repo_name
stringlengths
6
92
path
stringlengths
4
191
copies
stringclasses
322 values
size
stringlengths
4
6
content
stringlengths
821
753k
license
stringclasses
15 values
shikhardb/scikit-learn
examples/covariance/plot_mahalanobis_distances.py
348
6232
r""" ================================================================ Robust covariance estimation and Mahalanobis distances relevance ================================================================ An example to show covariance estimation with the Mahalanobis distances on Gaussian distributed data. For Gaussian distributed data, the distance of an observation :math:`x_i` to the mode of the distribution can be computed using its Mahalanobis distance: :math:`d_{(\mu,\Sigma)}(x_i)^2 = (x_i - \mu)'\Sigma^{-1}(x_i - \mu)` where :math:`\mu` and :math:`\Sigma` are the location and the covariance of the underlying Gaussian distribution. In practice, :math:`\mu` and :math:`\Sigma` are replaced by some estimates. The usual covariance maximum likelihood estimate is very sensitive to the presence of outliers in the data set and therefor, the corresponding Mahalanobis distances are. One would better have to use a robust estimator of covariance to guarantee that the estimation is resistant to "erroneous" observations in the data set and that the associated Mahalanobis distances accurately reflect the true organisation of the observations. The Minimum Covariance Determinant estimator is a robust, high-breakdown point (i.e. it can be used to estimate the covariance matrix of highly contaminated datasets, up to :math:`\frac{n_\text{samples}-n_\text{features}-1}{2}` outliers) estimator of covariance. The idea is to find :math:`\frac{n_\text{samples}+n_\text{features}+1}{2}` observations whose empirical covariance has the smallest determinant, yielding a "pure" subset of observations from which to compute standards estimates of location and covariance. The Minimum Covariance Determinant estimator (MCD) has been introduced by P.J.Rousseuw in [1]. This example illustrates how the Mahalanobis distances are affected by outlying data: observations drawn from a contaminating distribution are not distinguishable from the observations coming from the real, Gaussian distribution that one may want to work with. Using MCD-based Mahalanobis distances, the two populations become distinguishable. Associated applications are outliers detection, observations ranking, clustering, ... For visualization purpose, the cubic root of the Mahalanobis distances are represented in the boxplot, as Wilson and Hilferty suggest [2] [1] P. J. Rousseeuw. Least median of squares regression. J. Am Stat Ass, 79:871, 1984. [2] Wilson, E. B., & Hilferty, M. M. (1931). The distribution of chi-square. Proceedings of the National Academy of Sciences of the United States of America, 17, 684-688. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.covariance import EmpiricalCovariance, MinCovDet n_samples = 125 n_outliers = 25 n_features = 2 # generate data gen_cov = np.eye(n_features) gen_cov[0, 0] = 2. X = np.dot(np.random.randn(n_samples, n_features), gen_cov) # add some outliers outliers_cov = np.eye(n_features) outliers_cov[np.arange(1, n_features), np.arange(1, n_features)] = 7. X[-n_outliers:] = np.dot(np.random.randn(n_outliers, n_features), outliers_cov) # fit a Minimum Covariance Determinant (MCD) robust estimator to data robust_cov = MinCovDet().fit(X) # compare estimators learnt from the full data set with true parameters emp_cov = EmpiricalCovariance().fit(X) ############################################################################### # Display results fig = plt.figure() plt.subplots_adjust(hspace=-.1, wspace=.4, top=.95, bottom=.05) # Show data set subfig1 = plt.subplot(3, 1, 1) inlier_plot = subfig1.scatter(X[:, 0], X[:, 1], color='black', label='inliers') outlier_plot = subfig1.scatter(X[:, 0][-n_outliers:], X[:, 1][-n_outliers:], color='red', label='outliers') subfig1.set_xlim(subfig1.get_xlim()[0], 11.) subfig1.set_title("Mahalanobis distances of a contaminated data set:") # Show contours of the distance functions xx, yy = np.meshgrid(np.linspace(plt.xlim()[0], plt.xlim()[1], 100), np.linspace(plt.ylim()[0], plt.ylim()[1], 100)) zz = np.c_[xx.ravel(), yy.ravel()] mahal_emp_cov = emp_cov.mahalanobis(zz) mahal_emp_cov = mahal_emp_cov.reshape(xx.shape) emp_cov_contour = subfig1.contour(xx, yy, np.sqrt(mahal_emp_cov), cmap=plt.cm.PuBu_r, linestyles='dashed') mahal_robust_cov = robust_cov.mahalanobis(zz) mahal_robust_cov = mahal_robust_cov.reshape(xx.shape) robust_contour = subfig1.contour(xx, yy, np.sqrt(mahal_robust_cov), cmap=plt.cm.YlOrBr_r, linestyles='dotted') subfig1.legend([emp_cov_contour.collections[1], robust_contour.collections[1], inlier_plot, outlier_plot], ['MLE dist', 'robust dist', 'inliers', 'outliers'], loc="upper right", borderaxespad=0) plt.xticks(()) plt.yticks(()) # Plot the scores for each point emp_mahal = emp_cov.mahalanobis(X - np.mean(X, 0)) ** (0.33) subfig2 = plt.subplot(2, 2, 3) subfig2.boxplot([emp_mahal[:-n_outliers], emp_mahal[-n_outliers:]], widths=.25) subfig2.plot(1.26 * np.ones(n_samples - n_outliers), emp_mahal[:-n_outliers], '+k', markeredgewidth=1) subfig2.plot(2.26 * np.ones(n_outliers), emp_mahal[-n_outliers:], '+k', markeredgewidth=1) subfig2.axes.set_xticklabels(('inliers', 'outliers'), size=15) subfig2.set_ylabel(r"$\sqrt[3]{\rm{(Mahal. dist.)}}$", size=16) subfig2.set_title("1. from non-robust estimates\n(Maximum Likelihood)") plt.yticks(()) robust_mahal = robust_cov.mahalanobis(X - robust_cov.location_) ** (0.33) subfig3 = plt.subplot(2, 2, 4) subfig3.boxplot([robust_mahal[:-n_outliers], robust_mahal[-n_outliers:]], widths=.25) subfig3.plot(1.26 * np.ones(n_samples - n_outliers), robust_mahal[:-n_outliers], '+k', markeredgewidth=1) subfig3.plot(2.26 * np.ones(n_outliers), robust_mahal[-n_outliers:], '+k', markeredgewidth=1) subfig3.axes.set_xticklabels(('inliers', 'outliers'), size=15) subfig3.set_ylabel(r"$\sqrt[3]{\rm{(Mahal. dist.)}}$", size=16) subfig3.set_title("2. from robust estimates\n(Minimum Covariance Determinant)") plt.yticks(()) plt.show()
bsd-3-clause
kkozarev/mwacme
synchrotron_fitting/GS_kappa_function.py
1
2634
import Get_MW import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt import numpy as np N=10 #number of frequencies #These values are starting positions for coronal CME radio observations ParmIn=29*[0] # input array ParmIn[0] =8e19 # Area, cm^2 ParmIn[1] =5e9 # Depth, cm ParmIn[2] =3e6 # T_0, K ParmIn[3] =0.05 # \eps (not used in this example) ParmIn[4] =6.0 # \kappa (not used in this example) ParmIn[5] =16 # number of integration nodes ParmIn[6] =0.1 # E_min, MeV ParmIn[7] =10.0 # E_max, MeV ParmIn[8] =1.0 # E_break, MeV (not used in this example) ParmIn[9] =4.0 # \delta_1 ParmIn[10]=6.0 # \delta_2 (not used in this example) ParmIn[11]=1e8 # n_0 - thermal electron density, cm^{-3} ParmIn[12]=1e6 # n_b - nonthermal electron density, cm^{-3} ParmIn[13]=5.0 # B - magnetic field, G ParmIn[14]=60.0 # theta - the viewing angle, degrees ParmIn[15]=8.e7 # starting frequency to calculate spectrum, Hz ParmIn[16]=0.005 # logarithmic step in frequency ParmIn[17]=6 # Index of distribution over energy (KAP is chosen) ParmIn[18]=N # Number of frequencies (specified above) ParmIn[19]=3 # Index of distribution over pitch-angle (GLC is chosen) ParmIn[20]=90.0 # loss-cone boundary, degrees ParmIn[21]=0.0 # beam direction (degrees) in GAU and SGA (not used in this example) ParmIn[22]=0.2 # \Delta\mu ParmIn[23]=0.0 # a_4 in SGA (not used in this example) ParmIn[25]=12.0 # f^C_cr ParmIn[26]=12.0 # f^WH_cr ParmIn[27]=1 # matching on ParmIn[28]=1 # Q-optimization on def init_frequency_grid(startfreq,endfreq,numfreq=N): Params = ParmIn Params[16]=np.log10(endfreq/startfreq)/numfreq Params[15]=startfreq*1.e6 Params[18]=numfreq s=Get_MW.GET_MW(Params) # calling the main function f=s[0] # emission frequency (GHz) fmhz=[i*1000. for i in f] return fmhz def gs_kappa_func(freqgrid, temp=ParmIn[2],dens=ParmIn[11],kappa=ParmIn[4],emax=ParmIn[7],numfreq=N): Params = ParmIn Params[2]=temp Params[4]=kappa Params[7]=emax Params[11]=dens Params[15]=freqgrid[0]/1.e6 Params[17]=6 if not numfreq: numfreq=len(freqgrid) Params[16]=np.log10(freqgrid[-1]/freqgrid[0])/numfreq ParmIn[18]=numfreq s=Get_MW.GET_MW(ParmIn) # calling the main function I_O=s[1] # observed (at the Earth) intensity, O-mode (sfu) k_O=s[2] # exp(-tau), O-mode #I_X=s[3] # observed (at the Earth) intensity, X-mode (sfu) #k_X=s[4] # exp(-tau), X-mode return I_O
gpl-2.0
YihaoLu/statsmodels
statsmodels/tools/grouputils.py
25
22518
# -*- coding: utf-8 -*- """Tools for working with groups This provides several functions to work with groups and a Group class that keeps track of the different representations and has methods to work more easily with groups. Author: Josef Perktold, Author: Nathaniel Smith, recipe for sparse_dummies on scipy user mailing list Created on Tue Nov 29 15:44:53 2011 : sparse_dummies Created on Wed Nov 30 14:28:24 2011 : combine_indices changes: add Group class Notes ~~~~~ This reverses the class I used before, where the class was for the data and the group was auxiliary. Here, it is only the group, no data is kept. sparse_dummies needs checking for corner cases, e.g. what if a category level has zero elements? This can happen with subset selection even if the original groups where defined as arange. Not all methods and options have been tried out yet after refactoring need more efficient loop if groups are sorted -> see GroupSorted.group_iter """ from __future__ import print_function from statsmodels.compat.python import lrange, lzip, range import numpy as np import pandas as pd from statsmodels.compat.numpy import npc_unique import statsmodels.tools.data as data_util from pandas.core.index import Index, MultiIndex def combine_indices(groups, prefix='', sep='.', return_labels=False): """use np.unique to get integer group indices for product, intersection """ if isinstance(groups, tuple): groups = np.column_stack(groups) else: groups = np.asarray(groups) dt = groups.dtype is2d = (groups.ndim == 2) # need to store if is2d: ncols = groups.shape[1] if not groups.flags.c_contiguous: groups = np.array(groups, order='C') groups_ = groups.view([('', groups.dtype)] * groups.shape[1]) else: groups_ = groups uni, uni_idx, uni_inv = npc_unique(groups_, return_index=True, return_inverse=True) if is2d: uni = uni.view(dt).reshape(-1, ncols) # avoiding a view would be # for t in uni.dtype.fields.values(): # assert (t[0] == dt) # # uni.dtype = dt # uni.shape = (uni.size//ncols, ncols) if return_labels: label = [(prefix+sep.join(['%s']*len(uni[0]))) % tuple(ii) for ii in uni] return uni_inv, uni_idx, uni, label else: return uni_inv, uni_idx, uni # written for and used in try_covariance_grouploop.py def group_sums(x, group, use_bincount=True): """simple bincount version, again group : array, integer assumed to be consecutive integers no dtype checking because I want to raise in that case uses loop over columns of x for comparison, simple python loop """ x = np.asarray(x) if x.ndim == 1: x = x[:, None] elif x.ndim > 2 and use_bincount: raise ValueError('not implemented yet') if use_bincount: # re-label groups or bincount takes too much memory if np.max(group) > 2 * x.shape[0]: group = pd.factorize(group)[0] return np.array([np.bincount(group, weights=x[:, col]) for col in range(x.shape[1])]) else: uniques = np.unique(group) result = np.zeros([len(uniques)] + list(x.shape[1:])) for ii, cat in enumerate(uniques): result[ii] = x[g == cat].sum(0) return result def group_sums_dummy(x, group_dummy): """sum by groups given group dummy variable group_dummy can be either ndarray or sparse matrix """ if data_util._is_using_ndarray_type(group_dummy, None): return np.dot(x.T, group_dummy) else: # check for sparse return x.T * group_dummy def dummy_sparse(groups): """create a sparse indicator from a group array with integer labels Parameters ---------- groups: ndarray, int, 1d (nobs,) an array of group indicators for each observation. Group levels are assumed to be defined as consecutive integers, i.e. range(n_groups) where n_groups is the number of group levels. A group level with no observations for it will still produce a column of zeros. Returns ------- indi : ndarray, int8, 2d (nobs, n_groups) an indicator array with one row per observation, that has 1 in the column of the group level for that observation Examples -------- >>> g = np.array([0, 0, 2, 1, 1, 2, 0]) >>> indi = dummy_sparse(g) >>> indi <7x3 sparse matrix of type '<type 'numpy.int8'>' with 7 stored elements in Compressed Sparse Row format> >>> indi.todense() matrix([[1, 0, 0], [1, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 0], [0, 0, 1], [1, 0, 0]], dtype=int8) current behavior with missing groups >>> g = np.array([0, 0, 2, 0, 2, 0]) >>> indi = dummy_sparse(g) >>> indi.todense() matrix([[1, 0, 0], [1, 0, 0], [0, 0, 1], [1, 0, 0], [0, 0, 1], [1, 0, 0]], dtype=int8) """ from scipy import sparse indptr = np.arange(len(groups)+1) data = np.ones(len(groups), dtype=np.int8) indi = sparse.csr_matrix((data, g, indptr)) return indi class Group(object): def __init__(self, group, name=''): # self.group = np.asarray(group) # TODO: use checks in combine_indices self.name = name uni, uni_idx, uni_inv = combine_indices(group) # TODO: rename these to something easier to remember self.group_int, self.uni_idx, self.uni = uni, uni_idx, uni_inv self.n_groups = len(self.uni) # put this here so they can be overwritten before calling labels self.separator = '.' self.prefix = self.name if self.prefix: self.prefix = self.prefix + '=' # cache decorator def counts(self): return np.bincount(self.group_int) # cache_decorator def labels(self): # is this only needed for product of groups (intersection)? prefix = self.prefix uni = self.uni sep = self.separator if uni.ndim > 1: label = [(prefix+sep.join(['%s']*len(uni[0]))) % tuple(ii) for ii in uni] else: label = [prefix + '%s' % ii for ii in uni] return label def dummy(self, drop_idx=None, sparse=False, dtype=int): """ drop_idx is only available if sparse=False drop_idx is supposed to index into uni """ uni = self.uni if drop_idx is not None: idx = lrange(len(uni)) del idx[drop_idx] uni = uni[idx] group = self.group if not sparse: return (group[:, None] == uni[None, :]).astype(dtype) else: return dummy_sparse(self.group_int) def interaction(self, other): if isinstance(other, self.__class__): other = other.group return self.__class__((self, other)) def group_sums(self, x, use_bincount=True): return group_sums(x, self.group_int, use_bincount=use_bincount) def group_demean(self, x, use_bincount=True): nobs = float(len(x)) means_g = group_sums(x / nobs, self.group_int, use_bincount=use_bincount) x_demeaned = x - means_g[self.group_int] # check reverse_index? return x_demeaned, means_g class GroupSorted(Group): def __init__(self, group, name=''): super(self.__class__, self).__init__(group, name=name) idx = (np.nonzero(np.diff(group))[0]+1).tolist() self.groupidx = lzip([0] + idx, idx + [len(group)]) def group_iter(self): for low, upp in self.groupidx: yield slice(low, upp) def lag_indices(self, lag): """return the index array for lagged values Warning: if k is larger then the number of observations for an individual, then no values for that individual are returned. TODO: for the unbalanced case, I should get the same truncation for the array with lag=0. From the return of lag_idx we wouldn't know which individual is missing. TODO: do I want the full equivalent of lagmat in tsa? maxlag or lag or lags. not tested yet """ lag_idx = np.asarray(self.groupidx)[:, 1] - lag # asarray or already? mask_ok = (lag <= lag_idx) # still an observation that belongs to the same individual return lag_idx[mask_ok] def _is_hierarchical(x): """ Checks if the first item of an array-like object is also array-like If so, we have a MultiIndex and returns True. Else returns False. """ item = x[0] # is there a better way to do this? if isinstance(item, (list, tuple, np.ndarray, pd.Series, pd.DataFrame)): return True else: return False def _make_hierarchical_index(index, names): return MultiIndex.from_tuples(*[index], names=names) def _make_generic_names(index): n_names = len(index.names) pad = str(len(str(n_names))) # number of digits return [("group{0:0"+pad+"}").format(i) for i in range(n_names)] class Grouping(object): def __init__(self, index, names=None): """ index : index-like Can be pandas MultiIndex or Index or array-like. If array-like and is a MultipleIndex (more than one grouping variable), groups are expected to be in each row. E.g., [('red', 1), ('red', 2), ('green', 1), ('green', 2)] names : list or str, optional The names to use for the groups. Should be a str if only one grouping variable is used. Notes ----- If index is already a pandas Index then there is no copy. """ if isinstance(index, (Index, MultiIndex)): if names is not None: if hasattr(index, 'set_names'): # newer pandas index.set_names(names, inplace=True) else: index.names = names self.index = index else: # array-like if _is_hierarchical(index): self.index = _make_hierarchical_index(index, names) else: self.index = Index(index, name=names) if names is None: names = _make_generic_names(self.index) if hasattr(self.index, 'set_names'): self.index.set_names(names, inplace=True) else: self.index.names = names self.nobs = len(self.index) self.nlevels = len(self.index.names) self.slices = None @property def index_shape(self): if hasattr(self.index, 'levshape'): return self.index.levshape else: return self.index.shape @property def levels(self): if hasattr(self.index, 'levels'): return self.index.levels else: return pd.Categorical(self.index).levels @property def labels(self): # this was index_int, but that's not a very good name... if hasattr(self.index, 'labels'): return self.index.labels else: # pandas version issue here # Compat code for the labels -> codes change in pandas 0.15 # FIXME: use .codes directly when we don't want to support # pandas < 0.15 tmp = pd.Categorical(self.index) try: labl = tmp.codes except AttributeError: labl = tmp.labels # Old pandsd return labl[None] @property def group_names(self): return self.index.names def reindex(self, index=None, names=None): """ Resets the index in-place. """ # NOTE: this isn't of much use if the rest of the data doesn't change # This needs to reset cache if names is None: names = self.group_names self = Grouping(index, names) def get_slices(self, level=0): """ Sets the slices attribute to be a list of indices of the sorted groups for the first index level. I.e., self.slices[0] is the index where each observation is in the first (sorted) group. """ # TODO: refactor this groups = self.index.get_level_values(level).unique() groups.sort() if isinstance(self.index, MultiIndex): self.slices = [self.index.get_loc_level(x, level=level)[0] for x in groups] else: self.slices = [self.index.get_loc(x) for x in groups] def count_categories(self, level=0): """ Sets the attribute counts to equal the bincount of the (integer-valued) labels. """ # TODO: refactor this not to set an attribute. Why would we do this? self.counts = np.bincount(self.labels[level]) def check_index(self, is_sorted=True, unique=True, index=None): """Sanity checks""" if not index: index = self.index if is_sorted: test = pd.DataFrame(lrange(len(index)), index=index) test_sorted = test.sort() if not test.index.equals(test_sorted.index): raise Exception('Data is not be sorted') if unique: if len(index) != len(index.unique()): raise Exception('Duplicate index entries') def sort(self, data, index=None): """Applies a (potentially hierarchical) sort operation on a numpy array or pandas series/dataframe based on the grouping index or a user-supplied index. Returns an object of the same type as the original data as well as the matching (sorted) Pandas index. """ if index is None: index = self.index if data_util._is_using_ndarray_type(data, None): if data.ndim == 1: out = pd.Series(data, index=index, copy=True) out = out.sort_index() else: out = pd.DataFrame(data, index=index) out = out.sort(inplace=False) # copies return np.array(out), out.index elif data_util._is_using_pandas(data, None): out = data out = out.reindex(index) # copies? out = out.sort_index() return out, out.index else: msg = 'data must be a Numpy array or a Pandas Series/DataFrame' raise ValueError(msg) def transform_dataframe(self, dataframe, function, level=0, **kwargs): """Apply function to each column, by group Assumes that the dataframe already has a proper index""" if dataframe.shape[0] != self.nobs: raise Exception('dataframe does not have the same shape as index') out = dataframe.groupby(level=level).apply(function, **kwargs) if 1 in out.shape: return np.ravel(out) else: return np.array(out) def transform_array(self, array, function, level=0, **kwargs): """Apply function to each column, by group """ if array.shape[0] != self.nobs: raise Exception('array does not have the same shape as index') dataframe = pd.DataFrame(array, index=self.index) return self.transform_dataframe(dataframe, function, level=level, **kwargs) def transform_slices(self, array, function, level=0, **kwargs): """Apply function to each group. Similar to transform_array but does not coerce array to a DataFrame and back and only works on a 1D or 2D numpy array. function is called function(group, group_idx, **kwargs). """ array = np.asarray(array) if array.shape[0] != self.nobs: raise Exception('array does not have the same shape as index') # always reset because level is given. need to refactor this. self.get_slices(level=level) processed = [] for s in self.slices: if array.ndim == 2: subset = array[s, :] elif array.ndim == 1: subset = array[s] processed.append(function(subset, s, **kwargs)) processed = np.array(processed) return processed.reshape(-1, processed.shape[-1]) # TODO: this isn't general needs to be a PanelGrouping object def dummies_time(self): self.dummy_sparse(level=1) return self._dummies def dummies_groups(self, level=0): self.dummy_sparse(level=level) return self._dummies def dummy_sparse(self, level=0): """create a sparse indicator from a group array with integer labels Parameters ---------- groups: ndarray, int, 1d (nobs,) an array of group indicators for each observation. Group levels are assumed to be defined as consecutive integers, i.e. range(n_groups) where n_groups is the number of group levels. A group level with no observations for it will still produce a column of zeros. Returns ------- indi : ndarray, int8, 2d (nobs, n_groups) an indicator array with one row per observation, that has 1 in the column of the group level for that observation Examples -------- >>> g = np.array([0, 0, 2, 1, 1, 2, 0]) >>> indi = dummy_sparse(g) >>> indi <7x3 sparse matrix of type '<type 'numpy.int8'>' with 7 stored elements in Compressed Sparse Row format> >>> indi.todense() matrix([[1, 0, 0], [1, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 0], [0, 0, 1], [1, 0, 0]], dtype=int8) current behavior with missing groups >>> g = np.array([0, 0, 2, 0, 2, 0]) >>> indi = dummy_sparse(g) >>> indi.todense() matrix([[1, 0, 0], [1, 0, 0], [0, 0, 1], [1, 0, 0], [0, 0, 1], [1, 0, 0]], dtype=int8) """ from scipy import sparse groups = self.labels[level] indptr = np.arange(len(groups)+1) data = np.ones(len(groups), dtype=np.int8) self._dummies = sparse.csr_matrix((data, groups, indptr)) if __name__ == '__main__': # ---------- examples combine_indices from numpy.testing import assert_equal np.random.seed(985367) groups = np.random.randint(0, 2, size=(10, 2)) uv, ux, u, label = combine_indices(groups, return_labels=True) uv, ux, u, label = combine_indices(groups, prefix='g1,g2=', sep=',', return_labels=True) group0 = np.array(['sector0', 'sector1'])[groups[:, 0]] group1 = np.array(['region0', 'region1'])[groups[:, 1]] uv, ux, u, label = combine_indices((group0, group1), prefix='sector,region=', sep=',', return_labels=True) uv, ux, u, label = combine_indices((group0, group1), prefix='', sep='.', return_labels=True) group_joint = np.array(label)[uv] group_joint_expected = np.array(['sector1.region0', 'sector0.region1', 'sector0.region0', 'sector0.region1', 'sector1.region1', 'sector0.region0', 'sector1.region0', 'sector1.region0', 'sector0.region1', 'sector0.region0'], dtype='|S15') assert_equal(group_joint, group_joint_expected) """ >>> uv array([2, 1, 0, 0, 1, 0, 2, 0, 1, 0]) >>> label ['sector0.region0', 'sector1.region0', 'sector1.region1'] >>> np.array(label)[uv] array(['sector1.region1', 'sector1.region0', 'sector0.region0', 'sector0.region0', 'sector1.region0', 'sector0.region0', 'sector1.region1', 'sector0.region0', 'sector1.region0', 'sector0.region0'], dtype='|S15') >>> np.column_stack((group0, group1)) array([['sector1', 'region1'], ['sector1', 'region0'], ['sector0', 'region0'], ['sector0', 'region0'], ['sector1', 'region0'], ['sector0', 'region0'], ['sector1', 'region1'], ['sector0', 'region0'], ['sector1', 'region0'], ['sector0', 'region0']], dtype='|S7') """ # ------------- examples sparse_dummies from scipy import sparse g = np.array([0, 0, 1, 2, 1, 1, 2, 0]) u = lrange(3) indptr = np.arange(len(g)+1) data = np.ones(len(g), dtype=np.int8) a = sparse.csr_matrix((data, g, indptr)) print(a.todense()) print(np.all(a.todense() == (g[:, None] == np.arange(3)).astype(int))) x = np.arange(len(g)*3).reshape(len(g), 3, order='F') print('group means') print(x.T * a) print(np.dot(x.T, g[:, None] == np.arange(3))) print(np.array([np.bincount(g, weights=x[:, col]) for col in range(3)])) for cat in u: print(x[g == cat].sum(0)) for cat in u: x[g == cat].sum(0) cc = sparse.csr_matrix([[0, 1, 0, 1, 0, 0, 0, 0, 0], [1, 0, 1, 0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 1, 0, 0, 0], [1, 0, 0, 0, 1, 0, 1, 0, 0], [0, 1, 0, 1, 0, 1, 0, 1, 0], [0, 0, 1, 0, 1, 0, 0, 0, 1], [0, 0, 0, 1, 0, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0, 1, 0, 1], [0, 0, 0, 0, 0, 1, 0, 1, 0]]) # ------------- groupsums print(group_sums(np.arange(len(g)*3*2).reshape(len(g), 3, 2), g, use_bincount=False).T) print(group_sums(np.arange(len(g)*3*2).reshape(len(g), 3, 2)[:, :, 0], g)) print(group_sums(np.arange(len(g)*3*2).reshape(len(g), 3, 2)[:, :, 1], g)) # ------------- examples class x = np.arange(len(g)*3).reshape(len(g), 3, order='F') mygroup = Group(g) print(mygroup.group_int) print(mygroup.group_sums(x)) print(mygroup.labels())
bsd-3-clause
PrashntS/scikit-learn
examples/calibration/plot_compare_calibration.py
241
5008
""" ======================================== Comparison of Calibration of Classifiers ======================================== Well calibrated classifiers are probabilistic classifiers for which the output of the predict_proba method can be directly interpreted as a confidence level. For instance a well calibrated (binary) classifier should classify the samples such that among the samples to which it gave a predict_proba value close to 0.8, approx. 80% actually belong to the positive class. LogisticRegression returns well calibrated predictions as it directly optimizes log-loss. In contrast, the other methods return biased probilities, with different biases per method: * GaussianNaiveBayes tends to push probabilties to 0 or 1 (note the counts in the histograms). This is mainly because it makes the assumption that features are conditionally independent given the class, which is not the case in this dataset which contains 2 redundant features. * RandomForestClassifier shows the opposite behavior: the histograms show peaks at approx. 0.2 and 0.9 probability, while probabilities close to 0 or 1 are very rare. An explanation for this is given by Niculescu-Mizil and Caruana [1]: "Methods such as bagging and random forests that average predictions from a base set of models can have difficulty making predictions near 0 and 1 because variance in the underlying base models will bias predictions that should be near zero or one away from these values. Because predictions are restricted to the interval [0,1], errors caused by variance tend to be one- sided near zero and one. For example, if a model should predict p = 0 for a case, the only way bagging can achieve this is if all bagged trees predict zero. If we add noise to the trees that bagging is averaging over, this noise will cause some trees to predict values larger than 0 for this case, thus moving the average prediction of the bagged ensemble away from 0. We observe this effect most strongly with random forests because the base-level trees trained with random forests have relatively high variance due to feature subseting." As a result, the calibration curve shows a characteristic sigmoid shape, indicating that the classifier could trust its "intuition" more and return probabilties closer to 0 or 1 typically. * Support Vector Classification (SVC) shows an even more sigmoid curve as the RandomForestClassifier, which is typical for maximum-margin methods (compare Niculescu-Mizil and Caruana [1]), which focus on hard samples that are close to the decision boundary (the support vectors). .. topic:: References: .. [1] Predicting Good Probabilities with Supervised Learning, A. Niculescu-Mizil & R. Caruana, ICML 2005 """ print(__doc__) # Author: Jan Hendrik Metzen <[email protected]> # License: BSD Style. import numpy as np np.random.seed(0) import matplotlib.pyplot as plt from sklearn import datasets from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.svm import LinearSVC from sklearn.calibration import calibration_curve X, y = datasets.make_classification(n_samples=100000, n_features=20, n_informative=2, n_redundant=2) train_samples = 100 # Samples used for training the models X_train = X[:train_samples] X_test = X[train_samples:] y_train = y[:train_samples] y_test = y[train_samples:] # Create classifiers lr = LogisticRegression() gnb = GaussianNB() svc = LinearSVC(C=1.0) rfc = RandomForestClassifier(n_estimators=100) ############################################################################### # Plot calibration plots plt.figure(figsize=(10, 10)) ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2) ax2 = plt.subplot2grid((3, 1), (2, 0)) ax1.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated") for clf, name in [(lr, 'Logistic'), (gnb, 'Naive Bayes'), (svc, 'Support Vector Classification'), (rfc, 'Random Forest')]: clf.fit(X_train, y_train) if hasattr(clf, "predict_proba"): prob_pos = clf.predict_proba(X_test)[:, 1] else: # use decision function prob_pos = clf.decision_function(X_test) prob_pos = \ (prob_pos - prob_pos.min()) / (prob_pos.max() - prob_pos.min()) fraction_of_positives, mean_predicted_value = \ calibration_curve(y_test, prob_pos, n_bins=10) ax1.plot(mean_predicted_value, fraction_of_positives, "s-", label="%s" % (name, )) ax2.hist(prob_pos, range=(0, 1), bins=10, label=name, histtype="step", lw=2) ax1.set_ylabel("Fraction of positives") ax1.set_ylim([-0.05, 1.05]) ax1.legend(loc="lower right") ax1.set_title('Calibration plots (reliability curve)') ax2.set_xlabel("Mean predicted value") ax2.set_ylabel("Count") ax2.legend(loc="upper center", ncol=2) plt.tight_layout() plt.show()
bsd-3-clause
openconnectome/m2g
MR-OCP/MROCPdjango/computation/plotting/HBMPlot.py
2
14895
#!/usr/bin/env python # Copyright 2014 Open Connectome Project (http://openconnecto.me) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: Disa Mhembere, Johns Hopkins University # Separated: 10/2/2012 # Plot all .np arrays in a common dir on the same axis & save # 1 indexed import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt import pylab as pl import numpy as np import os import sys from glob import glob import argparse import scipy from scipy import interpolate import inspect import csv # Issues: Done nothing with MAD def lineno(): ''' Get current line number ''' return str(inspect.getframeinfo(inspect.currentframe())[1]) def csvtodict(fn ='/home/disa/code/mrn_covariates_n120-v4.csv', char = 'class'): if char == 'class': col = 4 elif char == 'gender': col = 2 reader = csv.reader(open(fn, 'rb')) outdict = dict() for row in reader: outdict[row[0].strip()] = row[col].strip() #print row[0] ,'TYPE' ,outdict[row[0]] #import pdb; pdb.set_trace() return outdict def pickprintcolor(charDict, arrfn): ''' charDict: dict ''' if (charDict[(arrfn.split('/')[-1]).split('_')[0]] == '0'): plot_color = 'grey' elif (charDict[(arrfn.split('/')[-1]).split('_')[0]] == '1'): plot_color = 'blue' elif (charDict[(arrfn.split('/')[-1]).split('_')[0]] == '2'): plot_color = 'green' else: print "[ERROR]: %s, no match on subject type" % lineno() return plot_color def plotInvDist(invDir, pngName, numBins =100): subj_types = csvtodict(char = 'class') # load up subject types # ClustCoeff Degree Eigen MAD numEdges.npy ScanStat Triangle MADdir = "MAD" ccDir = "ClustCoeff" DegDir = "Degree" EigDir = "Eigen/values" SS1dir = "ScanStat1" triDir = "Triangle" invDirs = [triDir, ccDir, SS1dir, DegDir ] if not os.path.exists(invDir): print "%s does not exist" % invDir sys.exit(1) pl.figure(2) fig_gl, axes = pl.subplots(nrows=3, ncols=2) for idx, drcty in enumerate (invDirs): for arrfn in glob(os.path.join(invDir, drcty,'*.npy')): try: arr = np.load(arrfn) arr = np.log(arr[arr.nonzero()]) print "Processing %s..." % arrfn except: print "[ERROR]: Line %s: Invariant file not found %s" % (lineno(),arrfn) pl.figure(1) n, bins, patches = pl.hist(arr, bins=numBins , range=None, normed=False, weights=None, cumulative=False, \ bottom=None, histtype='stepfilled', align='mid', orientation='vertical', \ rwidth=None, log=False, color=None, label=None, hold=None) n = np.append(n,0) n = n/float(sum(n)) fig = pl.figure(2) fig.subplots_adjust(hspace=.5) ax = pl.subplot(3,2,idx+1) #if idx == 0: # plt.axis([0, 35, 0, 0.04]) # ax.set_yticks(scipy.arange(0,0.04,0.01)) #if idx == 1 or idx == 2: # ax.set_yticks(scipy.arange(0,0.03,0.01)) #if idx == 3: # ax.set_yticks(scipy.arange(0,0.04,0.01)) # Interpolation f = interpolate.interp1d(bins, n, kind='cubic') x = np.arange(bins[0],bins[-1],0.03) # vary linspc interp = f(x) ltz = interp < 0 interp[ltz] = 0 plot_color = pickprintcolor(subj_types, arrfn) #pl.plot(x, interp, color = plot_color, linewidth=1) pl.plot(interp, color = plot_color, linewidth=1) if idx == 0: pl.ylabel('Probability') pl.xlabel('Log Number of Local Triangles') if idx == 1: #pl.ylabel('Probability') #** pl.xlabel('Log Local Clustering Coefficient') if idx == 2: pl.ylabel('Probability') pl.xlabel('Log Scan Statistic 1') if idx == 3: #pl.ylabel('Probability') #** pl.xlabel('Log Degree') ''' Eigenvalues ''' ax = pl.subplot(3,2,5) ax.set_yticks(scipy.arange(0,16,4)) for eigValInstance in glob(os.path.join(invDir, EigDir,"*.npy")): try: eigv = np.load(eigValInstance) except: print "Eigenvalue array" n = len(eigv) sa = (np.sort(eigv)[::-1]) plot_color = pickprintcolor(subj_types, eigValInstance) pl.plot(range(1,n+1), sa/10000, color=plot_color) pl.ylabel('Magnitude ($X 10^4$) ') pl.xlabel('Eigenvalue Rank') ''' Edges ''' arrfn = os.path.join(invDir, 'Globals/numEdges.npy') try: arr = np.load(arrfn) arr = np.log(arr[arr.nonzero()]) print "Processing %s..." % arrfn except: print "[ERROR]: Line %s: Invariant file not found %s" % (lineno(),arrfn) pl.figure(1) n, bins, patches = pl.hist(arr, bins=10 , range=None, normed=False, weights=None, cumulative=False, \ bottom=None, histtype='stepfilled', align='mid', orientation='vertical', \ rwidth=None, log=False, color=None, label=None, hold=None) n = np.append(n,0) fig = pl.figure(2) ax = pl.subplot(3,2,6) ax.set_xticks(scipy.arange(17.2,18.1,0.2)) f = interpolate.interp1d(bins, n, kind='cubic') x = np.arange(bins[0],bins[-1],0.01) # vary linspc interp = f(x) ltz = interp < 0 interp[ltz] = 0 pl.plot(x, interp,color ='grey' ,linewidth=1) pl.ylabel('Frequency') pl.xlabel('Log Global Edge Number') pl.savefig(pngName+'.pdf') ################################################# ################################################## ################################################## def plotstdmean(invDir, pngName, numBins =100): subj_types = csvtodict() # load up subject types # ClustCoeff Degree Eigen MAD numEdges.npy ScanStat Triangle MADdir = "MAD" ccDir = "ClustCoeff" DegDir = "Degree" EigDir = "Eigen" SS1dir = "ScanStat1" triDir = "Triangle" invDirs = [triDir, ccDir, SS1dir, DegDir ] if not os.path.exists(invDir): print "%s does not exist" % invDir sys.exit(1) pl.figure(2) fig_gl, axes = pl.subplots(nrows=3, ncols=2) fig_gl.tight_layout() for idx, drcty in enumerate (invDirs): mean_arr = [] stddev_arr = [] ones_mean = [] twos_mean = [] zeros_mean = [] ones_std = [] twos_std = [] zeros_std = [] for arrfn in glob(os.path.join(invDir, drcty,'*.npy')): try: arr = np.load(arrfn) arr = np.log(arr[arr.nonzero()]) print "Processing %s..." % arrfn except: print "[ERROR]: Line %s: Invariant file not found %s" % (lineno(),arrfn) pl.figure(1) n, bins, patches = pl.hist(arr, bins=numBins , range=None, normed=False, weights=None, cumulative=False, \ bottom=None, histtype='stepfilled', align='mid', orientation='vertical', \ rwidth=None, log=False, color=None, label=None, hold=None) n = np.append(n,0) n = n/float(sum(n)) fig = pl.figure(2) fig.subplots_adjust(hspace=.5) nrows=5 ncols=4 ax = pl.subplot(nrows,ncols,idx+1) if idx == 0: plt.axis([0, 35, 0, 0.04]) ax.set_yticks(scipy.arange(0,0.04,0.01)) if idx == 1 or idx == 2: ax.set_yticks(scipy.arange(0,0.03,0.01)) if idx == 3: ax.set_yticks(scipy.arange(0,0.04,0.01)) # Interpolation f = interpolate.interp1d(bins, n, kind='cubic') x = np.arange(bins[0],bins[-1],0.03) # vary linspc interp = f(x) ltz = interp < 0 interp[ltz] = 0 import pdb; pdb.set_trace() ''' pl.plot(x, interp, color = plot_color, linewidth=1) if ( subj_types[arrfn.split('/')[-1].split('_')[0]] == '0'): zeros_mean.append(arr.mean()) zeros_std.append(arr.std()) if ( subj_types[arrfn.split('/')[-1].split('_')[0]] == '1'): ones_mean.append(arr.mean()) ones_std.append(arr.std()) if ( subj_types[arrfn.split('/')[-1].split('_')[0]] == '2'): twos_mean.append(arr.mean()) twos_std.append(arr.std()) ''' plot_color = pickprintcolor(subj_types, arrfn) if idx == 0: pl.ylabel('Probability') pl.xlabel('Log Number of Local Triangles') if idx == 1: #pl.ylabel('Probability') #** pl.xlabel('Log Local Clustering Coefficient') if idx == 2: pl.ylabel('Probability') pl.xlabel('Log Scan Statistic 1') if idx == 3: #pl.ylabel('Probability') #** pl.xlabel('Log Degree') ''' Eigenvalues ''' ax = pl.subplot(3,2,5) ax.set_yticks(scipy.arange(0,16,4)) for eigValInstance in glob(os.path.join(invDir, EigDir,"*.npy")): try: eigv = np.load(eigValInstance) except: print "Eigenvalue array" n = len(eigv) sa = (np.sort(eigv)[::-1]) plot_color = pickprintcolor(subj_types, eigValInstance) pl.plot(range(1,n+1), sa/10000, color=plot_color) pl.ylabel('Magnitude ($X 10^4$) ') pl.xlabel('eigenvalue rank') ''' Edges ''' arrfn = os.path.join(invDir, 'Globals/numEdges.npy') try: arr = np.load(arrfn) arr = np.log(arr[arr.nonzero()]) print "Processing %s..." % arrfn except: print "[ERROR]: Line %s: Invariant file not found %s" % (lineno(),arrfn) pl.figure(1) n, bins, patches = pl.hist(arr, bins=10 , range=None, normed=False, weights=None, cumulative=False, \ bottom=None, histtype='stepfilled', align='mid', orientation='vertical', \ rwidth=None, log=False, color=None, label=None, hold=None) n = np.append(n,0) fig = pl.figure(2) ax = pl.subplot(3,2,6) ax.set_xticks(scipy.arange(17.2,18.1,0.2)) f = interpolate.interp1d(bins, n, kind='cubic') x = np.arange(bins[0],bins[-1],0.01) # vary linspc interp = f(x) ltz = interp < 0 interp[ltz] = 0 pl.plot(x, interp,color ='grey' ,linewidth=1) pl.ylabel('Frequency') pl.xlabel('log global edge number') pl.savefig(pngName+'.png') ################################################## ################################################## ################################################## def OLDplotstdmean(invDir, pngName): subj_types = csvtodict() # load up subject types # ClustCoeff Degree Eigen MAD numEdges.npy ScanStat Triangle ccDir = "ClustCoeff" DegDir = "Degree" EigDir = "Eigen" SS1dir = "ScanStat1" triDir = "Triangle" invDirs = [triDir, ccDir, SS1dir, DegDir ] #invDirs = [] if not os.path.exists(invDir): print "%s does not exist" % invDir sys.exit(1) pl.figure(1) nrows=4 ncols=2 fig_gl, axes = pl.subplots(nrows=nrows, ncols=ncols) fig_gl.tight_layout() for idx, drcty in enumerate (invDirs): mean_arr = [] stddev_arr = [] ones_mean = [] twos_mean = [] zeros_mean = [] ones_std = [] twos_std = [] zeros_std = [] for arrfn in glob(os.path.join(invDir, drcty,'*.npy')): try: arr = np.load(arrfn) mean_arr.append(arr.mean()) stddev_arr.append(arr.std()) if ( subj_types[arrfn.split('/')[-1].split('_')[0]] == '0'): zeros_mean.append(arr.mean()) zeros_std.append(arr.std()) if ( subj_types[arrfn.split('/')[-1].split('_')[0]] == '1'): ones_mean.append(arr.mean()) ones_std.append(arr.std()) if ( subj_types[arrfn.split('/')[-1].split('_')[0]] == '2'): twos_mean.append(arr.mean()) twos_std.append(arr.std()) #mean_arr.append(np.log(arr.mean())) #stddev_arr.append(np.log(arr.std())) #arr = np.log(arr[arr.nonzero()]) print "Processing %s..." % arrfn except: print "[ERROR]: Line %s: Invariant file not found %s" % (lineno(),arrfn) mean_arr = np.array(mean_arr) stddev_arr = np.array(stddev_arr) ax = pl.subplot(nrows,ncols,(idx*ncols)+1) ax.set_yticks(scipy.arange(0,1,.25)) pl.gcf().subplots_adjust(bottom=0.07) ''' if idx == 0: plt.axis([0, 35, 0, 0.04]) ax.set_yticks(scipy.arange(0,0.04,0.01)) if idx == 1 or idx == 2: ax.set_yticks(scipy.arange(0,0.03,0.01)) if idx == 3: ax.set_yticks(scipy.arange(0,0.04,0.01)) ''' # Interpolation #f = interpolate.interp1d(bins, n, kind='cubic') #x = np.arange(bins[0],bins[-1],0.03) # vary linspc #interp = f(x) #ltz = interp < 0 #interp[ltz] = 0 #plot_color = pickprintcolor(subj_types, arrfn) #pl.plot(x, interp, color = plot_color, linewidth=1) #pl.plot(mean_arr/float(mean_arr.max()), color = "black", linewidth=1) if (idx*ncols)+1 == 1: pl.ylabel('') pl.xlabel('Norm. Local Triangle Count Mean') if (idx*ncols)+1 == 3: #pl.ylabel('Probability') #** pl.xlabel('Norm. Local Clustering Coefficient Mean') if (idx*ncols)+1 == 5: pl.ylabel('Normalized Magnitude Scale') pl.xlabel('Norm. Scan Statistic 1 Mean') if (idx*ncols)+1 == 7: #pl.ylabel('Probability') #** pl.xlabel('Norm. Local Degree Mean') pl.plot(zeros_mean, color = 'grey' , linewidth=1) pl.plot(ones_mean, color = 'blue', linewidth=1) pl.plot(twos_mean, color = 'green', linewidth=1) ax = pl.subplot(nrows,ncols,(idx*ncols)+2) ax.set_yticks(scipy.arange(0,1,.25)) pl.gcf().subplots_adjust(bottom=0.07) stddev_arr = np.array(stddev_arr) #pl.plot(stddev_arr/float(stddev_arr.max()), color = "black", linewidth=1) if (idx*ncols)+2 == 2: pl.ylabel('') pl.xlabel('Norm. Local Triangle Count Std Dev') if (idx*ncols)+2 == 4: #pl.ylabel('Probability') #** pl.xlabel('Norm. Local Clustering Coefficient Std Dev') if (idx*ncols)+2 == 6: #pl.ylabel('Probability') pl.xlabel('Norm. Scan Statistic 1 Std Dev') if (idx*ncols)+2 == 8: #pl.ylabel('Probability') #** pl.xlabel('Norm. Local Degree Std Dev') pl.plot(zeros_std, color = 'grey' , linewidth=1) pl.plot(ones_std, color = 'blue', linewidth=1) pl.plot(twos_std, color = 'green', linewidth=1) pl.savefig(pngName+'.png') def main(): parser = argparse.ArgumentParser(description='Plot distribution of invariant arrays of several graphs') parser.add_argument('invDir', action='store',help='The full path of directory containing .npy invariant arrays') parser.add_argument('pngName', action='store', help='Full path of directory of resulting png file') parser.add_argument('numBins', type = int, action='store', help='Number of bins') result = parser.parse_args() plotInvDist(result.invDir, result.pngName, result.numBins) #plotstdmean(result.invDir, result.pngName) if __name__ == '__main__': main() #csvtodict(sys.argv[1])
apache-2.0
sheadovas/tools
misc/plotter.py
1
1780
#!/usr/bin/python # created by shead import sys import numpy as np import matplotlib.pyplot as plt import pylab """ USAGE ============ ./plotter.py [log] ./plotter.py my_log.log REQUIRED DEPENDENCIES ============ * Python2 * Matplot http://matplotlib.org/users/installing.html FILE FORMAT ============ [iteration] [amount_of_cmp] [amount_of_swaps] ... EXAMPLE FILE ============ 10 1 2 20 30 121 """ def load_data_from_file(filename, data_size, data_cmp, data_swp): with open(filename, 'r') as f: for line in f: raw = line.split() data_size.append(int(raw[0])) data_cmp.append(int(raw[1])) data_swp.append(int(raw[2])) # func from docs def autolabel(rects, ax): # attach some text labels for rect in rects: height = rect.get_height() ax.text(rect.get_x() + rect.get_width()/2.0, 1.05*height, '%d' % int(height), ha='center', va='bottom') def main(argv): if len(argv) != 2: print 'USAGE: plotter [path_to_log]' sys.exit(1) data_size = [] data_cmp = [] data_swp = [] load_data_from_file(argv[1], data_size, data_cmp, data_swp) # plot N = len(data_size) ind = np.arange(N) # the x locations for the groups width = 0.35 # the width of the bars fig, ax = plt.subplots() rects1 = ax.bar(ind, data_cmp, width, color='r') rects2 = ax.bar(ind + width, data_swp, width, color='y') # add some text for labels, title and axes ticks ax.set_ylabel('Values') title = argv[1].split('.')[0] ax.set_title(title) #ax.set_xticks(ind + width) #x.set_xticklabels(data_size) ax.legend((rects1[0], rects2[0]), ('cmp', 'swp')) #autolabel(rects1, ax) #autolabel(rects2, ax) fname = '%s.png' % (title) pylab.savefig(fname, dpi=333) print 'Saved to %s' % fname if __name__ == "__main__": main(sys.argv)
mit
kzky/python-online-machine-learning-library
pa/passive_aggressive_2.py
1
6472
import numpy as np import scipy as sp import logging as logger import time import pylab as pl from collections import defaultdict from sklearn.metrics import confusion_matrix class PassiveAggressiveII(object): """ Passive Aggressive-II algorithm: squared hinge loss PA. References: - http://jmlr.org/papers/volume7/crammer06a/crammer06a.pdf This model is only applied to binary classification. """ def __init__(self, fname, delimiter = " ", C = 1, n_scan = 10): """ model initialization. """ logger.basicConfig(level=logger.DEBUG) logger.info("init starts") self.n_scan = 10 self.data = defaultdict() self.model = defaultdict() self.cache = defaultdict() self._load(fname, delimiter) self._init_model(C) logger.info("init finished") def _load(self, fname, delimiter = " "): """ Load data set specified with filename. data format must be as follows (space-separated file as default), l_1 x_11 x_12 x_13 ... x_1m l_2 x_21 x_22 ... x_2m ... l_n x_n1 x_n2 ... x_nm l_i must be {1, -1} because of binary classifier. Arguments: - `fname`: file name. - `delimiter`: delimiter of a file. """ logger.info("load data starts") # load data self.data["data"] = np.loadtxt(fname, delimiter = delimiter) self.data["n_sample"] = self.data["data"].shape[0] self.data["f_dim"] = self.data["data"].shape[1] - 1 # binalize self._binalize(self.data["data"]) # normalize self.normalize(self.data["data"][:, 1:]) logger.info("load data finished") def _binalize(self, data): """ Binalize label of data. Arguments: - `data`: dataset. """ logger.info("init starts") # binary check labels = data[:, 0] classes = np.unique(labels) if classes.size != 2: print "label must be a binary value." exit(1) # convert binary lables to {1, -1} for i in xrange(labels.size): if labels[i] == classes[0]: labels[i] = 1 else: labels[i] = -1 # set classes self.data["classes"] = classes logger.info("init finished") def normalize(self, samples): """ nomalize sample, such that sqrt(x^2) = 1 Arguments: - `samples`: dataset without labels. """ logger.info("normalize starts") for i in xrange(0, self.data["n_sample"]): samples[i, :] = self._normalize(samples[i, :]) logger.info("normalize finished") def _normalize(self, sample): norm = np.sqrt(sample.dot(sample)) sample = sample/norm return sample def _init_model(self, C): """ Initialize model. """ logger.info("init model starts") self.model["w"] = np.ndarray(self.data["f_dim"] + 1) # model paremter self.model["C"] = C # aggressive parameter logger.info("init model finished") def _learn(self, ): """ Learn internally. """ def _update(self, label, sample, margin): """ Update model parameter internally. update rule is as follows, w = w + y (1 - m)/(||x||_2^2 + C) * x Arguments: - `label`: label = {1, -1} - `sample`: sample, or feature vector """ # add bias sample = self._add_bias(sample) norm = sample.dot(sample) w = self.model["w"] + label * (1 - margin)/(norm + self.model["C"]) * sample self.model["w"] = w def _predict_value(self, sample): """ predict value of \w^T * x Arguments: - `sample`: """ return self.model["w"].dot(self._add_bias(sample)) def _add_bias(self, sample): return np.hstack((sample, 1)) def learn(self, ): """ Learn. """ logger.info("learn starts") data = self.data["data"] # learn for i in xrange(0, self.n_scan): for i in xrange(0, self.data["n_sample"]): sample = data[i, 1:] label = data[i, 0] pred_val = self._predict_value(sample) margin = label * pred_val if margin < 1: self._update(label, sample, margin) logger.info("learn finished") def predict(self, sample): """ predict {1, -1} base on \w^T * x Arguments: - `sample`: """ pred_val = self._predict_value(sample) self.cache["pred_val"] = pred_val if pred_val >=0: return 1 else: return -1 def update(self, label, sample): """ update model. Arguments: - `sample`: sample, or feature vector - `pred_val`: predicted value i.e., w^T * sample """ margin = label * self.model["pred_val"] if margin < 1: _update(label, sample, margin) @classmethod def examplify(cls, fname, delimiter = " ", C = 1 , n_scan = 3): """ Example of how to use """ # learn st = time.time() model = PassiveAggressiveII(fname, delimiter, C , n_scan) model.learn() et = time.time() print "learning time: %f[s]" % (et - st) # predict (after learning) data = np.loadtxt(fname, delimiter = " ") model._binalize(data) n_sample = data.shape[0] y_label = data[:, 0] y_pred = np.ndarray(n_sample) for i in xrange(0, n_sample): sample = data[i, 1:] y_pred[i] = model.predict(sample) # show result cm = confusion_matrix(y_label, y_pred) print cm print "accurary: %d [%%]" % (np.sum(cm.diagonal()) * 100.0/np.sum(cm)) if __name__ == '__main__': fname = "/home/kzk/datasets/uci_csv/liver.csv" #fname = "/home/kzk/datasets/uci_csv/ad.csv" print "dataset is", fname PassiveAggressiveII.examplify(fname, delimiter = " ", C = 1, n_scan = 100)
bsd-3-clause
giorgiop/scikit-learn
doc/tutorial/text_analytics/solutions/exercise_01_language_train_model.py
73
2264
"""Build a language detector model The goal of this exercise is to train a linear classifier on text features that represent sequences of up to 3 consecutive characters so as to be recognize natural languages by using the frequencies of short character sequences as 'fingerprints'. """ # Author: Olivier Grisel <[email protected]> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import Perceptron from sklearn.pipeline import Pipeline from sklearn.datasets import load_files from sklearn.model_selection import train_test_split from sklearn import metrics # The training data folder must be passed as first argument languages_data_folder = sys.argv[1] dataset = load_files(languages_data_folder) # Split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.5) # TASK: Build a vectorizer that splits strings into sequence of 1 to 3 # characters instead of word tokens vectorizer = TfidfVectorizer(ngram_range=(1, 3), analyzer='char', use_idf=False) # TASK: Build a vectorizer / classifier pipeline using the previous analyzer # the pipeline instance should stored in a variable named clf clf = Pipeline([ ('vec', vectorizer), ('clf', Perceptron()), ]) # TASK: Fit the pipeline on the training set clf.fit(docs_train, y_train) # TASK: Predict the outcome on the testing set in a variable named y_predicted y_predicted = clf.predict(docs_test) # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) #import matlotlib.pyplot as plt #plt.matshow(cm, cmap=plt.cm.jet) #plt.show() # Predict the result on some short new sentences: sentences = [ u'This is a language detection test.', u'Ceci est un test de d\xe9tection de la langue.', u'Dies ist ein Test, um die Sprache zu erkennen.', ] predicted = clf.predict(sentences) for s, p in zip(sentences, predicted): print(u'The language of "%s" is "%s"' % (s, dataset.target_names[p]))
bsd-3-clause
wzbozon/statsmodels
statsmodels/sandbox/km_class.py
31
11748
#a class for the Kaplan-Meier estimator from statsmodels.compat.python import range import numpy as np from math import sqrt import matplotlib.pyplot as plt class KAPLAN_MEIER(object): def __init__(self, data, timesIn, groupIn, censoringIn): raise RuntimeError('Newer version of Kaplan-Meier class available in survival2.py') #store the inputs self.data = data self.timesIn = timesIn self.groupIn = groupIn self.censoringIn = censoringIn def fit(self): #split the data into groups based on the predicting variable #get a set of all the groups groups = list(set(self.data[:,self.groupIn])) #create an empty list to store the data for different groups groupList = [] #create an empty list for each group and add it to groups for i in range(len(groups)): groupList.append([]) #iterate through all the groups in groups for i in range(len(groups)): #iterate though the rows of dataArray for j in range(len(self.data)): #test if this row has the correct group if self.data[j,self.groupIn] == groups[i]: #add the row to groupList groupList[i].append(self.data[j]) #create an empty list to store the times for each group timeList = [] #iterate through all the groups for i in range(len(groupList)): #create an empty list times = [] #iterate through all the rows of the group for j in range(len(groupList[i])): #get a list of all the times in the group times.append(groupList[i][j][self.timesIn]) #get a sorted set of the times and store it in timeList times = list(sorted(set(times))) timeList.append(times) #get a list of the number at risk and events at each time #create an empty list to store the results in timeCounts = [] #create an empty list to hold points for plotting points = [] #create a list for points where censoring occurs censoredPoints = [] #iterate trough each group for i in range(len(groupList)): #initialize a variable to estimate the survival function survival = 1 #initialize a variable to estimate the variance of #the survival function varSum = 0 #initialize a counter for the number at risk riskCounter = len(groupList[i]) #create a list for the counts for this group counts = [] ##create a list for points to plot x = [] y = [] #iterate through the list of times for j in range(len(timeList[i])): if j != 0: if j == 1: #add an indicator to tell if the time #starts a new group groupInd = 1 #add (0,1) to the list of points x.append(0) y.append(1) #add the point time to the right of that x.append(timeList[i][j-1]) y.append(1) #add the point below that at survival x.append(timeList[i][j-1]) y.append(survival) #add the survival to y y.append(survival) else: groupInd = 0 #add survival twice to y y.append(survival) y.append(survival) #add the time twice to x x.append(timeList[i][j-1]) x.append(timeList[i][j-1]) #add each censored time, number of censorings and #its survival to censoredPoints censoredPoints.append([timeList[i][j-1], censoringNum,survival,groupInd]) #add the count to the list counts.append([timeList[i][j-1],riskCounter, eventCounter,survival, sqrt(((survival)**2)*varSum)]) #increment the number at risk riskCounter += -1*(riskChange) #initialize a counter for the change in the number at risk riskChange = 0 #initialize a counter to zero eventCounter = 0 #intialize a counter to tell when censoring occurs censoringCounter = 0 censoringNum = 0 #iterate through the observations in each group for k in range(len(groupList[i])): #check of the observation has the given time if (groupList[i][k][self.timesIn]) == (timeList[i][j]): #increment the number at risk counter riskChange += 1 #check if this is an event or censoring if groupList[i][k][self.censoringIn] == 1: #add 1 to the counter eventCounter += 1 else: censoringNum += 1 #check if there are any events at this time if eventCounter != censoringCounter: censoringCounter = eventCounter #calculate the estimate of the survival function survival *= ((float(riskCounter) - eventCounter)/(riskCounter)) try: #calculate the estimate of the variance varSum += (eventCounter)/((riskCounter) *(float(riskCounter)- eventCounter)) except ZeroDivisionError: varSum = 0 #append the last row to counts counts.append([timeList[i][len(timeList[i])-1], riskCounter,eventCounter,survival, sqrt(((survival)**2)*varSum)]) #add the last time once to x x.append(timeList[i][len(timeList[i])-1]) x.append(timeList[i][len(timeList[i])-1]) #add the last survival twice to y y.append(survival) #y.append(survival) censoredPoints.append([timeList[i][len(timeList[i])-1], censoringNum,survival,1]) #add the list for the group to al ist for all the groups timeCounts.append(np.array(counts)) points.append([x,y]) #returns a list of arrays, where each array has as it columns: the time, #the number at risk, the number of events, the estimated value of the #survival function at that time, and the estimated standard error at #that time, in that order self.results = timeCounts self.points = points self.censoredPoints = censoredPoints def plot(self): x = [] #iterate through the groups for i in range(len(self.points)): #plot x and y plt.plot(np.array(self.points[i][0]),np.array(self.points[i][1])) #create lists of all the x and y values x += self.points[i][0] for j in range(len(self.censoredPoints)): #check if censoring is occuring if (self.censoredPoints[j][1] != 0): #if this is the first censored point if (self.censoredPoints[j][3] == 1) and (j == 0): #calculate a distance beyond 1 to place it #so all the points will fit dx = ((1./((self.censoredPoints[j][1])+1.)) *(float(self.censoredPoints[j][0]))) #iterate through all the censored points at this time for k in range(self.censoredPoints[j][1]): #plot a vertical line for censoring plt.vlines((1+((k+1)*dx)), self.censoredPoints[j][2]-0.03, self.censoredPoints[j][2]+0.03) #if this censored point starts a new group elif ((self.censoredPoints[j][3] == 1) and (self.censoredPoints[j-1][3] == 1)): #calculate a distance beyond 1 to place it #so all the points will fit dx = ((1./((self.censoredPoints[j][1])+1.)) *(float(self.censoredPoints[j][0]))) #iterate through all the censored points at this time for k in range(self.censoredPoints[j][1]): #plot a vertical line for censoring plt.vlines((1+((k+1)*dx)), self.censoredPoints[j][2]-0.03, self.censoredPoints[j][2]+0.03) #if this is the last censored point elif j == (len(self.censoredPoints) - 1): #calculate a distance beyond the previous time #so that all the points will fit dx = ((1./((self.censoredPoints[j][1])+1.)) *(float(self.censoredPoints[j][0]))) #iterate through all the points at this time for k in range(self.censoredPoints[j][1]): #plot a vertical line for censoring plt.vlines((self.censoredPoints[j-1][0]+((k+1)*dx)), self.censoredPoints[j][2]-0.03, self.censoredPoints[j][2]+0.03) #if this is a point in the middle of the group else: #calcuate a distance beyond the current time #to place the point, so they all fit dx = ((1./((self.censoredPoints[j][1])+1.)) *(float(self.censoredPoints[j+1][0]) - self.censoredPoints[j][0])) #iterate through all the points at this time for k in range(self.censoredPoints[j][1]): #plot a vetical line for censoring plt.vlines((self.censoredPoints[j][0]+((k+1)*dx)), self.censoredPoints[j][2]-0.03, self.censoredPoints[j][2]+0.03) #set the size of the plot so it extends to the max x and above 1 for y plt.xlim((0,np.max(x))) plt.ylim((0,1.05)) #label the axes plt.xlabel('time') plt.ylabel('survival') plt.show() def show_results(self): #start a string that will be a table of the results resultsString = '' #iterate through all the groups for i in range(len(self.results)): #label the group and header resultsString += ('Group {0}\n\n'.format(i) + 'Time At Risk Events Survival Std. Err\n') for j in self.results[i]: #add the results to the string resultsString += ( '{0:<9d}{1:<12d}{2:<11d}{3:<13.4f}{4:<6.4f}\n'.format( int(j[0]),int(j[1]),int(j[2]),j[3],j[4])) print(resultsString)
bsd-3-clause
timcera/hspfbintoolbox
tests/test_catalog.py
1
115314
# -*- coding: utf-8 -*- """ catalog ---------------------------------- Tests for `hspfbintoolbox` module. """ import csv import shlex import subprocess import sys from unittest import TestCase from pandas.testing import assert_frame_equal try: from cStringIO import StringIO except: from io import StringIO import pandas as pd from hspfbintoolbox import hspfbintoolbox interval2codemap = {"yearly": 5, "monthly": 4, "daily": 3, "bivl": 2} def capture(func, *args, **kwds): sys.stdout = StringIO() # capture output out = func(*args, **kwds) out = sys.stdout.getvalue() # release output try: out = bytes(out, "utf-8") except: pass return out def read_unicode_csv( filename, delimiter=",", quotechar='"', quoting=csv.QUOTE_MINIMAL, lineterminator="\n", encoding="utf-8", ): # Python 3 version if sys.version_info[0] >= 3: # Open the file in text mode with given encoding # Set newline arg to '' # (see https://docs.python.org/3/library/csv.html) # Next, get the csv reader, with unicode delimiter and quotechar csv_reader = csv.reader( filename, delimiter=delimiter, quotechar=quotechar, quoting=quoting, lineterminator=lineterminator, ) # Now, iterate over the (already decoded) csv_reader generator for row in csv_reader: yield row # Python 2 version else: # Next, get the csv reader, passing delimiter and quotechar as # bytestrings rather than unicode csv_reader = csv.reader( filename, delimiter=delimiter.encode(encoding), quotechar=quotechar.encode(encoding), quoting=quoting, lineterminator=lineterminator, ) # Iterate over the file and decode each string into unicode for row in csv_reader: yield [cell.decode(encoding) for cell in row] class TestDescribe(TestCase): def setUp(self): self.catalog = b"""\ LUE , LC,GROUP ,VAR , TC,START ,END ,TC IMPLND, 11,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 11,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 11,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 11,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 11,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 11,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 12,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 12,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 12,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 12,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 12,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 12,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 13,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 13,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 13,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 13,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 13,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 13,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 14,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 14,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 14,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 14,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 14,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 14,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 21,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 21,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 21,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 21,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 21,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 21,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 22,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 22,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 22,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 22,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 22,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 22,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 23,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 23,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 23,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 23,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 23,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 23,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 24,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 24,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 24,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 24,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 24,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 24,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 31,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 31,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 31,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 31,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 31,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 31,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 32,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 32,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 32,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 32,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 32,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 32,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 33,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 33,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 33,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 33,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 33,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 33,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 111,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 111,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 111,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 111,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 111,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 111,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 112,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 112,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 112,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 112,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 112,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 112,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 113,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 113,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 113,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 113,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 113,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 113,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 114,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 114,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 114,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 114,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 114,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 114,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 211,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 211,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 211,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 211,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 211,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 211,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 212,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 212,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 212,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 212,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 212,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 212,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 213,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 213,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 213,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 213,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 213,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 213,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 214,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 214,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 214,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 214,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 214,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 214,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 301,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 301,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 301,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 301,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 301,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 301,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 302,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 302,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 302,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 302,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 302,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 302,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 303,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 303,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 303,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 303,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 303,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 303,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 304,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 304,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 304,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 304,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 304,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 304,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 311,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 311,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 311,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 311,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 311,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 311,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 312,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 312,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 312,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 312,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 312,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 312,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 313,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 313,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 313,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 313,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 313,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 313,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 314,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 314,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 314,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 314,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 314,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 314,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 411,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 411,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 411,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 411,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 411,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 411,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 412,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 412,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 412,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 412,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 412,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 412,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 413,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 413,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 413,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 413,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 413,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 413,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 414,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 414,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 414,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 414,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 414,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 414,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 511,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 511,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 511,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 511,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 511,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 511,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 512,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 512,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 512,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 512,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 512,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 512,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 513,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 513,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 513,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 513,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 513,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 513,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 514,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 514,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 514,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 514,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 514,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 514,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 611,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 611,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 611,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 611,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 611,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 611,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 612,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 612,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 612,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 612,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 612,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 612,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 613,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 613,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 613,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 613,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 613,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 613,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 614,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 614,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 614,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 614,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 614,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 614,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 711,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 711,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 711,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 711,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 711,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 711,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 712,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 712,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 712,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 712,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 712,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 712,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 713,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 713,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 713,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 713,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 713,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 713,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 714,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 714,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 714,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 714,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 714,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 714,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 811,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 811,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 811,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 811,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 811,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 811,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 812,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 812,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 812,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 812,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 812,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 812,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 813,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 813,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 813,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 813,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 813,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 813,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 814,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 814,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 814,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 814,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 814,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 814,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 822,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 822,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 822,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 822,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 822,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 822,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 823,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 823,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 823,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 823,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 823,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 823,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 824,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 824,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 824,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 824,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 824,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 824,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 901,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 901,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 901,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 901,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 901,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 901,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 902,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 902,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 902,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 902,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 902,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 902,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 903,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 903,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 903,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 903,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 903,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 903,IWATER ,SURS , 5,1951 ,2001 ,yearly IMPLND, 904,IWATER ,IMPEV, 5,1951 ,2001 ,yearly IMPLND, 904,IWATER ,PET , 5,1951 ,2001 ,yearly IMPLND, 904,IWATER ,RETS , 5,1951 ,2001 ,yearly IMPLND, 904,IWATER ,SUPY , 5,1951 ,2001 ,yearly IMPLND, 904,IWATER ,SURO , 5,1951 ,2001 ,yearly IMPLND, 904,IWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 11,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 11,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 11,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 11,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 11,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 11,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 11,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 11,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 11,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 11,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 11,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 11,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 11,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 11,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 11,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 11,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 11,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 11,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 11,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 11,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 11,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 11,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 11,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 11,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 11,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 11,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 11,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 12,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 12,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 12,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 12,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 12,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 12,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 12,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 12,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 12,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 12,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 12,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 12,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 12,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 12,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 12,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 12,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 12,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 12,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 12,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 12,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 12,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 12,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 12,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 12,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 12,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 12,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 12,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 13,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 13,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 13,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 13,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 13,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 13,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 13,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 13,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 13,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 13,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 13,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 13,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 13,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 13,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 13,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 13,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 13,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 13,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 13,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 13,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 13,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 13,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 13,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 13,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 13,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 13,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 13,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 14,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 14,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 14,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 14,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 14,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 14,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 14,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 14,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 14,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 14,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 14,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 14,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 14,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 14,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 14,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 14,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 14,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 14,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 14,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 14,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 14,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 14,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 14,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 14,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 14,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 14,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 14,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 15,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 15,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 15,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 15,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 15,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 15,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 15,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 15,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 15,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 15,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 15,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 15,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 15,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 15,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 15,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 15,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 15,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 15,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 15,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 15,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 15,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 15,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 15,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 15,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 15,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 15,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 15,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 21,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 21,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 21,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 21,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 21,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 21,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 21,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 21,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 21,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 21,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 21,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 21,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 21,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 21,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 21,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 21,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 21,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 21,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 21,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 21,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 21,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 21,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 21,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 21,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 21,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 21,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 21,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 22,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 22,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 22,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 22,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 22,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 22,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 22,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 22,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 22,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 22,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 22,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 22,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 22,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 22,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 22,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 22,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 22,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 22,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 22,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 22,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 22,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 22,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 22,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 22,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 22,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 22,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 22,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 23,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 23,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 23,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 23,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 23,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 23,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 23,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 23,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 23,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 23,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 23,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 23,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 23,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 23,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 23,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 23,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 23,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 23,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 23,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 23,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 23,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 23,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 23,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 23,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 23,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 23,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 23,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 24,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 24,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 24,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 24,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 24,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 24,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 24,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 24,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 24,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 24,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 24,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 24,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 24,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 24,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 24,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 24,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 24,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 24,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 24,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 24,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 24,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 24,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 24,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 24,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 24,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 24,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 24,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 25,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 25,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 25,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 25,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 25,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 25,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 25,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 25,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 25,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 25,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 25,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 25,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 25,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 25,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 25,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 25,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 25,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 25,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 25,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 25,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 25,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 25,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 25,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 25,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 25,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 25,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 25,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 31,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 31,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 31,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 31,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 31,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 31,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 31,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 31,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 31,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 31,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 31,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 31,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 31,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 31,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 31,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 31,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 31,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 31,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 31,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 31,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 31,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 31,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 31,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 31,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 31,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 31,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 31,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 32,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 32,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 32,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 32,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 32,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 32,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 32,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 32,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 32,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 32,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 32,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 32,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 32,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 32,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 32,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 32,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 32,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 32,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 32,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 32,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 32,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 32,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 32,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 32,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 32,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 32,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 32,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 33,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 33,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 33,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 33,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 33,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 33,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 33,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 33,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 33,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 33,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 33,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 33,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 33,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 