+
import concurrent.futures
|
13 |
+
import os
|
14 |
+
from bs4 import BeautifulSoup as bs
|
15 |
+
import pandas as pd
|
16 |
+
import re
|
17 |
+
|
18 |
+
base_url = "https://ia600107.us.archive.org/view_archive.php?archive=/27/items/stackexchange/{0}&file=Posts.xml"
|
19 |
+
DOWNLOAD_DIR = "xml/"
|
20 |
+
NUM_PARALLEL = 20
|
21 |
+
RE_IGNORE = r"_meta|stackoverflow\.com\-"
|
22 |
+
|
23 |
+
|
24 |
+
def get_all_filenames():
|
25 |
+
"""
|
26 |
+
Retrieve all urls from stackexchange archive.
|
27 |
+
This needs quite some mangling because of special cases.
|
28 |
+
"""
|
29 |
+
response = requests.get("https://archive.org/download/stackexchange")
|
30 |
+
if response.ok:
|
31 |
+
soup = bs(response.content, "html.parser")
|
32 |
+
table = soup.find("table")
|
33 |
+
link_tags = table.find_all("a")
|
34 |
+
urls = {
|
35 |
+
"stackoverflow": "https://archive.org/download/stackexchange/stackoverflow.com-Posts.7z"
|
36 |
+
}
|
37 |
+
for link in link_tags:
|
38 |
+
url = link["href"]
|
39 |
+
name = url.split(".stackexchange")[0].replace(".", "_").replace("-", "_")
|
40 |
+
name = name.replace("_com_7z", "")
|
41 |
+
if url.endswith("7z") and not re.search(RE_IGNORE, url):
|
42 |
+
urls[name] = base_url.format(url)
|
43 |
+
return urls
|
44 |
+
|
45 |
+
|
46 |
+
urls = get_all_filenames()
|
47 |
+
|
48 |
+
|
49 |
+
def download_url(dataset_name: str, url: str):
|
50 |
+
if not os.path.exists(DOWNLOAD_DIR):
|
51 |
+
os.mkdir(DOWNLOAD_DIR)
|
52 |
+
cache_path = os.path.join(DOWNLOAD_DIR, dataset_name + ".xml")
|
53 |
+
if os.path.exists(cache_path):
|
54 |
+
print("Using cached: ", cache_path)
|
55 |
+
return cache_path
|
56 |
+
else:
|
57 |
+
print("Downloading xml: ", dataset_name)
|
58 |
+
response = requests.get(url)
|
59 |
+
print("Finished downloading: ", dataset_name)
|
60 |
+
with open(cache_path, "wb") as f:
|
61 |
+
f.write(response.content)
|
62 |
+
return cache_path
|
63 |
+
|
64 |
+
|
65 |
+
with concurrent.futures.ThreadPoolExecutor(max_workers=NUM_PARALLEL) as executor:
|
66 |
+
futures = [
|
67 |
+
executor.submit(download_url, dataset, url) for dataset, url in urls.items()
|
68 |
+
]
|
69 |
+
|
70 |
+
# Wait for all downloads to complete
|
71 |
+
concurrent.futures.wait(futures)
|
72 |
+
|
73 |
+
print("All downloads complete")
|
process.py
ADDED
@@ -0,0 +1,308 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# Simple script to convert StackExchange XML to Open Assistant format
|
3 |
+
# Original code by https://github.com/b-mc2
|
4 |
+
|
5 |
+
from bs4 import BeautifulSoup as bs
|
6 |
+
import pandas as pd
|
7 |
+
import os
|
8 |
+
import glob
|
9 |
+
import sys
|
10 |
+
from html2text import html2text
|
11 |
+
from datasets import load_dataset
|
12 |
+
|
13 |
+
CACHE_DIR = "xml/"
|
14 |
+
SOURCE = "stackexchange-{0}"
|
15 |
+
MAX_ANSWERS = 10
|
16 |
+
QUESTION_SCORE_TRESHOLD = 0
|
17 |
+
ANSWER_SCORE_TRESHOLD = 0
|
18 |
+
HF_DATASET = "donfu/oa-stackexchange"
|
19 |
+
|
20 |
+
xml_format_map = {
|
21 |
+
"Id": int,
|
22 |
+
"PostTypeId": int,
|
23 |
+
"CreationDate": str,
|
24 |