33,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 33,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 33,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 33,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 33,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 33,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 33,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 33,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 33,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 33,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 33,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 33,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 33,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 33,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 35,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 35,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 35,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 35,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 35,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 35,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 35,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 35,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 35,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 35,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 35,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 35,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 35,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 35,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 35,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 35,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 35,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 35,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 35,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 35,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 35,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 35,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 35,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 35,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 35,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 35,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 35,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 111,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 111,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 111,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 111,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 111,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 111,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 111,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 111,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 111,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 111,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 111,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 111,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 111,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 111,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 111,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 111,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 111,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 111,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 111,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 111,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 111,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 111,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 111,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 111,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 111,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 111,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 111,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 112,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 112,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 112,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 112,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 112,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 112,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 112,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 112,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 112,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 112,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 112,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 112,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 112,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 112,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 112,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 112,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 112,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 112,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 112,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 112,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 112,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 112,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 112,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 112,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 112,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 112,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 112,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 113,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 113,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 113,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 113,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 113,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 113,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 113,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 113,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 113,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 113,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 113,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 113,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 113,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 113,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 113,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 113,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 113,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 113,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 113,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 113,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 113,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 113,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 113,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 113,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 113,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 113,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 113,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 114,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 114,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 114,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 114,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 114,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 114,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 114,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 114,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 114,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 114,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 114,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 114,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 114,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 114,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 114,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 114,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 114,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 114,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 114,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 114,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 114,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 114,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 114,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 114,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 114,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 114,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 114,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 115,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 115,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 115,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 115,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 115,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 115,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 115,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 115,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 115,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 115,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 115,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 115,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 115,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 115,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 115,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 115,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 115,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 115,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 115,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 115,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 115,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 115,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 115,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 115,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 115,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 115,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 115,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 211,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 211,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 211,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 211,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 211,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 211,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 211,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 211,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 211,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 211,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 211,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 211,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 211,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 211,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 211,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 211,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 211,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 211,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 211,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 211,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 211,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 211,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 211,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 211,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 211,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 211,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 211,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 212,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 212,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 212,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 212,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 212,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 212,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 212,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 212,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 212,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 212,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 212,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 212,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 212,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 212,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 212,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 212,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 212,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 212,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 212,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 212,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 212,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 212,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 212,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 212,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 212,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 212,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 212,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 213,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 213,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 213,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 213,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 213,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 213,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 213,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 213,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 213,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 213,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 213,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 213,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 213,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 213,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 213,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 213,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 213,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 213,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 213,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 213,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 213,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 213,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 213,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 213,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 213,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 213,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 213,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 214,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 214,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 214,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 214,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 214,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 214,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 214,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 214,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 214,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 214,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 214,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 214,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 214,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 214,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 214,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 214,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 214,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 214,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 214,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 214,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 214,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 214,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 214,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 214,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 214,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 214,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 214,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 215,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 215,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 215,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 215,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 215,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 215,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 215,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 215,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 215,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 215,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 215,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 215,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 215,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 215,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 215,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 215,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 215,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 215,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 215,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 215,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 215,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 215,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 215,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 215,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 215,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 215,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 215,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 301,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 301,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 301,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 301,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 301,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 301,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 301,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 301,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 301,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 301,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 301,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 301,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 301,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 301,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 301,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 301,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 301,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 301,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 301,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 301,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 301,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 301,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 301,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 301,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 301,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 301,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 301,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 302,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 302,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 302,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 302,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 302,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 302,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 302,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 302,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 302,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 302,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 302,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 302,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 302,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 302,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 302,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 302,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 302,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 302,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 302,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 302,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 302,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 302,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 302,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 302,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 302,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 302,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 302,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 303,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 303,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 303,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 303,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 303,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 303,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 303,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 303,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 303,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 303,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 303,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 303,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 303,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 303,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 303,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 303,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 303,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 303,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 303,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 303,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 303,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 303,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 303,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 303,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 303,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 303,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 303,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 304,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 304,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 304,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 304,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 304,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 304,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 304,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 304,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 304,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 304,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 304,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 304,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 304,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 304,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 304,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 304,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 304,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 304,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 304,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 304,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 304,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 304,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 304,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 304,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 304,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 304,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 304,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 305,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 305,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 305,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 305,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 305,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 305,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 305,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 305,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 305,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 305,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 305,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 305,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 305,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 305,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 305,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 305,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 305,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 305,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 305,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 305,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 305,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 305,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 305,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 305,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 305,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 305,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 305,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 311,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 311,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 311,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 311,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 311,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 311,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 311,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 311,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 311,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 311,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 311,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 311,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 311,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 311,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 311,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 311,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 311,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 311,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 311,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 311,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 311,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 311,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 311,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 311,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 311,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 311,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 311,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 312,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 312,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 312,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 312,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 312,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 312,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 312,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 312,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 312,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 312,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 312,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 312,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 312,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 312,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 312,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 312,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 312,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 312,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 312,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 312,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 312,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 312,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 312,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 312,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 312,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 312,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 312,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 313,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 313,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 313,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 313,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 313,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 313,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 313,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 313,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 313,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 313,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 313,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 313,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 313,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 313,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 313,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 313,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 313,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 313,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 313,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 313,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 313,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 313,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 313,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 313,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 313,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 313,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 313,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 314,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 314,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 314,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 314,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 314,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 314,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 314,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 314,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 314,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 314,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 314,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 314,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 314,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 314,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 314,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 314,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 314,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 314,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 314,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 314,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 314,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 314,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 314,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 314,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 314,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 314,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 314,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 315,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 315,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 315,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 315,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 315,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 315,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 315,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 315,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 315,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 315,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 315,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 315,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 315,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 315,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 315,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 315,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 315,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 315,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 315,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 315,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 315,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 315,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 315,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 315,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 315,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 315,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 315,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 411,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 411,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 411,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 411,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 411,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 411,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 411,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 411,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 411,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 411,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 411,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 411,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 411,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 411,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 411,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 411,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 411,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 411,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 411,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 411,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 411,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 411,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 411,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 411,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 411,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 411,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 411,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 412,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 412,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 412,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 412,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 412,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 412,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 412,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 412,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 412,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 412,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 412,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 412,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 412,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 412,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 412,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 412,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 412,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 412,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 412,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 412,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 412,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 412,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 412,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 412,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 412,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 412,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 412,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 413,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 413,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 413,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 413,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 413,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 413,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 413,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 413,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 413,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 413,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 413,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 413,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 413,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 413,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 413,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 413,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 413,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 413,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 413,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 413,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 413,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 413,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 413,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 413,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 413,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 413,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 413,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 414,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 414,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 414,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 414,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 414,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 414,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 414,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 414,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 414,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 414,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 414,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 414,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 414,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 414,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 414,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 414,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 414,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 414,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 414,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 414,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 414,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 414,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 414,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 414,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 414,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 414,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 414,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 415,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 415,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 415,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 415,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 415,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 415,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 415,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 415,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 415,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 415,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 415,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 415,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 415,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 415,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 415,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 415,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 415,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 415,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 415,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 415,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 415,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 415,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 415,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 415,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 415,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 415,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 415,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 511,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 511,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 511,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 511,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 511,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 511,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 511,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 511,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 511,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 511,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 511,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 511,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 511,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 511,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 511,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 511,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 511,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 511,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 511,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 511,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 511,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 511,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 511,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 511,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 511,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 511,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 511,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 512,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 512,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 512,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 512,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 512,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 512,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 512,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 512,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 512,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 512,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 512,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 512,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 512,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 512,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 512,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 512,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 512,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 512,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 512,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 512,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 512,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 512,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 512,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 512,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 512,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 512,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 512,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 513,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 513,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 513,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 513,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 513,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 513,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 513,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 513,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 513,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 513,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 513,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 513,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 513,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 513,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 513,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 513,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 513,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 513,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 513,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 513,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 513,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 513,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 513,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 513,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 513,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 513,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 513,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 514,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 514,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 514,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 514,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 514,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 514,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 514,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 514,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 514,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 514,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 514,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 514,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 514,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 514,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 514,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 514,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 514,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 514,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 514,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 514,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 514,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 514,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 514,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 514,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 514,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 514,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 514,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 515,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 515,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 515,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 515,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 515,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 515,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 515,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 515,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 515,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 515,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 515,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 515,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 515,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 515,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 515,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 515,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 515,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 515,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 515,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 515,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 515,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 515,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 515,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 515,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 515,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 515,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 515,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 611,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 611,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 611,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 611,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 611,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 611,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 611,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 611,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 611,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 611,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 611,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 611,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 611,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 611,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 611,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 611,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 611,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 611,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 611,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 611,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 611,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 611,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 611,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 611,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 611,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 611,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 611,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 612,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 612,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 612,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 612,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 612,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 612,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 612,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 612,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 612,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 612,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 612,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 612,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 612,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 612,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 612,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 612,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 612,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 612,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 612,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 612,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 612,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 612,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 612,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 612,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 612,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 612,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 612,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 613,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 613,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 613,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 613,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 613,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 613,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 613,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 613,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 613,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 613,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 613,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 613,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 613,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 613,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 613,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 613,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 613,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 613,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 613,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 613,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 613,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 613,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 613,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 613,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 613,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 613,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 613,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 614,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 614,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 614,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 614,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 614,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 614,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 614,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 614,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 614,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 614,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 614,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 614,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 614,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 614,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 614,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 614,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 614,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 614,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 614,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 614,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 614,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 614,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 614,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 614,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 614,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 614,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 614,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 615,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 615,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 615,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 615,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 615,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 615,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 615,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 615,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 615,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 615,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 615,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 615,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 615,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 615,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 615,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 615,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 615,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 615,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 615,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 615,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 615,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 615,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 615,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 615,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 615,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 615,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 615,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 711,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 711,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 711,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 711,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 711,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 711,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 711,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 711,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 711,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 711,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 711,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 711,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 711,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 711,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 711,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 711,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 711,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 711,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 711,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 711,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 711,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 711,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 711,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 711,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 711,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 711,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 711,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 712,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 712,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 712,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 712,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 712,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 712,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 712,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 712,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 712,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 712,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 712,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 712,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 712,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 712,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 712,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 712,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 712,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 712,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 712,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 712,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 712,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 712,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 712,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 712,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 712,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 712,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 712,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 713,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 713,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 713,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 713,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 713,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 713,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 713,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 713,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 713,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 713,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 713,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 713,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 713,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 713,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 713,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 713,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 713,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 713,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 713,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 713,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 713,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 713,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 713,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 713,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 713,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 713,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 713,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 714,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 714,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 714,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 714,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 714,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 714,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 714,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 714,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 714,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 714,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 714,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 714,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 714,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 714,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 714,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 714,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 714,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 714,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 714,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 714,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 714,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 714,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 714,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 714,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 714,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 714,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 714,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 715,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 715,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 715,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 715,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 715,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 715,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 715,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 715,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 715,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 715,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 715,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 715,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 715,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 715,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 715,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 715,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 715,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 715,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 715,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 715,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 715,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 715,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 715,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 715,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 715,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 715,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 715,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 811,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 811,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 811,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 811,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 811,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 811,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 811,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 811,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 811,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 811,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 811,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 811,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 811,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 811,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 811,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 811,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 811,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 811,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 811,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 811,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 811,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 811,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 811,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 811,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 811,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 811,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 811,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 812,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 812,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 812,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 812,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 812,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 812,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 812,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 812,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 812,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 812,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 812,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 812,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 812,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 812,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 812,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 812,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 812,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 812,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 812,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 812,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 812,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 812,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 812,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 812,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 812,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 812,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 812,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 813,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 813,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 813,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 813,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 813,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 813,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 813,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 813,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 813,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 813,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 813,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 813,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 813,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 813,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 813,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 813,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 813,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 813,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 813,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 813,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 813,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 813,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 813,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 813,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 813,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 813,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 813,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 814,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 814,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 814,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 814,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 814,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 814,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 814,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 814,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 814,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 814,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 814,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 814,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 814,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 814,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 814,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 814,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 814,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 814,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 814,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 814,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 814,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 814,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 814,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 814,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 814,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 814,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 814,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 815,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 815,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 815,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 815,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 815,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 815,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 815,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 815,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 815,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 815,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 815,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 815,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 815,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 815,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 815,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 815,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 815,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 815,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 815,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 815,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 815,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 815,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 815,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 815,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 815,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 815,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 815,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 822,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 822,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 822,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 822,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 822,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 822,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 822,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 822,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 822,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 822,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 822,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 822,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 822,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 822,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 822,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 822,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 822,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 822,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 822,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 822,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 822,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 822,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 822,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 822,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 822,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 822,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 822,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 823,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 823,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 823,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 823,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 823,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 823,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 823,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 823,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 823,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 823,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 823,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 823,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 823,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 823,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 823,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 823,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 823,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 823,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 823,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 823,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 823,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 823,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 823,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 823,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 823,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 823,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 823,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 824,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 824,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 824,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 824,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 824,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 824,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 824,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 824,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 824,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 824,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 824,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 824,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 824,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 824,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 824,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 824,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 824,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 824,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 824,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 824,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 824,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 824,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 824,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 824,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 824,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 824,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 824,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 825,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 825,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 825,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 825,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 825,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 825,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 825,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 825,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 825,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 825,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 825,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 825,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 825,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 825,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 825,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 825,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 825,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 825,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 825,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 825,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 825,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 825,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 825,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 825,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 825,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 825,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 825,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 901,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 901,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 901,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 901,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 901,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 901,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 901,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 901,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 901,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 901,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 901,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 901,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 901,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 901,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 901,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 901,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 901,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 901,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 901,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 901,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 901,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 901,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 901,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 901,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 901,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 901,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 901,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 902,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 902,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 902,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 902,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 902,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 902,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 902,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 902,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 902,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 902,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 902,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 902,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 902,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 902,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 902,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 902,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 902,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 902,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 902,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 902,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 902,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 902,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 902,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 902,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 902,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 902,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 902,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 903,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 903,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 903,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 903,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 903,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 903,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 903,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 903,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 903,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 903,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 903,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 903,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 903,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 903,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 903,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 903,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 903,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 903,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 903,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 903,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 903,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 903,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 903,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 903,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 903,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 903,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 903,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 904,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 904,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 904,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 904,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 904,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 904,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 904,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 904,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 904,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 904,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 904,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 904,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 904,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 904,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 904,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 904,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 904,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 904,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 904,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 904,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 904,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 904,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 904,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 904,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 904,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 904,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 904,PWATER ,UZS , 5,1951 ,2001 ,yearly PERLND, 905,PWATER ,AGWET, 5,1951 ,2001 ,yearly PERLND, 905,PWATER ,AGWI , 5,1951 ,2001 ,yearly PERLND, 905,PWATER ,AGWO , 5,1951 ,2001 ,yearly PERLND, 905,PWATER ,AGWS , 5,1951 ,2001 ,yearly PERLND, 905,PWATER ,BASET, 5,1951 ,2001 ,yearly PERLND, 905,PWATER ,CEPE , 5,1951 ,2001 ,yearly PERLND, 905,PWATER ,CEPS , 5,1951 ,2001 ,yearly PERLND, 905,PWATER ,GWVS , 5,1951 ,2001 ,yearly PERLND, 905,PWATER ,IFWI , 5,1951 ,2001 ,yearly PERLND, 905,PWATER ,IFWO , 5,1951 ,2001 ,yearly PERLND, 905,PWATER ,IFWS , 5,1951 ,2001 ,yearly PERLND, 905,PWATER ,IGWI , 5,1951 ,2001 ,yearly PERLND, 905,PWATER ,INFIL, 5,1951 ,2001 ,yearly PERLND, 905,PWATER ,LZET , 5,1951 ,2001 ,yearly PERLND, 905,PWATER ,LZI , 5,1951 ,2001 ,yearly PERLND, 905,PWATER ,LZS , 5,1951 ,2001 ,yearly PERLND, 905,PWATER ,PERC , 5,1951 ,2001 ,yearly PERLND, 905,PWATER ,PERO , 5,1951 ,2001 ,yearly PERLND, 905,PWATER ,PERS , 5,1951 ,2001 ,yearly PERLND, 905,PWATER ,PET , 5,1951 ,2001 ,yearly PERLND, 905,PWATER ,SUPY , 5,1951 ,2001 ,yearly PERLND, 905,PWATER ,SURO , 5,1951 ,2001 ,yearly PERLND, 905,PWATER ,SURS , 5,1951 ,2001 ,yearly PERLND, 905,PWATER ,TAET , 5,1951 ,2001 ,yearly PERLND, 905,PWATER ,UZET , 5,1951 ,2001 ,yearly PERLND, 905,PWATER ,UZI , 5,1951 ,2001 ,yearly PERLND, 905,PWATER ,UZS , 5,1951 ,2001 ,yearly """ ndict = [] rd = read_unicode_csv(StringIO(self.catalog.decode())) next(rd) for row in rd: if len(row) == 0: continue nrow = [i.strip() for i in row] ndict.append( (nrow[0], int(nrow[1]), nrow[2], nrow[3], interval2codemap[nrow[7]]) ) self.ncatalog = sorted(ndict) def test_catalog_api(self): out = hspfbintoolbox.catalog("tests/6b_np1.hbn") out = [i[:5] for i in out] self.assertEqual(out, self.ncatalog) def test_catalog_cli(self): args = "hspfbintoolbox catalog --tablefmt csv tests/6b_np1.hbn" args = shlex.split(args) out = subprocess.Popen( args, stdout=subprocess.PIPE, stdin=subprocess.PIPE ).communicate()[0] self.assertEqual(out, self.catalog)
bsd-3-clause
talbarda/kaggle_predict_house_prices
Build Model.py
1
2629
import matplotlib.pyplot as plt import matplotlib.animation as animation import numpy as np import pandas as pd import sklearn.linear_model as lm from sklearn.model_selection import learning_curve from sklearn.metrics import accuracy_score from sklearn.metrics import make_scorer from sklearn.model_selection import GridSearchCV def get_model(estimator, parameters, X_train, y_train, scoring): model = GridSearchCV(estimator, param_grid=parameters, scoring=scoring) model.fit(X_train, y_train) return model.best_estimator_ def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None, n_jobs=1, train_sizes=np.linspace(.1, 1.0, 5), scoring='accuracy'): plt.figure(figsize=(10,6)) plt.title(title) if ylim is not None: plt.ylim(*ylim) plt.xlabel("Training examples") plt.ylabel(scoring) train_sizes, train_scores, test_scores = learning_curve(estimator, X, y, cv=cv, scoring=scoring, n_jobs=n_jobs, train_sizes=train_sizes) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.grid() plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color="r") plt.fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1, color="g") plt.plot(train_sizes, train_scores_mean, 'o-', color="r", label="Training score") plt.plot(train_sizes, test_scores_mean, 'o-', color="g", label="Cross-validation score") plt.legend(loc="best") return plt train = pd.read_csv('input/train.csv') test = pd.read_csv('input/test.csv') for c in train: train[c] = pd.Categorical(train[c].values).codes X = train.drop(['SalePrice'], axis=1) X = train[['OverallQual', 'GarageArea', 'GarageCars', 'TotalBsmtSF', 'TotRmsAbvGrd', 'FullBath', 'GrLivArea']] y = train.SalePrice from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0) scoring = make_scorer(accuracy_score, greater_is_better=True) from sklearn.linear_model import RidgeCV RidgeCV.fit(X, y, sample_weight=None) clf_ridge = RidgeCV() print (accuracy_score(y_test, clf_ridge.predict(X_test))) print (clf_ridge) plt = plot_learning_curve(clf_ridge, 'GaussianNB', X, y, cv=4); plt.show()
mit
platinhom/ManualHom
Coding/Python/scipy-html-0.16.1/generated/scipy-stats-probplot-1.py
1
1101
from scipy import stats import matplotlib.pyplot as plt nsample = 100 np.random.seed(7654321) # A t distribution with small degrees of freedom: ax1 = plt.subplot(221) x = stats.t.rvs(3, size=nsample) res = stats.probplot(x, plot=plt) # A t distribution with larger degrees of freedom: ax2 = plt.subplot(222) x = stats.t.rvs(25, size=nsample) res = stats.probplot(x, plot=plt) # A mixture of two normal distributions with broadcasting: ax3 = plt.subplot(223) x = stats.norm.rvs(loc=[0,5], scale=[1,1.5], size=(nsample/2.,2)).ravel() res = stats.probplot(x, plot=plt) # A standard normal distribution: ax4 = plt.subplot(224) x = stats.norm.rvs(loc=0, scale=1, size=nsample) res = stats.probplot(x, plot=plt) # Produce a new figure with a loggamma distribution, using the ``dist`` and # ``sparams`` keywords: fig = plt.figure() ax = fig.add_subplot(111) x = stats.loggamma.rvs(c=2.5, size=500) stats.probplot(x, dist=stats.loggamma, sparams=(2.5,), plot=ax) ax.set_title("Probplot for loggamma dist with shape parameter 2.5") # Show the results with Matplotlib: plt.show()
gpl-2.0
rbdavid/DNA_stacking_analysis
angles_binary.py
1
9052
#!/Library/Frameworks/Python.framework/Versions/2.7/bin/python # USAGE: # PREAMBLE: import numpy as np import MDAnalysis import sys import os import matplotlib.pyplot as plt traj_file ='%s' %(sys.argv[1]) # ---------------------------------------- # VARIABLE DECLARATION base1 = 1 nbases = 15 #nbases = 3 #Nsteps = 150000 # check length of the energy file; if not 150000 lines, then need to alter Nsteps value so that angle values will match up #Nsteps = 149996 #equilib_step = 37500 # we have chosen 75 ns to be the equilib time; 75ns = 37500 frames; if energy values do not match with angle values, then equilib_step needs to be altered as well... #equilib_step = 37496 #production = Nsteps - equilib_step # SUBROUTINES/DEFINITIONS: arccosine = np.arccos dotproduct = np.dot pi = np.pi ldtxt = np.loadtxt zeros = np.zeros # ---------------------------------------- # DICTIONARY DECLARATION normals = {} # create the normals dictionary for future use total_binaries = {} # create the total_binaries dictionary for future use get_norm = normals.get get_tb = total_binaries.get # ---------------------------------------- # PLOTTING SUBROUTINES def plotting(xdata, ydata, base): plt.plot(xdata, ydata, 'rx') plt.title('Stacking behavior of base %s over the trajectory' %(base)) plt.xlabel('Simulation time (ns)') plt.ylabel('Stacking metric') plt.xlim((0,300)) plt.grid( b=True, which='major', axis='both', color='k', linestyle='-') plt.savefig('stacking_binary.%s.png' %(base)) plt.close() def vdw_hist(data, base_a, base_b): events, edges, patches = plt.hist(data, bins = 100, histtype = 'bar') plt.title('Distribution of vdW Energies - Base Pair %s-%s' %(base_a, base_b)) plt.xlabel('vdW Energy ($kcal\ mol^{-1}$)') plt.xlim((-8,0)) plt.ylabel('Frequency') plt.savefig('energy.%s.%s.png' %(base_a, base_b)) nf = open('energy.%s.%s.dat' %(base_a, base_b), 'w') for i in range(len(events)): nf.write(' %10.1f %10.4f\n' %(events[i], edges[i])) nf.close() plt.close() events = [] edges = [] patches = [] def angle_hist(data, base_a, base_b): events, edges, patches = plt.hist(data, bins = 100, histtype = 'bar') plt.title('Distribution of Angles btw Base Pair %s-%s' %(base_a, base_b)) plt.xlabel('Angle (Degrees)') plt.ylabel('Frequency') plt.savefig('angle.%s.%s.png' %(base_a, base_b)) nf = open('angle.%s.%s.dat' %(base_a, base_b), 'w') for i in range(len(events)): nf.write(' %10.1f %10.4f\n' %(events[i], edges[i])) nf.close() plt.close() events = [] edges = [] patches = [] def energy_angle_hist(xdata, ydata, base_a, base_b): counts, xedges, yedges, image = plt.hist2d(xdata, ydata, bins = 100) cb1 = plt.colorbar() cb1.set_label('Frequency') plt.title('Distribution of Base Pair interactions - %s-%s' %(base_a, base_b)) plt.xlabel('Angle (Degrees)') plt.ylabel('vdW Energy ($kcal\ mol^{-1}$)') plt.ylim((-6,0.5)) plt.savefig('vdw_angle.%s.%s.png' %(base_a, base_b)) plt.close() counts = [] xedges = [] yedges = [] image = [] # MAIN PROGRAM: # ---------------------------------------- # ATOM SELECTION - load the trajectory and select the desired nucleotide atoms to be analyzed later on u = MDAnalysis.Universe('../nucleic_ions.pdb', traj_file, delta=2.0) # load in trajectory file Nsteps = len(u.trajectory) equilib_step = 37500 # first 75 ns are not to be included in total stacking metric production = Nsteps - equilib_step nucleic = u.selectAtoms('resid 1:15') # atom selections for nucleic chain a1 = nucleic.selectAtoms('resid 1') # residue 1 has different atom IDs for the base atoms a1_base = a1.atoms[10:24] # atom selections bases = [] # make a list of the 15 bases filled with atoms bases.append(a1_base) # add base 1 into list for residue in nucleic.residues[1:15]: # collect the other bases into list residue_base = [] residue_base = residue.atoms[12:26] bases.append(residue_base) # ---------------------------------------- # DICTIONARY DEVELOPMENT - Develop the normals and total binary dictionary which contain the data for each base while base1 <= nbases: normals['normal.%s' %(base1)] = get_norm('normal.%s' %(base1), np.zeros((Nsteps, 3))) total_binaries['base.%s' %(base1)] = get_tb('base.%s' %(base1), np.zeros(Nsteps)) base1 += 1 # ---------------------------------------- # SIMULATION TIME - calculate the array that contains the simulation time in ns units time = np.zeros(Nsteps) for i in range(Nsteps): time[i] = i*0.002 # time units: ns # ---------------------------------------- # NORMAL ANALYSIS for each base - loops through all bases and all timesteps of the trajectory; calculates the normal vector of the base atoms base1 = 1 while (base1 <= nbases): for ts in u.trajectory: Princ_axes = [] Princ_axes = bases[base1 - 1].principalAxes() normals['normal.%s' %(base1)][ts.frame - 1] = Princ_axes[2] # ts.frame index starts at 1; add normal to dictionary with index starting at 0 base1 += 1 # ---------------------------------------- # BASE PAIR ANALYSIS - loops through all base pairs (w/out duplicates) and performs the angle analysis as well as the binary analysis base1 = 1 # reset the base index to start at 1 while (base1 <= nbases): # while loops to perform the base-pair analysis while avoiding performing the same analysis twice base2 = base1 + 1 while (base2 <= nbases): os.mkdir('base%s_base%s' %(base1, base2)) # makes and moves into a directory for the base pair os.chdir('base%s_base%s' %(base1, base2)) energyfile = '../../nonbond_energy/base%s_base%s/base%s_base%s.energies.dat' %(base1, base2, base1, base2) energies = ldtxt(energyfile) # load in the energy file to a numpy array vdw_energies = energies[:,2] binary = zeros(Nsteps) nf = open('binary.%s.%s.dat' %(base1, base2), 'w') # write the base pair data to a file; make sure to be writing this in a base pair directory # angle and binary analysis for base pair; for i in range(Nsteps): angle = 0. angle = arccosine(dotproduct(normals['normal.%s' %(base1)][i], normals['normal.%s' %(base2)][i])) angle = angle*(180./pi) if angle > 90.: angle = 180. - angle if vdw_energies[i] <= -3.5 and angle <= 30.: # cutoff: -3.5 kcal mol^-1 and 30 degrees binary[i] = 1. # assumed else binary[i] = 0. nf.write(' %10.3f %10.5f %10.5f %10.1f\n' %(time[i], vdw_energies[i], angle, binary[i])) # check time values total_binaries['base.%s' %(base1)][i] = total_binaries['base.%s' %(base1)][i] + binary[i] total_binaries['base.%s' %(base2)][i] = total_binaries['base.%s' %(base2)][i] + binary[i] nf.close() angles = [] energies = [] vdw_energies = [] os.chdir('..') base2 += 1 base1 += 1 # ---------------------------------------- # TOTAL BINARY METRIC ANALYSIS - writing to file and plotting # print out (also plot) the total binary data to an indivual file for each individual base base1 = 1 # reset the base index to start at 1 os.mkdir('total_binaries') os.chdir('total_binaries') while (base1 <= nbases): os.mkdir('base%s' %(base1)) os.chdir('base%s' %(base1)) nf = open('binary.%s.dat' %(base1), 'w') for i in range(Nsteps): nf.write(' %10.3f %10.1f\n' %(time[i], total_binaries['base.%s' %(base1)][i])) # check time values nf.close() counts = 0 for i in range(equilib_step, Nsteps): if total_binaries['base.%s' %(base1)][i] > 0.: counts +=1 prob = 0. prob = (float(counts)/production)*100. nf = open('stacking.%s.dat' %(base1), 'w') nf.write('counts: %10.1f out of %10.1f time steps \n Probability of stacking = %10.4f ' %(counts, production, prob)) nf.close() plotting(time[:], total_binaries['base.%s' %(base1)][:], base1) os.chdir('..') base1 += 1 # ---------------------------------------- # BASE PAIR PLOTTING - making histogram plots for vdW energy distributions, angle distributions, and 2d hist of vdw vs angle distributions # Also printint out a file that contains the count of timesteps where the base pair are stacked os.chdir('..') base1 = 1 while (base1 <= nbases): # while loops to perform the base-pair analysis while avoiding performing the same analysis twice base2 = base1 + 1 while (base2 <= nbases): os.chdir('base%s_base%s' %(base1, base2)) infile = 'binary.%s.%s.dat' %(base1, base2) data = ldtxt(infile) # data[0] = time, data[1] = vdW energies, data[2] = angle, data[3] = base pair binary metric vdw_hist(data[equilib_step:,1], base1, base2) angle_hist(data[equilib_step:,2], base1, base2) energy_angle_hist(data[equilib_step:,2], data[equilib_step:,1], base1, base2) nf = open('stacking.%s.%s.dat' %(base1, base2), 'w') bp_counts = sum(data[equilib_step:,3]) nf.write('counts for base pair %s-%s: %10.1f' %(base1, base2, bp_counts)) nf.close() data = [] os.chdir('..') base2 += 1 base1 += 1 # ---------------------------------------- # END
mit
runiq/modeling-clustering
find-correct-cluster-number/plot_clustering_metrics.py
1
10092
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Performs a clustering run with a number of clusters and a given mask, and creates graphs of the corresponding DBI, pSF, SSR/SST, and RMSD values. These faciliate the choice of cluster numbers and improve the clustering process by allowing to pick the number of clusters with the highest information content. """ # TODO # - Fix plot_tree() # - Do some logging # - remove clustering_run from plot_metrics() and plot_tree() as it # basically represents world state. Use explicit metrics/nodes instead # - Implement ylabel alignment as soon as PGF backend has its act together import cStringIO as csio from glob import glob, iglob import os import os.path as op import sys import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import matplotlib.ticker as tic import matplotlib.transforms as tfs import clustering_run as cr import newick as cn def align_yaxis_labels(axes, sortfunc): xpos = sortfunc(ax.yaxis.get_label().get_position()[0] for ax in axes) for ax in axes: trans = tfs.blended_transform_factory(tfs.IdentityTransform(), ax.transAxes) ax.yaxis.set_label_coords(xpos, 0.5, transform=trans) def plot_metrics(clustering_run, output_file, xmin=None, xmax=None, use_tex=False, figsize=(12,8), square=False): metrics = clustering_run.gather_metrics() # The ±0.5 are so that all chosen points are well within the # plots if xmin is None: xmin = min(metrics['n']) if xmax is None: xmax = max(metrics['n']) xlim = (xmin-0.5, xmax+0.5) fig = plt.figure(figsize=figsize) if clustering_run.no_ssr_sst: gridindex = 310 else: if square: gridindex = 220 else: gridindex = 410 if use_tex: rmsd_ylabel = r'Critical distance/\si{\angstrom}' xlabel = r'$n_{\text{Clusters}}$' else: rmsd_ylabel = u'Critical distance/Å' xlabel = r'Number of clusters' ax1 = fig.add_subplot(gridindex+1, ylabel=rmsd_ylabel) ax2 = fig.add_subplot(gridindex+2, ylabel='DBI', sharex=ax1) ax3 = fig.add_subplot(gridindex+3, ylabel='pSF', sharex=ax1) ax1.plot(metrics['n'], metrics['rmsd'], marker='.') ax2.plot(metrics['n'], metrics['dbi'], marker='.') ax3.plot(metrics['n'], metrics['psf'], marker='.') if not clustering_run.no_ssr_sst: ax4 = fig.add_subplot(gridindex+4, ylabel='SSR/SST', xlim=xlim, sharex=ax1) ax4.plot(metrics['n'], metrics['ssr_sst'], marker='.') if square and not clustering_run.no_ssr_sst: nonxaxes = fig.axes[:-2] xaxes = fig.axes[-2:] lefthandplots = fig.axes[0::2] righthandplots = fig.axes[1::2] # Put yticklabels of right-hand plots to the right for ax in righthandplots: ax.yaxis.tick_right() ax.yaxis.set_label_position('right') else: nonxaxes = fig.axes[:-1] xaxes = [fig.axes[-1]] lefthandplots = fig.axes # xaxes limits and tick locations are propagated across sharex plots for ax in xaxes: ax.set_xlabel(xlabel) ax.xaxis.set_major_locator(tic.MultipleLocator(10)) ax.xaxis.set_minor_locator(tic.AutoMinorLocator(2)) for ax in nonxaxes: plt.setp(ax.get_xticklabels(), visible=False) # 5 yticklabels are enough for everybody for ax in fig.axes: ax.yaxis.set_major_locator(tic.MaxNLocator(nbins=5)) ax.yaxis.set_minor_locator(tic.MaxNLocator(nbins=5)) # Draw first to get proper ylabel coordinates # fig.canvas.draw() # align_yaxis_labels(lefthandplots, sortfunc=min) # if square and not clustering_run.no_ssr_sst: # align_yaxis_labels(righthandplots, sortfunc=max) fig.savefig(output_file) def plot_tree(clustering_run, node_info, steps, dist, output, graphical=None, no_length=False): tree = cn.parse_clustermerging(clustering_run) newick = tree.create_newick(node_info=node_info, no_length=no_length, steps=steps, dist=dist) if output is sys.stdout: fh = output else: fh = open(output, 'w') fh.write(newick) fh.close() fig = plt.figure() ax1 = fig.add_subplot(111, ylabel='Cluster tree') if graphical is not None: cn.draw(csio.StringIO(newick), do_show=False, axes=ax1) fig.savefig(graphical) def parse_args(): import argparse as ap parser = ap.ArgumentParser() parser.add_argument('-c', '--cm-file', metavar='FILE', default='./ClusterMerging.txt', dest='cm_fn', help="File to parse (default: ./ClusterMerging.txt)") parser.add_argument('-C', '--matplotlibrc', metavar='FILE', default=None, help="Matplotlibrc file to use") parser.add_argument('-p', '--prefix', default='c', help="Prefix for clustering result files (default: \"c\")") parser.add_argument('-N', '--no-ssr-sst', action='store_true', default=False, help="Don't gather SSR_SST values (default: False)") subs = parser.add_subparsers(dest='subcommand', help="Sub-command help") c = subs.add_parser('cluster', help="Do clustering run to gather metrics") c.add_argument('prmtop', help="prmtop file") c.add_argument('-m', '--mask', metavar='MASKSTR', default='@CA,C,O,N', help=("Mask string (default: '@CA,C,O,N')")) c.add_argument('-P', '--ptraj-trajin-file', metavar='FILE', default='ptraj_trajin', dest='ptraj_trajin_fn', help=("Filename for ptraj trajin file (default: ptraj_trajin)")) c.add_argument('-n', '--num-clusters', dest='n_clusters', type=int, metavar='CLUSTERS', default=50, help="Number of clusters to examine (default (also maximum): 50)") c.add_argument('-s', '--start-num-clusters', dest='start_n_clusters', type=int, metavar='CLUSTERS', default=2, help="Number of clusters to start from (default: 2)") c.add_argument('-l', '--logfile', metavar='FILE', default=None, dest='log_fn', help=("Logfile for ptraj run (default: Print to stdout)")) c.add_argument('--use-cpptraj', action='store_true', default=False, help="Use cpptraj instead of ptraj") t = subs.add_parser('tree', help="Create Newick tree representation") t.add_argument('-o', '--output', metavar='FILE', default=sys.stdout, help="Output file for Newick tree (default: print to terminal)") t.add_argument('-g', '--graphical', default=None, help="Save tree as png (default: Don't)") t.add_argument('-s', '--steps', type=int, default=None, help="Number of steps to print (default: all)") t.add_argument('-d', '--dist', type=float, default=None, help="Minimum distance to print (default: all)") t.add_argument('-i', '--node-info', choices=['num', 'dist', 'id'], default='num', help="Node data to print") t.add_argument('-l', '--no-length', default=False, action='store_true', help="Don't print branch length information") p = subs.add_parser('plot', help="Plot clustering metrics") p.add_argument('-o', '--output', metavar='FILE', default='clustering_metrics.png', help="Filename for output file (default: show using matplotlib)") p.add_argument('-n', '--num-clusters', dest='n_clusters', type=int, metavar='CLUSTERS', default=50, help="Number of clusters to examine (default (also maximum): 50)") p.add_argument('-s', '--start-num-clusters', dest='start_n_clusters', type=int, metavar='CLUSTERS', default=2, help="Number of clusters to start from (default: 2)") p.add_argument('-T', '--use-tex', default=False, action='store_true', help="Use LaTeX output (default: use plaintext output)") p.add_argument('-S', '--fig-size', nargs=2, type=float, metavar='X Y', default=[12, 8], help=("Figure size in inches (default: 12x8)")) p.add_argument('--square', default=False, action='store_true', help="Plot in two columns") return parser.parse_args() def main(): args = parse_args() if args.matplotlibrc is not None: matplotlib.rc_file(args.matplotlibrc) if args.subcommand == 'cluster': if args.n_clusters < 1 or args.n_clusters > 50: print "Error: Maximum cluster number must be between 1 and 50." sys.exit(1) cn_fns = None clustering_run = cr.ClusteringRun(prmtop=args.prmtop, start_n_clusters=args.start_n_clusters, n_clusters=args.n_clusters, cm_fn=args.cm_fn, mask=args.mask, ptraj_trajin_fn=args.ptraj_trajin_fn, cn_fns=cn_fns, prefix=args.prefix, log_fn=args.log_fn, no_ssr_sst=args.no_ssr_sst) else: if not op.exists(args.cm_fn): print ("{cm_fn} doesn't exist. Please perform a clustering run", "first.".format(cm_fn=args.cm_fn)) sys.exit(1) # We assume that the number of clusters starts at 1 n_clusters = len(glob('{prefix}*.txt'.format(prefix=args.prefix))) cn_fns = {i: '{prefix}{n}.txt'.format(prefix=args.prefix, n=i) for i in xrange(1, n_clusters+1)} # Only cm_fn and cn_fns are necessary for plotting the tree and # metrics clustering_run = cr.ClusteringRun(prmtop=None, cm_fn=args.cm_fn, cn_fns=cn_fns, no_ssr_sst=args.no_ssr_sst) if args.subcommand == 'plot': plot_metrics(clustering_run, output_file=args.output, xmin=args.start_n_clusters, xmax=args.n_clusters, use_tex=args.use_tex, figsize=args.fig_size, square=args.square) elif args.subcommand == 'tree': plot_tree(clustering_run=clustering_run, node_info=args.node_info, steps=args.steps, dist=args.dist, no_length=args.no_length, graphical=args.graphical, output=args.output) if __name__ == '__main__': main()
bsd-2-clause
f3r/scikit-learn
benchmarks/bench_plot_randomized_svd.py
38
17557
""" Benchmarks on the power iterations phase in randomized SVD. We test on various synthetic and real datasets the effect of increasing the number of power iterations in terms of quality of approximation and running time. A number greater than 0 should help with noisy matrices, which are characterized by a slow spectral decay. We test several policy for normalizing the power iterations. Normalization is crucial to avoid numerical issues. The quality of the approximation is measured by the spectral norm discrepancy between the original input matrix and the reconstructed one (by multiplying the randomized_svd's outputs). The spectral norm is always equivalent to the largest singular value of a matrix. (3) justifies this choice. However, one can notice in these experiments that Frobenius and spectral norms behave very similarly in a qualitative sense. Therefore, we suggest to run these benchmarks with `enable_spectral_norm = False`, as Frobenius' is MUCH faster to compute. The benchmarks follow. (a) plot: time vs norm, varying number of power iterations data: many datasets goal: compare normalization policies and study how the number of power iterations affect time and norm (b) plot: n_iter vs norm, varying rank of data and number of components for randomized_SVD data: low-rank matrices on which we control the rank goal: study whether the rank of the matrix and the number of components extracted by randomized SVD affect "the optimal" number of power iterations (c) plot: time vs norm, varing datasets data: many datasets goal: compare default configurations We compare the following algorithms: - randomized_svd(..., power_iteration_normalizer='none') - randomized_svd(..., power_iteration_normalizer='LU') - randomized_svd(..., power_iteration_normalizer='QR') - randomized_svd(..., power_iteration_normalizer='auto') - fbpca.pca() from https://github.com/facebook/fbpca (if installed) Conclusion ---------- - n_iter=2 appears to be a good default value - power_iteration_normalizer='none' is OK if n_iter is small, otherwise LU gives similar errors to QR but is cheaper. That's what 'auto' implements. References ---------- (1) Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions Halko, et al., 2009 http://arxiv.org/abs/arXiv:0909.4061 (2) A randomized algorithm for the decomposition of matrices Per-Gunnar Martinsson, Vladimir Rokhlin and Mark Tygert (3) An implementation of a randomized algorithm for principal component analysis A. Szlam et al. 2014 """ # Author: Giorgio Patrini import numpy as np import scipy as sp import matplotlib.pyplot as plt import gc import pickle from time import time from collections import defaultdict import os.path from sklearn.utils import gen_batches from sklearn.utils.validation import check_random_state from sklearn.utils.extmath import randomized_svd from sklearn.datasets.samples_generator import (make_low_rank_matrix, make_sparse_uncorrelated) from sklearn.datasets import (fetch_lfw_people, fetch_mldata, fetch_20newsgroups_vectorized, fetch_olivetti_faces, fetch_rcv1) try: import fbpca fbpca_available = True except ImportError: fbpca_available = False # If this is enabled, tests are much slower and will crash with the large data enable_spectral_norm = False # TODO: compute approximate spectral norms with the power method as in # Estimating the largest eigenvalues by the power and Lanczos methods with # a random start, Jacek Kuczynski and Henryk Wozniakowski, SIAM Journal on # Matrix Analysis and Applications, 13 (4): 1094-1122, 1992. # This approximation is a very fast estimate of the spectral norm, but depends # on starting random vectors. # Determine when to switch to batch computation for matrix norms, # in case the reconstructed (dense) matrix is too large MAX_MEMORY = np.int(2e9) # The following datasets can be dowloaded manually from: # CIFAR 10: http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz # SVHN: http://ufldl.stanford.edu/housenumbers/train_32x32.mat CIFAR_FOLDER = "./cifar-10-batches-py/" SVHN_FOLDER = "./SVHN/" datasets = ['low rank matrix', 'lfw_people', 'olivetti_faces', '20newsgroups', 'MNIST original', 'CIFAR', 'a1a', 'SVHN', 'uncorrelated matrix'] big_sparse_datasets = ['big sparse matrix', 'rcv1'] def unpickle(file_name): with open(file_name, 'rb') as fo: return pickle.load(fo, encoding='latin1')["data"] def handle_missing_dataset(file_folder): if not os.path.isdir(file_folder): print("%s file folder not found. Test skipped." % file_folder) return 0 def get_data(dataset_name): print("Getting dataset: %s" % dataset_name) if dataset_name == 'lfw_people': X = fetch_lfw_people().data elif dataset_name == '20newsgroups': X = fetch_20newsgroups_vectorized().data[:, :100000] elif dataset_name == 'olivetti_faces': X = fetch_olivetti_faces().data elif dataset_name == 'rcv1': X = fetch_rcv1().data elif dataset_name == 'CIFAR': if handle_missing_dataset(CIFAR_FOLDER) == "skip": return X1 = [unpickle("%sdata_batch_%d" % (CIFAR_FOLDER, i + 1)) for i in range(5)] X = np.vstack(X1) del X1 elif dataset_name == 'SVHN': if handle_missing_dataset(SVHN_FOLDER) == 0: return X1 = sp.io.loadmat("%strain_32x32.mat" % SVHN_FOLDER)['X'] X2 = [X1[:, :, :, i].reshape(32 * 32 * 3) for i in range(X1.shape[3])] X = np.vstack(X2) del X1 del X2 elif dataset_name == 'low rank matrix': X = make_low_rank_matrix(n_samples=500, n_features=np.int(1e4), effective_rank=100, tail_strength=.5, random_state=random_state) elif dataset_name == 'uncorrelated matrix': X, _ = make_sparse_uncorrelated(n_samples=500, n_features=10000, random_state=random_state) elif dataset_name == 'big sparse matrix': sparsity = np.int(1e6) size = np.int(1e6) small_size = np.int(1e4) data = np.random.normal(0, 1, np.int(sparsity/10)) data = np.repeat(data, 10) row = np.random.uniform(0, small_size, sparsity) col = np.random.uniform(0, small_size, sparsity) X = sp.sparse.csr_matrix((data, (row, col)), shape=(size, small_size)) del data del row del col else: X = fetch_mldata(dataset_name).data return X def plot_time_vs_s(time, norm, point_labels, title): plt.figure() colors = ['g', 'b', 'y'] for i, l in enumerate(sorted(norm.keys())): if l is not "fbpca": plt.plot(time[l], norm[l], label=l, marker='o', c=colors.pop()) else: plt.plot(time[l], norm[l], label=l, marker='^', c='red') for label, x, y in zip(point_labels, list(time[l]), list(norm[l])): plt.annotate(label, xy=(x, y), xytext=(0, -20), textcoords='offset points', ha='right', va='bottom') plt.legend(loc="upper right") plt.suptitle(title) plt.ylabel("norm discrepancy") plt.xlabel("running time [s]") def scatter_time_vs_s(time, norm, point_labels, title): plt.figure() size = 100 for i, l in enumerate(sorted(norm.keys())): if l is not "fbpca": plt.scatter(time[l], norm[l], label=l, marker='o', c='b', s=size) for label, x, y in zip(point_labels, list(time[l]), list(norm[l])): plt.annotate(label, xy=(x, y), xytext=(0, -80), textcoords='offset points', ha='right', arrowprops=dict(arrowstyle="->", connectionstyle="arc3"), va='bottom', size=11, rotation=90) else: plt.scatter(time[l], norm[l], label=l, marker='^', c='red', s=size) for label, x, y in zip(point_labels, list(time[l]), list(norm[l])): plt.annotate(label, xy=(x, y), xytext=(0, 30), textcoords='offset points', ha='right', arrowprops=dict(arrowstyle="->", connectionstyle="arc3"), va='bottom', size=11, rotation=90) plt.legend(loc="best") plt.suptitle(title) plt.ylabel("norm discrepancy") plt.xlabel("running time [s]") def plot_power_iter_vs_s(power_iter, s, title): plt.figure() for l in sorted(s.keys()): plt.plot(power_iter, s[l], label=l, marker='o') plt.legend(loc="lower right", prop={'size': 10}) plt.suptitle(title) plt.ylabel("norm discrepancy") plt.xlabel("n_iter") def svd_timing(X, n_comps, n_iter, n_oversamples, power_iteration_normalizer='auto', method=None): """ Measure time for decomposition """ print("... running SVD ...") if method is not 'fbpca': gc.collect() t0 = time() U, mu, V = randomized_svd(X, n_comps, n_oversamples, n_iter, power_iteration_normalizer, random_state=random_state, transpose=False) call_time = time() - t0 else: gc.collect() t0 = time() # There is a different convention for l here U, mu, V = fbpca.pca(X, n_comps, raw=True, n_iter=n_iter, l=n_oversamples+n_comps) call_time = time() - t0 return U, mu, V, call_time def norm_diff(A, norm=2, msg=True): """ Compute the norm diff with the original matrix, when randomized SVD is called with *params. norm: 2 => spectral; 'fro' => Frobenius """ if msg: print("... computing %s norm ..." % norm) if norm == 2: # s = sp.linalg.norm(A, ord=2) # slow value = sp.sparse.linalg.svds(A, k=1, return_singular_vectors=False) else: if sp.sparse.issparse(A): value = sp.sparse.linalg.norm(A, ord=norm) else: value = sp.linalg.norm(A, ord=norm) return value def scalable_frobenius_norm_discrepancy(X, U, s, V): # if the input is not too big, just call scipy if X.shape[0] * X.shape[1] < MAX_MEMORY: A = X - U.dot(np.diag(s).dot(V)) return norm_diff(A, norm='fro') print("... computing fro norm by batches...") batch_size = 1000 Vhat = np.diag(s).dot(V) cum_norm = .0 for batch in gen_batches(X.shape[0], batch_size): M = X[batch, :] - U[batch, :].dot(Vhat) cum_norm += norm_diff(M, norm='fro', msg=False) return np.sqrt(cum_norm) def bench_a(X, dataset_name, power_iter, n_oversamples, n_comps): all_time = defaultdict(list) if enable_spectral_norm: all_spectral = defaultdict(list) X_spectral_norm = norm_diff(X, norm=2, msg=False) all_frobenius = defaultdict(list) X_fro_norm = norm_diff(X, norm='fro', msg=False) for pi in power_iter: for pm in ['none', 'LU', 'QR']: print("n_iter = %d on sklearn - %s" % (pi, pm)) U, s, V, time = svd_timing(X, n_comps, n_iter=pi, power_iteration_normalizer=pm, n_oversamples=n_oversamples) label = "sklearn - %s" % pm all_time[label].append(time) if enable_spectral_norm: A = U.dot(np.diag(s).dot(V)) all_spectral[label].append(norm_diff(X - A, norm=2) / X_spectral_norm) f = scalable_frobenius_norm_discrepancy(X, U, s, V) all_frobenius[label].append(f / X_fro_norm) if fbpca_available: print("n_iter = %d on fbca" % (pi)) U, s, V, time = svd_timing(X, n_comps, n_iter=pi, power_iteration_normalizer=pm, n_oversamples=n_oversamples, method='fbpca') label = "fbpca" all_time[label].append(time) if enable_spectral_norm: A = U.dot(np.diag(s).dot(V)) all_spectral[label].append(norm_diff(X - A, norm=2) / X_spectral_norm) f = scalable_frobenius_norm_discrepancy(X, U, s, V) all_frobenius[label].append(f / X_fro_norm) if enable_spectral_norm: title = "%s: spectral norm diff vs running time" % (dataset_name) plot_time_vs_s(all_time, all_spectral, power_iter, title) title = "%s: Frobenius norm diff vs running time" % (dataset_name) plot_time_vs_s(all_time, all_frobenius, power_iter, title) def bench_b(power_list): n_samples, n_features = 1000, 10000 data_params = {'n_samples': n_samples, 'n_features': n_features, 'tail_strength': .7, 'random_state': random_state} dataset_name = "low rank matrix %d x %d" % (n_samples, n_features) ranks = [10, 50, 100] if enable_spectral_norm: all_spectral = defaultdict(list) all_frobenius = defaultdict(list) for rank in ranks: X = make_low_rank_matrix(effective_rank=rank, **data_params) if enable_spectral_norm: X_spectral_norm = norm_diff(X, norm=2, msg=False) X_fro_norm = norm_diff(X, norm='fro', msg=False) for n_comp in [np.int(rank/2), rank, rank*2]: label = "rank=%d, n_comp=%d" % (rank, n_comp) print(label) for pi in power_list: U, s, V, _ = svd_timing(X, n_comp, n_iter=pi, n_oversamples=2, power_iteration_normalizer='LU') if enable_spectral_norm: A = U.dot(np.diag(s).dot(V)) all_spectral[label].append(norm_diff(X - A, norm=2) / X_spectral_norm) f = scalable_frobenius_norm_discrepancy(X, U, s, V) all_frobenius[label].append(f / X_fro_norm) if enable_spectral_norm: title = "%s: spectral norm diff vs n power iteration" % (dataset_name) plot_power_iter_vs_s(power_iter, all_spectral, title) title = "%s: frobenius norm diff vs n power iteration" % (dataset_name) plot_power_iter_vs_s(power_iter, all_frobenius, title) def bench_c(datasets, n_comps): all_time = defaultdict(list) if enable_spectral_norm: all_spectral = defaultdict(list) all_frobenius = defaultdict(list) for dataset_name in datasets: X = get_data(dataset_name) if X is None: continue if enable_spectral_norm: X_spectral_norm = norm_diff(X, norm=2, msg=False) X_fro_norm = norm_diff(X, norm='fro', msg=False) n_comps = np.minimum(n_comps, np.min(X.shape)) label = "sklearn" print("%s %d x %d - %s" % (dataset_name, X.shape[0], X.shape[1], label)) U, s, V, time = svd_timing(X, n_comps, n_iter=2, n_oversamples=10, method=label) all_time[label].append(time) if enable_spectral_norm: A = U.dot(np.diag(s).dot(V)) all_spectral[label].append(norm_diff(X - A, norm=2) / X_spectral_norm) f = scalable_frobenius_norm_discrepancy(X, U, s, V) all_frobenius[label].append(f / X_fro_norm) if fbpca_available: label = "fbpca" print("%s %d x %d - %s" % (dataset_name, X.shape[0], X.shape[1], label)) U, s, V, time = svd_timing(X, n_comps, n_iter=2, n_oversamples=2, method=label) all_time[label].append(time) if enable_spectral_norm: A = U.dot(np.diag(s).dot(V)) all_spectral[label].append(norm_diff(X - A, norm=2) / X_spectral_norm) f = scalable_frobenius_norm_discrepancy(X, U, s, V) all_frobenius[label].append(f / X_fro_norm) if len(all_time) == 0: raise ValueError("No tests ran. Aborting.") if enable_spectral_norm: title = "normalized spectral norm diff vs running time" scatter_time_vs_s(all_time, all_spectral, datasets, title) title = "normalized Frobenius norm diff vs running time" scatter_time_vs_s(all_time, all_frobenius, datasets, title) if __name__ == '__main__': random_state = check_random_state(1234) power_iter = np.linspace(0, 6, 7, dtype=int) n_comps = 50 for dataset_name in datasets: X = get_data(dataset_name) if X is None: continue print(" >>>>>> Benching sklearn and fbpca on %s %d x %d" % (dataset_name, X.shape[0], X.shape[1])) bench_a(X, dataset_name, power_iter, n_oversamples=2, n_comps=np.minimum(n_comps, np.min(X.shape))) print(" >>>>>> Benching on simulated low rank matrix with variable rank") bench_b(power_iter) print(" >>>>>> Benching sklearn and fbpca default configurations") bench_c(datasets + big_sparse_datasets, n_comps) plt.show()
bsd-3-clause
jakevdp/megaman
megaman/embedding/tests/test_embeddings.py
4
1798
"""General tests for embeddings""" # LICENSE: Simplified BSD https://github.com/mmp2/megaman/blob/master/LICENSE from itertools import product import numpy as np from numpy.testing import assert_raises, assert_allclose from megaman.embedding import (Isomap, LocallyLinearEmbedding, LTSA, SpectralEmbedding) from megaman.geometry.geometry import Geometry EMBEDDINGS = [Isomap, LocallyLinearEmbedding, LTSA, SpectralEmbedding] # # TODO: make estimator_checks pass! # def test_estimator_checks(): # from sklearn.utils.estimator_checks import check_estimator # for Embedding in EMBEDDINGS: # yield check_estimator, Embedding def test_embeddings_fit_vs_transform(): rand = np.random.RandomState(42) X = rand.rand(100, 5) geom = Geometry(adjacency_kwds = {'radius':1.0}, affinity_kwds = {'radius':1.0}) def check_embedding(Embedding, n_components): model = Embedding(n_components=n_components, geom=geom, random_state=rand) embedding = model.fit_transform(X) assert model.embedding_.shape == (X.shape[0], n_components) assert_allclose(embedding, model.embedding_) for Embedding in EMBEDDINGS: for n_components in [1, 2, 3]: yield check_embedding, Embedding, n_components def test_embeddings_bad_arguments(): rand = np.random.RandomState(32) X = rand.rand(100, 3) def check_bad_args(Embedding): # no radius set embedding = Embedding() assert_raises(ValueError, embedding.fit, X) # unrecognized geometry embedding = Embedding(radius=2, geom='blah') assert_raises(ValueError, embedding.fit, X) for Embedding in EMBEDDINGS: yield check_bad_args, Embedding
bsd-2-clause
shangwuhencc/scikit-learn
examples/cluster/plot_kmeans_stability_low_dim_dense.py
338
4324
""" ============================================================ Empirical evaluation of the impact of k-means initialization ============================================================ Evaluate the ability of k-means initializations strategies to make the algorithm convergence robust as measured by the relative standard deviation of the inertia of the clustering (i.e. the sum of distances to the nearest cluster center). The first plot shows the best inertia reached for each combination of the model (``KMeans`` or ``MiniBatchKMeans``) and the init method (``init="random"`` or ``init="kmeans++"``) for increasing values of the ``n_init`` parameter that controls the number of initializations. The second plot demonstrate one single run of the ``MiniBatchKMeans`` estimator using a ``init="random"`` and ``n_init=1``. This run leads to a bad convergence (local optimum) with estimated centers stuck between ground truth clusters. The dataset used for evaluation is a 2D grid of isotropic Gaussian clusters widely spaced. """ print(__doc__) # Author: Olivier Grisel <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt import matplotlib.cm as cm from sklearn.utils import shuffle from sklearn.utils import check_random_state from sklearn.cluster import MiniBatchKMeans from sklearn.cluster import KMeans random_state = np.random.RandomState(0) # Number of run (with randomly generated dataset) for each strategy so as # to be able to compute an estimate of the standard deviation n_runs = 5 # k-means models can do several random inits so as to be able to trade # CPU time for convergence robustness n_init_range = np.array([1, 5, 10, 15, 20]) # Datasets generation parameters n_samples_per_center = 100 grid_size = 3 scale = 0.1 n_clusters = grid_size ** 2 def make_data(random_state, n_samples_per_center, grid_size, scale): random_state = check_random_state(random_state) centers = np.array([[i, j] for i in range(grid_size) for j in range(grid_size)]) n_clusters_true, n_features = centers.shape noise = random_state.normal( scale=scale, size=(n_samples_per_center, centers.shape[1])) X = np.concatenate([c + noise for c in centers]) y = np.concatenate([[i] * n_samples_per_center for i in range(n_clusters_true)]) return shuffle(X, y, random_state=random_state) # Part 1: Quantitative evaluation of various init methods fig = plt.figure() plots = [] legends = [] cases = [ (KMeans, 'k-means++', {}), (KMeans, 'random', {}), (MiniBatchKMeans, 'k-means++', {'max_no_improvement': 3}), (MiniBatchKMeans, 'random', {'max_no_improvement': 3, 'init_size': 500}), ] for factory, init, params in cases: print("Evaluation of %s with %s init" % (factory.__name__, init)) inertia = np.empty((len(n_init_range), n_runs)) for run_id in range(n_runs): X, y = make_data(run_id, n_samples_per_center, grid_size, scale) for i, n_init in enumerate(n_init_range): km = factory(n_clusters=n_clusters, init=init, random_state=run_id, n_init=n_init, **params).fit(X) inertia[i, run_id] = km.inertia_ p = plt.errorbar(n_init_range, inertia.mean(axis=1), inertia.std(axis=1)) plots.append(p[0]) legends.append("%s with %s init" % (factory.__name__, init)) plt.xlabel('n_init') plt.ylabel('inertia') plt.legend(plots, legends) plt.title("Mean inertia for various k-means init across %d runs" % n_runs) # Part 2: Qualitative visual inspection of the convergence X, y = make_data(random_state, n_samples_per_center, grid_size, scale) km = MiniBatchKMeans(n_clusters=n_clusters, init='random', n_init=1, random_state=random_state).fit(X) fig = plt.figure() for k in range(n_clusters): my_members = km.labels_ == k color = cm.spectral(float(k) / n_clusters, 1) plt.plot(X[my_members, 0], X[my_members, 1], 'o', marker='.', c=color) cluster_center = km.cluster_centers_[k] plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=color, markeredgecolor='k', markersize=6) plt.title("Example cluster allocation with a single random init\n" "with MiniBatchKMeans") plt.show()
bsd-3-clause
blaze/dask
dask/base.py
1
37839
from collections import OrderedDict from collections.abc import Mapping, Iterator from contextlib import contextmanager from functools import partial from hashlib import md5 from operator import getitem import inspect import pickle import os import threading import uuid from distutils.version import LooseVersion from tlz import merge, groupby, curry, identity from tlz.functoolz import Compose from .compatibility import is_dataclass, dataclass_fields from .context import thread_state from .core import flatten, quote, get as simple_get, literal from .hashing import hash_buffer_hex from .utils import Dispatch, ensure_dict, apply from . import config, local, threaded __all__ = ( "DaskMethodsMixin", "annotate", "is_dask_collection", "compute", "persist", "optimize", "visualize", "tokenize", "normalize_token", ) @contextmanager def annotate(**annotations): """Context Manager for setting HighLevelGraph Layer annotations. Annotations are metadata or soft constraints associated with tasks that dask schedulers may choose to respect: They signal intent without enforcing hard constraints. As such, they are primarily designed for use with the distributed scheduler. Almost any object can serve as an annotation, but small Python objects are preferred, while large objects such as NumPy arrays are discouraged. Callables supplied as an annotation should take a single *key* argument and produce the appropriate annotation. Individual task keys in the annotated collection are supplied to the callable. Parameters ---------- **annotations : key-value pairs Examples -------- All tasks within array A should have priority 100 and be retried 3 times on failure. >>> import dask >>> import dask.array as da >>> with dask.annotate(priority=100, retries=3): ... A = da.ones((10000, 10000)) Prioritise tasks within Array A on flattened block ID. >>> nblocks = (10, 10) >>> with dask.annotate(priority=lambda k: k[1]*nblocks[1] + k[2]): ... A = da.ones((1000, 1000), chunks=(100, 100)) Annotations may be nested. >>> with dask.annotate(priority=1): ... with dask.annotate(retries=3): ... A = da.ones((1000, 1000)) ... B = A + 1 """ prev_annotations = config.get("annotations", {}) new_annotations = { **prev_annotations, **{f"annotations.{k}": v for k, v in annotations.items()}, } with config.set(new_annotations): yield def is_dask_collection(x): """Returns ``True`` if ``x`` is a dask collection""" try: return x.__dask_graph__() is not None except (AttributeError, TypeError): return False class DaskMethodsMixin(object): """A mixin adding standard dask collection methods""" __slots__ = () def visualize(self, filename="mydask", format=None, optimize_graph=False, **kwargs): """Render the computation of this object's task graph using graphviz. Requires ``graphviz`` to be installed. Parameters ---------- filename : str or None, optional The name of the file to write to disk. If the provided `filename` doesn't include an extension, '.png' will be used by default. If `filename` is None, no file will be written, and we communicate with dot using only pipes. format : {'png', 'pdf', 'dot', 'svg', 'jpeg', 'jpg'}, optional Format in which to write output file. Default is 'png'. optimize_graph : bool, optional If True, the graph is optimized before rendering. Otherwise, the graph is displayed as is. Default is False. color: {None, 'order'}, optional Options to color nodes. Provide ``cmap=`` keyword for additional colormap **kwargs Additional keyword arguments to forward to ``to_graphviz``. Examples -------- >>> x.visualize(filename='dask.pdf') # doctest: +SKIP >>> x.visualize(filename='dask.pdf', color='order') # doctest: +SKIP Returns ------- result : IPython.diplay.Image, IPython.display.SVG, or None See dask.dot.dot_graph for more information. See Also -------- dask.base.visualize dask.dot.dot_graph Notes ----- For more information on optimization see here: https://docs.dask.org/en/latest/optimize.html """ return visualize( self, filename=filename, format=format, optimize_graph=optimize_graph, **kwargs, ) def persist(self, **kwargs): """Persist this dask collection into memory This turns a lazy Dask collection into a Dask collection with the same metadata, but now with the results fully computed or actively computing in the background. The action of function differs significantly depending on the active task scheduler. If the task scheduler supports asynchronous computing, such as is the case of the dask.distributed scheduler, then persist will return *immediately* and the return value's task graph will contain Dask Future objects. However if the task scheduler only supports blocking computation then the call to persist will *block* and the return value's task graph will contain concrete Python results. This function is particularly useful when using distributed systems, because the results will be kept in distributed memory, rather than returned to the local process as with compute. Parameters ---------- scheduler : string, optional Which scheduler to use like "threads", "synchronous" or "processes". If not provided, the default is to check the global settings first, and then fall back to the collection defaults. optimize_graph : bool, optional If True [default], the graph is optimized before computation. Otherwise the graph is run as is. This can be useful for debugging. **kwargs Extra keywords to forward to the scheduler function. Returns ------- New dask collections backed by in-memory data See Also -------- dask.base.persist """ (result,) = persist(self, traverse=False, **kwargs) return result def compute(self, **kwargs): """Compute this dask collection This turns a lazy Dask collection into its in-memory equivalent. For example a Dask array turns into a NumPy array and a Dask dataframe turns into a Pandas dataframe. The entire dataset must fit into memory before calling this operation. Parameters ---------- scheduler : string, optional Which scheduler to use like "threads", "synchronous" or "processes". If not provided, the default is to check the global settings first, and then fall back to the collection defaults. optimize_graph : bool, optional If True [default], the graph is optimized before computation. Otherwise the graph is run as is. This can be useful for debugging. kwargs Extra keywords to forward to the scheduler function. See Also -------- dask.base.compute """ (result,) = compute(self, traverse=False, **kwargs) return result def __await__(self): try: from distributed import wait, futures_of except ImportError as e: raise ImportError( "Using async/await with dask requires the `distributed` package" ) from e from tornado import gen @gen.coroutine def f(): if futures_of(self): yield wait(self) raise gen.Return(self) return f().__await__() def compute_as_if_collection(cls, dsk, keys, scheduler=None, get=None, **kwargs): """Compute a graph as if it were of type cls. Allows for applying the same optimizations and default scheduler.""" schedule = get_scheduler(scheduler=scheduler, cls=cls, get=get) dsk2 = optimization_function(cls)(ensure_dict(dsk), keys, **kwargs) return schedule(dsk2, keys, **kwargs) def dont_optimize(dsk, keys, **kwargs): return dsk def optimization_function(x): return getattr(x, "__dask_optimize__", dont_optimize) def collections_to_dsk(collections, optimize_graph=True, **kwargs): """ Convert many collections into a single dask graph, after optimization """ from .highlevelgraph import HighLevelGraph optimizations = kwargs.pop("optimizations", None) or config.get("optimizations", []) if optimize_graph: groups = groupby(optimization_function, collections) _opt_list = [] for opt, val in groups.items(): dsk, keys = _extract_graph_and_keys(val) groups[opt] = (dsk, keys) _opt = opt(dsk, keys, **kwargs) _opt_list.append(_opt) for opt in optimizations: _opt_list = [] group = {} for k, (dsk, keys) in groups.items(): _opt = opt(dsk, keys, **kwargs) group[k] = (_opt, keys) _opt_list.append(_opt) groups = group # Merge all graphs if any(isinstance(graph, HighLevelGraph) for graph in _opt_list): dsk = HighLevelGraph.merge(*_opt_list) else: dsk = merge(*map(ensure_dict, _opt_list)) else: dsk, _ = _extract_graph_and_keys(collections) return dsk def _extract_graph_and_keys(vals): """Given a list of dask vals, return a single graph and a list of keys such that ``get(dsk, keys)`` is equivalent to ``[v.compute() for v in vals]``.""" from .highlevelgraph import HighLevelGraph graphs, keys = [], [] for v in vals: graphs.append(v.__dask_graph__()) keys.append(v.__dask_keys__()) if any(isinstance(graph, HighLevelGraph) for graph in graphs): graph = HighLevelGraph.merge(*graphs) else: graph = merge(*map(ensure_dict, graphs)) return graph, keys def unpack_collections(*args, **kwargs): """Extract collections in preparation for compute/persist/etc... Intended use is to find all collections in a set of (possibly nested) python objects, do something to them (compute, etc...), then repackage them in equivalent python objects. Parameters ---------- *args Any number of objects. If it is a dask collection, it's extracted and added to the list of collections returned. By default, python builtin collections are also traversed to look for dask collections (for more information see the ``traverse`` keyword). traverse : bool, optional If True (default), builtin python collections are traversed looking for any dask collections they might contain. Returns ------- collections : list A list of all dask collections contained in ``args`` repack : callable A function to call on the transformed collections to repackage them as they were in the original ``args``. """ traverse = kwargs.pop("traverse", True) collections = [] repack_dsk = {} collections_token = uuid.uuid4().hex def _unpack(expr): if is_dask_collection(expr): tok = tokenize(expr) if tok not in repack_dsk: repack_dsk[tok] = (getitem, collections_token, len(collections)) collections.append(expr) return tok tok = uuid.uuid4().hex if not traverse: tsk = quote(expr) else: # Treat iterators like lists typ = list if isinstance(expr, Iterator) else type(expr) if typ in (list, tuple, set): tsk = (typ, [_unpack(i) for i in expr]) elif typ in (dict, OrderedDict): tsk = (typ, [[_unpack(k), _unpack(v)] for k, v in expr.items()]) elif is_dataclass(expr) and not isinstance(expr, type): tsk = ( apply, typ, (), ( dict, [ [f.name, _unpack(getattr(expr, f.name))] for f in dataclass_fields(expr) ], ), ) else: return expr repack_dsk[tok] = tsk return tok out = uuid.uuid4().hex repack_dsk[out] = (tuple, [_unpack(i) for i in args]) def repack(results): dsk = repack_dsk.copy() dsk[collections_token] = quote(results) return simple_get(dsk, out) return collections, repack def optimize(*args, **kwargs): """Optimize several dask collections at once. Returns equivalent dask collections that all share the same merged and optimized underlying graph. This can be useful if converting multiple collections to delayed objects, or to manually apply the optimizations at strategic points. Note that in most cases you shouldn't need to call this method directly. Parameters ---------- *args : objects Any number of objects. If a dask object, its graph is optimized and merged with all those of all other dask objects before returning an equivalent dask collection. Non-dask arguments are passed through unchanged. traverse : bool, optional By default dask traverses builtin python collections looking for dask objects passed to ``optimize``. For large collections this can be expensive. If none of the arguments contain any dask objects, set ``traverse=False`` to avoid doing this traversal. optimizations : list of callables, optional Additional optimization passes to perform. **kwargs Extra keyword arguments to forward to the optimization passes. Examples -------- >>> import dask as d >>> import dask.array as da >>> a = da.arange(10, chunks=2).sum() >>> b = da.arange(10, chunks=2).mean() >>> a2, b2 = d.optimize(a, b) >>> a2.compute() == a.compute() True >>> b2.compute() == b.compute() True """ collections, repack = unpack_collections(*args, **kwargs) if not collections: return args dsk = collections_to_dsk(collections, **kwargs) postpersists = [] for a in collections: r, s = a.__dask_postpersist__() postpersists.append(r(dsk, *s)) return repack(postpersists) def compute(*args, **kwargs): """Compute several dask collections at once. Parameters ---------- args : object Any number of objects. If it is a dask object, it's computed and the result is returned. By default, python builtin collections are also traversed to look for dask objects (for more information see the ``traverse`` keyword). Non-dask arguments are passed through unchanged. traverse : bool, optional By default dask traverses builtin python collections looking for dask objects passed to ``compute``. For large collections this can be expensive. If none of the arguments contain any dask objects, set ``traverse=False`` to avoid doing this traversal. scheduler : string, optional Which scheduler to use like "threads", "synchronous" or "processes". If not provided, the default is to check the global settings first, and then fall back to the collection defaults. optimize_graph : bool, optional If True [default], the optimizations for each collection are applied before computation. Otherwise the graph is run as is. This can be useful for debugging. kwargs Extra keywords to forward to the scheduler function. Examples -------- >>> import dask as d >>> import dask.array as da >>> a = da.arange(10, chunks=2).sum() >>> b = da.arange(10, chunks=2).mean() >>> d.compute(a, b) (45, 4.5) By default, dask objects inside python collections will also be computed: >>> d.compute({'a': a, 'b': b, 'c': 1}) ({'a': 45, 'b': 4.5, 'c': 1},) """ traverse = kwargs.pop("traverse", True) optimize_graph = kwargs.pop("optimize_graph", True) collections, repack = unpack_collections(*args, traverse=traverse) if not collections: return args schedule = get_scheduler( scheduler=kwargs.pop("scheduler", None), collections=collections, get=kwargs.pop("get", None), ) dsk = collections_to_dsk(collections, optimize_graph, **kwargs) keys, postcomputes = [], [] for x in collections: keys.append(x.__dask_keys__()) postcomputes.append(x.__dask_postcompute__()) results = schedule(dsk, keys, **kwargs) return repack([f(r, *a) for r, (f, a) in zip(results, postcomputes)]) def visualize(*args, **kwargs): """ Visualize several dask graphs at once. Requires ``graphviz`` to be installed. All options that are not the dask graph(s) should be passed as keyword arguments. Parameters ---------- dsk : dict(s) or collection(s) The dask graph(s) to visualize. filename : str or None, optional The name of the file to write to disk. If the provided `filename` doesn't include an extension, '.png' will be used by default. If `filename` is None, no file will be written, and we communicate with dot using only pipes. format : {'png', 'pdf', 'dot', 'svg', 'jpeg', 'jpg'}, optional Format in which to write output file. Default is 'png'. optimize_graph : bool, optional If True, the graph is optimized before rendering. Otherwise, the graph is displayed as is. Default is False. color : {None, 'order'}, optional Options to color nodes. Provide ``cmap=`` keyword for additional colormap collapse_outputs : bool, optional Whether to collapse output boxes, which often have empty labels. Default is False. verbose : bool, optional Whether to label output and input boxes even if the data aren't chunked. Beware: these labels can get very long. Default is False. **kwargs Additional keyword arguments to forward to ``to_graphviz``. Examples -------- >>> x.visualize(filename='dask.pdf') # doctest: +SKIP >>> x.visualize(filename='dask.pdf', color='order') # doctest: +SKIP Returns ------- result : IPython.diplay.Image, IPython.display.SVG, or None See dask.dot.dot_graph for more information. See Also -------- dask.dot.dot_graph Notes ----- For more information on optimization see here: https://docs.dask.org/en/latest/optimize.html """ from dask.dot import dot_graph filename = kwargs.pop("filename", "mydask") optimize_graph = kwargs.pop("optimize_graph", False) dsks = [] args3 = [] for arg in args: if isinstance(arg, (list, tuple, set)): for a in arg: if isinstance(a, Mapping): dsks.append(a) if is_dask_collection(a): args3.append(a) else: if isinstance(arg, Mapping): dsks.append(arg) if is_dask_collection(arg): args3.append(arg) dsk = dict(collections_to_dsk(args3, optimize_graph=optimize_graph)) for d in dsks: dsk.update(d) color = kwargs.get("color") if color == "order": from .order import order import matplotlib.pyplot as plt o = order(dsk) try: cmap = kwargs.pop("cmap") except KeyError: cmap = plt.cm.RdBu if isinstance(cmap, str): import matplotlib.pyplot as plt cmap = getattr(plt.cm, cmap) mx = max(o.values()) + 1 colors = {k: _colorize(cmap(v / mx, bytes=True)) for k, v in o.items()} kwargs["function_attributes"] = { k: {"color": v, "label": str(o[k])} for k, v in colors.items() } kwargs["data_attributes"] = {k: {"color": v} for k, v in colors.items()} elif color: raise NotImplementedError("Unknown value color=%s" % color) return dot_graph(dsk, filename=filename, **kwargs) def persist(*args, **kwargs): """Persist multiple Dask collections into memory This turns lazy Dask collections into Dask collections with the same metadata, but now with their results fully computed or actively computing in the background. For example a lazy dask.array built up from many lazy calls will now be a dask.array of the same shape, dtype, chunks, etc., but now with all of those previously lazy tasks either computed in memory as many small :class:`numpy.array` (in the single-machine case) or asynchronously running in the background on a cluster (in the distributed case). This function operates differently if a ``dask.distributed.Client`` exists and is connected to a distributed scheduler. In this case this function will return as soon as the task graph has been submitted to the cluster, but before the computations have completed. Computations will continue asynchronously in the background. When using this function with the single machine scheduler it blocks until the computations have finished. When using Dask on a single machine you should ensure that the dataset fits entirely within memory. Examples -------- >>> df = dd.read_csv('/path/to/*.csv') # doctest: +SKIP >>> df = df[df.name == 'Alice'] # doctest: +SKIP >>> df['in-debt'] = df.balance < 0 # doctest: +SKIP >>> df = df.persist() # triggers computation # doctest: +SKIP >>> df.value().min() # future computations are now fast # doctest: +SKIP -10 >>> df.value().max() # doctest: +SKIP 100 >>> from dask import persist # use persist function on multiple collections >>> a, b = persist(a, b) # doctest: +SKIP Parameters ---------- *args: Dask collections scheduler : string, optional Which scheduler to use like "threads", "synchronous" or "processes". If not provided, the default is to check the global settings first, and then fall back to the collection defaults. traverse : bool, optional By default dask traverses builtin python collections looking for dask objects passed to ``persist``. For large collections this can be expensive. If none of the arguments contain any dask objects, set ``traverse=False`` to avoid doing this traversal. optimize_graph : bool, optional If True [default], the graph is optimized before computation. Otherwise the graph is run as is. This can be useful for debugging. **kwargs Extra keywords to forward to the scheduler function. Returns ------- New dask collections backed by in-memory data """ traverse = kwargs.pop("traverse", True) optimize_graph = kwargs.pop("optimize_graph", True) collections, repack = unpack_collections(*args, traverse=traverse) if not collections: return args schedule = get_scheduler( scheduler=kwargs.pop("scheduler", None), collections=collections ) if inspect.ismethod(schedule): try: from distributed.client import default_client except ImportError: pass else: try: client = default_client() except ValueError: pass else: if client.get == schedule: results = client.persist( collections, optimize_graph=optimize_graph, **kwargs ) return repack(results) dsk = collections_to_dsk(collections, optimize_graph, **kwargs) keys, postpersists = [], [] for a in collections: a_keys = list(flatten(a.__dask_keys__())) rebuild, state = a.__dask_postpersist__() keys.extend(a_keys) postpersists.append((rebuild, a_keys, state)) results = schedule(dsk, keys, **kwargs) d = dict(zip(keys, results)) results2 = [r({k: d[k] for k in ks}, *s) for r, ks, s in postpersists] return repack(results2) ############ # Tokenize # ############ def tokenize(*args, **kwargs): """Deterministic token >>> tokenize([1, 2, '3']) '7d6a880cd9ec03506eee6973ff551339' >>> tokenize('Hello') == tokenize('Hello') True """ if kwargs: args = args + (kwargs,) return md5(str(tuple(map(normalize_token, args))).encode()).hexdigest() normalize_token = Dispatch() normalize_token.register( (int, float, str, bytes, type(None), type, slice, complex, type(Ellipsis)), identity ) @normalize_token.register(dict) def normalize_dict(d): return normalize_token(sorted(d.items(), key=str)) @normalize_token.register(OrderedDict) def normalize_ordered_dict(d): return type(d).__name__, normalize_token(list(d.items())) @normalize_token.register(set) def normalize_set(s): return normalize_token(sorted(s, key=str)) @normalize_token.register((tuple, list)) def normalize_seq(seq): def func(seq): try: return list(map(normalize_token, seq)) except RecursionError: return str(uuid.uuid4()) return type(seq).__name__, func(seq) @normalize_token.register(literal) def normalize_literal(lit): return "literal", normalize_token(lit()) @normalize_token.register(range) def normalize_range(r): return list(map(normalize_token, [r.start, r.stop, r.step])) @normalize_token.register(object) def normalize_object(o): method = getattr(o, "__dask_tokenize__", None) if method is not None: return method() return normalize_function(o) if callable(o) else uuid.uuid4().hex function_cache = {} function_cache_lock = threading.Lock() def normalize_function(func): try: return function_cache[func] except KeyError: result = _normalize_function(func) if len(function_cache) >= 500: # clear half of cache if full with function_cache_lock: if len(function_cache) >= 500: for k in list(function_cache)[::2]: del function_cache[k] function_cache[func] = result return result except TypeError: # not hashable return _normalize_function(func) def _normalize_function(func): if isinstance(func, Compose): first = getattr(func, "first", None) funcs = reversed((first,) + func.funcs) if first else func.funcs return tuple(normalize_function(f) for f in funcs) elif isinstance(func, (partial, curry)): args = tuple(normalize_token(i) for i in func.args) if func.keywords: kws = tuple( (k, normalize_token(v)) for k, v in sorted(func.keywords.items()) ) else: kws = None return (normalize_function(func.func), args, kws) else: try: result = pickle.dumps(func, protocol=0) if b"__main__" not in result: # abort on dynamic functions return result except Exception: pass try: import cloudpickle return cloudpickle.dumps(func, protocol=0) except Exception: return str(func) @normalize_token.register_lazy("pandas") def register_pandas(): import pandas as pd # Intentionally not importing PANDAS_GT_0240 from dask.dataframe._compat # to avoid ImportErrors from extra dependencies PANDAS_GT_0240 = LooseVersion(pd.__version__) >= LooseVersion("0.24.0") @normalize_token.register(pd.Index) def normalize_index(ind): if PANDAS_GT_0240: values = ind.array else: values = ind.values return [ind.name, normalize_token(values)] @normalize_token.register(pd.MultiIndex) def normalize_index(ind): codes = ind.codes if PANDAS_GT_0240 else ind.levels return ( [ind.name] + [normalize_token(x) for x in ind.levels] + [normalize_token(x) for x in codes] ) @normalize_token.register(pd.Categorical) def normalize_categorical(cat): return [normalize_token(cat.codes), normalize_token(cat.dtype)] if PANDAS_GT_0240: @normalize_token.register(pd.arrays.PeriodArray) @normalize_token.register(pd.arrays.DatetimeArray) @normalize_token.register(pd.arrays.TimedeltaArray) def normalize_period_array(arr): return [normalize_token(arr.asi8), normalize_token(arr.dtype)] @normalize_token.register(pd.arrays.IntervalArray) def normalize_interval_array(arr): return [ normalize_token(arr.left), normalize_token(arr.right), normalize_token(arr.closed), ] @normalize_token.register(pd.Series) def normalize_series(s): return [ s.name, s.dtype, normalize_token(s._data.blocks[0].values), normalize_token(s.index), ] @normalize_token.register(pd.DataFrame) def normalize_dataframe(df): data = [block.values for block in df._data.blocks] data.extend([df.columns, df.index]) return list(map(normalize_token, data)) @normalize_token.register(pd.api.extensions.ExtensionArray) def normalize_extension_array(arr): import numpy as np return normalize_token(np.asarray(arr)) # Dtypes @normalize_token.register(pd.api.types.CategoricalDtype) def normalize_categorical_dtype(dtype): return [normalize_token(dtype.categories), normalize_token(dtype.ordered)] @normalize_token.register(pd.api.extensions.ExtensionDtype) def normalize_period_dtype(dtype): return normalize_token(dtype.name) @normalize_token.register_lazy("numpy") def register_numpy(): import numpy as np @normalize_token.register(np.ndarray) def normalize_array(x): if not x.shape: return (x.item(), x.dtype) if hasattr(x, "mode") and getattr(x, "filename", None): if hasattr(x.base, "ctypes"): offset = ( x.ctypes.get_as_parameter().value - x.base.ctypes.get_as_parameter().value ) else: offset = 0 # root memmap's have mmap object as base if hasattr( x, "offset" ): # offset numpy used while opening, and not the offset to the beginning of the file offset += getattr(x, "offset") return ( x.filename, os.path.getmtime(x.filename), x.dtype, x.shape, x.strides, offset, ) if x.dtype.hasobject: try: try: # string fast-path data = hash_buffer_hex( "-".join(x.flat).encode( encoding="utf-8", errors="surrogatepass" ) ) except UnicodeDecodeError: # bytes fast-path data = hash_buffer_hex(b"-".join(x.flat)) except (TypeError, UnicodeDecodeError): try: data = hash_buffer_hex(pickle.dumps(x, pickle.HIGHEST_PROTOCOL)) except Exception: # pickling not supported, use UUID4-based fallback data = uuid.uuid4().hex else: try: data = hash_buffer_hex(x.ravel(order="K").view("i1")) except (BufferError, AttributeError, ValueError): data = hash_buffer_hex(x.copy().ravel(order="K").view("i1")) return (data, x.dtype, x.shape, x.strides) @normalize_token.register(np.matrix) def normalize_matrix(x): return type(x).__name__, normalize_array(x.view(type=np.ndarray)) normalize_token.register(np.dtype, repr) normalize_token.register(np.generic, repr) @normalize_token.register(np.ufunc) def normalize_ufunc(x): try: name = x.__name__ if getattr(np, name) is x: return "np." + name except AttributeError: return normalize_function(x) @normalize_token.register_lazy("scipy") def register_scipy(): import scipy.sparse as sp def normalize_sparse_matrix(x, attrs): return ( type(x).__name__, normalize_seq((normalize_token(getattr(x, key)) for key in attrs)), ) for cls, attrs in [ (sp.dia_matrix, ("data", "offsets", "shape")), (sp.bsr_matrix, ("data", "indices", "indptr", "blocksize", "shape")), (sp.coo_matrix, ("data", "row", "col", "shape")), (sp.csr_matrix, ("data", "indices", "indptr", "shape")), (sp.csc_matrix, ("data", "indices", "indptr", "shape")), (sp.lil_matrix, ("data", "rows", "shape")), ]: normalize_token.register(cls, partial(normalize_sparse_matrix, attrs=attrs)) @normalize_token.register(sp.dok_matrix) def normalize_dok_matrix(x): return type(x).__name__, normalize_token(sorted(x.items())) def _colorize(t): """Convert (r, g, b) triple to "#RRGGBB" string For use with ``visualize(color=...)`` Examples -------- >>> _colorize((255, 255, 255)) '#FFFFFF' >>> _colorize((0, 32, 128)) '#002080' """ t = t[:3] i = sum(v * 256 ** (len(t) - i - 1) for i, v in enumerate(t)) h = hex(int(i))[2:].upper() h = "0" * (6 - len(h)) + h return "#" + h named_schedulers = { "sync": local.get_sync, "synchronous": local.get_sync, "single-threaded": local.get_sync, "threads": threaded.get, "threading": threaded.get, } try: from dask import multiprocessing as dask_multiprocessing except ImportError: pass else: named_schedulers.update( { "processes": dask_multiprocessing.get, "multiprocessing": dask_multiprocessing.get, } ) get_err_msg = """ The get= keyword has been removed. Please use the scheduler= keyword instead with the name of the desired scheduler like 'threads' or 'processes' x.compute(scheduler='single-threaded') x.compute(scheduler='threads') x.compute(scheduler='processes') or with a function that takes the graph and keys x.compute(scheduler=my_scheduler_function) or with a Dask client x.compute(scheduler=client) """.strip() def get_scheduler(get=None, scheduler=None, collections=None, cls=None): """Get scheduler function There are various ways to specify the scheduler to use: 1. Passing in scheduler= parameters 2. Passing these into global configuration 3. Using defaults of a dask collection This function centralizes the logic to determine the right scheduler to use from those many options """ if get: raise TypeError(get_err_msg) if scheduler is not None: if callable(scheduler): return scheduler elif "Client" in type(scheduler).__name__ and hasattr(scheduler, "get"): return scheduler.get elif scheduler.lower() in named_schedulers: return named_schedulers[scheduler.lower()] elif scheduler.lower() in ("dask.distributed", "distributed"): from distributed.worker import get_client return get_client().get else: raise ValueError( "Expected one of [distributed, %s]" % ", ".join(sorted(named_schedulers)) ) # else: # try to connect to remote scheduler with this name # return get_client(scheduler).get if config.get("scheduler", None): return get_scheduler(scheduler=config.get("scheduler", None)) if config.get("get", None): raise ValueError(get_err_msg) if getattr(thread_state, "key", False): from distributed.worker import get_worker return get_worker().client.get if cls is not None: return cls.__dask_scheduler__ if collections: collections = [c for c in collections if c is not None] if collections: get = collections[0].__dask_scheduler__ if not all(c.__dask_scheduler__ == get for c in collections): raise ValueError( "Compute called on multiple collections with " "differing default schedulers. Please specify a " "scheduler=` parameter explicitly in compute or " "globally with `dask.config.set`." ) return get return None def wait(x, timeout=None, return_when="ALL_COMPLETED"): """Wait until computation has finished This is a compatibility alias for ``dask.distributed.wait``. If it is applied onto Dask collections without Dask Futures or if Dask distributed is not installed then it is a no-op """ try: from distributed import wait return wait(x, timeout=timeout, return_when=return_when) except (ImportError, ValueError): return x
bsd-3-clause
henridwyer/scikit-learn
examples/covariance/plot_covariance_estimation.py
250
5070
""" ======================================================================= Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood ======================================================================= When working with covariance estimation, the usual approach is to use a maximum likelihood estimator, such as the :class:`sklearn.covariance.EmpiricalCovariance`. It is unbiased, i.e. it converges to the true (population) covariance when given many observations. However, it can also be beneficial to regularize it, in order to reduce its variance; this, in turn, introduces some bias. This example illustrates the simple regularization used in :ref:`shrunk_covariance` estimators. In particular, it focuses on how to set the amount of regularization, i.e. how to choose the bias-variance trade-off. Here we compare 3 approaches: * Setting the parameter by cross-validating the likelihood on three folds according to a grid of potential shrinkage parameters. * A close formula proposed by Ledoit and Wolf to compute the asymptotically optimal regularization parameter (minimizing a MSE criterion), yielding the :class:`sklearn.covariance.LedoitWolf` covariance estimate. * An improvement of the Ledoit-Wolf shrinkage, the :class:`sklearn.covariance.OAS`, proposed by Chen et al. Its convergence is significantly better under the assumption that the data are Gaussian, in particular for small samples. To quantify estimation error, we plot the likelihood of unseen data for different values of the shrinkage parameter. We also show the choices by cross-validation, or with the LedoitWolf and OAS estimates. Note that the maximum likelihood estimate corresponds to no shrinkage, and thus performs poorly. The Ledoit-Wolf estimate performs really well, as it is close to the optimal and is computational not costly. In this example, the OAS estimate is a bit further away. Interestingly, both approaches outperform cross-validation, which is significantly most computationally costly. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from scipy import linalg from sklearn.covariance import LedoitWolf, OAS, ShrunkCovariance, \ log_likelihood, empirical_covariance from sklearn.grid_search import GridSearchCV ############################################################################### # Generate sample data n_features, n_samples = 40, 20 np.random.seed(42) base_X_train = np.random.normal(size=(n_samples, n_features)) base_X_test = np.random.normal(size=(n_samples, n_features)) # Color samples coloring_matrix = np.random.normal(size=(n_features, n_features)) X_train = np.dot(base_X_train, coloring_matrix) X_test = np.dot(base_X_test, coloring_matrix) ############################################################################### # Compute the likelihood on test data # spanning a range of possible shrinkage coefficient values shrinkages = np.logspace(-2, 0, 30) negative_logliks = [-ShrunkCovariance(shrinkage=s).fit(X_train).score(X_test) for s in shrinkages] # under the ground-truth model, which we would not have access to in real # settings real_cov = np.dot(coloring_matrix.T, coloring_matrix) emp_cov = empirical_covariance(X_train) loglik_real = -log_likelihood(emp_cov, linalg.inv(real_cov)) ############################################################################### # Compare different approaches to setting the parameter # GridSearch for an optimal shrinkage coefficient tuned_parameters = [{'shrinkage': shrinkages}] cv = GridSearchCV(ShrunkCovariance(), tuned_parameters) cv.fit(X_train) # Ledoit-Wolf optimal shrinkage coefficient estimate lw = LedoitWolf() loglik_lw = lw.fit(X_train).score(X_test) # OAS coefficient estimate oa = OAS() loglik_oa = oa.fit(X_train).score(X_test) ############################################################################### # Plot results fig = plt.figure() plt.title("Regularized covariance: likelihood and shrinkage coefficient") plt.xlabel('Regularizaton parameter: shrinkage coefficient') plt.ylabel('Error: negative log-likelihood on test data') # range shrinkage curve plt.loglog(shrinkages, negative_logliks, label="Negative log-likelihood") plt.plot(plt.xlim(), 2 * [loglik_real], '--r', label="Real covariance likelihood") # adjust view lik_max = np.amax(negative_logliks) lik_min = np.amin(negative_logliks) ymin = lik_min - 6. * np.log((plt.ylim()[1] - plt.ylim()[0])) ymax = lik_max + 10. * np.log(lik_max - lik_min) xmin = shrinkages[0] xmax = shrinkages[-1] # LW likelihood plt.vlines(lw.shrinkage_, ymin, -loglik_lw, color='magenta', linewidth=3, label='Ledoit-Wolf estimate') # OAS likelihood plt.vlines(oa.shrinkage_, ymin, -loglik_oa, color='purple', linewidth=3, label='OAS estimate') # best CV estimator likelihood plt.vlines(cv.best_estimator_.shrinkage, ymin, -cv.best_estimator_.score(X_test), color='cyan', linewidth=3, label='Cross-validation best estimate') plt.ylim(ymin, ymax) plt.xlim(xmin, xmax) plt.legend() plt.show()
bsd-3-clause
lucidfrontier45/scikit-learn
examples/covariance/plot_covariance_estimation.py
2
4991
""" ======================================================================= Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood ======================================================================= The usual estimator for covariance is the maximum likelihood estimator, :class:`sklearn.covariance.EmpiricalCovariance`. It is unbiased, i.e. it converges to the true (population) covariance when given many observations. However, it can also be beneficial to regularize it, in order to reduce its variance; this, in turn, introduces some bias. This example illustrates the simple regularization used in :ref:`shrunk_covariance` estimators. In particular, it focuses on how to set the amount of regularization, i.e. how to choose the bias-variance trade-off. Here we compare 3 approaches: * Setting the parameter by cross-validating the likelihood on three folds according to a grid of potential shrinkage parameters. * A close formula proposed by Ledoit and Wolf to compute the asymptotical optimal regularization parameter (minimizing a MSE criterion), yielding the :class:`sklearn.covariance.LedoitWolf` covariance estimate. * An improvement of the Ledoit-Wolf shrinkage, the :class:`sklearn.covariance.OAS`, proposed by Chen et al. Its convergence is significantly better under the assumption that the data are Gaussian, in particular for small samples. To quantify estimation error, we plot the likelihood of unseen data for different values of the shrinkage parameter. We also show the choices by cross-validation, or with the LedoitWolf and OAS estimates. Note that the maximum likelihood estimate corresponds to no shrinkage, and thus performs poorly. The Ledoit-Wolf estimate performs really well, as it is close to the optimal and is computational not costly. In this example, the OAS estimate is a bit further away. Interestingly, both approaches outperform cross-validation, which is significantly most computationally costly. """ print __doc__ import numpy as np import pylab as pl from scipy import linalg from sklearn.covariance import LedoitWolf, OAS, ShrunkCovariance, \ log_likelihood, empirical_covariance from sklearn.grid_search import GridSearchCV ############################################################################### # Generate sample data n_features, n_samples = 40, 20 np.random.seed(42) base_X_train = np.random.normal(size=(n_samples, n_features)) base_X_test = np.random.normal(size=(n_samples, n_features)) # Color samples coloring_matrix = np.random.normal(size=(n_features, n_features)) X_train = np.dot(base_X_train, coloring_matrix) X_test = np.dot(base_X_test, coloring_matrix) ############################################################################### # Compute the likelihood on test data # spanning a range of possible shrinkage coefficient values shrinkages = np.logspace(-2, 0, 30) negative_logliks = [-ShrunkCovariance(shrinkage=s).fit(X_train).score(X_test) for s in shrinkages] # under the ground-truth model, which we would not have access to in real # settings real_cov = np.dot(coloring_matrix.T, coloring_matrix) emp_cov = empirical_covariance(X_train) loglik_real = -log_likelihood(emp_cov, linalg.inv(real_cov)) ############################################################################### # Compare different approaches to setting the parameter # GridSearch for an optimal shrinkage coefficient tuned_parameters = [{'shrinkage': shrinkages}] cv = GridSearchCV(ShrunkCovariance(), tuned_parameters) cv.fit(X_train) # Ledoit-Wolf optimal shrinkage coefficient estimate lw = LedoitWolf() loglik_lw = lw.fit(X_train).score(X_test) # OAS coefficient estimate oa = OAS() loglik_oa = oa.fit(X_train).score(X_test) ############################################################################### # Plot results fig = pl.figure() pl.title("Regularized covariance: likelihood and shrinkage coefficient") pl.xlabel('Regularizaton parameter: shrinkage coefficient') pl.ylabel('Error: negative log-likelihood on test data') # range shrinkage curve pl.loglog(shrinkages, negative_logliks, label="Negative log-likelihood") pl.plot(pl.xlim(), 2 * [loglik_real], '--r', label="Real covariance likelihood") # adjust view lik_max = np.amax(negative_logliks) lik_min = np.amin(negative_logliks) ymin = lik_min - 6. * np.log((pl.ylim()[1] - pl.ylim()[0])) ymax = lik_max + 10. * np.log(lik_max - lik_min) xmin = shrinkages[0] xmax = shrinkages[-1] # LW likelihood pl.vlines(lw.shrinkage_, ymin, -loglik_lw, color='magenta', linewidth=3, label='Ledoit-Wolf estimate') # OAS likelihood pl.vlines(oa.shrinkage_, ymin, -loglik_oa, color='purple', linewidth=3, label='OAS estimate') # best CV estimator likelihood pl.vlines(cv.best_estimator_.shrinkage, ymin, -cv.best_estimator_.score(X_test), color='cyan', linewidth=3, label='Cross-validation best estimate') pl.ylim(ymin, ymax) pl.xlim(xmin, xmax) pl.legend() pl.show()
bsd-3-clause
rmccoy7541/egillettii-rnaseq
scripts/snp_performance_analysis.py
1
3682
#! /bin/env python import sys from optparse import OptionParser import copy import matplotlib matplotlib.use('Agg') import pylab import scipy.optimize import numpy from numpy import array import dadi import os #call ms program from within dadi, using optimized parameters (converted to ms units) core = "-n 1 0.922 -n 2 0.104 -ej 0.0330 2 1 -en 0.0330 1 1" command = dadi.Misc.ms_command(100000, (12,12), core, 1, 2000) ms_fs = dadi.Spectrum.from_ms_file(os.popen(command)) #modify the following line to adjust the sample size of SNPs used for inference scaled_ms_fs = ms_fs.fixed_size_sample(2000) scaled_ms_fs = scaled_ms_fs.fold() #import demographic models import gillettii_models def runModel(outFile, nuW_start, nuC_start, T_start): # Extract the spectrum from ms output fs = scaled_ms_fs ns = fs.sample_sizes print 'sample sizes:', ns # These are the grid point settings will use for extrapolation. pts_l = [20,30,40] # suggested that the smallest grid be slightly larger than the largest sample size. But this may take a long time. # bottleneck_split model func = gillettii_models.bottleneck_split params = array([nuW_start, nuC_start, T_start]) upper_bound = [30, 10, 10] lower_bound = [1e-5, 1e-10, 0] # Make the extrapolating version of the demographic model function. func_ex = dadi.Numerics.make_extrap_func(func) # Calculate the model AFS model = func_ex(params, ns, pts_l) # Calculate likelihood of the data given the model AFS # Likelihood of the data given the model AFS. ll_model = dadi.Inference.ll_multinom(model, fs) print 'Model log-likelihood:', ll_model, "\n" # The optimal value of theta given the model. theta = dadi.Inference.optimal_sfs_scaling(model, fs) p0 = dadi.Misc.perturb_params(params, fold=1, lower_bound=lower_bound, upper_bound=upper_bound) print 'perturbed parameters: ', p0, "\n" popt = dadi.Inference.optimize_log_fmin(p0, fs, func_ex, pts_l, upper_bound=upper_bound, lower_bound=lower_bound, maxiter=None, verbose=len(params)) print 'Optimized parameters:', repr(popt), "\n" #use the optimized parameters in a new model to try to get the parameters to converge new_model = func_ex(popt, ns, pts_l) ll_opt = dadi.Inference.ll_multinom(new_model, fs) print 'Optimized log-likelihood:', ll_opt, "\n" # Write the parameters and log-likelihood to the outFile s = str(nuW_start) + '\t' + str(nuC_start) + '\t' + str(T_start) + '\t' for i in range(0, len(popt)): s += str(popt[i]) + '\t' s += str(ll_opt) + '\n' outFile.write(s) ################# def mkOptionParser(): """ Defines options and returns parser """ usage = """%prog <outFN> <nuW_start> <nuC_start> <T_start> %prog performs demographic inference on gillettii RNA-seq data. """ parser = OptionParser(usage) return parser def main(): """ see usage in mkOptionParser. """ parser = mkOptionParser() options, args= parser.parse_args() if len(args) != 4: parser.error("Incorrect number of arguments") outFN = args[0] nuW_start = float(args[1]) nuC_start = float(args[2]) T_start = float(args[3]) if outFN == '-': outFile = sys.stdout else: outFile = open(outFN, 'a') runModel(outFile, nuW_start, nuC_start, T_start) #run main if __name__ == '__main__': main()
mit
go-smart/glossia-quickstart
code/problem.py
1
13906
"""This requires CGAL mesher applied to series of surfaces. See readme.txt for details. """ from __future__ import print_function # Use FEniCS for Finite Element import fenics as d # Useful to import the derivative separately from dolfin import dx # Useful numerical libraries import numpy as N import matplotlib matplotlib.use('SVG') import matplotlib.pyplot as P # General tools import os import subprocess import shutil # UFL import ufl # Set interactive plotting on P.ion() # Use a separate Python file to declare variables import variables as v import vtk_tools input_mesh = "input" class IREProblem: """class IREProblem() This represents a Finite Element IRE problem using a similar algorithm to that of ULJ """ def __init__(self): pass def load(self): # Convert mesh from MSH to Dolfin-XML shutil.copyfile("input/%s.msh" % input_mesh, "%s.msh" % input_mesh) destination_xml = "%s.xml" % input_mesh subprocess.call(["dolfin-convert", "%s.msh" % input_mesh, destination_xml]) # Load mesh and boundaries mesh = d.Mesh(destination_xml) self.patches = d.MeshFunction("size_t", mesh, "%s_facet_region.xml" % input_mesh) self.subdomains = d.MeshFunction("size_t", mesh, "%s_physical_region.xml" % input_mesh) # Define differential over subdomains self.dxs = d.dx[self.subdomains] # Turn subdomains into a Numpy array self.subdomains_array = N.asarray(self.subdomains.array(), dtype=N.int32) # Create a map from subdomain indices to tissues self.tissues_by_subdomain = {} for i, t in v.tissues.items(): print(i, t) for j in t["indices"]: self.tissues_by_subdomain[j] = t self.mesh = mesh self.setup_fe() self.prepare_increase_conductivity() def load_patient_data(self): indicators = {} for subdomain in ("liver", "vessels", "tumour"): values = N.empty((v.dim_height, v.dim_width, v.dim_depth), dtype='uintp') for i in range(0, v.dim_depth): slice = N.loadtxt(os.path.join( v.patient_data_location, "patient-%s.%d.txt" % (subdomain, i + 1)) ) values[:, :, i] = slice.astype('uintp') indicators[subdomain] = values self.indicators = indicators def interpolate_to_patient_data(self, function, indicator): values = N.empty((v.dim_height, v.dim_width, v.dim_depth), dtype='float') it = N.nditer(values, flags=['multi_index']) u = N.empty((1,)) x = N.empty((3,)) delta = (v.delta_height, v.delta_width, v.delta_depth) offset = (v.offset_x, v.offset_y, v.offset_z) while not it.finished: if indicator[it.multi_index] != 1: it.iternext() continue x[0] = it.multi_index[1] * delta[1] - offset[0] x[1] = it.multi_index[0] * delta[0] - offset[1] x[2] = it.multi_index[2] * delta[2] - offset[2] function.eval(u, x) values[...] = u[0] it.iternext() return values def setup_fe(self): # Define the relevant function spaces V = d.FunctionSpace(self.mesh, "Lagrange", 1) self.V = V # DG0 is useful for defining piecewise constant functions DV = d.FunctionSpace(self.mesh, "Discontinuous Lagrange", 0) self.DV = DV # Define test and trial functions for FE self.z = d.TrialFunction(self.V) self.w = d.TestFunction(self.V) def per_tissue_constant(self, generator): fefunction = d.Function(self.DV) generated_values = dict((l, generator(l)) for l in N.unique(self.subdomains_array)) vector = N.vectorize(generated_values.get) fefunction.vector()[:] = vector(self.subdomains_array) return fefunction def get_tumour_volume(self): # Perhaps there is a prettier way, but integrate a unit function over the tumour tets one = d.Function(self.V) one.vector()[:] = 1 return sum(d.assemble(one * self.dxs(i)) for i in v.tissues["tumour"]["indices"]) def save_lesion(self): final_filename = "results/%s-max_e%06d.vtu" % (input_mesh, self.max_e_count) shutil.copyfile(final_filename, "../lesion_volume.vtu") destination = "../lesion_surface.vtp" vtk_tools.save_lesion(destination, final_filename, "max_E", (80, None)) print("Output file to %s?" % destination, os.path.exists(destination)) def solve(self): # TODO: when FEniCS ported to Python3, this should be exist_ok try: os.makedirs('results') except OSError: pass z, w = (self.z, self.w) u0 = d.Constant(0.0) # Define the linear and bilinear forms L = u0 * w * dx # Define useful functions cond = d.Function(self.DV) U = d.Function(self.V) # Initialize the max_e vector, that will store the cumulative max e values max_e = d.Function(self.V) max_e.vector()[:] = 0.0 max_e.rename("max_E", "Maximum energy deposition by location") max_e_file = d.File("results/%s-max_e.pvd" % input_mesh) max_e_per_step = d.Function(self.V) max_e_per_step_file = d.File("results/%s-max_e_per_step.pvd" % input_mesh) self.es = {} self.max_es = {} fi = d.File("results/%s-cond.pvd" % input_mesh) potential_file = d.File("results/%s-potential.pvd" % input_mesh) # Loop through the voltages and electrode combinations for i, (anode, cathode, voltage) in enumerate(v.electrode_triples): print("Electrodes %d (%lf) -> %d (0)" % (anode, voltage, cathode)) cond = d.project(self.sigma_start, V=self.DV) # Define the Dirichlet boundary conditions on the active needles uV = d.Constant(voltage) term1_bc = d.DirichletBC(self.V, uV, self.patches, v.needles[anode]) term2_bc = d.DirichletBC(self.V, u0, self.patches, v.needles[cathode]) e = d.Function(self.V) e.vector()[:] = max_e.vector() # Re-evaluate conductivity self.increase_conductivity(cond, e) for j in range(v.max_restarts): # Update the bilinear form a = d.inner(d.nabla_grad(z), cond * d.nabla_grad(w)) * dx # Solve again print(" [solving...") d.solve(a == L, U, bcs=[term1_bc, term2_bc]) print(" ....solved]") # Extract electric field norm for k in range(len(U.vector())): if N.isnan(U.vector()[k]): U.vector()[k] = 1e5 e_new = d.project(d.sqrt(d.dot(d.grad(U), d.grad(U))), self.V) # Take the max of the new field and the established electric field e.vector()[:] = N.array([max(*X) for X in zip(e.vector(), e_new.vector())]) # Re-evaluate conductivity fi << cond self.increase_conductivity(cond, e) potential_file << U # Save the max e function to a VTU max_e_per_step.vector()[:] = e.vector()[:] max_e_per_step_file << max_e_per_step # Store this electric field norm, for this triple, for later reference self.es[i] = e # Store the max of this electric field norm and that for all previous triples max_e_array = N.array([max(*X) for X in zip(max_e.vector(), e.vector())]) max_e.vector()[:] = max_e_array # Create a new max_e function for storage, or it will be overwritten by the next iteration max_e_new = d.Function(self.V) max_e_new.vector()[:] = max_e_array # Store this max e function for the cumulative coverage curve calculation later self.max_es[i] = max_e_new # Save the max e function to a VTU max_e_file << max_e self.max_e_count = i def prepare_increase_conductivity(self): def sigma_function(l, i): s = self.tissues_by_subdomain[l]["sigma"] if isinstance(s, list): return s[i] else: return s def threshold_function(l, i): s = self.tissues_by_subdomain[l]["sigma"] if isinstance(s, list): return self.tissues_by_subdomain[l][i] else: return 1 if i == "threshold reversible" else 0 self.sigma_start = self.per_tissue_constant(lambda l: sigma_function(l, 0)) self.sigma_end = self.per_tissue_constant(lambda l: sigma_function(l, 1)) self.threshold_reversible = self.per_tissue_constant(lambda l: threshold_function(l, "threshold reversible")) self.threshold_irreversible = self.per_tissue_constant(lambda l: threshold_function(l, "threshold irreversible")) self.k = (self.sigma_end - self.sigma_start) / (self.threshold_irreversible - self.threshold_reversible) self.h = self.sigma_start - self.k * self.threshold_reversible def increase_conductivity(self, cond, e): # Set up the three way choice function intermediate = e * self.k + self.h not_less_than = ufl.conditional(ufl.gt(e, self.threshold_irreversible), self.sigma_end, intermediate) cond_expression = ufl.conditional(ufl.lt(e, self.threshold_reversible), self.sigma_start, not_less_than) # Project this onto the function space cond_function = d.project(ufl.Max(cond_expression, cond), cond.function_space()) cond.assign(cond_function) def plot_bitmap_result(self): # Create a horizontal axis cc_haxis = N.linspace(5000, 1e5, 200) # Import the binary data indicating the location of structures self.load_patient_data() # Calculate the tumour volume; this is what we will compare against tumour_volume = (self.indicators["tumour"] == 1).sum() # Initialize the output_arrays vector a rescale the x to V/cm output_arrays = [cc_haxis / 100] # Loop through the electrode triples for i, triple in enumerate(v.electrode_triples): # Project the max e values for this triple to DG0 - this forces an evaluation of the function at the mid-point of each tet, DG0's only DOF e_dg = self.interpolate_to_patient_data(self.max_es[i], self.indicators["tumour"]) # Sum the tet volumes for tets with a midpoint value greater than x, looping over x as e-norm thresholds (also scale to tumour volume) elim = N.vectorize(lambda x: (e_dg > x).sum() / tumour_volume) output_arrays.append(elim(cc_haxis)) # Compile into a convenient array output = N.array(zip(*output_arrays)) # Output cumulative coverage curves as CSV N.savetxt('results/%s-coverage_curves_bitmap.csv' % input_mesh, output) # Plot the coverage curves for (anode, cathode, voltage), a in zip(v.electrode_triples, output_arrays[1:]): P.plot(output_arrays[0], a, label="%d - %d" % (anode, cathode)) # Draw the plot P.draw() P.title(r"Bitmap-based") P.xlabel(r"Threshold level of $|E|$ ($\mathrm{J}$)") P.ylabel(r"Fraction of tumour beneath level") # Show a legend for the plot P.legend(loc=3) # Display the plot P.show(block=True) def plot_result(self): # Calculate preliminary relationships dofmap = self.DV.dofmap() cell_dofs = N.array([dofmap.cell_dofs(c)[0] for c in N.arange(self.mesh.num_cells()) if (self.subdomains[c] in v.tissues["tumour"]["indices"])]) volumes = N.array([d.Cell(self.mesh, c).volume() for c in N.arange(self.mesh.num_cells()) if (self.subdomains[c] in v.tissues["tumour"]["indices"])]) # Create a horizontal axis cc_haxis = N.linspace(5000, 1e5, 200) # Calculate the tumour volume; this is what we will compare against tumour_volume = self.get_tumour_volume() # Initialize the output_arrays vector a rescale the x to V/cm output_arrays = [cc_haxis / 100] # Loop through the electrode pairs for i, triple in enumerate(v.electrode_triples): # Project the max e values for this triple to DG0 - this forces an evaluation of the function at the mid-point of each tet, DG0's only DOF e_dg = d.project(self.max_es[i], self.DV) # Calculate the "max e" contribution for each cell contributor = N.vectorize(lambda c: e_dg.vector()[c]) contributions = contributor(cell_dofs) # Sum the tet volumes for tets with a midpoint value greater than x, looping over x as e-norm thresholds (also scale to tumour volume) elim = N.vectorize(lambda x: volumes[contributions > x].sum() / tumour_volume) output_arrays.append(elim(cc_haxis)) # Compile into a convenient array output = N.array(zip(*output_arrays)) # Output cumulative coverage curves as CSV N.savetxt('results/%s-coverage_curves.csv' % input_mesh, output) # Plot the coverage curves for (anode, cathode, voltage), a in zip(v.electrode_triples, output_arrays[1:]): P.plot(output_arrays[0], a, label="%d - %d" % (anode, cathode)) # Draw the plot P.draw() P.xlabel(r"Threshold level of $|E|$ ($\mathrm{J}$)") P.ylabel(r"Fraction of tumour beneath level") # Show a legend for the plot P.legend(loc=3) # Display the plot P.savefig('%s-coverage_curves' % input_mesh)
mit
zhoulingjun/zipline
zipline/utils/security_list.py
18
4472
from datetime import datetime from os import listdir import os.path import pandas as pd import pytz import zipline from zipline.finance.trading import with_environment DATE_FORMAT = "%Y%m%d" zipline_dir = os.path.dirname(zipline.__file__) SECURITY_LISTS_DIR = os.path.join(zipline_dir, 'resources', 'security_lists') class SecurityList(object): def __init__(self, data, current_date_func): """ data: a nested dictionary: knowledge_date -> lookup_date -> {add: [symbol list], 'delete': []}, delete: [symbol list]} current_date_func: function taking no parameters, returning current datetime """ self.data = data self._cache = {} self._knowledge_dates = self.make_knowledge_dates(self.data) self.current_date = current_date_func self.count = 0 self._current_set = set() def make_knowledge_dates(self, data): knowledge_dates = sorted( [pd.Timestamp(k) for k in data.keys()]) return knowledge_dates def __iter__(self): return iter(self.restricted_list) def __contains__(self, item): return item in self.restricted_list @property def restricted_list(self): cd = self.current_date() for kd in self._knowledge_dates: if cd < kd: break if kd in self._cache: self._current_set = self._cache[kd] continue for effective_date, changes in iter(self.data[kd].items()): self.update_current( effective_date, changes['add'], self._current_set.add ) self.update_current( effective_date, changes['delete'], self._current_set.remove ) self._cache[kd] = self._current_set return self._current_set @with_environment() def update_current(self, effective_date, symbols, change_func, env=None): for symbol in symbols: asset = env.asset_finder.lookup_symbol( symbol, as_of_date=effective_date ) # Pass if no Asset exists for the symbol if asset is None: continue change_func(asset.sid) class SecurityListSet(object): # provide a cut point to substitute other security # list implementations. security_list_type = SecurityList def __init__(self, current_date_func): self.current_date_func = current_date_func self._leveraged_etf = None @property def leveraged_etf_list(self): if self._leveraged_etf is None: self._leveraged_etf = self.security_list_type( load_from_directory('leveraged_etf_list'), self.current_date_func ) return self._leveraged_etf def load_from_directory(list_name): """ To resolve the symbol in the LEVERAGED_ETF list, the date on which the symbol was in effect is needed. Furthermore, to maintain a point in time record of our own maintenance of the restricted list, we need a knowledge date. Thus, restricted lists are dictionaries of datetime->symbol lists. new symbols should be entered as a new knowledge date entry. This method assumes a directory structure of: SECURITY_LISTS_DIR/listname/knowledge_date/lookup_date/add.txt SECURITY_LISTS_DIR/listname/knowledge_date/lookup_date/delete.txt The return value is a dictionary with: knowledge_date -> lookup_date -> {add: [symbol list], 'delete': [symbol list]} """ data = {} dir_path = os.path.join(SECURITY_LISTS_DIR, list_name) for kd_name in listdir(dir_path): kd = datetime.strptime(kd_name, DATE_FORMAT).replace( tzinfo=pytz.utc) data[kd] = {} kd_path = os.path.join(dir_path, kd_name) for ld_name in listdir(kd_path): ld = datetime.strptime(ld_name, DATE_FORMAT).replace( tzinfo=pytz.utc) data[kd][ld] = {} ld_path = os.path.join(kd_path, ld_name) for fname in listdir(ld_path): fpath = os.path.join(ld_path, fname) with open(fpath) as f: symbols = f.read().splitlines() data[kd][ld][fname] = symbols return data
apache-2.0
eonum/medword
model_validation.py
1
11972
import numpy as np import preprocess as pp import os from random import randint from sklearn.decomposition import PCA import matplotlib.pyplot as plt import csv def validate_model(embedding, emb_model_dir, emb_model_fn): print("Start validation. Loading model. \n") # load config config = embedding.config # load model embedding.load_model(emb_model_dir, emb_model_fn) # directories and filenames val_dir = config.config['val_data_dir'] doesntfit_fn = config.config['doesntfit_file'] doesntfit_src = os.path.join(val_dir, doesntfit_fn) synonyms_fn = config.config['synonyms_file'] syn_file_src = os.path.join(val_dir, synonyms_fn) # test with doesn't fit questions test_doesntfit(embedding, doesntfit_src) # test with synonyms # TODO get better syn file (slow, contains many non-significant instances) # test_synonyms(embedding, syn_file_src) # test with human similarity TODO remove hardcoding human_sim_file_src = 'data/validation_data/human_similarity.csv' test_human_similarity(embedding, human_sim_file_src) #### Doesn't Fit Validation #### def doesntfit(embedding, word_list): """ - compares each word-vector to mean of all word-vectors of word_list using the vector dot-product - vector with lowest dot-produt to mean-vector is regarded as the one that dosen't fit """ used_words = [word for word in word_list if embedding.may_construct_word_vec(word)] n_used_words = len(used_words) n_words = len(word_list) if n_used_words != n_words: ignored_words = set(word_list) - set(used_words) print("vectors for words %s are not present in the model, ignoring these words: ", ignored_words) if not used_words: print("cannot select a word from an empty list.") vectors = np.vstack(embedding.word_vec(word) for word in used_words) mean = np.mean(vectors, axis=0) dists = np.dot(vectors, mean) return sorted(zip(dists, used_words))[0][1] def test_doesntfit(embedding, file_src): """ - tests all doesntfit-questions (lines) of file - a doesnt-fit question is of the format "word_1 word_2 ... word_N word_NotFitting" where word_1 to word_n are members of a category but word_NotFitting isn't eg. "Auto Motorrad Fahrrad Ampel" """ # load config config = embedding.config print("Validating 'doesntfit' with file", file_src) num_lines = sum(1 for line in open(file_src)) num_questions = 0 num_right = 0 tokenizer = pp.get_tokenizer(config) # get questions with open(file_src) as f: questions = f.read().splitlines() tk_questions = [tokenizer.tokenize(q) for q in questions] # TODO: check if tokenizer has splitted one word to mulitple words and handle it. # So far no word in the doesnt_fit testfile should be splitted # vocab used to speed checking if word is in vocabulary # (also checked by embedding.may_construct_word_vec(word)) vocab = embedding.get_vocab() # test each question for question in tk_questions: # check if all words exist in vocabulary if all(((word in vocab) or (embedding.may_construct_word_vec(word))) for word in question): num_questions += 1 if doesntfit(embedding, question) == question[-1]: num_right += 1 # calculate result correct_matches = np.round(num_right/np.float(num_questions)*100, 1) if num_questions>0 else 0.0 coverage = np.round(num_questions/np.float(num_lines)*100, 1) if num_lines>0 else 0.0 # log result print("\n*** Doesn't fit ***") print('Doesn\'t fit correct: {0}% ({1}/{2})'.format(str(correct_matches), str(num_right), str(num_questions))) print('Doesn\'t fit coverage: {0}% ({1}/{2}) \n'.format(str(coverage), str(num_questions), str(num_lines))) #### Synonyms Validation #### def test_synonyms(embedding, file_src): """ - tests all synonym-questions (lines) of file - a synonym-question is of the format "word_1 word_2" where word_1 and word_2 are synonyms eg. "Blutgerinnsel Thrombus" - for word_1 check if it appears in the n closest words of word_2 using "model.cosine(word, n)" and vice-versa - for each synonym-pair TWO CHECKS are made therefore (non-symmetric problem) """ print("Validating 'synonyms' with file", file_src) config = embedding.config num_lines = sum(1 for line in open(file_src)) num_questions = 0 cos_sim_sum_synonyms = 0 tokenizer = pp.get_tokenizer(config) # get questions which are still of lenght 2 after tokenization # TODO: improve for compound words (aaa-bbb) which are splitted by the tokenizer tk_questions = [] with open(file_src, 'r') as f: questions = f.read().splitlines() for q in questions: # synonyms = q.split(';')#tokenizer.tokenize(q) # synonyms = [" ".join(tokenizer.tokenize(synonym)) for synonym in # synonyms] synonyms = tokenizer.tokenize(q) if len(synonyms) == 2: tk_questions.append(synonyms) vocab = embedding.get_vocab() # test each question for tk_quest in tk_questions: # check if all words exist in vocabulary if all(((word in vocab) or embedding.may_construct_word_vec(word)) for word in tk_quest): num_questions += 1 w1 = tk_quest[0] w2 = tk_quest[1] cos_sim_sum_synonyms += embedding.similarity(w1, w2) # compute avg cosine similarity for random vectors to relate to avg_cosine_similarity of synonyms vocab_size = len(vocab) n_vals = 1000 similarity_sum_rand_vec = 0 vals1 = [randint(0, vocab_size -1) for i in range(n_vals)] vals2 = [randint(0, vocab_size -1) for i in range(n_vals)] for v1, v2 in zip(vals1, vals2): similarity_sum_rand_vec += embedding.similarity(vocab[v1], vocab[v2]) avg_cosine_similarity_rand_vec = similarity_sum_rand_vec / np.float(n_vals) # calculate result avg_cosine_similarity_synonyms = (cos_sim_sum_synonyms / num_questions) if num_questions>0 else 0.0 coverage = np.round(num_questions/np.float(num_lines)*100, 1) if num_lines>0 else 0.0 # log result print("\n*** Cosine-Similarity ***") print("Synonyms avg-cos-similarity (SACS):", avg_cosine_similarity_synonyms, "\nRandom avg-cos-similarity (RACS):", avg_cosine_similarity_rand_vec, "\nRatio SACS/RACS:", avg_cosine_similarity_synonyms/float(avg_cosine_similarity_rand_vec)) print("\n*** Word Coverage ***") print("Synonyms: {0} pairs in input. {1} pairs after tokenization. {2} pairs could be constructed from model-vocabulary.".format(str(num_lines), str(len(tk_questions)), str(num_questions))) print("Synonyms coverage: {0}% ({1}/{2})\n".format(str(coverage), str(2*num_questions), str(2*num_lines), )) def get_human_rating_deviation(embedding, word1, word2, human_similarity): # compute deviation of human similarity from cosine similarity # cosine similarity cosine_similarity = embedding.similarity(word1, word2) return np.abs(cosine_similarity - human_similarity) def test_human_similarity(embedding, file_src): """ Compare cosine similarity of 2 word-vectors against a similarity value based on human ratings. Each line in the file contains two words and the similarity value, separated by ':'. The datasets were obtained by asking human subjects to assign a similarity or relatedness judgment to a number of German word pairs. https://www.ukp.tu-darmstadt.de/data/semantic-relatedness/german-relatedness-datasets/ """ config = embedding.config tokenizer = pp.get_tokenizer(config) vocab = embedding.get_vocab() vocab_size = len(vocab) # accumulate error and count test instances summed_error = 0.0 n_test_instances = 0 n_skipped_instances = 0 summed_random_error = 0.0 # load file to lines with open(file_src, 'r') as csvfile: filereader = csv.reader(csvfile, delimiter=':',) next(filereader) # process line by line for line in filereader: n_test_instances += 1 # split lines to instances word1 = tokenizer.tokenize(line[0])[0] word2 = tokenizer.tokenize(line[1])[0] human_similarity = np.float32(line[2]) # check if both words are in vocab if (word1 in embedding.get_vocab() and word2 in embedding.get_vocab()): # add current deviation to error deviation = get_human_rating_deviation(embedding, word1, word2, human_similarity) summed_error += deviation # get a random error for comparison rand_word1 = vocab[randint(0, vocab_size -1)] rand_word2 = vocab[randint(0, vocab_size -1)] random_dev = get_human_rating_deviation(embedding, rand_word1, rand_word2, human_similarity) summed_random_error += random_dev else: n_skipped_instances += 1 # print results print("\n*** Human-Similarity ***") print("Number of instances: {0}, skipped: {1}" .format(str(n_test_instances), str(n_skipped_instances))) # check whether we found any valid test instance n_processed_instances = n_test_instances - n_skipped_instances if (n_processed_instances == 0): print("Error: No instance could be computed with this model.") else: mean_error = summed_error / n_processed_instances random_error = summed_random_error / n_processed_instances print("random error: {0}, mean error: {1}" .format(str(random_error), str(mean_error))) #### Visualization #### def visualize_words(embedding, word_list, n_nearest_neighbours): # get indexes and words that you want to visualize words_to_visualize = [] # word_indexes_to_visualize = [] # get all words and neighbors that you want to visualize for word in word_list: if not embedding.may_construct_word_vec(word): continue words_to_visualize.append(word) # word_indexes_to_visualize.append(model.ix(word)) # get neighbours of word neighbours = [n for (n, m) in embedding.most_similar_n(word, n_nearest_neighbours)] words_to_visualize.extend(neighbours) #word_indexes_to_visualize.extend(indexes) # get vectors from indexes to visualize if words_to_visualize == []: print("No word found to show.") return emb_vectors = np.vstack([embedding.word_vec(word) for word in words_to_visualize]) # project down to 2D pca = PCA(n_components=2) emb_vec_2D = pca.fit_transform(emb_vectors) n_inputs = len(word_list) for i in range(n_inputs): # group word and it's neighbours together (results in different color in plot) lower = i*n_nearest_neighbours + i upper = (i+1)*n_nearest_neighbours + (i+1) # plot 2D plt.scatter(emb_vec_2D[lower:upper, 0], emb_vec_2D[lower:upper, 1]) for label, x, y in zip(words_to_visualize, emb_vec_2D[:, 0], emb_vec_2D[:, 1]): plt.annotate(label, xy=(x, y), xytext=(0, 0), textcoords='offset points') # find nice axes for plot lower_x = min(emb_vec_2D[:, 0]) upper_x = max(emb_vec_2D[:, 0]) lower_y = min(emb_vec_2D[:, 1]) upper_y = max(emb_vec_2D[:, 1]) # 10% of padding on all sides pad_x = 0.1 * abs(upper_x - lower_x) pad_y = 0.1 * abs(upper_y - lower_y) plt.xlim([lower_x - pad_x, upper_x + pad_x]) plt.ylim([lower_y - pad_y, upper_y + pad_y]) plt.show()
mit
wzbozon/statsmodels
statsmodels/tools/print_version.py
23
7951