+
"Score": int,
|
25 |
+
"ViewCount": int,
|
26 |
+
"Body": str,
|
27 |
+
"AnswerCount": int,
|
28 |
+
"CommentCount": int,
|
29 |
+
"ContentLicense": str,
|
30 |
+
"AcceptedAnswerId": int,
|
31 |
+
"ParentId": int,
|
32 |
+
}
|
33 |
+
|
34 |
+
|
35 |
+
def main():
|
36 |
+
datasets = sys.argv[1:] if len(sys.argv) > 1 else list_cached_datasets()
|
37 |
+
for dataset in datasets:
|
38 |
+
process_dataset(dataset)
|
39 |
+
|
40 |
+
|
41 |
+
def list_cached_datasets():
|
42 |
+
xml_files = glob.glob(f"{CACHE_DIR}/*.xml")
|
43 |
+
datasets = [os.path.splitext(os.path.basename(file))[0] for file in xml_files]
|
44 |
+
datasets.sort()
|
45 |
+
return datasets
|
46 |
+
|
47 |
+
|
48 |
+
def process_dataset(dataset):
|
49 |
+
xml_file = f"{CACHE_DIR}/{dataset}.xml"
|
50 |
+
source = SOURCE.format(dataset)
|
51 |
+
if os.path.exists(xml_file):
|
52 |
+
df = xml_to_df(xml_file, source)
|
53 |
+
# df = filter_only_questions_with_accepted_answers(df)
|
54 |
+
# df = filter_scores_above(df, QUESTION_SCORE_TRESHOLD, ANSWER_SCORE_TRESHOLD)
|
55 |
+
# df = clean_tags(df)
|
56 |
+
# df = convert_html_to_markdown(df)
|
57 |
+
# df = group_qa(df)
|
58 |
+
oa = convert_to_oa(df)
|
59 |
+
save_parquet(oa, dataset)
|
60 |
+
# upload_hf(dataset)
|
61 |
+
else:
|
62 |
+
print(f"XML file {xml_file} not found, please download first. Skipping...")
|
63 |
+
|
64 |
+
|
65 |
+
def convert_to_oa(all):
|
66 |
+
"""
|
67 |
+
Convert dataframe to Open Assistant format with INSTRUCTION, RESPONSE, SOURCE, METADATA columns
|
68 |
+
|
69 |
+
Only include questions with an AcceptedAnswerId
|
70 |
+
"""
|
71 |
+
create_metadata = lambda row: {
|
72 |
+
"tags": row["Tags_q"]
|
73 |
+
.replace("-", " ")
|
74 |
+
.replace("><", ", ")
|
75 |
+
.replace("<", "")
|
76 |
+
.replace(">", "")
|
77 |
+
if isinstance(row["Tags_q"], str)
|
78 |
+
else "",
|
79 |
+
"score": row["Score_q"],
|
80 |
+
"views": row["ViewCount_q"],
|
81 |
+
}
|
82 |
+
questions = all[all["AcceptedAnswerId"] != 0]
|
83 |
+
merged = pd.merge(
|
84 |
+
questions,
|
85 |
+
all,
|
86 |
+
how="left",
|
87 |
+
left_on="AcceptedAnswerId",
|
88 |
+
right_on="Id",
|
89 |
+
suffixes=("_q", "_a"),
|
90 |
+
)
|
91 |
+
merged["INSTRUCTION"] = (
|
92 |
+
merged["Title_q"] + "\n" + merged["Body_q"].apply(to_markdown)
|
93 |
+
)
|
94 |
+
merged["RESPONSE"] = merged["Body_a"].apply(to_markdown)
|
95 |
+
merged["SOURCE"] = merged["DataSource_q"]
|
96 |
+
merged["METADATA"] = merged.apply(create_metadata, axis=1)
|
97 |
+
|
98 |
+
return merged[["INSTRUCTION", "RESPONSE", "SOURCE", "METADATA"]]
|
99 |
+
|
100 |
+
|
101 |
+
def save_parquet(df, dataset):
|
102 |
+
"""
|
103 |
+
Save Dataframe to Parquet. See here for specs:
|
104 |
+
https://projects.laion.ai/Open-Assistant/docs/data/datasets#creating-a-dataset-on-hugging-face
|
105 |
+
"""
|
106 |
+
parquet_file = f"{dataset}.parquet"
|
107 |
+
df.to_parquet(parquet_file, row_group_size=100, engine="pyarrow", index=False)
|
108 |
+
print("Converted data into parquet format: " + parquet_file)
|
109 |
+
|
110 |
+
|
111 |
+
def upload_hf(dataset):
|
112 |
+
"""
|
113 |
+
Upload to Hugging Face
|
114 |
+
"""
|
115 |
+
parquet_file = f"{dataset}.parquet"
|
116 |
+
dataset = load_dataset("parquet", data_files=parquet_file, name=dataset)
|
117 |
+
dataset.push_to_hub(HF_DATASET, max_shard_size="500MB")
|
118 |
+
print("Uploaded to Hugging Face: " + HF_DATASET)
|
119 |
+
|
120 |
+
|
121 |
+
def xml_to_df(path: str, source: str):
|
122 |
+
"""
|
123 |
+
Collect and Manually import XML into Dataframe
|
124 |
+
|
125 |
+
pd.read_xml() errors when XML trees are too large, this is just a hack to
|
126 |
+
download a XML file and parse into a Dataframe. **Not Tested on huge XML files**
|
127 |
+
|
128 |
+
Parameters:
|
129 |
+
response (Requests.Response): Requests response object with the XML data
|
130 |
+
|
131 |
+
Returns:
|
132 |
+
df (DataFrame): A Dataframe from the XML file
|
133 |
+
"""
|
134 |
+
with open(path, "rb") as f:
|
135 |
+
soup = bs(f, "xml")
|
136 |
+
posts = soup.find_all("row")
|
137 |
+
|
138 |
+
all_posts = [post.attrs for post in posts]
|
139 |
+
|
140 |
+
df = pd.DataFrame(all_posts)
|
141 |
+
df.AnswerCount.fillna(0, inplace=True)
|
142 |
+
df.ViewCount.fillna(0, inplace=True)
|
143 |
+
df.AcceptedAnswerId.fillna(0, inplace=True)
|
144 |
+
df.ParentId.fillna(0, inplace=True)
|
145 |
+
df["DataSource"] = source
|
146 |
+
df = df.astype(xml_format_map)
|
147 |
+
return df
|
148 |
+
|
149 |
+
|
150 |
+
def filter_only_questions_with_accepted_answers(df):
|
151 |
+
"""
|
152 |
+
Filter only to Questions with Accepted Answers
|
153 |
+
|
154 |
+
Filter dataframe by questions that have accepted answers, should also include
|
155 |
+
all rows of answers for those questions, even if not accepted.
|
156 |
+
|
157 |
+
Parameters:
|
158 |
+
df (DataFrame): containing a "AcceptedAnswerId", "Id", and "ParentId" columns
|
159 |
+
|
160 |
+
Returns:
|
161 |
+
df (DataFrame): current dataframe with filtered results
|
162 |
+
"""
|
163 |
+
accepted_ids = df[df["AcceptedAnswerId"] != 0]["Id"].tolist()
|
164 |
+
return df[(df["AcceptedAnswerId"] != 0) | (df["ParentId"].isin(accepted_ids))]
|
165 |
+
|
166 |
+
|
167 |
+
def filter_scores_above(
|
168 |
+
df, question_score_threshold: int = 20, answer_score_threshold: int = 20
|
169 |
+
):
|
170 |
+
"""
|
171 |
+
Filter Dataframe by minimum scores
|
172 |
+
|
173 |
+
Filter Question and Answer columns by score thresholds to trim lower scoring results
|
174 |
+
|
175 |
+
Parameters:
|
176 |
+
df (DataFrame): containing a "Score" column
|
177 |
+
|
178 |
+
Returns:
|
179 |
+
df (DataFrame): current dataframe with filtered results
|
180 |
+
"""
|
181 |
+
return df[
|
182 |
+
((df["Score"] >= question_score_threshold) & (df.PostTypeId == 1))
|
183 |
+
| ((df["Score"] >= answer_score_threshold) & (df.PostTypeId == 2))
|
184 |
+
]
|
185 |
+
|
186 |
+
|
187 |
+
to_markdown = (
|
188 |
+
lambda row: html2text(row, bodywidth=0).strip() if isinstance(row, str) else ""
|
189 |
+
)
|
190 |
+
|
191 |
+
|
192 |
+
def convert_html_to_markdown(df, column: str = "Body"):
|
193 |
+
"""
|
194 |
+