#!/usr/bin/env python from __future__ import print_function from statsmodels.compat.python import reduce import sys from os.path import dirname def safe_version(module, attr='__version__'): if not isinstance(attr, list): attr = [attr] try: return reduce(getattr, [module] + attr) except AttributeError: return "Cannot detect version" def _show_versions_only(): print("\nINSTALLED VERSIONS") print("------------------") print("Python: %d.%d.%d.%s.%s" % sys.version_info[:]) try: import os (sysname, nodename, release, version, machine) = os.uname() print("OS: %s %s %s %s" % (sysname, release, version, machine)) print("byteorder: %s" % sys.byteorder) print("LC_ALL: %s" % os.environ.get('LC_ALL', "None")) print("LANG: %s" % os.environ.get('LANG', "None")) except: pass try: from statsmodels import version has_sm = True except ImportError: has_sm = False print('\nStatsmodels\n===========\n') if has_sm: print('Installed: %s' % safe_version(version, 'full_version')) else: print('Not installed') print("\nRequired Dependencies\n=====================\n") try: import Cython print("cython: %s" % safe_version(Cython)) except ImportError: print("cython: Not installed") try: import numpy print("numpy: %s" % safe_version(numpy, ['version', 'version'])) except ImportError: print("numpy: Not installed") try: import scipy print("scipy: %s" % safe_version(scipy, ['version', 'version'])) except ImportError: print("scipy: Not installed") try: import pandas print("pandas: %s" % safe_version(pandas, ['version', 'version'])) except ImportError: print("pandas: Not installed") try: import dateutil print(" dateutil: %s" % safe_version(dateutil)) except ImportError: print(" dateutil: not installed") try: import patsy print("patsy: %s" % safe_version(patsy)) except ImportError: print("patsy: Not installed") print("\nOptional Dependencies\n=====================\n") try: import matplotlib as mpl print("matplotlib: %s" % safe_version(mpl)) except ImportError: print("matplotlib: Not installed") try: from cvxopt import info print("cvxopt: %s" % safe_version(info, 'version')) except ImportError: print("cvxopt: Not installed") print("\nDeveloper Tools\n================\n") try: import IPython print("IPython: %s" % safe_version(IPython)) except ImportError: print("IPython: Not installed") try: import jinja2 print(" jinja2: %s" % safe_version(jinja2)) except ImportError: print(" jinja2: Not installed") try: import sphinx print("sphinx: %s" % safe_version(sphinx)) except ImportError: print("sphinx: Not installed") try: import pygments print(" pygments: %s" % safe_version(pygments)) except ImportError: print(" pygments: Not installed") try: import nose print("nose: %s" % safe_version(nose)) except ImportError: print("nose: Not installed") try: import virtualenv print("virtualenv: %s" % safe_version(virtualenv)) except ImportError: print("virtualenv: Not installed") print("\n") def show_versions(show_dirs=True): if not show_dirs: _show_versions_only() print("\nINSTALLED VERSIONS") print("------------------") print("Python: %d.%d.%d.%s.%s" % sys.version_info[:]) try: import os (sysname, nodename, release, version, machine) = os.uname() print("OS: %s %s %s %s" % (sysname, release, version, machine)) print("byteorder: %s" % sys.byteorder) print("LC_ALL: %s" % os.environ.get('LC_ALL', "None")) print("LANG: %s" % os.environ.get('LANG', "None")) except: pass try: import statsmodels from statsmodels import version has_sm = True except ImportError: has_sm = False print('\nStatsmodels\n===========\n') if has_sm: print('Installed: %s (%s)' % (safe_version(version, 'full_version'), dirname(statsmodels.__file__))) else: print('Not installed') print("\nRequired Dependencies\n=====================\n") try: import Cython print("cython: %s (%s)" % (safe_version(Cython), dirname(Cython.__file__))) except ImportError: print("cython: Not installed") try: import numpy print("numpy: %s (%s)" % (safe_version(numpy, ['version', 'version']), dirname(numpy.__file__))) except ImportError: print("numpy: Not installed") try: import scipy print("scipy: %s (%s)" % (safe_version(scipy, ['version', 'version']), dirname(scipy.__file__))) except ImportError: print("scipy: Not installed") try: import pandas print("pandas: %s (%s)" % (safe_version(pandas, ['version', 'version']), dirname(pandas.__file__))) except ImportError: print("pandas: Not installed") try: import dateutil print(" dateutil: %s (%s)" % (safe_version(dateutil), dirname(dateutil.__file__))) except ImportError: print(" dateutil: not installed") try: import patsy print("patsy: %s (%s)" % (safe_version(patsy), dirname(patsy.__file__))) except ImportError: print("patsy: Not installed") print("\nOptional Dependencies\n=====================\n") try: import matplotlib as mpl print("matplotlib: %s (%s)" % (safe_version(mpl), dirname(mpl.__file__))) except ImportError: print("matplotlib: Not installed") try: from cvxopt import info print("cvxopt: %s (%s)" % (safe_version(info, 'version'), dirname(info.__file__))) except ImportError: print("cvxopt: Not installed") print("\nDeveloper Tools\n================\n") try: import IPython print("IPython: %s (%s)" % (safe_version(IPython), dirname(IPython.__file__))) except ImportError: print("IPython: Not installed") try: import jinja2 print(" jinja2: %s (%s)" % (safe_version(jinja2), dirname(jinja2.__file__))) except ImportError: print(" jinja2: Not installed") try: import sphinx print("sphinx: %s (%s)" % (safe_version(sphinx), dirname(sphinx.__file__))) except ImportError: print("sphinx: Not installed") try: import pygments print(" pygments: %s (%s)" % (safe_version(pygments), dirname(pygments.__file__))) except ImportError: print(" pygments: Not installed") try: import nose print("nose: %s (%s)" % (safe_version(nose), dirname(nose.__file__))) except ImportError: print("nose: Not installed") try: import virtualenv print("virtualenv: %s (%s)" % (safe_version(virtualenv), dirname(virtualenv.__file__))) except ImportError: print("virtualenv: Not installed") print("\n") if __name__ == "__main__": show_versions()
bsd-3-clause
deepakantony/sms-tools
software/transformations_interface/harmonicTransformations_function.py
20
5398
block=False# function call to the transformation functions of relevance for the hpsModel import numpy as np import matplotlib.pyplot as plt from scipy.signal import get_window import sys, os sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../models/')) sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../transformations/')) import sineModel as SM import harmonicModel as HM import sineTransformations as ST import harmonicTransformations as HT import utilFunctions as UF def analysis(inputFile='../../sounds/vignesh.wav', window='blackman', M=1201, N=2048, t=-90, minSineDur=0.1, nH=100, minf0=130, maxf0=300, f0et=7, harmDevSlope=0.01): """ Analyze a sound with the harmonic model inputFile: input sound file (monophonic with sampling rate of 44100) window: analysis window type (rectangular, hanning, hamming, blackman, blackmanharris) M: analysis window size N: fft size (power of two, bigger or equal than M) t: magnitude threshold of spectral peaks minSineDur: minimum duration of sinusoidal tracks nH: maximum number of harmonics minf0: minimum fundamental frequency in sound maxf0: maximum fundamental frequency in sound f0et: maximum error accepted in f0 detection algorithm harmDevSlope: allowed deviation of harmonic tracks, higher harmonics have higher allowed deviation returns inputFile: input file name; fs: sampling rate of input file, tfreq, tmag: sinusoidal frequencies and magnitudes """ # size of fft used in synthesis Ns = 512 # hop size (has to be 1/4 of Ns) H = 128 # read input sound fs, x = UF.wavread(inputFile) # compute analysis window w = get_window(window, M) # compute the harmonic model of the whole sound hfreq, hmag, hphase = HM.harmonicModelAnal(x, fs, w, N, H, t, nH, minf0, maxf0, f0et, harmDevSlope, minSineDur) # synthesize the sines without original phases y = SM.sineModelSynth(hfreq, hmag, np.array([]), Ns, H, fs) # output sound file (monophonic with sampling rate of 44100) outputFile = 'output_sounds/' + os.path.basename(inputFile)[:-4] + '_harmonicModel.wav' # write the sound resulting from the inverse stft UF.wavwrite(y, fs, outputFile) # create figure to show plots plt.figure(figsize=(12, 9)) # frequency range to plot maxplotfreq = 5000.0 # plot the input sound plt.subplot(3,1,1) plt.plot(np.arange(x.size)/float(fs), x) plt.axis([0, x.size/float(fs), min(x), max(x)]) plt.ylabel('amplitude') plt.xlabel('time (sec)') plt.title('input sound: x') if (hfreq.shape[1] > 0): plt.subplot(3,1,2) tracks = np.copy(hfreq) numFrames = tracks.shape[0] frmTime = H*np.arange(numFrames)/float(fs) tracks[tracks<=0] = np.nan plt.plot(frmTime, tracks) plt.axis([0, x.size/float(fs), 0, maxplotfreq]) plt.title('frequencies of harmonic tracks') # plot the output sound plt.subplot(3,1,3) plt.plot(np.arange(y.size)/float(fs), y) plt.axis([0, y.size/float(fs), min(y), max(y)]) plt.ylabel('amplitude') plt.xlabel('time (sec)') plt.title('output sound: y') plt.tight_layout() plt.show(block=False) return inputFile, fs, hfreq, hmag def transformation_synthesis(inputFile, fs, hfreq, hmag, freqScaling = np.array([0, 2.0, 1, .3]), freqStretching = np.array([0, 1, 1, 1.5]), timbrePreservation = 1, timeScaling = np.array([0, .0, .671, .671, 1.978, 1.978+1.0])): """ Transform the analysis values returned by the analysis function and synthesize the sound inputFile: name of input file fs: sampling rate of input file tfreq, tmag: sinusoidal frequencies and magnitudes freqScaling: frequency scaling factors, in time-value pairs freqStretchig: frequency stretching factors, in time-value pairs timbrePreservation: 1 preserves original timbre, 0 it does not timeScaling: time scaling factors, in time-value pairs """ # size of fft used in synthesis Ns = 512 # hop size (has to be 1/4 of Ns) H = 128 # frequency scaling of the harmonics yhfreq, yhmag = HT.harmonicFreqScaling(hfreq, hmag, freqScaling, freqStretching, timbrePreservation, fs) # time scale the sound yhfreq, yhmag = ST.sineTimeScaling(yhfreq, yhmag, timeScaling) # synthesis y = SM.sineModelSynth(yhfreq, yhmag, np.array([]), Ns, H, fs) # write output sound outputFile = 'output_sounds/' + os.path.basename(inputFile)[:-4] + '_harmonicModelTransformation.wav' UF.wavwrite(y, fs, outputFile) # create figure to plot plt.figure(figsize=(12, 6)) # frequency range to plot maxplotfreq = 15000.0 # plot the transformed sinusoidal frequencies plt.subplot(2,1,1) if (yhfreq.shape[1] > 0): tracks = np.copy(yhfreq) tracks = tracks*np.less(tracks, maxplotfreq) tracks[tracks<=0] = np.nan numFrames = int(tracks[:,0].size) frmTime = H*np.arange(numFrames)/float(fs) plt.plot(frmTime, tracks) plt.title('transformed harmonic tracks') plt.autoscale(tight=True) # plot the output sound plt.subplot(2,1,2) plt.plot(np.arange(y.size)/float(fs), y) plt.axis([0, y.size/float(fs), min(y), max(y)]) plt.ylabel('amplitude') plt.xlabel('time (sec)') plt.title('output sound: y') plt.tight_layout() plt.show() if __name__ == "__main__": # analysis inputFile, fs, hfreq, hmag = analysis() # transformation and synthesis transformation_synthesis (inputFile, fs, hfreq, hmag) plt.show()
agpl-3.0
LukeC92/iris
lib/iris/tests/integration/plot/test_netcdftime.py
3
2243
# (C) British Crown Copyright 2016 - 2017, Met Office # # This file is part of Iris. # # Iris is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by the # Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Iris is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with Iris. If not, see <http://www.gnu.org/licenses/>. """ Test plot of time coord with non-gregorian calendar. """ from __future__ import (absolute_import, division, print_function) from six.moves import (filter, input, map, range, zip) # noqa # import iris tests first so that some things can be initialised before # importing anything else import iris.tests as tests import netcdftime import numpy as np from iris.coords import AuxCoord from cf_units import Unit if tests.NC_TIME_AXIS_AVAILABLE: from nc_time_axis import CalendarDateTime # Run tests in no graphics mode if matplotlib is not available. if tests.MPL_AVAILABLE: import matplotlib.pyplot as plt import iris.plot as iplt @tests.skip_nc_time_axis @tests.skip_plot class Test(tests.GraphicsTest): def test_360_day_calendar(self): n = 360 calendar = '360_day' time_unit = Unit('days since 1970-01-01 00:00', calendar=calendar) time_coord = AuxCoord(np.arange(n), 'time', units=time_unit) times = [time_unit.num2date(point) for point in time_coord.points] times = [netcdftime.datetime(atime.year, atime.month, atime.day, atime.hour, atime.minute, atime.second) for atime in times] expected_ydata = np.array([CalendarDateTime(time, calendar) for time in times]) line1, = iplt.plot(time_coord) result_ydata = line1.get_ydata() self.assertArrayEqual(expected_ydata, result_ydata) if __name__ == "__main__": tests.main()
lgpl-3.0
hefen1/chromium
chrome/test/data/nacl/gdb_rsp.py
99
2431
# Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. # This file is based on gdb_rsp.py file from NaCl repository. import re import socket import time def RspChecksum(data): checksum = 0 for char in data: checksum = (checksum + ord(char)) % 0x100 return checksum class GdbRspConnection(object): def __init__(self, addr): self._socket = self._Connect(addr) def _Connect(self, addr): # We have to poll because we do not know when sel_ldr has # successfully done bind() on the TCP port. This is inherently # unreliable. # TODO(mseaborn): Add a more reliable connection mechanism to # sel_ldr's debug stub. timeout_in_seconds = 10 poll_time_in_seconds = 0.1 for i in xrange(int(timeout_in_seconds / poll_time_in_seconds)): # On Mac OS X, we have to create a new socket FD for each retry. sock = socket.socket() try: sock.connect(addr) except socket.error: # Retry after a delay. time.sleep(poll_time_in_seconds) else: return sock raise Exception('Could not connect to sel_ldr\'s debug stub in %i seconds' % timeout_in_seconds) def _GetReply(self): reply = '' while True: data = self._socket.recv(1024) if len(data) == 0: raise AssertionError('EOF on socket reached with ' 'incomplete reply message: %r' % reply) reply += data if '#' in data: break match = re.match('\+\$([^#]*)#([0-9a-fA-F]{2})$', reply) if match is None: raise AssertionError('Unexpected reply message: %r' % reply) reply_body = match.group(1) checksum = match.group(2) expected_checksum = '%02x' % RspChecksum(reply_body) if checksum != expected_checksum: raise AssertionError('Bad RSP checksum: %r != %r' % (checksum, expected_checksum)) # Send acknowledgement. self._socket.send('+') return reply_body # Send an rsp message, but don't wait for or expect a reply. def RspSendOnly(self, data): msg = '$%s#%02x' % (data, RspChecksum(data)) return self._socket.send(msg) def RspRequest(self, data): self.RspSendOnly(data) return self._GetReply() def RspInterrupt(self): self._socket.send('\x03') return self._GetReply()
bsd-3-clause
phdowling/scikit-learn
sklearn/utils/tests/test_linear_assignment.py
421
1349
# Author: Brian M. Clapper, G Varoquaux # License: BSD import numpy as np # XXX we should be testing the public API here from sklearn.utils.linear_assignment_ import _hungarian def test_hungarian(): matrices = [ # Square ([[400, 150, 400], [400, 450, 600], [300, 225, 300]], 850 # expected cost ), # Rectangular variant ([[400, 150, 400, 1], [400, 450, 600, 2], [300, 225, 300, 3]], 452 # expected cost ), # Square ([[10, 10, 8], [9, 8, 1], [9, 7, 4]], 18 ), # Rectangular variant ([[10, 10, 8, 11], [9, 8, 1, 1], [9, 7, 4, 10]], 15 ), # n == 2, m == 0 matrix ([[], []], 0 ), ] for cost_matrix, expected_total in matrices: cost_matrix = np.array(cost_matrix) indexes = _hungarian(cost_matrix) total_cost = 0 for r, c in indexes: x = cost_matrix[r, c] total_cost += x assert expected_total == total_cost indexes = _hungarian(cost_matrix.T) total_cost = 0 for c, r in indexes: x = cost_matrix[r, c] total_cost += x assert expected_total == total_cost
bsd-3-clause
LeeYiFang/Carkinos
src/probes/views.py
1
122212
from django.shortcuts import render,render_to_response from django.http import HttpResponse, Http404,JsonResponse from django.views.decorators.http import require_GET from .models import Dataset, CellLine, ProbeID, Sample, Platform, Clinical_Dataset,Clinical_sample,Gene from django.template import RequestContext from django.utils.html import mark_safe import json import pandas as pd import numpy as np from pathlib import Path import sklearn from sklearn.decomposition import PCA from scipy import stats import os import matplotlib as mpl mpl.use('agg') import matplotlib.pyplot as plt import seaborn as sns from matplotlib.colors import LinearSegmentedColormap import uuid from rpy2.robjects.packages import importr import rpy2.robjects as ro r=ro.r #lumi= importr('lumi') from rpy2.robjects import pandas2ri pandas2ri.activate() import csv #import logging #logger = logging.getLogger("__name__") show_row=4000 #more than how many rows will become download file mode def generate_samples(): d=Dataset.objects.all() cell_d_name=list(d.values_list('name',flat=True)) same_name=[] cell_datasets=[] #[[dataset_name,[[primary_site,[cell line]]]] for i in cell_d_name: if i=="Sanger Cell Line Project": alias='sanger' same_name.append('sanger') elif i=="NCI60": alias='nci' same_name.append('nci') elif i=="GSE36133": alias='ccle' same_name.append('ccle') else: alias=i same_name.append(i) sample=Sample.objects.filter(dataset_id__name=i).order_by('cell_line_id__primary_site').select_related('cell_line_id') cell_datasets.append([i,alias,list(sample),[]]) sites=list(sample.values_list('cell_line_id__primary_site',flat=True)) hists=list(sample.values_list('cell_line_id__name',flat=True)) dis_prim=list(sample.values_list('cell_line_id__primary_site',flat=True).distinct()) hists=list(hists) id_counter=0 for p in range(0,len(dis_prim)): temp=sites.count(dis_prim[p]) cell_datasets[-1][3].append([dis_prim[p],list(set(hists[id_counter:id_counter+temp]))]) id_counter+=temp d=Clinical_Dataset.objects.all() d_name=list(d.values_list('name',flat=True)) datasets=[] #[[dataset_name,[[primary_site,[primary_histology]]],[[filter_type,[filter_choice]]]] primarys=[] #[[primary_site,[primary_hist]]] primh_filter=[] #[[filter_type,[filter_choice]]] f_type=['age','gender','ethnic','grade','stage','stageT','stageN','stageM','metastatic'] for i in d_name: same_name.append(i) datasets.append([i,[],[]]) sample=Clinical_sample.objects.filter(dataset_id__name=i).order_by('primary_site') sites=list(sample.values_list('primary_site',flat=True)) hists=list(sample.values_list('primary_hist',flat=True)) dis_prim=list(sample.values_list('primary_site',flat=True).distinct()) hists=list(hists) id_counter=0 for p in range(0,len(dis_prim)): temp=sites.count(dis_prim[p]) datasets[-1][1].append([dis_prim[p],list(set(hists[id_counter:id_counter+temp]))]) id_counter+=temp for f in f_type: temp=list(set(sample.values_list(f,flat=True))) datasets[-1][2].append([f,temp]) sample=Clinical_sample.objects.all().order_by('primary_site') sites=list(sample.values_list('primary_site',flat=True)) hists=list(sample.values_list('primary_hist',flat=True)) dis_prim=list(sample.values_list('primary_site',flat=True).distinct()) hists=list(hists) id_counter=0 for p in range(0,len(dis_prim)): temp=sites.count(dis_prim[p]) primarys.append([dis_prim[p],list(set(hists[id_counter:id_counter+temp]))]) id_counter+=temp s=Clinical_sample.objects.all() for f in f_type: temp=list(set(s.values_list(f,flat=True))) primh_filter.append([f,temp]) all_full_name=cell_d_name+d_name return { 'all_full_name':mark_safe(json.dumps(all_full_name)), #full name of all datasets 'same_name':mark_safe(json.dumps(same_name)), #short name for all datasets 'cell_d_name':mark_safe(json.dumps(cell_d_name)), #cell line dataset name(full) 'cell_datasets':cell_datasets, 'd_name': mark_safe(json.dumps(d_name)), #clinical dataset name 'datasets': datasets, 'primarys': primarys, 'primh_filter':primh_filter, } def sample_microarray(request): d=Clinical_Dataset.objects.all() d_name=list(d.values_list('name',flat=True)) datasets=[] #[[dataset_name,[[primary_site,[primary_histology]]],[[filter_type,[filter_choice]]]] primarys=[] #[[primary_site,[primary_hist]]] primh_filter=[] #[[filter_type,[filter_choice]]] f_type=['age','gender','ethnic','grade','stage','stageT','stageN','stageM','metastatic'] for i in d_name: datasets.append([i,[],[]]) sample=Clinical_sample.objects.filter(dataset_id__name=i).order_by('primary_site') sites=list(sample.values_list('primary_site',flat=True)) hists=list(sample.values_list('primary_hist',flat=True)) dis_prim=list(sample.values_list('primary_site',flat=True).distinct()) hists=list(hists) id_counter=0 for p in range(0,len(dis_prim)): temp=sites.count(dis_prim[p]) datasets[-1][1].append([dis_prim[p],list(set(hists[id_counter:id_counter+temp]))]) id_counter+=temp for f in f_type: temp=list(set(sample.values_list(f,flat=True))) datasets[-1][2].append([f,temp]) sample=Clinical_sample.objects.all().order_by('primary_site') sites=list(sample.values_list('primary_site',flat=True)) hists=list(sample.values_list('primary_hist',flat=True)) dis_prim=list(sample.values_list('primary_site',flat=True).distinct()) hists=list(hists) id_counter=0 for p in range(0,len(dis_prim)): temp=sites.count(dis_prim[p]) primarys.append([dis_prim[p],list(set(hists[id_counter:id_counter+temp]))]) id_counter+=temp s=Clinical_sample.objects.all() for f in f_type: temp=list(set(s.values_list(f,flat=True))) primh_filter.append([f,temp]) return render(request, 'sample_microarray.html', { 'd_name': mark_safe(json.dumps(d_name)), 'datasets': datasets, 'primarys': primarys, 'primh_filter':primh_filter, }) def user_pca(request): #load the ranking file and the table of probe first,open files pform=request.POST['data_platform'] uni=[] #to store valid probe offset for getting the correct data uni_probe=[] gene_flag=0 if(pform=="others"): #gene level gene_flag=1 if(request.POST['ngs']=="ngs_u133a"): pform="U133A" else: pform="PLUS2" elif (pform=="U133A"): quantile=list(np.load('ranking_u133a.npy')) probe_path=Path('../').resolve().joinpath('src','Affy_U133A_probe_info.csv') probe_list = pd.read_csv(probe_path.as_posix()) uni_probe=pd.unique(probe_list['PROBEID']) else: quantile=np.load('ranking_u133plus2.npy') probe_path=Path('../').resolve().joinpath('src','Affy_U133plus2_probe_info.csv') probe_list = pd.read_csv(probe_path.as_posix()) uni_probe=pd.unique(probe_list['PROBEID']) propotion=0 table_propotion=0 show=request.POST['show_type'] #get the pca show type nci_size=Sample.objects.filter(dataset_id__name__in=["NCI60"]).count() gse_size=Sample.objects.filter(dataset_id__name__in=["GSE36133"]).count() group_counter=1 user_out_group=[] s_group_dict={} #store sample offset_group_dict={} #store offset cell_line_dict={} #this part is for selecting cell lines base on dataset #count how many group group_counter=1 while True: temp_name='dataset_g'+str(group_counter) if temp_name in request.POST: group_counter=group_counter+1 else: group_counter=group_counter-1 break s_group_dict={} #store sample group_name=[] offset_group_dict={} #store offset clinic=list(Clinical_Dataset.objects.all().values_list('name',flat=True)) clline=list(Dataset.objects.all().values_list('name',flat=True)) all_exist_dataset=[] for i in range(1,group_counter+1): dname='dataset_g'+str(i) all_exist_dataset=all_exist_dataset+request.POST.getlist(dname) all_exist_dataset=list(set(all_exist_dataset)) all_base=[0] for i in range(0,len(all_exist_dataset)-1): if all_exist_dataset[i] in clline: all_base.append(all_base[i]+Sample.objects.filter(dataset_id__name__in=[all_exist_dataset[i]]).count()) else: all_base.append(all_base[i]+Clinical_sample.objects.filter(dataset_id__name__in=[all_exist_dataset[i]]).count()) all_c=[] for i in range(1,group_counter+1): s_group_dict['g'+str(i)]=[] offset_group_dict['g'+str(i)]=[] cell_line_dict['g'+str(i)]=[] dname='dataset_g'+str(i) datasets=request.POST.getlist(dname) group_name.append('g'+str(i)) for dn in datasets: if dn=='Sanger Cell Line Project': c='select_sanger_g'+str(i) elif dn=='NCI60': c='select_nci_g'+str(i) elif dn=='GSE36133': c='select_ccle_g'+str(i) if dn in clline: temp=list(set(request.POST.getlist(c))) if 'd_sample' in show: if all_c==[]: all_c=all_c+temp uni=temp else: uni=list(set(temp)-set(all_c)) all_c=all_c+uni else: uni=list(temp) #do not filter duplicate input only when select+centroid s=Sample.objects.filter(cell_line_id__name__in=uni,dataset_id__name__in=[dn]).order_by('dataset_id' ).select_related('cell_line_id__name','cell_line_id__primary_site','cell_line_id__primary_hist','dataset_id','dataset_id__name') cell_line_dict['g'+str(i)]=cell_line_dict['g'+str(i)]+list(s.values_list('cell_line_id__name',flat=True)) s_group_dict['g'+str(i)]=s_group_dict['g'+str(i)]+list(s) offset_group_dict['g'+str(i)]=offset_group_dict['g'+str(i)]+list(np.add(list(s.values_list('offset',flat=True)),all_base[all_exist_dataset.index(dn)])) else: #dealing with clinical sample datasets com_hists=list(set(request.POST.getlist('primd_'+dn+'_g'+str(i)))) #can I get this by label to reduce number of queries? com_hists=[w1 for segments in com_hists for w1 in segments.split('/')] #print(com_hists) prims=com_hists[0::2] hists=com_hists[1::2] temp=request.POST.getlist('filter_'+dn+'_g'+str(i)) age=[] gender=[] ethnic=[] grade=[] stage=[] T=[] N=[] M=[] metas=[] for t in temp: if 'stage/' in t: stage.append(t[6:]) elif 'gender/' in t: gender.append(t[7:]) elif 'ethnic/' in t: ethnic.append(t[7:]) elif 'grade/' in t: grade.append(t[6:]) elif 'stageT/' in t: T.append(t[7:]) elif 'stageN/' in t: N.append(t[7:]) elif 'stageM/' in t: M.append(t[7:]) elif 'metastatic/' in t: metas.append(t[11:]) ''' if t[11:]=='False': metas.append(0) else: metas.append(1) ''' else: #"age/" age.append(t[4:]) #print(len(prims)) #print(len(hists)) for x in range(0,len(prims)): s=Clinical_sample.objects.filter(dataset_id__name=dn,primary_site=prims[x], primary_hist=hists[x], age__in=age, gender__in=gender, ethnic__in=ethnic, stage__in=stage, grade__in=grade, stageT__in=T, stageN__in=N, stageM__in=M, metastatic__in=metas, ).select_related('dataset_id').order_by('id') s_group_dict['g'+str(i)]=s_group_dict['g'+str(i)]+list(s) cell_line_dict['g'+str(i)]=cell_line_dict['g'+str(i)]+list(s.values_list('name',flat=True)) offset_group_dict['g'+str(i)]=offset_group_dict['g'+str(i)]+list(np.add(list(s.values_list('offset',flat=True)),all_base[all_exist_dataset.index(dn)])) #return render_to_response('welcome.html',locals()) all_sample=[] all_cellline=[] cell_object=[] all_offset=[] sample_counter={} group_cell=[] g_s_counter=[0] for i in range(1,group_counter+1): all_sample=all_sample+s_group_dict['g'+str(i)] #will not exist duplicate sample if d_sample all_offset=all_offset+offset_group_dict['g'+str(i)] all_cellline=all_cellline+cell_line_dict['g'+str(i)] g_s_counter.append(g_s_counter[i-1]+len(s_group_dict['g'+str(i)])) for i in all_sample: sample_counter[i.name]=1 if str(type(i))=="<class 'probes.models.Sample'>": ##print("i am sample!!") cell_object.append(i.cell_line_id) else: ##print("i am clinical!!") cell_object.append(i) #read the user file text=request.FILES.getlist('user_file') user_counter=len(text) if(gene_flag==1): user_counter=1 ugroup=[] for i in range(user_counter): ugroup.append(request.POST['ugroup_name'+str(i+1)]) if(ugroup[-1]==''): ugroup[-1]='User_Group'+str(i+1) dgroup=[] for i in range(1,group_counter+1): dgroup.append(request.POST['group_name'+str(i)]) if(dgroup[-1]==''): dgroup[-1]='Dataset_Group'+str(i) user_dict={} #{user group number:user 2d array} samples=0 nans=[] #to store the probe name that has nan for x in range(1,user_counter+1): #check the file format and content here first filetype=str(text[x-1]).split('.') if(filetype[-1]!="csv"): error_reason='You have the wrong file type. Please upload .csv files' return render_to_response('pca_error.html',RequestContext(request, { 'error_reason':mark_safe(json.dumps(error_reason)), })) if(text[x-1].size>=80000000): #bytes error_reason='The file size is too big. Please upload .csv file with size less than 80MB.' return render_to_response('pca_error.html',RequestContext(request, { 'error_reason':mark_safe(json.dumps(error_reason)), })) temp_data = pd.read_csv(text[x-1]) col=list(temp_data.columns.values) samples=samples+len(col)-1 if(samples==0): error_reason='The file does not have any samples.' return render_to_response('pca_error.html',RequestContext(request, { 'error_reason':mark_safe(json.dumps(error_reason)), })) if(gene_flag==0): #probe level check check_probe=[str(x) for x in list(temp_data.iloc[:,0]) if not str(x).lower().startswith('affx')] #print(len(check_probe)) if(len(check_probe)!=len(uni_probe)): error_reason='The probe number does not match with the platform you selected.' return render_to_response('pca_error.html',RequestContext(request, { 'error_reason':mark_safe(json.dumps(error_reason)), })) if(set(check_probe)!=set(uni_probe)): error_reason='The probe number or probe name in your file does not match the platform you selected.' #error_reason+='</br>The probes that are not in the platform: '+str(set(check_probe)-set(uni_probe))[1:-1] #error_reason+='</br>The probes that are lacking: '+str(set(uni_probe)-set(check_probe))[1:-1] return render_to_response('pca_error.html',RequestContext(request, { 'error_reason':mark_safe(json.dumps(error_reason)), })) col=list(temp_data.columns.values) n=pd.isnull(temp_data).any(1).nonzero()[0] nans += list(temp_data[col[0]][n]) user_dict[x]=temp_data if 'd_sample' in show: if((len(all_sample)+samples)<4): error_reason='You should have at least 4 samples for PCA. The samples are not enough.<br />'\ 'The total number of samples in your uploaded file is '+str(samples)+'.<br />'\ 'The number of samples you selected is '+str(len(all_sample))+'.<br />'\ 'Total is '+str(len(all_sample)+samples)+'.' return render_to_response('pca_error.html',RequestContext(request, { 'error_reason':mark_safe(json.dumps(error_reason)), })) else: s_count=0 sample_list=[] a_sample=np.array(all_sample) for i in range(1,group_counter+1): dis_cellline=list(set(cell_object[g_s_counter[i-1]:g_s_counter[i]])) a_cell_object=np.array(cell_object) for c in dis_cellline: temp1=np.where((a_cell_object==c))[0] temp2=np.where((temp1>=g_s_counter[i-1])&(temp1<g_s_counter[i])) total_offset=temp1[temp2] selected_sample=a_sample[total_offset] if list(selected_sample) in sample_list: #to prevent two different colors in different group continue else: sample_list.append(list(selected_sample)) s_count=s_count+1 if(s_count>=4): #check this part break if(s_count>=4): #check this part break if((s_count+samples)<4): error_reason='Since the display method is [centroid], you should have at least 4 dots for PCA. The total number is not enough.<br />'\ 'The total number of dots in you uploaded file is '+str(samples)+'.<br />'\ 'The number of centroid dots you selected is '+str(s_count)+'.<br />'\ 'Total is '+str(s_count+samples)+'.' return render_to_response('pca_error.html',RequestContext(request, { 'error_reason':mark_safe(json.dumps(error_reason)), })) new_name=[] origin_name=[] com_gene=[] #for ngs select same gene nans=list(set(nans)) for x in range(1,user_counter+1): #temp_data = pd.read_csv(text[x-1]) temp_data=user_dict[x] col=list(temp_data.columns.values) col[0]='probe' temp_data.columns=col temp_data.index = temp_data['probe'] temp_data.index.name = None temp_data=temp_data.iloc[:, 1:] #add "use_" to user's sample names col_name=list(temp_data.columns.values) #have user's sample name list here origin_name=origin_name+list(temp_data.columns.values) col_name=[ "user_"+str(index)+"_"+s for index,s in enumerate(col_name)] temp_data.columns=col_name new_name=new_name+col_name if(gene_flag==0): try: temp_data=temp_data.reindex(uni_probe) except ValueError: return HttpResponse('The file has probes with the same names, please let them be unique.') #remove probe that has nan temp_data=temp_data.drop(nans) temp_data=temp_data.rank(method='dense') #this is for quantile for i in col_name: for j in range(0,len(temp_data[i])): #if(not(np.isnan(temp_data[i][j]))): temp_data[i][j]=quantile[int(temp_data[i][j]-1)] if x==1: data=temp_data else: data=np.concatenate((data,temp_data), axis=1) user_dict[x]=np.array(temp_data) else: temp_data=temp_data.drop(nans) #drop nan temp_data=temp_data.loc[~(temp_data==0).all(axis=1)] #drop all rows with 0 here temp_data=temp_data.groupby(temp_data.index).first() #drop the duplicate gene row user_dict[x]=temp_data #print(temp_data) #delete nan, combine user data to the datasets,transpose matrix for x in range(0,len(all_exist_dataset)): if(gene_flag==0): if all_exist_dataset[x] in clline: pth=Path('../').resolve().joinpath('src',Dataset.objects.get(name=all_exist_dataset[x]).data_path) else: pth=Path('../').resolve().joinpath('src',Clinical_Dataset.objects.get(name=all_exist_dataset[x]).data_path) else: if all_exist_dataset[x] in clline: pth=Path('../').resolve().joinpath('src','gene_'+Dataset.objects.get(name=all_exist_dataset[x]).data_path) else: pth=Path('../').resolve().joinpath('src','gene_'+Clinical_Dataset.objects.get(name=all_exist_dataset[x]).data_path) if x==0: val=np.load(pth.as_posix()) else: val=np.hstack((val, np.load(pth.as_posix())))#combine together #database dataset remove nan probes if(gene_flag==0): uni=[] p_offset=list(ProbeID.objects.filter(platform__name__in=[pform],Probe_id__in=nans).values_list('offset',flat=True)) for n in range(0,len(uni_probe)): if(n not in p_offset): uni.append(n) else: #deal with ngs uploaded data here probe_path=Path('../').resolve().joinpath('src','new_human_gene_info.txt') #probe_list = pd.read_csv(probe_path.as_posix()) #notice duplicate #get the match gene first, notice the size issue info=pd.read_csv(probe_path.as_posix(),sep='\t') col=list(info.columns.values) col[0]='symbol' info.columns=col info.index = info['symbol'] info.index.name = None info=info.iloc[:, 1:] data=user_dict[1] #data=data.groupby(data.index).first() #drop the duplicate gene row com_gene=list(data.index) temp_data=data rloop=divmod(len(com_gene),990) if(rloop[1]==0): rloop=(rloop[0]-1,0) gg=[] for x in range(0,rloop[0]+1): gg+=list(Gene.objects.filter(platform__name__in=[pform],symbol__in=com_gene[x*990:(x+1)*990]).order_by('offset')) exist_gene=[] uni=[] for i in gg: exist_gene.append(i.symbol) uni.append(i.offset) info=info.drop(exist_gene,errors='ignore') new_data=temp_data.loc[data.index.isin(exist_gene)].reindex(exist_gene) ##print(exist_gene) ##print(new_data.index) #search remain symbol's alias and symbol search_alias=list(set(com_gene)-set(exist_gene)) for i in search_alias: re_symbol=list(set(info.loc[info['alias'].isin([i])].index)) #find whether has alias first if(len(re_symbol)!=0): re_match=Gene.objects.filter(platform__name__in=[pform],symbol__in=re_symbol).order_by('offset') #check the symbol in database or not repeat=len(re_match) if(repeat!=0): #match gene symbol in database ##print(re_match) for x in re_match: to_copy=data.loc[i] to_copy.name=x.symbol new_data=new_data.append(to_copy) uni.append(x.offset) info=info.drop(x.symbol,errors='ignore') user_dict[1]=np.array(new_data) ##print("length of new data:"+str(len(new_data))) ##print("data:") ##print(data) ##print("new_data:") ##print(new_data) data=new_data if 'd_sample' in show: val=val[np.ix_(uni,all_offset)] #print(len(val)) user_offset=len(val[0]) if(gene_flag==1): #do the rank invariant here #print("sample with ngs data do rank invariant here") ref_path=Path('../').resolve().joinpath('src','cv_result.txt') ref=pd.read_csv(ref_path.as_posix()) col=list(ref.columns.values) col[0]='symbol' ref.columns=col ref.index = ref['symbol'] ref.index.name = None ref=ref.iloc[:, 1:] ref=ref.iloc[:5000,:] #rank invariant need 5000 genes same_gene=list(ref.index.intersection(data.index)) #to lowess rref=pandas2ri.py2ri(ref.loc[same_gene]) rngs=pandas2ri.py2ri(data.loc[same_gene].mean(axis=1)) rall=pandas2ri.py2ri(data) ro.globalenv['x'] = rngs ro.globalenv['y'] = rref ro.globalenv['newx'] = rall r('x<-as.vector(as.matrix(x))') r('y<-as.vector(as.matrix(y))') r('newx<-as.matrix(newx)') try: if(request.POST['data_type']=='raw'): r('y.loess<-loess(2**y~x,span=0.3)') r('for(z in c(1:ncol(newx))) newx[,z]=log2(as.matrix(predict(y.loess,newx[,z])))') elif(request.POST['data_type']=='log2'): r('y.loess<-loess(2**y~2**x,span=0.3)') r('for(z in c(1:ncol(newx))) newx[,z]=log2(as.matrix(predict(y.loess,2**newx[,z])))') else: r('y.loess<-loess(2**y~10**x,span=0.3)') r('for(z in c(1:ncol(newx))) newx[,z]=log2(as.matrix(predict(y.loess,10**newx[,z])))') except: error_reason='Match too less genes. Check your gene symbols again. We use NCBI standard gene symbol.' return render_to_response('pca_error.html',RequestContext(request, { 'error_reason':mark_safe(json.dumps(error_reason)), })) #r('for(z in c(1:ncol(newx))) newx[,z]=log2(as.matrix(predict(y.loess,newx[,z])))') data=r('newx') #print(data[:10]) #print(type(data)) val=np.hstack((np.array(val), np.array(data))) val=val[~np.isnan(val).any(axis=1)] val=np.transpose(val) else: #val=np.array(val) val=val[np.ix_(uni)] user_offset=len(val[0]) if(gene_flag==1): #print("sample with ngs data do rank invariant here") ref_path=Path('../').resolve().joinpath('src','cv_result.txt') ref=pd.read_csv(ref_path.as_posix()) col=list(ref.columns.values) col[0]='symbol' ref.columns=col ref.index = ref['symbol'] ref.index.name = None ref=ref.iloc[:, 1:] ref=ref.iloc[:5000,:] #rank invariant need 5000 genes same_gene=list(ref.index.intersection(data.index)) #to lowess rref=pandas2ri.py2ri(ref.loc[same_gene]) rngs=pandas2ri.py2ri(data.loc[same_gene].mean(axis=1)) rall=pandas2ri.py2ri(data) ro.globalenv['x'] = rngs ro.globalenv['y'] = rref ro.globalenv['newx'] = rall r('x<-as.vector(as.matrix(x))') r('y<-as.vector(as.matrix(y))') r('newx<-as.matrix(newx)') try: if(request.POST['data_type']=='raw'): r('y.loess<-loess(2**y~x,span=0.3)') r('for(z in c(1:ncol(newx))) newx[,z]=log2(as.matrix(predict(y.loess,newx[,z])))') elif(request.POST['data_type']=='log2'): r('y.loess<-loess(2**y~2**x,span=0.3)') r('for(z in c(1:ncol(newx))) newx[,z]=log2(as.matrix(predict(y.loess,2**newx[,z])))') else: r('y.loess<-loess(2**y~10**x,span=0.3)') r('for(z in c(1:ncol(newx))) newx[,z]=log2(as.matrix(predict(y.loess,10**newx[,z])))') except: error_reason='Match too less genes. Check your gene symbols again. We use NCBI standard gene symbol.' return render_to_response('pca_error.html',RequestContext(request, { 'error_reason':mark_safe(json.dumps(error_reason)), })) #r('for(z in c(1:ncol(newx))) newx[,z]=log2(as.matrix(predict(y.loess,newx[,z])))') data=r('newx') #print(data[:10]) #print(type(data)) val=np.hstack((np.array(val), np.array(data))) val=val[~np.isnan(val).any(axis=1)] pca_index=[] dis_offset=[] #PREMISE:same dataset same cell line will have only one type of primary site and primary histology name1=[] name2=[] name3=[] name4=[] name5=[] X1=[] Y1=[] Z1=[] X2=[] Y2=[] Z2=[] X3=[] Y3=[] Z3=[] X4=[] Y4=[] Z4=[] X5=[] Y5=[] Z5=[] n=4 #need to fix to the best one if 'd_sample' in show: #count the pca first pca= PCA(n_components=n) #combine user sample's offset to all_offset in another variable Xval = pca.fit_transform(val[:,:]) #cannot get Xval with original offset any more ratio_temp=pca.explained_variance_ratio_ propotion=sum(ratio_temp[1:n]) table_propotion=sum(ratio_temp[0:n]) user_new_offset=len(all_offset) ##print(Xval) max=0 min=10000000000 out_group=[] exist_cell={}#cell line object:counter for g in range(1,group_counter+1): output_cell={} check={} for s in range(g_s_counter[g-1],g_s_counter[g]): if str(type(all_sample[s]))=="<class 'probes.models.Sample'>": cell=all_sample[s].cell_line_id else: cell=all_sample[s] try: counter=exist_cell[cell] exist_cell[cell]=counter+1 except KeyError: exist_cell[cell]=1 try: t=output_cell[cell] except KeyError: output_cell[cell]=[cell,[]] check[all_sample[s].name]=[] sample_counter[all_sample[s].name]=exist_cell[cell] for i in range(0,len(all_sample)): if i!=s: try: if(all_sample[s].name not in check[all_sample[i].name]): distance=np.linalg.norm(Xval[i][n-3:n]-Xval[s][n-3:n]) if distance<min: min=distance if distance>max: max=distance output_cell[cell][1].append([all_cellline[s]+'('+str(exist_cell[cell])+')' ,all_sample[s].name,cell.primary_site,cell.primary_hist, all_sample[s].dataset_id.name,all_cellline[i],all_sample[i].name,cell_object[i].primary_site ,cell_object[i].primary_hist,all_sample[i].dataset_id.name,distance]) check[all_sample[s].name].append(all_sample[i].name) except KeyError: distance=np.linalg.norm(Xval[i][n-3:n]-Xval[s][n-3:n]) if distance<min: min=distance if distance>max: max=distance output_cell[cell][1].append([all_cellline[s]+'('+str(exist_cell[cell])+')' ,all_sample[s].name,cell.primary_site,cell.primary_hist, all_sample[s].dataset_id.name,all_cellline[i],all_sample[i].name,cell_object[i].primary_site ,cell_object[i].primary_hist,all_sample[i].dataset_id.name,distance]) check[all_sample[s].name].append(all_sample[i].name) g_count=1 u_count=len(user_dict[g_count][0]) #sample number in first user file for i in range(user_new_offset,user_new_offset+len(origin_name)): #remember to prevent empty file uploaded distance=np.linalg.norm(Xval[i][n-3:n]-Xval[s][n-3:n]) if distance<min: min=distance if distance>max: max=distance output_cell[cell][1].append([all_cellline[s]+'('+str(exist_cell[cell])+')' ,all_sample[s].name,cell.primary_site,cell.primary_hist, all_sample[s].dataset_id.name," ",origin_name[i-user_new_offset]," "," ","User Group"+str(g_count),distance]) if ((i-user_new_offset+1)==u_count): g_count+=1 try: u_count+=len(user_dict[g_count][0]) except KeyError: u_count+=0 if(g==1): name3.append(all_cellline[s]+'('+str(exist_cell[cell])+')'+'<br>'+all_sample[s].name) X3.append(round(Xval[s][n-3],5)) Y3.append(round(Xval[s][n-2],5)) Z3.append(round(Xval[s][n-1],5)) elif(g==2): name4.append(all_cellline[s]+'('+str(exist_cell[cell])+')'+'<br>'+all_sample[s].name) X4.append(round(Xval[s][n-3],5)) Y4.append(round(Xval[s][n-2],5)) Z4.append(round(Xval[s][n-1],5)) elif(g==3): name5.append(all_cellline[s]+'('+str(exist_cell[cell])+')'+'<br>'+all_sample[s].name) X5.append(round(Xval[s][n-3],5)) Y5.append(round(Xval[s][n-2],5)) Z5.append(round(Xval[s][n-1],5)) dictlist=[] for key, value in output_cell.items(): temp = [value] dictlist+=temp output_cell=list(dictlist) out_group.append(["Dataset Group"+str(g),output_cell]) if g==group_counter: output_cell={} g_count=1 output_cell[g_count]=[" ",[]] u_count=len(user_dict[g_count][0]) temp_count=u_count temp_g=1 before=0 for i in range(user_new_offset,user_new_offset+len(origin_name)): for x in range(0,len(all_sample)): distance=np.linalg.norm(Xval[x][n-3:n]-Xval[i][n-3:n]) if distance<min: min=distance if distance>max: max=distance output_cell[g_count][1].append([origin_name[i-user_new_offset],"User Group"+str(g_count),all_cellline[x] ,all_sample[x].name,cell_object[x].primary_site,cell_object[x].primary_hist, all_sample[x].dataset_id.name,distance]) temp_g=1 temp_count=len(user_dict[temp_g][0]) for j in range(user_new_offset,user_new_offset+before): if ((j-user_new_offset)==temp_count): temp_g+=1 try: temp_count+=len(user_dict[temp_g][0]) except KeyError: temp_count+=0 distance=np.linalg.norm(Xval[j][n-3:n]-Xval[i][n-3:n]) if distance<min: min=distance if distance>max: max=distance output_cell[g_count][1].append([origin_name[i-user_new_offset],"User Group"+str(g_count) ," ",origin_name[j-user_new_offset]," "," ","User Group"+str(temp_g),distance]) temp_g=g_count temp_count=len(user_dict[g_count][0]) for j in range(i+1,user_new_offset+len(origin_name)): if ((j-user_new_offset)==temp_count): temp_g+=1 try: temp_count+=len(user_dict[temp_g][0]) except KeyError: temp_count+=0 distance=np.linalg.norm(Xval[j][n-3:n]-Xval[i][n-3:n]) if distance<min: min=distance if distance>max: max=distance output_cell[g_count][1].append([origin_name[i-user_new_offset],"User Group"+str(g_count) ," ",origin_name[j-user_new_offset]," "," ","User Group"+str(temp_g),distance]) if g_count==1: name1.append(origin_name[i-user_new_offset]) X1.append(round(Xval[i][n-3],5)) Y1.append(round(Xval[i][n-2],5)) Z1.append(round(Xval[i][n-1],5)) else: name2.append(origin_name[i-user_new_offset]) X2.append(round(Xval[i][n-3],5)) Y2.append(round(Xval[i][n-2],5)) Z2.append(round(Xval[i][n-1],5)) if ((i-user_new_offset+1)==u_count): dictlist=[] for key, value in output_cell.items(): temp = [value] dictlist+=temp output_cell=list(dictlist) user_out_group.append(["User Group"+str(g_count),output_cell]) g_count+=1 before=u_count+before #print("I am here!!") try: u_count+=len(user_dict[g_count][0]) output_cell={} output_cell[g_count]=[" ",[]] except KeyError: u_count+=0 #[g,[group_cell_1 object,[[outputs paired1,......,],[paired2],[paired3]]],[group_cell_2 object,[[pair1],[pair2]]]] #for xx in origin_name: #sample_counter[xx]=1 ##print(out_group) element_counter=0 for i in out_group: for temp_list in i[1]: element_counter=element_counter+len(temp_list[1]) for temp in temp_list[1]: if(temp[5]!=" "): temp[5]=temp[5]+'('+str(sample_counter[temp[6]])+')' for i in user_out_group: for temp_list in i[1]: for temp in temp_list[1]: if(temp[2]!=" "): temp[2]=temp[2]+'('+str(sample_counter[temp[3]])+')' return_html='user_pca.html' else: #This part is for centroid display return_html='user_pca_center.html' #This part is for select cell line base on dataset,count centroid base on the dataset #group中的cell line為單位來算重心 location_dict={} #{group number:[[cell object,dataset,new location]]} combined=[] sample_list=[] pca_index=np.array(pca_index) X_val=[] val_a=np.array(val) a_all_offset=np.array(all_offset) a_sample=np.array(all_sample) for i in range(1,group_counter+1): dis_cellline=list(set(cell_object[g_s_counter[i-1]:g_s_counter[i]])) #cell object may have duplicate cell line since:NCI A + CCLE A===>[A,A] location_dict['g'+str(i)]=[] dataset_dict={} a_cell_object=np.array(cell_object) for c in dis_cellline: #dis_cellline may not have the same order as cell_object temp1=np.where((a_cell_object==c))[0] temp2=np.where((temp1>=g_s_counter[i-1])&(temp1<g_s_counter[i])) total_offset=temp1[temp2] selected_val=val_a[:,a_all_offset[total_offset]] selected_val=np.transpose(selected_val) new_loca=(np.mean(selected_val,axis=0,dtype=np.float64,keepdims=True)).tolist()[0] selected_sample=a_sample[total_offset] if list(selected_sample) in sample_list: #to prevent two different colors in different group continue else: sample_list.append(list(selected_sample)) d_temp=[] for s in selected_sample: d_temp.append(s.dataset_id.name) dataset_dict[c]="/".join(list(set(d_temp))) X_val.append(new_loca) location_dict['g'+str(i)].append([c,dataset_dict[c],len(X_val)-1]) #the last part is the index to get pca result from new_val combined.append([c,dataset_dict[c],len(X_val)-1]) #all cell line, do not matter order #run the pca user_new_offset=len(X_val) temp_val=np.transpose(val[:,user_offset:]) for x in range(0,len(temp_val)): X_val.append(list(temp_val[x])) if(len(X_val)<4): error_reason='Since the display method is [centroid], you should have at least 4 dots for PCA. The total number is not enough.<br />'\ 'The total number of dots in you uploaded file is '+str(len(temp_val))+'.<br />'\ 'The number of centroid dots you selected is '+str(len(X_val)-len(temp_val))+'.<br />'\ 'Total is '+str(len(X_val))+'.' return render_to_response('pca_error.html',RequestContext(request, { 'error_reason':mark_safe(json.dumps(error_reason)), })) X_val=np.matrix(X_val) pca= PCA(n_components=n) new_val = pca.fit_transform(X_val[:,:]) #cannot get Xval with original offset any more ratio_temp=pca.explained_variance_ratio_ propotion=sum(ratio_temp[1:n]) table_propotion=sum(ratio_temp[0:n]) #print(new_val) out_group=[] min=10000000000 max=0 element_counter=0 for g in range(1,group_counter+1): output_cell=[] exist_cell={} for group_c in location_dict['g'+str(g)]: #a list of [c,dataset_dict[c],new_val index] in group one cell=group_c[0] key_string=cell.name+'/'+cell.primary_site+'/'+cell.primary_hist+'/'+group_c[1] exist_cell[key_string]=[] output_cell.append([cell,[]]) #count the distance for temp_list in combined: c=temp_list[0] temp_string=c.name+'/'+c.primary_site+'/'+c.primary_hist+'/'+temp_list[1] try: if(key_string not in exist_cell[temp_string]): distance=np.linalg.norm(np.array(new_val[group_c[2]][n-3:n])-np.array(new_val[temp_list[2]][n-3:n])) if distance==0: continue if distance<min: min=distance if distance>max: max=distance output_cell[len(output_cell)-1][1].append([cell.name,cell.primary_site,cell.primary_hist ,group_c[1],temp_list[0].name,temp_list[0].primary_site,temp_list[0].primary_hist,temp_list[1],distance]) element_counter=element_counter+1 except KeyError: distance=np.linalg.norm(np.array(new_val[group_c[2]][n-3:n])-np.array(new_val[temp_list[2]][n-3:n])) if distance==0: continue if distance<min: min=distance if distance>max: max=distance output_cell[len(output_cell)-1][1].append([cell.name,cell.primary_site,cell.primary_hist ,group_c[1],temp_list[0].name,temp_list[0].primary_site,temp_list[0].primary_hist,temp_list[1],distance]) element_counter=element_counter+1 exist_cell[key_string].append(temp_string) g_count=1 u_count=len(user_dict[g_count][0]) #sample number in first user file for i in range(user_new_offset,user_new_offset+len(origin_name)): distance=np.linalg.norm(np.array(new_val[group_c[2]][n-3:n])-np.array(new_val[i][n-3:n])) if distance<min: min=distance if distance>max: max=distance output_cell[len(output_cell)-1][1].append([cell.name,cell.primary_site,cell.primary_hist,group_c[1] ,origin_name[i-user_new_offset]," "," ","User Group"+str(g_count),distance]) element_counter=element_counter+1 if ((i-user_new_offset+1)==u_count): g_count+=1 try: u_count+=len(user_dict[g_count][0]) except KeyError: u_count+=0 if(g==1): name3.append(cell.name+'<br>'+group_c[1]) X3.append(round(new_val[group_c[2]][n-3],5)) Y3.append(round(new_val[group_c[2]][n-2],5)) Z3.append(round(new_val[group_c[2]][n-1],5)) elif(g==2): name4.append(cell.name+'<br>'+group_c[1]) X4.append(round(new_val[group_c[2]][n-3],5)) Y4.append(round(new_val[group_c[2]][n-2],5)) Z4.append(round(new_val[group_c[2]][n-1],5)) elif(g==3): name5.append(cell.name+'<br>'+group_c[1]) X5.append(round(new_val[group_c[2]][n-3],5)) Y5.append(round(new_val[group_c[2]][n-2],5)) Z5.append(round(new_val[group_c[2]][n-1],5)) out_group.append(["Dataset Group"+str(g),output_cell]) if g==group_counter: output_cell=[] g_count=1 output_cell.append([" ",[]]) u_count=len(user_dict[g_count][0]) temp_count=u_count temp_g=1 before=0 for i in range(user_new_offset,user_new_offset+len(origin_name)): for temp_list in combined: c=temp_list[0] distance=np.linalg.norm(np.array(new_val[i][n-3:n])-np.array(new_val[temp_list[2]][n-3:n])) if distance<min: min=distance if distance>max: max=distance output_cell[len(output_cell)-1][1].append([origin_name[i-user_new_offset],"User Group"+str(g_count) ,c.name,c.primary_site,c.primary_hist,temp_list[1],distance]) temp_g=1 temp_count=len(user_dict[temp_g][0]) for j in range(user_new_offset,user_new_offset+before): if ((j-user_new_offset)==temp_count): temp_g+=1 try: temp_count+=len(user_dict[temp_g][0]) except KeyError: temp_count+=0 distance=np.linalg.norm(np.array(new_val[i][n-3:n])-np.array(new_val[j][n-3:n])) if distance<min: min=distance if distance>max: max=distance output_cell[len(output_cell)-1][1].append([origin_name[i-user_new_offset],"User Group"+str(g_count) ,origin_name[j-user_new_offset]," "," ","User Group"+str(temp_g),distance]) temp_g=g_count temp_count=len(user_dict[g_count][0]) for x in range(i+1,user_new_offset+len(origin_name)): if ((x-user_new_offset)==temp_count): temp_g+=1 try: temp_count+=len(user_dict[temp_g][0]) except KeyError: temp_count+=0 distance=np.linalg.norm(np.array(new_val[i][n-3:n])-np.array(new_val[x][n-3:n])) if distance<min: min=distance if distance>max: max=distance output_cell[len(output_cell)-1][1].append([origin_name[i-user_new_offset],"User Group"+str(g_count) ,origin_name[x-user_new_offset]," "," ","User Group"+str(temp_g),distance]) if g_count==1: name1.append(origin_name[i-user_new_offset]) X1.append(round(new_val[i][n-3],5)) Y1.append(round(new_val[i][n-2],5)) Z1.append(round(new_val[i][n-1],5)) else: name2.append(origin_name[i-user_new_offset]) X2.append(round(new_val[i][n-3],5)) Y2.append(round(new_val[i][n-2],5)) Z2.append(round(new_val[i][n-1],5)) if ((i-user_new_offset+1)==u_count): user_out_group.append(["User Group"+str(g_count),output_cell]) g_count+=1 before=u_count+before #print("I am here!!") try: u_count+=len(user_dict[g_count][0]) output_cell=[] output_cell.append([" ",[]]) except KeyError: u_count+=0 #print(element_counter) #print(show_row) if(element_counter>show_row): big_flag=1 sid=str(uuid.uuid1())+".csv" if(return_html=='user_pca.html'): dataset_header=['Group Cell Line/Clinical Sample','Sample Name','Primary Site','Primary Histology' ,'Dataset','Paired Cell Line name/Clinical Sample','Sample Name','Primary Site','Primary Histology','Dataset','Distance'] user_header=['User Sample Name','Dataset','Paired Cell Line name/Clinical Sample','Sample Name','Primary Site','Primary Histology','Dataset','Distance'] else: dataset_header=['Group Cell Line/Clinical Sample','Primary Site','Primary Histology' ,'Dataset','Paired Cell Line name/Clinical Sample','Primary Site','Primary Histology','Dataset','Distance'] user_header=['User Sample Name','Dataset','Paired Cell Line name/Clinical Sample','Primary Site','Primary Histology','Dataset','Distance'] P=Path('../').resolve().joinpath('src','static','csv',"dataset_"+sid) userP=Path('../').resolve().joinpath('src','static','csv',"user_"+sid) assP=Path('../').resolve().joinpath('src','assets','csv',"dataset_"+sid) assuserP=Path('../').resolve().joinpath('src','assets','csv',"user_"+sid) #print("start writing files") with open(str(assP), "w", newline='') as f: writer = csv.writer(f) for index,output_cell in out_group: writer.writerows([[dgroup[int(index[-1])-1]]]) writer.writerows([dataset_header]) for cell_line,b in output_cell: writer.writerows(b) #print("end writing first file") ''' with open(str(assP), "w", newline='') as ff: writer = csv.writer(ff) for index,output_cell in out_group: writer.writerows([[index]]) writer.writerows([dataset_header]) for cell_line,b in output_cell: writer.writerows(b) ''' #print("end writing 2 file") with open(str(assuserP), "w", newline='') as ff: writer = csv.writer(ff) for index,output_cell in user_out_group: writer.writerows([[ugroup[int(index[-1])-1]]]) writer.writerows([user_header]) for cell_line,b in output_cell: writer.writerows(b) #print("end writing 3 file") ''' with open(str(userP), "w", newline='') as f: writer = csv.writer(f) for index,output_cell in user_out_group: writer.writerows([[index]]) writer.writerows([user_header]) for cell_line,b in output_cell: writer.writerows(b) ''' #print("end writing 4 file") data_file_name="dataset_"+sid user_file_name="user_"+sid else: big_flag=0 data_file_name=0 user_file_name=0 return render_to_response(return_html,RequestContext(request, { 'ugroup':ugroup, 'dgroup':dgroup, 'min':min,'max':max, 'big_flag':big_flag, 'out_group':out_group,'user_out_group':user_out_group, 'propotion':propotion, 'table_propotion':table_propotion, 'data_file_name':data_file_name, 'user_file_name':user_file_name, 'X1':X1,'name1':mark_safe(json.dumps(name1)), 'Y1':Y1,'name2':mark_safe(json.dumps(name2)), 'Z1':Z1,'name3':mark_safe(json.dumps(name3)), 'X2':X2,'name4':mark_safe(json.dumps(name4)), 'Y2':Y2,'name5':mark_safe(json.dumps(name5)), 'Z2':Z2, 'X3':X3, 'Y3':Y3, 'Z3':Z3, 'X4':X4, 'Y4':Y4, 'Z4':Z4, 'X5':X5, 'Y5':Y5, 'Z5':Z5, })) #notice that we need to return a user_pca_center.html, too!! #return render_to_response('welcome.html',locals()) def express_profiling(request): return render(request, 'express_profiling.html', generate_samples()) def welcome(request): return render_to_response('welcome.html',locals()) def help(request): example_name="CellExpress_Examples.pptx" tutorial_name="CellExpress_Tutorial.pptx" return render_to_response('help.html',locals()) def help_similar_assessment(request): return render_to_response('help_similar_assessment.html',RequestContext(request)) def similar_assessment(request): return render(request, 'similar_assessment.html', generate_samples()) def gene_signature(request): return render(request, 'gene_signature.html', generate_samples()) def heatmap(request): group1=[] group2=[] group_count=0 presult={} #{probe object:p value} expression=[] probe_out=[] sample_out=[] not_found=[] quantile_flag=0 ratio_flag=0 indata=[] #get probe from different platform pform=request.POST.get('data_platform','U133A') if(pform=="mix_quantile"): pform="U133A" quantile_flag=1 if(pform=="mix_ratio"): pform="U133A" ratio_flag=1 stop_end=601 return_page_flag=0 user_probe_flag=0 if(request.POST['user_type']=="all"): all_probe=ProbeID.objects.filter(platform__name=pform).order_by('offset') probe_offset=list(all_probe.values_list('offset',flat=True)) pro_number=float(request.POST['probe_number']) #significant 0.05 or 0.01 all_probe=list(all_probe) elif(request.POST['user_type']=="genes"): #for all genes return_page_flag=1 if(pform=="U133A"): probe_path=Path('../').resolve().joinpath('src','uni_u133a.txt') gene_list = pd.read_csv(probe_path.as_posix()) all_probe=list(gene_list['SYMBOL']) else: probe_path=Path('../').resolve().joinpath('src','uni_plus2.txt') gene_list = pd.read_csv(probe_path.as_posix()) all_probe=list(gene_list['SYMBOL']) pro_number=float(request.POST['probe_number_gene']) probe_offset=[] for i in range(0,len(all_probe)): probe_offset.append(i) else: indata=request.POST['keyword'] indata = list(set(indata.split())) if(request.POST['gtype']=="probeid"): user_probe_flag=1 all_probe=ProbeID.objects.filter(platform__name=pform,Probe_id__in=indata).order_by('offset') probe_offset=list(all_probe.values_list('offset',flat=True)) pro_number=float('+inf') not_found=list(set(set(indata) - set(all_probe.values_list('Probe_id',flat=True)))) all_probe=list(all_probe) else: probe_offset=[] return_page_flag=1 pro_number=float('+inf') if(pform=="U133A"): probe_path=Path('../').resolve().joinpath('src','uni_u133a.txt') gene_list = pd.read_csv(probe_path.as_posix()) gene=list(gene_list['SYMBOL']) else: probe_path=Path('../').resolve().joinpath('src','uni_plus2.txt') gene_list = pd.read_csv(probe_path.as_posix()) gene=list(gene_list['SYMBOL']) probe_path=Path('../').resolve().joinpath('src','new_human_gene_info.txt') info=pd.read_csv(probe_path.as_posix(),sep='\t') col=list(info.columns.values) col[0]='symbol' info.columns=col info.index = info['symbol'] info.index.name = None info=info.iloc[:, 1:] all_probe=[] for i in indata: try: probe_offset.append(gene.index(i)) all_probe.append(i) info=info.drop(i,errors='ignore') except ValueError: re_symbol=list(set(info.loc[info['alias'].isin([i])].index)) #find whether has alias first if(len(re_symbol)!=0): re_match=Gene.objects.filter(platform__name__in=[pform],symbol__in=re_symbol).order_by('offset') #check the symbol in database or not repeat=len(re_match) if(repeat!=0): #match gene symbol in database ##print(re_match) for x in re_match: info=info.drop(x.symbol,errors='ignore') probe_offset.append(x.offset) all_probe.append(i+"("+x.symbol+")") else: not_found.append(i) else: not_found.append(i) #count the number of group group_counter=1 check_set=[] while True: temp_name='dataset_g'+str(group_counter) if temp_name in request.POST: group_counter=group_counter+1 else: group_counter=group_counter-1 break #get binary data s_group_dict={} #store sample val=[] #store value get from binary data group_name=[] clinic=list(Clinical_Dataset.objects.all().values_list('name',flat=True)) clline=list(Dataset.objects.all().values_list('name',flat=True)) #print(clline) opened_name=[] opened_val=[] for i in range(1,group_counter+1): s_group_dict['g'+str(i)]=[] dname='dataset_g'+str(i) datasets=request.POST.getlist(dname) temp_name='g'+str(i) group_name.append(temp_name) a_data=np.array([]) for dn in datasets: if dn=='Sanger Cell Line Project': c='select_sanger_g'+str(i) elif dn=='NCI60': c='select_nci_g'+str(i) elif dn=='GSE36133': c='select_ccle_g'+str(i) if dn in clline: ACELL=request.POST.getlist(c) s=Sample.objects.filter(dataset_id__name__in=[dn],cell_line_id__name__in=ACELL).order_by('dataset_id').select_related('cell_line_id__name','dataset_id') s_group_dict['g'+str(i)]=list(s)+s_group_dict['g'+str(i)] goffset=list(s.values_list('offset',flat=True)) #print(goffset) if dn not in opened_name: #check if the file is opened #print("opend file!!") opened_name.append(dn) if(return_page_flag==1): pth=Path('../').resolve().joinpath('src','gene_'+Dataset.objects.get(name=dn).data_path) if(quantile_flag==1): pth=Path('../').resolve().joinpath('src','mix_gene_'+Dataset.objects.get(name=dn).data_path) elif(ratio_flag==1): pth=Path('../').resolve().joinpath('src','mix_gene_'+Dataset.objects.get(name=dn).data_path) gap=[Gene.objects.filter(platform__name=pform,symbol="GAPDH")[0].offset] else: pth=Path('../').resolve().joinpath('src',Dataset.objects.get(name=dn).data_path) if(quantile_flag==1): pth=Path('../').resolve().joinpath('src','mix_'+Dataset.objects.get(name=dn).data_path) elif(ratio_flag==1): pth=Path('../').resolve().joinpath('src','mix_'+Dataset.objects.get(name=dn).data_path) gap=list(ProbeID.objects.filter(platform__name=pform).filter(Gene_symbol="GAPDH").order_by('id').values_list('offset',flat=True)) raw_val=np.load(pth.as_posix(),mmap_mode='r') if(ratio_flag==1): norm=raw_val[np.ix_(gap)] raw_val=np.subtract(raw_val,np.mean(norm,axis=0, dtype=np.float64,keepdims=True)) opened_val.append(raw_val) temp=raw_val[np.ix_(probe_offset,list(goffset))] if (len(a_data)!=0 ) and (len(temp)!=0): a_data=np.concatenate((a_data,temp),axis=1) elif (len(temp)!=0): a_data=raw_val[np.ix_(probe_offset,list(goffset))] else: temp=opened_val[opened_name.index(dn)][np.ix_(probe_offset,list(goffset))] if (len(a_data)!=0 ) and (len(temp)!=0): a_data=np.concatenate((a_data,temp),axis=1) elif (len(temp)!=0): a_data=opened_val[opened_name.index(dn)][np.ix_(probe_offset,list(goffset))] elif dn in clinic: #print("I am in clinical part") com_hists=list(set(request.POST.getlist('primd_'+dn+'_g'+str(i)))) #can I get this by label to reduce number of queries? com_hists=[w1 for segments in com_hists for w1 in segments.split('/')] prims=com_hists[0::2] hists=com_hists[1::2] temp=request.POST.getlist('filter_'+dn+'_g'+str(i)) age=[] gender=[] ethnic=[] grade=[] stage=[] T=[] N=[] M=[] metas=[] for t in temp: if 'stage/' in t: stage.append(t[6:]) elif 'gender/' in t: gender.append(t[7:]) elif 'ethnic/' in t: ethnic.append(t[7:]) elif 'grade/' in t: grade.append(t[6:]) elif 'stageT/' in t: T.append(t[7:]) elif 'stageN/' in t: N.append(t[7:]) elif 'stageM/' in t: M.append(t[7:]) elif 'metastatic/' in t: metas.append(t[11:]) ''' if t[11:]=='False': metas.append(0) else: metas.append(1) ''' else: #"age/" age.append(t[4:]) cgoffset=[] for x in range(0,len(prims)): s=Clinical_sample.objects.filter(dataset_id__name=dn,primary_site=prims[x], primary_hist=hists[x], age__in=age, gender__in=gender, ethnic__in=ethnic, stage__in=stage, grade__in=grade, stageT__in=T, stageN__in=N, stageM__in=M, metastatic__in=metas, ).select_related('dataset_id').order_by('id') s_group_dict['g'+str(i)]=list(s)+s_group_dict['g'+str(i)] cgoffset+=list(s.values_list('offset',flat=True)) if dn not in opened_name: #check if the file is opened #print("opend file!!") opened_name.append(dn) if(return_page_flag==1): pth=Path('../').resolve().joinpath('src','gene_'+Clinical_Dataset.objects.get(name=dn).data_path) if(quantile_flag==1): pth=Path('../').resolve().joinpath('src','mix_gene_'+Clinical_Dataset.objects.get(name=dn).data_path) elif(ratio_flag==1): pth=Path('../').resolve().joinpath('src','mix_gene_'+Clinical_Dataset.objects.get(name=dn).data_path) gap=[Gene.objects.filter(platform__name=pform,symbol="GAPDH")[0].offset] else: pth=Path('../').resolve().joinpath('src',Clinical_Dataset.objects.get(name=dn).data_path) if(quantile_flag==1): pth=Path('../').resolve().joinpath('src','mix_'+Clinical_Dataset.objects.get(name=dn).data_path) elif(ratio_flag==1): pth=Path('../').resolve().joinpath('src','mix_'+Clinical_Dataset.objects.get(name=dn).data_path) gap=list(ProbeID.objects.filter(platform__name=pform).filter(Gene_symbol="GAPDH").order_by('id').values_list('offset',flat=True)) raw_val=np.load(pth.as_posix(),mmap_mode='r') if(ratio_flag==1): norm=raw_val[np.ix_(gap)] raw_val=np.subtract(raw_val,np.mean(norm,axis=0, dtype=np.float64,keepdims=True)) opened_val.append(raw_val) temp=raw_val[np.ix_(probe_offset,list(cgoffset))] #print(temp) if (len(a_data)!=0 ) and (len(temp)!=0): a_data=np.concatenate((a_data,temp),axis=1) elif (len(temp)!=0): a_data=raw_val[np.ix_(probe_offset,list(cgoffset))] else: temp=opened_val[opened_name.index(dn)][np.ix_(probe_offset,list(cgoffset))] if (len(a_data)!=0 ) and (len(temp)!=0): a_data=np.concatenate((a_data,temp),axis=1) elif (len(temp)!=0): a_data=opened_val[opened_name.index(dn)][np.ix_(probe_offset,list(cgoffset))] val.append(a_data.tolist()) #print(len(val)) #print(len(val[0])) ##print(val) #run the one way ANOVA test or ttest for every probe base on the platform selected express={} #logger.info('run ttest or anova') if group_counter<=2: for i in range(0,len(all_probe)): #need to fix if try to run on laptop presult[all_probe[i]]=stats.ttest_ind(list(val[0][i]),list(val[1][i]),equal_var=False,nan_policy='omit')[1] express[all_probe[i]]=np.append(val[0][i],val[1][i]).tolist() else: for i in range(0,len(all_probe)): #need to fix if try to run on laptop to_anova=[] for n in range(0,group_counter): #val[n]=sum(val[n],[]) to_anova.append(val[n][i]) presult[all_probe[i]]=stats.f_oneway(*to_anova)[1] express[all_probe[i]]=sum(to_anova,[]) #print("test done") #sort the dictionary with p-value and need to get the expression data again (top20) #presult[all_probe[0]]=float('nan') #presult[all_probe[11]]=float('nan') #how to deal with all "nan"? tempf=pd.DataFrame(list(presult.items()), columns=['probe', 'pvalue']) tempf=tempf.replace(to_replace=float('nan'),value=float('+inf')) presult=dict(zip(tempf.probe, tempf.pvalue)) sortkey=sorted(presult,key=presult.get) #can optimize here counter=1 cell_probe_val=[] for w in sortkey: #print(presult[w],":",w) if (presult[w]<pro_number): cell_probe_val.append([w,presult[w]]) print(cell_probe_val) express_mean=np.mean(np.array(express[w])) expression.append(list((np.array(express[w]))-express_mean)) if(return_page_flag==1): probe_out.append(w) else: probe_out.append(w.Probe_id+"("+w.Gene_symbol+")") counter+=1 else: break if counter>=stop_end: break n_counter=1 for n in group_name: sample_counter=1 for s in s_group_dict[n]: dataset_n=s.dataset_id.name if dataset_n=="Sanger Cell Line Project": sample_out.append(s.cell_line_id.name+"(SCLP)(group"+str(n_counter)+"-"+str(sample_counter)+")") elif dataset_n in clline: #print(s.cell_line_id.name+"("+s.dataset_id.name+")"+"(group"+str(n_counter)+"-"+str(sample_counter)+")") sample_out.append(s.cell_line_id.name+"("+s.dataset_id.name+")"+"(group"+str(n_counter)+"-"+str(sample_counter)+")") else: #what to output for clinical part? #print(s.name+"("+s.dataset_id.name+")"+"(group"+str(n_counter)+"-"+str(sample_counter)+")") sample_out.append(s.name+"("+s.dataset_id.name+")"+"(group"+str(n_counter)+"-"+str(sample_counter)+")") sample_counter+=1 n_counter+=1 #logger.info('finish combine output samples') sns.set(font="monospace") test=pd.DataFrame(data=expression,index=probe_out,columns=sample_out) cdict = {'red': ((0.0, 0.0, 0.0), (0.5, 0.0, 0.1), (1.0, 1.0, 1.0)), 'blue': ((0.0, 0.0, 0.0), (1.0, 0.0, 0.0)), 'green': ((0.0, 0.0, 1.0), (0.5, 0.1, 0.0), (1.0, 0.0, 0.0)) } my_cmap = LinearSegmentedColormap('my_colormap',cdict,256) #test.to_csv('heatmap_text.csv') try: #g = sns.clustermap(test,cmap=my_cmap) if(len(probe_out)<=300): g = sns.clustermap(test,cmap=my_cmap,xticklabels=list(test.columns),yticklabels=(test.index),figsize=(19.20,48.60)) else: g = sns.clustermap(test,cmap=my_cmap,xticklabels=list(test.columns),yticklabels=(test.index),figsize=(30.00,100.00)) except: if((return_page_flag==1) and (probe_out==[])): probe_out=indata #probe_out is the rows of heatmap return render_to_response('noprobe.html',RequestContext(request, { 'user_probe_flag':user_probe_flag, 'return_page_flag':return_page_flag, 'probe_out':probe_out, 'not_found':not_found })) ''' plt.setp(g.ax_heatmap.get_yticklabels(), rotation=0) if counter>=stop_end: plt.setp(g.ax_heatmap.yaxis.get_majorticklabels(), fontsize=4) else: plt.setp(g.ax_heatmap.yaxis.get_majorticklabels(), fontsize=7) plt.setp(g.ax_heatmap.get_xticklabels(), rotation=270,ha='center') ''' sid=str(uuid.uuid1())+".png" #print(sid) P=Path('../').resolve().joinpath('src','static','image',sid) assP=Path('../').resolve().joinpath('src','assets','image',sid) #g.savefig(str(P)) #plt.figure(figsize=(1920/my_dpi, 2160/my_dpi), dpi=100) #plt.savefig(str(assP), dpi=my_dpi*10) g.savefig(str(assP),bbox_inches='tight') file_name=sid return render_to_response('heatmap.html',RequestContext(request, { 'user_probe_flag':user_probe_flag, 'return_page_flag':return_page_flag, 'cell_probe_val':cell_probe_val, 'file_name':file_name, 'pro_number':pro_number, 'not_found':not_found })) def pca(request): propotion=0 table_propotion=0 pform=request.POST['data_platform'] #get the platform show=request.POST['show_type'] #get the pca show type group_counter=1 cell_line_dict={} #count how many group group_counter=1 while True: temp_name='dataset_g'+str(group_counter) if temp_name in request.POST: group_counter=group_counter+1 else: group_counter=group_counter-1 break udgroup=[] s_group_dict={} #store sample group_name=[] offset_group_dict={} #store offset clinic=list(Clinical_Dataset.objects.all().values_list('name',flat=True)) clline=list(Dataset.objects.all().values_list('name',flat=True)) all_exist_dataset=[] for i in range(1,group_counter+1): udgroup.append(request.POST['group_name'+str(i)]) #print(udgroup) if(udgroup[-1]==''): udgroup[-1]='Group'+str(i) dname='dataset_g'+str(i) all_exist_dataset=all_exist_dataset+request.POST.getlist(dname) all_exist_dataset=list(set(all_exist_dataset)) all_base=[0] for i in range(0,len(all_exist_dataset)-1): if all_exist_dataset[i] in clline: all_base.append(all_base[i]+Sample.objects.filter(dataset_id__name__in=[all_exist_dataset[i]]).count()) else: all_base.append(all_base[i]+Clinical_sample.objects.filter(dataset_id__name__in=[all_exist_dataset[i]]).count()) all_c=[] for i in range(1,group_counter+1): s_group_dict['g'+str(i)]=[] offset_group_dict['g'+str(i)]=[] cell_line_dict['g'+str(i)]=[] dname='dataset_g'+str(i) datasets=request.POST.getlist(dname) group_name.append('g'+str(i)) goffset_nci=[] goffset_gse=[] for dn in datasets: if dn=='Sanger Cell Line Project': c='select_sanger_g'+str(i) elif dn=='NCI60': c='select_nci_g'+str(i) elif dn=='GSE36133': c='select_ccle_g'+str(i) if dn in clline: temp=list(set(request.POST.getlist(c))) if 'd_sample' in show: if all_c==[]: all_c=all_c+temp uni=temp else: uni=list(set(temp)-set(all_c)) all_c=all_c+uni else: uni=list(temp) #do not filter duplicate input only when select+centroid s=Sample.objects.filter(cell_line_id__name__in=uni,dataset_id__name__in=[dn]).order_by('dataset_id' ).select_related('cell_line_id__name','cell_line_id__primary_site','cell_line_id__primary_hist','dataset_id','dataset_id__name') cell_line_dict['g'+str(i)]=cell_line_dict['g'+str(i)]+list(s.values_list('cell_line_id__name',flat=True)) s_group_dict['g'+str(i)]=s_group_dict['g'+str(i)]+list(s) offset_group_dict['g'+str(i)]=offset_group_dict['g'+str(i)]+list(np.add(list(s.values_list('offset',flat=True)),all_base[all_exist_dataset.index(dn)])) else: #dealing with clinical sample datasets com_hists=list(set(request.POST.getlist('primd_'+dn+'_g'+str(i)))) #can I get this by label to reduce number of queries? com_hists=[w1 for segments in com_hists for w1 in segments.split('/')] prims=com_hists[0::2] hists=com_hists[1::2] temp=request.POST.getlist('filter_'+dn+'_g'+str(i)) age=[] gender=[] ethnic=[] grade=[] stage=[] T=[] N=[] M=[] metas=[] for t in temp: if 'stage/' in t: stage.append(t[6:]) elif 'gender/' in t: gender.append(t[7:]) elif 'ethnic/' in t: ethnic.append(t[7:]) elif 'grade/' in t: grade.append(t[6:]) elif 'stageT/' in t: T.append(t[7:]) elif 'stageN/' in t: N.append(t[7:]) elif 'stageM/' in t: M.append(t[7:]) elif 'metastatic/' in t: metas.append(t[11:]) ''' if t[11:]=='False': metas.append(0) else: metas.append(1) ''' else: #"age/" age.append(t[4:]) for x in range(0,len(prims)): s=Clinical_sample.objects.filter(dataset_id__name=dn,primary_site=prims[x], primary_hist=hists[x], age__in=age, gender__in=gender, ethnic__in=ethnic, stage__in=stage, grade__in=grade, stageT__in=T, stageN__in=N, stageM__in=M, metastatic__in=metas, ).select_related('dataset_id').order_by('id') s_group_dict['g'+str(i)]=s_group_dict['g'+str(i)]+list(s) cell_line_dict['g'+str(i)]=cell_line_dict['g'+str(i)]+list(s.values_list('name',flat=True)) offset_group_dict['g'+str(i)]=offset_group_dict['g'+str(i)]+list(np.add(list(s.values_list('offset',flat=True)),all_base[all_exist_dataset.index(dn)])) all_sample=[] all_cellline=[] cell_object=[] all_offset=[] sample_counter={} group_cell=[] g_s_counter=[0] for i in range(1,group_counter+1): all_sample=all_sample+s_group_dict['g'+str(i)] #will not exist duplicate sample if d_sample all_offset=all_offset+offset_group_dict['g'+str(i)] all_cellline=all_cellline+cell_line_dict['g'+str(i)] g_s_counter.append(g_s_counter[i-1]+len(s_group_dict['g'+str(i)])) if 'd_sample' in show: if((len(all_sample))<4): error_reason='You should have at least 4 samples for PCA. The samples are not enough.<br />'\ 'The number of samples you selected is '+str(len(all_sample))+'.' return render_to_response('pca_error.html',RequestContext(request, { 'error_reason':mark_safe(json.dumps(error_reason)), })) for i in all_sample: sample_counter[i.name]=1 if str(type(i))=="<class 'probes.models.Sample'>": ##print("i am sample!!") cell_object.append(i.cell_line_id) else: ##print("i am clinical!!") cell_object.append(i) #delete nan, transpose matrix ##open file for x in range(0,len(all_exist_dataset)): if all_exist_dataset[x] in clline: pth=Path('../').resolve().joinpath('src',Dataset.objects.get(name=all_exist_dataset[x]).data_path) else: pth=Path('../').resolve().joinpath('src',Clinical_Dataset.objects.get(name=all_exist_dataset[x]).data_path) if x==0: val=np.load(pth.as_posix()) else: val=np.hstack((val, np.load(pth.as_posix())))#combine together if 'd_sample' in show: val=val[:,all_offset] #val=val[~np.isnan(val).any(axis=1)] val=np.transpose(val) pca_index=[] dis_offset=[] #PREMISE:same dataset same cell line will have only one type of primary site and primary histology name1=[] name2=[] name3=[] name4=[] name5=[] X1=[] Y1=[] Z1=[] X2=[] Y2=[] Z2=[] X3=[] Y3=[] Z3=[] X4=[] Y4=[] Z4=[] X5=[] Y5=[] Z5=[] if(len(all_exist_dataset)==1): n=3 #need to fix to the best one #need to fix proportion else: n=4 #logger.info('pca show') if 'd_sample' in show: #count the pca first pca= PCA(n_components=n) Xval = pca.fit_transform(val[:,:]) #cannot get Xval with original all_offset any more ratio_temp=pca.explained_variance_ratio_ propotion=sum(ratio_temp[n-3:n]) table_propotion=sum(ratio_temp[0:n]) ##print(Xval) ##print(all_cellline) ##print(all_sample) max=0 min=10000000000 out_group=[] exist_cell={}#cell line object:counter for g in range(1,group_counter+1): output_cell={} check={} for s in range(g_s_counter[g-1],g_s_counter[g]): if str(type(all_sample[s]))=="<class 'probes.models.Sample'>": cell=all_sample[s].cell_line_id else: cell=all_sample[s] try: counter=exist_cell[cell] exist_cell[cell]=counter+1 except KeyError: exist_cell[cell]=1 try: t=output_cell[cell] except KeyError: output_cell[cell]=[cell,[]] check[all_sample[s].name]=[] sample_counter[all_sample[s].name]=exist_cell[cell] for i in range(0,len(all_sample)): if i!=s: try: if(all_sample[s].name not in check[all_sample[i].name]): distance=np.linalg.norm(Xval[i][n-3:n]-Xval[s][n-3:n]) if distance<min: min=distance if distance>max: max=distance output_cell[cell][1].append([all_cellline[s]+'('+str(exist_cell[cell])+')' ,all_sample[s].name,all_sample[s].dataset_id.name,all_cellline[i],all_sample[i].name,all_sample[i].dataset_id.name,distance,cell_object[i]]) check[all_sample[s].name].append(all_sample[i].name) except KeyError: distance=np.linalg.norm(Xval[i][n-3:n]-Xval[s][n-3:n]) if distance<min: min=distance if distance>max: max=distance output_cell[cell][1].append([all_cellline[s]+'('+str(exist_cell[cell])+')' ,all_sample[s].name,all_sample[s].dataset_id.name,all_cellline[i],all_sample[i].name,all_sample[i].dataset_id.name,distance,cell_object[i]]) check[all_sample[s].name].append(all_sample[i].name) if(g==1): name1.append(all_cellline[s]+'('+str(exist_cell[cell])+')'+'<br>'+all_sample[s].name) X1.append(round(Xval[s][n-3],5)) Y1.append(round(Xval[s][n-2],5)) Z1.append(round(Xval[s][n-1],5)) elif(g==2): name2.append(all_cellline[s]+'('+str(exist_cell[cell])+')'+'<br>'+all_sample[s].name) X2.append(round(Xval[s][n-3],5)) Y2.append(round(Xval[s][n-2],5)) Z2.append(round(Xval[s][n-1],5)) elif(g==3): name3.append(all_cellline[s]+'('+str(exist_cell[cell])+')'+'<br>'+all_sample[s].name) X3.append(round(Xval[s][n-3],5)) Y3.append(round(Xval[s][n-2],5)) Z3.append(round(Xval[s][n-1],5)) elif(g==4): name4.append(all_cellline[s]+'('+str(exist_cell[cell])+')'+'<br>'+all_sample[s].name) X4.append(round(Xval[s][n-3],5)) Y4.append(round(Xval[s][n-2],5)) Z4.append(round(Xval[s][n-1],5)) elif(g==5): name5.append(all_cellline[s]+'('+str(exist_cell[cell])+')'+'<br>'+all_sample[s].name) X5.append(round(Xval[s][n-3],5)) Y5.append(round(Xval[s][n-2],5)) Z5.append(round(Xval[s][n-1],5)) dictlist=[] for key, value in output_cell.items(): temp = [value] dictlist+=temp output_cell=list(dictlist) out_group.append([g,output_cell]) element_counter=0 #[g,[[group_cell_line,[paired_cellline,......,]],[],[]]] for i in out_group: for temp_list in i[1]: element_counter+=len(temp_list[1]) for temp in temp_list[1]: ##print(temp) temp[3]=temp[3]+'('+str(sample_counter[temp[4]])+')' return_html='pca.html' else: #This part is for centroid display return_html='pca_center.html' element_counter=0 #val=val[~np.isnan(val).any(axis=1)] #bottle neck??? #This part is for select cell line base on dataset,count centroid base on the dataset #group中的cell line為單位來算重心 #logger.info('pca show centroid with selection') location_dict={} #{group number:[[cell object,dataset,new location]]} combined=[] sample_list=[] pca_index=np.array(pca_index) X_val=[] a_all_offset=np.array(all_offset) for i in range(1,group_counter+1): dis_cellline=list(set(cell_object[g_s_counter[i-1]:g_s_counter[i]])) #cell object may have duplicate cell line since:NCI A + CCLE A===>[A,A] location_dict['g'+str(i)]=[] dataset_dict={} a_cell_object=np.array(cell_object) for c in dis_cellline: #dis_cellline may not have the same order as cell_object temp1=np.where((a_cell_object==c))[0] temp2=np.where((temp1>=g_s_counter[i-1])&(temp1<g_s_counter[i])) total_offset=temp1[temp2] selected_val=val[:,a_all_offset[total_offset]] selected_val=np.transpose(selected_val) new_loca=(np.mean(selected_val,axis=0,dtype=np.float64,keepdims=True)).tolist()[0] a_sample=np.array(all_sample) selected_sample=a_sample[total_offset] if list(selected_sample) in sample_list: #to prevent two different colors in different group continue else: sample_list.append(list(selected_sample)) ##print(selected_sample) d_temp=[] for s in selected_sample: d_temp.append(s.dataset_id.name) dataset_dict[c]="/".join(list(set(d_temp))) ##print(dataset_dict[c]) X_val.append(new_loca) location_dict['g'+str(i)].append([c,dataset_dict[c],len(X_val)-1]) #the last part is the index to get pca result from new_val combined.append([c,dataset_dict[c],len(X_val)-1]) #all cell line, do not matter order #run the pca ##print(len(X_val)) if((len(X_val))<4): error_reason='Since the display method is [centroid], you should have at least 4 dots for PCA. The dots are not enough.<br />'\ 'The number of centroid dots you selected is '+str(len(X_val))+'.' return render_to_response('pca_error.html',RequestContext(request, { 'error_reason':mark_safe(json.dumps(error_reason)), })) X_val=np.matrix(X_val) pca= PCA(n_components=n) new_val = pca.fit_transform(X_val[:,:]) #cannot get Xval with original offset any more ratio_temp=pca.explained_variance_ratio_ propotion=sum(ratio_temp[n-3:n]) table_propotion=sum(ratio_temp[0:n]) ##print(new_val) out_group=[] min=10000000000 max=0 for g in range(1,group_counter+1): output_cell=[] exist_cell={} for group_c in location_dict['g'+str(g)]: #a list of [c,dataset_dict[c],new_val index] in group one cell=group_c[0] key_string=cell.name+'/'+cell.primary_site+'/'+cell.primary_hist+'/'+group_c[1] exist_cell[key_string]=[] output_cell.append([cell,[]]) #count the distance for temp_list in combined: c=temp_list[0] temp_string=c.name+'/'+c.primary_site+'/'+c.primary_hist+'/'+temp_list[1] try: if(key_string not in exist_cell[temp_string]): distance=np.linalg.norm(np.array(new_val[group_c[2]][n-3:n])-np.array(new_val[temp_list[2]][n-3:n])) if distance==0: continue if distance<min: min=distance if distance>max: max=distance output_cell[len(output_cell)-1][1].append([cell,group_c[1],temp_list[0],temp_list[1],distance]) element_counter+=1 exist_cell[key_string].append(temp_string) except KeyError: distance=np.linalg.norm(np.array(new_val[group_c[2]][n-3:n])-np.array(new_val[temp_list[2]][n-3:n])) if distance==0: continue if distance<min: min=distance if distance>max: max=distance output_cell[len(output_cell)-1][1].append([cell,group_c[1],temp_list[0],temp_list[1],distance]) element_counter+=1 exist_cell[key_string].append(temp_string) if(g==1): name1.append(cell.name+'<br>'+group_c[1]) X1.append(round(new_val[group_c[2]][n-3],5)) Y1.append(round(new_val[group_c[2]][n-2],5)) Z1.append(round(new_val[group_c[2]][n-1],5)) elif(g==2): name2.append(cell.name+'<br>'+group_c[1]) X2.append(round(new_val[group_c[2]][n-3],5)) Y2.append(round(new_val[group_c[2]][n-2],5)) Z2.append(round(new_val[group_c[2]][n-1],5)) elif(g==3): name3.append(cell.name+'<br>'+group_c[1]) X3.append(round(new_val[group_c[2]][n-3],5)) Y3.append(round(new_val[group_c[2]][n-2],5)) Z3.append(round(new_val[group_c[2]][n-1],5)) elif(g==4): name4.append(cell.name+'<br>'+group_c[1]) X4.append(round(new_val[group_c[2]][n-3],5)) Y4.append(round(new_val[group_c[2]][n-2],5)) Z4.append(round(new_val[group_c[2]][n-1],5)) elif(g==5): name5.append(cell.name+'<br>'+group_c[1]) X5.append(round(new_val[group_c[2]][n-3],5)) Y5.append(round(new_val[group_c[2]][n-2],5)) Z5.append(round(new_val[group_c[2]][n-1],5)) out_group.append([g,output_cell]) #logger.info('end pca') if(element_counter>show_row): big_flag=1 sid=str(uuid.uuid1())+".csv" if(return_html=='pca.html'): dataset_header=['Group Cell Line/Clinical Sample','Sample Name','Primary Site','Primary Histology' ,'Dataset','Paired Cell Line name/Clinical Sample','Sample Name','Primary Site','Primary Histology','Dataset','Distance'] else: dataset_header=['Group Cell Line/Clinical Sample','Primary Site','Primary Histology' ,'Dataset','Paired Cell Line name/Clinical Sample','Primary Site','Primary Histology','Dataset','Distance'] P=Path('../').resolve().joinpath('src','static','csv',sid) assP=Path('../').resolve().joinpath('src','assets','csv',sid) with open(str(assP), "w", newline='') as f: writer = csv.writer(f) for index,output_cell in out_group: writer.writerows([[udgroup[index-1]]]) writer.writerows([dataset_header]) for cell_line,b in output_cell: temp_b=[] if(return_html=='pca.html'): for group_cell,sn,dset,cname,sname,setname,dis,cell_object in b: temp_b.append([group_cell,sn,cell_line.primary_site,cell_line.primary_hist,dset,cname ,sname,cell_object.primary_site,cell_object.primary_hist,setname,dis]) else: for group_cell,group_dataset,paired_cell,paired_dataset,dis in b: temp_b.append([group_cell.name,group_cell.primary_site,group_cell.primary_hist,group_dataset ,paired_cell.name,paired_cell.primary_site,paired_cell.primary_hist,paired_dataset,dis]) writer.writerows(temp_b) #print('write first file done') ''' with open(str(assP), "w", newline='') as ff: writer = csv.writer(ff) for index,output_cell in out_group: writer.writerows([[udgroup[index-1]]]) writer.writerows([dataset_header]) for cell_line,b in output_cell: temp_b=[] if(return_html=='pca.html'): for group_cell,sn,dset,cname,sname,setname,dis,cell_object in b: temp_b.append([group_cell,sn,cell_line.primary_site,cell_line.primary_hist,dset,cname ,sname,cell_object.primary_site,cell_object.primary_hist,setname,dis]) else: for group_cell,group_dataset,paired_cell,paired_dataset,dis in b: temp_b.append([group_cell.name,group_cell.primary_site,group_cell.primary_hist,group_dataset ,paired_cell.name,paired_cell.primary_site,paired_cell.primary_hist,paired_dataset,dis]) writer.writerows(temp_b) ''' #print('write second file done') data_file_name=sid else: big_flag=0 data_file_name=0 return render_to_response(return_html,RequestContext(request, { 'udgroup':udgroup, 'min':min,'max':max, 'out_group':out_group, 'propotion':propotion, 'big_flag':big_flag, 'data_file_name':data_file_name, 'table_propotion':table_propotion, 'X1':X1,'name1':mark_safe(json.dumps(name1)), 'Y1':Y1,'name2':mark_safe(json.dumps(name2)), 'Z1':Z1,'name3':mark_safe(json.dumps(name3)), 'X2':X2,'name4':mark_safe(json.dumps(name4)), 'Y2':Y2,'name5':mark_safe(json.dumps(name5)), 'Z2':Z2, 'X3':X3, 'Y3':Y3, 'Z3':Z3, 'X4':X4, 'Y4':Y4, 'Z4':Z4, 'X5':X5, 'Y5':Y5, 'Z5':Z5, })) def cellline_microarray(request): # Pre-fetch the cell line field for all samples. # Reduce N query in to 1. N = number of samples d=Dataset.objects.all() d_name=list(d.values_list('name',flat=True)) datasets=[] #[[dataset_name,[[primary_site,[cell line]]]] an=[] for i in d_name: if i=="Sanger Cell Line Project": alias='sanger' elif i=="NCI60": alias='nci' elif i=="GSE36133": alias='gse' else: alias=i an.append(alias) sample=Sample.objects.filter(dataset_id__name=i).order_by('cell_line_id__primary_site').select_related('cell_line_id') datasets.append([i,alias,list(sample),[]]) sites=list(sample.values_list('cell_line_id__primary_site',flat=True)) hists=list(sample.values_list('cell_line_id__name',flat=True)) dis_prim=list(sample.values_list('cell_line_id__primary_site',flat=True).distinct()) hists=list(hists) id_counter=0 for p in range(0,len(dis_prim)): temp=sites.count(dis_prim[p]) datasets[-1][3].append([dis_prim[p],list(set(hists[id_counter:id_counter+temp]))]) id_counter+=temp return render(request, 'cellline_microarray.html', { 'an':mark_safe(json.dumps(an)), 'd_name':d_name, 'datasets':datasets, }) def cell_lines(request): #samples = Sample.objects.all().select_related('cell_line_id','dataset_id') #lines=CellLine.objects.all().distinct() #val_pairs = ( # (l, l.fcell_line_id.prefetch_related('dataset_id__name').values_list('dataset_id__name',flat=True).distinct()) # for l in lines # ) #context['val_pairs']=val_pairs cell_line_dict={} context={} nr_samples=[] samples=Sample.objects.all().select_related('cell_line_id','dataset_id').order_by('id') for ss in samples: name=ss.cell_line_id.name primary_site=ss.cell_line_id.primary_site primary_hist=ss.cell_line_id.primary_hist comb=name+"/"+primary_site+"/"+primary_hist dataset=ss.dataset_id.name try: sets=cell_line_dict[comb] if (dataset not in sets): cell_line_dict[comb]=dataset+"/"+sets except KeyError: cell_line_dict[comb]=dataset nr_samples.append(ss) val_pairs = ( (ss,cell_line_dict[ss.cell_line_id.name+"/"+ss.cell_line_id.primary_site+"/"+ss.cell_line_id.primary_hist]) for ss in nr_samples ) context['val_pairs']=val_pairs return render_to_response('cell_line.html', RequestContext(request, context)) def clinical_search(request): norm_name=[request.POST['normalize']] #get the normalize gene name #f_type=['age','gender','ethnic','grade','stage','stageT','stageN','stageM','metastatic'] age=[] gender=[] ethnic=[] grade=[] stage=[] T=[] N=[] M=[] metas=[] #get the probe/gene/id keywords if 'keyword' in request.POST and request.POST['keyword'] != '': words = request.POST['keyword'] words = list(set(words.split())) else: return HttpResponse("<p>where is your keyword?</p>") plus2_rank=np.load('ranking_u133plus2.npy') #open only plus2 platform rank sample_probe_val_pairs=[] #for output if 'gtype' in request.POST and request.POST['gtype'] == 'probeid': gene = ProbeID.objects.filter(platform__name__in=["PLUS2"]).filter(Probe_id__in=words).order_by('id') probe=list(gene.values_list('offset',flat=True)) ##print(gene) elif 'gtype' in request.POST and request.POST['gtype'] == 'symbol': gene = ProbeID.objects.filter(platform__name__in=["PLUS2"]).filter(Gene_symbol__in=words).order_by('id') probe=list(gene.values_list('offset',flat=True)) else: gene = ProbeID.objects.filter(platform__name__in=["PLUS2"]).filter(Entrez_id__in=words).order_by('id') probe=list(gene.values_list('offset',flat=True)) if request.POST['clinical_method'] == 'prim_dataset': if 'dataset' in request.POST and request.POST['dataset'] != '': datas=request.POST.getlist('dataset') else: d=Clinical_Dataset.objects.all() datas=d.values_list('name',flat=True) com_hists=list(set(request.POST.getlist('primhist'))) com_hists=[w1 for segments in com_hists for w1 in segments.split('/')] prims=com_hists[0::2] hists=com_hists[1::2] temp=request.POST.getlist('filter_primh') for i in temp: if 'stage/' in i: stage.append(i[6:]) elif 'gender/' in i: gender.append(i[7:]) elif 'ethnic/' in i: ethnic.append(i[7:]) elif 'grade/' in i: grade.append(i[6:]) elif 'stageT/' in i: T.append(i[7:]) elif 'stageN/' in i: N.append(i[7:]) elif 'stageM/' in i: M.append(i[7:]) elif 'metastatic/' in i: metas.append(i[11:]) ''' if i[11:]=='False': metas.append(0) else: metas.append(1) ''' else: #"age/" age.append(i[4:]) for sets in datas: samples=[] offset=[] if request.POST['clinical_method'] == 'prim_dataset': com_hists=list(set(request.POST.getlist('primd_'+sets))) #can I get this by label to reduce number of queries? com_hists=[w1 for segments in com_hists for w1 in segments.split('/')] prims=com_hists[0::2] hists=com_hists[1::2] temp=request.POST.getlist('filter_'+sets) age=[] gender=[] ethnic=[] grade=[] stage=[] T=[] N=[] M=[] metas=[] for i in temp: if 'stage/' in i: stage.append(i[6:]) elif 'gender/' in i: gender.append(i[7:]) elif 'ethnic/' in i: ethnic.append(i[7:]) elif 'grade/' in i: grade.append(i[6:]) elif 'stageT/' in i: T.append(i[7:]) elif 'stageN/' in i: N.append(i[7:]) elif 'stageM/' in i: M.append(i[7:]) elif 'metastatic/' in i: metas.append(i[11:]) ''' if i[11:]=='False': metas.append(0) else: metas.append(1) ''' else: #"age/" age.append(i[4:]) for i in range(0,len(prims)): #metas=[bool(x) for x in metas] s=Clinical_sample.objects.filter(dataset_id__name=sets,primary_site=prims[i], primary_hist=hists[i], age__in=age, gender__in=gender, ethnic__in=ethnic, stage__in=stage, grade__in=grade, stageT__in=T, stageN__in=N, stageM__in=M, metastatic__in=metas ).select_related('dataset_id').order_by('id') samples+=list(s) offset+=list(s.values_list('offset',flat=True)) ##print(s) pth=Path('../').resolve().joinpath('src',Clinical_Dataset.objects.get(name=sets).data_path) val=np.load(pth.as_posix(),mmap_mode='r') norm_probe=ProbeID.objects.filter(platform__name__in=["PLUS2"]).filter(Gene_symbol__in=norm_name).order_by('id') probe_offset=list(norm_probe.values_list('offset',flat=True)) temp=val[np.ix_(probe_offset,offset)] norm=np.mean(temp,axis=0, dtype=np.float64,keepdims=True) # Make a generator to generate all (cell, probe, val) pairs if(len(gene)!=0 and len(samples)!=0): raw_test=val[np.ix_(probe,offset)] normalize=np.subtract(raw_test,norm)#dimension different!!!! sample_probe_val_pairs += [ (c, p, raw_test[probe_ix, cell_ix],54614-np.where(plus2_rank==raw_test[probe_ix, cell_ix])[0],normalize[probe_ix, cell_ix]) for probe_ix, p in enumerate(gene) for cell_ix, c in enumerate(samples) ] return render(request, 'clinical_search.html', { 'sample_probe_val_pairs': sample_probe_val_pairs, }) def data(request): SANGER=[] sanger_flag=0 NCI=[] nci_flag=0 GSE=[] gse_flag=0 cell=[] ncicell=[] CCcell=[] ps_id='0' pn_id='0' if request.POST.get('cell_line_method','text') == 'text': if request.POST['cellline'] =='': return HttpResponse("<p>please make sure to enter cell line name in Step3.</p>" ) c = request.POST['cellline'] c = list(set(c.split())) sanger_flag=1 samples=Sample.objects.filter(dataset_id__name__in=['Sanger Cell Line Project']).order_by('id') cell=samples.select_related('cell_line_id','dataset_id').filter(cell_line_id__name__in=c).order_by('id') offset=list(cell.values_list('offset',flat=True)) ps_id='1' nci_flag=1 ncisamples=Sample.objects.filter(dataset_id__name__in=['NCI60']).select_related('cell_line_id','dataset_id').order_by('id') ncicell=ncisamples.filter(cell_line_id__name__in=c).order_by('id') ncioffset=list(ncicell.values_list('offset',flat=True)) pn_id='3' gse_flag=1 CCsamples=Sample.objects.filter(dataset_id__name__in=['GSE36133']).select_related('cell_line_id','dataset_id').order_by('id') CCcell=CCsamples.filter(cell_line_id__name__in=c).order_by('id') CCoffset=list(CCcell.values_list('offset',flat=True)) pn_id='3' else: if 'dataset' in request.POST and request.POST['dataset'] != '': datas=request.POST.getlist('dataset') if 'Sanger Cell Line Project' in datas: sanger_flag=1 SANGER=list(set(request.POST.getlist('select_sanger'))) samples=Sample.objects.filter(dataset_id__name__in=['Sanger Cell Line Project']).order_by('id') cell=samples.select_related('cell_line_id','dataset_id').filter(cell_line_id__name__in=SANGER).order_by('id') offset=list(cell.values_list('offset',flat=True)) ps_id=str(Platform.objects.filter(name__in=["U133A"])[0].id) if 'NCI60' in datas: nci_flag=1 NCI=list(set(request.POST.getlist('select_nci'))) ncisamples=Sample.objects.filter(dataset_id__name__in=['NCI60']).select_related('cell_line_id','dataset_id').order_by('id') ncicell=ncisamples.filter(cell_line_id__name__in=NCI).order_by('id') ncioffset=list(ncicell.values_list('offset',flat=True)) pn_id=str(Platform.objects.filter(name__in=["PLUS2"])[0].id) if 'GSE36133' in datas: gse_flag=1 GSE=list(set(request.POST.getlist('select_gse'))) CCsamples=Sample.objects.filter(dataset_id__name__in=['GSE36133']).select_related('cell_line_id','dataset_id').order_by('id') CCcell=CCsamples.filter(cell_line_id__name__in=GSE).order_by('id') CCoffset=list(CCcell.values_list('offset',flat=True)) pn_id=str(Platform.objects.filter(name__in=["PLUS2"])[0].id) if len(SANGER)==0 and len(NCI)==0 and len(GSE)==0: return HttpResponse("<p>please select primary sites.</p>" ) else: return HttpResponse("<p>please check Step3 again.</p>" ) if 'keyword' in request.POST and request.POST['keyword'] != '': words = request.POST['keyword'] words = list(set(words.split())) else: return HttpResponse("<p>where is your keyword?</p>") #open files sanger_val_pth=Path('../').resolve().joinpath('src','sanger_cell_line_proj.npy') nci_val_pth=Path('../').resolve().joinpath('src','nci60.npy') gse_val_pth=Path('../').resolve().joinpath('src','GSE36133.npy') sanger_val=np.load(sanger_val_pth.as_posix(),mmap_mode='r') nci_val=np.load(nci_val_pth.as_posix(),mmap_mode='r') gse_val=np.load(gse_val_pth.as_posix(),mmap_mode='r') u133a_rank=np.load('ranking_u133a.npy') plus2_rank=np.load('ranking_u133plus2.npy') gene = [] ncigene = [] CCgene = [] context={} norm_name=[request.POST['normalize']] if sanger_flag==1: #if request.POST['normalize']!='NTRK3-AS1': sanger_g=ProbeID.objects.filter(platform__in=ps_id).filter(Gene_symbol__in=norm_name).order_by('id') sanger_probe_offset=list(sanger_g.values_list('offset',flat=True)) temp=sanger_val[np.ix_(sanger_probe_offset,offset)] norm=np.mean(temp,axis=0, dtype=np.float64,keepdims=True) #else: # norm=0.0 else: norm=0.0 #if / should = 1 if nci_flag==1: nci_g=ProbeID.objects.filter(platform__in=pn_id).filter(Gene_symbol__in=norm_name).order_by('id') nci_probe_offset=list(nci_g.values_list('offset',flat=True)) temp=nci_val[np.ix_(nci_probe_offset,ncioffset)] nci_norm=np.mean(temp,axis=0, dtype=np.float64,keepdims=True) ##print(nci_norm) else: nci_norm=0.0 #if / should = 1 if gse_flag==1: CC_g=ProbeID.objects.filter(platform__in=pn_id).filter(Gene_symbol__in=norm_name).order_by('id') CC_probe_offset=list(CC_g.values_list('offset',flat=True)) temp=gse_val[np.ix_(CC_probe_offset,CCoffset)] CC_norm=np.mean(temp,axis=0, dtype=np.float64,keepdims=True) ##print(CC_norm) else: CC_norm=0.0 #if / should = 1 #dealing with probes if 'gtype' in request.POST and request.POST['gtype'] == 'probeid': gene = ProbeID.objects.filter(platform__in=ps_id).filter(Probe_id__in=words).order_by('id') probe_offset=list(gene.values_list('offset',flat=True)) ncigene = ProbeID.objects.filter(platform__in=pn_id).filter(Probe_id__in=words).order_by('id') nciprobe_offset=list(ncigene.values_list('offset',flat=True)) #nci60 and ccle use same probe set(ncigene) and nicprobe # Make a generator to generate all (cell, probe, val) pairs if(len(gene)!=0 and len(cell)!=0): raw_test=sanger_val[np.ix_(probe_offset,offset)] normalize=np.subtract(raw_test,norm)#dimension different!!!! #normalize=np.around(normalize, decimals=1) cell_probe_val_pairs = ( (c, p, raw_test[probe_ix, cell_ix],22216-np.where(u133a_rank==raw_test[probe_ix, cell_ix])[0],normalize[probe_ix, cell_ix]) for probe_ix, p in enumerate(gene) for cell_ix, c in enumerate(cell) ) else: cell_probe_val_pairs =() if(len(ncigene)!=0 and len(ncicell)!=0): nci_raw_test=nci_val[np.ix_(nciprobe_offset,ncioffset)] nci_normalize=np.subtract(nci_raw_test,nci_norm) nci_cell_probe_val_pairs = ( (c, p, nci_raw_test[probe_ix, cell_ix],54614-np.where(plus2_rank==nci_raw_test[probe_ix, cell_ix])[0],nci_normalize[probe_ix, cell_ix]) for probe_ix, p in enumerate(ncigene) for cell_ix, c in enumerate(ncicell) ) else: nci_cell_probe_val_pairs =() if(len(ncigene)!=0 and len(CCcell)!=0): CC_raw_test=gse_val[np.ix_(nciprobe_offset,CCoffset)] CC_normalize=np.subtract(CC_raw_test,CC_norm) CC_cell_probe_val_pairs = ( (c, p, CC_raw_test[probe_ix, cell_ix],54614-np.where(plus2_rank==CC_raw_test[probe_ix, cell_ix])[0],CC_normalize[probe_ix, cell_ix]) for probe_ix, p in enumerate(ncigene) for cell_ix, c in enumerate(CCcell) ) else: CC_cell_probe_val_pairs =() context['cell_probe_val_pairs']=cell_probe_val_pairs context['nci_cell_probe_val_pairs']=nci_cell_probe_val_pairs context['CC_cell_probe_val_pairs']=CC_cell_probe_val_pairs return render_to_response('data.html', RequestContext(request,context)) elif 'gtype' in request.POST and request.POST['gtype'] == 'symbol': gene = ProbeID.objects.filter(platform__in=ps_id).filter(Gene_symbol__in=words).order_by('id') probe_offset=gene.values_list('offset',flat=True) ncigene = ProbeID.objects.filter(platform__in=pn_id).filter(Gene_symbol__in=words).order_by('id') nciprobe_offset=ncigene.values_list('offset',flat=True) #nci60 and ccle use same probe set(ncigene) and nicprobe # Make a generator to generate all (cell, probe, val) pairs if(len(gene)!=0 and len(cell)!=0): raw_test=sanger_val[np.ix_(probe_offset,offset)] normalize=np.subtract(raw_test,norm) cell_probe_val_pairs = ( (c, p, raw_test[probe_ix, cell_ix],22216-np.where(u133a_rank==raw_test[probe_ix, cell_ix])[0],normalize[probe_ix, cell_ix]) for probe_ix, p in enumerate(gene) for cell_ix, c in enumerate(cell) ) else: cell_probe_val_pairs =() if(len(ncigene)!=0 and len(ncicell)!=0): nci_raw_test=nci_val[np.ix_(nciprobe_offset,ncioffset)] nci_normalize=np.subtract(nci_raw_test,nci_norm) nci_cell_probe_val_pairs = ( (c, p, nci_raw_test[probe_ix, cell_ix],54676-np.where(plus2_rank==nci_raw_test[probe_ix, cell_ix])[0],nci_normalize[probe_ix, cell_ix]) for probe_ix, p in enumerate(ncigene) for cell_ix, c in enumerate(ncicell) ) else: nci_cell_probe_val_pairs =() if(len(ncigene)!=0 and len(CCcell)!=0): CC_raw_test=gse_val[np.ix_(nciprobe_offset,CCoffset)] CC_normalize=np.subtract(CC_raw_test,CC_norm) CC_cell_probe_val_pairs = ( (c, p, CC_raw_test[probe_ix, cell_ix],54614-np.where(plus2_rank==CC_raw_test[probe_ix, cell_ix])[0],CC_normalize[probe_ix, cell_ix]) for probe_ix, p in enumerate(ncigene) for cell_ix, c in enumerate(CCcell) ) else: CC_cell_probe_val_pairs =() context['cell_probe_val_pairs']=cell_probe_val_pairs context['nci_cell_probe_val_pairs']=nci_cell_probe_val_pairs context['CC_cell_probe_val_pairs']=CC_cell_probe_val_pairs return render_to_response('data.html', RequestContext(request,context)) elif 'gtype' in request.POST and request.POST['gtype'] == 'entrez': gene = ProbeID.objects.filter(platform__in=ps_id).filter(Entrez_id=words).order_by('id') probe_offset=gene.values_list('offset',flat=True) ncigene = ProbeID.objects.filter(platform__in=pn_id).filter(Entrez_id__in=words).order_by('id') nciprobe_offset=ncigene.values_list('offset',flat=True) #nci60 and ccle use same probe set(ncigene) and nicprobe # Make a generator to generate all (cell, probe, val) pairs if(len(gene)!=0 and len(cell)!=0): raw_test=sanger_val[np.ix_(probe_offset,offset)] normalize=np.subtract(raw_test,norm) cell_probe_val_pairs = ( (c, p, raw_test[probe_ix, cell_ix],22216-np.where(u133a_rank==raw_test[probe_ix, cell_ix])[0],normalize[probe_ix, cell_ix]) for probe_ix, p in enumerate(gene) for cell_ix, c in enumerate(cell) ) else: cell_probe_val_pairs =() if(len(ncigene)!=0 and len(ncicell)!=0): nci_raw_test=nci_val[np.ix_(nciprobe_offset,ncioffset)] nci_normalize=np.subtract(nci_raw_test,nci_norm) nci_cell_probe_val_pairs = ( (c, p, nci_raw_test[probe_ix, cell_ix],54614-np.where(plus2_rank==nci_raw_test[probe_ix, cell_ix])[0],nci_normalize[probe_ix, cell_ix]) for probe_ix, p in enumerate(ncigene) for cell_ix, c in enumerate(ncicell) ) else: nci_cell_probe_val_pairs =() if(len(ncigene)!=0 and len(CCcell)!=0): CC_raw_test=gse_val[np.ix_(nciprobe_offset,CCoffset)] CC_normalize=np.subtract(CC_raw_test,CC_norm) CC_cell_probe_val_pairs = ( (c, p, CC_raw_test[probe_ix, cell_ix],54614-np.where(plus2_rank==CC_raw_test[probe_ix, cell_ix])[0],CC_normalize[probe_ix, cell_ix]) for probe_ix, p in enumerate(ncigene) for cell_ix, c in enumerate(CCcell) ) else: CC_cell_probe_val_pairs =() context['cell_probe_val_pairs']=cell_probe_val_pairs context['nci_cell_probe_val_pairs']=nci_cell_probe_val_pairs context['CC_cell_probe_val_pairs']=CC_cell_probe_val_pairs return render_to_response('data.html', RequestContext(request,context)) else: return HttpResponse( "<p>keyword type not match with your keyword input</p>" )
mit
xulesc/algos
knn/scripts/exp3.py
1
6922
# -*- coding: utf-8 -*- """ Created on Mon Jun 23 12:12:31 2014 @author: anuj """ print(__doc__) from time import time import numpy as np import pylab as pl from sklearn import metrics from sklearn.cluster import KMeans from sklearn.datasets import load_digits from sklearn.decomposition import PCA from sklearn.preprocessing import scale from sklearn.preprocessing import normalize from sklearn.neighbors import KNeighborsClassifier from sklearn.cross_validation import train_test_split from sklearn.metrics import confusion_matrix from sklearn import preprocessing from sklearn.naive_bayes import GaussianNB from sklearn.naive_bayes import MultinomialNB from sklearn import linear_model, datasets from sklearn.decomposition import PCA klas_file = '/home/anuj/workspace.custom/assignment/data/dataset_diabetes/diabetic_data.csv.klass' data_file = '/home/anuj/workspace.custom/assignment/data/dataset_diabetes/diabetic_data.csv.num' klasses = np.genfromtxt(klas_file, skip_header=1) n_data = np.genfromtxt(data_file, usecols=range(2, 11), skip_header=1,delimiter=',', missing_values='?') np.random.seed(42) data = normalize(n_data[~np.isnan(n_data).any(axis=1)], axis = 0) n_samples, n_features = [len(data), len(data[0])] n_digits = len(np.unique(klasses)) labels = klasses[~np.isnan(n_data).any(axis=1)] sample_size = int(10.0 * n_samples / 100) print("n_digits: %d, \t n_samples %d, \t n_features %d" % (n_digits, n_samples, n_features)) print(79 * '_') print('% 9s' % 'init' ' time inertia homo compl v-meas ARI AMI silhouette') def bench_k_means(estimator, name, data): t0 = time() estimator.fit(data) print('% 9s %.2fs %i %.3f %.3f %.3f %.3f %.3f' % (name, (time() - t0), estimator.inertia_, metrics.homogeneity_score(labels, estimator.labels_), metrics.completeness_score(labels, estimator.labels_), metrics.v_measure_score(labels, estimator.labels_), metrics.adjusted_rand_score(labels, estimator.labels_), metrics.adjusted_mutual_info_score(labels, estimator.labels_))) bench_k_means(KMeans(init='k-means++', n_clusters=n_digits, n_init=10), name="k-means++", data=data) bench_k_means(KMeans(init='random', n_clusters=n_digits, n_init=10), name="random", data=data) # in this case the seeding of the centers is deterministic, hence we run the # kmeans algorithm only once with n_init=1 pca = PCA(n_components=n_digits).fit(data) bench_k_means(KMeans(init=pca.components_, n_clusters=n_digits, n_init=1), name="PCA-based", data=data) print(79 * '_') ############################################################################### # Visualize the results on PCA-reduced data #reduced_data = PCA(n_components=2).fit_transform(data) #kmeans = KMeans(init='k-means++', n_clusters=n_digits, n_init=10) #kmeans.fit(reduced_data) # ## Step size of the mesh. Decrease to increase the quality of the VQ. #h = .02 # point in the mesh [x_min, m_max]x[y_min, y_max]. # ## Plot the decision boundary. For that, we will assign a color to each #x_min, x_max = reduced_data[:, 0].min() + 1, reduced_data[:, 0].max() - 1 #y_min, y_max = reduced_data[:, 1].min() + 1, reduced_data[:, 1].max() - 1 #xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # ## Obtain labels for each point in mesh. Use last trained model. #Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()]) # ## Put the result into a color plot #Z = Z.reshape(xx.shape) #pl.figure(1) #pl.clf() #pl.imshow(Z, interpolation='nearest', # extent=(xx.min(), xx.max(), yy.min(), yy.max()), # cmap=pl.cm.Paired, # aspect='auto', origin='lower') # #pl.plot(reduced_data[:, 0], reduced_data[:, 1], 'k.', markersize=2) ## Plot the centroids as a white X #centroids = kmeans.cluster_centers_ #pl.scatter(centroids[:, 0], centroids[:, 1], # marker='x', s=169, linewidths=3, # color='w', zorder=10) #pl.title('K-means clustering on the digits dataset (PCA-reduced data)\n' # 'Centroids are marked with white cross') #pl.xlim(x_min, x_max) #pl.ylim(y_min, y_max) #pl.xticks(()) #pl.yticks(()) #pl.show() ############################################################################### data_train, data_test, labels_train, labels_test = train_test_split(data, labels, test_size=0.20, random_state=42) neigh = KNeighborsClassifier(n_neighbors=5) neigh.fit(data_train, labels_train) #print neigh.score(data_test, labels_test) pred = neigh.predict(data_test) cm = confusion_matrix(labels_test, pred) print(cm) pl.matshow(cm) pl.title('Confusion matrix') pl.colorbar() pl.ylabel('True label') pl.xlabel('Predicted label') pl.show() ############################################################################### klas_file = '/home/anuj/workspace.custom/assignment/data/dataset_diabetes/diabetic_data.csv.klass' data_file = '/home/anuj/workspace.custom/assignment/data/dataset_diabetes/diabetic_data.csv.non_num' data_file2 = '/home/anuj/workspace.custom/assignment/data/dataset_diabetes/diabetic_data.csv.num' klasses = np.genfromtxt(klas_file, skip_header=1) n_data = np.genfromtxt(data_file, skip_header=1,delimiter=',',dtype='|S5') n_data_num = np.genfromtxt(data_file2, usecols=range(2, 11), skip_header=1,delimiter=',', missing_values='?') #n_data = n_data[~np.isnan(n_data).any(axis=1)] exc = np.isnan(n_data_num).any(axis=1) n_data_num_n = normalize(n_data_num[~exc], axis = 0) labels = klasses[~exc] n_data2 = n_data[~exc] n_data2 = [x[:len(x) - 1] for x in n_data2] n_data2 = np.transpose(n_data2) le = preprocessing.LabelEncoder() n_data3 = [le.fit(d).transform(d) for d in n_data2] ############## #f_data = np.transpose(n_data3) f_data = n_data_num_n #for x in np.transpose(n_data_num_n): # f_data.append(x) #f_data = np.transpose(f_data) ############## data_train, data_test, labels_train, labels_test = train_test_split(f_data, labels, test_size=0.20, random_state=42) neigh = KNeighborsClassifier(n_neighbors=1) #neigh = MultinomialNB() print('%d:%d\n' %(sum(labels_train),len(labels_train))) neigh.fit(data_train, labels_train) #print neigh.score(data_test, labels_test) pred = neigh.predict(data_test) print('%d:%d:%d:%d\n' %(sum(labels_test),len(labels_test),sum(pred),len(pred))) cm = confusion_matrix(labels_test, pred) print(cm) pl.matshow(cm) pl.title('Confusion matrix') pl.colorbar() pl.ylabel('True label') pl.xlabel('Predicted label') pl.show() ############## ############################################################################### f = '/home/anuj/workspace.custom/assignment/data/dataset_diabetes/diabetic_data.csv' d1 = np.genfromtxt(f, delimiter = ',', names=True) names = d1.dtype.names d = np.genfromtxt(f, delimiter = ',', dtype='|S5', skip_header=1) dc = np.transpose(d) for x, name in zip(dc, names): print '%s: %d' %(name, len(np.unique(x))) ##
gpl-3.0
RenqinCai/python_dataset
LR/shuffle_v8.py
2
13109
###new function:shuffling the reviewing time and debug the program ###R is set to a constant value import simplejson as json import datetime import time import numpy as np import math from multiprocessing import Pool from multiprocessing.dummy import Pool as ThreadPool from dateutil.relativedelta import * from sklearn.linear_model import LogisticRegression from sklearn.cross_validation import train_test_split from sklearn import metrics from sklearn.cross_validation import cross_val_score def string_toDatetime(string): return datetime.datetime.strptime(string, "%Y-%m-%d") def string_toYear(string): return datetime.datetime.strptime(string[0:4], "%Y").date() def string_toYearMonth(string): return datetime.datetime.strptime(string[0:7], "%Y-%m").date() def monthDiff(timeDate1, timeDate2): return (timeDate1.year-timeDate2.year)*12 + (timeDate1.month-timeDate2.month) def yearDiff(timeDate1, timeDate2): return (timeDate1.year-timeDate2) def betweenTime(timeDate, downTime, upTime): if ((monthDiff(timeDate, downTime) < 0)or(monthDiff(upTime, timeDate) < 0)): return False else: return True ##### ###the data structure of userInfo is a list which stores the dict of a user ###userInfo {user:{"sinceTime":sinceTime, "reviewTime":reviewTime, "active":0,1, "friends":[]}} ###reviewTime represents the first time user review the business. ###for different business, the reviewTime and active is different ###timeUserData {time:[user]} ########## def loadUser(): userInfo = {} timeUserData = {} defaultReviewTime = string_toYearMonth('2015-01') defaultActive = 0 userSet = set() userSum = 0 userFile = "../../dataset/user.json" with open(userFile) as f: for line in f: userJson = json.loads(line) user=userJson["user"] friend = userJson["friends"] sinceTime = string_toYearMonth(userJson["sinceTime"]) userInfo.setdefault(user, {}) userInfo[user]["sinceTime"] = sinceTime userInfo[user]["reviewTime"] = defaultReviewTime userInfo[user]["active"] = defaultActive userInfo[user]["friends"] = [] timeUserData.setdefault(sinceTime, []) timeUserData[sinceTime].append(user) if friend: for f in friend: userInfo[user]["friends"].append(f) userSum += 1 userSet.add(user) userList = list(userSet) print "load Friend" print "total userSum %d"%userSum return (userInfo, timeUserData, userSum, userList) ####load reviewData as format:{business:{reviewTime:[user]}} ####store reviewSum for a business as format: {business:businessSum} ###store timeReviewerDict_allBiz {time:[user]} def loadReview(): reviewData = {} reviewSum = {} timeReviewerDict_allBiz = {} reviewFile = "../../dataset/review.json" with open(reviewFile) as f: for line in f: reviewJson = json.loads(line) business = reviewJson["business"] user = reviewJson["user"] reviewTime = string_toYearMonth(reviewJson["date"]) reviewData.setdefault(business, {}) reviewData[business].setdefault(reviewTime, []) reviewData[business][reviewTime].append(user) timeReviewerDict_allBiz.setdefault(reviewTime, []) timeReviewerDict_allBiz[reviewTime].append(user) reviewSum.setdefault(business, 0) reviewSum[business] += 1 return (reviewData, reviewSum, timeReviewerDict_allBiz) ###filter business which has more than 10 users in the period ####businessList contains these business def filterReviewData(reviewData, reviewSum): print "review process" reviewSet = set() for business in reviewSum.keys(): bNum = reviewSum[business] if bNum > 50: reviewSet.add(business) reviewList = list(reviewSet) # finalBusinessList = list(finalBusinessSet) print "end process" return (reviewList) ####selectBusiness which is a list contains the sequence number selected def randomBusiness(totalNum, randomNum): business = [i for i in range(totalNum)] selectBusiness = [] for i in range(randomNum): k = np.random.randint(0, totalNum-i)+i temp = business[i] business[i] = business[k] business[k] = temp selectBusiness.append(business[i]) return selectBusiness #####from selectBusiness(a list)get the sequence number ###store the business_id into selectBusinessList. def randomSelectBusiness(reviewList, selectBusinessNum): businessSet = set(reviewList) businessLen = len(businessSet) if businessLen < selectBusinessNum: selectBusinessList = reviewList else: selectBusiness = randomBusiness(businessLen, selectBusinessNum) selectBusinessList = [reviewList[i] for i in selectBusiness] return selectBusinessList def increMonth(baseMonth): return baseMonth+relativedelta(months=+1) ###cut part of the dict and sort the dict def SortDict_Time(timeValDict, userInfo): sortedTimeValDict = {} timeList = sorted(timeValDict) timeSet = set(timeList) timeUserDict_oneBiz = {}##{time:[user]} periodList = [] timeUserLenDict = {} WList_oneBiz = [] ##w in the paper tempWList_oneBiz = [] WSet_oneBiz = set() monthRange = 18 if(monthRange > len(timeList)): monthRange = len(timeList) monthTime = timeList[0] for i in range(monthRange): periodList.append(monthTime) if monthTime in timeSet: sortedTimeValDict.setdefault(monthTime, []) timeUserLenDict.setdefault(monthTime, 0) reviewUserList = timeValDict[monthTime] reviewUserSet = set(reviewUserList) reviewUserSet = reviewUserSet.difference(WSet_oneBiz) reviewUserList = list(reviewUserSet) sortedTimeValDict[monthTime] = reviewUserList timeUserLenDict[monthTime] = len(reviewUserList) WSet_oneBiz = WSet_oneBiz.union(reviewUserSet) monthTime = increMonth(monthTime) WList_oneBiz = list(WSet_oneBiz) tempWList_oneBiz = list(WSet_oneBiz) for t in periodList: for user in tempWList_oneBiz: uSinceTime = userInfo[user]["sinceTime"] if (monthDiff(uSinceTime, t)<=0): timeUserDict_oneBiz.setdefault(t, []) timeUserDict_oneBiz[t].append(user) tempWList_oneBiz.remove(user) return (sortedTimeValDict, periodList, WList_oneBiz, timeUserDict_oneBiz, timeUserLenDict) ###update the userInfo: "reviewTime", "active" for a business def UpdateUserInfo_oneBiz(userInfo, timeReviewerDict_oneBiz, selectBusiness): repeatReviewUserSet = set() for t in timeReviewerDict_oneBiz.keys(): reviewUserList = timeReviewerDict_oneBiz[t] reviewUserSet = set(reviewUserList) for u in reviewUserSet: preActive = userInfo[u]["active"] if(preActive == 1): continue else: userInfo[u]["active"] = 1 userInfo[u]["reviewTime"] = t ##timeReviewerDict_oneBiz {time:[reviewer]} def ResetUserInfo_oneBiz(userInfo, timeReviewerDict_oneBiz): defaultReviewTime = string_toYearMonth('2015-01') defaultActive = 0 for t in timeReviewerDict_oneBiz.keys(): reviewUserSet = set(timeReviewerDict_oneBiz[t]) for u in reviewUserSet: userInfo[u]["reviewTime"] = defaultReviewTime userInfo[u]["active"] = defaultActive def UpdateTimeReviewer_allBiz(reviewData, selectBusiness, timeReviewerDict_oneBiz): for t in timeReviewerDict_oneBiz.keys(): reviewUserList = timeReviewerDict_oneBiz[t] reviewData[selectBusiness][t] = reviewUserList def ResetTimeReviewer_allBiz(reviewData, selectBusiness, timeReviewerDict_oneBiz): for t in timeReviewerDict_oneBiz.keys(): reviewUserList = timeReviewerDict_oneBiz[t] reviewData[selectBusiness][t] = reviewUserList def compute_oneBiz(userInfo, selectBusiness, reviewData): timereviewerDict_allBiz = dict(reviewData) reviewDict_oneBiz = timereviewerDict_allBiz[selectBusiness] (timeReviewerDict_oneBiz, periodList, WList_oneBiz, timeUserDict_oneBiz, timeUserLenDict) = SortDict_Time(reviewDict_oneBiz, userInfo) ###before permute UpdateUserInfo_oneBiz(userInfo, timeReviewerDict_oneBiz, selectBusiness) (LR_coef, LR_intercept) = LR_oneBiz(periodList, userInfo, timereviewerDict_allBiz) ResetUserInfo_oneBiz(userInfo, timeReviewerDict_oneBiz) ###permuteTime permute_timeReviewerDict_oneBiz = permuteTime(timeReviewerDict_oneBiz, timeUserDict_oneBiz, periodList, timeUserLenDict) UpdateUserInfo_oneBiz(userInfo, permute_timeReviewerDict_oneBiz, selectBusiness) UpdateTimeReviewer_allBiz(timereviewerDict_allBiz, selectBusiness, permute_timeReviewerDict_oneBiz) (LR_coef2, LR_intercept2) = LR_oneBiz(periodList, userInfo, timereviewerDict_allBiz) ResetUserInfo_oneBiz(userInfo, permute_timeReviewerDict_oneBiz) ResetTimeReviewer_allBiz(timereviewerDict_allBiz, selectBusiness, timeReviewerDict_oneBiz) return (LR_coef, LR_coef2) def LR_oneBiz(periodList, userInfo, reviewData): R = 10 Y = [0 for i in range(R+2)] N = [0 for i in range(R+2)] feature = [] output = [] activeZeroSum = 0 unactiveZeroSum = 0 positive = 0 negative = 0 totalReviewUserSet = set() for t in periodList: #print t activeUserSet = set() reviewUserSet = set() raw_reviewUserSet = set() ###fix bugs: the reviewUserList_oneBiz does not change for b in reviewData.keys(): if(reviewData[b].has_key(t)): raw_reviewUserSet = raw_reviewUserSet.union(set(reviewData[b][t])) reviewUserSet = raw_reviewUserSet totalReviewUserSet=totalReviewUserSet.union(reviewUserSet) for u in totalReviewUserSet: uReviewTime = userInfo[u]["reviewTime"] uActive = userInfo[u]["active"] if(uActive == 1): if (uReviewTime == t): uActiveFriendSum = activeFriend_Sum(u, userInfo, t) output.append(uActive) positive += 1 if(uActiveFriendSum == 0): activeZeroSum += 1 if uActiveFriendSum > R: feature.append(R+1) Y[R+1] += 1 else: feature.append(uActiveFriendSum) Y[uActiveFriendSum] += 1 activeUserSet.add(u) else: negative += 1 uActiveFriendSum = activeFriend_Sum(u, userInfo, t) output.append(uActive) if(uActiveFriendSum == 0): unactiveZeroSum += 1 if uActiveFriendSum > R: feature.append(R+1) N[R+1] += 1 else: feature.append(uActiveFriendSum) N[uActiveFriendSum] += 1 totalReviewUserSet = totalReviewUserSet.difference(activeUserSet) #print "positive %d negative %d"%(positive, negative) (LR_coef, LR_intercept) = LR_result(feature, output) return (LR_coef, LR_intercept) def LR_result(x, y): #print x model = LogisticRegression() x_feature = [[math.log(i+1)] for i in x] model = model.fit(x_feature, y) print model.score(x_feature, y) return (model.coef_, model.intercept_) def activeFriend_Sum(user, userInfo, uReviewTime): friendList = userInfo[user]["friends"] friendSet = set(friendList) activeFriendSum = 0 friendLen = len(friendSet) for f in friendSet: fActive = userInfo[f]["active"] if (fActive == 0): continue fReviewTime = userInfo[f]["reviewTime"] if(monthDiff(fReviewTime, uReviewTime)<0): activeFriendSum += 1 #print "active%d"%activeFriendSum return activeFriendSum def compute_oneBiz_helper(args): return compute_oneBiz(*args) def permuteTime(timeReviewerDict_oneBiz, timeUserDict_oneBiz, periodList, timeUserLenDict): permute_timeReviewerDict_oneBiz = {} totalSinceUserSet = set() for t in periodList: ##todo selectReviewerSum = 0 if timeUserLenDict.has_key(t): selectReviewerSum = timeUserLenDict[t] sinceUserSet = set() if timeUserDict_oneBiz.has_key(t): sinceUserList = timeUserDict_oneBiz[t] sinceUserSet = set(sinceUserList) totalSinceUserSet = totalSinceUserSet.union(sinceUserSet) selectUserList = randomSelectBusiness(list(totalSinceUserSet), selectReviewerSum) selectUserSet = set(selectUserList) permute_timeReviewerDict_oneBiz.setdefault(t, []) permute_timeReviewerDict_oneBiz[t] = selectUserList totalSinceUserSet = totalSinceUserSet.difference(selectUserSet) return permute_timeReviewerDict_oneBiz def mainFunction(): f1_result = open("coef1_result.txt", "w") f2_result = open("coef2_result.txt", "w") (userInfo, timeUserData, userSum, userList) = loadUser() (reviewData, reviewSum, timeReviewUser) = loadReview() (reviewList) = filterReviewData(reviewData, reviewSum) selectBusinessNum = 1 selectBusinessList = randomSelectBusiness(reviewList, selectBusinessNum) selectBusinessSet = set(selectBusinessList) beginTime = datetime.datetime.now() positiveCoef = 0 negativeCoef = 0 results=[] pool_args = [(userInfo, i, reviewData) for i in selectBusinessSet] pool = ThreadPool(8) results = pool.map(compute_oneBiz_helper, pool_args) # results = [] # for i in range(selectBusinessNum): # selectBusiness = selectBusinessList[i] # reviewData_allBiz = dict(reviewData) # (LR_coef, LR_coef2) = compute_oneBiz(userInfo, selectBusiness, reviewData_allBiz) # results.append((LR_coef, LR_coef2)) for (LR_coef, LR_coef2) in results: f1_result.write("%s\n"%LR_coef) f2_result.write("%s\n"%LR_coef2) endTime = datetime.datetime.now() timeIntervals = (endTime-beginTime).seconds print "time interval %s"%timeIntervals f1_result.write("time interval %s"%timeIntervals) f2_result.write("time interval %s"%timeIntervals) f1_result.close() f2_result.close() mainFunction()
gpl-2.0
herilalaina/scikit-learn
sklearn/learning_curve.py
27
15421
"""Utilities to evaluate models with respect to a variable """ # Author: Alexander Fabisch <[email protected]> # # License: BSD 3 clause import warnings import numpy as np from .base import is_classifier, clone from .cross_validation import check_cv from .externals.joblib import Parallel, delayed from .cross_validation import _safe_split, _score, _fit_and_score from .metrics.scorer import check_scoring from .utils import indexable warnings.warn("This module was deprecated in version 0.18 in favor of the " "model_selection module into which all the functions are moved." " This module will be removed in 0.20", DeprecationWarning) __all__ = ['learning_curve', 'validation_curve'] def learning_curve(estimator, X, y, train_sizes=np.linspace(0.1, 1.0, 5), cv=None, scoring=None, exploit_incremental_learning=False, n_jobs=1, pre_dispatch="all", verbose=0, error_score='raise'): """Learning curve. .. deprecated:: 0.18 This module will be removed in 0.20. Use :func:`sklearn.model_selection.learning_curve` instead. Determines cross-validated training and test scores for different training set sizes. A cross-validation generator splits the whole dataset k times in training and test data. Subsets of the training set with varying sizes will be used to train the estimator and a score for each training subset size and the test set will be computed. Afterwards, the scores will be averaged over all k runs for each training subset size. Read more in the :ref:`User Guide <learning_curves>`. Parameters ---------- estimator : object type that implements the "fit" and "predict" methods An object of that type which is cloned for each validation. X : array-like, shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples) or (n_samples, n_features), optional Target relative to X for classification or regression; None for unsupervised learning. train_sizes : array-like, shape (n_ticks,), dtype float or int Relative or absolute numbers of training examples that will be used to generate the learning curve. If the dtype is float, it is regarded as a fraction of the maximum size of the training set (that is determined by the selected validation method), i.e. it has to be within (0, 1]. Otherwise it is interpreted as absolute sizes of the training sets. Note that for classification the number of samples usually have to be big enough to contain at least one sample from each class. (default: np.linspace(0.1, 1.0, 5)) cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if the estimator is a classifier and ``y`` is either binary or multiclass, :class:`sklearn.model_selection.StratifiedKFold` is used. In all other cases, :class:`sklearn.model_selection.KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. exploit_incremental_learning : boolean, optional, default: False If the estimator supports incremental learning, this will be used to speed up fitting for different training set sizes. n_jobs : integer, optional Number of jobs to run in parallel (default 1). pre_dispatch : integer or string, optional Number of predispatched jobs for parallel execution (default is all). The option can reduce the allocated memory. The string can be an expression like '2*n_jobs'. verbose : integer, optional Controls the verbosity: the higher, the more messages. error_score : 'raise' (default) or numeric Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. Returns ------- train_sizes_abs : array, shape = (n_unique_ticks,), dtype int Numbers of training examples that has been used to generate the learning curve. Note that the number of ticks might be less than n_ticks because duplicate entries will be removed. train_scores : array, shape (n_ticks, n_cv_folds) Scores on training sets. test_scores : array, shape (n_ticks, n_cv_folds) Scores on test set. Notes ----- See :ref:`examples/model_selection/plot_learning_curve.py <sphx_glr_auto_examples_model_selection_plot_learning_curve.py>` """ if exploit_incremental_learning and not hasattr(estimator, "partial_fit"): raise ValueError("An estimator must support the partial_fit interface " "to exploit incremental learning") X, y = indexable(X, y) # Make a list since we will be iterating multiple times over the folds cv = list(check_cv(cv, X, y, classifier=is_classifier(estimator))) scorer = check_scoring(estimator, scoring=scoring) # HACK as long as boolean indices are allowed in cv generators if cv[0][0].dtype == bool: new_cv = [] for i in range(len(cv)): new_cv.append((np.nonzero(cv[i][0])[0], np.nonzero(cv[i][1])[0])) cv = new_cv n_max_training_samples = len(cv[0][0]) # Because the lengths of folds can be significantly different, it is # not guaranteed that we use all of the available training data when we # use the first 'n_max_training_samples' samples. train_sizes_abs = _translate_train_sizes(train_sizes, n_max_training_samples) n_unique_ticks = train_sizes_abs.shape[0] if verbose > 0: print("[learning_curve] Training set sizes: " + str(train_sizes_abs)) parallel = Parallel(n_jobs=n_jobs, pre_dispatch=pre_dispatch, verbose=verbose) if exploit_incremental_learning: classes = np.unique(y) if is_classifier(estimator) else None out = parallel(delayed(_incremental_fit_estimator)( clone(estimator), X, y, classes, train, test, train_sizes_abs, scorer, verbose) for train, test in cv) else: out = parallel(delayed(_fit_and_score)( clone(estimator), X, y, scorer, train[:n_train_samples], test, verbose, parameters=None, fit_params=None, return_train_score=True, error_score=error_score) for train, test in cv for n_train_samples in train_sizes_abs) out = np.array(out)[:, :2] n_cv_folds = out.shape[0] // n_unique_ticks out = out.reshape(n_cv_folds, n_unique_ticks, 2) out = np.asarray(out).transpose((2, 1, 0)) return train_sizes_abs, out[0], out[1] def _translate_train_sizes(train_sizes, n_max_training_samples): """Determine absolute sizes of training subsets and validate 'train_sizes'. Examples: _translate_train_sizes([0.5, 1.0], 10) -> [5, 10] _translate_train_sizes([5, 10], 10) -> [5, 10] Parameters ---------- train_sizes : array-like, shape (n_ticks,), dtype float or int Numbers of training examples that will be used to generate the learning curve. If the dtype is float, it is regarded as a fraction of 'n_max_training_samples', i.e. it has to be within (0, 1]. n_max_training_samples : int Maximum number of training samples (upper bound of 'train_sizes'). Returns ------- train_sizes_abs : array, shape (n_unique_ticks,), dtype int Numbers of training examples that will be used to generate the learning curve. Note that the number of ticks might be less than n_ticks because duplicate entries will be removed. """ train_sizes_abs = np.asarray(train_sizes) n_ticks = train_sizes_abs.shape[0] n_min_required_samples = np.min(train_sizes_abs) n_max_required_samples = np.max(train_sizes_abs) if np.issubdtype(train_sizes_abs.dtype, np.floating): if n_min_required_samples <= 0.0 or n_max_required_samples > 1.0: raise ValueError("train_sizes has been interpreted as fractions " "of the maximum number of training samples and " "must be within (0, 1], but is within [%f, %f]." % (n_min_required_samples, n_max_required_samples)) train_sizes_abs = (train_sizes_abs * n_max_training_samples).astype( dtype=np.int, copy=False) train_sizes_abs = np.clip(train_sizes_abs, 1, n_max_training_samples) else: if (n_min_required_samples <= 0 or n_max_required_samples > n_max_training_samples): raise ValueError("train_sizes has been interpreted as absolute " "numbers of training samples and must be within " "(0, %d], but is within [%d, %d]." % (n_max_training_samples, n_min_required_samples, n_max_required_samples)) train_sizes_abs = np.unique(train_sizes_abs) if n_ticks > train_sizes_abs.shape[0]: warnings.warn("Removed duplicate entries from 'train_sizes'. Number " "of ticks will be less than the size of " "'train_sizes' %d instead of %d)." % (train_sizes_abs.shape[0], n_ticks), RuntimeWarning) return train_sizes_abs def _incremental_fit_estimator(estimator, X, y, classes, train, test, train_sizes, scorer, verbose): """Train estimator on training subsets incrementally and compute scores.""" train_scores, test_scores = [], [] partitions = zip(train_sizes, np.split(train, train_sizes)[:-1]) for n_train_samples, partial_train in partitions: train_subset = train[:n_train_samples] X_train, y_train = _safe_split(estimator, X, y, train_subset) X_partial_train, y_partial_train = _safe_split(estimator, X, y, partial_train) X_test, y_test = _safe_split(estimator, X, y, test, train_subset) if y_partial_train is None: estimator.partial_fit(X_partial_train, classes=classes) else: estimator.partial_fit(X_partial_train, y_partial_train, classes=classes) train_scores.append(_score(estimator, X_train, y_train, scorer)) test_scores.append(_score(estimator, X_test, y_test, scorer)) return np.array((train_scores, test_scores)).T def validation_curve(estimator, X, y, param_name, param_range, cv=None, scoring=None, n_jobs=1, pre_dispatch="all", verbose=0): """Validation curve. .. deprecated:: 0.18 This module will be removed in 0.20. Use :func:`sklearn.model_selection.validation_curve` instead. Determine training and test scores for varying parameter values. Compute scores for an estimator with different values of a specified parameter. This is similar to grid search with one parameter. However, this will also compute training scores and is merely a utility for plotting the results. Read more in the :ref:`User Guide <validation_curve>`. Parameters ---------- estimator : object type that implements the "fit" and "predict" methods An object of that type which is cloned for each validation. X : array-like, shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples) or (n_samples, n_features), optional Target relative to X for classification or regression; None for unsupervised learning. param_name : string Name of the parameter that will be varied. param_range : array-like, shape (n_values,) The values of the parameter that will be evaluated. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if the estimator is a classifier and ``y`` is either binary or multiclass, :class:`sklearn.model_selection.StratifiedKFold` is used. In all other cases, :class:`sklearn.model_selection.KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. n_jobs : integer, optional Number of jobs to run in parallel (default 1). pre_dispatch : integer or string, optional Number of predispatched jobs for parallel execution (default is all). The option can reduce the allocated memory. The string can be an expression like '2*n_jobs'. verbose : integer, optional Controls the verbosity: the higher, the more messages. Returns ------- train_scores : array, shape (n_ticks, n_cv_folds) Scores on training sets. test_scores : array, shape (n_ticks, n_cv_folds) Scores on test set. Notes ----- See :ref:`examples/model_selection/plot_validation_curve.py <sphx_glr_auto_examples_model_selection_plot_validation_curve.py>` """ X, y = indexable(X, y) cv = check_cv(cv, X, y, classifier=is_classifier(estimator)) scorer = check_scoring(estimator, scoring=scoring) parallel = Parallel(n_jobs=n_jobs, pre_dispatch=pre_dispatch, verbose=verbose) out = parallel(delayed(_fit_and_score)( clone(estimator), X, y, scorer, train, test, verbose, parameters={param_name: v}, fit_params=None, return_train_score=True) for train, test in cv for v in param_range) out = np.asarray(out)[:, :2] n_params = len(param_range) n_cv_folds = out.shape[0] // n_params out = out.reshape(n_cv_folds, n_params, 2).transpose((2, 1, 0)) return out[0], out[1]
bsd-3-clause
aetilley/scikit-learn
sklearn/datasets/samples_generator.py
45
56433
""" Generate samples of synthetic data sets. """ # Authors: B. Thirion, G. Varoquaux, A. Gramfort, V. Michel, O. Grisel, # G. Louppe, J. Nothman # License: BSD 3 clause import numbers import warnings import array import numpy as np from scipy import linalg import scipy.sparse as sp from ..preprocessing import MultiLabelBinarizer from ..utils import check_array, check_random_state from ..utils import shuffle as util_shuffle from ..utils.fixes import astype from ..utils.random import sample_without_replacement from ..externals import six map = six.moves.map zip = six.moves.zip def _generate_hypercube(samples, dimensions, rng): """Returns distinct binary samples of length dimensions """ if dimensions > 30: return np.hstack([_generate_hypercube(samples, dimensions - 30, rng), _generate_hypercube(samples, 30, rng)]) out = astype(sample_without_replacement(2 ** dimensions, samples, random_state=rng), dtype='>u4', copy=False) out = np.unpackbits(out.view('>u1')).reshape((-1, 32))[:, -dimensions:] return out def make_classification(n_samples=100, n_features=20, n_informative=2, n_redundant=2, n_repeated=0, n_classes=2, n_clusters_per_class=2, weights=None, flip_y=0.01, class_sep=1.0, hypercube=True, shift=0.0, scale=1.0, shuffle=True, random_state=None): """Generate a random n-class classification problem. This initially creates clusters of points normally distributed (std=1) about vertices of a `2 * class_sep`-sided hypercube, and assigns an equal number of clusters to each class. It introduces interdependence between these features and adds various types of further noise to the data. Prior to shuffling, `X` stacks a number of these primary "informative" features, "redundant" linear combinations of these, "repeated" duplicates of sampled features, and arbitrary noise for and remaining features. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=20) The total number of features. These comprise `n_informative` informative features, `n_redundant` redundant features, `n_repeated` duplicated features and `n_features-n_informative-n_redundant- n_repeated` useless features drawn at random. n_informative : int, optional (default=2) The number of informative features. Each class is composed of a number of gaussian clusters each located around the vertices of a hypercube in a subspace of dimension `n_informative`. For each cluster, informative features are drawn independently from N(0, 1) and then randomly linearly combined within each cluster in order to add covariance. The clusters are then placed on the vertices of the hypercube. n_redundant : int, optional (default=2) The number of redundant features. These features are generated as random linear combinations of the informative features. n_repeated : int, optional (default=0) The number of duplicated features, drawn randomly from the informative and the redundant features. n_classes : int, optional (default=2) The number of classes (or labels) of the classification problem. n_clusters_per_class : int, optional (default=2) The number of clusters per class. weights : list of floats or None (default=None) The proportions of samples assigned to each class. If None, then classes are balanced. Note that if `len(weights) == n_classes - 1`, then the last class weight is automatically inferred. More than `n_samples` samples may be returned if the sum of `weights` exceeds 1. flip_y : float, optional (default=0.01) The fraction of samples whose class are randomly exchanged. class_sep : float, optional (default=1.0) The factor multiplying the hypercube dimension. hypercube : boolean, optional (default=True) If True, the clusters are put on the vertices of a hypercube. If False, the clusters are put on the vertices of a random polytope. shift : float, array of shape [n_features] or None, optional (default=0.0) Shift features by the specified value. If None, then features are shifted by a random value drawn in [-class_sep, class_sep]. scale : float, array of shape [n_features] or None, optional (default=1.0) Multiply features by the specified value. If None, then features are scaled by a random value drawn in [1, 100]. Note that scaling happens after shifting. shuffle : boolean, optional (default=True) Shuffle the samples and the features. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. y : array of shape [n_samples] The integer labels for class membership of each sample. Notes ----- The algorithm is adapted from Guyon [1] and was designed to generate the "Madelon" dataset. References ---------- .. [1] I. Guyon, "Design of experiments for the NIPS 2003 variable selection benchmark", 2003. See also -------- make_blobs: simplified variant make_multilabel_classification: unrelated generator for multilabel tasks """ generator = check_random_state(random_state) # Count features, clusters and samples if n_informative + n_redundant + n_repeated > n_features: raise ValueError("Number of informative, redundant and repeated " "features must sum to less than the number of total" " features") if 2 ** n_informative < n_classes * n_clusters_per_class: raise ValueError("n_classes * n_clusters_per_class must" " be smaller or equal 2 ** n_informative") if weights and len(weights) not in [n_classes, n_classes - 1]: raise ValueError("Weights specified but incompatible with number " "of classes.") n_useless = n_features - n_informative - n_redundant - n_repeated n_clusters = n_classes * n_clusters_per_class if weights and len(weights) == (n_classes - 1): weights.append(1.0 - sum(weights)) if weights is None: weights = [1.0 / n_classes] * n_classes weights[-1] = 1.0 - sum(weights[:-1]) # Distribute samples among clusters by weight n_samples_per_cluster = [] for k in range(n_clusters): n_samples_per_cluster.append(int(n_samples * weights[k % n_classes] / n_clusters_per_class)) for i in range(n_samples - sum(n_samples_per_cluster)): n_samples_per_cluster[i % n_clusters] += 1 # Intialize X and y X = np.zeros((n_samples, n_features)) y = np.zeros(n_samples, dtype=np.int) # Build the polytope whose vertices become cluster centroids centroids = _generate_hypercube(n_clusters, n_informative, generator).astype(float) centroids *= 2 * class_sep centroids -= class_sep if not hypercube: centroids *= generator.rand(n_clusters, 1) centroids *= generator.rand(1, n_informative) # Initially draw informative features from the standard normal X[:, :n_informative] = generator.randn(n_samples, n_informative) # Create each cluster; a variant of make_blobs stop = 0 for k, centroid in enumerate(centroids): start, stop = stop, stop + n_samples_per_cluster[k] y[start:stop] = k % n_classes # assign labels X_k = X[start:stop, :n_informative] # slice a view of the cluster A = 2 * generator.rand(n_informative, n_informative) - 1 X_k[...] = np.dot(X_k, A) # introduce random covariance X_k += centroid # shift the cluster to a vertex # Create redundant features if n_redundant > 0: B = 2 * generator.rand(n_informative, n_redundant) - 1 X[:, n_informative:n_informative + n_redundant] = \ np.dot(X[:, :n_informative], B) # Repeat some features if n_repeated > 0: n = n_informative + n_redundant indices = ((n - 1) * generator.rand(n_repeated) + 0.5).astype(np.intp) X[:, n:n + n_repeated] = X[:, indices] # Fill useless features if n_useless > 0: X[:, -n_useless:] = generator.randn(n_samples, n_useless) # Randomly replace labels if flip_y >= 0.0: flip_mask = generator.rand(n_samples) < flip_y y[flip_mask] = generator.randint(n_classes, size=flip_mask.sum()) # Randomly shift and scale if shift is None: shift = (2 * generator.rand(n_features) - 1) * class_sep X += shift if scale is None: scale = 1 + 100 * generator.rand(n_features) X *= scale if shuffle: # Randomly permute samples X, y = util_shuffle(X, y, random_state=generator) # Randomly permute features indices = np.arange(n_features) generator.shuffle(indices) X[:, :] = X[:, indices] return X, y def make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=2, length=50, allow_unlabeled=True, sparse=False, return_indicator=False, return_distributions=False, random_state=None): """Generate a random multilabel classification problem. For each sample, the generative process is: - pick the number of labels: n ~ Poisson(n_labels) - n times, choose a class c: c ~ Multinomial(theta) - pick the document length: k ~ Poisson(length) - k times, choose a word: w ~ Multinomial(theta_c) In the above process, rejection sampling is used to make sure that n is never zero or more than `n_classes`, and that the document length is never zero. Likewise, we reject classes which have already been chosen. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=20) The total number of features. n_classes : int, optional (default=5) The number of classes of the classification problem. n_labels : int, optional (default=2) The average number of labels per instance. More precisely, the number of labels per sample is drawn from a Poisson distribution with ``n_labels`` as its expected value, but samples are bounded (using rejection sampling) by ``n_classes``, and must be nonzero if ``allow_unlabeled`` is False. length : int, optional (default=50) The sum of the features (number of words if documents) is drawn from a Poisson distribution with this expected value. allow_unlabeled : bool, optional (default=True) If ``True``, some instances might not belong to any class. sparse : bool, optional (default=False) If ``True``, return a sparse feature matrix return_indicator : bool, optional (default=False), If ``True``, return ``Y`` in the binary indicator format, else return a tuple of lists of labels. return_distributions : bool, optional (default=False) If ``True``, return the prior class probability and conditional probabilities of features given classes, from which the data was drawn. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array or sparse CSR matrix of shape [n_samples, n_features] The generated samples. Y : tuple of lists or array of shape [n_samples, n_classes] The label sets. p_c : array, shape [n_classes] The probability of each class being drawn. Only returned if ``return_distributions=True``. p_w_c : array, shape [n_features, n_classes] The probability of each feature being drawn given each class. Only returned if ``return_distributions=True``. """ generator = check_random_state(random_state) p_c = generator.rand(n_classes) p_c /= p_c.sum() cumulative_p_c = np.cumsum(p_c) p_w_c = generator.rand(n_features, n_classes) p_w_c /= np.sum(p_w_c, axis=0) def sample_example(): _, n_classes = p_w_c.shape # pick a nonzero number of labels per document by rejection sampling y_size = n_classes + 1 while (not allow_unlabeled and y_size == 0) or y_size > n_classes: y_size = generator.poisson(n_labels) # pick n classes y = set() while len(y) != y_size: # pick a class with probability P(c) c = np.searchsorted(cumulative_p_c, generator.rand(y_size - len(y))) y.update(c) y = list(y) # pick a non-zero document length by rejection sampling n_words = 0 while n_words == 0: n_words = generator.poisson(length) # generate a document of length n_words if len(y) == 0: # if sample does not belong to any class, generate noise word words = generator.randint(n_features, size=n_words) return words, y # sample words with replacement from selected classes cumulative_p_w_sample = p_w_c.take(y, axis=1).sum(axis=1).cumsum() cumulative_p_w_sample /= cumulative_p_w_sample[-1] words = np.searchsorted(cumulative_p_w_sample, generator.rand(n_words)) return words, y X_indices = array.array('i') X_indptr = array.array('i', [0]) Y = [] for i in range(n_samples): words, y = sample_example() X_indices.extend(words) X_indptr.append(len(X_indices)) Y.append(y) X_data = np.ones(len(X_indices), dtype=np.float64) X = sp.csr_matrix((X_data, X_indices, X_indptr), shape=(n_samples, n_features)) X.sum_duplicates() if not sparse: X = X.toarray() if return_indicator: lb = MultiLabelBinarizer() Y = lb.fit([range(n_classes)]).transform(Y) else: warnings.warn('Support for the sequence of sequences multilabel ' 'representation is being deprecated and replaced with ' 'a sparse indicator matrix. ' 'return_indicator will default to True from version ' '0.17.', DeprecationWarning) if return_distributions: return X, Y, p_c, p_w_c return X, Y def make_hastie_10_2(n_samples=12000, random_state=None): """Generates data for binary classification used in Hastie et al. 2009, Example 10.2. The ten features are standard independent Gaussian and the target ``y`` is defined by:: y[i] = 1 if np.sum(X[i] ** 2) > 9.34 else -1 Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=12000) The number of samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 10] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning Ed. 2", Springer, 2009. See also -------- make_gaussian_quantiles: a generalization of this dataset approach """ rs = check_random_state(random_state) shape = (n_samples, 10) X = rs.normal(size=shape).reshape(shape) y = ((X ** 2.0).sum(axis=1) > 9.34).astype(np.float64) y[y == 0.0] = -1.0 return X, y def make_regression(n_samples=100, n_features=100, n_informative=10, n_targets=1, bias=0.0, effective_rank=None, tail_strength=0.5, noise=0.0, shuffle=True, coef=False, random_state=None): """Generate a random regression problem. The input set can either be well conditioned (by default) or have a low rank-fat tail singular profile. See :func:`make_low_rank_matrix` for more details. The output is generated by applying a (potentially biased) random linear regression model with `n_informative` nonzero regressors to the previously generated input and some gaussian centered noise with some adjustable scale. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=100) The number of features. n_informative : int, optional (default=10) The number of informative features, i.e., the number of features used to build the linear model used to generate the output. n_targets : int, optional (default=1) The number of regression targets, i.e., the dimension of the y output vector associated with a sample. By default, the output is a scalar. bias : float, optional (default=0.0) The bias term in the underlying linear model. effective_rank : int or None, optional (default=None) if not None: The approximate number of singular vectors required to explain most of the input data by linear combinations. Using this kind of singular spectrum in the input allows the generator to reproduce the correlations often observed in practice. if None: The input set is well conditioned, centered and gaussian with unit variance. tail_strength : float between 0.0 and 1.0, optional (default=0.5) The relative importance of the fat noisy tail of the singular values profile if `effective_rank` is not None. noise : float, optional (default=0.0) The standard deviation of the gaussian noise applied to the output. shuffle : boolean, optional (default=True) Shuffle the samples and the features. coef : boolean, optional (default=False) If True, the coefficients of the underlying linear model are returned. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The input samples. y : array of shape [n_samples] or [n_samples, n_targets] The output values. coef : array of shape [n_features] or [n_features, n_targets], optional The coefficient of the underlying linear model. It is returned only if coef is True. """ n_informative = min(n_features, n_informative) generator = check_random_state(random_state) if effective_rank is None: # Randomly generate a well conditioned input set X = generator.randn(n_samples, n_features) else: # Randomly generate a low rank, fat tail input set X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features, effective_rank=effective_rank, tail_strength=tail_strength, random_state=generator) # Generate a ground truth model with only n_informative features being non # zeros (the other features are not correlated to y and should be ignored # by a sparsifying regularizers such as L1 or elastic net) ground_truth = np.zeros((n_features, n_targets)) ground_truth[:n_informative, :] = 100 * generator.rand(n_informative, n_targets) y = np.dot(X, ground_truth) + bias # Add noise if noise > 0.0: y += generator.normal(scale=noise, size=y.shape) # Randomly permute samples and features if shuffle: X, y = util_shuffle(X, y, random_state=generator) indices = np.arange(n_features) generator.shuffle(indices) X[:, :] = X[:, indices] ground_truth = ground_truth[indices] y = np.squeeze(y) if coef: return X, y, np.squeeze(ground_truth) else: return X, y def make_circles(n_samples=100, shuffle=True, noise=None, random_state=None, factor=.8): """Make a large circle containing a smaller circle in 2d. A simple toy dataset to visualize clustering and classification algorithms. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The total number of points generated. shuffle: bool, optional (default=True) Whether to shuffle the samples. noise : double or None (default=None) Standard deviation of Gaussian noise added to the data. factor : double < 1 (default=.8) Scale factor between inner and outer circle. Returns ------- X : array of shape [n_samples, 2] The generated samples. y : array of shape [n_samples] The integer labels (0 or 1) for class membership of each sample. """ if factor > 1 or factor < 0: raise ValueError("'factor' has to be between 0 and 1.") generator = check_random_state(random_state) # so as not to have the first point = last point, we add one and then # remove it. linspace = np.linspace(0, 2 * np.pi, n_samples // 2 + 1)[:-1] outer_circ_x = np.cos(linspace) outer_circ_y = np.sin(linspace) inner_circ_x = outer_circ_x * factor inner_circ_y = outer_circ_y * factor X = np.vstack((np.append(outer_circ_x, inner_circ_x), np.append(outer_circ_y, inner_circ_y))).T y = np.hstack([np.zeros(n_samples // 2, dtype=np.intp), np.ones(n_samples // 2, dtype=np.intp)]) if shuffle: X, y = util_shuffle(X, y, random_state=generator) if noise is not None: X += generator.normal(scale=noise, size=X.shape) return X, y def make_moons(n_samples=100, shuffle=True, noise=None, random_state=None): """Make two interleaving half circles A simple toy dataset to visualize clustering and classification algorithms. Parameters ---------- n_samples : int, optional (default=100) The total number of points generated. shuffle : bool, optional (default=True) Whether to shuffle the samples. noise : double or None (default=None) Standard deviation of Gaussian noise added to the data. Read more in the :ref:`User Guide <sample_generators>`. Returns ------- X : array of shape [n_samples, 2] The generated samples. y : array of shape [n_samples] The integer labels (0 or 1) for class membership of each sample. """ n_samples_out = n_samples // 2 n_samples_in = n_samples - n_samples_out generator = check_random_state(random_state) outer_circ_x = np.cos(np.linspace(0, np.pi, n_samples_out)) outer_circ_y = np.sin(np.linspace(0, np.pi, n_samples_out)) inner_circ_x = 1 - np.cos(np.linspace(0, np.pi, n_samples_in)) inner_circ_y = 1 - np.sin(np.linspace(0, np.pi, n_samples_in)) - .5 X = np.vstack((np.append(outer_circ_x, inner_circ_x), np.append(outer_circ_y, inner_circ_y))).T y = np.hstack([np.zeros(n_samples_in, dtype=np.intp), np.ones(n_samples_out, dtype=np.intp)]) if shuffle: X, y = util_shuffle(X, y, random_state=generator) if noise is not None: X += generator.normal(scale=noise, size=X.shape) return X, y def make_blobs(n_samples=100, n_features=2, centers=3, cluster_std=1.0, center_box=(-10.0, 10.0), shuffle=True, random_state=None): """Generate isotropic Gaussian blobs for clustering. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The total number of points equally divided among clusters. n_features : int, optional (default=2) The number of features for each sample. centers : int or array of shape [n_centers, n_features], optional (default=3) The number of centers to generate, or the fixed center locations. cluster_std: float or sequence of floats, optional (default=1.0) The standard deviation of the clusters. center_box: pair of floats (min, max), optional (default=(-10.0, 10.0)) The bounding box for each cluster center when centers are generated at random. shuffle : boolean, optional (default=True) Shuffle the samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. y : array of shape [n_samples] The integer labels for cluster membership of each sample. Examples -------- >>> from sklearn.datasets.samples_generator import make_blobs >>> X, y = make_blobs(n_samples=10, centers=3, n_features=2, ... random_state=0) >>> print(X.shape) (10, 2) >>> y array([0, 0, 1, 0, 2, 2, 2, 1, 1, 0]) See also -------- make_classification: a more intricate variant """ generator = check_random_state(random_state) if isinstance(centers, numbers.Integral): centers = generator.uniform(center_box[0], center_box[1], size=(centers, n_features)) else: centers = check_array(centers) n_features = centers.shape[1] if isinstance(cluster_std, numbers.Real): cluster_std = np.ones(len(centers)) * cluster_std X = [] y = [] n_centers = centers.shape[0] n_samples_per_center = [int(n_samples // n_centers)] * n_centers for i in range(n_samples % n_centers): n_samples_per_center[i] += 1 for i, (n, std) in enumerate(zip(n_samples_per_center, cluster_std)): X.append(centers[i] + generator.normal(scale=std, size=(n, n_features))) y += [i] * n X = np.concatenate(X) y = np.array(y) if shuffle: indices = np.arange(n_samples) generator.shuffle(indices) X = X[indices] y = y[indices] return X, y def make_friedman1(n_samples=100, n_features=10, noise=0.0, random_state=None): """Generate the "Friedman \#1" regression problem This dataset is described in Friedman [1] and Breiman [2]. Inputs `X` are independent features uniformly distributed on the interval [0, 1]. The output `y` is created according to the formula:: y(X) = 10 * sin(pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 \ + 10 * X[:, 3] + 5 * X[:, 4] + noise * N(0, 1). Out of the `n_features` features, only 5 are actually used to compute `y`. The remaining features are independent of `y`. The number of features has to be >= 5. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=10) The number of features. Should be at least 5. noise : float, optional (default=0.0) The standard deviation of the gaussian noise applied to the output. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] J. Friedman, "Multivariate adaptive regression splines", The Annals of Statistics 19 (1), pages 1-67, 1991. .. [2] L. Breiman, "Bagging predictors", Machine Learning 24, pages 123-140, 1996. """ if n_features < 5: raise ValueError("n_features must be at least five.") generator = check_random_state(random_state) X = generator.rand(n_samples, n_features) y = 10 * np.sin(np.pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 \ + 10 * X[:, 3] + 5 * X[:, 4] + noise * generator.randn(n_samples) return X, y def make_friedman2(n_samples=100, noise=0.0, random_state=None): """Generate the "Friedman \#2" regression problem This dataset is described in Friedman [1] and Breiman [2]. Inputs `X` are 4 independent features uniformly distributed on the intervals:: 0 <= X[:, 0] <= 100, 40 * pi <= X[:, 1] <= 560 * pi, 0 <= X[:, 2] <= 1, 1 <= X[:, 3] <= 11. The output `y` is created according to the formula:: y(X) = (X[:, 0] ** 2 + (X[:, 1] * X[:, 2] \ - 1 / (X[:, 1] * X[:, 3])) ** 2) ** 0.5 + noise * N(0, 1). Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. noise : float, optional (default=0.0) The standard deviation of the gaussian noise applied to the output. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 4] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] J. Friedman, "Multivariate adaptive regression splines", The Annals of Statistics 19 (1), pages 1-67, 1991. .. [2] L. Breiman, "Bagging predictors", Machine Learning 24, pages 123-140, 1996. """ generator = check_random_state(random_state) X = generator.rand(n_samples, 4) X[:, 0] *= 100 X[:, 1] *= 520 * np.pi X[:, 1] += 40 * np.pi X[:, 3] *= 10 X[:, 3] += 1 y = (X[:, 0] ** 2 + (X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) ** 2) ** 0.5 \ + noise * generator.randn(n_samples) return X, y def make_friedman3(n_samples=100, noise=0.0, random_state=None): """Generate the "Friedman \#3" regression problem This dataset is described in Friedman [1] and Breiman [2]. Inputs `X` are 4 independent features uniformly distributed on the intervals:: 0 <= X[:, 0] <= 100, 40 * pi <= X[:, 1] <= 560 * pi, 0 <= X[:, 2] <= 1, 1 <= X[:, 3] <= 11. The output `y` is created according to the formula:: y(X) = arctan((X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) \ / X[:, 0]) + noise * N(0, 1). Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. noise : float, optional (default=0.0) The standard deviation of the gaussian noise applied to the output. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 4] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] J. Friedman, "Multivariate adaptive regression splines", The Annals of Statistics 19 (1), pages 1-67, 1991. .. [2] L. Breiman, "Bagging predictors", Machine Learning 24, pages 123-140, 1996. """ generator = check_random_state(random_state) X = generator.rand(n_samples, 4) X[:, 0] *= 100 X[:, 1] *= 520 * np.pi X[:, 1] += 40 * np.pi X[:, 3] *= 10 X[:, 3] += 1 y = np.arctan((X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) / X[:, 0]) \ + noise * generator.randn(n_samples) return X, y def make_low_rank_matrix(n_samples=100, n_features=100, effective_rank=10, tail_strength=0.5, random_state=None): """Generate a mostly low rank matrix with bell-shaped singular values Most of the variance can be explained by a bell-shaped curve of width effective_rank: the low rank part of the singular values profile is:: (1 - tail_strength) * exp(-1.0 * (i / effective_rank) ** 2) The remaining singular values' tail is fat, decreasing as:: tail_strength * exp(-0.1 * i / effective_rank). The low rank part of the profile can be considered the structured signal part of the data while the tail can be considered the noisy part of the data that cannot be summarized by a low number of linear components (singular vectors). This kind of singular profiles is often seen in practice, for instance: - gray level pictures of faces - TF-IDF vectors of text documents crawled from the web Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=100) The number of features. effective_rank : int, optional (default=10) The approximate number of singular vectors required to explain most of the data by linear combinations. tail_strength : float between 0.0 and 1.0, optional (default=0.5) The relative importance of the fat noisy tail of the singular values profile. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The matrix. """ generator = check_random_state(random_state) n = min(n_samples, n_features) # Random (ortho normal) vectors u, _ = linalg.qr(generator.randn(n_samples, n), mode='economic') v, _ = linalg.qr(generator.randn(n_features, n), mode='economic') # Index of the singular values singular_ind = np.arange(n, dtype=np.float64) # Build the singular profile by assembling signal and noise components low_rank = ((1 - tail_strength) * np.exp(-1.0 * (singular_ind / effective_rank) ** 2)) tail = tail_strength * np.exp(-0.1 * singular_ind / effective_rank) s = np.identity(n) * (low_rank + tail) return np.dot(np.dot(u, s), v.T) def make_sparse_coded_signal(n_samples, n_components, n_features, n_nonzero_coefs, random_state=None): """Generate a signal as a sparse combination of dictionary elements. Returns a matrix Y = DX, such as D is (n_features, n_components), X is (n_components, n_samples) and each column of X has exactly n_nonzero_coefs non-zero elements. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int number of samples to generate n_components: int, number of components in the dictionary n_features : int number of features of the dataset to generate n_nonzero_coefs : int number of active (non-zero) coefficients in each sample random_state: int or RandomState instance, optional (default=None) seed used by the pseudo random number generator Returns ------- data: array of shape [n_features, n_samples] The encoded signal (Y). dictionary: array of shape [n_features, n_components] The dictionary with normalized components (D). code: array of shape [n_components, n_samples] The sparse code such that each column of this matrix has exactly n_nonzero_coefs non-zero items (X). """ generator = check_random_state(random_state) # generate dictionary D = generator.randn(n_features, n_components) D /= np.sqrt(np.sum((D ** 2), axis=0)) # generate code X = np.zeros((n_components, n_samples)) for i in range(n_samples): idx = np.arange(n_components) generator.shuffle(idx) idx = idx[:n_nonzero_coefs] X[idx, i] = generator.randn(n_nonzero_coefs) # encode signal Y = np.dot(D, X) return map(np.squeeze, (Y, D, X)) def make_sparse_uncorrelated(n_samples=100, n_features=10, random_state=None): """Generate a random regression problem with sparse uncorrelated design This dataset is described in Celeux et al [1]. as:: X ~ N(0, 1) y(X) = X[:, 0] + 2 * X[:, 1] - 2 * X[:, 2] - 1.5 * X[:, 3] Only the first 4 features are informative. The remaining features are useless. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=10) The number of features. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] G. Celeux, M. El Anbari, J.-M. Marin, C. P. Robert, "Regularization in regression: comparing Bayesian and frequentist methods in a poorly informative situation", 2009. """ generator = check_random_state(random_state) X = generator.normal(loc=0, scale=1, size=(n_samples, n_features)) y = generator.normal(loc=(X[:, 0] + 2 * X[:, 1] - 2 * X[:, 2] - 1.5 * X[:, 3]), scale=np.ones(n_samples)) return X, y def make_spd_matrix(n_dim, random_state=None): """Generate a random symmetric, positive-definite matrix. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_dim : int The matrix dimension. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_dim, n_dim] The random symmetric, positive-definite matrix. See also -------- make_sparse_spd_matrix """ generator = check_random_state(random_state) A = generator.rand(n_dim, n_dim) U, s, V = linalg.svd(np.dot(A.T, A)) X = np.dot(np.dot(U, 1.0 + np.diag(generator.rand(n_dim))), V) return X def make_sparse_spd_matrix(dim=1, alpha=0.95, norm_diag=False, smallest_coef=.1, largest_coef=.9, random_state=None): """Generate a sparse symmetric definite positive matrix. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- dim: integer, optional (default=1) The size of the random matrix to generate. alpha: float between 0 and 1, optional (default=0.95) The probability that a coefficient is non zero (see notes). random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. largest_coef : float between 0 and 1, optional (default=0.9) The value of the largest coefficient. smallest_coef : float between 0 and 1, optional (default=0.1) The value of the smallest coefficient. norm_diag : boolean, optional (default=False) Whether to normalize the output matrix to make the leading diagonal elements all 1 Returns ------- prec : sparse matrix of shape (dim, dim) The generated matrix. Notes ----- The sparsity is actually imposed on the cholesky factor of the matrix. Thus alpha does not translate directly into the filling fraction of the matrix itself. See also -------- make_spd_matrix """ random_state = check_random_state(random_state) chol = -np.eye(dim) aux = random_state.rand(dim, dim) aux[aux < alpha] = 0 aux[aux > alpha] = (smallest_coef + (largest_coef - smallest_coef) * random_state.rand(np.sum(aux > alpha))) aux = np.tril(aux, k=-1) # Permute the lines: we don't want to have asymmetries in the final # SPD matrix permutation = random_state.permutation(dim) aux = aux[permutation].T[permutation] chol += aux prec = np.dot(chol.T, chol) if norm_diag: # Form the diagonal vector into a row matrix d = np.diag(prec).reshape(1, prec.shape[0]) d = 1. / np.sqrt(d) prec *= d prec *= d.T return prec def make_swiss_roll(n_samples=100, noise=0.0, random_state=None): """Generate a swiss roll dataset. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of sample points on the S curve. noise : float, optional (default=0.0) The standard deviation of the gaussian noise. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 3] The points. t : array of shape [n_samples] The univariate position of the sample according to the main dimension of the points in the manifold. Notes ----- The algorithm is from Marsland [1]. References ---------- .. [1] S. Marsland, "Machine Learning: An Algorithmic Perspective", Chapter 10, 2009. http://www-ist.massey.ac.nz/smarsland/Code/10/lle.py """ generator = check_random_state(random_state) t = 1.5 * np.pi * (1 + 2 * generator.rand(1, n_samples)) x = t * np.cos(t) y = 21 * generator.rand(1, n_samples) z = t * np.sin(t) X = np.concatenate((x, y, z)) X += noise * generator.randn(3, n_samples) X = X.T t = np.squeeze(t) return X, t def make_s_curve(n_samples=100, noise=0.0, random_state=None): """Generate an S curve dataset. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of sample points on the S curve. noise : float, optional (default=0.0) The standard deviation of the gaussian noise. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 3] The points. t : array of shape [n_samples] The univariate position of the sample according to the main dimension of the points in the manifold. """ generator = check_random_state(random_state) t = 3 * np.pi * (generator.rand(1, n_samples) - 0.5) x = np.sin(t) y = 2.0 * generator.rand(1, n_samples) z = np.sign(t) * (np.cos(t) - 1) X = np.concatenate((x, y, z)) X += noise * generator.randn(3, n_samples) X = X.T t = np.squeeze(t) return X, t def make_gaussian_quantiles(mean=None, cov=1., n_samples=100, n_features=2, n_classes=3, shuffle=True, random_state=None): """Generate isotropic Gaussian and label samples by quantile This classification dataset is constructed by taking a multi-dimensional standard normal distribution and defining classes separated by nested concentric multi-dimensional spheres such that roughly equal numbers of samples are in each class (quantiles of the :math:`\chi^2` distribution). Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- mean : array of shape [n_features], optional (default=None) The mean of the multi-dimensional normal distribution. If None then use the origin (0, 0, ...). cov : float, optional (default=1.) The covariance matrix will be this value times the unit matrix. This dataset only produces symmetric normal distributions. n_samples : int, optional (default=100) The total number of points equally divided among classes. n_features : int, optional (default=2) The number of features for each sample. n_classes : int, optional (default=3) The number of classes shuffle : boolean, optional (default=True) Shuffle the samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. y : array of shape [n_samples] The integer labels for quantile membership of each sample. Notes ----- The dataset is from Zhu et al [1]. References ---------- .. [1] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. """ if n_samples < n_classes: raise ValueError("n_samples must be at least n_classes") generator = check_random_state(random_state) if mean is None: mean = np.zeros(n_features) else: mean = np.array(mean) # Build multivariate normal distribution X = generator.multivariate_normal(mean, cov * np.identity(n_features), (n_samples,)) # Sort by distance from origin idx = np.argsort(np.sum((X - mean[np.newaxis, :]) ** 2, axis=1)) X = X[idx, :] # Label by quantile step = n_samples // n_classes y = np.hstack([np.repeat(np.arange(n_classes), step), np.repeat(n_classes - 1, n_samples - step * n_classes)]) if shuffle: X, y = util_shuffle(X, y, random_state=generator) return X, y def _shuffle(data, random_state=None): generator = check_random_state(random_state) n_rows, n_cols = data.shape row_idx = generator.permutation(n_rows) col_idx = generator.permutation(n_cols) result = data[row_idx][:, col_idx] return result, row_idx, col_idx def make_biclusters(shape, n_clusters, noise=0.0, minval=10, maxval=100, shuffle=True, random_state=None): """Generate an array with constant block diagonal structure for biclustering. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- shape : iterable (n_rows, n_cols) The shape of the result. n_clusters : integer The number of biclusters. noise : float, optional (default=0.0) The standard deviation of the gaussian noise. minval : int, optional (default=10) Minimum value of a bicluster. maxval : int, optional (default=100) Maximum value of a bicluster. shuffle : boolean, optional (default=True) Shuffle the samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape `shape` The generated array. rows : array of shape (n_clusters, X.shape[0],) The indicators for cluster membership of each row. cols : array of shape (n_clusters, X.shape[1],) The indicators for cluster membership of each column. References ---------- .. [1] Dhillon, I. S. (2001, August). Co-clustering documents and words using bipartite spectral graph partitioning. In Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 269-274). ACM. See also -------- make_checkerboard """ generator = check_random_state(random_state) n_rows, n_cols = shape consts = generator.uniform(minval, maxval, n_clusters) # row and column clusters of approximately equal sizes row_sizes = generator.multinomial(n_rows, np.repeat(1.0 / n_clusters, n_clusters)) col_sizes = generator.multinomial(n_cols, np.repeat(1.0 / n_clusters, n_clusters)) row_labels = np.hstack(list(np.repeat(val, rep) for val, rep in zip(range(n_clusters), row_sizes))) col_labels = np.hstack(list(np.repeat(val, rep) for val, rep in zip(range(n_clusters), col_sizes))) result = np.zeros(shape, dtype=np.float64) for i in range(n_clusters): selector = np.outer(row_labels == i, col_labels == i) result[selector] += consts[i] if noise > 0: result += generator.normal(scale=noise, size=result.shape) if shuffle: result, row_idx, col_idx = _shuffle(result, random_state) row_labels = row_labels[row_idx] col_labels = col_labels[col_idx] rows = np.vstack(row_labels == c for c in range(n_clusters)) cols = np.vstack(col_labels == c for c in range(n_clusters)) return result, rows, cols def make_checkerboard(shape, n_clusters, noise=0.0, minval=10, maxval=100, shuffle=True, random_state=None): """Generate an array with block checkerboard structure for biclustering. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- shape : iterable (n_rows, n_cols) The shape of the result. n_clusters : integer or iterable (n_row_clusters, n_column_clusters) The number of row and column clusters. noise : float, optional (default=0.0) The standard deviation of the gaussian noise. minval : int, optional (default=10) Minimum value of a bicluster. maxval : int, optional (default=100) Maximum value of a bicluster. shuffle : boolean, optional (default=True) Shuffle the samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape `shape` The generated array. rows : array of shape (n_clusters, X.shape[0],) The indicators for cluster membership of each row. cols : array of shape (n_clusters, X.shape[1],) The indicators for cluster membership of each column. References ---------- .. [1] Kluger, Y., Basri, R., Chang, J. T., & Gerstein, M. (2003). Spectral biclustering of microarray data: coclustering genes and conditions. Genome research, 13(4), 703-716. See also -------- make_biclusters """ generator = check_random_state(random_state) if hasattr(n_clusters, "__len__"): n_row_clusters, n_col_clusters = n_clusters else: n_row_clusters = n_col_clusters = n_clusters # row and column clusters of approximately equal sizes n_rows, n_cols = shape row_sizes = generator.multinomial(n_rows, np.repeat(1.0 / n_row_clusters, n_row_clusters)) col_sizes = generator.multinomial(n_cols, np.repeat(1.0 / n_col_clusters, n_col_clusters)) row_labels = np.hstack(list(np.repeat(val, rep) for val, rep in zip(range(n_row_clusters), row_sizes))) col_labels = np.hstack(list(np.repeat(val, rep) for val, rep in zip(range(n_col_clusters), col_sizes))) result = np.zeros(shape, dtype=np.float64) for i in range(n_row_clusters): for j in range(n_col_clusters): selector = np.outer(row_labels == i, col_labels == j) result[selector] += generator.uniform(minval, maxval) if noise > 0: result += generator.normal(scale=noise, size=result.shape) if shuffle: result, row_idx, col_idx = _shuffle(result, random_state) row_labels = row_labels[row_idx] col_labels = col_labels[col_idx] rows = np.vstack(row_labels == label for label in range(n_row_clusters) for _ in range(n_col_clusters)) cols = np.vstack(col_labels == label for _ in range(n_row_clusters) for label in range(n_col_clusters)) return result, rows, cols
bsd-3-clause
jmetzen/scikit-learn
examples/linear_model/plot_logistic.py
312
1426
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Logit function ========================================================= Show in the plot is how the logistic regression would, in this synthetic dataset, classify values as either 0 or 1, i.e. class one or two, using the logit-curve. """ print(__doc__) # Code source: Gael Varoquaux # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model # this is our test set, it's just a straight line with some # Gaussian noise xmin, xmax = -5, 5 n_samples = 100 np.random.seed(0) X = np.random.normal(size=n_samples) y = (X > 0).astype(np.float) X[X > 0] *= 4 X += .3 * np.random.normal(size=n_samples) X = X[:, np.newaxis] # run the classifier clf = linear_model.LogisticRegression(C=1e5) clf.fit(X, y) # and plot the result plt.figure(1, figsize=(4, 3)) plt.clf() plt.scatter(X.ravel(), y, color='black', zorder=20) X_test = np.linspace(-5, 10, 300) def model(x): return 1 / (1 + np.exp(-x)) loss = model(X_test * clf.coef_ + clf.intercept_).ravel() plt.plot(X_test, loss, color='blue', linewidth=3) ols = linear_model.LinearRegression() ols.fit(X, y) plt.plot(X_test, ols.coef_ * X_test + ols.intercept_, linewidth=1) plt.axhline(.5, color='.5') plt.ylabel('y') plt.xlabel('X') plt.xticks(()) plt.yticks(()) plt.ylim(-.25, 1.25) plt.xlim(-4, 10) plt.show()
bsd-3-clause
Reagankm/KnockKnock
venv/lib/python3.4/site-packages/mpl_toolkits/mplot3d/art3d.py
8
23462
#!/usr/bin/python # art3d.py, original mplot3d version by John Porter # Parts rewritten by Reinier Heeres <[email protected]> # Minor additions by Ben Axelrod <[email protected]> ''' Module containing 3D artist code and functions to convert 2D artists into 3D versions which can be added to an Axes3D. ''' from __future__ import (absolute_import, division, print_function, unicode_literals) import six from six.moves import zip from matplotlib import lines, text as mtext, path as mpath, colors as mcolors from matplotlib import artist from matplotlib.collections import Collection, LineCollection, \ PolyCollection, PatchCollection, PathCollection from matplotlib.cm import ScalarMappable from matplotlib.patches import Patch from matplotlib.colors import Normalize from matplotlib.cbook import iterable import warnings import numpy as np import math from . import proj3d def norm_angle(a): """Return angle between -180 and +180""" a = (a + 360) % 360 if a > 180: a = a - 360 return a def norm_text_angle(a): """Return angle between -90 and +90""" a = (a + 180) % 180 if a > 90: a = a - 180 return a def get_dir_vector(zdir): if zdir == 'x': return np.array((1, 0, 0)) elif zdir == 'y': return np.array((0, 1, 0)) elif zdir == 'z': return np.array((0, 0, 1)) elif zdir is None: return np.array((0, 0, 0)) elif iterable(zdir) and len(zdir) == 3: return zdir else: raise ValueError("'x', 'y', 'z', None or vector of length 3 expected") class Text3D(mtext.Text): ''' Text object with 3D position and (in the future) direction. ''' def __init__(self, x=0, y=0, z=0, text='', zdir='z', **kwargs): ''' *x*, *y*, *z* Position of text *text* Text string to display *zdir* Direction of text Keyword arguments are passed onto :func:`~matplotlib.text.Text`. ''' mtext.Text.__init__(self, x, y, text, **kwargs) self.set_3d_properties(z, zdir) def set_3d_properties(self, z=0, zdir='z'): x, y = self.get_position() self._position3d = np.array((x, y, z)) self._dir_vec = get_dir_vector(zdir) def draw(self, renderer): proj = proj3d.proj_trans_points([self._position3d, \ self._position3d + self._dir_vec], renderer.M) dx = proj[0][1] - proj[0][0] dy = proj[1][1] - proj[1][0] if dx==0. and dy==0.: # atan2 raises ValueError: math domain error on 0,0 angle = 0. else: angle = math.degrees(math.atan2(dy, dx)) self.set_position((proj[0][0], proj[1][0])) self.set_rotation(norm_text_angle(angle)) mtext.Text.draw(self, renderer) def text_2d_to_3d(obj, z=0, zdir='z'): """Convert a Text to a Text3D object.""" obj.__class__ = Text3D obj.set_3d_properties(z, zdir) class Line3D(lines.Line2D): ''' 3D line object. ''' def __init__(self, xs, ys, zs, *args, **kwargs): ''' Keyword arguments are passed onto :func:`~matplotlib.lines.Line2D`. ''' lines.Line2D.__init__(self, [], [], *args, **kwargs) self._verts3d = xs, ys, zs def set_3d_properties(self, zs=0, zdir='z'): xs = self.get_xdata() ys = self.get_ydata() try: # If *zs* is a list or array, then this will fail and # just proceed to juggle_axes(). zs = float(zs) zs = [zs for x in xs] except TypeError: pass self._verts3d = juggle_axes(xs, ys, zs, zdir) def draw(self, renderer): xs3d, ys3d, zs3d = self._verts3d xs, ys, zs = proj3d.proj_transform(xs3d, ys3d, zs3d, renderer.M) self.set_data(xs, ys) lines.Line2D.draw(self, renderer) def line_2d_to_3d(line, zs=0, zdir='z'): ''' Convert a 2D line to 3D. ''' line.__class__ = Line3D line.set_3d_properties(zs, zdir) def path_to_3d_segment(path, zs=0, zdir='z'): '''Convert a path to a 3D segment.''' if not iterable(zs): zs = np.ones(len(path)) * zs seg = [] pathsegs = path.iter_segments(simplify=False, curves=False) for (((x, y), code), z) in zip(pathsegs, zs): seg.append((x, y, z)) seg3d = [juggle_axes(x, y, z, zdir) for (x, y, z) in seg] return seg3d def paths_to_3d_segments(paths, zs=0, zdir='z'): ''' Convert paths from a collection object to 3D segments. ''' if not iterable(zs): zs = np.ones(len(paths)) * zs segments = [] for path, pathz in zip(paths, zs): segments.append(path_to_3d_segment(path, pathz, zdir)) return segments class Line3DCollection(LineCollection): ''' A collection of 3D lines. ''' def __init__(self, segments, *args, **kwargs): ''' Keyword arguments are passed onto :func:`~matplotlib.collections.LineCollection`. ''' LineCollection.__init__(self, segments, *args, **kwargs) def set_sort_zpos(self,val): '''Set the position to use for z-sorting.''' self._sort_zpos = val def set_segments(self, segments): ''' Set 3D segments ''' self._segments3d = np.asanyarray(segments) LineCollection.set_segments(self, []) def do_3d_projection(self, renderer): ''' Project the points according to renderer matrix. ''' xyslist = [ proj3d.proj_trans_points(points, renderer.M) for points in self._segments3d] segments_2d = [list(zip(xs, ys)) for (xs, ys, zs) in xyslist] LineCollection.set_segments(self, segments_2d) # FIXME minz = 1e9 for (xs, ys, zs) in xyslist: minz = min(minz, min(zs)) return minz def draw(self, renderer, project=False): if project: self.do_3d_projection(renderer) LineCollection.draw(self, renderer) def line_collection_2d_to_3d(col, zs=0, zdir='z'): """Convert a LineCollection to a Line3DCollection object.""" segments3d = paths_to_3d_segments(col.get_paths(), zs, zdir) col.__class__ = Line3DCollection col.set_segments(segments3d) class Patch3D(Patch): ''' 3D patch object. ''' def __init__(self, *args, **kwargs): zs = kwargs.pop('zs', []) zdir = kwargs.pop('zdir', 'z') Patch.__init__(self, *args, **kwargs) self.set_3d_properties(zs, zdir) def set_3d_properties(self, verts, zs=0, zdir='z'): if not iterable(zs): zs = np.ones(len(verts)) * zs self._segment3d = [juggle_axes(x, y, z, zdir) \ for ((x, y), z) in zip(verts, zs)] self._facecolor3d = Patch.get_facecolor(self) def get_path(self): return self._path2d def get_facecolor(self): return self._facecolor2d def do_3d_projection(self, renderer): s = self._segment3d xs, ys, zs = list(zip(*s)) vxs, vys,vzs, vis = proj3d.proj_transform_clip(xs, ys, zs, renderer.M) self._path2d = mpath.Path(list(zip(vxs, vys))) # FIXME: coloring self._facecolor2d = self._facecolor3d return min(vzs) def draw(self, renderer): Patch.draw(self, renderer) class PathPatch3D(Patch3D): ''' 3D PathPatch object. ''' def __init__(self, path, **kwargs): zs = kwargs.pop('zs', []) zdir = kwargs.pop('zdir', 'z') Patch.__init__(self, **kwargs) self.set_3d_properties(path, zs, zdir) def set_3d_properties(self, path, zs=0, zdir='z'): Patch3D.set_3d_properties(self, path.vertices, zs=zs, zdir=zdir) self._code3d = path.codes def do_3d_projection(self, renderer): s = self._segment3d xs, ys, zs = list(zip(*s)) vxs, vys,vzs, vis = proj3d.proj_transform_clip(xs, ys, zs, renderer.M) self._path2d = mpath.Path(list(zip(vxs, vys)), self._code3d) # FIXME: coloring self._facecolor2d = self._facecolor3d return min(vzs) def get_patch_verts(patch): """Return a list of vertices for the path of a patch.""" trans = patch.get_patch_transform() path = patch.get_path() polygons = path.to_polygons(trans) if len(polygons): return polygons[0] else: return [] def patch_2d_to_3d(patch, z=0, zdir='z'): """Convert a Patch to a Patch3D object.""" verts = get_patch_verts(patch) patch.__class__ = Patch3D patch.set_3d_properties(verts, z, zdir) def pathpatch_2d_to_3d(pathpatch, z=0, zdir='z'): """Convert a PathPatch to a PathPatch3D object.""" path = pathpatch.get_path() trans = pathpatch.get_patch_transform() mpath = trans.transform_path(path) pathpatch.__class__ = PathPatch3D pathpatch.set_3d_properties(mpath, z, zdir) class Patch3DCollection(PatchCollection): ''' A collection of 3D patches. ''' def __init__(self, *args, **kwargs): """ Create a collection of flat 3D patches with its normal vector pointed in *zdir* direction, and located at *zs* on the *zdir* axis. 'zs' can be a scalar or an array-like of the same length as the number of patches in the collection. Constructor arguments are the same as for :class:`~matplotlib.collections.PatchCollection`. In addition, keywords *zs=0* and *zdir='z'* are available. Also, the keyword argument "depthshade" is available to indicate whether or not to shade the patches in order to give the appearance of depth (default is *True*). This is typically desired in scatter plots. """ zs = kwargs.pop('zs', 0) zdir = kwargs.pop('zdir', 'z') self._depthshade = kwargs.pop('depthshade', True) PatchCollection.__init__(self, *args, **kwargs) self.set_3d_properties(zs, zdir) def set_sort_zpos(self,val): '''Set the position to use for z-sorting.''' self._sort_zpos = val def set_3d_properties(self, zs, zdir): # Force the collection to initialize the face and edgecolors # just in case it is a scalarmappable with a colormap. self.update_scalarmappable() offsets = self.get_offsets() if len(offsets) > 0: xs, ys = list(zip(*offsets)) else: xs = [] ys = [] self._offsets3d = juggle_axes(xs, ys, np.atleast_1d(zs), zdir) self._facecolor3d = self.get_facecolor() self._edgecolor3d = self.get_edgecolor() def do_3d_projection(self, renderer): xs, ys, zs = self._offsets3d vxs, vys, vzs, vis = proj3d.proj_transform_clip(xs, ys, zs, renderer.M) fcs = (zalpha(self._facecolor3d, vzs) if self._depthshade else self._facecolor3d) fcs = mcolors.colorConverter.to_rgba_array(fcs, self._alpha) self.set_facecolors(fcs) ecs = (zalpha(self._edgecolor3d, vzs) if self._depthshade else self._edgecolor3d) ecs = mcolors.colorConverter.to_rgba_array(ecs, self._alpha) self.set_edgecolors(ecs) PatchCollection.set_offsets(self, list(zip(vxs, vys))) if vzs.size > 0 : return min(vzs) else : return np.nan class Path3DCollection(PathCollection): ''' A collection of 3D paths. ''' def __init__(self, *args, **kwargs): """ Create a collection of flat 3D paths with its normal vector pointed in *zdir* direction, and located at *zs* on the *zdir* axis. 'zs' can be a scalar or an array-like of the same length as the number of paths in the collection. Constructor arguments are the same as for :class:`~matplotlib.collections.PathCollection`. In addition, keywords *zs=0* and *zdir='z'* are available. Also, the keyword argument "depthshade" is available to indicate whether or not to shade the patches in order to give the appearance of depth (default is *True*). This is typically desired in scatter plots. """ zs = kwargs.pop('zs', 0) zdir = kwargs.pop('zdir', 'z') self._depthshade = kwargs.pop('depthshade', True) PathCollection.__init__(self, *args, **kwargs) self.set_3d_properties(zs, zdir) def set_sort_zpos(self, val): '''Set the position to use for z-sorting.''' self._sort_zpos = val def set_3d_properties(self, zs, zdir): # Force the collection to initialize the face and edgecolors # just in case it is a scalarmappable with a colormap. self.update_scalarmappable() offsets = self.get_offsets() if len(offsets) > 0: xs, ys = list(zip(*offsets)) else: xs = [] ys = [] self._offsets3d = juggle_axes(xs, ys, np.atleast_1d(zs), zdir) self._facecolor3d = self.get_facecolor() self._edgecolor3d = self.get_edgecolor() def do_3d_projection(self, renderer): xs, ys, zs = self._offsets3d vxs, vys, vzs, vis = proj3d.proj_transform_clip(xs, ys, zs, renderer.M) fcs = (zalpha(self._facecolor3d, vzs) if self._depthshade else self._facecolor3d) fcs = mcolors.colorConverter.to_rgba_array(fcs, self._alpha) self.set_facecolors(fcs) ecs = (zalpha(self._edgecolor3d, vzs) if self._depthshade else self._edgecolor3d) ecs = mcolors.colorConverter.to_rgba_array(ecs, self._alpha) self.set_edgecolors(ecs) PathCollection.set_offsets(self, list(zip(vxs, vys))) if vzs.size > 0 : return min(vzs) else : return np.nan def patch_collection_2d_to_3d(col, zs=0, zdir='z', depthshade=True): """ Convert a :class:`~matplotlib.collections.PatchCollection` into a :class:`Patch3DCollection` object (or a :class:`~matplotlib.collections.PathCollection` into a :class:`Path3DCollection` object). Keywords: *za* The location or locations to place the patches in the collection along the *zdir* axis. Defaults to 0. *zdir* The axis in which to place the patches. Default is "z". *depthshade* Whether to shade the patches to give a sense of depth. Defaults to *True*. """ if isinstance(col, PathCollection): col.__class__ = Path3DCollection elif isinstance(col, PatchCollection): col.__class__ = Patch3DCollection col._depthshade = depthshade col.set_3d_properties(zs, zdir) class Poly3DCollection(PolyCollection): ''' A collection of 3D polygons. ''' def __init__(self, verts, *args, **kwargs): ''' Create a Poly3DCollection. *verts* should contain 3D coordinates. Keyword arguments: zsort, see set_zsort for options. Note that this class does a bit of magic with the _facecolors and _edgecolors properties. ''' self.set_zsort(kwargs.pop('zsort', True)) PolyCollection.__init__(self, verts, *args, **kwargs) _zsort_functions = { 'average': np.average, 'min': np.min, 'max': np.max, } def set_zsort(self, zsort): ''' Set z-sorting behaviour: boolean: if True use default 'average' string: 'average', 'min' or 'max' ''' if zsort is True: zsort = 'average' if zsort is not False: if zsort in self._zsort_functions: zsortfunc = self._zsort_functions[zsort] else: return False else: zsortfunc = None self._zsort = zsort self._sort_zpos = None self._zsortfunc = zsortfunc def get_vector(self, segments3d): """Optimize points for projection""" si = 0 ei = 0 segis = [] points = [] for p in segments3d: points.extend(p) ei = si+len(p) segis.append((si, ei)) si = ei if len(segments3d) > 0 : xs, ys, zs = list(zip(*points)) else : # We need this so that we can skip the bad unpacking from zip() xs, ys, zs = [], [], [] ones = np.ones(len(xs)) self._vec = np.array([xs, ys, zs, ones]) self._segis = segis def set_verts(self, verts, closed=True): '''Set 3D vertices.''' self.get_vector(verts) # 2D verts will be updated at draw time PolyCollection.set_verts(self, [], closed) def set_3d_properties(self): # Force the collection to initialize the face and edgecolors # just in case it is a scalarmappable with a colormap. self.update_scalarmappable() self._sort_zpos = None self.set_zsort(True) self._facecolors3d = PolyCollection.get_facecolors(self) self._edgecolors3d = PolyCollection.get_edgecolors(self) self._alpha3d = PolyCollection.get_alpha(self) def set_sort_zpos(self,val): '''Set the position to use for z-sorting.''' self._sort_zpos = val def do_3d_projection(self, renderer): ''' Perform the 3D projection for this object. ''' # FIXME: This may no longer be needed? if self._A is not None: self.update_scalarmappable() self._facecolors3d = self._facecolors txs, tys, tzs = proj3d.proj_transform_vec(self._vec, renderer.M) xyzlist = [(txs[si:ei], tys[si:ei], tzs[si:ei]) \ for si, ei in self._segis] # This extra fuss is to re-order face / edge colors cface = self._facecolors3d cedge = self._edgecolors3d if len(cface) != len(xyzlist): cface = cface.repeat(len(xyzlist), axis=0) if len(cedge) != len(xyzlist): if len(cedge) == 0: cedge = cface cedge = cedge.repeat(len(xyzlist), axis=0) # if required sort by depth (furthest drawn first) if self._zsort: z_segments_2d = [(self._zsortfunc(zs), list(zip(xs, ys)), fc, ec) for (xs, ys, zs), fc, ec in zip(xyzlist, cface, cedge)] z_segments_2d.sort(key=lambda x: x[0], reverse=True) else: raise ValueError("whoops") segments_2d = [s for z, s, fc, ec in z_segments_2d] PolyCollection.set_verts(self, segments_2d) self._facecolors2d = [fc for z, s, fc, ec in z_segments_2d] if len(self._edgecolors3d) == len(cface): self._edgecolors2d = [ec for z, s, fc, ec in z_segments_2d] else: self._edgecolors2d = self._edgecolors3d # Return zorder value if self._sort_zpos is not None: zvec = np.array([[0], [0], [self._sort_zpos], [1]]) ztrans = proj3d.proj_transform_vec(zvec, renderer.M) return ztrans[2][0] elif tzs.size > 0 : # FIXME: Some results still don't look quite right. # In particular, examine contourf3d_demo2.py # with az = -54 and elev = -45. return np.min(tzs) else : return np.nan def set_facecolor(self, colors): PolyCollection.set_facecolor(self, colors) self._facecolors3d = PolyCollection.get_facecolor(self) set_facecolors = set_facecolor def set_edgecolor(self, colors): PolyCollection.set_edgecolor(self, colors) self._edgecolors3d = PolyCollection.get_edgecolor(self) set_edgecolors = set_edgecolor def set_alpha(self, alpha): """ Set the alpha tranparencies of the collection. *alpha* must be a float or *None*. ACCEPTS: float or None """ if alpha is not None: try: float(alpha) except TypeError: raise TypeError('alpha must be a float or None') artist.Artist.set_alpha(self, alpha) try: self._facecolors = mcolors.colorConverter.to_rgba_array( self._facecolors3d, self._alpha) except (AttributeError, TypeError, IndexError): pass try: self._edgecolors = mcolors.colorConverter.to_rgba_array( self._edgecolors3d, self._alpha) except (AttributeError, TypeError, IndexError): pass def get_facecolors(self): return self._facecolors2d get_facecolor = get_facecolors def get_edgecolors(self): return self._edgecolors2d get_edgecolor = get_edgecolors def draw(self, renderer): return Collection.draw(self, renderer) def poly_collection_2d_to_3d(col, zs=0, zdir='z'): """Convert a PolyCollection to a Poly3DCollection object.""" segments_3d = paths_to_3d_segments(col.get_paths(), zs, zdir) col.__class__ = Poly3DCollection col.set_verts(segments_3d) col.set_3d_properties() def juggle_axes(xs, ys, zs, zdir): """ Reorder coordinates so that 2D xs, ys can be plotted in the plane orthogonal to zdir. zdir is normally x, y or z. However, if zdir starts with a '-' it is interpreted as a compensation for rotate_axes. """ if zdir == 'x': return zs, xs, ys elif zdir == 'y': return xs, zs, ys elif zdir[0] == '-': return rotate_axes(xs, ys, zs, zdir) else: return xs, ys, zs def rotate_axes(xs, ys, zs, zdir): """ Reorder coordinates so that the axes are rotated with zdir along the original z axis. Prepending the axis with a '-' does the inverse transform, so zdir can be x, -x, y, -y, z or -z """ if zdir == 'x': return ys, zs, xs elif zdir == '-x': return zs, xs, ys elif zdir == 'y': return zs, xs, ys elif zdir == '-y': return ys, zs, xs else: return xs, ys, zs def iscolor(c): try: if len(c) == 4 or len(c) == 3: if iterable(c[0]): return False if hasattr(c[0], '__float__'): return True except: return False return False def get_colors(c, num): """Stretch the color argument to provide the required number num""" if type(c) == type("string"): c = mcolors.colorConverter.to_rgba(c) if iscolor(c): return [c] * num if len(c) == num: return c elif iscolor(c): return [c] * num elif len(c) == 0: #if edgecolor or facecolor is specified as 'none' return [[0,0,0,0]] * num elif iscolor(c[0]): return [c[0]] * num else: raise ValueError('unknown color format %s' % c) def zalpha(colors, zs): """Modify the alphas of the color list according to depth""" # FIXME: This only works well if the points for *zs* are well-spaced # in all three dimensions. Otherwise, at certain orientations, # the min and max zs are very close together. # Should really normalize against the viewing depth. colors = get_colors(colors, len(zs)) if zs.size > 0 : norm = Normalize(min(zs), max(zs)) sats = 1 - norm(zs) * 0.7 colors = [(c[0], c[1], c[2], c[3] * s) for c, s in zip(colors, sats)] return colors
gpl-2.0
jblupus/PyLoyaltyProject
old/interactions/format_interactions.py
1
5936
from os import mkdir from os.path import exists import numpy as np import pandas as pd from old.project import CassandraUtils from old.project import get_time RTD_STS_KEY = 'retweetedStatus' MT_STS_KEY = 'userMentionEntities' PATH = '/home/joao/Dev/Data/Twitter/' FRIENDS_PATH = '/home/joao/Dev/Data/Twitter/friendships/' def form_tweet(tweet, date=None): return {'id': tweet['id'], 'lang': tweet['lang'] if 'lang' in tweet else None, 'text': tweet['text'], 'date': date or tweet['createdAt'], 'user': {'id': tweet['user']['id']}} def folding(tweets): last_index = np.ceil(len(tweets) * 0.75).astype(int) if last_index < 10: return np.array(tweets) np_array = np.array(tweets) return np_array[0:last_index] def append_frame(df, df_plus): return df.append(df_plus) def save_frames(file_name, _data): if len(_data) > 0: data_frame = mount_frame(data=_data) df = pd.DataFrame() df = append_frame(df, data_frame) try: df.to_csv(file_name, sep=',', encoding='utf-8') except IOError: df.to_csv('Saida/retweets/' + file_name.split('/')[len(file_name.split('/')) - 1]) def mount_frame(data): data = np.array(data) data_frame = pd.DataFrame() if np.size(data) > 0: data_frame['alter'] = data[:, 1] data_frame['tweet'] = data[:, 0] return data_frame class FriendsDataToDataFrame: # frame_path = '/home/joao/Dev/Data/Twitter/friends.data/data.frame/' def __init__(self): self.cass = CassandraUtils() self.frame_path = '/home/joao/Dev/Shared/Saida/' self.likes_path = self.frame_path + 'likes/' self.mentions_path = self.frame_path + 'mentions/' self.retweets_path = self.frame_path + 'retweets/' print self.retweets_path try: if not exists(self.frame_path): mkdir(self.frame_path) if not exists(self.likes_path): mkdir(self.likes_path) if not exists(self.mentions_path): mkdir(self.mentions_path) if not exists(self.retweets_path): mkdir(self.retweets_path) except Exception as e: raise e def get_seeds(self): # seeds = pd.DataFrame() seeds = self.cass.find_seeds(); # print seeds seeds = map(lambda x: x.user_id, seeds) return seeds # # def check_friends_data(self, user_id): # friends = self(user_id=user_id) # data = filter(lambda friend_id: not exists(path=self.frame_path + str(friend_id) + '.csv'), friends['id']) # return len(data) == 0 # def check_json_interactions(self, seeds=None): # print 'Starting...', get_time(True) # # seeds = load_seeds() if seeds is None else seeds # seeds = self.get_seeds() # for user_id in seeds: # if not self.check_friends_data(user_id=user_id): # return user_id # print user_id # print 'Stopping...', get_time(True) # return None def json_interactions(self, _type=None, _force=False, _clean=False, check=False, init_id=0, unique=False): print 'Starting...', get_time(True) if not unique: seeds = self.get_seeds() # if _clean: # clean_data(self.frame_path) # elif check: # user_id = self.check_json_interactions(seeds=seeds) # if user_id is not None: # self.friends_data(user_id=user_id, _type=_type, force=True) # return Nonea seeds = filter(lambda s: s > init_id, seeds) for user_id in seeds: self.friends_data(user_id=user_id, _type=_type, force=_force) else: self.friends_data(user_id=init_id, _type=_type, force=_force) print 'Stopping...', get_time(True) def friends_data(self, user_id, _type, force=False): friends = map(lambda x: x.friend_id, self.cass.find_friends(user_id=user_id)) for friend_id in friends: if _type is None: pass elif _type == 1: path = self.likes_path + str(friend_id) + '.csv' if not exists(path=path) or force: self.save_likes(friend_id=friend_id) elif _type == 2: path = self.mentions_path + str(friend_id) + '.csv' if not exists(path=path) or force: self.save_mentions(friend_id=friend_id) elif _type == 3: path = self.retweets_path + str(friend_id) + '.csv' if not exists(path=path) or force: self.save_retweets(friend_id=friend_id) else: pass print user_id, friend_id, get_time() def save_likes(self, friend_id): likes = self.cass.find_likes(user_id=friend_id) likes_data = map(lambda tt: [tt['id'], tt['user']['id']], likes) save_frames(self.likes_path + str(friend_id) + '.csv', likes_data) def save_retweets(self, friend_id, _tweets=None): tweets = _tweets or self.cass.find_tweets(user_id=friend_id) retweets = self.cass.find_retweets(tweets=tweets) retweets_data = map(lambda tt: [tt[RTD_STS_KEY]['id'], tt[RTD_STS_KEY]['user']['id']], retweets) save_frames(self.retweets_path + str(friend_id) + '.csv', retweets_data) def save_mentions(self, friend_id, _tweets=None): tweets = _tweets or self.cass.find_tweets(user_id=friend_id) mentions = self.cass.find_mentions(tweets=tweets) mentions_data = [] for tweet in mentions: mentions_data.extend(map(lambda mention: [tweet['id'], mention['id']], tweet[MT_STS_KEY])) save_frames(self.mentions_path + str(friend_id) + '.csv', mentions_data)
bsd-2-clause
sandeepdsouza93/TensorFlow-15712
tensorflow/tools/dist_test/python/census_widendeep.py
3
11352