Convert HTML tags to markdown
|
195 |
+
|
196 |
+
Feeds HTML text body into markdown. Remove final newline from <p> tags
|
197 |
+
|
198 |
+
Parameters:
|
199 |
+
df (DataFrame): containing a "Body" column with HTML
|
200 |
+
|
201 |
+
Returns:
|
202 |
+
df (DataFrame): current dataframe with parsed column
|
203 |
+
"""
|
204 |
+
df.dropna(subset=[column], inplace=True)
|
205 |
+
df[f"{column}Clean"] = df[column].apply(to_markdown)
|
206 |
+
return df
|
207 |
+
|
208 |
+
|
209 |
+
def clean_tags(df):
|
210 |
+
"""
|
211 |
+
Convert Tags into Comma separated
|
212 |
+
|
213 |
+
Converts Tag slugs into commas separated tags
|
214 |
+
|
215 |
+
Parameters:
|
216 |
+
df (DataFrame): containing a "Tags" column with slugs
|
217 |
+
|
218 |
+
Returns:
|
219 |
+
df (DataFrame): current dataframe with parsed column
|
220 |
+
"""
|
221 |
+
df["TagsClean"] = (
|
222 |
+
df["Tags"]
|
223 |
+
.str.replace("-", " ")
|
224 |
+
.str.replace("><", ", ")
|
225 |
+
.str.replace("<", "")
|
226 |
+
.str.replace(">", "")
|
227 |
+
)
|
228 |
+
return df
|
229 |
+
|
230 |
+
|
231 |
+
def group_qa(df):
|
232 |
+
"""
|
233 |
+
Group Questions and Answers
|
234 |
+
"""
|
235 |
+
questions = df[df.PostTypeId == 1]
|
236 |
+
answers = df[df.PostTypeId == 2]
|
237 |
+
|
238 |
+
df = pd.merge(
|
239 |
+
questions,
|
240 |
+
answers[
|
241 |
+
[
|
242 |
+
"Id",
|
243 |
+
"CreationDate",
|
244 |
+
"Score",
|
245 |
+
"ViewCount",
|
246 |
+
"CommentCount",
|
247 |
+
"ContentLicense",
|
248 |
+
"TagsClean",
|
249 |
+
"BodyClean",
|
250 |
+
"ParentId",
|
251 |
+
]
|
252 |
+
],
|
253 |
+
left_on="Id",
|
254 |
+
right_on="ParentId",
|
255 |
+
suffixes=("_q", "_a"),
|
256 |
+
how="left",
|
257 |
+
)
|
258 |
+
|
259 |
+
df["AcceptedAnswerFlag"] = df.apply(
|
260 |
+
lambda row: row["Id_a"] == row["AcceptedAnswerId"], axis=1
|
261 |
+
)
|
262 |
+
|
263 |
+
df = df.rename(
|
264 |
+
columns={
|
265 |
+
"BodyClean_q": "Question",
|
266 |
+
"Score_q": "QuestionScore",
|
267 |
+
"TagsClean_q": "QuestionTags",
|
268 |
+
"BodyClean_a": "Answer",
|
269 |
+
"Score_a": "AnswerScore",
|
270 |
+
"ContentLicense_q": "QuestionContentLicense",
|
271 |
+
"ContentLicense_a": "AnswerContentLicense",
|
272 |
+
"CreationDate_q": "CreationDate",
|
273 |
+
}
|
274 |
+
)
|
275 |
+
|
276 |
+
df = (
|
277 |
+
df.sort_values(
|
278 |
+
by=["AcceptedAnswerFlag", "AnswerScore"], ascending=[False, False]
|
279 |
+
)
|
280 |
+
.groupby("Question")
|
281 |
+
.head(MAX_ANSWERS)
|
282 |
+
.reset_index(drop=True)
|
283 |
+
)
|
284 |
+
df = (
|
285 |
+
df.groupby(
|
286 |
+
[
|
287 |
+
"Title",
|
288 |
+
"Question",
|
289 |
+
"QuestionScore",
|
290 |
+
"QuestionTags",
|
291 |
+
"QuestionContentLicense",
|
292 |
+
"DataSource",
|
293 |
+
"CreationDate",
|
294 |
+
]
|
295 |
+
)
|
296 |
+
.apply(
|
297 |
+
lambda x: x[["Answer", "AnswerScore", "AcceptedAnswerFlag"]].to_dict(
|
298 |
+
"records"
|
299 |
+
)
|
300 |
+
)
|
301 |
+
.reset_index()
|
302 |
+
.rename(columns={0: "Answers"})
|
303 |
+
)
|
304 |
+
return df
|
305 |
+
|
306 |
+
|
307 |
+
if __name__ == "__main__":
|
308 |
+
main()
|