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Distributed training and evaluation of a wide and deep model.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import json import os from six.moves import urllib import tensorflow as tf from tensorflow.contrib.learn.python.learn import learn_runner from tensorflow.contrib.learn.python.learn.estimators import run_config # Define command-line flags flags = tf.app.flags flags.DEFINE_string("data_dir", "/tmp/census-data", "Directory for storing the cesnsus data") flags.DEFINE_string("model_dir", "/tmp/census_wide_and_deep_model", "Directory for storing the model") flags.DEFINE_string("output_dir", "", "Base output directory.") flags.DEFINE_string("schedule", "local_run", "Schedule to run for this experiment.") flags.DEFINE_string("master_grpc_url", "", "URL to master GRPC tensorflow server, e.g.," "grpc://127.0.0.1:2222") flags.DEFINE_integer("num_parameter_servers", 0, "Number of parameter servers") flags.DEFINE_integer("worker_index", 0, "Worker index (>=0)") flags.DEFINE_integer("train_steps", 1000, "Number of training steps") flags.DEFINE_integer("eval_steps", 1, "Number of evaluation steps") FLAGS = flags.FLAGS # Constants: Data download URLs TRAIN_DATA_URL = "https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data" TEST_DATA_URL = "https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.test" # Define features for the model def census_model_config(): """Configuration for the census Wide & Deep model. Returns: columns: Column names to retrieve from the data source label_column: Name of the label column wide_columns: List of wide columns deep_columns: List of deep columns categorical_column_names: Names of the categorical columns continuous_column_names: Names of the continuous columns """ # 1. Categorical base columns. gender = tf.contrib.layers.sparse_column_with_keys( column_name="gender", keys=["female", "male"]) race = tf.contrib.layers.sparse_column_with_keys( column_name="race", keys=["Amer-Indian-Eskimo", "Asian-Pac-Islander", "Black", "Other", "White"]) education = tf.contrib.layers.sparse_column_with_hash_bucket( "education", hash_bucket_size=1000) marital_status = tf.contrib.layers.sparse_column_with_hash_bucket( "marital_status", hash_bucket_size=100) relationship = tf.contrib.layers.sparse_column_with_hash_bucket( "relationship", hash_bucket_size=100) workclass = tf.contrib.layers.sparse_column_with_hash_bucket( "workclass", hash_bucket_size=100) occupation = tf.contrib.layers.sparse_column_with_hash_bucket( "occupation", hash_bucket_size=1000) native_country = tf.contrib.layers.sparse_column_with_hash_bucket( "native_country", hash_bucket_size=1000) # 2. Continuous base columns. age = tf.contrib.layers.real_valued_column("age") age_buckets = tf.contrib.layers.bucketized_column( age, boundaries=[18, 25, 30, 35, 40, 45, 50, 55, 60, 65]) education_num = tf.contrib.layers.real_valued_column("education_num") capital_gain = tf.contrib.layers.real_valued_column("capital_gain") capital_loss = tf.contrib.layers.real_valued_column("capital_loss") hours_per_week = tf.contrib.layers.real_valued_column("hours_per_week") wide_columns = [ gender, native_country, education, occupation, workclass, marital_status, relationship, age_buckets, tf.contrib.layers.crossed_column([education, occupation], hash_bucket_size=int(1e4)), tf.contrib.layers.crossed_column([native_country, occupation], hash_bucket_size=int(1e4)), tf.contrib.layers.crossed_column([age_buckets, race, occupation], hash_bucket_size=int(1e6))] deep_columns = [ tf.contrib.layers.embedding_column(workclass, dimension=8), tf.contrib.layers.embedding_column(education, dimension=8), tf.contrib.layers.embedding_column(marital_status, dimension=8), tf.contrib.layers.embedding_column(gender, dimension=8), tf.contrib.layers.embedding_column(relationship, dimension=8), tf.contrib.layers.embedding_column(race, dimension=8), tf.contrib.layers.embedding_column(native_country, dimension=8), tf.contrib.layers.embedding_column(occupation, dimension=8), age, education_num, capital_gain, capital_loss, hours_per_week] # Define the column names for the data sets. columns = ["age", "workclass", "fnlwgt", "education", "education_num", "marital_status", "occupation", "relationship", "race", "gender", "capital_gain", "capital_loss", "hours_per_week", "native_country", "income_bracket"] label_column = "label" categorical_columns = ["workclass", "education", "marital_status", "occupation", "relationship", "race", "gender", "native_country"] continuous_columns = ["age", "education_num", "capital_gain", "capital_loss", "hours_per_week"] return (columns, label_column, wide_columns, deep_columns, categorical_columns, continuous_columns) class CensusDataSource(object): """Source of census data.""" def __init__(self, data_dir, train_data_url, test_data_url, columns, label_column, categorical_columns, continuous_columns): """Constructor of CensusDataSource. Args: data_dir: Directory to save/load the data files train_data_url: URL from which the training data can be downloaded test_data_url: URL from which the test data can be downloaded columns: Columns to retrieve from the data files (A list of strings) label_column: Name of the label column categorical_columns: Names of the categorical columns (A list of strings) continuous_columns: Names of the continuous columsn (A list of strings) """ # Retrieve data from disk (if available) or download from the web. train_file_path = os.path.join(data_dir, "adult.data") if os.path.isfile(train_file_path): print("Loading training data from file: %s" % train_file_path) train_file = open(train_file_path) else: urllib.urlretrieve(train_data_url, train_file_path) test_file_path = os.path.join(data_dir, "adult.test") if os.path.isfile(test_file_path): print("Loading test data from file: %s" % test_file_path) test_file = open(test_file_path) else: test_file = open(test_file_path) urllib.urlretrieve(test_data_url, test_file_path) # Read the training and testing data sets into Pandas DataFrame. import pandas # pylint: disable=g-import-not-at-top self._df_train = pandas.read_csv(train_file, names=columns, skipinitialspace=True) self._df_test = pandas.read_csv(test_file, names=columns, skipinitialspace=True, skiprows=1) # Remove the NaN values in the last rows of the tables self._df_train = self._df_train[:-1] self._df_test = self._df_test[:-1] # Apply the threshold to get the labels. income_thresh = lambda x: ">50K" in x self._df_train[label_column] = ( self._df_train["income_bracket"].apply(income_thresh)).astype(int) self._df_test[label_column] = ( self._df_test["income_bracket"].apply(income_thresh)).astype(int) self.label_column = label_column self.categorical_columns = categorical_columns self.continuous_columns = continuous_columns def input_train_fn(self): return self._input_fn(self._df_train) def input_test_fn(self): return self._input_fn(self._df_test) # TODO(cais): Turn into minibatch feeder def _input_fn(self, df): """Input data function. Creates a dictionary mapping from each continuous feature column name (k) to the values of that column stored in a constant Tensor. Args: df: data feed Returns: feature columns and labels """ continuous_cols = {k: tf.constant(df[k].values) for k in self.continuous_columns} # Creates a dictionary mapping from each categorical feature column name (k) # to the values of that column stored in a tf.SparseTensor. categorical_cols = {k: tf.SparseTensor( indices=[[i, 0] for i in range(df[k].size)], values=df[k].values, shape=[df[k].size, 1]) for k in self.categorical_columns} # Merges the two dictionaries into one. feature_cols = dict(continuous_cols.items() + categorical_cols.items()) # Converts the label column into a constant Tensor. label = tf.constant(df[self.label_column].values) # Returns the feature columns and the label. return feature_cols, label def _create_experiment_fn(output_dir): # pylint: disable=unused-argument """Experiment creation function.""" (columns, label_column, wide_columns, deep_columns, categorical_columns, continuous_columns) = census_model_config() census_data_source = CensusDataSource(FLAGS.data_dir, TRAIN_DATA_URL, TEST_DATA_URL, columns, label_column, categorical_columns, continuous_columns) os.environ["TF_CONFIG"] = json.dumps({ "cluster": { tf.contrib.learn.TaskType.PS: ["fake_ps"] * FLAGS.num_parameter_servers }, "task": { "index": FLAGS.worker_index } }) config = run_config.RunConfig(master=FLAGS.master_grpc_url) estimator = tf.contrib.learn.DNNLinearCombinedClassifier( model_dir=FLAGS.model_dir, linear_feature_columns=wide_columns, dnn_feature_columns=deep_columns, dnn_hidden_units=[5], config=config) return tf.contrib.learn.Experiment( estimator=estimator, train_input_fn=census_data_source.input_train_fn, eval_input_fn=census_data_source.input_test_fn, train_steps=FLAGS.train_steps, eval_steps=FLAGS.eval_steps ) def main(unused_argv): print("Worker index: %d" % FLAGS.worker_index) learn_runner.run(experiment_fn=_create_experiment_fn, output_dir=FLAGS.output_dir, schedule=FLAGS.schedule) if __name__ == "__main__": tf.app.run()
apache-2.0
abhishekkrthakur/scikit-learn
benchmarks/bench_20newsgroups.py
377
3555
from __future__ import print_function, division from time import time import argparse import numpy as np from sklearn.dummy import DummyClassifier from sklearn.datasets import fetch_20newsgroups_vectorized from sklearn.metrics import accuracy_score from sklearn.utils.validation import check_array from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import MultinomialNB ESTIMATORS = { "dummy": DummyClassifier(), "random_forest": RandomForestClassifier(n_estimators=100, max_features="sqrt", min_samples_split=10), "extra_trees": ExtraTreesClassifier(n_estimators=100, max_features="sqrt", min_samples_split=10), "logistic_regression": LogisticRegression(), "naive_bayes": MultinomialNB(), "adaboost": AdaBoostClassifier(n_estimators=10), } ############################################################################### # Data if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('-e', '--estimators', nargs="+", required=True, choices=ESTIMATORS) args = vars(parser.parse_args()) data_train = fetch_20newsgroups_vectorized(subset="train") data_test = fetch_20newsgroups_vectorized(subset="test") X_train = check_array(data_train.data, dtype=np.float32, accept_sparse="csc") X_test = check_array(data_test.data, dtype=np.float32, accept_sparse="csr") y_train = data_train.target y_test = data_test.target print("20 newsgroups") print("=============") print("X_train.shape = {0}".format(X_train.shape)) print("X_train.format = {0}".format(X_train.format)) print("X_train.dtype = {0}".format(X_train.dtype)) print("X_train density = {0}" "".format(X_train.nnz / np.product(X_train.shape))) print("y_train {0}".format(y_train.shape)) print("X_test {0}".format(X_test.shape)) print("X_test.format = {0}".format(X_test.format)) print("X_test.dtype = {0}".format(X_test.dtype)) print("y_test {0}".format(y_test.shape)) print() print("Classifier Training") print("===================") accuracy, train_time, test_time = {}, {}, {} for name in sorted(args["estimators"]): clf = ESTIMATORS[name] try: clf.set_params(random_state=0) except (TypeError, ValueError): pass print("Training %s ... " % name, end="") t0 = time() clf.fit(X_train, y_train) train_time[name] = time() - t0 t0 = time() y_pred = clf.predict(X_test) test_time[name] = time() - t0 accuracy[name] = accuracy_score(y_test, y_pred) print("done") print() print("Classification performance:") print("===========================") print() print("%s %s %s %s" % ("Classifier ", "train-time", "test-time", "Accuracy")) print("-" * 44) for name in sorted(accuracy, key=accuracy.get): print("%s %s %s %s" % (name.ljust(16), ("%.4fs" % train_time[name]).center(10), ("%.4fs" % test_time[name]).center(10), ("%.4f" % accuracy[name]).center(10))) print()
bsd-3-clause
r-mart/scikit-learn
examples/tree/plot_tree_regression.py
206
1476
""" =================================================================== Decision Tree Regression =================================================================== A 1D regression with decision tree. The :ref:`decision trees <tree>` is used to fit a sine curve with addition noisy observation. As a result, it learns local linear regressions approximating the sine curve. We can see that if the maximum depth of the tree (controlled by the `max_depth` parameter) is set too high, the decision trees learn too fine details of the training data and learn from the noise, i.e. they overfit. """ print(__doc__) # Import the necessary modules and libraries import numpy as np from sklearn.tree import DecisionTreeRegressor import matplotlib.pyplot as plt # Create a random dataset rng = np.random.RandomState(1) X = np.sort(5 * rng.rand(80, 1), axis=0) y = np.sin(X).ravel() y[::5] += 3 * (0.5 - rng.rand(16)) # Fit regression model regr_1 = DecisionTreeRegressor(max_depth=2) regr_2 = DecisionTreeRegressor(max_depth=5) regr_1.fit(X, y) regr_2.fit(X, y) # Predict X_test = np.arange(0.0, 5.0, 0.01)[:, np.newaxis] y_1 = regr_1.predict(X_test) y_2 = regr_2.predict(X_test) # Plot the results plt.figure() plt.scatter(X, y, c="k", label="data") plt.plot(X_test, y_1, c="g", label="max_depth=2", linewidth=2) plt.plot(X_test, y_2, c="r", label="max_depth=5", linewidth=2) plt.xlabel("data") plt.ylabel("target") plt.title("Decision Tree Regression") plt.legend() plt.show()
bsd-3-clause
drewokane/seaborn
seaborn/tests/test_utils.py
11
11338
"""Tests for plotting utilities.""" import warnings import tempfile import shutil import numpy as np import pandas as pd import matplotlib.pyplot as plt import nose import nose.tools as nt from nose.tools import assert_equal, raises import numpy.testing as npt import pandas.util.testing as pdt from distutils.version import LooseVersion pandas_has_categoricals = LooseVersion(pd.__version__) >= "0.15" from pandas.util.testing import network try: from bs4 import BeautifulSoup except ImportError: BeautifulSoup = None from . import PlotTestCase from .. import utils, rcmod from ..utils import get_dataset_names, load_dataset a_norm = np.random.randn(100) def test_pmf_hist_basics(): """Test the function to return barplot args for pmf hist.""" out = utils.pmf_hist(a_norm) assert_equal(len(out), 3) x, h, w = out assert_equal(len(x), len(h)) # Test simple case a = np.arange(10) x, h, w = utils.pmf_hist(a, 10) nose.tools.assert_true(np.all(h == h[0])) def test_pmf_hist_widths(): """Test histogram width is correct.""" x, h, w = utils.pmf_hist(a_norm) assert_equal(x[1] - x[0], w) def test_pmf_hist_normalization(): """Test that output data behaves like a PMF.""" x, h, w = utils.pmf_hist(a_norm) nose.tools.assert_almost_equal(sum(h), 1) nose.tools.assert_less_equal(h.max(), 1) def test_pmf_hist_bins(): """Test bin specification.""" x, h, w = utils.pmf_hist(a_norm, 20) assert_equal(len(x), 20) def test_ci_to_errsize(): """Test behavior of ci_to_errsize.""" cis = [[.5, .5], [1.25, 1.5]] heights = [1, 1.5] actual_errsize = np.array([[.5, 1], [.25, 0]]) test_errsize = utils.ci_to_errsize(cis, heights) npt.assert_array_equal(actual_errsize, test_errsize) def test_desaturate(): """Test color desaturation.""" out1 = utils.desaturate("red", .5) assert_equal(out1, (.75, .25, .25)) out2 = utils.desaturate("#00FF00", .5) assert_equal(out2, (.25, .75, .25)) out3 = utils.desaturate((0, 0, 1), .5) assert_equal(out3, (.25, .25, .75)) out4 = utils.desaturate("red", .5) assert_equal(out4, (.75, .25, .25)) @raises(ValueError) def test_desaturation_prop(): """Test that pct outside of [0, 1] raises exception.""" utils.desaturate("blue", 50) def test_saturate(): """Test performance of saturation function.""" out = utils.saturate((.75, .25, .25)) assert_equal(out, (1, 0, 0)) def test_iqr(): """Test the IQR function.""" a = np.arange(5) iqr = utils.iqr(a) assert_equal(iqr, 2) class TestSpineUtils(PlotTestCase): sides = ["left", "right", "bottom", "top"] outer_sides = ["top", "right"] inner_sides = ["left", "bottom"] offset = 10 original_position = ("outward", 0) offset_position = ("outward", offset) def test_despine(self): f, ax = plt.subplots() for side in self.sides: nt.assert_true(ax.spines[side].get_visible()) utils.despine() for side in self.outer_sides: nt.assert_true(~ax.spines[side].get_visible()) for side in self.inner_sides: nt.assert_true(ax.spines[side].get_visible()) utils.despine(**dict(zip(self.sides, [True] * 4))) for side in self.sides: nt.assert_true(~ax.spines[side].get_visible()) def test_despine_specific_axes(self): f, (ax1, ax2) = plt.subplots(2, 1) utils.despine(ax=ax2) for side in self.sides: nt.assert_true(ax1.spines[side].get_visible()) for side in self.outer_sides: nt.assert_true(~ax2.spines[side].get_visible()) for side in self.inner_sides: nt.assert_true(ax2.spines[side].get_visible()) def test_despine_with_offset(self): f, ax = plt.subplots() for side in self.sides: nt.assert_equal(ax.spines[side].get_position(), self.original_position) utils.despine(ax=ax, offset=self.offset) for side in self.sides: is_visible = ax.spines[side].get_visible() new_position = ax.spines[side].get_position() if is_visible: nt.assert_equal(new_position, self.offset_position) else: nt.assert_equal(new_position, self.original_position) def test_despine_with_offset_specific_axes(self): f, (ax1, ax2) = plt.subplots(2, 1) utils.despine(offset=self.offset, ax=ax2) for side in self.sides: nt.assert_equal(ax1.spines[side].get_position(), self.original_position) if ax2.spines[side].get_visible(): nt.assert_equal(ax2.spines[side].get_position(), self.offset_position) else: nt.assert_equal(ax2.spines[side].get_position(), self.original_position) def test_despine_trim_spines(self): f, ax = plt.subplots() ax.plot([1, 2, 3], [1, 2, 3]) ax.set_xlim(.75, 3.25) utils.despine(trim=True) for side in self.inner_sides: bounds = ax.spines[side].get_bounds() nt.assert_equal(bounds, (1, 3)) def test_despine_trim_inverted(self): f, ax = plt.subplots() ax.plot([1, 2, 3], [1, 2, 3]) ax.set_ylim(.85, 3.15) ax.invert_yaxis() utils.despine(trim=True) for side in self.inner_sides: bounds = ax.spines[side].get_bounds() nt.assert_equal(bounds, (1, 3)) def test_despine_trim_noticks(self): f, ax = plt.subplots() ax.plot([1, 2, 3], [1, 2, 3]) ax.set_yticks([]) utils.despine(trim=True) nt.assert_equal(ax.get_yticks().size, 0) def test_offset_spines_warns(self): with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always", category=UserWarning) f, ax = plt.subplots() utils.offset_spines(offset=self.offset) nt.assert_true('deprecated' in str(w[0].message)) nt.assert_true(issubclass(w[0].category, UserWarning)) def test_offset_spines(self): with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always", category=UserWarning) f, ax = plt.subplots() for side in self.sides: nt.assert_equal(ax.spines[side].get_position(), self.original_position) utils.offset_spines(offset=self.offset) for side in self.sides: nt.assert_equal(ax.spines[side].get_position(), self.offset_position) def test_offset_spines_specific_axes(self): with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always", category=UserWarning) f, (ax1, ax2) = plt.subplots(2, 1) utils.offset_spines(offset=self.offset, ax=ax2) for side in self.sides: nt.assert_equal(ax1.spines[side].get_position(), self.original_position) nt.assert_equal(ax2.spines[side].get_position(), self.offset_position) def test_ticklabels_overlap(): rcmod.set() f, ax = plt.subplots(figsize=(2, 2)) f.tight_layout() # This gets the Agg renderer working assert not utils.axis_ticklabels_overlap(ax.get_xticklabels()) big_strings = "abcdefgh", "ijklmnop" ax.set_xlim(-.5, 1.5) ax.set_xticks([0, 1]) ax.set_xticklabels(big_strings) assert utils.axis_ticklabels_overlap(ax.get_xticklabels()) x, y = utils.axes_ticklabels_overlap(ax) assert x assert not y def test_categorical_order(): x = ["a", "c", "c", "b", "a", "d"] y = [3, 2, 5, 1, 4] order = ["a", "b", "c", "d"] out = utils.categorical_order(x) nt.assert_equal(out, ["a", "c", "b", "d"]) out = utils.categorical_order(x, order) nt.assert_equal(out, order) out = utils.categorical_order(x, ["b", "a"]) nt.assert_equal(out, ["b", "a"]) out = utils.categorical_order(np.array(x)) nt.assert_equal(out, ["a", "c", "b", "d"]) out = utils.categorical_order(pd.Series(x)) nt.assert_equal(out, ["a", "c", "b", "d"]) out = utils.categorical_order(y) nt.assert_equal(out, [1, 2, 3, 4, 5]) out = utils.categorical_order(np.array(y)) nt.assert_equal(out, [1, 2, 3, 4, 5]) out = utils.categorical_order(pd.Series(y)) nt.assert_equal(out, [1, 2, 3, 4, 5]) if pandas_has_categoricals: x = pd.Categorical(x, order) out = utils.categorical_order(x) nt.assert_equal(out, list(x.categories)) x = pd.Series(x) out = utils.categorical_order(x) nt.assert_equal(out, list(x.cat.categories)) out = utils.categorical_order(x, ["b", "a"]) nt.assert_equal(out, ["b", "a"]) x = ["a", np.nan, "c", "c", "b", "a", "d"] out = utils.categorical_order(x) nt.assert_equal(out, ["a", "c", "b", "d"]) if LooseVersion(pd.__version__) >= "0.15": def check_load_dataset(name): ds = load_dataset(name, cache=False) assert(isinstance(ds, pd.DataFrame)) def check_load_cached_dataset(name): # Test the cacheing using a temporary file. # With Python 3.2+, we could use the tempfile.TemporaryDirectory() # context manager instead of this try...finally statement tmpdir = tempfile.mkdtemp() try: # download and cache ds = load_dataset(name, cache=True, data_home=tmpdir) # use cached version ds2 = load_dataset(name, cache=True, data_home=tmpdir) pdt.assert_frame_equal(ds, ds2) finally: shutil.rmtree(tmpdir) @network(url="https://github.com/mwaskom/seaborn-data") def test_get_dataset_names(): if not BeautifulSoup: raise nose.SkipTest("No BeautifulSoup available for parsing html") names = get_dataset_names() assert(len(names) > 0) assert(u"titanic" in names) @network(url="https://github.com/mwaskom/seaborn-data") def test_load_datasets(): if not BeautifulSoup: raise nose.SkipTest("No BeautifulSoup available for parsing html") # Heavy test to verify that we can load all available datasets for name in get_dataset_names(): # unfortunately @network somehow obscures this generator so it # does not get in effect, so we need to call explicitly # yield check_load_dataset, name check_load_dataset(name) @network(url="https://github.com/mwaskom/seaborn-data") def test_load_cached_datasets(): if not BeautifulSoup: raise nose.SkipTest("No BeautifulSoup available for parsing html") # Heavy test to verify that we can load all available datasets for name in get_dataset_names(): # unfortunately @network somehow obscures this generator so it # does not get in effect, so we need to call explicitly # yield check_load_dataset, name check_load_cached_dataset(name)
bsd-3-clause
janelia-idf/hybridizer
tests/adc_to_volume.py
4
5112
# -*- coding: utf-8 -*- from __future__ import print_function, division import matplotlib.pyplot as plot import numpy from numpy.polynomial.polynomial import polyfit,polyadd,Polynomial import yaml INCHES_PER_ML = 0.078 VOLTS_PER_ADC_UNIT = 0.0049 def load_numpy_data(path): with open(path,'r') as fid: header = fid.readline().rstrip().split(',') dt = numpy.dtype({'names':header,'formats':['S25']*len(header)}) numpy_data = numpy.loadtxt(path,dtype=dt,delimiter=",",skiprows=1) return numpy_data # ----------------------------------------------------------------------------------------- if __name__ == '__main__': # Load VA data data_file = 'hall_effect_data_va.csv' hall_effect_data_va = load_numpy_data(data_file) distances_va = numpy.float64(hall_effect_data_va['distance']) A1_VA = numpy.float64(hall_effect_data_va['A1']) A9_VA = numpy.float64(hall_effect_data_va['A9']) A4_VA = numpy.float64(hall_effect_data_va['A4']) A12_VA = numpy.float64(hall_effect_data_va['A12']) A2_VA = numpy.float64(hall_effect_data_va['A2']) A10_VA = numpy.float64(hall_effect_data_va['A10']) A5_VA = numpy.float64(hall_effect_data_va['A5']) A13_VA = numpy.float64(hall_effect_data_va['A13']) # Massage VA data volumes_va = distances_va/INCHES_PER_ML A1_VA = numpy.reshape(A1_VA,(-1,1)) A9_VA = numpy.reshape(A9_VA,(-1,1)) A4_VA = numpy.reshape(A4_VA,(-1,1)) A12_VA = numpy.reshape(A12_VA,(-1,1)) A2_VA = numpy.reshape(A2_VA,(-1,1)) A10_VA = numpy.reshape(A10_VA,(-1,1)) A5_VA = numpy.reshape(A5_VA,(-1,1)) A13_VA = numpy.reshape(A13_VA,(-1,1)) data_va = numpy.hstack((A1_VA,A9_VA,A4_VA,A12_VA,A2_VA,A10_VA,A5_VA,A13_VA)) data_va = data_va/VOLTS_PER_ADC_UNIT # Load OA data data_file = 'hall_effect_data_oa.csv' hall_effect_data_oa = load_numpy_data(data_file) distances_oa = numpy.float64(hall_effect_data_oa['distance']) A9_OA = numpy.float64(hall_effect_data_oa['A9']) A10_OA = numpy.float64(hall_effect_data_oa['A10']) A11_OA = numpy.float64(hall_effect_data_oa['A11']) A12_OA = numpy.float64(hall_effect_data_oa['A12']) # Massage OA data volumes_oa = distances_oa/INCHES_PER_ML A9_OA = numpy.reshape(A9_OA,(-1,1)) A10_OA = numpy.reshape(A10_OA,(-1,1)) A11_OA = numpy.reshape(A11_OA,(-1,1)) A12_OA = numpy.reshape(A12_OA,(-1,1)) data_oa = numpy.hstack((A9_OA,A10_OA,A11_OA,A12_OA)) data_oa = data_oa/VOLTS_PER_ADC_UNIT # Create figure fig = plot.figure() fig.suptitle('hall effect sensors',fontsize=14,fontweight='bold') fig.subplots_adjust(top=0.85) colors = ['b','g','r','c','m','y','k','b'] markers = ['o','o','o','o','o','o','o','^'] # Axis 1 ax1 = fig.add_subplot(121) for column_index in range(0,data_va.shape[1]): color = colors[column_index] marker = markers[column_index] ax1.plot(data_va[:,column_index],volumes_va,marker=marker,linestyle='--',color=color) # for column_index in range(0,data_oa.shape[1]): # color = colors[column_index] # marker = markers[column_index] # ax1.plot(data_oa[:,column_index],volumes_oa,marker=marker,linestyle='--',color=color) ax1.set_xlabel('mean signals (ADC units)') ax1.set_ylabel('volume (ml)') ax1.grid(True) # Axis 2 for column_index in range(0,data_va.shape[1]): data_va[:,column_index] -= data_va[:,column_index].min() MAX_VA = 120 data_va = data_va[numpy.all(data_va<MAX_VA,axis=1)] length = data_va.shape[0] volumes_va = volumes_va[-length:] # for column_index in range(0,data_oa.shape[1]): # data_oa[:,column_index] -= data_oa[:,column_index].max() ax2 = fig.add_subplot(122) for column_index in range(0,data_va.shape[1]): color = colors[column_index] marker = markers[column_index] ax2.plot(data_va[:,column_index],volumes_va,marker=marker,linestyle='--',color=color) # for column_index in range(0,data_oa.shape[1]): # color = colors[column_index] # marker = markers[column_index] # ax2.plot(data_oa[:,column_index],volumes_oa,marker=marker,linestyle='--',color=color) ax2.set_xlabel('offset mean signals (ADC units)') ax2.set_ylabel('volume (ml)') ax2.grid(True) order = 3 sum_va = None for column_index in range(0,data_va.shape[1]): coefficients_va = polyfit(data_va[:,column_index],volumes_va,order) if sum_va is None: sum_va = coefficients_va else: sum_va = polyadd(sum_va,coefficients_va) average_va = sum_va/data_va.shape[1] with open('adc_to_volume_va.yaml', 'w') as f: yaml.dump(average_va, f, default_flow_style=False) round_digits = 8 average_va = [round(i,round_digits) for i in average_va] poly = Polynomial(average_va) ys_va = poly(data_va[:,-1]) ax2.plot(data_va[:,-1],ys_va,'r',linewidth=3) ax2.text(5,7.5,r'$v = c_0 + c_1s + c_2s^2 + c_3s^3$',fontsize=20) ax2.text(5,6.5,str(average_va),fontsize=18,color='r') plot.show()
bsd-3-clause
hmendozap/master-arbeit-projects
autosk_dev_test/component/RegDeepNet.py
1
19049
import numpy as np import scipy.sparse as sp from HPOlibConfigSpace.configuration_space import ConfigurationSpace from HPOlibConfigSpace.conditions import EqualsCondition, InCondition from HPOlibConfigSpace.hyperparameters import UniformFloatHyperparameter, \ UniformIntegerHyperparameter, CategoricalHyperparameter, Constant from autosklearn.pipeline.components.base import AutoSklearnRegressionAlgorithm from autosklearn.pipeline.constants import * class RegDeepNet(AutoSklearnRegressionAlgorithm): def __init__(self, number_epochs, batch_size, num_layers, dropout_output, learning_rate, solver, lambda2, random_state=None, **kwargs): self.number_epochs = number_epochs self.batch_size = batch_size self.num_layers = ord(num_layers) - ord('a') self.dropout_output = dropout_output self.learning_rate = learning_rate self.lambda2 = lambda2 self.solver = solver # Also taken from **kwargs. Because the assigned # arguments are the minimum parameters to run # the iterative net. IMO. self.lr_policy = kwargs.get("lr_policy", "fixed") self.momentum = kwargs.get("momentum", 0.99) self.beta1 = 1 - kwargs.get("beta1", 0.1) self.beta2 = 1 - kwargs.get("beta2", 0.01) self.rho = kwargs.get("rho", 0.95) self.gamma = kwargs.get("gamma", 0.01) self.power = kwargs.get("power", 1.0) self.epoch_step = kwargs.get("epoch_step", 1) # Empty features and shape self.n_features = None self.input_shape = None self.m_issparse = False self.m_isbinary = False self.m_ismultilabel = False self.m_isregression = True # TODO: Should one add a try-except here? self.num_units_per_layer = [] self.dropout_per_layer = [] self.activation_per_layer = [] self.weight_init_layer = [] self.std_per_layer = [] self.leakiness_per_layer = [] self.tanh_alpha_per_layer = [] self.tanh_beta_per_layer = [] for i in range(1, self.num_layers): self.num_units_per_layer.append(int(kwargs.get("num_units_layer_" + str(i), 128))) self.dropout_per_layer.append(float(kwargs.get("dropout_layer_" + str(i), 0.5))) self.activation_per_layer.append(kwargs.get("activation_layer_" + str(i), 'relu')) self.weight_init_layer.append(kwargs.get("weight_init_" + str(i), 'he_normal')) self.std_per_layer.append(float(kwargs.get("std_layer_" + str(i), 0.005))) self.leakiness_per_layer.append(float(kwargs.get("leakiness_layer_" + str(i), 1. / 3.))) self.tanh_alpha_per_layer.append(float(kwargs.get("tanh_alpha_layer_" + str(i), 2. / 3.))) self.tanh_beta_per_layer.append(float(kwargs.get("tanh_beta_layer_" + str(i), 1.7159))) self.estimator = None self.random_state = random_state def _prefit(self, X, y): self.batch_size = int(self.batch_size) self.n_features = X.shape[1] self.input_shape = (self.batch_size, self.n_features) assert len(self.num_units_per_layer) == self.num_layers - 1,\ "Number of created layers is different than actual layers" assert len(self.dropout_per_layer) == self.num_layers - 1,\ "Number of created layers is different than actual layers" self.num_output_units = 1 # Regression # Normalize the output self.mean_y = np.mean(y) self.std_y = np.std(y) y = (y - self.mean_y) / self.std_y if len(y.shape) == 1: y = y[:, np.newaxis] self.m_issparse = sp.issparse(X) return X, y def fit(self, X, y): Xf, yf = self._prefit(X, y) from implementation import FeedForwardNet self.estimator = FeedForwardNet.FeedForwardNet(batch_size=self.batch_size, input_shape=self.input_shape, num_layers=self.num_layers, num_units_per_layer=self.num_units_per_layer, dropout_per_layer=self.dropout_per_layer, activation_per_layer=self.activation_per_layer, weight_init_per_layer=self.weight_init_layer, std_per_layer=self.std_per_layer, leakiness_per_layer=self.leakiness_per_layer, tanh_alpha_per_layer=self.tanh_alpha_per_layer, tanh_beta_per_layer=self.tanh_beta_per_layer, num_output_units=self.num_output_units, dropout_output=self.dropout_output, learning_rate=self.learning_rate, lr_policy=self.lr_policy, lambda2=self.lambda2, momentum=self.momentum, beta1=self.beta1, beta2=self.beta2, rho=self.rho, solver=self.solver, num_epochs=self.number_epochs, gamma=self.gamma, power=self.power, epoch_step=self.epoch_step, is_sparse=self.m_issparse, is_binary=self.m_isbinary, is_multilabel=self.m_ismultilabel, is_regression=self.m_isregression, random_state=self.random_state) self.estimator.fit(Xf, yf) return self def predict(self, X): if self.estimator is None: raise NotImplementedError preds = self.estimator.predict(X, self.m_issparse) return preds * self.std_y + self.mean_y def predict_proba(self, X): if self.estimator is None: raise NotImplementedError() return self.estimator.predict_proba(X, self.m_issparse) @staticmethod def get_properties(dataset_properties=None): return {'shortname': 'reg_feed_nn', 'name': 'Regression Feed Forward Neural Network', 'handles_regression': True, 'handles_classification': False, 'handles_multiclass': False, 'handles_multilabel': False, 'is_deterministic': True, 'input': (DENSE, SPARSE, UNSIGNED_DATA), 'output': (PREDICTIONS,)} @staticmethod def get_hyperparameter_search_space(dataset_properties=None): max_num_layers = 7 # Maximum number of layers coded # Hacky way to condition layers params based on the number of layers # 'c'=1, 'd'=2, 'e'=3 ,'f'=4', g ='5', h='6' + output_layer layer_choices = [chr(i) for i in range(ord('c'), ord('b') + max_num_layers)] batch_size = UniformIntegerHyperparameter("batch_size", 32, 4096, log=True, default=32) number_epochs = UniformIntegerHyperparameter("number_epochs", 2, 80, default=5) num_layers = CategoricalHyperparameter("num_layers", choices=layer_choices, default='c') lr = UniformFloatHyperparameter("learning_rate", 1e-6, 1.0, log=True, default=0.01) l2 = UniformFloatHyperparameter("lambda2", 1e-7, 1e-2, log=True, default=1e-4) dropout_output = UniformFloatHyperparameter("dropout_output", 0.0, 0.99, default=0.5) # Define basic hyperparameters and define the config space # basic means that are independent from the number of layers cs = ConfigurationSpace() cs.add_hyperparameter(number_epochs) cs.add_hyperparameter(batch_size) cs.add_hyperparameter(num_layers) cs.add_hyperparameter(lr) cs.add_hyperparameter(l2) cs.add_hyperparameter(dropout_output) # Define parameters with different child parameters and conditions solver_choices = ["adam", "adadelta", "adagrad", "sgd", "momentum", "nesterov", "smorm3s"] solver = CategoricalHyperparameter(name="solver", choices=solver_choices, default="smorm3s") beta1 = UniformFloatHyperparameter("beta1", 1e-4, 0.1, log=True, default=0.1) beta2 = UniformFloatHyperparameter("beta2", 1e-4, 0.1, log=True, default=0.01) rho = UniformFloatHyperparameter("rho", 0.05, 0.99, log=True, default=0.95) momentum = UniformFloatHyperparameter("momentum", 0.3, 0.999, default=0.9) # TODO: Add policy based on this sklearn sgd policy_choices = ['fixed', 'inv', 'exp', 'step'] lr_policy = CategoricalHyperparameter(name="lr_policy", choices=policy_choices, default='fixed') gamma = UniformFloatHyperparameter(name="gamma", lower=1e-3, upper=1e-1, default=1e-2) power = UniformFloatHyperparameter("power", 0.0, 1.0, default=0.5) epoch_step = UniformIntegerHyperparameter("epoch_step", 2, 20, default=5) cs.add_hyperparameter(solver) cs.add_hyperparameter(beta1) cs.add_hyperparameter(beta2) cs.add_hyperparameter(momentum) cs.add_hyperparameter(rho) cs.add_hyperparameter(lr_policy) cs.add_hyperparameter(gamma) cs.add_hyperparameter(power) cs.add_hyperparameter(epoch_step) # Define parameters that are needed it for each layer output_activation_choices = ['softmax', 'sigmoid', 'softplus', 'tanh'] activations_choices = ['sigmoid', 'tanh', 'scaledTanh', 'elu', 'relu', 'leaky', 'linear'] weight_choices = ['constant', 'normal', 'uniform', 'glorot_normal', 'glorot_uniform', 'he_normal', 'he_uniform', 'ortogonal', 'sparse'] # Iterate over parameters that are used in each layer for i in range(1, max_num_layers): layer_units = UniformIntegerHyperparameter("num_units_layer_" + str(i), 64, 4096, log=True, default=128) cs.add_hyperparameter(layer_units) layer_dropout = UniformFloatHyperparameter("dropout_layer_" + str(i), 0.0, 0.99, default=0.5) cs.add_hyperparameter(layer_dropout) weight_initialization = CategoricalHyperparameter('weight_init_' + str(i), choices=weight_choices, default='he_normal') cs.add_hyperparameter(weight_initialization) layer_std = UniformFloatHyperparameter("std_layer_" + str(i), 1e-6, 0.1, log=True, default=0.005) cs.add_hyperparameter(layer_std) layer_activation = CategoricalHyperparameter("activation_layer_" + str(i), choices=activations_choices, default="relu") cs.add_hyperparameter(layer_activation) layer_leakiness = UniformFloatHyperparameter('leakiness_layer_' + str(i), 0.01, 0.99, default=0.3) cs.add_hyperparameter(layer_leakiness) layer_tanh_alpha = UniformFloatHyperparameter('tanh_alpha_layer_' + str(i), 0.5, 1.0, default=2. / 3.) cs.add_hyperparameter(layer_tanh_alpha) layer_tanh_beta = UniformFloatHyperparameter('tanh_beta_layer_' + str(i), 1.1, 3.0, log=True, default=1.7159) cs.add_hyperparameter(layer_tanh_beta) # TODO: Could be in a function in a new module for i in range(2, max_num_layers): # Condition layers parameter on layer choice layer_unit_param = cs.get_hyperparameter("num_units_layer_" + str(i)) layer_cond = InCondition(child=layer_unit_param, parent=num_layers, values=[l for l in layer_choices[i - 1:]]) cs.add_condition(layer_cond) # Condition dropout parameter on layer choice layer_dropout_param = cs.get_hyperparameter("dropout_layer_" + str(i)) layer_cond = InCondition(child=layer_dropout_param, parent=num_layers, values=[l for l in layer_choices[i - 1:]]) cs.add_condition(layer_cond) # Condition weight initialization on layer choice layer_weight_param = cs.get_hyperparameter("weight_init_" + str(i)) layer_cond = InCondition(child=layer_weight_param, parent=num_layers, values=[l for l in layer_choices[i - 1:]]) cs.add_condition(layer_cond) # Condition std parameter on weight layer initialization choice layer_std_param = cs.get_hyperparameter("std_layer_" + str(i)) weight_cond = EqualsCondition(child=layer_std_param, parent=layer_weight_param, value='normal') cs.add_condition(weight_cond) # Condition activation parameter on layer choice layer_activation_param = cs.get_hyperparameter("activation_layer_" + str(i)) layer_cond = InCondition(child=layer_activation_param, parent=num_layers, values=[l for l in layer_choices[i - 1:]]) cs.add_condition(layer_cond) # Condition leakiness on activation choice layer_leakiness_param = cs.get_hyperparameter("leakiness_layer_" + str(i)) activation_cond = EqualsCondition(child=layer_leakiness_param, parent=layer_activation_param, value='leaky') cs.add_condition(activation_cond) # Condition tanh on activation choice layer_tanh_alpha_param = cs.get_hyperparameter("tanh_alpha_layer_" + str(i)) activation_cond = EqualsCondition(child=layer_tanh_alpha_param, parent=layer_activation_param, value='scaledTanh') cs.add_condition(activation_cond) layer_tanh_beta_param = cs.get_hyperparameter("tanh_beta_layer_" + str(i)) activation_cond = EqualsCondition(child=layer_tanh_beta_param, parent=layer_activation_param, value='scaledTanh') cs.add_condition(activation_cond) # Conditioning on solver momentum_depends_on_solver = InCondition(momentum, solver, values=["momentum", "nesterov"]) beta1_depends_on_solver = EqualsCondition(beta1, solver, "adam") beta2_depends_on_solver = EqualsCondition(beta2, solver, "adam") rho_depends_on_solver = EqualsCondition(rho, solver, "adadelta") cs.add_condition(momentum_depends_on_solver) cs.add_condition(beta1_depends_on_solver) cs.add_condition(beta2_depends_on_solver) cs.add_condition(rho_depends_on_solver) # Conditioning on learning rate policy lr_policy_depends_on_solver = InCondition(lr_policy, solver, ["adadelta", "adagrad", "sgd", "momentum", "nesterov"]) gamma_depends_on_policy = InCondition(child=gamma, parent=lr_policy, values=["inv", "exp", "step"]) power_depends_on_policy = EqualsCondition(power, lr_policy, "inv") epoch_step_depends_on_policy = EqualsCondition(epoch_step, lr_policy, "step") cs.add_condition(lr_policy_depends_on_solver) cs.add_condition(gamma_depends_on_policy) cs.add_condition(power_depends_on_policy) cs.add_condition(epoch_step_depends_on_policy) return cs
mit
openai/baselines
baselines/gail/dataset/mujoco_dset.py
1
4448
''' Data structure of the input .npz: the data is save in python dictionary format with keys: 'acs', 'ep_rets', 'rews', 'obs' the values of each item is a list storing the expert trajectory sequentially a transition can be: (data['obs'][t], data['acs'][t], data['obs'][t+1]) and get reward data['rews'][t] ''' from baselines import logger import numpy as np class Dset(object): def __init__(self, inputs, labels, randomize): self.inputs = inputs self.labels = labels assert len(self.inputs) == len(self.labels) self.randomize = randomize self.num_pairs = len(inputs) self.init_pointer() def init_pointer(self): self.pointer = 0 if self.randomize: idx = np.arange(self.num_pairs) np.random.shuffle(idx) self.inputs = self.inputs[idx, :] self.labels = self.labels[idx, :] def get_next_batch(self, batch_size): # if batch_size is negative -> return all if batch_size < 0: return self.inputs, self.labels if self.pointer + batch_size >= self.num_pairs: self.init_pointer() end = self.pointer + batch_size inputs = self.inputs[self.pointer:end, :] labels = self.labels[self.pointer:end, :] self.pointer = end return inputs, labels class Mujoco_Dset(object): def __init__(self, expert_path, train_fraction=0.7, traj_limitation=-1, randomize=True): traj_data = np.load(expert_path) if traj_limitation < 0: traj_limitation = len(traj_data['obs']) obs = traj_data['obs'][:traj_limitation] acs = traj_data['acs'][:traj_limitation] # obs, acs: shape (N, L, ) + S where N = # episodes, L = episode length # and S is the environment observation/action space. # Flatten to (N * L, prod(S)) if len(obs.shape) > 2: self.obs = np.reshape(obs, [-1, np.prod(obs.shape[2:])]) self.acs = np.reshape(acs, [-1, np.prod(acs.shape[2:])]) else: self.obs = np.vstack(obs) self.acs = np.vstack(acs) self.rets = traj_data['ep_rets'][:traj_limitation] self.avg_ret = sum(self.rets)/len(self.rets) self.std_ret = np.std(np.array(self.rets)) if len(self.acs) > 2: self.acs = np.squeeze(self.acs) assert len(self.obs) == len(self.acs) self.num_traj = min(traj_limitation, len(traj_data['obs'])) self.num_transition = len(self.obs) self.randomize = randomize self.dset = Dset(self.obs, self.acs, self.randomize) # for behavior cloning self.train_set = Dset(self.obs[:int(self.num_transition*train_fraction), :], self.acs[:int(self.num_transition*train_fraction), :], self.randomize) self.val_set = Dset(self.obs[int(self.num_transition*train_fraction):, :], self.acs[int(self.num_transition*train_fraction):, :], self.randomize) self.log_info() def log_info(self): logger.log("Total trajectories: %d" % self.num_traj) logger.log("Total transitions: %d" % self.num_transition) logger.log("Average returns: %f" % self.avg_ret) logger.log("Std for returns: %f" % self.std_ret) def get_next_batch(self, batch_size, split=None): if split is None: return self.dset.get_next_batch(batch_size) elif split == 'train': return self.train_set.get_next_batch(batch_size) elif split == 'val': return self.val_set.get_next_batch(batch_size) else: raise NotImplementedError def plot(self): import matplotlib.pyplot as plt plt.hist(self.rets) plt.savefig("histogram_rets.png") plt.close() def test(expert_path, traj_limitation, plot): dset = Mujoco_Dset(expert_path, traj_limitation=traj_limitation) if plot: dset.plot() if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument("--expert_path", type=str, default="../data/deterministic.trpo.Hopper.0.00.npz") parser.add_argument("--traj_limitation", type=int, default=None) parser.add_argument("--plot", type=bool, default=False) args = parser.parse_args() test(args.expert_path, args.traj_limitation, args.plot)
mit
murali-munna/scikit-learn
sklearn/learning_curve.py
110
13467
"""Utilities to evaluate models with respect to a variable """ # Author: Alexander Fabisch <[email protected]> # # License: BSD 3 clause import warnings import numpy as np from .base import is_classifier, clone from .cross_validation import check_cv from .externals.joblib import Parallel, delayed from .cross_validation import _safe_split, _score, _fit_and_score from .metrics.scorer import check_scoring from .utils import indexable from .utils.fixes import astype __all__ = ['learning_curve', 'validation_curve'] def learning_curve(estimator, X, y, train_sizes=np.linspace(0.1, 1.0, 5), cv=None, scoring=None, exploit_incremental_learning=False, n_jobs=1, pre_dispatch="all", verbose=0): """Learning curve. Determines cross-validated training and test scores for different training set sizes. A cross-validation generator splits the whole dataset k times in training and test data. Subsets of the training set with varying sizes will be used to train the estimator and a score for each training subset size and the test set will be computed. Afterwards, the scores will be averaged over all k runs for each training subset size. Read more in the :ref:`User Guide <learning_curves>`. Parameters ---------- estimator : object type that implements the "fit" and "predict" methods An object of that type which is cloned for each validation. X : array-like, shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples) or (n_samples, n_features), optional Target relative to X for classification or regression; None for unsupervised learning. train_sizes : array-like, shape (n_ticks,), dtype float or int Relative or absolute numbers of training examples that will be used to generate the learning curve. If the dtype is float, it is regarded as a fraction of the maximum size of the training set (that is determined by the selected validation method), i.e. it has to be within (0, 1]. Otherwise it is interpreted as absolute sizes of the training sets. Note that for classification the number of samples usually have to be big enough to contain at least one sample from each class. (default: np.linspace(0.1, 1.0, 5)) cv : integer, cross-validation generator, optional If an integer is passed, it is the number of folds (defaults to 3). Specific cross-validation objects can be passed, see sklearn.cross_validation module for the list of possible objects scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. exploit_incremental_learning : boolean, optional, default: False If the estimator supports incremental learning, this will be used to speed up fitting for different training set sizes. n_jobs : integer, optional Number of jobs to run in parallel (default 1). pre_dispatch : integer or string, optional Number of predispatched jobs for parallel execution (default is all). The option can reduce the allocated memory. The string can be an expression like '2*n_jobs'. verbose : integer, optional Controls the verbosity: the higher, the more messages. Returns ------- train_sizes_abs : array, shape = (n_unique_ticks,), dtype int Numbers of training examples that has been used to generate the learning curve. Note that the number of ticks might be less than n_ticks because duplicate entries will be removed. train_scores : array, shape (n_ticks, n_cv_folds) Scores on training sets. test_scores : array, shape (n_ticks, n_cv_folds) Scores on test set. Notes ----- See :ref:`examples/model_selection/plot_learning_curve.py <example_model_selection_plot_learning_curve.py>` """ if exploit_incremental_learning and not hasattr(estimator, "partial_fit"): raise ValueError("An estimator must support the partial_fit interface " "to exploit incremental learning") X, y = indexable(X, y) # Make a list since we will be iterating multiple times over the folds cv = list(check_cv(cv, X, y, classifier=is_classifier(estimator))) scorer = check_scoring(estimator, scoring=scoring) # HACK as long as boolean indices are allowed in cv generators if cv[0][0].dtype == bool: new_cv = [] for i in range(len(cv)): new_cv.append((np.nonzero(cv[i][0])[0], np.nonzero(cv[i][1])[0])) cv = new_cv n_max_training_samples = len(cv[0][0]) # Because the lengths of folds can be significantly different, it is # not guaranteed that we use all of the available training data when we # use the first 'n_max_training_samples' samples. train_sizes_abs = _translate_train_sizes(train_sizes, n_max_training_samples) n_unique_ticks = train_sizes_abs.shape[0] if verbose > 0: print("[learning_curve] Training set sizes: " + str(train_sizes_abs)) parallel = Parallel(n_jobs=n_jobs, pre_dispatch=pre_dispatch, verbose=verbose) if exploit_incremental_learning: classes = np.unique(y) if is_classifier(estimator) else None out = parallel(delayed(_incremental_fit_estimator)( clone(estimator), X, y, classes, train, test, train_sizes_abs, scorer, verbose) for train, test in cv) else: out = parallel(delayed(_fit_and_score)( clone(estimator), X, y, scorer, train[:n_train_samples], test, verbose, parameters=None, fit_params=None, return_train_score=True) for train, test in cv for n_train_samples in train_sizes_abs) out = np.array(out)[:, :2] n_cv_folds = out.shape[0] // n_unique_ticks out = out.reshape(n_cv_folds, n_unique_ticks, 2) out = np.asarray(out).transpose((2, 1, 0)) return train_sizes_abs, out[0], out[1] def _translate_train_sizes(train_sizes, n_max_training_samples): """Determine absolute sizes of training subsets and validate 'train_sizes'. Examples: _translate_train_sizes([0.5, 1.0], 10) -> [5, 10] _translate_train_sizes([5, 10], 10) -> [5, 10] Parameters ---------- train_sizes : array-like, shape (n_ticks,), dtype float or int Numbers of training examples that will be used to generate the learning curve. If the dtype is float, it is regarded as a fraction of 'n_max_training_samples', i.e. it has to be within (0, 1]. n_max_training_samples : int Maximum number of training samples (upper bound of 'train_sizes'). Returns ------- train_sizes_abs : array, shape (n_unique_ticks,), dtype int Numbers of training examples that will be used to generate the learning curve. Note that the number of ticks might be less than n_ticks because duplicate entries will be removed. """ train_sizes_abs = np.asarray(train_sizes) n_ticks = train_sizes_abs.shape[0] n_min_required_samples = np.min(train_sizes_abs) n_max_required_samples = np.max(train_sizes_abs) if np.issubdtype(train_sizes_abs.dtype, np.float): if n_min_required_samples <= 0.0 or n_max_required_samples > 1.0: raise ValueError("train_sizes has been interpreted as fractions " "of the maximum number of training samples and " "must be within (0, 1], but is within [%f, %f]." % (n_min_required_samples, n_max_required_samples)) train_sizes_abs = astype(train_sizes_abs * n_max_training_samples, dtype=np.int, copy=False) train_sizes_abs = np.clip(train_sizes_abs, 1, n_max_training_samples) else: if (n_min_required_samples <= 0 or n_max_required_samples > n_max_training_samples): raise ValueError("train_sizes has been interpreted as absolute " "numbers of training samples and must be within " "(0, %d], but is within [%d, %d]." % (n_max_training_samples, n_min_required_samples, n_max_required_samples)) train_sizes_abs = np.unique(train_sizes_abs) if n_ticks > train_sizes_abs.shape[0]: warnings.warn("Removed duplicate entries from 'train_sizes'. Number " "of ticks will be less than than the size of " "'train_sizes' %d instead of %d)." % (train_sizes_abs.shape[0], n_ticks), RuntimeWarning) return train_sizes_abs def _incremental_fit_estimator(estimator, X, y, classes, train, test, train_sizes, scorer, verbose): """Train estimator on training subsets incrementally and compute scores.""" train_scores, test_scores = [], [] partitions = zip(train_sizes, np.split(train, train_sizes)[:-1]) for n_train_samples, partial_train in partitions: train_subset = train[:n_train_samples] X_train, y_train = _safe_split(estimator, X, y, train_subset) X_partial_train, y_partial_train = _safe_split(estimator, X, y, partial_train) X_test, y_test = _safe_split(estimator, X, y, test, train_subset) if y_partial_train is None: estimator.partial_fit(X_partial_train, classes=classes) else: estimator.partial_fit(X_partial_train, y_partial_train, classes=classes) train_scores.append(_score(estimator, X_train, y_train, scorer)) test_scores.append(_score(estimator, X_test, y_test, scorer)) return np.array((train_scores, test_scores)).T def validation_curve(estimator, X, y, param_name, param_range, cv=None, scoring=None, n_jobs=1, pre_dispatch="all", verbose=0): """Validation curve. Determine training and test scores for varying parameter values. Compute scores for an estimator with different values of a specified parameter. This is similar to grid search with one parameter. However, this will also compute training scores and is merely a utility for plotting the results. Read more in the :ref:`User Guide <validation_curve>`. Parameters ---------- estimator : object type that implements the "fit" and "predict" methods An object of that type which is cloned for each validation. X : array-like, shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples) or (n_samples, n_features), optional Target relative to X for classification or regression; None for unsupervised learning. param_name : string Name of the parameter that will be varied. param_range : array-like, shape (n_values,) The values of the parameter that will be evaluated. cv : integer, cross-validation generator, optional If an integer is passed, it is the number of folds (defaults to 3). Specific cross-validation objects can be passed, see sklearn.cross_validation module for the list of possible objects scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. n_jobs : integer, optional Number of jobs to run in parallel (default 1). pre_dispatch : integer or string, optional Number of predispatched jobs for parallel execution (default is all). The option can reduce the allocated memory. The string can be an expression like '2*n_jobs'. verbose : integer, optional Controls the verbosity: the higher, the more messages. Returns ------- train_scores : array, shape (n_ticks, n_cv_folds) Scores on training sets. test_scores : array, shape (n_ticks, n_cv_folds) Scores on test set. Notes ----- See :ref:`examples/model_selection/plot_validation_curve.py <example_model_selection_plot_validation_curve.py>` """ X, y = indexable(X, y) cv = check_cv(cv, X, y, classifier=is_classifier(estimator)) scorer = check_scoring(estimator, scoring=scoring) parallel = Parallel(n_jobs=n_jobs, pre_dispatch=pre_dispatch, verbose=verbose) out = parallel(delayed(_fit_and_score)( estimator, X, y, scorer, train, test, verbose, parameters={param_name: v}, fit_params=None, return_train_score=True) for train, test in cv for v in param_range) out = np.asarray(out)[:, :2] n_params = len(param_range) n_cv_folds = out.shape[0] // n_params out = out.reshape(n_cv_folds, n_params, 2).transpose((2, 1, 0)) return out[0], out[1]
bsd-3-clause
datapythonista/pandas
pandas/tests/util/test_validate_args_and_kwargs.py
8
2391
import pytest from pandas.util._validators import validate_args_and_kwargs _fname = "func" def test_invalid_total_length_max_length_one(): compat_args = ("foo",) kwargs = {"foo": "FOO"} args = ("FoO", "BaZ") min_fname_arg_count = 0 max_length = len(compat_args) + min_fname_arg_count actual_length = len(kwargs) + len(args) + min_fname_arg_count msg = ( fr"{_fname}\(\) takes at most {max_length} " fr"argument \({actual_length} given\)" ) with pytest.raises(TypeError, match=msg): validate_args_and_kwargs(_fname, args, kwargs, min_fname_arg_count, compat_args) def test_invalid_total_length_max_length_multiple(): compat_args = ("foo", "bar", "baz") kwargs = {"foo": "FOO", "bar": "BAR"} args = ("FoO", "BaZ") min_fname_arg_count = 2 max_length = len(compat_args) + min_fname_arg_count actual_length = len(kwargs) + len(args) + min_fname_arg_count msg = ( fr"{_fname}\(\) takes at most {max_length} " fr"arguments \({actual_length} given\)" ) with pytest.raises(TypeError, match=msg): validate_args_and_kwargs(_fname, args, kwargs, min_fname_arg_count, compat_args) @pytest.mark.parametrize("args,kwargs", [((), {"foo": -5, "bar": 2}), ((-5, 2), {})]) def test_missing_args_or_kwargs(args, kwargs): bad_arg = "bar" min_fname_arg_count = 2 compat_args = {"foo": -5, bad_arg: 1} msg = ( fr"the '{bad_arg}' parameter is not supported " fr"in the pandas implementation of {_fname}\(\)" ) with pytest.raises(ValueError, match=msg): validate_args_and_kwargs(_fname, args, kwargs, min_fname_arg_count, compat_args) def test_duplicate_argument(): min_fname_arg_count = 2 compat_args = {"foo": None, "bar": None, "baz": None} kwargs = {"foo": None, "bar": None} args = (None,) # duplicate value for "foo" msg = fr"{_fname}\(\) got multiple values for keyword argument 'foo'" with pytest.raises(TypeError, match=msg): validate_args_and_kwargs(_fname, args, kwargs, min_fname_arg_count, compat_args) def test_validation(): # No exceptions should be raised. compat_args = {"foo": 1, "bar": None, "baz": -2} kwargs = {"baz": -2} args = (1, None) min_fname_arg_count = 2 validate_args_and_kwargs(_fname, args, kwargs, min_fname_arg_count, compat_args)
bsd-3-clause
NixaSoftware/CVis
venv/lib/python2.7/site-packages/pandas/tests/test_sorting.py
4
17560
import pytest from itertools import product from collections import defaultdict import warnings from datetime import datetime import numpy as np from numpy import nan import pandas as pd from pandas.core import common as com from pandas import DataFrame, MultiIndex, merge, concat, Series, compat from pandas.util import testing as tm from pandas.util.testing import assert_frame_equal, assert_series_equal from pandas.core.sorting import (is_int64_overflow_possible, decons_group_index, get_group_index, nargsort, lexsort_indexer, safe_sort) class TestSorting(object): @pytest.mark.slow def test_int64_overflow(self): B = np.concatenate((np.arange(1000), np.arange(1000), np.arange(500))) A = np.arange(2500) df = DataFrame({'A': A, 'B': B, 'C': A, 'D': B, 'E': A, 'F': B, 'G': A, 'H': B, 'values': np.random.randn(2500)}) lg = df.groupby(['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H']) rg = df.groupby(['H', 'G', 'F', 'E', 'D', 'C', 'B', 'A']) left = lg.sum()['values'] right = rg.sum()['values'] exp_index, _ = left.index.sortlevel() tm.assert_index_equal(left.index, exp_index) exp_index, _ = right.index.sortlevel(0) tm.assert_index_equal(right.index, exp_index) tups = list(map(tuple, df[['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H' ]].values)) tups = com._asarray_tuplesafe(tups) expected = df.groupby(tups).sum()['values'] for k, v in compat.iteritems(expected): assert left[k] == right[k[::-1]] assert left[k] == v assert len(left) == len(right) def test_int64_overflow_moar(self): # GH9096 values = range(55109) data = pd.DataFrame.from_dict({'a': values, 'b': values, 'c': values, 'd': values}) grouped = data.groupby(['a', 'b', 'c', 'd']) assert len(grouped) == len(values) arr = np.random.randint(-1 << 12, 1 << 12, (1 << 15, 5)) i = np.random.choice(len(arr), len(arr) * 4) arr = np.vstack((arr, arr[i])) # add sume duplicate rows i = np.random.permutation(len(arr)) arr = arr[i] # shuffle rows df = DataFrame(arr, columns=list('abcde')) df['jim'], df['joe'] = np.random.randn(2, len(df)) * 10 gr = df.groupby(list('abcde')) # verify this is testing what it is supposed to test! assert is_int64_overflow_possible(gr.grouper.shape) # mannually compute groupings jim, joe = defaultdict(list), defaultdict(list) for key, a, b in zip(map(tuple, arr), df['jim'], df['joe']): jim[key].append(a) joe[key].append(b) assert len(gr) == len(jim) mi = MultiIndex.from_tuples(jim.keys(), names=list('abcde')) def aggr(func): f = lambda a: np.fromiter(map(func, a), dtype='f8') arr = np.vstack((f(jim.values()), f(joe.values()))).T res = DataFrame(arr, columns=['jim', 'joe'], index=mi) return res.sort_index() assert_frame_equal(gr.mean(), aggr(np.mean)) assert_frame_equal(gr.median(), aggr(np.median)) def test_lexsort_indexer(self): keys = [[nan] * 5 + list(range(100)) + [nan] * 5] # orders=True, na_position='last' result = lexsort_indexer(keys, orders=True, na_position='last') exp = list(range(5, 105)) + list(range(5)) + list(range(105, 110)) tm.assert_numpy_array_equal(result, np.array(exp, dtype=np.intp)) # orders=True, na_position='first' result = lexsort_indexer(keys, orders=True, na_position='first') exp = list(range(5)) + list(range(105, 110)) + list(range(5, 105)) tm.assert_numpy_array_equal(result, np.array(exp, dtype=np.intp)) # orders=False, na_position='last' result = lexsort_indexer(keys, orders=False, na_position='last') exp = list(range(104, 4, -1)) + list(range(5)) + list(range(105, 110)) tm.assert_numpy_array_equal(result, np.array(exp, dtype=np.intp)) # orders=False, na_position='first' result = lexsort_indexer(keys, orders=False, na_position='first') exp = list(range(5)) + list(range(105, 110)) + list(range(104, 4, -1)) tm.assert_numpy_array_equal(result, np.array(exp, dtype=np.intp)) def test_nargsort(self): # np.argsort(items) places NaNs last items = [nan] * 5 + list(range(100)) + [nan] * 5 # np.argsort(items2) may not place NaNs first items2 = np.array(items, dtype='O') try: # GH 2785; due to a regression in NumPy1.6.2 np.argsort(np.array([[1, 2], [1, 3], [1, 2]], dtype='i')) np.argsort(items2, kind='mergesort') except TypeError: pytest.skip('requested sort not available for type') # mergesort is the most difficult to get right because we want it to be # stable. # According to numpy/core/tests/test_multiarray, """The number of # sorted items must be greater than ~50 to check the actual algorithm # because quick and merge sort fall over to insertion sort for small # arrays.""" # mergesort, ascending=True, na_position='last' result = nargsort(items, kind='mergesort', ascending=True, na_position='last') exp = list(range(5, 105)) + list(range(5)) + list(range(105, 110)) tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False) # mergesort, ascending=True, na_position='first' result = nargsort(items, kind='mergesort', ascending=True, na_position='first') exp = list(range(5)) + list(range(105, 110)) + list(range(5, 105)) tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False) # mergesort, ascending=False, na_position='last' result = nargsort(items, kind='mergesort', ascending=False, na_position='last') exp = list(range(104, 4, -1)) + list(range(5)) + list(range(105, 110)) tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False) # mergesort, ascending=False, na_position='first' result = nargsort(items, kind='mergesort', ascending=False, na_position='first') exp = list(range(5)) + list(range(105, 110)) + list(range(104, 4, -1)) tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False) # mergesort, ascending=True, na_position='last' result = nargsort(items2, kind='mergesort', ascending=True, na_position='last') exp = list(range(5, 105)) + list(range(5)) + list(range(105, 110)) tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False) # mergesort, ascending=True, na_position='first' result = nargsort(items2, kind='mergesort', ascending=True, na_position='first') exp = list(range(5)) + list(range(105, 110)) + list(range(5, 105)) tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False) # mergesort, ascending=False, na_position='last' result = nargsort(items2, kind='mergesort', ascending=False, na_position='last') exp = list(range(104, 4, -1)) + list(range(5)) + list(range(105, 110)) tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False) # mergesort, ascending=False, na_position='first' result = nargsort(items2, kind='mergesort', ascending=False, na_position='first') exp = list(range(5)) + list(range(105, 110)) + list(range(104, 4, -1)) tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False) class TestMerge(object): @pytest.mark.slow def test_int64_overflow_issues(self): # #2690, combinatorial explosion df1 = DataFrame(np.random.randn(1000, 7), columns=list('ABCDEF') + ['G1']) df2 = DataFrame(np.random.randn(1000, 7), columns=list('ABCDEF') + ['G2']) # it works! result = merge(df1, df2, how='outer') assert len(result) == 2000 low, high, n = -1 << 10, 1 << 10, 1 << 20 left = DataFrame(np.random.randint(low, high, (n, 7)), columns=list('ABCDEFG')) left['left'] = left.sum(axis=1) # one-2-one match i = np.random.permutation(len(left)) right = left.iloc[i].copy() right.columns = right.columns[:-1].tolist() + ['right'] right.index = np.arange(len(right)) right['right'] *= -1 out = merge(left, right, how='outer') assert len(out) == len(left) assert_series_equal(out['left'], - out['right'], check_names=False) result = out.iloc[:, :-2].sum(axis=1) assert_series_equal(out['left'], result, check_names=False) assert result.name is None out.sort_values(out.columns.tolist(), inplace=True) out.index = np.arange(len(out)) for how in ['left', 'right', 'outer', 'inner']: assert_frame_equal(out, merge(left, right, how=how, sort=True)) # check that left merge w/ sort=False maintains left frame order out = merge(left, right, how='left', sort=False) assert_frame_equal(left, out[left.columns.tolist()]) out = merge(right, left, how='left', sort=False) assert_frame_equal(right, out[right.columns.tolist()]) # one-2-many/none match n = 1 << 11 left = DataFrame(np.random.randint(low, high, (n, 7)).astype('int64'), columns=list('ABCDEFG')) # confirm that this is checking what it is supposed to check shape = left.apply(Series.nunique).values assert is_int64_overflow_possible(shape) # add duplicates to left frame left = concat([left, left], ignore_index=True) right = DataFrame(np.random.randint(low, high, (n // 2, 7)) .astype('int64'), columns=list('ABCDEFG')) # add duplicates & overlap with left to the right frame i = np.random.choice(len(left), n) right = concat([right, right, left.iloc[i]], ignore_index=True) left['left'] = np.random.randn(len(left)) right['right'] = np.random.randn(len(right)) # shuffle left & right frames i = np.random.permutation(len(left)) left = left.iloc[i].copy() left.index = np.arange(len(left)) i = np.random.permutation(len(right)) right = right.iloc[i].copy() right.index = np.arange(len(right)) # manually compute outer merge ldict, rdict = defaultdict(list), defaultdict(list) for idx, row in left.set_index(list('ABCDEFG')).iterrows(): ldict[idx].append(row['left']) for idx, row in right.set_index(list('ABCDEFG')).iterrows(): rdict[idx].append(row['right']) vals = [] for k, lval in ldict.items(): rval = rdict.get(k, [np.nan]) for lv, rv in product(lval, rval): vals.append(k + tuple([lv, rv])) for k, rval in rdict.items(): if k not in ldict: for rv in rval: vals.append(k + tuple([np.nan, rv])) def align(df): df = df.sort_values(df.columns.tolist()) df.index = np.arange(len(df)) return df def verify_order(df): kcols = list('ABCDEFG') assert_frame_equal(df[kcols].copy(), df[kcols].sort_values(kcols, kind='mergesort')) out = DataFrame(vals, columns=list('ABCDEFG') + ['left', 'right']) out = align(out) jmask = {'left': out['left'].notna(), 'right': out['right'].notna(), 'inner': out['left'].notna() & out['right'].notna(), 'outer': np.ones(len(out), dtype='bool')} for how in 'left', 'right', 'outer', 'inner': mask = jmask[how] frame = align(out[mask].copy()) assert mask.all() ^ mask.any() or how == 'outer' for sort in [False, True]: res = merge(left, right, how=how, sort=sort) if sort: verify_order(res) # as in GH9092 dtypes break with outer/right join assert_frame_equal(frame, align(res), check_dtype=how not in ('right', 'outer')) def test_decons(): def testit(label_list, shape): group_index = get_group_index(label_list, shape, sort=True, xnull=True) label_list2 = decons_group_index(group_index, shape) for a, b in zip(label_list, label_list2): assert (np.array_equal(a, b)) shape = (4, 5, 6) label_list = [np.tile([0, 1, 2, 3, 0, 1, 2, 3], 100), np.tile( [0, 2, 4, 3, 0, 1, 2, 3], 100), np.tile( [5, 1, 0, 2, 3, 0, 5, 4], 100)] testit(label_list, shape) shape = (10000, 10000) label_list = [np.tile(np.arange(10000), 5), np.tile(np.arange(10000), 5)] testit(label_list, shape) class TestSafeSort(object): def test_basic_sort(self): values = [3, 1, 2, 0, 4] result = safe_sort(values) expected = np.array([0, 1, 2, 3, 4]) tm.assert_numpy_array_equal(result, expected) values = list("baaacb") result = safe_sort(values) expected = np.array(list("aaabbc"), dtype='object') tm.assert_numpy_array_equal(result, expected) values = [] result = safe_sort(values) expected = np.array([]) tm.assert_numpy_array_equal(result, expected) def test_labels(self): values = [3, 1, 2, 0, 4] expected = np.array([0, 1, 2, 3, 4]) labels = [0, 1, 1, 2, 3, 0, -1, 4] result, result_labels = safe_sort(values, labels) expected_labels = np.array([3, 1, 1, 2, 0, 3, -1, 4], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) tm.assert_numpy_array_equal(result_labels, expected_labels) # na_sentinel labels = [0, 1, 1, 2, 3, 0, 99, 4] result, result_labels = safe_sort(values, labels, na_sentinel=99) expected_labels = np.array([3, 1, 1, 2, 0, 3, 99, 4], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) tm.assert_numpy_array_equal(result_labels, expected_labels) # out of bound indices labels = [0, 101, 102, 2, 3, 0, 99, 4] result, result_labels = safe_sort(values, labels) expected_labels = np.array([3, -1, -1, 2, 0, 3, -1, 4], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) tm.assert_numpy_array_equal(result_labels, expected_labels) labels = [] result, result_labels = safe_sort(values, labels) expected_labels = np.array([], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) tm.assert_numpy_array_equal(result_labels, expected_labels) def test_mixed_integer(self): values = np.array(['b', 1, 0, 'a', 0, 'b'], dtype=object) result = safe_sort(values) expected = np.array([0, 0, 1, 'a', 'b', 'b'], dtype=object) tm.assert_numpy_array_equal(result, expected) values = np.array(['b', 1, 0, 'a'], dtype=object) labels = [0, 1, 2, 3, 0, -1, 1] result, result_labels = safe_sort(values, labels) expected = np.array([0, 1, 'a', 'b'], dtype=object) expected_labels = np.array([3, 1, 0, 2, 3, -1, 1], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) tm.assert_numpy_array_equal(result_labels, expected_labels) def test_mixed_integer_from_list(self): values = ['b', 1, 0, 'a', 0, 'b'] result = safe_sort(values) expected = np.array([0, 0, 1, 'a', 'b', 'b'], dtype=object) tm.assert_numpy_array_equal(result, expected) def test_unsortable(self): # GH 13714 arr = np.array([1, 2, datetime.now(), 0, 3], dtype=object) if compat.PY2 and not pd._np_version_under1p10: # RuntimeWarning: tp_compare didn't return -1 or -2 for exception with warnings.catch_warnings(): pytest.raises(TypeError, safe_sort, arr) else: pytest.raises(TypeError, safe_sort, arr) def test_exceptions(self): with tm.assert_raises_regex(TypeError, "Only list-like objects are allowed"): safe_sort(values=1) with tm.assert_raises_regex(TypeError, "Only list-like objects or None"): safe_sort(values=[0, 1, 2], labels=1) with tm.assert_raises_regex(ValueError, "values should be unique"): safe_sort(values=[0, 1, 2, 1], labels=[0, 1])
apache-2.0
JeanKossaifi/scikit-learn
sklearn/utils/tests/test_fixes.py
281
1829
# Authors: Gael Varoquaux <[email protected]> # Justin Vincent # Lars Buitinck # License: BSD 3 clause import numpy as np from nose.tools import assert_equal from nose.tools import assert_false from nose.tools import assert_true from numpy.testing import (assert_almost_equal, assert_array_almost_equal) from sklearn.utils.fixes import divide, expit from sklearn.utils.fixes import astype def test_expit(): # Check numerical stability of expit (logistic function). # Simulate our previous Cython implementation, based on #http://fa.bianp.net/blog/2013/numerical-optimizers-for-logistic-regression assert_almost_equal(expit(1000.), 1. / (1. + np.exp(-1000.)), decimal=16) assert_almost_equal(expit(-1000.), np.exp(-1000.) / (1. + np.exp(-1000.)), decimal=16) x = np.arange(10) out = np.zeros_like(x, dtype=np.float32) assert_array_almost_equal(expit(x), expit(x, out=out)) def test_divide(): assert_equal(divide(.6, 1), .600000000000) def test_astype_copy_memory(): a_int32 = np.ones(3, np.int32) # Check that dtype conversion works b_float32 = astype(a_int32, dtype=np.float32, copy=False) assert_equal(b_float32.dtype, np.float32) # Changing dtype forces a copy even if copy=False assert_false(np.may_share_memory(b_float32, a_int32)) # Check that copy can be skipped if requested dtype match c_int32 = astype(a_int32, dtype=np.int32, copy=False) assert_true(c_int32 is a_int32) # Check that copy can be forced, and is the case by default: d_int32 = astype(a_int32, dtype=np.int32, copy=True) assert_false(np.may_share_memory(d_int32, a_int32)) e_int32 = astype(a_int32, dtype=np.int32) assert_false(np.may_share_memory(e_int32, a_int32))
bsd-3-clause
rbooth200/DiscEvolution
DiscEvolution/internal_photo.py
1
30463
# internal_photo.py # # Author: A. Sellek # Date: 12 - Aug - 2020 # # Implementation of Photoevaporation Models ################################################################################ import numpy as np import argparse import json import matplotlib.pyplot as plt from DiscEvolution.constants import * from DiscEvolution.star import PhotoStar from scipy.signal import argrelmin class NotHoleError(Exception): """Raised if finds an outer edge, not a hole""" pass class PhotoBase(): def __init__(self, disc, Regime=None, Type=None): # Basic mass loss properties self._regime = Regime # EUV or X-ray self._type = Type # 'Primordial' or 'InnerHole' self._Sigmadot = np.zeros_like(disc.R) self.mdot_XE(disc.star) # Evolutionary state flags self._Hole = False # Has the hole started to open? self._reset = False # Have we needed to reset a decoy hole? self._empty = False # When no longer a valid hole radius or all below density threshold self._Thin = False # Is the hole exposed (ie low column density to star)? # Parameters of hole self._R_hole = None self._N_hole = None # The column density threshold below which the inner disc is "Thin" if self._regime=='X-ray': self._N_crit = 1e22 elif self._regime=='EUV': self._N_crit = 1e18 else: self._N_crit = 0.0 # (if 0, can never switch) # Outer radius self._R_out = max(disc.R_edge) def mdot_XE(self, star, Mdot=0): # Generic wrapper for initiating X-ray or EUV mass loss # Without prescription, mass loss is 0 self._Mdot = Mdot self._Mdot_true = Mdot def Sigma_dot(self, R, star): if self._type=='Primordial': self.Sigma_dot_Primordial(R, star) elif self._type=='InnerHole': self.Sigma_dot_InnerHole(R, star) def Sigma_dot_Primordial(self, R, star, ret=False): # Without prescription, mass loss is 0 if ret: return np.zeros(len(R)+1) else: self._Sigmadot = np.zeros_like(R) def Sigma_dot_InnerHole(self, R, star, ret=False): # Without prescription, mass loss is 0 if ret: return np.zeros(len(R)+1) else: self._Sigmadot = np.zeros_like(R) def scaled_R(self, R, star): # Prescriptions may rescale the radius variable # Without prescription, radius is unscaled return R def R_inner(self, star): # Innermost mass loss return 0 def check_dt(self, disc, dt): # Work out the timescale to clear cell where_photoevap = (self.dSigmadt > 0) t_w = np.full_like(disc.R,np.inf) t_w[where_photoevap] = disc.Sigma_G[where_photoevap] / self.dSigmadt[where_photoevap] # Return minimum value for cells inside outer edge indisc = (disc.R < self._R_out) * where_photoevap # Prohibit hole outside of mass loss region. try: imin = argrelmin(t_w[indisc])[0][0] # Find local minima in clearing time, neglecting outer edge where tails off. Take first to avoid solutions due to noise in dusty outskirts except IndexError: # If no local minimum, try to find hole as wherever the min is. imin = np.argmin(t_w[indisc]) # Check against timestep and report if (dt > t_w[where_photoevap][imin]): # If an entire cell can deplete #if not self._Hole: # print("Alert - hole can open after this timestep at {:.2f} AU".format(disc.R[imin])) # print("Outer radius is currently {:.2f} AU".format(self._R_out)) self._Hole = True # Set hole flag return t_w[where_photoevap][imin] def remove_mass(self, disc, dt, external_photo=None): # Find disc "outer edge" so we can apply mass loss only inside if external_photo: self._R_out = external_photo._Rot # If external photoevaporation is present, only consider radii inside its influence else: self._R_out = disc.Rout(thresh=1e-10) if disc.Rout()==0.0: print("Disc everywhere below density threshold. Declare Empty.") self._empty = True # Check whether hole can open if not self._Hole: #self._type=='Primordial': self.check_dt(disc, dt) # Determine mass loss dSigma = np.minimum(self.dSigmadt * dt, disc.Sigma_G) # Limit mass loss to density of cell dSigma *= (disc.R < self._R_out) # Only apply mass loss inside disc outer edge # Apply, preserving the dust mass if hasattr(disc, 'Sigma_D'): Sigma_D = disc.Sigma_D # Save the dust density disc._Sigma -= dSigma if hasattr(disc, 'Sigma_D'): dusty = Sigma_D.sum(0)>0 disc.dust_frac[:,dusty] = np.fmin(Sigma_D[:,dusty]/disc.Sigma[dusty],disc.dust_frac[:,dusty]/disc.dust_frac.sum(0)[dusty]) disc.dust_frac[:] /= np.maximum(disc.dust_frac.sum(0), 1.0) # Renormalise to 1 if it exceeds # Calculate actual mass loss given limit if dt>0: dM = 2*np.pi * disc.R * dSigma self._Mdot_true = np.trapz(dM,disc.R) / dt * AU**2 / Msun def get_Rhole(self, disc, external_photo=None): """Deal with calls when there is no hole""" if not self._Hole: print("No hole for which to get radius. Ignoring command and returning nans.") return np.nan, np.nan """Otherwise continue on to find hole First find outer edge of disc - hole must be inside this""" if external_photo: self._R_out = external_photo._Rot # If external photoevaporation is present, only consider radii inside its influence else: self._R_out = disc.Rout(thresh=1e-10) where_photoevap = (self.dSigmadt > 0) indisc = (disc.R < self._R_out) * where_photoevap # Prohibit hole outside of mass loss region. empty_indisc = (disc.Sigma_G <= 1e-10) * indisc # Consider empty if below 10^-10 g/cm^2 try: if np.sum(empty_indisc) == 0: # If none in disc are empty minima = argrelmin(disc.Sigma_G) if len(minima[0]) > 0: i_hole_out = minima[0][0] # Position of hole is minimum density else: # No empty cells anymore - disc has cleared to outside raise NotHoleError else: # First find the inner edge of the innermost hole i_hole_in = np.nonzero(empty_indisc)[0][0] # The hole cell is defined as the one inside the first non-empty cell outside the inner edge of the hole outer_disc = ~empty_indisc * (disc.R>disc.R_edge[i_hole_in]) if np.sum(outer_disc) > 0: i_hole_out = np.nonzero(outer_disc)[0][0] - 1 else: # No non-empty cells outside this - this is not a hole, but an outer edge. raise NotHoleError if i_hole_out == np.nonzero(indisc)[0][-1]: # This is not a hole, but the outermost photoevaporating cell raise NotHoleError """If hole position drops by an order of magnitude, it is likely that the previous was really the clearing of low surface density material in the outer disc, so reset""" if self._R_hole: R_old = self._R_hole if disc.R_edge[i_hole_out+1]/R_old<0.1: self._reset = True """If everything worked, update hole properties""" if not self._R_hole: print("Hole opened at {:.2f} AU".format(disc.R_edge[i_hole_out+1])) self._R_hole = disc.R_edge[i_hole_out+1] self._N_hole = disc.column_density[i_hole_out] # Test whether Thin if (self._N_hole < self._N_crit): self._Thin = True except NotHoleError: """Potential hole isn't a hole but an outer edge""" if self._type == 'Primordial': self._Hole = False self._reset = True if self._R_hole: print("No hole found") print("Last known location {} AU".format(self._R_hole)) return 0, 0 elif self._type == 'InnerHole': if not self._empty: print("Transition Disc has cleared to outside") self._empty = True # Proceed as usual to report but without update # Save state if tracking return self._R_hole, self._N_hole @property def Mdot(self): return self._Mdot @property def dSigmadt(self): return self._Sigmadot def __call__(self, disc, dt, external_photo=None): # For inner hole discs, need to update the hole radius and then the mass-loss as the normalisation changes based on R, not just x~R-Rhole. if self._type=='InnerHole': self.get_Rhole(disc) self.Sigma_dot(disc.R_edge, disc.star) # Remove the mass self.remove_mass(disc,dt, external_photo) # Check for new holes if self._Hole and not self._Thin: # If there is a hole but the inner disc is not already optically thin, update its properties R_hole, N_hole = self.get_Rhole(disc, external_photo) # Check if hole is now large enough that inner disc optically thin, switch internal photoevaporation to direct field if so if self._Thin: print("Column density to hole has fallen to N = {} < {} g cm^-2".format(N_hole,self._N_crit)) self._type = 'InnerHole' # Run the mass loss rates to update the table self.mdot_XE(disc.star) self.Sigma_dot(disc.R_edge, disc.star) # Report print("At initiation of InnerHole Type, M_D = {} M_J, Mdot = {}, t_clear ~ {} yr".format(disc.Mtot()/Mjup, self._Mdot, disc.Mtot()/Msun/self._Mdot)) def ASCII_header(self): return ("# InternalEvaporation, Type: {}, Mdot: {}" "".format(self._type+self.__class__.__name__,self._Mdot)) def HDF5_attributes(self): header = {} header['Type'] = self._type+"/"+self._regime header['Mdot'] = '{}'.format(self._Mdot) return self.__class__.__name__, header ################################################################################# """"""""" X-ray dominated photoevaporation -Following prescription of Owen, Ercolano and Clarke (2012) -Following prescription of Picogna, Ercolano, Owen and Weber (2019) """"""""" ################################################################################# """Owen, Ercolano and Clarke (2012)""" class XrayDiscOwen(PhotoBase): def __init__(self, disc, Type='Primordial', R_hole=None): super().__init__(disc, Regime='X-ray', Type=Type) # Parameters for Primordial mass loss profile self._a1 = 0.15138 self._b1 = -1.2182 self._c1 = 3.4046 self._d1 = -3.5717 self._e1 = -0.32762 self._f1 = 3.6064 self._g1 = -2.4918 # Parameters for Inner Hole mass loss profile self._a2 = -0.438226 self._b2 = -0.10658387 self._c2 = 0.5699464 self._d2 = 0.010732277 self._e2 = -0.131809597 self._f2 = -1.32285709 # If initiating with an Inner Hole disc, need to update properties if self._type == 'InnerHole': self._Hole = True self._R_hole = R_hole #self.get_Rhole(disc) # Run the mass loss rates to update the table self.Sigma_dot(disc.R_edge, disc.star) def mdot_XE(self, star, Mdot=None): # In Msun/yr if Mdot is not None: self._Mdot = Mdot elif self._type=='Primordial': self._Mdot = 6.25e-9 * star.M**(-0.068) * (star.L_X / 1e30)**(1.14) # Equation B1 elif self._type=='InnerHole': self._Mdot = 4.8e-9 * star.M**(-0.148) * (star.L_X / 1e30)**(1.14) # Equation B4 else: raise NotImplementedError("Disc is of unrecognised type, and no mass-loss rate has been manually specified") self._Mdot_true = self._Mdot def scaled_R(self, R, star): # Where R in AU x = 0.85 * R / star.M # Equation B3 if self._Hole: y = 0.95 * (R-self._R_hole) / star.M # Equation B6 else: y = R return x, y def R_inner(self, star): # Innermost mass loss return 0.7 / 0.85 * star.M def Sigma_dot_Primordial(self, R, star, ret=False): # Equation B2 Sigmadot = np.zeros_like(R) x, y = self.scaled_R(R,star) where_photoevap = (x >= 0.7) * (x<=99) # No mass loss close to star, mass loss prescription becomes negative at log10(x)=1.996 logx = np.log(x[where_photoevap]) log10 = np.log(10) log10x = logx/log10 # First term exponent = self._a1 * log10x**6 + self._b1 * log10x**5 + self._c1 * log10x**4 + self._d1 * log10x**3 + self._e1 * log10x**2 + self._f1 * log10x + self._g1 t1 = 10**exponent # Second term terms = 6*self._a1*logx**5/log10**7 + 5*self._b1*logx**4/log10**6 + 4*self._c1*logx**3/log10**5 + 3*self._d1*logx**2/log10**4 + 2*self._e1*logx/log10**3 + self._f1/log10**2 t2 = terms/x[where_photoevap]**2 # Third term t3 = np.exp(-(x[where_photoevap]/100)**10) # Combine terms Sigmadot[where_photoevap] = t1 * t2 * t3 # Work out total mass loss rate for normalisation M_dot = 2*np.pi * R * Sigmadot total = np.trapz(M_dot,R) # Normalise, convert to cgs Sigmadot = np.maximum(Sigmadot,0) Sigmadot *= self.Mdot / total * Msun / AU**2 # in g cm^-2 / yr if ret: # Return unaveraged values at cell edges return Sigmadot else: # Store values as average of mass loss rate at cell edges self._Sigmadot = (Sigmadot[1:] + Sigmadot[:-1]) / 2 def Sigma_dot_InnerHole(self, R, star, ret=False): # Equation B5 Sigmadot = np.zeros_like(R) x, y = self.scaled_R(R,star) where_photoevap = (y >= 0.0) # No mass loss inside hole use_y = y[where_photoevap] # Exponent of second term exp2 = -(use_y/57)**10 # Numerator terms = self._a2*self._b2 * np.exp(self._b2*use_y+exp2) + self._c2*self._d2 * np.exp(self._d2*use_y+exp2) + self._e2*self._f2 * np.exp(self._f2*use_y+exp2) # Divide by Denominator Sigmadot[where_photoevap] = terms/R[where_photoevap] # Work out total mass loss rate for normalisation M_dot = 2*np.pi * R * Sigmadot total = np.trapz(M_dot,R) # Normalise, convert to cgs Sigmadot = np.maximum(Sigmadot,0) Sigmadot *= self.Mdot / total * Msun / AU**2 # in g cm^-2 / yr # Mopping up in the gap mop_up = (x >= 0.7) * (y < 0.0) Sigmadot[mop_up] = np.inf if ret: # Return unaveraged values at cell edges return Sigmadot else: # Store values as average of mass loss rate at cell edges self._Sigmadot = (Sigmadot[1:] + Sigmadot[:-1]) / 2 """Picogna, Ercolano, Owen and Weber (2019)""" class XrayDiscPicogna(PhotoBase): def __init__(self, disc, Type='Primordial', R_hole=None): super().__init__(disc, Regime='X-ray', Type=Type) # Parameters for Primordial mass loss profile self._a1 = -0.5885 self._b1 = 4.3130 self._c1 = -12.1214 self._d1 = 16.3587 self._e1 = -11.4721 self._f1 = 5.7248 self._g1 = -2.8562 # Parameters for Inner Hole mass loss profile self._a2 = 0.11843 self._b2 = 0.99695 self._c2 = 0.48835 # If initiating with an Inner Hole disc, need to update properties if self._type == 'InnerHole': self._Hole = True self._R_hole = R_hole #self.get_Rhole(disc) # Run the mass loss rates to update the table self.Sigma_dot(disc.R_edge, disc.star) def mdot_XE(self, star, Mdot=None): # In Msun/yr if Mdot is not None: self._Mdot = Mdot elif self._type=='Primordial': logMd = -2.7326 * np.exp((np.log(np.log(star.L_X)/np.log(10))-3.3307)**2/-2.9868e-3) - 7.2580 # Equation 5 self._Mdot = 10**logMd elif self._type=='InnerHole': logMd = -2.7326 * np.exp((np.log(np.log(star.L_X)/np.log(10))-3.3307)**2/-2.9868e-3) - 7.2580 # 1.12 * Equation 5 self._Mdot = 1.12 * (10**logMd) else: raise NotImplementedError("Disc is of unrecognised type, and no mass-loss rate has been manually specified") self._Mdot_true = self._Mdot def scaled_R(self, R, star): # Where R in AU # All are divided by stellar mass normalised to 0.7 Msun (value used by Picogna+19) to represent rescaling by gravitational radius x = R / (star.M/0.7) if self._Hole: y = (R-self._R_hole) / (star.M/0.7) # Equation B6 else: y = R / (star.M/0.7) return x, y def R_inner(self, star): # Innermost mass loss if self._type=='Primordial': return 0 # Mass loss possible throughout elif self._type=='InnerHole': return self._R_hole # Mass loss profile applies outside hole else: return 0 # If unspecified, assume mass loss possible throughout def Sigma_dot_Primordial(self, R, star, ret=False): # Equation B2 Sigmadot = np.zeros_like(R) x, y = self.scaled_R(R,star) where_photoevap = (x<=137) # Mass loss prescription becomes negative at x=1.3785 logx = np.log(x[where_photoevap]) log10 = np.log(10) log10x = logx/log10 # First term exponent = self._a1 * log10x**6 + self._b1 * log10x**5 + self._c1 * log10x**4 + self._d1 * log10x**3 + self._e1 * log10x**2 + self._f1 * log10x + self._g1 t1 = 10**exponent # Second term terms = 6*self._a1*log10x**5 + 5*self._b1*log10x**4 + 4*self._c1*log10x**3 + 3*self._d1*log10x**2 + 2*self._e1*log10x + self._f1 t2 = terms/(2*np.pi*x[where_photoevap]**2) # Combine terms Sigmadot[where_photoevap] = t1 * t2 # Work out total mass loss rate for normalisation M_dot = 2*np.pi * R * Sigmadot total = np.trapz(M_dot,R) # Normalise, convert to cgs Sigmadot = np.maximum(Sigmadot,0) Sigmadot *= self.Mdot / total * Msun / AU**2 # in g cm^-2 / yr if ret: # Return unaveraged values at cell edges return Sigmadot else: # Store values as average of mass loss rate at cell edges self._Sigmadot = (Sigmadot[1:] + Sigmadot[:-1]) / 2 def Sigma_dot_InnerHole(self, R, star, ret=False): # Equation B5 Sigmadot = np.zeros_like(R) x, y = self.scaled_R(R,star) where_photoevap = (y > 0.0) * (y < -self._c2/np.log(self._b2)) # No mass loss inside hole, becomes negative at x=-c/ln(b) use_y = y[where_photoevap] # Numerator terms = self._a2 * np.power(self._b2,use_y) * np.power(use_y,self._c2-1) * (use_y * np.log(self._b2) + self._c2) # Divide by Denominator Sigmadot[where_photoevap] = terms/(2*np.pi*R[where_photoevap]) # Work out total mass loss rate for normalisation M_dot = 2*np.pi * R * Sigmadot total = np.trapz(M_dot,R) # Normalise, convert to cgs Sigmadot = np.maximum(Sigmadot,0) Sigmadot *= self.Mdot / total * Msun / AU**2 # in g cm^-2 / yr # Mopping up in the gap - assume usual primordial rates there. Sigmadot[(y<=0.0) * (x<=137)] = self.Sigma_dot_Primordial(R, star, ret=True)[(y<=0.0)*(x<=137)]/1.12 # divide by 1.12 so that normalise to correct mass loss rate mop_up = (x > 137) * (y < 0.0) Sigmadot[mop_up] = np.inf # Avoid having discontinuous mass-loss by filling in the rest if ret: # Return unaveraged values at cell edges return Sigmadot else: # Store values as average of mass loss rate at cell edges self._Sigmadot = (Sigmadot[1:] + Sigmadot[:-1]) / 2 ################################################################################# """"""""" EUV dominated photoevaporation -Following prescription given in Alexander and Armitage (2007) and based on Font, McCarthy, Johnstone and Ballantyne (2004) for Primordial Discs and based on Alexander, Clarke and Pringle (2006) for Inner Hole Discs """"""""" ################################################################################# class EUVDiscAlexander(PhotoBase): def __init__(self, disc, Type='Primordial', R_hole=None): super().__init__(disc, Regime='EUV', Type=Type) # Parameters for mass loss profiles self._cs = 10 # Sound speed in km s^-1 self._RG = disc.star.M / (self._cs*1e5 /Omega0/AU)**2 # Gravitational Radius in AU self._mu = 1.35 self._aB = 2.6e-13 # Case B Recombination coeff. in cm^3 s^-1 self._C1 = 0.14 self._A = 0.3423 self._B = -0.3612 self._D = 0.2457 self._C2 = 0.235 self._a = 2.42 h = disc.H/disc.R he = np.empty_like(disc.R_edge) he[1:-1] = 0.5*(h[1:] + h[-1:]) he[0] = 1.5*h[0] - 0.5*h[1] he[-1] = 1.5*h[-1] - 0.5*h[-2] self._h = he # If initiating with an Inner Hole disc, need to update properties if self._type == 'InnerHole': self._Hole = True self._R_hole = R_hole #self.get_Rhole(disc) # Run the mass loss rates to update the table self.Sigma_dot(disc.R_edge, disc.star) def mdot_XE(self, star, Mdot=0): # Store Mdot calculated from profile self._Mdot = Mdot # In Msun/yr self._Mdot_true = self._Mdot def scaled_R(self, R, star): if self._type=='Primordial': return R / self._RG # Normalise to RG elif self._type=='InnerHole': return R / self.R_inner() # Normalise to inner edge else: return R # If unspecified, don't modify def R_inner(self): # Innermost mass loss if self._type=='Primordial': return 0.1 * self._RG # Mass loss profile is only positive for >0.1 RG elif self._type=='InnerHole': return self._R_hole # Mass loss profile applies outside hole else: return 0 # If unspecified, assume mass-loss possible throughout def Sigma_dot_Primordial(self, R, star, ret=False): Sigmadot = np.zeros_like(R) x = self.scaled_R(R,star) where_photoevap = (x >= 0.1) # No mass loss close to star # Equation A3 nG = self._C1 * (3 * star.Phi / (4*np.pi * (self._RG*AU)**3 * self._aB))**(1/2) # cm^-3 # Equation A2 n0 = nG * (2 / (x**7.5 + x**12.5))**(1/5) # Equation A4 u1 = self._cs*1e5*yr/Omega0 * self._A * np.exp(self._B * (x-0.1)) * (x-0.1)**self._D # cm yr^-1 # Combine terms (Equation A1) Sigmadot[where_photoevap] = 2 * self._mu * m_H * (n0 * u1)[where_photoevap] # g cm^-2 /yr Sigmadot = np.maximum(Sigmadot,0) # Work out total mass loss rate dMdot = 2*np.pi * R * Sigmadot Mdot = np.trapz(dMdot,R) # g yr^-1 (AU/cm)^2 # Normalise, convert to cgs Mdot = Mdot * AU**2/Msun # g yr^-1 # Store result self.mdot_XE(star, Mdot=Mdot) if ret: # Return unaveraged values at cell edges return Sigmadot else: # Store values as average of mass loss rate at cell edges self._Sigmadot = (Sigmadot[1:] + Sigmadot[:-1]) / 2 def Sigma_dot_InnerHole(self, R, star, ret=False): Sigmadot = np.zeros_like(R) x = self.scaled_R(R,star) where_photoevap = (x > 1) # No mass loss inside hole # Combine terms (Equation A5) Sigmadot[where_photoevap] = (2 * self._mu * m_H * self._C2 * self._cs*1e5*yr/Omega0 * (star.Phi / (4*np.pi * (self.R_inner()*AU)**3 * self._aB * self._h))**(1/2) * x**(-self._a))[where_photoevap] # g cm^-2 /yr Sigmadot = np.maximum(Sigmadot,0) # Work out total mass loss rate dMdot = 2*np.pi * R * Sigmadot Mdot = np.trapz(dMdot,R) # g yr^-1 (AU/cm)^2 # Normalise, convert to cgs Mdot = Mdot * AU**2/Msun # g yr^-1 # Store result self.mdot_XE(star, Mdot=Mdot) # Mopping up in the gap mop_up = (R >= 0.1 * self._RG) * (x <= 1.0) Sigmadot[mop_up] = np.inf if ret: # Return unaveraged values at cell edges return Sigmadot else: # Store values as average of mass loss rate at cell edges self._Sigmadot = (Sigmadot[1:] + Sigmadot[:-1]) / 2 ################################################################################# """"""""" Functions for running as main Designed for plotting to test things out """"""""" ################################################################################# class DummyDisc(object): def __init__(self, R, star, MD=10, RC=100): self._M = MD * Mjup self.Rc = RC self.R_edge = R self.R = 0.5*(self.R_edge[1:]+self.R_edge[:-1]) self._Sigma = self._M / (2 * np.pi * self.Rc * self.R * AU**2) * np.exp(-self.R/self.Rc) self.star = star def Rout(self, thresh=None): return max(self.R_edge) @property def Sigma(self): return self._Sigma @property def Sigma_G(self): return self._Sigma def main(): Sigma_dot_plot() Test_Removal() def Test_Removal(): """Removes gas fom a power law disc in regular timesteps without viscous evolution etc""" star1 = PhotoStar(LX=1e30, M=1.0, R=2.5, T_eff=4000) R = np.linspace(0.1,200,2000) disc1 = DummyDisc(R, star1, RC=10) internal_photo = XrayDiscPicogna(disc1) plt.figure() for t in np.linspace(0,2e3,6): internal_photo(disc1, 2e3) plt.loglog(0.5*(R[1:]+R[:-1]), disc1.Sigma, label='{}'.format(t)) plt.xlabel("R / AU") plt.ylabel("$\Sigma_G~/~\mathrm{g~cm^{-2}}$") plt.legend(title='Time / yr') plt.show() def Sigma_dot_plot(): """Plot a comparison of the mass loss rate prescriptions""" from control_scripts import run_model # Set up dummy model parser = argparse.ArgumentParser() parser.add_argument("--model", "-m", type=str, default=DefaultModel) args = parser.parse_args() model = json.load(open(args.model, 'r')) plt.figure(figsize=(6,6)) starX = PhotoStar(LX=1e30, M=model['star']['mass'], R=model['star']['radius'], T_eff=model['star']['T_eff']) starE = PhotoStar(Phi=1e42, M=model['star']['mass'], R=model['star']['radius'], T_eff=model['star']['T_eff']) disc = run_model.setup_disc(model) R = disc.R # Calculate EUV rates disc._star = starE internal_photo_E = EUVDiscAlexander(disc) Sigma_dot_E = internal_photo_E.dSigmadt photoevaporating_E = (Sigma_dot_E>0) t_w_E = disc.Sigma[photoevaporating_E] / Sigma_dot_E[photoevaporating_E] print("Mdot maximum at R = {} AU".format(R[np.argmax(Sigma_dot_E)])) print("Time minimum at R = {} AU".format(R[photoevaporating_E][np.argmin(t_w_E)])) plt.loglog(R, Sigma_dot_E, label='EUV (AA07), $\Phi={}~\mathrm{{s^{{-1}}}}$'.format(1e42), linestyle='--') # Calculate X-ray rates disc._star = starX internal_photo_X = XrayDiscOwen(disc) Sigma_dot_X = internal_photo_X.dSigmadt photoevaporating_X = (Sigma_dot_X>0) t_w_X = disc.Sigma[photoevaporating_X] / Sigma_dot_X[photoevaporating_X] print("Mdot maximum at R = {} AU".format(R[np.argmax(Sigma_dot_X)])) print("Time minimum at R = {} AU".format(R[photoevaporating_X][np.argmin(t_w_X)])) plt.loglog(R, Sigma_dot_X, label='X-ray (OEC12), $L_X={}~\mathrm{{erg~s^{{-1}}}}$'.format(1e30)) # Calculate X-ray rates disc._star = starX internal_photo_X2 = XrayDiscPicogna(disc) Sigma_dot_X2 = internal_photo_X2.dSigmadt photoevaporating_X2 = (Sigma_dot_X2>0) t_w_X2 = disc.Sigma[photoevaporating_X2] / Sigma_dot_X2[photoevaporating_X2] print("Mdot maximum at R = {} AU".format(R[np.argmax(Sigma_dot_X2)])) print("Time minimum at R = {} AU".format(R[photoevaporating_X2][np.argmin(t_w_X2)])) plt.loglog(R, Sigma_dot_X2, label='X-ray (PEOW19), $L_X={}~\mathrm{{erg~s^{{-1}}}}$'.format(1e30)) # Plot mass loss rates plt.xlabel("R / AU") plt.ylabel("$\dot{\Sigma}_{\\rm w}$ / g cm$^{-2}$ yr$^{-1}$") plt.xlim([0.1,1000]) plt.ylim([1e-8,1e-2]) plt.legend() plt.show() # Plot depletion time plt.figure(figsize=(6,6)) plt.loglog(R[photoevaporating_E], t_w_E, label='EUV (AA07), $\Phi={}~\mathrm{{s^{{-1}}}}$'.format(1e42), linestyle='--') plt.loglog(R[photoevaporating_X], t_w_X, label='X-ray (OEC12), $L_X={}~\mathrm{{erg~s^{{-1}}}}$'.format(1e30)) plt.loglog(R[photoevaporating_X2], t_w_X2, label='X-ray (PEOW19), $L_X={}~\mathrm{{erg~s^{{-1}}}}$'.format(1e30)) plt.xlabel("R / AU") plt.ylabel("$t_w / \mathrm{yr}$") plt.xlim([0.1,1000]) plt.ylim([1e4,1e12]) plt.legend() plt.show() if __name__ == "__main__": # Set extra things DefaultModel = "../control_scripts/DiscConfig_default.json" plt.rcParams['text.usetex'] = "True" plt.rcParams['font.family'] = "serif" main()
gpl-3.0
spallavolu/scikit-learn
sklearn/linear_model/ridge.py
60
44642
""" Ridge regression """ # Author: Mathieu Blondel <[email protected]> # Reuben Fletcher-Costin <[email protected]> # Fabian Pedregosa <[email protected]> # Michael Eickenberg <[email protected]> # License: BSD 3 clause from abc import ABCMeta, abstractmethod import warnings import numpy as np from scipy import linalg from scipy import sparse from scipy.sparse import linalg as sp_linalg from .base import LinearClassifierMixin, LinearModel, _rescale_data from .sag import sag_solver from .sag_fast import get_max_squared_sum from ..base import RegressorMixin from ..utils.extmath import safe_sparse_dot from ..utils import check_X_y from ..utils import check_array from ..utils import check_consistent_length from ..utils import compute_sample_weight from ..utils import column_or_1d from ..preprocessing import LabelBinarizer from ..grid_search import GridSearchCV from ..externals import six from ..metrics.scorer import check_scoring def _solve_sparse_cg(X, y, alpha, max_iter=None, tol=1e-3, verbose=0): n_samples, n_features = X.shape X1 = sp_linalg.aslinearoperator(X) coefs = np.empty((y.shape[1], n_features)) if n_features > n_samples: def create_mv(curr_alpha): def _mv(x): return X1.matvec(X1.rmatvec(x)) + curr_alpha * x return _mv else: def create_mv(curr_alpha): def _mv(x): return X1.rmatvec(X1.matvec(x)) + curr_alpha * x return _mv for i in range(y.shape[1]): y_column = y[:, i] mv = create_mv(alpha[i]) if n_features > n_samples: # kernel ridge # w = X.T * inv(X X^t + alpha*Id) y C = sp_linalg.LinearOperator( (n_samples, n_samples), matvec=mv, dtype=X.dtype) coef, info = sp_linalg.cg(C, y_column, tol=tol) coefs[i] = X1.rmatvec(coef) else: # linear ridge # w = inv(X^t X + alpha*Id) * X.T y y_column = X1.rmatvec(y_column) C = sp_linalg.LinearOperator( (n_features, n_features), matvec=mv, dtype=X.dtype) coefs[i], info = sp_linalg.cg(C, y_column, maxiter=max_iter, tol=tol) if info < 0: raise ValueError("Failed with error code %d" % info) if max_iter is None and info > 0 and verbose: warnings.warn("sparse_cg did not converge after %d iterations." % info) return coefs def _solve_lsqr(X, y, alpha, max_iter=None, tol=1e-3): n_samples, n_features = X.shape coefs = np.empty((y.shape[1], n_features)) n_iter = np.empty(y.shape[1], dtype=np.int32) # According to the lsqr documentation, alpha = damp^2. sqrt_alpha = np.sqrt(alpha) for i in range(y.shape[1]): y_column = y[:, i] info = sp_linalg.lsqr(X, y_column, damp=sqrt_alpha[i], atol=tol, btol=tol, iter_lim=max_iter) coefs[i] = info[0] n_iter[i] = info[2] return coefs, n_iter def _solve_cholesky(X, y, alpha): # w = inv(X^t X + alpha*Id) * X.T y n_samples, n_features = X.shape n_targets = y.shape[1] A = safe_sparse_dot(X.T, X, dense_output=True) Xy = safe_sparse_dot(X.T, y, dense_output=True) one_alpha = np.array_equal(alpha, len(alpha) * [alpha[0]]) if one_alpha: A.flat[::n_features + 1] += alpha[0] return linalg.solve(A, Xy, sym_pos=True, overwrite_a=True).T else: coefs = np.empty([n_targets, n_features]) for coef, target, current_alpha in zip(coefs, Xy.T, alpha): A.flat[::n_features + 1] += current_alpha coef[:] = linalg.solve(A, target, sym_pos=True, overwrite_a=False).ravel() A.flat[::n_features + 1] -= current_alpha return coefs def _solve_cholesky_kernel(K, y, alpha, sample_weight=None, copy=False): # dual_coef = inv(X X^t + alpha*Id) y n_samples = K.shape[0] n_targets = y.shape[1] if copy: K = K.copy() alpha = np.atleast_1d(alpha) one_alpha = (alpha == alpha[0]).all() has_sw = isinstance(sample_weight, np.ndarray) \ or sample_weight not in [1.0, None] if has_sw: # Unlike other solvers, we need to support sample_weight directly # because K might be a pre-computed kernel. sw = np.sqrt(np.atleast_1d(sample_weight)) y = y * sw[:, np.newaxis] K *= np.outer(sw, sw) if one_alpha: # Only one penalty, we can solve multi-target problems in one time. K.flat[::n_samples + 1] += alpha[0] try: # Note: we must use overwrite_a=False in order to be able to # use the fall-back solution below in case a LinAlgError # is raised dual_coef = linalg.solve(K, y, sym_pos=True, overwrite_a=False) except np.linalg.LinAlgError: warnings.warn("Singular matrix in solving dual problem. Using " "least-squares solution instead.") dual_coef = linalg.lstsq(K, y)[0] # K is expensive to compute and store in memory so change it back in # case it was user-given. K.flat[::n_samples + 1] -= alpha[0] if has_sw: dual_coef *= sw[:, np.newaxis] return dual_coef else: # One penalty per target. We need to solve each target separately. dual_coefs = np.empty([n_targets, n_samples]) for dual_coef, target, current_alpha in zip(dual_coefs, y.T, alpha): K.flat[::n_samples + 1] += current_alpha dual_coef[:] = linalg.solve(K, target, sym_pos=True, overwrite_a=False).ravel() K.flat[::n_samples + 1] -= current_alpha if has_sw: dual_coefs *= sw[np.newaxis, :] return dual_coefs.T def _solve_svd(X, y, alpha): U, s, Vt = linalg.svd(X, full_matrices=False) idx = s > 1e-15 # same default value as scipy.linalg.pinv s_nnz = s[idx][:, np.newaxis] UTy = np.dot(U.T, y) d = np.zeros((s.size, alpha.size)) d[idx] = s_nnz / (s_nnz ** 2 + alpha) d_UT_y = d * UTy return np.dot(Vt.T, d_UT_y).T def ridge_regression(X, y, alpha, sample_weight=None, solver='auto', max_iter=None, tol=1e-3, verbose=0, random_state=None, return_n_iter=False): """Solve the ridge equation by the method of normal equations. Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- X : {array-like, sparse matrix, LinearOperator}, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values alpha : {float, array-like}, shape = [n_targets] if array-like The l_2 penalty to be used. If an array is passed, penalties are assumed to be specific to targets max_iter : int, optional Maximum number of iterations for conjugate gradient solver. For 'sparse_cg' and 'lsqr' solvers, the default value is determined by scipy.sparse.linalg. For 'sag' solver, the default value is 1000. sample_weight : float or numpy array of shape [n_samples] Individual weights for each sample. If sample_weight is not None and solver='auto', the solver will be set to 'cholesky'. solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg'} Solver to use in the computational routines: - 'auto' chooses the solver automatically based on the type of data. - 'svd' uses a Singular Value Decomposition of X to compute the Ridge coefficients. More stable for singular matrices than 'cholesky'. - 'cholesky' uses the standard scipy.linalg.solve function to obtain a closed-form solution via a Cholesky decomposition of dot(X.T, X) - 'sparse_cg' uses the conjugate gradient solver as found in scipy.sparse.linalg.cg. As an iterative algorithm, this solver is more appropriate than 'cholesky' for large-scale data (possibility to set `tol` and `max_iter`). - 'lsqr' uses the dedicated regularized least-squares routine scipy.sparse.linalg.lsqr. It is the fatest but may not be available in old scipy versions. It also uses an iterative procedure. - 'sag' uses a Stochastic Average Gradient descent. It also uses an iterative procedure, and is often faster than other solvers when both n_samples and n_features are large. Note that 'sag' fast convergence is only guaranteed on features with approximately the same scale. You can preprocess the data with a scaler from sklearn.preprocessing. All last four solvers support both dense and sparse data. tol : float Precision of the solution. verbose : int Verbosity level. Setting verbose > 0 will display additional information depending on the solver used. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. Used in 'sag' solver. return_n_iter : boolean, default False If True, the method also returns `n_iter`, the actual number of iteration performed by the solver. Returns ------- coef : array, shape = [n_features] or [n_targets, n_features] Weight vector(s). n_iter : int, optional The actual number of iteration performed by the solver. Only returned if `return_n_iter` is True. Notes ----- This function won't compute the intercept. """ # SAG needs X and y columns to be C-contiguous and np.float64 if solver == 'sag': X = check_array(X, accept_sparse=['csr'], dtype=np.float64, order='C') y = check_array(y, dtype=np.float64, ensure_2d=False, order='F') else: X = check_array(X, accept_sparse=['csr', 'csc', 'coo'], dtype=np.float64) y = check_array(y, dtype='numeric', ensure_2d=False) check_consistent_length(X, y) n_samples, n_features = X.shape if y.ndim > 2: raise ValueError("Target y has the wrong shape %s" % str(y.shape)) ravel = False if y.ndim == 1: y = y.reshape(-1, 1) ravel = True n_samples_, n_targets = y.shape if n_samples != n_samples_: raise ValueError("Number of samples in X and y does not correspond:" " %d != %d" % (n_samples, n_samples_)) has_sw = sample_weight is not None if solver == 'auto': # cholesky if it's a dense array and cg in any other case if not sparse.issparse(X) or has_sw: solver = 'cholesky' else: solver = 'sparse_cg' elif solver == 'lsqr' and not hasattr(sp_linalg, 'lsqr'): warnings.warn("""lsqr not available on this machine, falling back to sparse_cg.""") solver = 'sparse_cg' if has_sw: if np.atleast_1d(sample_weight).ndim > 1: raise ValueError("Sample weights must be 1D array or scalar") if solver != 'sag': # SAG supports sample_weight directly. For other solvers, # we implement sample_weight via a simple rescaling. X, y = _rescale_data(X, y, sample_weight) # There should be either 1 or n_targets penalties alpha = np.asarray(alpha).ravel() if alpha.size not in [1, n_targets]: raise ValueError("Number of targets and number of penalties " "do not correspond: %d != %d" % (alpha.size, n_targets)) if alpha.size == 1 and n_targets > 1: alpha = np.repeat(alpha, n_targets) if solver not in ('sparse_cg', 'cholesky', 'svd', 'lsqr', 'sag'): raise ValueError('Solver %s not understood' % solver) n_iter = None if solver == 'sparse_cg': coef = _solve_sparse_cg(X, y, alpha, max_iter, tol, verbose) elif solver == 'lsqr': coef, n_iter = _solve_lsqr(X, y, alpha, max_iter, tol) elif solver == 'cholesky': if n_features > n_samples: K = safe_sparse_dot(X, X.T, dense_output=True) try: dual_coef = _solve_cholesky_kernel(K, y, alpha) coef = safe_sparse_dot(X.T, dual_coef, dense_output=True).T except linalg.LinAlgError: # use SVD solver if matrix is singular solver = 'svd' else: try: coef = _solve_cholesky(X, y, alpha) except linalg.LinAlgError: # use SVD solver if matrix is singular solver = 'svd' elif solver == 'sag': # precompute max_squared_sum for all targets max_squared_sum = get_max_squared_sum(X) coef = np.empty((y.shape[1], n_features)) n_iter = np.empty(y.shape[1], dtype=np.int32) for i, (alpha_i, target) in enumerate(zip(alpha, y.T)): coef_, n_iter_, _ = sag_solver( X, target.ravel(), sample_weight, 'squared', alpha_i, max_iter, tol, verbose, random_state, False, max_squared_sum, dict()) coef[i] = coef_ n_iter[i] = n_iter_ coef = np.asarray(coef) if solver == 'svd': if sparse.issparse(X): raise TypeError('SVD solver does not support sparse' ' inputs currently') coef = _solve_svd(X, y, alpha) if ravel: # When y was passed as a 1d-array, we flatten the coefficients. coef = coef.ravel() if return_n_iter: return coef, n_iter else: return coef class _BaseRidge(six.with_metaclass(ABCMeta, LinearModel)): @abstractmethod def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=1e-3, solver="auto", random_state=None): self.alpha = alpha self.fit_intercept = fit_intercept self.normalize = normalize self.copy_X = copy_X self.max_iter = max_iter self.tol = tol self.solver = solver self.random_state = random_state def fit(self, X, y, sample_weight=None): X, y = check_X_y(X, y, ['csr', 'csc', 'coo'], dtype=np.float64, multi_output=True, y_numeric=True) if ((sample_weight is not None) and np.atleast_1d(sample_weight).ndim > 1): raise ValueError("Sample weights must be 1D array or scalar") X, y, X_mean, y_mean, X_std = self._center_data( X, y, self.fit_intercept, self.normalize, self.copy_X, sample_weight=sample_weight) self.coef_, self.n_iter_ = ridge_regression( X, y, alpha=self.alpha, sample_weight=sample_weight, max_iter=self.max_iter, tol=self.tol, solver=self.solver, random_state=self.random_state, return_n_iter=True) self._set_intercept(X_mean, y_mean, X_std) return self class Ridge(_BaseRidge, RegressorMixin): """Linear least squares with l2 regularization. This model solves a regression model where the loss function is the linear least squares function and regularization is given by the l2-norm. Also known as Ridge Regression or Tikhonov regularization. This estimator has built-in support for multi-variate regression (i.e., when y is a 2d-array of shape [n_samples, n_targets]). Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- alpha : {float, array-like}, shape (n_targets) Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to ``C^-1`` in other linear models such as LogisticRegression or LinearSVC. If an array is passed, penalties are assumed to be specific to the targets. Hence they must correspond in number. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). max_iter : int, optional Maximum number of iterations for conjugate gradient solver. For 'sparse_cg' and 'lsqr' solvers, the default value is determined by scipy.sparse.linalg. For 'sag' solver, the default value is 1000. normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', 'sag'} Solver to use in the computational routines: - 'auto' chooses the solver automatically based on the type of data. - 'svd' uses a Singular Value Decomposition of X to compute the Ridge coefficients. More stable for singular matrices than 'cholesky'. - 'cholesky' uses the standard scipy.linalg.solve function to obtain a closed-form solution. - 'sparse_cg' uses the conjugate gradient solver as found in scipy.sparse.linalg.cg. As an iterative algorithm, this solver is more appropriate than 'cholesky' for large-scale data (possibility to set `tol` and `max_iter`). - 'lsqr' uses the dedicated regularized least-squares routine scipy.sparse.linalg.lsqr. It is the fatest but may not be available in old scipy versions. It also uses an iterative procedure. - 'sag' uses a Stochastic Average Gradient descent. It also uses an iterative procedure, and is often faster than other solvers when both n_samples and n_features are large. Note that 'sag' fast convergence is only guaranteed on features with approximately the same scale. You can preprocess the data with a scaler from sklearn.preprocessing. All last four solvers support both dense and sparse data. tol : float Precision of the solution. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. Used in 'sag' solver. Attributes ---------- coef_ : array, shape (n_features,) or (n_targets, n_features) Weight vector(s). intercept_ : float | array, shape = (n_targets,) Independent term in decision function. Set to 0.0 if ``fit_intercept = False``. n_iter_ : array or None, shape (n_targets,) Actual number of iterations for each target. Available only for sag and lsqr solvers. Other solvers will return None. See also -------- RidgeClassifier, RidgeCV, KernelRidge Examples -------- >>> from sklearn.linear_model import Ridge >>> import numpy as np >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> clf = Ridge(alpha=1.0) >>> clf.fit(X, y) # doctest: +NORMALIZE_WHITESPACE Ridge(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, random_state=None, solver='auto', tol=0.001) """ def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=1e-3, solver="auto", random_state=None): super(Ridge, self).__init__(alpha=alpha, fit_intercept=fit_intercept, normalize=normalize, copy_X=copy_X, max_iter=max_iter, tol=tol, solver=solver, random_state=random_state) def fit(self, X, y, sample_weight=None): """Fit Ridge regression model Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values sample_weight : float or numpy array of shape [n_samples] Individual weights for each sample Returns ------- self : returns an instance of self. """ return super(Ridge, self).fit(X, y, sample_weight=sample_weight) class RidgeClassifier(LinearClassifierMixin, _BaseRidge): """Classifier using Ridge regression. Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- alpha : float Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to ``C^-1`` in other linear models such as LogisticRegression or LinearSVC. class_weight : dict or 'balanced', optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). max_iter : int, optional Maximum number of iterations for conjugate gradient solver. The default value is determined by scipy.sparse.linalg. normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', 'sag'} Solver to use in the computational routines: - 'auto' chooses the solver automatically based on the type of data. - 'svd' uses a Singular Value Decomposition of X to compute the Ridge coefficients. More stable for singular matrices than 'cholesky'. - 'cholesky' uses the standard scipy.linalg.solve function to obtain a closed-form solution. - 'sparse_cg' uses the conjugate gradient solver as found in scipy.sparse.linalg.cg. As an iterative algorithm, this solver is more appropriate than 'cholesky' for large-scale data (possibility to set `tol` and `max_iter`). - 'lsqr' uses the dedicated regularized least-squares routine scipy.sparse.linalg.lsqr. It is the fatest but may not be available in old scipy versions. It also uses an iterative procedure. - 'sag' uses a Stochastic Average Gradient descent. It also uses an iterative procedure, and is faster than other solvers when both n_samples and n_features are large. tol : float Precision of the solution. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. Used in 'sag' solver. Attributes ---------- coef_ : array, shape (n_features,) or (n_classes, n_features) Weight vector(s). intercept_ : float | array, shape = (n_targets,) Independent term in decision function. Set to 0.0 if ``fit_intercept = False``. n_iter_ : array or None, shape (n_targets,) Actual number of iterations for each target. Available only for sag and lsqr solvers. Other solvers will return None. See also -------- Ridge, RidgeClassifierCV Notes ----- For multi-class classification, n_class classifiers are trained in a one-versus-all approach. Concretely, this is implemented by taking advantage of the multi-variate response support in Ridge. """ def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=1e-3, class_weight=None, solver="auto", random_state=None): super(RidgeClassifier, self).__init__( alpha=alpha, fit_intercept=fit_intercept, normalize=normalize, copy_X=copy_X, max_iter=max_iter, tol=tol, solver=solver, random_state=random_state) self.class_weight = class_weight def fit(self, X, y, sample_weight=None): """Fit Ridge regression model. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples,n_features] Training data y : array-like, shape = [n_samples] Target values sample_weight : float or numpy array of shape (n_samples,) Sample weight. Returns ------- self : returns an instance of self. """ self._label_binarizer = LabelBinarizer(pos_label=1, neg_label=-1) Y = self._label_binarizer.fit_transform(y) if not self._label_binarizer.y_type_.startswith('multilabel'): y = column_or_1d(y, warn=True) if self.class_weight: if sample_weight is None: sample_weight = 1. # modify the sample weights with the corresponding class weight sample_weight = (sample_weight * compute_sample_weight(self.class_weight, y)) super(RidgeClassifier, self).fit(X, Y, sample_weight=sample_weight) return self @property def classes_(self): return self._label_binarizer.classes_ class _RidgeGCV(LinearModel): """Ridge regression with built-in Generalized Cross-Validation It allows efficient Leave-One-Out cross-validation. This class is not intended to be used directly. Use RidgeCV instead. Notes ----- We want to solve (K + alpha*Id)c = y, where K = X X^T is the kernel matrix. Let G = (K + alpha*Id)^-1. Dual solution: c = Gy Primal solution: w = X^T c Compute eigendecomposition K = Q V Q^T. Then G = Q (V + alpha*Id)^-1 Q^T, where (V + alpha*Id) is diagonal. It is thus inexpensive to inverse for many alphas. Let loov be the vector of prediction values for each example when the model was fitted with all examples but this example. loov = (KGY - diag(KG)Y) / diag(I-KG) Let looe be the vector of prediction errors for each example when the model was fitted with all examples but this example. looe = y - loov = c / diag(G) References ---------- http://cbcl.mit.edu/projects/cbcl/publications/ps/MIT-CSAIL-TR-2007-025.pdf http://www.mit.edu/~9.520/spring07/Classes/rlsslides.pdf """ def __init__(self, alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, copy_X=True, gcv_mode=None, store_cv_values=False): self.alphas = np.asarray(alphas) self.fit_intercept = fit_intercept self.normalize = normalize self.scoring = scoring self.copy_X = copy_X self.gcv_mode = gcv_mode self.store_cv_values = store_cv_values def _pre_compute(self, X, y): # even if X is very sparse, K is usually very dense K = safe_sparse_dot(X, X.T, dense_output=True) v, Q = linalg.eigh(K) QT_y = np.dot(Q.T, y) return v, Q, QT_y def _decomp_diag(self, v_prime, Q): # compute diagonal of the matrix: dot(Q, dot(diag(v_prime), Q^T)) return (v_prime * Q ** 2).sum(axis=-1) def _diag_dot(self, D, B): # compute dot(diag(D), B) if len(B.shape) > 1: # handle case where B is > 1-d D = D[(slice(None), ) + (np.newaxis, ) * (len(B.shape) - 1)] return D * B def _errors(self, alpha, y, v, Q, QT_y): # don't construct matrix G, instead compute action on y & diagonal w = 1.0 / (v + alpha) c = np.dot(Q, self._diag_dot(w, QT_y)) G_diag = self._decomp_diag(w, Q) # handle case where y is 2-d if len(y.shape) != 1: G_diag = G_diag[:, np.newaxis] return (c / G_diag) ** 2, c def _values(self, alpha, y, v, Q, QT_y): # don't construct matrix G, instead compute action on y & diagonal w = 1.0 / (v + alpha) c = np.dot(Q, self._diag_dot(w, QT_y)) G_diag = self._decomp_diag(w, Q) # handle case where y is 2-d if len(y.shape) != 1: G_diag = G_diag[:, np.newaxis] return y - (c / G_diag), c def _pre_compute_svd(self, X, y): if sparse.issparse(X): raise TypeError("SVD not supported for sparse matrices") U, s, _ = linalg.svd(X, full_matrices=0) v = s ** 2 UT_y = np.dot(U.T, y) return v, U, UT_y def _errors_svd(self, alpha, y, v, U, UT_y): w = ((v + alpha) ** -1) - (alpha ** -1) c = np.dot(U, self._diag_dot(w, UT_y)) + (alpha ** -1) * y G_diag = self._decomp_diag(w, U) + (alpha ** -1) if len(y.shape) != 1: # handle case where y is 2-d G_diag = G_diag[:, np.newaxis] return (c / G_diag) ** 2, c def _values_svd(self, alpha, y, v, U, UT_y): w = ((v + alpha) ** -1) - (alpha ** -1) c = np.dot(U, self._diag_dot(w, UT_y)) + (alpha ** -1) * y G_diag = self._decomp_diag(w, U) + (alpha ** -1) if len(y.shape) != 1: # handle case when y is 2-d G_diag = G_diag[:, np.newaxis] return y - (c / G_diag), c def fit(self, X, y, sample_weight=None): """Fit Ridge regression model Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values sample_weight : float or array-like of shape [n_samples] Sample weight Returns ------- self : Returns self. """ X, y = check_X_y(X, y, ['csr', 'csc', 'coo'], dtype=np.float, multi_output=True, y_numeric=True) n_samples, n_features = X.shape X, y, X_mean, y_mean, X_std = LinearModel._center_data( X, y, self.fit_intercept, self.normalize, self.copy_X, sample_weight=sample_weight) gcv_mode = self.gcv_mode with_sw = len(np.shape(sample_weight)) if gcv_mode is None or gcv_mode == 'auto': if sparse.issparse(X) or n_features > n_samples or with_sw: gcv_mode = 'eigen' else: gcv_mode = 'svd' elif gcv_mode == "svd" and with_sw: # FIXME non-uniform sample weights not yet supported warnings.warn("non-uniform sample weights unsupported for svd, " "forcing usage of eigen") gcv_mode = 'eigen' if gcv_mode == 'eigen': _pre_compute = self._pre_compute _errors = self._errors _values = self._values elif gcv_mode == 'svd': # assert n_samples >= n_features _pre_compute = self._pre_compute_svd _errors = self._errors_svd _values = self._values_svd else: raise ValueError('bad gcv_mode "%s"' % gcv_mode) v, Q, QT_y = _pre_compute(X, y) n_y = 1 if len(y.shape) == 1 else y.shape[1] cv_values = np.zeros((n_samples * n_y, len(self.alphas))) C = [] scorer = check_scoring(self, scoring=self.scoring, allow_none=True) error = scorer is None for i, alpha in enumerate(self.alphas): weighted_alpha = (sample_weight * alpha if sample_weight is not None else alpha) if error: out, c = _errors(weighted_alpha, y, v, Q, QT_y) else: out, c = _values(weighted_alpha, y, v, Q, QT_y) cv_values[:, i] = out.ravel() C.append(c) if error: best = cv_values.mean(axis=0).argmin() else: # The scorer want an object that will make the predictions but # they are already computed efficiently by _RidgeGCV. This # identity_estimator will just return them def identity_estimator(): pass identity_estimator.decision_function = lambda y_predict: y_predict identity_estimator.predict = lambda y_predict: y_predict out = [scorer(identity_estimator, y.ravel(), cv_values[:, i]) for i in range(len(self.alphas))] best = np.argmax(out) self.alpha_ = self.alphas[best] self.dual_coef_ = C[best] self.coef_ = safe_sparse_dot(self.dual_coef_.T, X) self._set_intercept(X_mean, y_mean, X_std) if self.store_cv_values: if len(y.shape) == 1: cv_values_shape = n_samples, len(self.alphas) else: cv_values_shape = n_samples, n_y, len(self.alphas) self.cv_values_ = cv_values.reshape(cv_values_shape) return self class _BaseRidgeCV(LinearModel): def __init__(self, alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, cv=None, gcv_mode=None, store_cv_values=False): self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.scoring = scoring self.cv = cv self.gcv_mode = gcv_mode self.store_cv_values = store_cv_values def fit(self, X, y, sample_weight=None): """Fit Ridge regression model Parameters ---------- X : array-like, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values sample_weight : float or array-like of shape [n_samples] Sample weight Returns ------- self : Returns self. """ if self.cv is None: estimator = _RidgeGCV(self.alphas, fit_intercept=self.fit_intercept, normalize=self.normalize, scoring=self.scoring, gcv_mode=self.gcv_mode, store_cv_values=self.store_cv_values) estimator.fit(X, y, sample_weight=sample_weight) self.alpha_ = estimator.alpha_ if self.store_cv_values: self.cv_values_ = estimator.cv_values_ else: if self.store_cv_values: raise ValueError("cv!=None and store_cv_values=True " " are incompatible") parameters = {'alpha': self.alphas} fit_params = {'sample_weight': sample_weight} gs = GridSearchCV(Ridge(fit_intercept=self.fit_intercept), parameters, fit_params=fit_params, cv=self.cv) gs.fit(X, y) estimator = gs.best_estimator_ self.alpha_ = gs.best_estimator_.alpha self.coef_ = estimator.coef_ self.intercept_ = estimator.intercept_ return self class RidgeCV(_BaseRidgeCV, RegressorMixin): """Ridge regression with built-in cross-validation. By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-validation. Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- alphas : numpy array of shape [n_alphas] Array of alpha values to try. Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to ``C^-1`` in other linear models such as LogisticRegression or LinearSVC. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if ``y`` is binary or multiclass, :class:`StratifiedKFold` used, else, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. gcv_mode : {None, 'auto', 'svd', eigen'}, optional Flag indicating which strategy to use when performing Generalized Cross-Validation. Options are:: 'auto' : use svd if n_samples > n_features or when X is a sparse matrix, otherwise use eigen 'svd' : force computation via singular value decomposition of X (does not work for sparse matrices) 'eigen' : force computation via eigendecomposition of X^T X The 'auto' mode is the default and is intended to pick the cheaper option of the two depending upon the shape and format of the training data. store_cv_values : boolean, default=False Flag indicating if the cross-validation values corresponding to each alpha should be stored in the `cv_values_` attribute (see below). This flag is only compatible with `cv=None` (i.e. using Generalized Cross-Validation). Attributes ---------- cv_values_ : array, shape = [n_samples, n_alphas] or \ shape = [n_samples, n_targets, n_alphas], optional Cross-validation values for each alpha (if `store_cv_values=True` and \ `cv=None`). After `fit()` has been called, this attribute will \ contain the mean squared errors (by default) or the values of the \ `{loss,score}_func` function (if provided in the constructor). coef_ : array, shape = [n_features] or [n_targets, n_features] Weight vector(s). intercept_ : float | array, shape = (n_targets,) Independent term in decision function. Set to 0.0 if ``fit_intercept = False``. alpha_ : float Estimated regularization parameter. See also -------- Ridge: Ridge regression RidgeClassifier: Ridge classifier RidgeClassifierCV: Ridge classifier with built-in cross validation """ pass class RidgeClassifierCV(LinearClassifierMixin, _BaseRidgeCV): """Ridge classifier with built-in cross-validation. By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-validation. Currently, only the n_features > n_samples case is handled efficiently. Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- alphas : numpy array of shape [n_alphas] Array of alpha values to try. Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to ``C^-1`` in other linear models such as LogisticRegression or LinearSVC. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the efficient Leave-One-Out cross-validation - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. class_weight : dict or 'balanced', optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` Attributes ---------- cv_values_ : array, shape = [n_samples, n_alphas] or \ shape = [n_samples, n_responses, n_alphas], optional Cross-validation values for each alpha (if `store_cv_values=True` and `cv=None`). After `fit()` has been called, this attribute will contain \ the mean squared errors (by default) or the values of the \ `{loss,score}_func` function (if provided in the constructor). coef_ : array, shape = [n_features] or [n_targets, n_features] Weight vector(s). intercept_ : float | array, shape = (n_targets,) Independent term in decision function. Set to 0.0 if ``fit_intercept = False``. alpha_ : float Estimated regularization parameter See also -------- Ridge: Ridge regression RidgeClassifier: Ridge classifier RidgeCV: Ridge regression with built-in cross validation Notes ----- For multi-class classification, n_class classifiers are trained in a one-versus-all approach. Concretely, this is implemented by taking advantage of the multi-variate response support in Ridge. """ def __init__(self, alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, cv=None, class_weight=None): super(RidgeClassifierCV, self).__init__( alphas=alphas, fit_intercept=fit_intercept, normalize=normalize, scoring=scoring, cv=cv) self.class_weight = class_weight def fit(self, X, y, sample_weight=None): """Fit the ridge classifier. Parameters ---------- X : array-like, shape (n_samples, n_features) Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target values. sample_weight : float or numpy array of shape (n_samples,) Sample weight. Returns ------- self : object Returns self. """ self._label_binarizer = LabelBinarizer(pos_label=1, neg_label=-1) Y = self._label_binarizer.fit_transform(y) if not self._label_binarizer.y_type_.startswith('multilabel'): y = column_or_1d(y, warn=True) if self.class_weight: if sample_weight is None: sample_weight = 1. # modify the sample weights with the corresponding class weight sample_weight = (sample_weight * compute_sample_weight(self.class_weight, y)) _BaseRidgeCV.fit(self, X, Y, sample_weight=sample_weight) return self @property def classes_(self): return self._label_binarizer.classes_
bsd-3-clause
crichardson17/starburst_atlas
Low_resolution_sims/DustFree_LowRes/Padova_cont/padova_cont_4/Optical1.py
33
7366
import csv import matplotlib.pyplot as plt from numpy import * import scipy.interpolate import math from pylab import * from matplotlib.ticker import MultipleLocator, FormatStrFormatter import matplotlib.patches as patches from matplotlib.path import Path import os # ------------------------------------------------------------------------------------------------------ #inputs for file in os.listdir('.'): if file.endswith(".grd"): inputfile = file for file in os.listdir('.'): if file.endswith(".txt"): inputfile2 = file # ------------------------------------------------------------------------------------------------------ #Patches data #for the Kewley and Levesque data verts = [ (1., 7.97712125471966000000), # left, bottom (1., 9.57712125471966000000), # left, top (2., 10.57712125471970000000), # right, top (2., 8.97712125471966000000), # right, bottom (0., 0.), # ignored ] codes = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY, ] path = Path(verts, codes) # ------------------------ #for the Kewley 01 data verts2 = [ (2.4, 9.243038049), # left, bottom (2.4, 11.0211893), # left, top (2.6, 11.0211893), # right, top (2.6, 9.243038049), # right, bottom (0, 0.), # ignored ] path = Path(verts, codes) path2 = Path(verts2, codes) # ------------------------- #for the Moy et al data verts3 = [ (1., 6.86712125471966000000), # left, bottom (1., 10.18712125471970000000), # left, top (3., 12.18712125471970000000), # right, top (3., 8.86712125471966000000), # right, bottom (0., 0.), # ignored ] path = Path(verts, codes) path3 = Path(verts3, codes) # ------------------------------------------------------------------------------------------------------ #the routine to add patches for others peoples' data onto our plots. def add_patches(ax): patch3 = patches.PathPatch(path3, facecolor='yellow', lw=0) patch2 = patches.PathPatch(path2, facecolor='green', lw=0) patch = patches.PathPatch(path, facecolor='red', lw=0) ax1.add_patch(patch3) ax1.add_patch(patch2) ax1.add_patch(patch) # ------------------------------------------------------------------------------------------------------ #the subplot routine def add_sub_plot(sub_num): numplots = 16 plt.subplot(numplots/4.,4,sub_num) rbf = scipy.interpolate.Rbf(x, y, z[:,sub_num-1], function='linear') zi = rbf(xi, yi) contour = plt.contour(xi,yi,zi, levels, colors='c', linestyles = 'dashed') contour2 = plt.contour(xi,yi,zi, levels2, colors='k', linewidths=1.5) plt.scatter(max_values[line[sub_num-1],2], max_values[line[sub_num-1],3], c ='k',marker = '*') plt.annotate(headers[line[sub_num-1]], xy=(8,11), xytext=(6,8.5), fontsize = 10) plt.annotate(max_values[line[sub_num-1],0], xy= (max_values[line[sub_num-1],2], max_values[line[sub_num-1],3]), xytext = (0, -10), textcoords = 'offset points', ha = 'right', va = 'bottom', fontsize=10) if sub_num == numplots / 2.: print "half the plots are complete" #axis limits yt_min = 8 yt_max = 23 xt_min = 0 xt_max = 12 plt.ylim(yt_min,yt_max) plt.xlim(xt_min,xt_max) plt.yticks(arange(yt_min+1,yt_max,1),fontsize=10) plt.xticks(arange(xt_min+1,xt_max,1), fontsize = 10) if sub_num in [2,3,4,6,7,8,10,11,12,14,15,16]: plt.tick_params(labelleft = 'off') else: plt.tick_params(labelleft = 'on') plt.ylabel('Log ($ \phi _{\mathrm{H}} $)') if sub_num in [1,2,3,4,5,6,7,8,9,10,11,12]: plt.tick_params(labelbottom = 'off') else: plt.tick_params(labelbottom = 'on') plt.xlabel('Log($n _{\mathrm{H}} $)') if sub_num == 1: plt.yticks(arange(yt_min+1,yt_max+1,1),fontsize=10) if sub_num == 13: plt.yticks(arange(yt_min,yt_max,1),fontsize=10) plt.xticks(arange(xt_min,xt_max,1), fontsize = 10) if sub_num == 16 : plt.xticks(arange(xt_min+1,xt_max+1,1), fontsize = 10) # --------------------------------------------------- #this is where the grid information (phi and hdens) is read in and saved to grid. grid = []; with open(inputfile, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: grid.append(row); grid = asarray(grid) #here is where the data for each line is read in and saved to dataEmissionlines dataEmissionlines = []; with open(inputfile2, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') headers = csvReader.next() for row in csvReader: dataEmissionlines.append(row); dataEmissionlines = asarray(dataEmissionlines) print "import files complete" # --------------------------------------------------- #for grid phi_values = grid[1:len(dataEmissionlines)+1,6] hdens_values = grid[1:len(dataEmissionlines)+1,7] #for lines headers = headers[1:] Emissionlines = dataEmissionlines[:, 1:] concatenated_data = zeros((len(Emissionlines),len(Emissionlines[0]))) max_values = zeros((len(Emissionlines[0]),4)) #select the scaling factor #for 1215 #incident = Emissionlines[1:,4] #for 4860 incident = Emissionlines[:,57] #take the ratio of incident and all the lines and put it all in an array concatenated_data for i in range(len(Emissionlines)): for j in range(len(Emissionlines[0])): if math.log(4860.*(float(Emissionlines[i,j])/float(Emissionlines[i,57])), 10) > 0: concatenated_data[i,j] = math.log(4860.*(float(Emissionlines[i,j])/float(Emissionlines[i,57])), 10) else: concatenated_data[i,j] == 0 # for 1215 #for i in range(len(Emissionlines)): # for j in range(len(Emissionlines[0])): # if math.log(1215.*(float(Emissionlines[i,j])/float(Emissionlines[i,4])), 10) > 0: # concatenated_data[i,j] = math.log(1215.*(float(Emissionlines[i,j])/float(Emissionlines[i,4])), 10) # else: # concatenated_data[i,j] == 0 #find the maxima to plot onto the contour plots for j in range(len(concatenated_data[0])): max_values[j,0] = max(concatenated_data[:,j]) max_values[j,1] = argmax(concatenated_data[:,j], axis = 0) max_values[j,2] = hdens_values[max_values[j,1]] max_values[j,3] = phi_values[max_values[j,1]] #to round off the maxima max_values[:,0] = [ '%.1f' % elem for elem in max_values[:,0] ] print "data arranged" # --------------------------------------------------- #Creating the grid to interpolate with for contours. gridarray = zeros((len(Emissionlines),2)) gridarray[:,0] = hdens_values gridarray[:,1] = phi_values x = gridarray[:,0] y = gridarray[:,1] #change desired lines here! line = [36, #NE 3 3343A 38, #BA C 39, #3646 40, #3726 41, #3727 42, #3729 43, #3869 44, #3889 45, #3933 46, #4026 47, #4070 48, #4074 49, #4078 50, #4102 51, #4340 52] #4363 #create z array for this plot z = concatenated_data[:,line[:]] # --------------------------------------------------- # Interpolate print "starting interpolation" xi, yi = linspace(x.min(), x.max(), 10), linspace(y.min(), y.max(), 10) xi, yi = meshgrid(xi, yi) # --------------------------------------------------- print "interpolatation complete; now plotting" #plot plt.subplots_adjust(wspace=0, hspace=0) #remove space between plots levels = arange(10**-1,10, .2) levels2 = arange(10**-2,10**2, 1) plt.suptitle("Optical Lines", fontsize=14) # --------------------------------------------------- for i in range(16): add_sub_plot(i) ax1 = plt.subplot(4,4,1) add_patches(ax1) print "complete" plt.savefig('optical_lines.pdf') plt.clf()
gpl-2.0
datapythonista/pandas
pandas/tests/io/test_compression.py
3
8199
import io import os from pathlib import Path import subprocess import sys import textwrap import time import pytest import pandas as pd import pandas._testing as tm import pandas.io.common as icom @pytest.mark.parametrize( "obj", [ pd.DataFrame( 100 * [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]], columns=["X", "Y", "Z"], ), pd.Series(100 * [0.123456, 0.234567, 0.567567], name="X"), ], ) @pytest.mark.parametrize("method", ["to_pickle", "to_json", "to_csv"]) def test_compression_size(obj, method, compression_only): with tm.ensure_clean() as path: getattr(obj, method)(path, compression=compression_only) compressed_size = os.path.getsize(path) getattr(obj, method)(path, compression=None) uncompressed_size = os.path.getsize(path) assert uncompressed_size > compressed_size @pytest.mark.parametrize( "obj", [ pd.DataFrame( 100 * [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]], columns=["X", "Y", "Z"], ), pd.Series(100 * [0.123456, 0.234567, 0.567567], name="X"), ], ) @pytest.mark.parametrize("method", ["to_csv", "to_json"]) def test_compression_size_fh(obj, method, compression_only): with tm.ensure_clean() as path: with icom.get_handle(path, "w", compression=compression_only) as handles: getattr(obj, method)(handles.handle) assert not handles.handle.closed compressed_size = os.path.getsize(path) with tm.ensure_clean() as path: with icom.get_handle(path, "w", compression=None) as handles: getattr(obj, method)(handles.handle) assert not handles.handle.closed uncompressed_size = os.path.getsize(path) assert uncompressed_size > compressed_size @pytest.mark.parametrize( "write_method, write_kwargs, read_method", [ ("to_csv", {"index": False}, pd.read_csv), ("to_json", {}, pd.read_json), ("to_pickle", {}, pd.read_pickle), ], ) def test_dataframe_compression_defaults_to_infer( write_method, write_kwargs, read_method, compression_only ): # GH22004 input = pd.DataFrame([[1.0, 0, -4], [3.4, 5, 2]], columns=["X", "Y", "Z"]) extension = icom._compression_to_extension[compression_only] with tm.ensure_clean("compressed" + extension) as path: getattr(input, write_method)(path, **write_kwargs) output = read_method(path, compression=compression_only) tm.assert_frame_equal(output, input) @pytest.mark.parametrize( "write_method,write_kwargs,read_method,read_kwargs", [ ("to_csv", {"index": False, "header": True}, pd.read_csv, {"squeeze": True}), ("to_json", {}, pd.read_json, {"typ": "series"}), ("to_pickle", {}, pd.read_pickle, {}), ], ) def test_series_compression_defaults_to_infer( write_method, write_kwargs, read_method, read_kwargs, compression_only ): # GH22004 input = pd.Series([0, 5, -2, 10], name="X") extension = icom._compression_to_extension[compression_only] with tm.ensure_clean("compressed" + extension) as path: getattr(input, write_method)(path, **write_kwargs) output = read_method(path, compression=compression_only, **read_kwargs) tm.assert_series_equal(output, input, check_names=False) def test_compression_warning(compression_only): # Assert that passing a file object to to_csv while explicitly specifying a # compression protocol triggers a RuntimeWarning, as per GH21227. df = pd.DataFrame( 100 * [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]], columns=["X", "Y", "Z"], ) with tm.ensure_clean() as path: with icom.get_handle(path, "w", compression=compression_only) as handles: with tm.assert_produces_warning(RuntimeWarning): df.to_csv(handles.handle, compression=compression_only) def test_compression_binary(compression_only): """ Binary file handles support compression. GH22555 """ df = tm.makeDataFrame() # with a file with tm.ensure_clean() as path: with open(path, mode="wb") as file: df.to_csv(file, mode="wb", compression=compression_only) file.seek(0) # file shouldn't be closed tm.assert_frame_equal( df, pd.read_csv(path, index_col=0, compression=compression_only) ) # with BytesIO file = io.BytesIO() df.to_csv(file, mode="wb", compression=compression_only) file.seek(0) # file shouldn't be closed tm.assert_frame_equal( df, pd.read_csv(file, index_col=0, compression=compression_only) ) def test_gzip_reproducibility_file_name(): """ Gzip should create reproducible archives with mtime. Note: Archives created with different filenames will still be different! GH 28103 """ df = tm.makeDataFrame() compression_options = {"method": "gzip", "mtime": 1} # test for filename with tm.ensure_clean() as path: path = Path(path) df.to_csv(path, compression=compression_options) time.sleep(2) output = path.read_bytes() df.to_csv(path, compression=compression_options) assert output == path.read_bytes() def test_gzip_reproducibility_file_object(): """ Gzip should create reproducible archives with mtime. GH 28103 """ df = tm.makeDataFrame() compression_options = {"method": "gzip", "mtime": 1} # test for file object buffer = io.BytesIO() df.to_csv(buffer, compression=compression_options, mode="wb") output = buffer.getvalue() time.sleep(2) buffer = io.BytesIO() df.to_csv(buffer, compression=compression_options, mode="wb") assert output == buffer.getvalue() def test_with_missing_lzma(): """Tests if import pandas works when lzma is not present.""" # https://github.com/pandas-dev/pandas/issues/27575 code = textwrap.dedent( """\ import sys sys.modules['lzma'] = None import pandas """ ) subprocess.check_output([sys.executable, "-c", code], stderr=subprocess.PIPE) def test_with_missing_lzma_runtime(): """Tests if RuntimeError is hit when calling lzma without having the module available. """ code = textwrap.dedent( """ import sys import pytest sys.modules['lzma'] = None import pandas as pd df = pd.DataFrame() with pytest.raises(RuntimeError, match='lzma module'): df.to_csv('foo.csv', compression='xz') """ ) subprocess.check_output([sys.executable, "-c", code], stderr=subprocess.PIPE) @pytest.mark.parametrize( "obj", [ pd.DataFrame( 100 * [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]], columns=["X", "Y", "Z"], ), pd.Series(100 * [0.123456, 0.234567, 0.567567], name="X"), ], ) @pytest.mark.parametrize("method", ["to_pickle", "to_json", "to_csv"]) def test_gzip_compression_level(obj, method): # GH33196 with tm.ensure_clean() as path: getattr(obj, method)(path, compression="gzip") compressed_size_default = os.path.getsize(path) getattr(obj, method)(path, compression={"method": "gzip", "compresslevel": 1}) compressed_size_fast = os.path.getsize(path) assert compressed_size_default < compressed_size_fast @pytest.mark.parametrize( "obj", [ pd.DataFrame( 100 * [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]], columns=["X", "Y", "Z"], ), pd.Series(100 * [0.123456, 0.234567, 0.567567], name="X"), ], ) @pytest.mark.parametrize("method", ["to_pickle", "to_json", "to_csv"]) def test_bzip_compression_level(obj, method): """GH33196 bzip needs file size > 100k to show a size difference between compression levels, so here we just check if the call works when compression is passed as a dict. """ with tm.ensure_clean() as path: getattr(obj, method)(path, compression={"method": "bz2", "compresslevel": 1})
bsd-3-clause
zooniverse/aggregation
experimental/penguins/newCluster.py
2
11987
#!/usr/bin/env python __author__ = 'greg' from sklearn.cluster import DBSCAN from sklearn.cluster import AffinityPropagation import numpy as np import matplotlib.pyplot as plt import csv import sys import os import pymongo import matplotlib.cbook as cbook import cPickle as pickle import shutil import urllib import math def dist(c1,c2): return math.sqrt((c1[0]-c2[0])**2 + (c1[1]-c2[1])**2) def adaptiveDBSCAN(XYpts,user_ids): if XYpts == []: return [] pts_in_each_cluster = [] users_in_each_cluster = [] cluster_centers = [] #increase the epsilon until we don't have any nearby clusters corresponding to non-overlapping #sets of users X = np.array(XYpts) for epsilon in [5,10,15,20,25,30]: db = DBSCAN(eps=epsilon, min_samples=2).fit(X) labels = db.labels_ pts_in_each_cluster = [] users_in_each_cluster = [] cluster_centers = [] for k in sorted(set(labels)): if k == -1: continue class_member_mask = (labels == k) pts_in_cluster = list(X[class_member_mask]) xSet,ySet = zip(*pts_in_cluster) cluster_centers.append((np.mean(xSet),np.mean(ySet))) pts_in_each_cluster.append(pts_in_cluster[:]) users_in_each_cluster.append([u for u,l in zip(user_ids,labels) if l == k]) #do we have any adjacent clusters with non-overlapping sets of users #if so, we should merge them by increasing the epsilon value cluster_compare = [] for cluster_index, (c1,users) in enumerate(zip(cluster_centers,users_in_each_cluster)): for cluster_index, (c2,users2) in enumerate(zip(cluster_centers[cluster_index+1:],users_in_each_cluster[cluster_index+1:])): overlappingUsers = [u for u in users if u in users2] cluster_compare.append((dist(c1,c2),overlappingUsers)) cluster_compare.sort(key = lambda x:x[0]) needToMerge = [] in [c[1] for c in cluster_compare[:10]] if not(needToMerge): break print epsilon print [c[1] for c in cluster_compare[:10]] centers_to_return = [] #do we need to split any clusters? for cluster_index in range(len(cluster_centers)): print "splitting" needToSplit = (sorted(users_in_each_cluster[cluster_index]) != sorted(list(set(users_in_each_cluster[cluster_index])))) if needToSplit: subcluster_centers = [] X = np.array(pts_in_each_cluster[cluster_index]) for epsilon in [30,25,20,15,10,5,1,0.1,0.01]: db = DBSCAN(eps=epsilon, min_samples=2).fit(X) labels = db.labels_ subcluster_centers = [] needToSplit = False for k in sorted(set(labels)): if k == -1: continue class_member_mask = (labels == k) users_in_subcluster = [u for u,l in zip(users_in_each_cluster[cluster_index],labels) if l == k] needToSplit = (sorted(users_in_subcluster) != sorted(list(set(users_in_subcluster)))) if needToSplit: break pts_in_cluster = list(X[class_member_mask]) xSet,ySet = zip(*pts_in_cluster) subcluster_centers.append((np.mean(xSet),np.mean(ySet))) if not(needToSplit): break assert not(needToSplit) centers_to_return.extend(subcluster_centers) #if needToSplit: # print pts_in_each_cluster[cluster_index] # print users_in_each_cluster[cluster_index] #else: else: centers_to_return.append(cluster_centers[cluster_index]) return centers_to_return # def cluster(XYpts,user_ids): # if XYpts == []: # return [] # # #find out which points are noise - don't care about the actual clusters # needToSplit = False # X = np.array(XYpts) # # # #X = np.array([XYpts[i] for i in signal_pts]) # #user_ids = [user_ids[i] for i in signal_pts] # oldCenters = None # # needToMerge = False # needToSplit = False # # cluster_list = [] # usersInCluster = [] # centers = [] # # for pref in [0,-100,-200,-400,-800,-1200,-2000,-2200,-2400,-2700,-3000,-3500,-4000,-5000,-6000,-10000]: # #now run affinity propagation to find the actual clusters # af = AffinityPropagation(preference=pref).fit(X) # #cluster_centers_indices = af.cluster_centers_indices_ # labels = af.labels_ # # # # unique_labels = set(labels) # # usersInCluster = [] # centers = [] # cluster_list = [] # for k in sorted(unique_labels): # assert(k != -1) # #print k # usersInCluster.append([u for u,l in zip(user_ids,labels) if l == k]) # #print XYpts # #print user_ids # # class_member_mask = (labels == k) # pts_in_cluster = list(X[class_member_mask]) # xSet,ySet = zip(*pts_in_cluster) # centers.append((np.mean(xSet),np.mean(ySet))) # cluster_list.append(pts_in_cluster[:]) # # compare = [] # for cluster_index, (c1,users) in enumerate(zip(centers,usersInCluster)): # for cluster_index, (c2,users2) in enumerate(zip(centers[cluster_index+1:],usersInCluster[cluster_index+1:])): # overlappingUsers = [u for u in users if u in users2] # compare.append((dist(c1,c2),overlappingUsers)) # # #needToSplit = False # #for users in usersInCluster: # # needToSplit = (sorted(users) != sorted(list(set(users)))) # # if needToSplit: # # break # # compare.sort(key = lambda x:x[0]) # # needToMerge = ([] in [c[1] for c in compare[:3]]) and (compare[-1][0] <= 200) # # #if needToSplit: # # assert(oldCenters != None) # # return oldCenters # if not(needToMerge): # break # # oldCenters = centers[:] # # if needToMerge: # print compare[0:3] # assert not(needToMerge) # # centers_to_return = [] # for cluster_index in range(len(cluster_list)): # if len(list(set(usersInCluster[cluster_index]))) == 1: # continue # #split any individual cluster # needToSplit = (sorted(usersInCluster[cluster_index]) != sorted(list(set(usersInCluster[cluster_index])))) # if needToSplit: # #print cluster_list[cluster_index] # X = np.array(cluster_list[cluster_index]) # sub_center_list = [] # for pref in [-2400,-2200,-2000,-1200,-800,-400,-200,-100,-75,-50,-30,0]: # af = AffinityPropagation(preference=pref).fit(X) # #cluster_centers_indices = af.cluster_centers_indices_ # labels = af.labels_ # try: # unique_labels = set(labels) # except TypeError: # print pref # print X # print usersInCluster[cluster_index] # print labels # raise # #get the new "sub"clusters and check to see if we need to split even more # for k in sorted(unique_labels): # users = [u for u,l in zip(usersInCluster[cluster_index],labels) if l == k] # needToSplit = (sorted(users) != sorted(list(set(users)))) # # if needToSplit: # break # # #add this new sub-cluster onto the list # class_member_mask = (labels == k) # pts_in_cluster = list(X[class_member_mask]) # xSet,ySet = zip(*pts_in_cluster) # sub_center_list.append((np.mean(xSet),np.mean(ySet))) # # if not(needToSplit): # break # # #if pref == 0: # # print sub_center_list # assert not(needToSplit) # #print pref # centers_to_return.extend([c for c in sub_center_list if len(c) > 1]) # # # # else: # centers_to_return.append(centers[cluster_index]) # # assert not(needToSplit) # return centers client = pymongo.MongoClient() db = client['penguin_2014-09-19'] collection = db["penguin_classifications"] collection2 = db["penguin_subjects"] images = {} pts = {} ids = {} userCount = {} errorCount = 0 total = 0 at_5 = {} at_10 = {} center_5 = {} center_10 = {} step_1 = 5 step_2 = 8 toSkip = ["APZ0002uw3","APZ0001v9f","APZ00010ww","APZ0000p99","APZ0002jc3","APZ00014t4","APZ0000v0n","APZ0000ifx","APZ0002pch","APZ0003kls","APZ0001iv3","APZ0003auc","APZ0002ezn"] mainSubject = "APZ0003fgt" #APZ0001jre toPlot = None numClassifications = [] for r in collection.find(): subject_id = r["subjects"][0]["zooniverse_id"] total += 1 if subject_id != "APZ0003kls":# in toSkip: continue if not(subject_id in pts): pts[subject_id] = [] userCount[subject_id] = 0 ids[subject_id] = [] userCount[subject_id] += 1 animalsPresent = r["annotations"][0]["value"] == "yes" #print animalsPresent if animalsPresent: c = 0 for marking_index in r["annotations"][1]["value"]: try: marking = r["annotations"][1]["value"][marking_index] if True: # marking["value"] == "adult": x = float(marking["x"]) y = float(marking["y"]) ip = r["user_ip"] alreadyInList = False try: index = pts[subject_id].index((x,y)) if ids[subject_id][index] == ip: alreadyInList = True except ValueError: pass if not(alreadyInList): pts[subject_id].append((x,y)) ids[subject_id].append(ip) c += 1 except TypeError: errorCount += 1 userCount[subject_id] += -1 break except ValueError: errorCount += 1 continue numClassifications.append(c) if userCount[subject_id] in [step_2]: cluster_center = adaptiveDBSCAN(pts[subject_id],ids[subject_id]) mainSubject = subject_id if cluster_center != []: break if userCount[subject_id] == step_1: pass #at_5[subject_id] = len(cluster_center) else: at_10[subject_id] = len(cluster_center) # inBoth = [subject_id for subject_id in at_10 if (subject_id in at_5)] # # print len(inBoth) # x = [at_5[subject_id] for subject_id in inBoth] # y = [at_10[subject_id] for subject_id in inBoth] # print zip(inBoth,zip(x,y)) # plt.plot((0,100),(0,100),'--') # # #print x # # #print y # plt.plot(x,y,'.') # plt.show() # print userCount # print numClassifications # # print mainSubject r2 = collection2.find_one({"zooniverse_id":mainSubject}) url = r2["location"]["standard"] if not(os.path.isfile("/home/greg/Databases/penguins/images/"+mainSubject+".JPG")): urllib.urlretrieve (url, "/home/greg/Databases/penguins/images/"+mainSubject+".JPG") image_file = cbook.get_sample_data("/home/greg/Databases/penguins/images/"+mainSubject+".JPG") image = plt.imread(image_file) fig, ax = plt.subplots() im = ax.imshow(image) #plt.show() # if cluster_center != []: x,y = zip(*cluster_center) plt.plot(x,y,'.',color='blue') # # x,y = zip(*center_5[mainSubject]) # plt.plot(x,y,'.',color='red') # x,y = zip(*center_10[mainSubject]) # plt.plot(x,y,'.',color='green') plt.show()
apache-2.0
shl198/Pipeline
Modules/PacBioEDA/PacBio_Productivity.py
3
2900
#!/usr/bin/env python # Copyright (C) 2011 Genome Research Limited -- See full notice at end # of module. # Create a plot of ZMW productivity by x/y position on the # SMRTcell. First parameter is input .bas.h5 file. Output png file is # optional command line parameter, defaulting to productivity.png. import sys import optparse import numpy as np import h5py from tt_log import logger import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt DEF_OUTPUT = 'productivity.png' def main (): logger.debug("%s starting" % sys.argv[0]) opt, args = getParms() infile_name = args[0] infile = h5py.File (infile_name, 'r') colours = ('grey', 'red', 'green') legends = ('non-seq', 'prod-0', 'prod-1') top = h5py.Group (infile, '/') ZMW = top["PulseData/BaseCalls/ZMW"] ZMWMetrics = top["PulseData/BaseCalls/ZMWMetrics"] holeStatus = ZMW["HoleStatus"] holeXY = ZMW["HoleXY"] holeProd = ZMWMetrics["Productivity"] nonseqHoles = holeStatus[:]!=0 # ZMWs other than sequencing prod0Holes = np.logical_and(holeProd[:]==0, np.logical_not(nonseqHoles)) prod1Holes = np.logical_and(holeProd[:]==1, np.logical_not(nonseqHoles)) holesByType = (nonseqHoles, prod0Holes, prod1Holes) for which in xrange(len(holesByType)): whichHoles = holesByType[which] howMany = sum(whichHoles) logger.debug("%5d %s" % (howMany, legends[which])); if howMany > 0: plt.scatter (holeXY[whichHoles,0], holeXY[whichHoles,1], \ s=1, c=colours[which], edgecolor='face', \ label="%5d %s" % (howMany, legends[which])) plt.axis ('equal') plt.legend (scatterpoints=3, prop={'size':8}) plt.savefig (opt.output) infile.close() logger.debug("complete") def getParms (): # use default input sys.argv[1:] parser = optparse.OptionParser(usage='%prog [options] <bas_file>') parser.add_option ('--output', help='Output file name (def: %default)') parser.set_defaults (output=DEF_OUTPUT) opt, args = parser.parse_args() return opt, args if __name__ == "__main__": main() # Copyright (C) 2011 Genome Research Limited # # This library is free software. You can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>.
mit
zfrenchee/pandas
doc/sphinxext/ipython_sphinxext/ipython_directive.py
1
37812
# -*- coding: utf-8 -*- """ Sphinx directive to support embedded IPython code. This directive allows pasting of entire interactive IPython sessions, prompts and all, and their code will actually get re-executed at doc build time, with all prompts renumbered sequentially. It also allows you to input code as a pure python input by giving the argument python to the directive. The output looks like an interactive ipython section. To enable this directive, simply list it in your Sphinx ``conf.py`` file (making sure the directory where you placed it is visible to sphinx, as is needed for all Sphinx directives). For example, to enable syntax highlighting and the IPython directive:: extensions = ['IPython.sphinxext.ipython_console_highlighting', 'IPython.sphinxext.ipython_directive'] The IPython directive outputs code-blocks with the language 'ipython'. So if you do not have the syntax highlighting extension enabled as well, then all rendered code-blocks will be uncolored. By default this directive assumes that your prompts are unchanged IPython ones, but this can be customized. The configurable options that can be placed in conf.py are: ipython_savefig_dir: The directory in which to save the figures. This is relative to the Sphinx source directory. The default is `html_static_path`. ipython_rgxin: The compiled regular expression to denote the start of IPython input lines. The default is re.compile('In \[(\d+)\]:\s?(.*)\s*'). You shouldn't need to change this. ipython_rgxout: The compiled regular expression to denote the start of IPython output lines. The default is re.compile('Out\[(\d+)\]:\s?(.*)\s*'). You shouldn't need to change this. ipython_promptin: The string to represent the IPython input prompt in the generated ReST. The default is 'In [%d]:'. This expects that the line numbers are used in the prompt. ipython_promptout: The string to represent the IPython prompt in the generated ReST. The default is 'Out [%d]:'. This expects that the line numbers are used in the prompt. ipython_mplbackend: The string which specifies if the embedded Sphinx shell should import Matplotlib and set the backend. The value specifies a backend that is passed to `matplotlib.use()` before any lines in `ipython_execlines` are executed. If not specified in conf.py, then the default value of 'agg' is used. To use the IPython directive without matplotlib as a dependency, set the value to `None`. It may end up that matplotlib is still imported if the user specifies so in `ipython_execlines` or makes use of the @savefig pseudo decorator. ipython_execlines: A list of strings to be exec'd in the embedded Sphinx shell. Typical usage is to make certain packages always available. Set this to an empty list if you wish to have no imports always available. If specified in conf.py as `None`, then it has the effect of making no imports available. If omitted from conf.py altogether, then the default value of ['import numpy as np', 'import matplotlib.pyplot as plt'] is used. ipython_holdcount When the @suppress pseudo-decorator is used, the execution count can be incremented or not. The default behavior is to hold the execution count, corresponding to a value of `True`. Set this to `False` to increment the execution count after each suppressed command. As an example, to use the IPython directive when `matplotlib` is not available, one sets the backend to `None`:: ipython_mplbackend = None An example usage of the directive is: .. code-block:: rst .. ipython:: In [1]: x = 1 In [2]: y = x**2 In [3]: print(y) See http://matplotlib.org/sampledoc/ipython_directive.html for additional documentation. ToDo ---- - Turn the ad-hoc test() function into a real test suite. - Break up ipython-specific functionality from matplotlib stuff into better separated code. Authors ------- - John D Hunter: original author. - Fernando Perez: refactoring, documentation, cleanups, port to 0.11. - VáclavŠmilauer <eudoxos-AT-arcig.cz>: Prompt generalizations. - Skipper Seabold, refactoring, cleanups, pure python addition """ from __future__ import print_function from __future__ import unicode_literals #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Stdlib import os import re import sys import tempfile import ast from pandas.compat import zip, range, map, lmap, u, text_type, cStringIO as StringIO import warnings # To keep compatibility with various python versions try: from hashlib import md5 except ImportError: from md5 import md5 # Third-party import sphinx from docutils.parsers.rst import directives from docutils import nodes from sphinx.util.compat import Directive # Our own try: from traitlets.config import Config except ImportError: from IPython import Config from IPython import InteractiveShell from IPython.core.profiledir import ProfileDir from IPython.utils import io from IPython.utils.py3compat import PY3 if PY3: from io import StringIO else: from StringIO import StringIO #----------------------------------------------------------------------------- # Globals #----------------------------------------------------------------------------- # for tokenizing blocks COMMENT, INPUT, OUTPUT = range(3) #----------------------------------------------------------------------------- # Functions and class declarations #----------------------------------------------------------------------------- def block_parser(part, rgxin, rgxout, fmtin, fmtout): """ part is a string of ipython text, comprised of at most one input, one output, comments, and blank lines. The block parser parses the text into a list of:: blocks = [ (TOKEN0, data0), (TOKEN1, data1), ...] where TOKEN is one of [COMMENT | INPUT | OUTPUT ] and data is, depending on the type of token:: COMMENT : the comment string INPUT: the (DECORATOR, INPUT_LINE, REST) where DECORATOR: the input decorator (or None) INPUT_LINE: the input as string (possibly multi-line) REST : any stdout generated by the input line (not OUTPUT) OUTPUT: the output string, possibly multi-line """ block = [] lines = part.split('\n') N = len(lines) i = 0 decorator = None while 1: if i==N: # nothing left to parse -- the last line break line = lines[i] i += 1 line_stripped = line.strip() if line_stripped.startswith('#'): block.append((COMMENT, line)) continue if line_stripped.startswith('@'): # we're assuming at most one decorator -- may need to # rethink decorator = line_stripped continue # does this look like an input line? matchin = rgxin.match(line) if matchin: lineno, inputline = int(matchin.group(1)), matchin.group(2) # the ....: continuation string continuation = ' %s:'%''.join(['.']*(len(str(lineno))+2)) Nc = len(continuation) # input lines can continue on for more than one line, if # we have a '\' line continuation char or a function call # echo line 'print'. The input line can only be # terminated by the end of the block or an output line, so # we parse out the rest of the input line if it is # multiline as well as any echo text rest = [] while i<N: # look ahead; if the next line is blank, or a comment, or # an output line, we're done nextline = lines[i] matchout = rgxout.match(nextline) #print "nextline=%s, continuation=%s, starts=%s"%(nextline, continuation, nextline.startswith(continuation)) if matchout or nextline.startswith('#'): break elif nextline.startswith(continuation): nextline = nextline[Nc:] if nextline and nextline[0] == ' ': nextline = nextline[1:] inputline += '\n' + nextline else: rest.append(nextline) i+= 1 block.append((INPUT, (decorator, inputline, '\n'.join(rest)))) continue # if it looks like an output line grab all the text to the end # of the block matchout = rgxout.match(line) if matchout: lineno, output = int(matchout.group(1)), matchout.group(2) if i<N-1: output = '\n'.join([output] + lines[i:]) block.append((OUTPUT, output)) break return block class DecodingStringIO(StringIO, object): def __init__(self,buf='',encodings=('utf8',), *args, **kwds): super(DecodingStringIO, self).__init__(buf, *args, **kwds) self.set_encodings(encodings) def set_encodings(self, encodings): self.encodings = encodings def write(self,data): if isinstance(data, text_type): return super(DecodingStringIO, self).write(data) else: for enc in self.encodings: try: data = data.decode(enc) return super(DecodingStringIO, self).write(data) except : pass # default to brute utf8 if no encoding succeeded return super(DecodingStringIO, self).write(data.decode('utf8', 'replace')) class EmbeddedSphinxShell(object): """An embedded IPython instance to run inside Sphinx""" def __init__(self, exec_lines=None,state=None): self.cout = DecodingStringIO(u'') if exec_lines is None: exec_lines = [] self.state = state # Create config object for IPython config = Config() config.InteractiveShell.autocall = False config.InteractiveShell.autoindent = False config.InteractiveShell.colors = 'NoColor' # create a profile so instance history isn't saved tmp_profile_dir = tempfile.mkdtemp(prefix='profile_') profname = 'auto_profile_sphinx_build' pdir = os.path.join(tmp_profile_dir,profname) profile = ProfileDir.create_profile_dir(pdir) # Create and initialize global ipython, but don't start its mainloop. # This will persist across different EmbededSphinxShell instances. IP = InteractiveShell.instance(config=config, profile_dir=profile) # io.stdout redirect must be done after instantiating InteractiveShell io.stdout = self.cout io.stderr = self.cout # For debugging, so we can see normal output, use this: #from IPython.utils.io import Tee #io.stdout = Tee(self.cout, channel='stdout') # dbg #io.stderr = Tee(self.cout, channel='stderr') # dbg # Store a few parts of IPython we'll need. self.IP = IP self.user_ns = self.IP.user_ns self.user_global_ns = self.IP.user_global_ns self.input = '' self.output = '' self.is_verbatim = False self.is_doctest = False self.is_suppress = False # Optionally, provide more detailed information to shell. self.directive = None # on the first call to the savefig decorator, we'll import # pyplot as plt so we can make a call to the plt.gcf().savefig self._pyplot_imported = False # Prepopulate the namespace. for line in exec_lines: self.process_input_line(line, store_history=False) def clear_cout(self): self.cout.seek(0) self.cout.truncate(0) def process_input_line(self, line, store_history=True): """process the input, capturing stdout""" stdout = sys.stdout splitter = self.IP.input_splitter try: sys.stdout = self.cout splitter.push(line) more = splitter.push_accepts_more() if not more: try: source_raw = splitter.source_raw_reset()[1] except: # recent ipython #4504 source_raw = splitter.raw_reset() self.IP.run_cell(source_raw, store_history=store_history) finally: sys.stdout = stdout def process_image(self, decorator): """ # build out an image directive like # .. image:: somefile.png # :width 4in # # from an input like # savefig somefile.png width=4in """ savefig_dir = self.savefig_dir source_dir = self.source_dir saveargs = decorator.split(' ') filename = saveargs[1] # insert relative path to image file in source outfile = os.path.relpath(os.path.join(savefig_dir,filename), source_dir) imagerows = ['.. image:: %s'%outfile] for kwarg in saveargs[2:]: arg, val = kwarg.split('=') arg = arg.strip() val = val.strip() imagerows.append(' :%s: %s'%(arg, val)) image_file = os.path.basename(outfile) # only return file name image_directive = '\n'.join(imagerows) return image_file, image_directive # Callbacks for each type of token def process_input(self, data, input_prompt, lineno): """ Process data block for INPUT token. """ decorator, input, rest = data image_file = None image_directive = None is_verbatim = decorator=='@verbatim' or self.is_verbatim is_doctest = (decorator is not None and \ decorator.startswith('@doctest')) or self.is_doctest is_suppress = decorator=='@suppress' or self.is_suppress is_okexcept = decorator=='@okexcept' or self.is_okexcept is_okwarning = decorator=='@okwarning' or self.is_okwarning is_savefig = decorator is not None and \ decorator.startswith('@savefig') # set the encodings to be used by DecodingStringIO # to convert the execution output into unicode if # needed. this attrib is set by IpythonDirective.run() # based on the specified block options, defaulting to ['ut self.cout.set_encodings(self.output_encoding) input_lines = input.split('\n') if len(input_lines) > 1: if input_lines[-1] != "": input_lines.append('') # make sure there's a blank line # so splitter buffer gets reset continuation = ' %s:'%''.join(['.']*(len(str(lineno))+2)) if is_savefig: image_file, image_directive = self.process_image(decorator) ret = [] is_semicolon = False # Hold the execution count, if requested to do so. if is_suppress and self.hold_count: store_history = False else: store_history = True # Note: catch_warnings is not thread safe with warnings.catch_warnings(record=True) as ws: for i, line in enumerate(input_lines): if line.endswith(';'): is_semicolon = True if i == 0: # process the first input line if is_verbatim: self.process_input_line('') self.IP.execution_count += 1 # increment it anyway else: # only submit the line in non-verbatim mode self.process_input_line(line, store_history=store_history) formatted_line = '%s %s'%(input_prompt, line) else: # process a continuation line if not is_verbatim: self.process_input_line(line, store_history=store_history) formatted_line = '%s %s'%(continuation, line) if not is_suppress: ret.append(formatted_line) if not is_suppress and len(rest.strip()) and is_verbatim: # the "rest" is the standard output of the # input, which needs to be added in # verbatim mode ret.append(rest) self.cout.seek(0) output = self.cout.read() if not is_suppress and not is_semicolon: ret.append(output) elif is_semicolon: # get spacing right ret.append('') # context information filename = self.state.document.current_source lineno = self.state.document.current_line # output any exceptions raised during execution to stdout # unless :okexcept: has been specified. if not is_okexcept and "Traceback" in output: s = "\nException in %s at block ending on line %s\n" % (filename, lineno) s += "Specify :okexcept: as an option in the ipython:: block to suppress this message\n" sys.stdout.write('\n\n>>>' + ('-' * 73)) sys.stdout.write(s) sys.stdout.write(output) sys.stdout.write('<<<' + ('-' * 73) + '\n\n') # output any warning raised during execution to stdout # unless :okwarning: has been specified. if not is_okwarning: for w in ws: s = "\nWarning in %s at block ending on line %s\n" % (filename, lineno) s += "Specify :okwarning: as an option in the ipython:: block to suppress this message\n" sys.stdout.write('\n\n>>>' + ('-' * 73)) sys.stdout.write(s) sys.stdout.write('-' * 76 + '\n') s=warnings.formatwarning(w.message, w.category, w.filename, w.lineno, w.line) sys.stdout.write(s) sys.stdout.write('<<<' + ('-' * 73) + '\n') self.cout.truncate(0) return (ret, input_lines, output, is_doctest, decorator, image_file, image_directive) def process_output(self, data, output_prompt, input_lines, output, is_doctest, decorator, image_file): """ Process data block for OUTPUT token. """ TAB = ' ' * 4 if is_doctest and output is not None: found = output found = found.strip() submitted = data.strip() if self.directive is None: source = 'Unavailable' content = 'Unavailable' else: source = self.directive.state.document.current_source content = self.directive.content # Add tabs and join into a single string. content = '\n'.join(TAB + line for line in content) # Make sure the output contains the output prompt. ind = found.find(output_prompt) if ind < 0: e = ('output does not contain output prompt\n\n' 'Document source: {0}\n\n' 'Raw content: \n{1}\n\n' 'Input line(s):\n{TAB}{2}\n\n' 'Output line(s):\n{TAB}{3}\n\n') e = e.format(source, content, '\n'.join(input_lines), repr(found), TAB=TAB) raise RuntimeError(e) found = found[len(output_prompt):].strip() # Handle the actual doctest comparison. if decorator.strip() == '@doctest': # Standard doctest if found != submitted: e = ('doctest failure\n\n' 'Document source: {0}\n\n' 'Raw content: \n{1}\n\n' 'On input line(s):\n{TAB}{2}\n\n' 'we found output:\n{TAB}{3}\n\n' 'instead of the expected:\n{TAB}{4}\n\n') e = e.format(source, content, '\n'.join(input_lines), repr(found), repr(submitted), TAB=TAB) raise RuntimeError(e) else: self.custom_doctest(decorator, input_lines, found, submitted) def process_comment(self, data): """Process data fPblock for COMMENT token.""" if not self.is_suppress: return [data] def save_image(self, image_file): """ Saves the image file to disk. """ self.ensure_pyplot() command = ('plt.gcf().savefig("%s", bbox_inches="tight", ' 'dpi=100)' % image_file) #print 'SAVEFIG', command # dbg self.process_input_line('bookmark ipy_thisdir', store_history=False) self.process_input_line('cd -b ipy_savedir', store_history=False) self.process_input_line(command, store_history=False) self.process_input_line('cd -b ipy_thisdir', store_history=False) self.process_input_line('bookmark -d ipy_thisdir', store_history=False) self.clear_cout() def process_block(self, block): """ process block from the block_parser and return a list of processed lines """ ret = [] output = None input_lines = None lineno = self.IP.execution_count input_prompt = self.promptin % lineno output_prompt = self.promptout % lineno image_file = None image_directive = None for token, data in block: if token == COMMENT: out_data = self.process_comment(data) elif token == INPUT: (out_data, input_lines, output, is_doctest, decorator, image_file, image_directive) = \ self.process_input(data, input_prompt, lineno) elif token == OUTPUT: out_data = \ self.process_output(data, output_prompt, input_lines, output, is_doctest, decorator, image_file) if out_data: ret.extend(out_data) # save the image files if image_file is not None: self.save_image(image_file) return ret, image_directive def ensure_pyplot(self): """ Ensures that pyplot has been imported into the embedded IPython shell. Also, makes sure to set the backend appropriately if not set already. """ # We are here if the @figure pseudo decorator was used. Thus, it's # possible that we could be here even if python_mplbackend were set to # `None`. That's also strange and perhaps worthy of raising an # exception, but for now, we just set the backend to 'agg'. if not self._pyplot_imported: if 'matplotlib.backends' not in sys.modules: # Then ipython_matplotlib was set to None but there was a # call to the @figure decorator (and ipython_execlines did # not set a backend). #raise Exception("No backend was set, but @figure was used!") import matplotlib matplotlib.use('agg') # Always import pyplot into embedded shell. self.process_input_line('import matplotlib.pyplot as plt', store_history=False) self._pyplot_imported = True def process_pure_python(self, content): """ content is a list of strings. it is unedited directive content This runs it line by line in the InteractiveShell, prepends prompts as needed capturing stderr and stdout, then returns the content as a list as if it were ipython code """ output = [] savefig = False # keep up with this to clear figure multiline = False # to handle line continuation multiline_start = None fmtin = self.promptin ct = 0 for lineno, line in enumerate(content): line_stripped = line.strip() if not len(line): output.append(line) continue # handle decorators if line_stripped.startswith('@'): output.extend([line]) if 'savefig' in line: savefig = True # and need to clear figure continue # handle comments if line_stripped.startswith('#'): output.extend([line]) continue # deal with lines checking for multiline continuation = u' %s:'% ''.join(['.']*(len(str(ct))+2)) if not multiline: modified = u"%s %s" % (fmtin % ct, line_stripped) output.append(modified) ct += 1 try: ast.parse(line_stripped) output.append(u'') except Exception: # on a multiline multiline = True multiline_start = lineno else: # still on a multiline modified = u'%s %s' % (continuation, line) output.append(modified) # if the next line is indented, it should be part of multiline if len(content) > lineno + 1: nextline = content[lineno + 1] if len(nextline) - len(nextline.lstrip()) > 3: continue try: mod = ast.parse( '\n'.join(content[multiline_start:lineno+1])) if isinstance(mod.body[0], ast.FunctionDef): # check to see if we have the whole function for element in mod.body[0].body: if isinstance(element, ast.Return): multiline = False else: output.append(u'') multiline = False except Exception: pass if savefig: # clear figure if plotted self.ensure_pyplot() self.process_input_line('plt.clf()', store_history=False) self.clear_cout() savefig = False return output def custom_doctest(self, decorator, input_lines, found, submitted): """ Perform a specialized doctest. """ from .custom_doctests import doctests args = decorator.split() doctest_type = args[1] if doctest_type in doctests: doctests[doctest_type](self, args, input_lines, found, submitted) else: e = "Invalid option to @doctest: {0}".format(doctest_type) raise Exception(e) class IPythonDirective(Directive): has_content = True required_arguments = 0 optional_arguments = 4 # python, suppress, verbatim, doctest final_argumuent_whitespace = True option_spec = { 'python': directives.unchanged, 'suppress' : directives.flag, 'verbatim' : directives.flag, 'doctest' : directives.flag, 'okexcept': directives.flag, 'okwarning': directives.flag, 'output_encoding': directives.unchanged_required } shell = None seen_docs = set() def get_config_options(self): # contains sphinx configuration variables config = self.state.document.settings.env.config # get config variables to set figure output directory confdir = self.state.document.settings.env.app.confdir savefig_dir = config.ipython_savefig_dir source_dir = os.path.dirname(self.state.document.current_source) if savefig_dir is None: savefig_dir = config.html_static_path if isinstance(savefig_dir, list): savefig_dir = savefig_dir[0] # safe to assume only one path? savefig_dir = os.path.join(confdir, savefig_dir) # get regex and prompt stuff rgxin = config.ipython_rgxin rgxout = config.ipython_rgxout promptin = config.ipython_promptin promptout = config.ipython_promptout mplbackend = config.ipython_mplbackend exec_lines = config.ipython_execlines hold_count = config.ipython_holdcount return (savefig_dir, source_dir, rgxin, rgxout, promptin, promptout, mplbackend, exec_lines, hold_count) def setup(self): # Get configuration values. (savefig_dir, source_dir, rgxin, rgxout, promptin, promptout, mplbackend, exec_lines, hold_count) = self.get_config_options() if self.shell is None: # We will be here many times. However, when the # EmbeddedSphinxShell is created, its interactive shell member # is the same for each instance. if mplbackend and 'matplotlib.backends' not in sys.modules: import matplotlib # Repeated calls to use() will not hurt us since `mplbackend` # is the same each time. matplotlib.use(mplbackend) # Must be called after (potentially) importing matplotlib and # setting its backend since exec_lines might import pylab. self.shell = EmbeddedSphinxShell(exec_lines, self.state) # Store IPython directive to enable better error messages self.shell.directive = self # reset the execution count if we haven't processed this doc #NOTE: this may be borked if there are multiple seen_doc tmp files #check time stamp? if self.state.document.current_source not in self.seen_docs: self.shell.IP.history_manager.reset() self.shell.IP.execution_count = 1 try: self.shell.IP.prompt_manager.width = 0 except AttributeError: # GH14003: class promptManager has removed after IPython 5.x pass self.seen_docs.add(self.state.document.current_source) # and attach to shell so we don't have to pass them around self.shell.rgxin = rgxin self.shell.rgxout = rgxout self.shell.promptin = promptin self.shell.promptout = promptout self.shell.savefig_dir = savefig_dir self.shell.source_dir = source_dir self.shell.hold_count = hold_count # setup bookmark for saving figures directory self.shell.process_input_line('bookmark ipy_savedir %s'%savefig_dir, store_history=False) self.shell.clear_cout() return rgxin, rgxout, promptin, promptout def teardown(self): # delete last bookmark self.shell.process_input_line('bookmark -d ipy_savedir', store_history=False) self.shell.clear_cout() def run(self): debug = False #TODO, any reason block_parser can't be a method of embeddable shell # then we wouldn't have to carry these around rgxin, rgxout, promptin, promptout = self.setup() options = self.options self.shell.is_suppress = 'suppress' in options self.shell.is_doctest = 'doctest' in options self.shell.is_verbatim = 'verbatim' in options self.shell.is_okexcept = 'okexcept' in options self.shell.is_okwarning = 'okwarning' in options self.shell.output_encoding = [options.get('output_encoding', 'utf8')] # handle pure python code if 'python' in self.arguments: content = self.content self.content = self.shell.process_pure_python(content) parts = '\n'.join(self.content).split('\n\n') lines = ['.. code-block:: ipython', ''] figures = [] for part in parts: block = block_parser(part, rgxin, rgxout, promptin, promptout) if len(block): rows, figure = self.shell.process_block(block) for row in rows: lines.extend([' %s'%line for line in row.split('\n')]) if figure is not None: figures.append(figure) for figure in figures: lines.append('') lines.extend(figure.split('\n')) lines.append('') if len(lines)>2: if debug: print('\n'.join(lines)) else: # This has to do with input, not output. But if we comment # these lines out, then no IPython code will appear in the # final output. self.state_machine.insert_input( lines, self.state_machine.input_lines.source(0)) # cleanup self.teardown() return [] # Enable as a proper Sphinx directive def setup(app): setup.app = app app.add_directive('ipython', IPythonDirective) app.add_config_value('ipython_savefig_dir', None, 'env') app.add_config_value('ipython_rgxin', re.compile('In \[(\d+)\]:\s?(.*)\s*'), 'env') app.add_config_value('ipython_rgxout', re.compile('Out\[(\d+)\]:\s?(.*)\s*'), 'env') app.add_config_value('ipython_promptin', 'In [%d]:', 'env') app.add_config_value('ipython_promptout', 'Out[%d]:', 'env') # We could just let matplotlib pick whatever is specified as the default # backend in the matplotlibrc file, but this would cause issues if the # backend didn't work in headless environments. For this reason, 'agg' # is a good default backend choice. app.add_config_value('ipython_mplbackend', 'agg', 'env') # If the user sets this config value to `None`, then EmbeddedSphinxShell's # __init__ method will treat it as []. execlines = ['import numpy as np', 'import matplotlib.pyplot as plt'] app.add_config_value('ipython_execlines', execlines, 'env') app.add_config_value('ipython_holdcount', True, 'env') # Simple smoke test, needs to be converted to a proper automatic test. def test(): examples = [ r""" In [9]: pwd Out[9]: '/home/jdhunter/py4science/book' In [10]: cd bookdata/ /home/jdhunter/py4science/book/bookdata In [2]: from pylab import * In [2]: ion() In [3]: im = imread('stinkbug.png') @savefig mystinkbug.png width=4in In [4]: imshow(im) Out[4]: <matplotlib.image.AxesImage object at 0x39ea850> """, r""" In [1]: x = 'hello world' # string methods can be # used to alter the string @doctest In [2]: x.upper() Out[2]: 'HELLO WORLD' @verbatim In [3]: x.st<TAB> x.startswith x.strip """, r""" In [130]: url = 'http://ichart.finance.yahoo.com/table.csv?s=CROX\ .....: &d=9&e=22&f=2009&g=d&a=1&br=8&c=2006&ignore=.csv' In [131]: print url.split('&') ['http://ichart.finance.yahoo.com/table.csv?s=CROX', 'd=9', 'e=22', 'f=2009', 'g=d', 'a=1', 'b=8', 'c=2006', 'ignore=.csv'] In [60]: import urllib """, r"""\ In [133]: import numpy.random @suppress In [134]: numpy.random.seed(2358) @doctest In [135]: numpy.random.rand(10,2) Out[135]: array([[ 0.64524308, 0.59943846], [ 0.47102322, 0.8715456 ], [ 0.29370834, 0.74776844], [ 0.99539577, 0.1313423 ], [ 0.16250302, 0.21103583], [ 0.81626524, 0.1312433 ], [ 0.67338089, 0.72302393], [ 0.7566368 , 0.07033696], [ 0.22591016, 0.77731835], [ 0.0072729 , 0.34273127]]) """, r""" In [106]: print x jdh In [109]: for i in range(10): .....: print i .....: .....: 0 1 2 3 4 5 6 7 8 9 """, r""" In [144]: from pylab import * In [145]: ion() # use a semicolon to suppress the output @savefig test_hist.png width=4in In [151]: hist(np.random.randn(10000), 100); @savefig test_plot.png width=4in In [151]: plot(np.random.randn(10000), 'o'); """, r""" # use a semicolon to suppress the output In [151]: plt.clf() @savefig plot_simple.png width=4in In [151]: plot([1,2,3]) @savefig hist_simple.png width=4in In [151]: hist(np.random.randn(10000), 100); """, r""" # update the current fig In [151]: ylabel('number') In [152]: title('normal distribution') @savefig hist_with_text.png In [153]: grid(True) @doctest float In [154]: 0.1 + 0.2 Out[154]: 0.3 @doctest float In [155]: np.arange(16).reshape(4,4) Out[155]: array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) In [1]: x = np.arange(16, dtype=float).reshape(4,4) In [2]: x[0,0] = np.inf In [3]: x[0,1] = np.nan @doctest float In [4]: x Out[4]: array([[ inf, nan, 2., 3.], [ 4., 5., 6., 7.], [ 8., 9., 10., 11.], [ 12., 13., 14., 15.]]) """, ] # skip local-file depending first example: examples = examples[1:] #ipython_directive.DEBUG = True # dbg #options = dict(suppress=True) # dbg options = dict() for example in examples: content = example.split('\n') IPythonDirective('debug', arguments=None, options=options, content=content, lineno=0, content_offset=None, block_text=None, state=None, state_machine=None, ) # Run test suite as a script if __name__=='__main__': if not os.path.isdir('_static'): os.mkdir('_static') test() print('All OK? Check figures in _static/')
bsd-3-clause
xuewei4d/scikit-learn
asv_benchmarks/benchmarks/decomposition.py
12
2754
from sklearn.decomposition import (PCA, DictionaryLearning, MiniBatchDictionaryLearning) from .common import Benchmark, Estimator, Transformer from .datasets import _olivetti_faces_dataset, _mnist_dataset from .utils import make_pca_scorers, make_dict_learning_scorers class PCABenchmark(Transformer, Estimator, Benchmark): """ Benchmarks for PCA. """ param_names = ['svd_solver'] params = (['full', 'arpack', 'randomized'],) def setup_cache(self): super().setup_cache() def make_data(self, params): return _mnist_dataset() def make_estimator(self, params): svd_solver, = params estimator = PCA(n_components=32, svd_solver=svd_solver, random_state=0) return estimator def make_scorers(self): make_pca_scorers(self) class DictionaryLearningBenchmark(Transformer, Estimator, Benchmark): """ Benchmarks for DictionaryLearning. """ param_names = ['fit_algorithm', 'n_jobs'] params = (['lars', 'cd'], Benchmark.n_jobs_vals) def setup_cache(self): super().setup_cache() def make_data(self, params): return _olivetti_faces_dataset() def make_estimator(self, params): fit_algorithm, n_jobs = params estimator = DictionaryLearning(n_components=15, fit_algorithm=fit_algorithm, alpha=0.1, max_iter=20, tol=1e-16, random_state=0, n_jobs=n_jobs) return estimator def make_scorers(self): make_dict_learning_scorers(self) class MiniBatchDictionaryLearningBenchmark(Transformer, Estimator, Benchmark): """ Benchmarks for MiniBatchDictionaryLearning """ param_names = ['fit_algorithm', 'n_jobs'] params = (['lars', 'cd'], Benchmark.n_jobs_vals) def setup_cache(self): super().setup_cache() def make_data(self, params): return _olivetti_faces_dataset() def make_estimator(self, params): fit_algorithm, n_jobs = params estimator = MiniBatchDictionaryLearning(n_components=15, fit_algorithm=fit_algorithm, alpha=0.1, batch_size=3, random_state=0, n_jobs=n_jobs) return estimator def make_scorers(self): make_dict_learning_scorers(self)
bsd-3-clause
pywikibot-catfiles/file-metadata
setupdeps.py
2
16766
# -*- coding: utf-8 -*- """ Various dependencies that are required for file-metadata which need some special handling. """ from __future__ import (division, absolute_import, unicode_literals, print_function) import ctypes.util import hashlib import os import subprocess import sys from distutils import sysconfig from distutils.errors import DistutilsSetupError try: from urllib.request import urlopen except ImportError: # Python 2 from urllib2 import urlopen PROJECT_PATH = os.path.abspath(os.path.dirname(__file__)) def data_path(): name = os.path.join(PROJECT_PATH, 'file_metadata', 'datafiles') if not os.path.exists(name): os.makedirs(name) return name def which(cmd): try: from shutil import which return which(cmd) except ImportError: # For python 3.2 and lower try: output = subprocess.check_output(["which", cmd], stderr=subprocess.STDOUT) except (OSError, subprocess.CalledProcessError): return None else: output = output.decode(sys.getfilesystemencoding()) return output.strip() def setup_install(packages): """ Install packages using pip to the current folder. Useful to import packages during setup itself. """ packages = list(packages) if not packages: return True try: subprocess.call([sys.executable, "-m", "pip", "install", "-t", PROJECT_PATH] + packages) return True except subprocess.CalledProcessError: return False def download(url, filename, overwrite=False, sha1=None): """ Download the given URL to the given filename. If the file exists, it won't be downloaded unless asked to overwrite. Both, text data like html, txt, etc. or binary data like images, audio, etc. are acceptable. :param url: A URL to download. :param filename: The file to store the downloaded file to. :param overwrite: Set to True if the file should be downloaded even if it already exists. :param sha1: The sha1 checksum to verify the file using. """ blocksize = 16 * 1024 _hash = hashlib.sha1() if os.path.exists(filename) and not overwrite: # Do a pass for the hash if it already exists with open(filename, "rb") as downloaded_file: while True: block = downloaded_file.read(blocksize) if not block: break _hash.update(block) else: # If it doesn't exist, or overwrite=True, find hash while downloading response = urlopen(url) with open(filename, 'wb') as out_file: while True: block = response.read(blocksize) if not block: break out_file.write(block) _hash.update(block) return _hash.hexdigest() == sha1 class CheckFailed(Exception): """ Exception thrown when a ``SetupPackage.check()`` fails. """ pass class SetupPackage(object): name = None optional = False pkg_names = { "apt-get": None, "yum": None, "dnf": None, "pacman": None, "zypper": None, "brew": None, "port": None, "windows_url": None } def check(self): """ Check whether the dependencies are met. Should raise a ``CheckFailed`` exception if the dependency was not found. """ pass def get_install_requires(self): """ Return a list of Python packages that are required by the package. pip / easy_install will attempt to download and install this package if it is not installed. """ return [] def get_setup_requires(self): """ Return a list of Python packages that are required by the setup.py itself. pip / easy_install will attempt to download and install this package if it is not installed on top of the setup.py script. """ return [] def get_data_files(self): """ Perform required actions to add the data files into the directory given by ``data_path()``. """ pass def install_help_msg(self): """ The help message to show if the package is not installed. The help message shown depends on whether some class variables are present. """ def _try_managers(*managers): for manager in managers: pkg_name = self.pkg_names.get(manager, None) if pkg_name and which(manager) is not None: pkg_note = None if isinstance(pkg_name, (tuple, list)): pkg_name, pkg_note = pkg_name msg = ('Try installing {0} with `{1} install {2}`.' .format(self.name, manager, pkg_name)) if pkg_note: msg += ' Note: ' + pkg_note return msg message = "" if sys.platform == "win32": url = self.pkg_names.get("windows_url", None) if url: return ('Please check {0} for instructions to install {1}' .format(url, self.name)) elif sys.platform == "darwin": manager_message = _try_managers("brew", "port") return manager_message or message elif sys.platform.startswith("linux"): try: import distro except ImportError: setup_install(['distro']) import distro release = distro.id() if release in ('debian', 'ubuntu', 'linuxmint', 'raspbian'): manager_message = _try_managers('apt-get') if manager_message: return manager_message elif release in ('centos', 'rhel', 'redhat', 'fedora', 'scientific', 'amazon', ): manager_message = _try_managers('dnf', 'yum') if manager_message: return manager_message elif release in ('sles', 'opensuse'): manager_message = _try_managers('zypper') if manager_message: return manager_message elif release in ('arch'): manager_message = _try_managers('pacman') if manager_message: return manager_message return message class PkgConfig(SetupPackage): """ This is a class for communicating with pkg-config. """ name = "pkg-config" pkg_names = { "apt-get": 'pkg-config', "yum": None, "dnf": None, "pacman": None, "zypper": None, "brew": 'pkg-config', "port": None, "windows_url": None } def __init__(self): if sys.platform == 'win32': self.has_pkgconfig = False else: self.pkg_config = os.environ.get('PKG_CONFIG', 'pkg-config') self.set_pkgconfig_path() try: with open(os.devnull) as nul: subprocess.check_call([self.pkg_config, "--help"], stdout=nul, stderr=nul) self.has_pkgconfig = True except (subprocess.CalledProcessError, OSError): self.has_pkgconfig = False raise DistutilsSetupError("pkg-config is not installed. " "Please install it to continue.\n" + self.install_help_msg()) def set_pkgconfig_path(self): pkgconfig_path = sysconfig.get_config_var('LIBDIR') if pkgconfig_path is None: return pkgconfig_path = os.path.join(pkgconfig_path, 'pkgconfig') if not os.path.isdir(pkgconfig_path): return os.environ['PKG_CONFIG_PATH'] = ':'.join( [os.environ.get('PKG_CONFIG_PATH', ""), pkgconfig_path]) def get_version(self, package): """ Get the version of the package from pkg-config. """ if not self.has_pkgconfig: return None try: output = subprocess.check_output( [self.pkg_config, package, "--modversion"], stderr=subprocess.STDOUT) except subprocess.CalledProcessError: return None else: output = output.decode(sys.getfilesystemencoding()) return output.strip() # The PkgConfig class should be used through this singleton pkg_config = PkgConfig() class Distro(SetupPackage): name = "distro" def check(self): return 'Will be installed with pip.' def get_setup_requires(self): try: import distro # noqa (unused import) return [] except ImportError: return ['distro'] class SetupTools(SetupPackage): name = 'setuptools' def check(self): return 'Will be installed with pip.' def get_setup_requires(self): try: import setuptools # noqa (unused import) return [] except ImportError: return ['setuptools'] class PathLib(SetupPackage): name = 'pathlib' def check(self): if sys.version_info < (3, 4): return 'Backported pathlib2 will be installed with pip.' else: return 'Already installed in python 3.4+' def get_install_requires(self): if sys.version_info < (3, 4): return ['pathlib2'] else: return [] class AppDirs(SetupPackage): name = 'appdirs' def check(self): return 'Will be installed with pip.' def get_install_requires(self): return ['appdirs'] class LibMagic(SetupPackage): name = 'libmagic' pkg_names = { "apt-get": 'libmagic-dev', "yum": 'file', "dnf": 'file', "pacman": None, "zypper": None, "brew": 'libmagic', "port": None, "windows_url": None } def check(self): file_path = which('file') if file_path is None: raise CheckFailed('Needs to be installed manually.') else: return 'Found "file" utility at {0}.'.format(file_path) class PythonMagic(SetupPackage): name = 'python-magic' def check(self): return 'Will be installed with pip.' def get_install_requires(self): return ['python-magic'] class Six(SetupPackage): name = 'six' def check(self): return 'Will be installed with pip.' def get_install_requires(self): return ['six>=1.8.0'] class ExifTool(SetupPackage): name = 'exiftool' pkg_names = { "apt-get": 'exiftool', "yum": 'perl-Image-ExifTool', "dnf": 'perl-Image-ExifTool', "pacman": None, "zypper": None, "brew": 'exiftool', "port": 'p5-image-exiftool', "windows_url": 'http://www.sno.phy.queensu.ca/~phil/exiftool/' } def check(self): exiftool_path = which('exiftool') if exiftool_path is None: raise CheckFailed('Needs to be installed manually.') else: return 'Found at {0}.'.format(exiftool_path) class Pillow(SetupPackage): name = 'pillow' def check(self): return 'Will be installed with pip.' def get_install_requires(self): return ['pillow>=2.5.0'] class Numpy(SetupPackage): name = 'numpy' def check(self): return 'Will be installed with pip.' def get_install_requires(self): return ['numpy>=1.7.2'] class Dlib(SetupPackage): name = 'dlib' def check(self): return 'Will be installed with pip.' def get_install_requires(self): return ['dlib'] class ScikitImage(SetupPackage): name = 'scikit-image' def check(self): return 'Will be installed with pip.' def get_install_requires(self): # For some reason some dependencies of scikit-image aren't installed # by pip: https://github.com/scikit-image/scikit-image/issues/2155 return ['scipy', 'matplotlib', 'scikit-image>=0.12'] class MagickWand(SetupPackage): name = 'magickwand' pkg_names = { "apt-get": 'libmagickwand-dev', "yum": 'ImageMagick-devel', "dnf": 'ImageMagick-devel', "pacman": None, "zypper": None, "brew": 'imagemagick', "port": 'imagemagick', "windows_url": ("http://docs.wand-py.org/en/latest/guide/" "install.html#install-imagemagick-on-windows") } def check(self): # `wand` already checks for magickwand, but only when importing, not # during installation. See https://github.com/dahlia/wand/issues/293 magick_wand = pkg_config.get_version("MagickWand") if magick_wand is None: raise CheckFailed('Needs to be installed manually.') else: return 'Found with pkg-config.' class Wand(SetupPackage): name = 'wand' def check(self): return 'Will be installed with pip.' def get_install_requires(self): return ['wand'] class PyColorName(SetupPackage): name = 'pycolorname' def check(self): return 'Will be installed with pip.' def get_install_requires(self): return ['pycolorname'] class LibZBar(SetupPackage): name = 'libzbar' pkg_names = { "apt-get": 'libzbar-dev', "yum": 'zbar-devel', "dnf": 'zbar-devel', "pacman": None, "zypper": None, "brew": 'zbar', "port": None, "windows_url": None } def check(self): libzbar = ctypes.util.find_library('zbar') if libzbar is None: raise CheckFailed('Needs to be installed manually.') else: return 'Found {0}.'.format(libzbar) class ZBar(SetupPackage): name = 'zbar' def check(self): return 'Will be installed with pip.' def get_install_requires(self): return ['zbar'] class JavaJRE(SetupPackage): name = 'java' pkg_names = { "apt-get": 'default-jre', "yum": 'java', "dnf": 'java', "pacman": None, "zypper": None, "brew": None, "port": None, "windows_url": "https://java.com/download/" } def check(self): java_path = which('java') if java_path is None: raise CheckFailed('Needs to be installed manually.') else: return 'Found at {0}.'.format(java_path) class ZXing(SetupPackage): name = 'zxing' def check(self): return 'Will be downloaded from their maven repositories.' @staticmethod def download_jar(data_folder, path, name, ver, **kwargs): data = {'name': name, 'ver': ver, 'path': path} fname = os.path.join(data_folder, '{name}-{ver}.jar'.format(**data)) url = ('http://central.maven.org/maven2/{path}/{name}/{ver}/' '{name}-{ver}.jar'.format(**data)) download(url, fname, **kwargs) return fname def get_data_files(self): msg = 'Unable to download "{0}" correctly.' if not self.download_jar( data_path(), 'com/google/zxing', 'core', '3.2.1', sha1='2287494d4f5f9f3a9a2bb6980e3f32053721b315'): return msg.format('zxing-core') if not self.download_jar( data_path(), 'com/google/zxing', 'javase', '3.2.1', sha1='78e98099b87b4737203af1fcfb514954c4f479d9'): return msg.format('zxing-javase') if not self.download_jar( data_path(), 'com/beust', 'jcommander', '1.48', sha1='bfcb96281ea3b59d626704f74bc6d625ff51cbce'): return msg.format('jcommander') return 'Successfully downloaded zxing-javase, zxing-core, jcommander.' class FFProbe(SetupPackage): name = 'ffprobe' pkg_names = { "apt-get": 'libav-tools', "yum": ('ffmpeg', 'This requires the RPMFusion repo to be enabled.'), "dnf": ('ffmpeg', 'This requires the RPMFusion repo to be enabled.'), "pacman": None, "zypper": None, "brew": 'ffmpeg', "port": None, "windows_url": None } def check(self): ffprobe_path = which('ffprobe') or which('avprobe') if ffprobe_path is None: raise CheckFailed('Needs to be installed manually.') else: return 'Found at {0}.'.format(ffprobe_path)
mit
seanandrews/diskpop
phot/priors.py
1
1143
# # # import numpy as np import pandas as pd from scipy.interpolate import interp1d import matplotlib.pyplot as plt import sys # effective temperature prior # inputs Sbar = 60. eSbar = 1. Tinput = 8700. # load spectral type |-> temperature conversion file dt = {'ST': np.str, 'STix': np.float64, 'Teff':np.float64, 'eTeff':np.float64} a = pd.read_csv('data/adopted_spt-teff.txt', dtype=dt, names=['ST','STix','Teff','eTeff']) # discretized relationship S_g = np.array(a['STix']) T_g = np.array(a['Teff']) eT_g = np.array(a['eTeff']) # need to interpolate for appropriate integration tint = interp1d(S_g, T_g) eint = interp1d(S_g, eT_g) S = np.linspace(np.min(S_g), np.max(S_g), num=10.*len(S_g)) T = tint(S) eT = eint(S) # calculate p(S) p_S = np.exp(-0.5*((S-Sbar)/eSbar )**2) / (np.sqrt(2.*np.pi)*eSbar) # now calculate p(T) p_T = np.zeros_like(T) for i in np.arange(len(T)): p_TS = np.exp(-0.5*((T[i]-tint(S))/eint(S))**2) / \ (np.sqrt(2.*np.pi)*eint(S)) p_T[i] = np.trapz(p_TS*p_S, S) # create an interpolator for p_T p_tint = interp1d(T, p_T) prior_T = p_tint(Tinput) print(prior_T)
mit
ndingwall/scikit-learn
sklearn/tests/test_build.py
17
1175
import os import pytest import textwrap from sklearn import __version__ from sklearn.utils._openmp_helpers import _openmp_parallelism_enabled def test_openmp_parallelism_enabled(): # Check that sklearn is built with OpenMP-based parallelism enabled. # This test can be skipped by setting the environment variable # ``SKLEARN_SKIP_OPENMP_TEST``. if os.getenv("SKLEARN_SKIP_OPENMP_TEST"): pytest.skip("test explicitly skipped (SKLEARN_SKIP_OPENMP_TEST)") base_url = "dev" if __version__.endswith(".dev0") else "stable" err_msg = textwrap.dedent( """ This test fails because scikit-learn has been built without OpenMP. This is not recommended since some estimators will run in sequential mode instead of leveraging thread-based parallelism. You can find instructions to build scikit-learn with OpenMP at this address: https://scikit-learn.org/{}/developers/advanced_installation.html You can skip this test by setting the environment variable SKLEARN_SKIP_OPENMP_TEST to any value. """).format(base_url) assert _openmp_parallelism_enabled(), err_msg
bsd-3-clause
ClimbsRocks/scikit-learn
examples/cluster/plot_color_quantization.py
61
3444
# -*- coding: utf-8 -*- """ ================================== Color Quantization using K-Means ================================== Performs a pixel-wise Vector Quantization (VQ) of an image of the summer palace (China), reducing the number of colors required to show the image from 96,615 unique colors to 64, while preserving the overall appearance quality. In this example, pixels are represented in a 3D-space and K-means is used to find 64 color clusters. In the image processing literature, the codebook obtained from K-means (the cluster centers) is called the color palette. Using a single byte, up to 256 colors can be addressed, whereas an RGB encoding requires 3 bytes per pixel. The GIF file format, for example, uses such a palette. For comparison, a quantized image using a random codebook (colors picked up randomly) is also shown. """ # Authors: Robert Layton <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # # License: BSD 3 clause print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.metrics import pairwise_distances_argmin from sklearn.datasets import load_sample_image from sklearn.utils import shuffle from time import time n_colors = 64 # Load the Summer Palace photo china = load_sample_image("china.jpg") # Convert to floats instead of the default 8 bits integer coding. Dividing by # 255 is important so that plt.imshow behaves works well on float data (need to # be in the range [0-1]) china = np.array(china, dtype=np.float64) / 255 # Load Image and transform to a 2D numpy array. w, h, d = original_shape = tuple(china.shape) assert d == 3 image_array = np.reshape(china, (w * h, d)) print("Fitting model on a small sub-sample of the data") t0 = time() image_array_sample = shuffle(image_array, random_state=0)[:1000] kmeans = KMeans(n_clusters=n_colors, random_state=0).fit(image_array_sample) print("done in %0.3fs." % (time() - t0)) # Get labels for all points print("Predicting color indices on the full image (k-means)") t0 = time() labels = kmeans.predict(image_array) print("done in %0.3fs." % (time() - t0)) codebook_random = shuffle(image_array, random_state=0)[:n_colors + 1] print("Predicting color indices on the full image (random)") t0 = time() labels_random = pairwise_distances_argmin(codebook_random, image_array, axis=0) print("done in %0.3fs." % (time() - t0)) def recreate_image(codebook, labels, w, h): """Recreate the (compressed) image from the code book & labels""" d = codebook.shape[1] image = np.zeros((w, h, d)) label_idx = 0 for i in range(w): for j in range(h): image[i][j] = codebook[labels[label_idx]] label_idx += 1 return image # Display all results, alongside original image plt.figure(1) plt.clf() ax = plt.axes([0, 0, 1, 1]) plt.axis('off') plt.title('Original image (96,615 colors)') plt.imshow(china) plt.figure(2) plt.clf() ax = plt.axes([0, 0, 1, 1]) plt.axis('off') plt.title('Quantized image (64 colors, K-Means)') plt.imshow(recreate_image(kmeans.cluster_centers_, labels, w, h)) plt.figure(3) plt.clf() ax = plt.axes([0, 0, 1, 1]) plt.axis('off') plt.title('Quantized image (64 colors, Random)') plt.imshow(recreate_image(codebook_random, labels_random, w, h)) plt.show()
bsd-3-clause
cbertinato/pandas
pandas/_config/localization.py
1
4655
""" Helpers for configuring locale settings. Name `localization` is chosen to avoid overlap with builtin `locale` module. """ from contextlib import contextmanager import locale import re import subprocess from pandas._config.config import options @contextmanager def set_locale(new_locale, lc_var=locale.LC_ALL): """ Context manager for temporarily setting a locale. Parameters ---------- new_locale : str or tuple A string of the form <language_country>.<encoding>. For example to set the current locale to US English with a UTF8 encoding, you would pass "en_US.UTF-8". lc_var : int, default `locale.LC_ALL` The category of the locale being set. Notes ----- This is useful when you want to run a particular block of code under a particular locale, without globally setting the locale. This probably isn't thread-safe. """ current_locale = locale.getlocale() try: locale.setlocale(lc_var, new_locale) normalized_locale = locale.getlocale() if all(x is not None for x in normalized_locale): yield '.'.join(normalized_locale) else: yield new_locale finally: locale.setlocale(lc_var, current_locale) def can_set_locale(lc, lc_var=locale.LC_ALL): """ Check to see if we can set a locale, and subsequently get the locale, without raising an Exception. Parameters ---------- lc : str The locale to attempt to set. lc_var : int, default `locale.LC_ALL` The category of the locale being set. Returns ------- is_valid : bool Whether the passed locale can be set """ try: with set_locale(lc, lc_var=lc_var): pass except (ValueError, locale.Error): # horrible name for a Exception subclass return False else: return True def _valid_locales(locales, normalize): """ Return a list of normalized locales that do not throw an ``Exception`` when set. Parameters ---------- locales : str A string where each locale is separated by a newline. normalize : bool Whether to call ``locale.normalize`` on each locale. Returns ------- valid_locales : list A list of valid locales. """ if normalize: normalizer = lambda x: locale.normalize(x.strip()) else: normalizer = lambda x: x.strip() return list(filter(can_set_locale, map(normalizer, locales))) def _default_locale_getter(): try: raw_locales = subprocess.check_output(['locale -a'], shell=True) except subprocess.CalledProcessError as e: raise type(e)("{exception}, the 'locale -a' command cannot be found " "on your system".format(exception=e)) return raw_locales def get_locales(prefix=None, normalize=True, locale_getter=_default_locale_getter): """ Get all the locales that are available on the system. Parameters ---------- prefix : str If not ``None`` then return only those locales with the prefix provided. For example to get all English language locales (those that start with ``"en"``), pass ``prefix="en"``. normalize : bool Call ``locale.normalize`` on the resulting list of available locales. If ``True``, only locales that can be set without throwing an ``Exception`` are returned. locale_getter : callable The function to use to retrieve the current locales. This should return a string with each locale separated by a newline character. Returns ------- locales : list of strings A list of locale strings that can be set with ``locale.setlocale()``. For example:: locale.setlocale(locale.LC_ALL, locale_string) On error will return None (no locale available, e.g. Windows) """ try: raw_locales = locale_getter() except Exception: return None try: # raw_locales is "\n" separated list of locales # it may contain non-decodable parts, so split # extract what we can and then rejoin. raw_locales = raw_locales.split(b'\n') out_locales = [] for x in raw_locales: out_locales.append(str( x, encoding=options.display.encoding)) except TypeError: pass if prefix is None: return _valid_locales(out_locales, normalize) pattern = re.compile('{prefix}.*'.format(prefix=prefix)) found = pattern.findall('\n'.join(out_locales)) return _valid_locales(found, normalize)
bsd-3-clause
Microsoft/hummingbird
tests/test_sklearn_decomposition.py
1
5758
""" Tests sklearn matrix decomposition converters """ import unittest import warnings import sys from distutils.version import LooseVersion import numpy as np import torch import sklearn from sklearn.decomposition import FastICA, KernelPCA, PCA, TruncatedSVD from sklearn.model_selection import train_test_split from sklearn.datasets import load_digits import hummingbird.ml class TestSklearnMatrixDecomposition(unittest.TestCase): def _fit_model_pca(self, model, precompute=False): data = load_digits() X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.2, random_state=42) X_test = X_test.astype("float32") if precompute: # For precompute we use a linear kernel model.fit(np.dot(X_train, X_train.T)) X_test = np.dot(X_test, X_train.T) else: model.fit(X_train) torch_model = hummingbird.ml.convert(model, "torch") self.assertTrue(torch_model is not None) np.testing.assert_allclose(model.transform(X_test), torch_model.transform(X_test), rtol=1e-6, atol=2 * 1e-5) # PCA n_components none def test_pca_converter_none(self): self._fit_model_pca(PCA(n_components=None)) # PCA n_componenets two def test_pca_converter_two(self): self._fit_model_pca(PCA(n_components=2)) # PCA n_componenets mle and whiten true @unittest.skipIf( LooseVersion(sklearn.__version__) < LooseVersion("0.23.2"), reason="With Sklearn version < 0.23.2 returns ValueError: math domain error (https://github.com/scikit-learn/scikit-learn/issues/4441)", ) def test_pca_converter_mle_whiten(self): self._fit_model_pca(PCA(n_components="mle", whiten=True)) # PCA n_componenets mle and solver full @unittest.skipIf( LooseVersion(sklearn.__version__) < LooseVersion("0.23.2"), reason="With Sklearn version < 0.23.2 returns ValueError: math domain error (https://github.com/scikit-learn/scikit-learn/issues/4441)", ) def test_pca_converter_mle_full(self): self._fit_model_pca(PCA(n_components="mle", svd_solver="full")) # PCA n_componenets none and solver arpack def test_pca_converter_none_arpack(self): self._fit_model_pca(PCA(n_components=None, svd_solver="arpack")) # PCA n_componenets none and solver randomized def test_pca_converter_none_randomized(self): self._fit_model_pca(PCA(n_components=None, svd_solver="randomized")) # KernelPCA linear kernel def test_kernel_pca_converter_linear(self): self._fit_model_pca(KernelPCA(n_components=5, kernel="linear")) # KernelPCA linear kernel with inverse transform def test_kernel_pca_converter_linear_fit_inverse_transform(self): self._fit_model_pca(KernelPCA(n_components=5, kernel="linear", fit_inverse_transform=True)) # KernelPCA poly kernel def test_kernel_pca_converter_poly(self): self._fit_model_pca(KernelPCA(n_components=5, kernel="poly", degree=2)) # KernelPCA poly kernel coef0 def test_kernel_pca_converter_poly_coef0(self): self._fit_model_pca(KernelPCA(n_components=10, kernel="poly", degree=3, coef0=10)) # KernelPCA poly kernel with inverse transform def test_kernel_pca_converter_poly_fit_inverse_transform(self): self._fit_model_pca(KernelPCA(n_components=5, kernel="poly", degree=3, fit_inverse_transform=True)) # KernelPCA poly kernel def test_kernel_pca_converter_rbf(self): self._fit_model_pca(KernelPCA(n_components=5, kernel="rbf")) # KernelPCA sigmoid kernel def test_kernel_pca_converter_sigmoid(self): self._fit_model_pca(KernelPCA(n_components=5, kernel="sigmoid")) # KernelPCA cosine kernel def test_kernel_pca_converter_cosine(self): self._fit_model_pca(KernelPCA(n_components=5, kernel="cosine")) # KernelPCA precomputed kernel def test_kernel_pca_converter_precomputed(self): self._fit_model_pca(KernelPCA(n_components=5, kernel="precomputed"), precompute=True) # TODO: Fails on macos-latest Python 3.8 due to a sklearn bug. # FastICA converter with n_components none # def test_fast_ica_converter_none(self): # self._fit_model_pca(FastICA(n_components=None)) # FastICA converter with n_components 3 def test_fast_ica_converter_3(self): self._fit_model_pca(FastICA(n_components=3)) # FastICA converter with n_components 3 whiten def test_fast_ica_converter_3_whiten(self): self._fit_model_pca(FastICA(n_components=3, whiten=True)) # FastICA converter with n_components 3 deflation algorithm def test_fast_ica_converter_3_deflation(self): self._fit_model_pca(FastICA(n_components=3, algorithm="deflation")) # FastICA converter with n_components 3 fun exp def test_fast_ica_converter_3_exp(self): self._fit_model_pca(FastICA(n_components=3, fun="exp")) # FastICA converter with n_components 3 fun cube def test_fast_ica_converter_3_cube(self): self._fit_model_pca(FastICA(n_components=3, fun="cube")) # FastICA converter with n_components 3 fun custom def test_fast_ica_converter_3_custom(self): def my_g(x): return x ** 3, (3 * x ** 2).mean(axis=-1) self._fit_model_pca(FastICA(n_components=3, fun=my_g)) # TruncatedSVD converter with n_components 3 def test_truncated_svd_converter_3(self): self._fit_model_pca(TruncatedSVD(n_components=3)) # TruncatedSVD converter with n_components 3 algorithm arpack def test_truncated_svd_converter_3_arpack(self): self._fit_model_pca(TruncatedSVD(n_components=3, algorithm="arpack")) if __name__ == "__main__": unittest.main()
mit
saullocastro/compmech
doc/pyplots/theory/fem/fsdt_donnell_kquad4.py
3
1473
from matplotlib.pyplot import * from math import sqrt m = 1/3. xs = [+1, +1, -1, -1] ys = [-1, +1, -1, +1] figure(figsize=(4, 4)) ax = gca() ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.spines['left'].set_position(('data', 0)) ax.spines['bottom'].set_position(('data', 0)) ax.xaxis.set_ticks_position('none') ax.yaxis.set_ticks_position('none') ax.set_aspect('equal') ax.set_xlim(-1.4, +1.6) ax.set_ylim(-1.4, +1.6) ax.text(1.8, 0., r'$\xi$', transform=ax.transData, va='center') ax.text(0., 1.8, r'$\eta$', rotation='horizontal', transform=ax.transData, ha='center') ax.text(+1.1, +1.1, '$n_1$\n' + r'$(+1, +1)$', ha='center', va='bottom', fontsize=10) ax.text(-1.1, +1.1, '$n_2$\n' + r'$(-1, +1)$', ha='center', va='bottom', fontsize=10) ax.text(-1.1, -1.1, '$n_3$\n' + r'$(-1, -1)$', ha='center', va='top' , fontsize=10) ax.text(+1.1, -1.1, '$n_4$\n' + r'$(+1, -1)$', ha='center', va='top' , fontsize=10) # radius ax.annotate('$r_1$', xy=(-1, 0.5), xytext=(-0.5, 0.2), arrowprops=dict(arrowstyle='->'), va='center', ha='center') ax.annotate('$r_2$', xy=(+1, 0.5), xytext=(+0.5, 0.2), arrowprops=dict(arrowstyle='->'), va='center', ha='center') ax.set_xticks([]) ax.set_yticks([]) #ax.set_xticklabels(['-1', '+1']) #ax.set_yticklabels(['-1', '+1']) plot([1, -1, -1, 1, 1], [1, 1, -1, -1, 1], '-k') plot(xs, ys, 'ok', mfc='k') tight_layout() savefig('test.png') #show()
bsd-3-clause
lamastex/scalable-data-science
db/xtraResources/edXBigDataSeries2015/CS100-1x/Module 4: Text Analysis and Entity Resolution Lab Solutions.py
2
73278
# Databricks notebook source exported at Mon, 14 Mar 2016 03:33:29 UTC # MAGIC %md # MAGIC **SOURCE:** This is from the Community Edition of databricks and has been added to this databricks shard at [/#workspace/scalable-data-science/xtraResources/edXBigDataSeries2015/CS100-1x](/#workspace/scalable-data-science/xtraResources/edXBigDataSeries2015/CS100-1x) as extra resources for the project-focussed course [Scalable Data Science](http://www.math.canterbury.ac.nz/~r.sainudiin/courses/ScalableDataScience/) that is prepared by [Raazesh Sainudiin](https://nz.linkedin.com/in/raazesh-sainudiin-45955845) and [Sivanand Sivaram](https://www.linkedin.com/in/sivanand), and *supported by* [![](https://raw.githubusercontent.com/raazesh-sainudiin/scalable-data-science/master/images/databricks_logoTM_200px.png)](https://databricks.com/) # MAGIC and # MAGIC [![](https://raw.githubusercontent.com/raazesh-sainudiin/scalable-data-science/master/images/AWS_logoTM_200px.png)](https://www.awseducate.com/microsite/CommunitiesEngageHome). # COMMAND ---------- # MAGIC %md # MAGIC <a rel="license" href="http://creativecommons.org/licenses/by-nc-nd/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png" /></a><br />This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-nd/4.0/">Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License</a>. # COMMAND ---------- # MAGIC %md # MAGIC #![Spark Logo](http://spark-mooc.github.io/web-assets/images/ta_Spark-logo-small.png) + ![Python Logo](http://spark-mooc.github.io/web-assets/images/python-logo-master-v3-TM-flattened_small.png) # MAGIC # **Text Analysis and Entity Resolution** # MAGIC Entity resolution is a common, yet difficult problem in data cleaning and integration. This lab will demonstrate how we can use Apache Spark to apply powerful and scalable text analysis techniques and perform entity resolution across two datasets of commercial products. # COMMAND ---------- # MAGIC %md # MAGIC Entity Resolution, or "[Record linkage][wiki]" is the term used by statisticians, epidemiologists, and historians, among others, to describe the process of joining records from one data source with another that describe the same entity. Our terms with the same meaning include, "entity disambiguation/linking", duplicate detection", "deduplication", "record matching", "(reference) reconciliation", "object identification", "data/information integration", and "conflation". # MAGIC # MAGIC Entity Resolution (ER) refers to the task of finding records in a dataset that refer to the same entity across different data sources (e.g., data files, books, websites, databases). ER is necessary when joining datasets based on entities that may or may not share a common identifier (e.g., database key, URI, National identification number), as may be the case due to differences in record shape, storage location, and/or curator style or preference. A dataset that has undergone ER may be referred to as being cross-linked. # MAGIC [wiki]: https://en.wikipedia.org/wiki/Record_linkage # COMMAND ---------- labVersion = 'cs100.1x-lab3-1.0.4' # COMMAND ---------- # MAGIC %md # MAGIC #### Code # MAGIC This assignment can be completed using basic Python, pySpark Transformations and actions, and the plotting library matplotlib. Other libraries are not allowed. # MAGIC # MAGIC #### Files # MAGIC Data files for this assignment are from the [metric-learning](https://code.google.com/p/metric-learning/) project and can be found at: # MAGIC `cs100/lab3` # MAGIC # MAGIC The directory contains the following files: # MAGIC * **Google.csv**, the Google Products dataset # MAGIC * **Amazon.csv**, the Amazon dataset # MAGIC * **Google_small.csv**, 200 records sampled from the Google data # MAGIC * **Amazon_small.csv**, 200 records sampled from the Amazon data # MAGIC * **Amazon_Google_perfectMapping.csv**, the "gold standard" mapping # MAGIC * **stopwords.txt**, a list of common English words # MAGIC # MAGIC Besides the complete data files, there are "sample" data files for each dataset - we will use these for **Part 1**. In addition, there is a "gold standard" file that contains all of the true mappings between entities in the two datasets. Every row in the gold standard file has a pair of record IDs (one Google, one Amazon) that belong to two record that describe the same thing in the real world. We will use the gold standard to evaluate our algorithms. # COMMAND ---------- # MAGIC %md # MAGIC #### **Part 0: Preliminaries** # MAGIC We read in each of the files and create an RDD consisting of lines. # MAGIC For each of the data files ("Google.csv", "Amazon.csv", and the samples), we want to parse the IDs out of each record. The IDs are the first column of the file (they are URLs for Google, and alphanumeric strings for Amazon). Omitting the headers, we load these data files into pair RDDs where the *mapping ID* is the key, and the value is a string consisting of the name/title, description, and manufacturer from the record. # MAGIC # MAGIC The file format of an Amazon line is: # MAGIC # MAGIC `"id","title","description","manufacturer","price"` # MAGIC # MAGIC The file format of a Google line is: # MAGIC # MAGIC `"id","name","description","manufacturer","price"` # COMMAND ---------- import re DATAFILE_PATTERN = '^(.+),"(.+)",(.*),(.*),(.*)' def removeQuotes(s): """ Remove quotation marks from an input string Args: s (str): input string that might have the quote "" characters Returns: str: a string without the quote characters """ return ''.join(i for i in s if i!='"') def parseDatafileLine(datafileLine): """ Parse a line of the data file using the specified regular expression pattern Args: datafileLine (str): input string that is a line from the data file Returns: str: a string parsed using the given regular expression and without the quote characters """ match = re.search(DATAFILE_PATTERN, datafileLine) if match is None: print 'Invalid datafile line: %s' % datafileLine return (datafileLine, -1) elif match.group(1) == '"id"': print 'Header datafile line: %s' % datafileLine return (datafileLine, 0) else: product = '%s %s %s' % (match.group(2), match.group(3), match.group(4)) return ((removeQuotes(match.group(1)), product), 1) # COMMAND ---------- display(dbutils.fs.ls('/databricks-datasets/cs100/lab3/data-001/')) # COMMAND ---------- # MAGIC %md **WARNING:** If *test_helper*, required in the cell below, is not installed, follow the instructions [here](https://databricks-staging-cloudfront.staging.cloud.databricks.com/public/c65da9a2fa40e45a2028cddebe45b54c/8637560089690848/4187311313936645/6977722904629137/05f3c2ecc3.html). # COMMAND ---------- import sys import os from test_helper import Test baseDir = os.path.join('databricks-datasets') inputPath = os.path.join('cs100', 'lab3', 'data-001') GOOGLE_PATH = 'Google.csv' GOOGLE_SMALL_PATH = 'Google_small.csv' AMAZON_PATH = 'Amazon.csv' AMAZON_SMALL_PATH = 'Amazon_small.csv' GOLD_STANDARD_PATH = 'Amazon_Google_perfectMapping.csv' STOPWORDS_PATH = 'stopwords.txt' def parseData(filename): """ Parse a data file Args: filename (str): input file name of the data file Returns: RDD: a RDD of parsed lines """ return (sc .textFile(filename, 4, 0) .map(parseDatafileLine)) def loadData(path): """ Load a data file Args: path (str): input file name of the data file Returns: RDD: a RDD of parsed valid lines """ filename = os.path.join(baseDir, inputPath, path) raw = parseData(filename).cache() failed = (raw .filter(lambda s: s[1] == -1) .map(lambda s: s[0])) for line in failed.take(10): print '%s - Invalid datafile line: %s' % (path, line) valid = (raw .filter(lambda s: s[1] == 1) .map(lambda s: s[0]) .cache()) print '%s - Read %d lines, successfully parsed %d lines, failed to parse %d lines' % (path, raw.count(), valid.count(), failed.count()) assert failed.count() == 0 assert raw.count() == (valid.count() + 1) return valid googleSmall = loadData(GOOGLE_SMALL_PATH) google = loadData(GOOGLE_PATH) amazonSmall = loadData(AMAZON_SMALL_PATH) amazon = loadData(AMAZON_PATH) # COMMAND ---------- # MAGIC %md # MAGIC Let's examine the lines that were just loaded in the two subset (small) files - one from Google and one from Amazon # COMMAND ---------- for line in googleSmall.take(3): print 'google: %s: %s\n' % (line[0], line[1]) for line in amazonSmall.take(3): print 'amazon: %s: %s\n' % (line[0], line[1]) # COMMAND ---------- # MAGIC %md # MAGIC #### **Part 1: ER as Text Similarity - Bags of Words** # MAGIC # MAGIC A simple approach to entity resolution is to treat all records as strings and compute their similarity with a string distance function. In this part, we will build some components for performing bag-of-words text-analysis, and then use them to compute record similarity. # MAGIC [Bag-of-words][bag-of-words] is a conceptually simple yet powerful approach to text analysis. # MAGIC # MAGIC The idea is to treat strings, a.k.a. **documents**, as *unordered collections* of words, or **tokens**, i.e., as bags of words. # MAGIC > **Note on terminology**: a "token" is the result of parsing the document down to the elements we consider "atomic" for the task at hand. Tokens can be things like words, numbers, acronyms, or other exotica like word-roots or fixed-length character strings. # MAGIC > Bag of words techniques all apply to any sort of token, so when we say "bag-of-words" we really mean "bag-of-tokens," strictly speaking. # MAGIC Tokens become the atomic unit of text comparison. If we want to compare two documents, we count how many tokens they share in common. If we want to search for documents with keyword queries (this is what Google does), then we turn the keywords into tokens and find documents that contain them. The power of this approach is that it makes string comparisons insensitive to small differences that probably do not affect meaning much, for example, punctuation and word order. # MAGIC [bag-of-words]: https://en.wikipedia.org/wiki/Bag-of-words_model # COMMAND ---------- # MAGIC %md # MAGIC #### **1(a) Tokenize a String** # MAGIC Implement the function `simpleTokenize(string)` that takes a string and returns a list of non-empty tokens in the string. `simpleTokenize` should split strings using the provided regular expression. Since we want to make token-matching case insensitive, make sure all tokens are turned lower-case. Give an interpretation, in natural language, of what the regular expression, `split_regex`, matches. # MAGIC If you need help with Regular Expressions, try the site [regex101](https://regex101.com/) where you can interactively explore the results of applying different regular expressions to strings. *Note that \W includes the "_" character*. You should use [re.split()](https://docs.python.org/2/library/re.html#re.split) to perform the string split. Also, make sure you remove any empty tokens. # COMMAND ---------- # ANSWER quickbrownfox = 'A quick brown fox jumps over the lazy dog.' split_regex = r'\W+' def simpleTokenize(string): """ A simple implementation of input string tokenization Args: string (str): input string Returns: list: a list of tokens """ return [t for t in re.split(split_regex, string.lower()) if len(t)] print simpleTokenize(quickbrownfox) # Should give ['a', 'quick', 'brown', ... ] # COMMAND ---------- # TEST Tokenize a String (1a) Test.assertEquals(simpleTokenize(quickbrownfox), ['a','quick','brown','fox','jumps','over','the','lazy','dog'], 'simpleTokenize should handle sample text') Test.assertEquals(simpleTokenize(' '), [], 'simpleTokenize should handle empty string') Test.assertEquals(simpleTokenize('!!!!123A/456_B/789C.123A'), ['123a','456_b','789c','123a'], 'simpleTokenize should handle punctuations and lowercase result') Test.assertEquals(simpleTokenize('fox fox'), ['fox', 'fox'], 'simpleTokenize should not remove duplicates') # COMMAND ---------- # PRIVATE_TEST Tokenize a String (1a) Test.assertEquals(simpleTokenize(quickbrownfox), ['a','quick','brown','fox','jumps','over','the','lazy','dog'], 'simpleTokenize should handle sample text') Test.assertEquals(simpleTokenize(' '), [], 'simpleTokenize should handle empty string') Test.assertEquals(simpleTokenize('!!!!123A/456_B/789C.123A'), ['123a','456_b','789c','123a'], 'simpleTokenize should handle puntuations and lowercase result') Test.assertEquals(simpleTokenize('fox fox'), ['fox', 'fox'], 'simpleTokenize should not remove duplicates') # COMMAND ---------- # MAGIC %md # MAGIC #### **(1b) Removing stopwords** # MAGIC *[Stopwords][stopwords]* are common (English) words that do not contribute much to the content or meaning of a document (e.g., "the", "a", "is", "to", etc.). Stopwords add noise to bag-of-words comparisons, so they are usually excluded. # MAGIC Using the included file "stopwords.txt", implement `tokenize`, an improved tokenizer that does not emit stopwords. # MAGIC [stopwords]: https://en.wikipedia.org/wiki/Stop_words # COMMAND ---------- # ANSWER stopfile = os.path.join(baseDir, inputPath, STOPWORDS_PATH) stopwords = set(sc.textFile(stopfile).collect()) print 'These are the stopwords: %s' % stopwords def tokenize(string): """ An implementation of input string tokenization that excludes stopwords Args: string (str): input string Returns: list: a list of tokens without stopwords """ return [t for t in simpleTokenize(string) if t not in stopwords] print tokenize(quickbrownfox) # Should give ['quick', 'brown', ... ] # COMMAND ---------- # TEST Removing stopwords (1b) Test.assertEquals(tokenize("Why a the?"), [], 'tokenize should remove all stopwords') Test.assertEquals(tokenize("Being at the_?"), ['the_'], 'tokenize should handle non-stopwords') Test.assertEquals(tokenize(quickbrownfox), ['quick','brown','fox','jumps','lazy','dog'], 'tokenize should handle sample text') # COMMAND ---------- # PRIVATE_TEST Removing stopwords (1b) Test.assertEquals(tokenize("Why a the?"), [], 'tokenize should remove all stopwords') Test.assertEquals(tokenize("Being at the_?"), ['the_'], 'tokenize should handle non-stopwords') Test.assertEquals(tokenize(quickbrownfox), ['quick','brown','fox','jumps','lazy','dog'], 'tokenize should handle sample text') # COMMAND ---------- # MAGIC %md # MAGIC #### **(1c) Tokenizing the small datasets** # MAGIC Now let's tokenize the two *small* datasets. For each ID in a dataset, `tokenize` the values, and then count the total number of tokens. # MAGIC How many tokens, total, are there in the two datasets? # COMMAND ---------- # ANSWER amazonRecToToken = amazonSmall.map(lambda s: (s[0], tokenize(s[1]))) googleRecToToken = googleSmall.map(lambda s: (s[0], tokenize(s[1]))) def countTokens(vendorRDD): """ Count and return the number of tokens Args: vendorRDD (RDD of (recordId, tokenizedValue)): Pair tuple of record ID to tokenized output Returns: count: count of all tokens """ recordCount = vendorRDD.map(lambda s: len(s[1])) recordSum = recordCount.reduce(lambda a, b : a + b) return recordSum totalTokens = countTokens(amazonRecToToken) + countTokens(googleRecToToken) print 'There are %s tokens in the combined datasets' % totalTokens # COMMAND ---------- # TEST Tokenizing the small datasets (1c) Test.assertEquals(totalTokens, 22520, 'incorrect totalTokens') # COMMAND ---------- # PRIVATE_TEST Tokenizing the small datasets (1c) Test.assertEquals(totalTokens, 22520, 'incorrect totalTokens') Test.assertEquals(countTokens(amazonRecToToken), 16707, 'incorrect token count for Amazon records') # COMMAND ---------- # MAGIC %md # MAGIC #### **(1d) Amazon record with the most tokens** # MAGIC Which Amazon record has the biggest number of tokens? # MAGIC In other words, you want to sort the records and get the one with the largest count of tokens. # COMMAND ---------- # ANSWER def findBiggestRecord(vendorRDD): """ Find and return the record with the largest number of tokens Args: vendorRDD (RDD of (recordId, tokens)): input Pair Tuple of record ID and tokens Returns: list: a list of 1 Pair Tuple of record ID and tokens """ return(vendorRDD.takeOrdered(1, lambda s: -1 * len(s[1]))) biggestRecordAmazon = findBiggestRecord(amazonRecToToken) print 'The Amazon record with ID "%s" has the most tokens (%s)' % (biggestRecordAmazon[0][0], len(biggestRecordAmazon[0][1])) # COMMAND ---------- # TEST Amazon record with the most tokens (1d) Test.assertEquals(biggestRecordAmazon[0][0], 'b000o24l3q', 'incorrect biggestRecordAmazon') Test.assertEquals(len(biggestRecordAmazon[0][1]), 1547, 'incorrect len for biggestRecordAmazon') # COMMAND ---------- # PRIVATE_TEST Amazon record with the most tokens (1d) Test.assertEquals(biggestRecordAmazon[0][0], 'b000o24l3q', 'incorrect biggestRecordAmazon') Test.assertEquals(len(biggestRecordAmazon[0][1]), 1547, 'incorrect len for biggestRecordAmazon') # COMMAND ---------- # MAGIC %md # MAGIC #### **Part 2: ER as Text Similarity - Weighted Bag-of-Words using TF-IDF** # MAGIC Bag-of-words comparisons are not very good when all tokens are treated the same: some tokens are more important than others. Weights give us a way to specify which tokens to favor. With weights, when we compare documents, instead of counting common tokens, we sum up the weights of common tokens. A good heuristic for assigning weights is called "Term-Frequency/Inverse-Document-Frequency," or [TF-IDF][tfidf] for short. # MAGIC # MAGIC **TF** # MAGIC # MAGIC TF rewards tokens that appear many times in the same document. It is computed as the frequency of a token in a document, that is, if document *d* contains 100 tokens and token *t* appears in *d* 5 times, then the TF weight of *t* in *d* is *5/100 = 1/20*. The intuition for TF is that if a word occurs often in a document, then it is more important to the meaning of the document. # MAGIC # MAGIC **IDF** # MAGIC # MAGIC IDF rewards tokens that are rare overall in a dataset. The intuition is that it is more significant if two documents share a rare word than a common one. IDF weight for a token, *t*, in a set of documents, *U*, is computed as follows: # MAGIC * Let *N* be the total number of documents in *U* # MAGIC * Find *n(t)*, the number of documents in *U* that contain *t* # MAGIC * Then *IDF(t) = N/n(t)*. # MAGIC # MAGIC Note that *n(t)/N* is the frequency of *t* in *U*, and *N/n(t)* is the inverse frequency. # MAGIC # MAGIC > **Note on terminology**: Sometimes token weights depend on the document the token belongs to, that is, the same token may have a different weight when it's found in different documents. We call these weights *local* weights. TF is an example of a local weight, because it depends on the length of the source. On the other hand, some token weights only depend on the token, and are the same everywhere that token is found. We call these weights *global*, and IDF is one such weight. # MAGIC # MAGIC **TF-IDF** # MAGIC # MAGIC Finally, to bring it all together, the total TF-IDF weight for a token in a document is the product of its TF and IDF weights. # MAGIC [tfidf]: https://en.wikipedia.org/wiki/Tf%E2%80%93idf # COMMAND ---------- # MAGIC %md # MAGIC #### **(2a) Implement a TF function** # MAGIC # MAGIC Implement `tf(tokens)` that takes a list of tokens and returns a Python [dictionary](https://docs.python.org/2/tutorial/datastructures.html#dictionaries) mapping tokens to TF weights. # MAGIC # MAGIC The steps your function should perform are: # MAGIC * Create an empty Python dictionary # MAGIC * For each of the tokens in the input `tokens` list, count 1 for each occurance and add the token to the dictionary # MAGIC * For each of the tokens in the dictionary, divide the token's count by the total number of tokens in the input `tokens` list # COMMAND ---------- # ANSWER def tf(tokens): """ Compute TF Args: tokens (list of str): input list of tokens from tokenize Returns: dictionary: a dictionary of tokens to its TF values """ counts = {} length = len(tokens) for t in tokens: counts.setdefault(t, 0.0) counts[t] += 1 return { t: counts[t] / length for t in counts } print tf(tokenize(quickbrownfox)) # Should give { 'quick': 0.1666 ... } # COMMAND ---------- # TEST Implement a TF function (2a) tf_test = tf(tokenize(quickbrownfox)) Test.assertEquals(tf_test, {'brown': 0.16666666666666666, 'lazy': 0.16666666666666666, 'jumps': 0.16666666666666666, 'fox': 0.16666666666666666, 'dog': 0.16666666666666666, 'quick': 0.16666666666666666}, 'incorrect result for tf on sample text') tf_test2 = tf(tokenize('one_ one_ two!')) Test.assertEquals(tf_test2, {'one_': 0.6666666666666666, 'two': 0.3333333333333333}, 'incorrect result for tf test') # COMMAND ---------- # PRIVATE_TEST Implement a TF function (2a) tf_test = tf(tokenize(quickbrownfox)) Test.assertEquals(tf_test, {'brown': 0.16666666666666666, 'lazy': 0.16666666666666666, 'jumps': 0.16666666666666666, 'fox': 0.16666666666666666, 'dog': 0.16666666666666666, 'quick': 0.16666666666666666}, 'incorrect result for tf on sample text') tf_test2 = tf(tokenize('one_ one_ two!')) Test.assertEquals(tf_test2, {'one_': 0.6666666666666666, 'two': 0.3333333333333333}, 'incorrect result for tf test') # COMMAND ---------- # MAGIC %md # MAGIC #### **(2b) Create a corpus** # MAGIC Create a pair RDD called `corpusRDD`, consisting of a combination of the two small datasets, `amazonRecToToken` and `googleRecToToken`. Each element of the `corpusRDD` should be a pair consisting of a key from one of the small datasets (ID or URL) and the value is the associated value for that key from the small datasets. # COMMAND ---------- # ANSWER corpusRDD = amazonRecToToken.union(googleRecToToken) # COMMAND ---------- # TEST Create a corpus (2b) Test.assertEquals(corpusRDD.count(), 400, 'incorrect corpusRDD.count()') # COMMAND ---------- # PRIVATE_TEST Create a corpus (2b) Test.assertEquals(corpusRDD.count(), 400, 'incorrect corpusRDD.count()') # COMMAND ---------- # MAGIC %md # MAGIC #### **(2c) Implement an IDFs function** # MAGIC Implement `idfs` that assigns an IDF weight to every unique token in an RDD called `corpus`. The function should return an pair RDD where the `key` is the unique token and value is the IDF weight for the token. # MAGIC # MAGIC Recall that the IDF weight for a token, *t*, in a set of documents, *U*, is computed as follows: # MAGIC * Let *N* be the total number of documents in *U*. # MAGIC * Find *n(t)*, the number of documents in *U* that contain *t*. # MAGIC * Then *IDF(t) = N/n(t)*. # MAGIC # MAGIC The steps your function should perform are: # MAGIC * Calculate *N*. Think about how you can calculate *N* from the input RDD. # MAGIC * Create an RDD (*not a pair RDD*) containing the unique tokens from each document in the input `corpus`. For each document, you should only include a token once, *even if it appears multiple times in that document.* # MAGIC * For each of the unique tokens, count how many times it appears in the document and then compute the IDF for that token: *N/n(t)* # MAGIC # MAGIC Use your `idfs` to compute the IDF weights for all tokens in `corpusRDD` (the combined small datasets). # MAGIC How many unique tokens are there? # COMMAND ---------- # ANSWER def idfs(corpus): """ Compute IDF Args: corpus (RDD): input corpus Returns: RDD: a RDD of (token, IDF value) """ uniqueTokens = corpus.flatMap(lambda s: list(set(s[1]))) tokenCountPairTuple = uniqueTokens.map(lambda token: (token, 1)) tokenSumPairTuple = tokenCountPairTuple.reduceByKey(lambda a, b : a + b) N = float(corpus.count()) return (tokenSumPairTuple.map(lambda s: (s[0], float(N/s[1])))) idfsSmall = idfs(amazonRecToToken.union(googleRecToToken)) uniqueTokenCount = idfsSmall.count() print 'There are %s unique tokens in the small datasets.' % uniqueTokenCount # COMMAND ---------- # TEST Implement an IDFs function (2c) Test.assertEquals(uniqueTokenCount, 4772, 'incorrect uniqueTokenCount') tokenSmallestIdf = idfsSmall.takeOrdered(1, lambda s: s[1])[0] Test.assertEquals(tokenSmallestIdf[0], 'software', 'incorrect smallest IDF token') Test.assertTrue(abs(tokenSmallestIdf[1] - 4.25531914894) < 0.0000000001, 'incorrect smallest IDF value') # COMMAND ---------- # PRIVATE_TEST Implement an IDFs function (2c) Test.assertEquals(uniqueTokenCount, 4772, 'incorrect uniqueTokenCount') tokenSmallestIdf = idfsSmall.takeOrdered(1, lambda s: s[1])[0] Test.assertEquals(tokenSmallestIdf[0], 'software', 'incorrect smallest IDF token') Test.assertTrue(abs(tokenSmallestIdf[1] - 4.25531914894) < 0.0000000001, 'incorrect smallest IDF value') firstElevenTokens = set(idfsSmall.takeOrdered(11, lambda s: s[1])) Test.assertEquals(len(firstElevenTokens - set([('software', 4.25531914893617),('new', 6.896551724137931),('features', 6.896551724137931),('use', 7.017543859649122),('complete', 7.2727272727272725),('easy', 7.6923076923076925),('create', 8.333333333333334),('system', 8.333333333333334),('cd', 8.333333333333334),('1', 8.51063829787234), ('windows', 8.51063829787234)])), 0, 'incorrect firstTenTokens') # COMMAND ---------- # MAGIC %md # MAGIC #### **(2d) Tokens with the smallest IDF** # MAGIC Print out the 11 tokens with the smallest IDF in the combined small dataset. # COMMAND ---------- smallIDFTokens = idfsSmall.takeOrdered(11, lambda s: s[1]) print smallIDFTokens # COMMAND ---------- # ANSWER #*answer*: The 10 smallest IDFs are for: (1) software, (2) new, (3) features, (4) use, (5) complete, (6) easy, (7 tie) cd, (7 tie) system, (7 tie) create, (10 tie) windows, (10 tie) 1. #These terms not useful for entity resolution because they are generic terms for marketing, prices, and product categories. # COMMAND ---------- # ANSWER # Quiz question: # For part (2d), do you think the terms are useful for entity resolution? # ( ) Yes # (*) No # # Why or why not? # ( ) These terms are useful for entity resolution because they describe distinguishing tokens in product descriptions # ( ) These terms not useful for entity resolution because they are generic terms for marketing, prices, and product categories. # COMMAND ---------- # MAGIC %md # MAGIC #### **(2e) IDF Histogram** # MAGIC Plot a histogram of IDF values. Be sure to use appropriate scaling and bucketing for the data. # MAGIC First plot the histogram using `matplotlib` # COMMAND ---------- import matplotlib.pyplot as plt small_idf_values = idfsSmall.map(lambda s: s[1]).collect() fig = plt.figure(figsize=(8,3)) plt.hist(small_idf_values, 50, log=True) display(fig) pass # COMMAND ---------- from pyspark.sql import Row # Create a DataFrame and visualize using display() idfsToCountRow = idfsSmall.map(lambda (x, y): Row(token=x, value=y)) idfsToCountDF = sqlContext.createDataFrame(idfsToCountRow) display(idfsToCountDF) # COMMAND ---------- # ANSWER # Quiz question: # Using the plot in (2e), what conclusions can you draw from the distribution of weights? # # *ANSWER:* There is a long tail of rare words in the corpus (these have large IDF values). # [explanation] # There are gaps between IDF values because IDF is a function of a discrete variable, i.e., a document count. # [explanation] # COMMAND ---------- # MAGIC %md # MAGIC #### **(2f) Implement a TF-IDF function** # MAGIC Use your `tf` function to implement a `tfidf(tokens, idfs)` function that takes a list of tokens from a document and a Python dictionary of IDF weights and returns a Python dictionary mapping individual tokens to total TF-IDF weights. # MAGIC # MAGIC The steps your function should perform are: # MAGIC * Calculate the token frequencies (TF) for `tokens` # MAGIC * Create a Python dictionary where each token maps to the token's frequency times the token's IDF weight # MAGIC # MAGIC Use your `tfidf` function to compute the weights of Amazon product record 'b000hkgj8k'. To do this, we need to extract the record for the token from the tokenized small Amazon dataset and we need to convert the IDFs for the small dataset into a Python dictionary. We can do the first part, by using a `filter()` transformation to extract the matching record and a `collect()` action to return the value to the driver. # MAGIC # MAGIC For the second part, we use the [`collectAsMap()` action](http://spark.apache.org/docs/latest/api/python/pyspark.html#pyspark.RDD.collectAsMap) to return the IDFs to the driver as a Python dictionary. # COMMAND ---------- # ANSWER def tfidf(tokens, idfs): """ Compute TF-IDF Args: tokens (list of str): input list of tokens from tokenize idfs (dictionary): record to IDF value Returns: dictionary: a dictionary of records to TF-IDF values """ tfs = tf(tokens) return { t: tfs[t] * idfs[t] for t in tfs } rec_b000hkgj8k = amazonRecToToken.filter(lambda x: x[0] == 'b000hkgj8k').collect()[0][1] idfsSmallWeights = idfsSmall.collectAsMap() rec_b000hkgj8k_weights = tfidf(rec_b000hkgj8k, idfsSmallWeights) print 'Amazon record "b000hkgj8k" has tokens and weights:\n%s' % rec_b000hkgj8k_weights # COMMAND ---------- # TEST Implement a TF-IDF function (2f) Test.assertEquals(rec_b000hkgj8k_weights, {'autocad': 33.33333333333333, 'autodesk': 8.333333333333332, 'courseware': 66.66666666666666, 'psg': 33.33333333333333, '2007': 3.5087719298245617, 'customizing': 16.666666666666664, 'interface': 3.0303030303030303}, 'incorrect rec_b000hkgj8k_weights') # COMMAND ---------- # PRIVATE_TEST Implement a TF-IDF function (2f) Test.assertEquals(rec_b000hkgj8k_weights, {'autocad': 33.33333333333333, 'autodesk': 8.333333333333332, 'courseware': 66.66666666666666, 'psg': 33.33333333333333, '2007': 3.5087719298245617, 'customizing': 16.666666666666664, 'interface': 3.0303030303030303}, 'incorrect rec_b000hkgj8k_weights') # COMMAND ---------- # MAGIC %md # MAGIC #### **Part 3: ER as Text Similarity - Cosine Similarity** # MAGIC Now we are ready to do text comparisons in a formal way. The metric of string distance we will use is called **[cosine similarity][cosine]**. We will treat each document as a vector in some high dimensional space. Then, to compare two documents we compute the cosine of the angle between their two document vectors. This is *much* easier than it sounds. # MAGIC # MAGIC The first question to answer is how do we represent documents as vectors? The answer is familiar: bag-of-words! We treat each unique token as a dimension, and treat token weights as magnitudes in their respective token dimensions. For example, suppose we use simple counts as weights, and we want to interpret the string "Hello, world! Goodbye, world!" as a vector. Then in the "hello" and "goodbye" dimensions the vector has value 1, in the "world" dimension it has value 2, and it is zero in all other dimensions. # MAGIC # MAGIC The next question is: given two vectors how do we find the cosine of the angle between them? Recall the formula for the dot product of two vectors: # MAGIC \\[ a \cdot b = \| a \| \| b \| \cos \theta \\] # MAGIC Here \\( a \cdot b = \sum a_i b_i \\) is the ordinary dot product of two vectors, and \\( \|a\| = \sqrt{ \sum a_i^2 } \\) is the norm of \\( a \\). # MAGIC # MAGIC We can rearrange terms and solve for the cosine to find it is simply the normalized dot product of the vectors. With our vector model, the dot product and norm computations are simple functions of the bag-of-words document representations, so we now have a formal way to compute similarity: # MAGIC \\[ similarity = \cos \theta = \frac{a \cdot b}{\|a\| \|b\|} = \frac{\sum a_i b_i}{\sqrt{\sum a_i^2} \sqrt{\sum b_i^2}} \\] # MAGIC # MAGIC Setting aside the algebra, the geometric interpretation is more intuitive. The angle between two document vectors is small if they share many tokens in common, because they are pointing in roughly the same direction. For that case, the cosine of the angle will be large. Otherwise, if the angle is large (and they have few words in common), the cosine is small. Therefore, cosine similarity scales proportionally with our intuitive sense of similarity. # MAGIC [cosine]: https://en.wikipedia.org/wiki/Cosine_similarity # COMMAND ---------- # MAGIC %md # MAGIC #### **(3a) Implement the components of a `cosineSimilarity` function** # MAGIC Implement the components of a `cosineSimilarity` function. # MAGIC Use the `tokenize` and `tfidf` functions, and the IDF weights from Part 2 for extracting tokens and assigning them weights. # MAGIC The steps you should perform are: # MAGIC * Define a function `dotprod` that takes two Python dictionaries and produces the dot product of them, where the dot product is defined as the sum of the product of values for tokens that appear in *both* dictionaries # MAGIC * Define a function `norm` that returns the square root of the dot product of a dictionary and itself # MAGIC * Define a function `cossim` that returns the dot product of two dictionaries divided by the norm of the first dictionary and then by the norm of the second dictionary # COMMAND ---------- # ANSWER import math def dotprod(a, b): return sum([a[t] * b[t] for t in a if t in b]) def norm(a): return math.sqrt(dotprod(a, a)) def cossim(a, b): return dotprod(a, b) / norm(a) / norm(b) testVec1 = {'foo': 2, 'bar': 3, 'baz': 5 } testVec2 = {'foo': 1, 'bar': 0, 'baz': 20 } dp = dotprod(testVec1, testVec2) nm = norm(testVec1) print dp, nm # COMMAND ---------- # TEST Implement the components of a cosineSimilarity function (3a) Test.assertEquals(dp, 102, 'incorrect dp') Test.assertTrue(abs(nm - 6.16441400297) < 0.0000001, 'incorrrect nm') # COMMAND ---------- # PRIVATE_TEST Implement the components of a cosineSimilarity function (3a) Test.assertEquals(dp, 102, 'incorrect dp') Test.assertTrue(abs(nm - 6.16441400297) < 0.0000001, 'incorrrect nm') # COMMAND ---------- # MAGIC %md # MAGIC #### **(3b) Implement a `cosineSimilarity` function** # MAGIC Implement a `cosineSimilarity(string1, string2, idfsDictionary)` function that takes two strings and a dictionary of IDF weights, and computes their cosine similarity in the context of some global IDF weights. # MAGIC # MAGIC The steps you should perform are: # MAGIC * Apply your `tfidf` function to the tokenized first and second strings, using the dictionary of IDF weights # MAGIC * Compute and return your `cossim` function applied to the results of the two `tfidf` functions # COMMAND ---------- # ANSWER def cosineSimilarity(string1, string2, idfsDictionary): """ Compute cosine similarity between two strings Args: string1 (str): first string string2 (str): second string idfsDictionary (dictionary): a dictionary of IDF values Returns: cossim: cosine similarity value """ w1 = tfidf(tokenize(string1), idfsDictionary) w2 = tfidf(tokenize(string2), idfsDictionary) return cossim(w1, w2) cossimAdobe = cosineSimilarity('Adobe Photoshop', 'Adobe Illustrator', idfsSmallWeights) print cossimAdobe # COMMAND ---------- # TEST Implement a cosineSimilarity function (3b) Test.assertTrue(abs(cossimAdobe - 0.0577243382163) < 0.0000001, 'incorrect cossimAdobe') # COMMAND ---------- # PRIVATE_TEST Implement a cosineSimilarity function (3b) Test.assertTrue(abs(cossimAdobe - 0.0577243382163) < 0.0000001, 'incorrect cossimAdobe') # COMMAND ---------- # MAGIC %md # MAGIC #### **(3c) Perform Entity Resolution** # MAGIC Now we can finally do some entity resolution! # MAGIC For *every* product record in the small Google dataset, use your `cosineSimilarity` function to compute its similarity to every record in the small Amazon dataset. Then, build a dictionary mapping `(Google URL, Amazon ID)` tuples to similarity scores between 0 and 1. # MAGIC We'll do this computation two different ways, first we'll do it without a broadcast variable, and then we'll use a broadcast variable # MAGIC # MAGIC The steps you should perform are: # MAGIC * Create an RDD that is a combination of the small Google and small Amazon datasets that has as elements all pairs of elements (a, b) where a is in self and b is in other. The result will be an RDD of the form: `[ ((Google URL1, Google String1), (Amazon ID1, Amazon String1)), ((Google URL1, Google String1), (Amazon ID2, Amazon String2)), ((Google URL2, Google String2), (Amazon ID1, Amazon String1)), ... ]` # MAGIC * Define a worker function that given an element from the combination RDD computes the cosineSimlarity for the two records in the element # MAGIC * Apply the worker function to every element in the RDD # MAGIC # MAGIC Now, compute the similarity between Amazon record `b000o24l3q` and Google record `http://www.google.com/base/feeds/snippets/17242822440574356561`. # COMMAND ---------- # ANSWER crossSmall = (googleSmall .cartesian(amazonSmall) .cache()) def computeSimilarity(record): """ Compute similarity on a combination record Args: record: a pair, (google record, amazon record) Returns: pair: a pair, (google URL, amazon ID, cosine similarity value) """ googleRec = record[0] amazonRec = record[1] googleURL = googleRec[0] amazonID = amazonRec[0] googleValue = googleRec[1] amazonValue = amazonRec[1] cs = cosineSimilarity(googleValue, amazonValue, idfsSmallWeights) return (googleURL, amazonID, cs) similarities = (crossSmall .map(computeSimilarity) .cache()) def similar(amazonID, googleURL): """ Return similarity value Args: amazonID: amazon ID googleURL: google URL Returns: similar: cosine similarity value """ return (similarities .filter(lambda record: (record[0] == googleURL and record[1] == amazonID)) .collect()[0][2]) similarityAmazonGoogle = similar('b000o24l3q', 'http://www.google.com/base/feeds/snippets/17242822440574356561') print 'Requested similarity is %s.' % similarityAmazonGoogle # COMMAND ---------- # TEST Perform Entity Resolution (3c) Test.assertTrue(abs(similarityAmazonGoogle - 0.000303171940451) < 0.0000001, 'incorrect similarityAmazonGoogle') # COMMAND ---------- # PRIVATE_TEST Perform Entity Resolution (3c) Test.assertTrue(abs(similarityAmazonGoogle - 0.000303171940451) < 0.0000001, 'incorrect similarityAmazonGoogle') similarityAnother = similar('b000o24l3q', 'http://www.google.com/base/feeds/snippets/18274317756231697680') Test.assertTrue(abs(similarityAnother - 0.093899589276) < 0.0000001, 'incorrect another similarity test') # COMMAND ---------- # MAGIC %md # MAGIC #### **(3d) Perform Entity Resolution with Broadcast Variables** # MAGIC The solution in (3c) works well for small datasets, but it requires Spark to (automatically) send the `idfsSmallWeights` variable to all the workers. If we didn't `cache()` similarities, then it might have to be recreated if we run `similar()` multiple times. This would cause Spark to send `idfsSmallWeights` every time. # MAGIC # MAGIC Instead, we can use a broadcast variable - we define the broadcast variable in the driver and then we can refer to it in each worker. Spark saves the broadcast variable at each worker, so it is only sent once. # MAGIC # MAGIC The steps you should perform are: # MAGIC * Define a `computeSimilarityBroadcast` function that given an element from the combination RDD computes the cosine simlarity for the two records in the element. This will be the same as the worker function `computeSimilarity` in (3c) except that it uses a broadcast variable. # MAGIC * Apply the worker function to every element in the RDD # MAGIC # MAGIC Again, compute the similarity between Amazon record `b000o24l3q` and Google record `http://www.google.com/base/feeds/snippets/17242822440574356561`. # COMMAND ---------- # ANSWER def computeSimilarityBroadcast(record): """ Compute similarity on a combination record, using Broadcast variable Args: record: a pair, (google record, amazon record) Returns: pair: a pair, (google URL, amazon ID, cosine similarity value) """ googleRec = record[0] amazonRec = record[1] googleURL = googleRec[0] amazonID = amazonRec[0] googleValue = googleRec[1] amazonValue = amazonRec[1] cs = cosineSimilarity(googleValue, amazonValue, idfsSmallBroadcast.value) return (googleURL, amazonID, cs) idfsSmallBroadcast = sc.broadcast(idfsSmallWeights) similaritiesBroadcast = (crossSmall .map(computeSimilarityBroadcast) .cache()) def similarBroadcast(amazonID, googleURL): """ Return similarity value, computed using Broadcast variable Args: amazonID: amazon ID googleURL: google URL Returns: similar: cosine similarity value """ return (similaritiesBroadcast .filter(lambda record: (record[0] == googleURL and record[1] == amazonID)) .collect()[0][2]) similarityAmazonGoogleBroadcast = similarBroadcast('b000o24l3q', 'http://www.google.com/base/feeds/snippets/17242822440574356561') print 'Requested similarity is %s.' % similarityAmazonGoogleBroadcast # COMMAND ---------- # TEST Perform Entity Resolution with Broadcast Variables (3d) from pyspark import Broadcast Test.assertTrue(isinstance(idfsSmallBroadcast, Broadcast), 'incorrect idfsSmallBroadcast') Test.assertEquals(len(idfsSmallBroadcast.value), 4772, 'incorrect idfsSmallBroadcast value') Test.assertTrue(abs(similarityAmazonGoogleBroadcast - 0.000303171940451) < 0.0000001, 'incorrect similarityAmazonGoogle') # COMMAND ---------- # PRIVATE_TEST Perform Entity Resolution with Broadcast Variables (3d) from pyspark import Broadcast Test.assertTrue(isinstance(idfsSmallBroadcast, Broadcast), 'incorrect idfsSmallBroadcast') Test.assertEquals(len(idfsSmallBroadcast.value), 4772, 'incorrect idfsSmallBroadcast value') Test.assertTrue(abs(similarityAmazonGoogleBroadcast - 0.000303171940451) < 0.0000001, 'incorrect similarityAmazonGoogle') similarityAnotherBroadcast = similarBroadcast('b000o24l3q', 'http://www.google.com/base/feeds/snippets/18274317756231697680') Test.assertTrue(abs(similarityAnotherBroadcast - 0.093899589276) < 0.0000001, 'incorrect another similarity test') # COMMAND ---------- # MAGIC %md # MAGIC #### **(3e) Perform a Gold Standard evaluation** # MAGIC # MAGIC First, we'll load the "gold standard" data and use it to answer several questions. We read and parse the Gold Standard data, where the format of each line is "Amazon Product ID","Google URL". The resulting RDD has elements of the form ("AmazonID GoogleURL", 'gold') # COMMAND ---------- GOLDFILE_PATTERN = '^(.+),(.+)' # Parse each line of a data file useing the specified regular expression pattern def parse_goldfile_line(goldfile_line): """ Parse a line from the 'golden standard' data file Args: goldfile_line: a line of data Returns: pair: ((key, 'gold', 1 if successful or else 0)) """ match = re.search(GOLDFILE_PATTERN, goldfile_line) if match is None: print 'Invalid goldfile line: %s' % goldfile_line return (goldfile_line, -1) elif match.group(1) == '"idAmazon"': print 'Header datafile line: %s' % goldfile_line return (goldfile_line, 0) else: key = '%s %s' % (removeQuotes(match.group(1)), removeQuotes(match.group(2))) return ((key, 'gold'), 1) goldfile = os.path.join(baseDir, inputPath, GOLD_STANDARD_PATH) gsRaw = (sc .textFile(goldfile) .map(parse_goldfile_line) .cache()) gsFailed = (gsRaw .filter(lambda s: s[1] == -1) .map(lambda s: s[0])) for line in gsFailed.take(10): print 'Invalid goldfile line: %s' % line goldStandard = (gsRaw .filter(lambda s: s[1] == 1) .map(lambda s: s[0]) .cache()) print 'Read %d lines, successfully parsed %d lines, failed to parse %d lines' % (gsRaw.count(), goldStandard.count(), gsFailed.count()) assert (gsFailed.count() == 0) assert (gsRaw.count() == (goldStandard.count() + 1)) # COMMAND ---------- # MAGIC %md # MAGIC #### Using the "gold standard" data we can answer the following questions: # MAGIC # MAGIC * How many true duplicate pairs are there in the small datasets? # MAGIC * What is the average similarity score for true duplicates? # MAGIC * What about for non-duplicates? # MAGIC The steps you should perform are: # MAGIC * Create a new `sims` RDD from the `similaritiesBroadcast` RDD, where each element consists of a pair of the form ("AmazonID GoogleURL", cosineSimilarityScore). An example entry from `sims` is: ('b000bi7uqs http://www.google.com/base/feeds/snippets/18403148885652932189', 0.40202896125621296) # MAGIC * Combine the `sims` RDD with the `goldStandard` RDD by creating a new `trueDupsRDD` RDD that has the just the cosine similarity scores for those "AmazonID GoogleURL" pairs that appear in both the `sims` RDD and `goldStandard` RDD. Hint: you can do this using the join() transformation. # MAGIC * Count the number of true duplicate pairs in the `trueDupsRDD` dataset # MAGIC * Compute the average similarity score for true duplicates in the `trueDupsRDD` datasets. Remember to use `float` for calculation # MAGIC * Create a new `nonDupsRDD` RDD that has the just the cosine similarity scores for those "AmazonID GoogleURL" pairs from the `similaritiesBroadcast` RDD that **do not** appear in both the *sims* RDD and gold standard RDD. # MAGIC * Compute the average similarity score for non-duplicates in the last datasets. Remember to use `float` for calculation # COMMAND ---------- # ANSWER sims = similaritiesBroadcast.map(lambda x: ("%s %s" % (x[1], x[0]), x[2])) trueDupsRDD = (sims .join(goldStandard) .map(lambda a: a[1][0])) trueDupsCount = trueDupsRDD.count() avgSimDups = float(trueDupsRDD.reduce(lambda a, b: a + b)) / float(trueDupsCount) nonDupsRDD = (sims .leftOuterJoin(goldStandard) .filter(lambda x: (x[1][1] is None)) .map(lambda a: a[1][0])) avgSimNon = float(nonDupsRDD.reduce(lambda a, b: a + b)) / float(sims.count() - trueDupsCount) print 'There are %s true duplicates.' % trueDupsCount print 'The average similarity of true duplicates is %s.' % avgSimDups print 'And for non duplicates, it is %s.' % avgSimNon # COMMAND ---------- # TEST Perform a Gold Standard evaluation (3e) Test.assertEquals(trueDupsCount, 146, 'incorrect trueDupsCount') Test.assertTrue(abs(avgSimDups - 0.264332573435) < 0.0000001, 'incorrect avgSimDups') Test.assertTrue(abs(avgSimNon - 0.00123476304656) < 0.0000001, 'incorrect avgSimNon') # COMMAND ---------- # PRIVATE_TEST Perform a Gold Standard evaluation (3e) Test.assertEquals(trueDupsCount, 146, 'incorrect trueDupsCount') Test.assertTrue(abs(avgSimDups - 0.264332573435) < 0.0000001, 'incorrect avgSimDups') Test.assertTrue(abs(avgSimNon - 0.00123476304656) < 0.0000001, 'incorrect avgSimNon') # COMMAND ---------- # ANSWER # Quiz question: # Based on the answers to the questions in part (3e), is cosine similarity doing a good job, qualitatively speaking, of identifying duplicates? # (*) Yes # ( ) No # *answer*: Cosine similarity looks useful, because duplicates on average are 250X more similar than non-duplicates. As long as variance isn't too high, that's a good signal. # COMMAND ---------- # MAGIC %md # MAGIC #### **Part 4: Scalable ER** # MAGIC In the previous parts, we built a text similarity function and used it for small scale entity resolution. Our implementation is limited by its quadratic run time complexity, and is not practical for even modestly sized datasets. In this part, we will implement a more scalable algorithm and use it to do entity resolution on the full dataset. # MAGIC # MAGIC #### Inverted Indices # MAGIC To improve our ER algorithm from the earlier parts, we should begin by analyzing its running time. In particular, the algorithm above is quadratic in two ways. First, we did a lot of redundant computation of tokens and weights, since each record was reprocessed every time it was compared. Second, we made quadratically many token comparisons between records. # MAGIC # MAGIC The first source of quadratic overhead can be eliminated with precomputation and look-up tables, but the second source is a little more tricky. In the worst case, every token in every record in one dataset exists in every record in the other dataset, and therefore every token makes a non-zero contribution to the cosine similarity. In this case, token comparison is unavoidably quadratic. # MAGIC # MAGIC But in reality most records have nothing (or very little) in common. Moreover, it is typical for a record in one dataset to have at most one duplicate record in the other dataset (this is the case assuming each dataset has been de-duplicated against itself). In this case, the output is linear in the size of the input and we can hope to achieve linear running time. # MAGIC # MAGIC An [**inverted index**](https://en.wikipedia.org/wiki/Inverted_index) is a data structure that will allow us to avoid making quadratically many token comparisons. It maps each token in the dataset to the list of documents that contain the token. So, instead of comparing, record by record, each token to every other token to see if they match, we will use inverted indices to *look up* records that match on a particular token. # MAGIC # MAGIC > **Note on terminology**: In text search, a *forward* index maps documents in a dataset to the tokens they contain. An *inverted* index supports the inverse mapping. # MAGIC # MAGIC > **Note**: For this section, use the complete Google and Amazon datasets, not the samples # COMMAND ---------- # MAGIC %md # MAGIC #### **(4a) Tokenize the full dataset** # MAGIC Tokenize each of the two full datasets for Google and Amazon. # COMMAND ---------- # ANSWER amazonFullRecToToken = amazon.map(lambda s: (s[0], tokenize(s[1]))) googleFullRecToToken = google.map(lambda s: (s[0], tokenize(s[1]))) print 'Amazon full dataset is %s products, Google full dataset is %s products' % (amazonFullRecToToken.count(), googleFullRecToToken.count()) # COMMAND ---------- # TEST Tokenize the full dataset (4a) Test.assertEquals(amazonFullRecToToken.count(), 1363, 'incorrect amazonFullRecToToken.count()') Test.assertEquals(googleFullRecToToken.count(), 3226, 'incorrect googleFullRecToToken.count()') # COMMAND ---------- # PRIVATE_TEST Tokenize the full dataset (4a) Test.assertEquals(amazonFullRecToToken.count(), 1363, 'incorrect amazonFullRecToToken.count()') Test.assertEquals(googleFullRecToToken.count(), 3226, 'incorrect googleFullRecToToken.count()') # COMMAND ---------- # MAGIC %md # MAGIC #### **(4b) Compute IDFs and TF-IDFs for the full datasets** # MAGIC # MAGIC We will reuse your code from above to compute IDF weights for the complete combined datasets. # MAGIC The steps you should perform are: # MAGIC * Create a new `fullCorpusRDD` that contains the tokens from the full Amazon and Google datasets. # MAGIC * Apply your `idfs` function to the `fullCorpusRDD` # MAGIC * Create a broadcast variable containing a dictionary of the IDF weights for the full dataset. # MAGIC * For each of the Amazon and Google full datasets, create weight RDDs that map IDs/URLs to TF-IDF weighted token vectors. # COMMAND ---------- # ANSWER fullCorpusRDD = amazonFullRecToToken.union(googleFullRecToToken) idfsFull = idfs(fullCorpusRDD) idfsFullCount = idfsFull.count() print 'There are %s unique tokens in the full datasets.' % idfsFullCount # Recompute IDFs for full dataset idfsFullWeights = idfsFull.collectAsMap() idfsFullBroadcast = sc.broadcast(idfsFullWeights) # Pre-compute TF-IDF weights. Build mappings from record ID weight vector. amazonWeightsRDD = amazonFullRecToToken.map(lambda x: (x[0], tfidf(x[1], idfsFullBroadcast.value))) googleWeightsRDD = googleFullRecToToken.map(lambda x: (x[0], tfidf(x[1], idfsFullBroadcast.value))) print 'There are %s Amazon weights and %s Google weights.' % (amazonWeightsRDD.count(), googleWeightsRDD.count()) # COMMAND ---------- # TEST Compute IDFs and TF-IDFs for the full datasets (4b) Test.assertEquals(idfsFullCount, 17078, 'incorrect idfsFullCount') Test.assertEquals(amazonWeightsRDD.count(), 1363, 'incorrect amazonWeightsRDD.count()') Test.assertEquals(googleWeightsRDD.count(), 3226, 'incorrect googleWeightsRDD.count()') # COMMAND ---------- # PRIVATE_TEST Compute IDFs and TF-IDFs for the full datasets (4b) Test.assertEquals(idfsFullCount, 17078, 'incorrect idfsFullCount') Test.assertEquals(amazonWeightsRDD.count(), 1363, 'incorrect amazonWeightsRDD.count()') Test.assertEquals(googleWeightsRDD.count(), 3226, 'incorrect googleWeightsRDD.count()') # COMMAND ---------- # MAGIC %md # MAGIC #### **(4c) Compute Norms for the weights from the full datasets** # MAGIC # MAGIC We will reuse your code from above to compute norms of the IDF weights for the complete combined dataset. # MAGIC The steps you should perform are: # MAGIC * Create two collections, one for each of the full Amazon and Google datasets, where IDs/URLs map to the norm of the associated TF-IDF weighted token vectors. # MAGIC * Convert each collection into a broadcast variable, containing a dictionary of the norm of IDF weights for the full dataset # COMMAND ---------- # ANSWER amazonNorms = amazonWeightsRDD.map(lambda x: (x[0], norm(x[1]))).collectAsMap() amazonNormsBroadcast = sc.broadcast(amazonNorms) googleNorms = googleWeightsRDD.map(lambda x: (x[0], norm(x[1]))).collectAsMap() googleNormsBroadcast = sc.broadcast(googleNorms) print 'There are %s Amazon norms and %s Google norms.' % (len(amazonNorms), len(googleNorms)) # COMMAND ---------- # TEST Compute Norms for the weights from the full datasets (4c) Test.assertTrue(isinstance(amazonNormsBroadcast, Broadcast), 'incorrect amazonNormsBroadcast') Test.assertEquals(len(amazonNormsBroadcast.value), 1363, 'incorrect amazonNormsBroadcast.value') Test.assertTrue(isinstance(googleNormsBroadcast, Broadcast), 'incorrect googleNormsBroadcast') Test.assertEquals(len(googleNormsBroadcast.value), 3226, 'incorrect googleNormsBroadcast.value') # COMMAND ---------- # PRIVATE_TEST Compute Norms for the weights from the full datasets (4c) Test.assertTrue(isinstance(amazonNormsBroadcast, Broadcast), 'incorrect amazonNormsBroadcast') Test.assertEquals(len(amazonNormsBroadcast.value), 1363, 'incorrect amazonNormsBroadcast.value') Test.assertTrue(isinstance(googleNormsBroadcast, Broadcast), 'incorrect googleNormsBroadcast') Test.assertEquals(len(googleNormsBroadcast.value), 3226, 'incorrect googleNormsBroadcast.value') # COMMAND ---------- # MAGIC %md # MAGIC #### **(4d) Create inverted indicies from the full datasets** # MAGIC # MAGIC Build inverted indices of both data sources. # MAGIC The steps you should perform are: # MAGIC * Create an invert function that given a pair of (ID/URL, TF-IDF weighted token vector), returns a list of pairs of (token, ID/URL). Recall that the TF-IDF weighted token vector is a Python dictionary with keys that are tokens and values that are weights. # MAGIC * Use your invert function to convert the full Amazon and Google TF-IDF weighted token vector datasets into two RDDs where each element is a pair of a token and an ID/URL that contain that token. These are inverted indicies. # COMMAND ---------- # ANSWER def invert(record): """ Invert (ID, tokens) to a list of (token, ID) Args: record: a pair, (ID, token vector) Returns: pairs: a list of pairs of token to ID """ value = record[0] keys = record[1].keys() pairs = [] for key in keys: pairs.append((key, value)) return (pairs) amazonInvPairsRDD = (amazonWeightsRDD .flatMap(invert) .cache()) googleInvPairsRDD = (googleWeightsRDD .flatMap(invert) .cache()) print 'There are %s Amazon inverted pairs and %s Google inverted pairs.' % (amazonInvPairsRDD.count(), googleInvPairsRDD.count()) # COMMAND ---------- # TEST Create inverted indicies from the full datasets (4d) invertedPair = invert((1, {'foo': 2})) Test.assertEquals(invertedPair[0][1], 1, 'incorrect invert result') Test.assertEquals(amazonInvPairsRDD.count(), 111387, 'incorrect amazonInvPairsRDD.count()') Test.assertEquals(googleInvPairsRDD.count(), 77678, 'incorrect googleInvPairsRDD.count()') # COMMAND ---------- # PRIVATE_TEST Create inverted indicies from the full datasets (4d) invertedPair = invert((1, {'foo': 2})) Test.assertEquals(invertedPair[0][1], 1, 'incorrect invert result') Test.assertEquals(amazonInvPairsRDD.count(), 111387, 'incorrect amazonInvPairsRDD.count()') Test.assertEquals(googleInvPairsRDD.count(), 77678, 'incorrect googleInvPairsRDD.count()') # COMMAND ---------- # MAGIC %md # MAGIC #### **(4e) Identify common tokens from the full dataset** # MAGIC # MAGIC We are now in position to efficiently perform ER on the full datasets. Implement the following algorithm to build an RDD that maps a pair of (ID, URL) to a list of tokens they share in common: # MAGIC * Using the two inverted indicies (RDDs where each element is a pair of a token and an ID or URL that contains that token), create a new RDD that contains only tokens that appear in both datasets. This will yield an RDD of pairs of (token, iterable(ID, URL)). # MAGIC * We need a mapping from (ID, URL) to token, so create a function that will swap the elements of the RDD you just created to create this new RDD consisting of ((ID, URL), token) pairs. # MAGIC * Finally, create an RDD consisting of pairs mapping (ID, URL) to all the tokens the pair shares in common # COMMAND ---------- # ANSWER def swap(record): """ Swap (token, (ID, URL)) to ((ID, URL), token) Args: record: a pair, (token, (ID, URL)) Returns: pair: ((ID, URL), token) """ token = record[0] keys = (record[1][0], record[1][1]) return (keys, token) commonTokens = (amazonInvPairsRDD.join(googleInvPairsRDD) .map(swap) .groupByKey() .map(lambda rec: (rec[0], list(rec[1]))) .cache()) print 'Found %d common tokens' % commonTokens.count() # COMMAND ---------- # TEST Identify common tokens from the full dataset (4e) Test.assertEquals(commonTokens.count(), 2441100, 'incorrect commonTokens.count()') # COMMAND ---------- # PRIVATE_TEST Identify common tokens from the full dataset (4e) Test.assertEquals(commonTokens.count(), 2441100, 'incorrect commonTokens.count()') # COMMAND ---------- # MAGIC %md # MAGIC #### **(4f) Identify common tokens from the full dataset** # MAGIC # MAGIC Use the data structures from parts **(4a)** and **(4e)** to build a dictionary to map record pairs to cosine similarity scores. # MAGIC The steps you should perform are: # MAGIC * Create two broadcast dictionaries from the amazonWeights and googleWeights RDDs # MAGIC * Create a `fastCosinesSimilarity` function that takes in a record consisting of the pair ((Amazon ID, Google URL), tokens list) and computes the sum for each of the tokens in the token list of the products of the Amazon weight for the token times the Google weight for the token. The sum should then be divided by the norm for the Google URL and then divided by the norm for the Amazon ID. The function should return this value in a pair with the key being the (Amazon ID, Google URL). *Make sure you use broadcast variables you created for both the weights and norms* # MAGIC * Apply your `fastCosinesSimilarity` function to the common tokens from the full dataset # COMMAND ---------- # ANSWER amazonWeightsBroadcast = sc.broadcast(amazonWeightsRDD.collectAsMap()) googleWeightsBroadcast = sc.broadcast(googleWeightsRDD.collectAsMap()) def fastCosineSimilarity(record): """ Compute Cosine Similarity using Broadcast variables Args: record: ((ID, URL), token) Returns: pair: ((ID, URL), cosine similarity value) """ amazonRec = record[0][0] googleRec = record[0][1] tokens = record[1] s = sum([amazonWeightsBroadcast.value[amazonRec][t] * googleWeightsBroadcast.value[googleRec][t] for t in tokens]) value = s / googleNormsBroadcast.value[googleRec] / amazonNormsBroadcast.value[amazonRec] key = (amazonRec, googleRec) return (key, value) similaritiesFullRDD = (commonTokens .map(fastCosineSimilarity) .cache()) print similaritiesFullRDD.count() # COMMAND ---------- # TEST Identify common tokens from the full dataset (4f) similarityTest = similaritiesFullRDD.filter(lambda ((aID, gURL), cs): aID == 'b00005lzly' and gURL == 'http://www.google.com/base/feeds/snippets/13823221823254120257').collect() Test.assertEquals(len(similarityTest), 1, 'incorrect len(similarityTest)') Test.assertTrue(abs(similarityTest[0][1] - 4.286548414e-06) < 0.000000000001, 'incorrect similarityTest fastCosineSimilarity') Test.assertEquals(similaritiesFullRDD.count(), 2441100, 'incorrect similaritiesFullRDD.count()') # COMMAND ---------- # PRIVATE_TEST Identify common tokens from the full dataset (4f) similarityTest = similaritiesFullRDD.filter(lambda ((aID, gURL), cs): aID == 'b00005lzly' and gURL == 'http://www.google.com/base/feeds/snippets/13823221823254120257').collect() Test.assertEquals(len(similarityTest), 1, 'incorrect len(similarityTest)') Test.assertTrue(abs(similarityTest[0][1] - 4.286548414e-06) < 0.000000000001, 'incorrect similarityTest fastCosineSimilarity') Test.assertEquals(similaritiesFullRDD.count(), 2441100, 'incorrect similaritiesFullRDD.count()') # COMMAND ---------- # MAGIC %md # MAGIC #### **Part 5: Analysis** # MAGIC # MAGIC Now we have an authoritative list of record-pair similarities, but we need a way to use those similarities to decide if two records are duplicates or not. The simplest approach is to pick a **threshold**. Pairs whose similarity is above the threshold are declared duplicates, and pairs below the threshold are declared distinct. # MAGIC # MAGIC To decide where to set the threshold we need to understand what kind of errors result at different levels. If we set the threshold too low, we get more **false positives**, that is, record-pairs we say are duplicates that in reality are not. If we set the threshold too high, we get more **false negatives**, that is, record-pairs that really are duplicates but that we miss. # MAGIC # MAGIC ER algorithms are evaluated by the common metrics of information retrieval and search called **precision** and **recall**. Precision asks of all the record-pairs marked duplicates, what fraction are true duplicates? Recall asks of all the true duplicates in the data, what fraction did we successfully find? As with false positives and false negatives, there is a trade-off between precision and recall. A third metric, called **F-measure**, takes the harmonic mean of precision and recall to measure overall goodness in a single value: # MAGIC \\[ Fmeasure = 2 \frac{precision * recall}{precision + recall} \\] # MAGIC # MAGIC > **Note**: In this part, we use the "gold standard" mapping from the included file to look up true duplicates, and the results of Part 4. # MAGIC # MAGIC > **Note**: In this part, you will not be writing any code. We've written all of the code for you. Run each cell and then answer the quiz questions on Studio. # COMMAND ---------- # MAGIC %md # MAGIC #### **(5a) Counting True Positives, False Positives, and False Negatives** # MAGIC # MAGIC We need functions that count True Positives (true duplicates above the threshold), and False Positives and False Negatives: # MAGIC * We start with creating the `simsFullRDD` from our `similaritiesFullRDD` that consists of a pair of ((Amazon ID, Google URL), simlarity score) # MAGIC * From this RDD, we create an RDD consisting of only the similarity scores # MAGIC * To look up the similarity scores for true duplicates, we perform a left outer join using the `goldStandard` RDD and `simsFullRDD` and extract the # COMMAND ---------- # Create an RDD of ((Amazon ID, Google URL), similarity score) simsFullRDD = similaritiesFullRDD.map(lambda x: ("%s %s" % (x[0][0], x[0][1]), x[1])) assert (simsFullRDD.count() == 2441100) # Create an RDD of just the similarity scores simsFullValuesRDD = (simsFullRDD .map(lambda x: x[1]) .cache()) assert (simsFullValuesRDD.count() == 2441100) # Look up all similarity scores for true duplicates # This helper function will return the similarity score for records that are in the gold standard and the simsFullRDD (True positives), and will return 0 for records that are in the gold standard but not in simsFullRDD (False Negatives). def gs_value(record): if (record[1][1] is None): return 0 else: return record[1][1] # Join the gold standard and simsFullRDD, and then extract the similarities scores using the helper function trueDupSimsRDD = (goldStandard .leftOuterJoin(simsFullRDD) .map(gs_value) .cache()) print 'There are %s true duplicates.' % trueDupSimsRDD.count() assert(trueDupSimsRDD.count() == 1300) # COMMAND ---------- # MAGIC %md # MAGIC The next step is to pick a threshold between 0 and 1 for the count of True Positives (true duplicates above the threshold). However, we would like to explore many different thresholds. # MAGIC # MAGIC To do this, we divide the space of thresholds into 100 bins, and take the following actions: # MAGIC * We use Spark Accumulators to implement our counting function. We define a custom accumulator type, `VectorAccumulatorParam`, along with functions to initialize the accumulator's vector to zero, and to add two vectors. Note that we have to use the += operator because you can only add to an accumulator. # MAGIC * We create a helper function to create a list with one entry (bit) set to a value and all others set to 0. # MAGIC * We create 101 bins for the 100 threshold values between 0 and 1. # MAGIC * Now, for each similarity score, we can compute the false positives. We do this by adding each similarity score to the appropriate bin of the vector. Then we remove true positives from the vector by using the gold standard data. # MAGIC * We define functions for computing false positive and negative and true positives, for a given threshold. # COMMAND ---------- from pyspark.accumulators import AccumulatorParam class VectorAccumulatorParam(AccumulatorParam): # Initialize the VectorAccumulator to 0 def zero(self, value): return [0] * len(value) # Add two VectorAccumulator variables def addInPlace(self, val1, val2): for i in xrange(len(val1)): val1[i] += val2[i] return val1 # Return a list with entry x set to value and all other entries set to 0 def set_bit(x, value, length): bits = [] for y in xrange(length): if (x == y): bits.append(value) else: bits.append(0) return bits # Pre-bin counts of false positives for different threshold ranges BINS = 101 nthresholds = 100 def bin(similarity): return int(similarity * nthresholds) # fpCounts[i] = number of entries (possible false positives) where bin(similarity) == i zeros = [0] * BINS fpCounts = sc.accumulator(zeros, VectorAccumulatorParam()) def add_element(score): global fpCounts b = bin(score) fpCounts += set_bit(b, 1, BINS) simsFullValuesRDD.foreach(add_element) # Remove true positives from FP counts def sub_element(score): global fpCounts b = bin(score) fpCounts += set_bit(b, -1, BINS) trueDupSimsRDD.foreach(sub_element) def falsepos(threshold): fpList = fpCounts.value return sum([fpList[b] for b in range(0, BINS) if float(b) / nthresholds >= threshold]) def falseneg(threshold): return trueDupSimsRDD.filter(lambda x: x < threshold).count() def truepos(threshold): return trueDupSimsRDD.count() - falsenegDict[threshold] # COMMAND ---------- # MAGIC %md # MAGIC #### **(5b) Precision, Recall, and F-measures** # MAGIC We define functions so that we can compute the [Precision](https://en.wikipedia.org/wiki/Precision_and_recall), [Recall](https://en.wikipedia.org/wiki/Precision_and_recall), and [F-measure](https://en.wikipedia.org/wiki/Precision_and_recall#F-measure) as a function of threshold value: # MAGIC * Precision = true-positives / (true-positives + false-positives) # MAGIC * Recall = true-positives / (true-positives + false-negatives) # MAGIC * F-measure = 2 x Recall x Precision / (Recall + Precision) # COMMAND ---------- # Precision = true-positives / (true-positives + false-positives) # Recall = true-positives / (true-positives + false-negatives) # F-measure = 2 x Recall x Precision / (Recall + Precision) def precision(threshold): tp = trueposDict[threshold] return float(tp) / (tp + falseposDict[threshold]) def recall(threshold): tp = trueposDict[threshold] return float(tp) / (tp + falsenegDict[threshold]) def fmeasure(threshold): r = recall(threshold) p = precision(threshold) return 2 * r * p / (r + p) # COMMAND ---------- # MAGIC %md # MAGIC #### **(5c) Line Plots** # MAGIC We can make line plots of precision, recall, and F-measure as a function of threshold value, for thresholds between 0.0 and 1.0. You can change `nthresholds` (above in part **(5a)**) to change the threshold values to plot. # COMMAND ---------- thresholds = [float(n) / nthresholds for n in range(0, nthresholds)] falseposDict = dict([(t, falsepos(t)) for t in thresholds]) falsenegDict = dict([(t, falseneg(t)) for t in thresholds]) trueposDict = dict([(t, truepos(t)) for t in thresholds]) precisions = [precision(t) for t in thresholds] recalls = [recall(t) for t in thresholds] fmeasures = [fmeasure(t) for t in thresholds] print precisions[0], fmeasures[0] assert (abs(precisions[0] - 0.000532546802671) < 0.0000001) assert (abs(fmeasures[0] - 0.00106452669505) < 0.0000001) fig = plt.figure() plt.plot(thresholds, precisions) plt.plot(thresholds, recalls) plt.plot(thresholds, fmeasures) plt.legend(['Precision', 'Recall', 'F-measure']) display(fig) pass # COMMAND ---------- # Create a DataFrame and visualize using display() graph = [(t, precision(t), recall(t),fmeasure(t)) for t in thresholds] graphRDD = sc.parallelize(graph) graphRow = graphRDD.map(lambda (t, x, y, z): Row(threshold=t, precision=x, recall=y, fmeasure=z)) graphDF = sqlContext.createDataFrame(graphRow) display(graphDF) # COMMAND ---------- # MAGIC %md # MAGIC #### Discussion # MAGIC # MAGIC State-of-the-art tools can get an F-measure of about 60% on this dataset. In this lab exercise, our best F-measure is closer to 40%. Look at some examples of errors (both False Positives and False Negatives) and think about what went wrong. # MAGIC # MAGIC #### There are several ways we might improve our simple classifier, including: # MAGIC * Using additional attributes # MAGIC * Performing better featurization of our textual data (e.g., stemming, n-grams, etc.) # MAGIC * Using different similarity functions
unlicense
hofschroeer/gnuradio
gr-filter/examples/resampler.py
7
4489
#!/usr/bin/env python # # Copyright 2009,2012,2013 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from __future__ import print_function from __future__ import division from __future__ import unicode_literals from gnuradio import gr from gnuradio import filter from gnuradio import blocks import sys import numpy try: from gnuradio import analog except ImportError: sys.stderr.write("Error: Program requires gr-analog.\n") sys.exit(1) try: from matplotlib import pyplot except ImportError: sys.stderr.write("Error: Program requires matplotlib (see: matplotlib.sourceforge.net).\n") sys.exit(1) class mytb(gr.top_block): def __init__(self, fs_in, fs_out, fc, N=10000): gr.top_block.__init__(self) rerate = float(fs_out) / float(fs_in) print("Resampling from %f to %f by %f " %(fs_in, fs_out, rerate)) # Creating our own taps taps = filter.firdes.low_pass_2(32, 32, 0.25, 0.1, 80) self.src = analog.sig_source_c(fs_in, analog.GR_SIN_WAVE, fc, 1) #self.src = analog.noise_source_c(analog.GR_GAUSSIAN, 1) self.head = blocks.head(gr.sizeof_gr_complex, N) # A resampler with our taps self.resamp_0 = filter.pfb.arb_resampler_ccf(rerate, taps, flt_size=32) # A resampler that just needs a resampling rate. # Filter is created for us and designed to cover # entire bandwidth of the input signal. # An optional atten=XX rate can be used here to # specify the out-of-band rejection (default=80). self.resamp_1 = filter.pfb.arb_resampler_ccf(rerate) self.snk_in = blocks.vector_sink_c() self.snk_0 = blocks.vector_sink_c() self.snk_1 = blocks.vector_sink_c() self.connect(self.src, self.head, self.snk_in) self.connect(self.head, self.resamp_0, self.snk_0) self.connect(self.head, self.resamp_1, self.snk_1) def main(): fs_in = 8000 fs_out = 20000 fc = 1000 N = 10000 tb = mytb(fs_in, fs_out, fc, N) tb.run() # Plot PSD of signals nfftsize = 2048 fig1 = pyplot.figure(1, figsize=(10,10), facecolor="w") sp1 = fig1.add_subplot(2,1,1) sp1.psd(tb.snk_in.data(), NFFT=nfftsize, noverlap=nfftsize / 4, Fs = fs_in) sp1.set_title(("Input Signal at f_s=%.2f kHz" % (fs_in / 1000.0))) sp1.set_xlim([-fs_in / 2, fs_in / 2]) sp2 = fig1.add_subplot(2,1,2) sp2.psd(tb.snk_0.data(), NFFT=nfftsize, noverlap=nfftsize / 4, Fs = fs_out, label="With our filter") sp2.psd(tb.snk_1.data(), NFFT=nfftsize, noverlap=nfftsize / 4, Fs = fs_out, label="With auto-generated filter") sp2.set_title(("Output Signals at f_s=%.2f kHz" % (fs_out / 1000.0))) sp2.set_xlim([-fs_out / 2, fs_out / 2]) sp2.legend() # Plot signals in time Ts_in = 1.0 / fs_in Ts_out = 1.0 / fs_out t_in = numpy.arange(0, len(tb.snk_in.data())*Ts_in, Ts_in) t_out = numpy.arange(0, len(tb.snk_0.data())*Ts_out, Ts_out) fig2 = pyplot.figure(2, figsize=(10,10), facecolor="w") sp21 = fig2.add_subplot(2,1,1) sp21.plot(t_in, tb.snk_in.data()) sp21.set_title(("Input Signal at f_s=%.2f kHz" % (fs_in / 1000.0))) sp21.set_xlim([t_in[100], t_in[200]]) sp22 = fig2.add_subplot(2,1,2) sp22.plot(t_out, tb.snk_0.data(), label="With our filter") sp22.plot(t_out, tb.snk_1.data(), label="With auto-generated filter") sp22.set_title(("Output Signals at f_s=%.2f kHz" % (fs_out / 1000.0))) r = float(fs_out) / float(fs_in) sp22.set_xlim([t_out[r * 100], t_out[r * 200]]) sp22.legend() pyplot.show() if __name__ == "__main__": main()
gpl-3.0
mgymrek/lobstr-code
scripts/lobSTR_capillary_comparator.py
1
6675
#!/usr/bin/env python """ Compare capillary vs. lobSTR calls This script is part of lobSTR_validation_suite.sh and is not mean to be called directly. """ import argparse import numpy as np import pandas as pd import sys from scipy.stats import pearsonr def ConvertSample(x): """ Convert HGDP samples numbers to standard format HGDPXXXXX """ num = x.split("_")[1] zeros = 5-len(num) return "HGDP"+"0"*zeros + num def LoadCapillaryFromStru(capfile, convfile): """ Input: capfile: filename for .stru file convfile: filename giving illumina sample id->HGDP id Output: data frame with capillary calls Construct data frame with: marker sample allele1.cap allele2.cap Use sample names converted to Illumina format Ignore alleles that are -9,-9 """ # Load conversions conv = pd.read_csv(convfile, sep="\t") converter = dict(zip(conv.hgdp, conv.sample)) # Load genotypes markers = [] samples = [] allele1s = [] allele2s = [] f = open(capfile, "r") marker_names = f.readline().strip().split() line = f.readline() while line != "": items = line.strip().split() ident = "HGDP_%s"%items[0] pop_code = items[1] pop_name = items[2] geo = items[3] geo2 = items[4] alleles1 = items[5:] line = f.readline() # get second allele for the individual items = line.strip().split() ident2 = "HGDP_%s"%items[0] if ident != ident2: sys.stderr.write("ERROR parsing .stru file for individual %s\n"%items[0]) sys.exit(1) alleles2 = items[5:] sample = converter.get(ConvertSample(ident), "NA") if sample != "NA": for i in range(len(alleles1)): if str(alleles1[i]) != "-9" and str(alleles2[i]) != "-9": markers.append(marker_names[i]) samples.append(sample) allele1s.append(int(alleles1[i])) allele2s.append(int(alleles2[i])) line = f.readline() return pd.DataFrame({"marker": markers, "sample": samples, \ "allele1.cap": allele1s, "allele2.cap": allele2s}) def GetAllele(x, allele_num): if allele_num == 1: al = x["allele1.cap"] else: al = x["allele2.cap"] raw_allele = ((al-x["effective_product_size"])/x["period"])*x["period"] corr_allele = raw_allele - x["correction"] return corr_allele def GetDosage(a1, a2): if str(a1) == "." or str(a2) == ".": return "NA" else: return (float(a1)+float(a2))*0.5 if __name__ == "__main__": parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("--lobSTR", help="Tab file with lobSTR calls created by lobSTR_vcf_to_tab.py", type=str, required=True) parser.add_argument("--cap", help=".stru file with capillary calls", type=str, required=True) parser.add_argument("--corrections", help="Tab file with Marshfield marker corrections", type=str, required=True) parser.add_argument("--sample-conversions", help="Tab file with conversion between sample ids", type=str, required=True) parser.add_argument("--output-stats", help="Output sample, call, and locus level stats to files with this prefix", type=str, required=False) args = parser.parse_args() LOBFILE = args.lobSTR CAPFILE = args.cap CORRFILE = args.corrections CONVFILE = args.sample_conversions # Load lobSTR calls and corrections lob = pd.read_csv(LOBFILE, sep="\t") corr = pd.read_csv(CORRFILE, sep="\t") # Load capillary calls to data frame cap = LoadCapillaryFromStru(CAPFILE, CONVFILE) # Merge ddatasets res = pd.merge(lob, corr, on=["chrom", "start"]) res = pd.merge(res, cap, on=["marker", "sample"]) res["allele1.cap.corr"] = res.apply(lambda x: GetAllele(x, 1), 1) res["allele2.cap.corr"] = res.apply(lambda x: GetAllele(x, 2), 1) res["correct"] = res.apply(lambda x: str(x["allele1"])==str(x["allele1.cap.corr"]) and \ str(x["allele2"])==str(x["allele2.cap.corr"]), 1) res["dosage_lob"] = res.apply(lambda x: GetDosage(x["allele1"], x["allele2"]), 1) res["dosage_cap"] = res.apply(lambda x: GetDosage(x["allele1.cap.corr"], x["allele2.cap.corr"]), 1) ##### Stats ##### if args.output_stats: # Call level stats res.to_csv(args.output_stats+".calllevel.tab", index=False, sep="\t") # Sample level stats sample_level = res.groupby("sample", as_index=False).agg({"DP": np.mean, "Q": np.mean, "start": len, "correct": np.mean}) sample_level.to_csv(args.output_stats+".samplelevel.tab", index=False, sep="\t") # Locus level stats res["length"] = res["end_x"]-res["start"]+1 locus_level = res.groupby(["chrom","start"], as_index=False).agg({"length": np.mean, "DP": np.mean, "Q": np.mean, "GT": len, "SB": np.mean, "DISTENDS": np.mean, "correct": np.mean}) locus_level.to_csv(args.output_stats+".locuslevel.tab", index=False, sep="\t") ##### Results ##### sys.stdout.write("########## Results ########\n") # Get stats about calls num_samples = len(set(res[res["allele1"].apply(str)!="."]["sample"])) num_markers = len(set(res[res["allele1"].apply(str)!="."]["marker"])) num_nocalls = res[res["allele1"].apply(str)=="."].shape[0] sys.stdout.write("# Samples: %s\n"%num_samples) sys.stdout.write("# Markers: %s\n"%num_markers) sys.stdout.write("# No call rate: %s\n"%(num_nocalls*1.0/res.shape[0])) sys.stdout.write("# Number of calls compared: %s\n"%res.shape[0]) # Accuracy acc = np.mean(res[res["allele1"].apply(str)!="."]["correct"]) sys.stdout.write("# Accuracy: %s\n"%acc) # R2 dl = map(float, list(res[res["allele1"].apply(str)!="."]["dosage_lob"])) dc = map(float, list(res[res["allele1"].apply(str)!="."]["dosage_cap"])) r2 = pearsonr(dl, dc)[0]**2 sys.stdout.write("# R2: %s\n"%r2)
gpl-3.0
louisLouL/pair_trading
capstone_env/lib/python3.6/site-packages/pandas/tests/tools/test_numeric.py
6
14437
import pytest import decimal import numpy as np import pandas as pd from pandas import to_numeric, _np_version_under1p9 from pandas.util import testing as tm from numpy import iinfo class TestToNumeric(object): def test_empty(self): # see gh-16302 s = pd.Series([], dtype=object) res = to_numeric(s) expected = pd.Series([], dtype=np.int64) tm.assert_series_equal(res, expected) # Original issue example res = to_numeric(s, errors='coerce', downcast='integer') expected = pd.Series([], dtype=np.int8) tm.assert_series_equal(res, expected) def test_series(self): s = pd.Series(['1', '-3.14', '7']) res = to_numeric(s) expected = pd.Series([1, -3.14, 7]) tm.assert_series_equal(res, expected) s = pd.Series(['1', '-3.14', 7]) res = to_numeric(s) tm.assert_series_equal(res, expected) def test_series_numeric(self): s = pd.Series([1, 3, 4, 5], index=list('ABCD'), name='XXX') res = to_numeric(s) tm.assert_series_equal(res, s) s = pd.Series([1., 3., 4., 5.], index=list('ABCD'), name='XXX') res = to_numeric(s) tm.assert_series_equal(res, s) # bool is regarded as numeric s = pd.Series([True, False, True, True], index=list('ABCD'), name='XXX') res = to_numeric(s) tm.assert_series_equal(res, s) def test_error(self): s = pd.Series([1, -3.14, 'apple']) msg = 'Unable to parse string "apple" at position 2' with tm.assert_raises_regex(ValueError, msg): to_numeric(s, errors='raise') res = to_numeric(s, errors='ignore') expected = pd.Series([1, -3.14, 'apple']) tm.assert_series_equal(res, expected) res = to_numeric(s, errors='coerce') expected = pd.Series([1, -3.14, np.nan]) tm.assert_series_equal(res, expected) s = pd.Series(['orange', 1, -3.14, 'apple']) msg = 'Unable to parse string "orange" at position 0' with tm.assert_raises_regex(ValueError, msg): to_numeric(s, errors='raise') def test_error_seen_bool(self): s = pd.Series([True, False, 'apple']) msg = 'Unable to parse string "apple" at position 2' with tm.assert_raises_regex(ValueError, msg): to_numeric(s, errors='raise') res = to_numeric(s, errors='ignore') expected = pd.Series([True, False, 'apple']) tm.assert_series_equal(res, expected) # coerces to float res = to_numeric(s, errors='coerce') expected = pd.Series([1., 0., np.nan]) tm.assert_series_equal(res, expected) def test_list(self): s = ['1', '-3.14', '7'] res = to_numeric(s) expected = np.array([1, -3.14, 7]) tm.assert_numpy_array_equal(res, expected) def test_list_numeric(self): s = [1, 3, 4, 5] res = to_numeric(s) tm.assert_numpy_array_equal(res, np.array(s, dtype=np.int64)) s = [1., 3., 4., 5.] res = to_numeric(s) tm.assert_numpy_array_equal(res, np.array(s)) # bool is regarded as numeric s = [True, False, True, True] res = to_numeric(s) tm.assert_numpy_array_equal(res, np.array(s)) def test_numeric(self): s = pd.Series([1, -3.14, 7], dtype='O') res = to_numeric(s) expected = pd.Series([1, -3.14, 7]) tm.assert_series_equal(res, expected) s = pd.Series([1, -3.14, 7]) res = to_numeric(s) tm.assert_series_equal(res, expected) # GH 14827 df = pd.DataFrame(dict( a=[1.2, decimal.Decimal(3.14), decimal.Decimal("infinity"), '0.1'], b=[1.0, 2.0, 3.0, 4.0], )) expected = pd.DataFrame(dict( a=[1.2, 3.14, np.inf, 0.1], b=[1.0, 2.0, 3.0, 4.0], )) # Test to_numeric over one column df_copy = df.copy() df_copy['a'] = df_copy['a'].apply(to_numeric) tm.assert_frame_equal(df_copy, expected) # Test to_numeric over multiple columns df_copy = df.copy() df_copy[['a', 'b']] = df_copy[['a', 'b']].apply(to_numeric) tm.assert_frame_equal(df_copy, expected) def test_numeric_lists_and_arrays(self): # Test to_numeric with embedded lists and arrays df = pd.DataFrame(dict( a=[[decimal.Decimal(3.14), 1.0], decimal.Decimal(1.6), 0.1] )) df['a'] = df['a'].apply(to_numeric) expected = pd.DataFrame(dict( a=[[3.14, 1.0], 1.6, 0.1], )) tm.assert_frame_equal(df, expected) df = pd.DataFrame(dict( a=[np.array([decimal.Decimal(3.14), 1.0]), 0.1] )) df['a'] = df['a'].apply(to_numeric) expected = pd.DataFrame(dict( a=[[3.14, 1.0], 0.1], )) tm.assert_frame_equal(df, expected) def test_all_nan(self): s = pd.Series(['a', 'b', 'c']) res = to_numeric(s, errors='coerce') expected = pd.Series([np.nan, np.nan, np.nan]) tm.assert_series_equal(res, expected) def test_type_check(self): # GH 11776 df = pd.DataFrame({'a': [1, -3.14, 7], 'b': ['4', '5', '6']}) with tm.assert_raises_regex(TypeError, "1-d array"): to_numeric(df) for errors in ['ignore', 'raise', 'coerce']: with tm.assert_raises_regex(TypeError, "1-d array"): to_numeric(df, errors=errors) def test_scalar(self): assert pd.to_numeric(1) == 1 assert pd.to_numeric(1.1) == 1.1 assert pd.to_numeric('1') == 1 assert pd.to_numeric('1.1') == 1.1 with pytest.raises(ValueError): to_numeric('XX', errors='raise') assert to_numeric('XX', errors='ignore') == 'XX' assert np.isnan(to_numeric('XX', errors='coerce')) def test_numeric_dtypes(self): idx = pd.Index([1, 2, 3], name='xxx') res = pd.to_numeric(idx) tm.assert_index_equal(res, idx) res = pd.to_numeric(pd.Series(idx, name='xxx')) tm.assert_series_equal(res, pd.Series(idx, name='xxx')) res = pd.to_numeric(idx.values) tm.assert_numpy_array_equal(res, idx.values) idx = pd.Index([1., np.nan, 3., np.nan], name='xxx') res = pd.to_numeric(idx) tm.assert_index_equal(res, idx) res = pd.to_numeric(pd.Series(idx, name='xxx')) tm.assert_series_equal(res, pd.Series(idx, name='xxx')) res = pd.to_numeric(idx.values) tm.assert_numpy_array_equal(res, idx.values) def test_str(self): idx = pd.Index(['1', '2', '3'], name='xxx') exp = np.array([1, 2, 3], dtype='int64') res = pd.to_numeric(idx) tm.assert_index_equal(res, pd.Index(exp, name='xxx')) res = pd.to_numeric(pd.Series(idx, name='xxx')) tm.assert_series_equal(res, pd.Series(exp, name='xxx')) res = pd.to_numeric(idx.values) tm.assert_numpy_array_equal(res, exp) idx = pd.Index(['1.5', '2.7', '3.4'], name='xxx') exp = np.array([1.5, 2.7, 3.4]) res = pd.to_numeric(idx) tm.assert_index_equal(res, pd.Index(exp, name='xxx')) res = pd.to_numeric(pd.Series(idx, name='xxx')) tm.assert_series_equal(res, pd.Series(exp, name='xxx')) res = pd.to_numeric(idx.values) tm.assert_numpy_array_equal(res, exp) def test_datetimelike(self): for tz in [None, 'US/Eastern', 'Asia/Tokyo']: idx = pd.date_range('20130101', periods=3, tz=tz, name='xxx') res = pd.to_numeric(idx) tm.assert_index_equal(res, pd.Index(idx.asi8, name='xxx')) res = pd.to_numeric(pd.Series(idx, name='xxx')) tm.assert_series_equal(res, pd.Series(idx.asi8, name='xxx')) res = pd.to_numeric(idx.values) tm.assert_numpy_array_equal(res, idx.asi8) def test_timedelta(self): idx = pd.timedelta_range('1 days', periods=3, freq='D', name='xxx') res = pd.to_numeric(idx) tm.assert_index_equal(res, pd.Index(idx.asi8, name='xxx')) res = pd.to_numeric(pd.Series(idx, name='xxx')) tm.assert_series_equal(res, pd.Series(idx.asi8, name='xxx')) res = pd.to_numeric(idx.values) tm.assert_numpy_array_equal(res, idx.asi8) def test_period(self): idx = pd.period_range('2011-01', periods=3, freq='M', name='xxx') res = pd.to_numeric(idx) tm.assert_index_equal(res, pd.Index(idx.asi8, name='xxx')) # ToDo: enable when we can support native PeriodDtype # res = pd.to_numeric(pd.Series(idx, name='xxx')) # tm.assert_series_equal(res, pd.Series(idx.asi8, name='xxx')) def test_non_hashable(self): # Test for Bug #13324 s = pd.Series([[10.0, 2], 1.0, 'apple']) res = pd.to_numeric(s, errors='coerce') tm.assert_series_equal(res, pd.Series([np.nan, 1.0, np.nan])) res = pd.to_numeric(s, errors='ignore') tm.assert_series_equal(res, pd.Series([[10.0, 2], 1.0, 'apple'])) with tm.assert_raises_regex(TypeError, "Invalid object type"): pd.to_numeric(s) def test_downcast(self): # see gh-13352 mixed_data = ['1', 2, 3] int_data = [1, 2, 3] date_data = np.array(['1970-01-02', '1970-01-03', '1970-01-04'], dtype='datetime64[D]') invalid_downcast = 'unsigned-integer' msg = 'invalid downcasting method provided' smallest_int_dtype = np.dtype(np.typecodes['Integer'][0]) smallest_uint_dtype = np.dtype(np.typecodes['UnsignedInteger'][0]) # support below np.float32 is rare and far between float_32_char = np.dtype(np.float32).char smallest_float_dtype = float_32_char for data in (mixed_data, int_data, date_data): with tm.assert_raises_regex(ValueError, msg): pd.to_numeric(data, downcast=invalid_downcast) expected = np.array([1, 2, 3], dtype=np.int64) res = pd.to_numeric(data) tm.assert_numpy_array_equal(res, expected) res = pd.to_numeric(data, downcast=None) tm.assert_numpy_array_equal(res, expected) expected = np.array([1, 2, 3], dtype=smallest_int_dtype) for signed_downcast in ('integer', 'signed'): res = pd.to_numeric(data, downcast=signed_downcast) tm.assert_numpy_array_equal(res, expected) expected = np.array([1, 2, 3], dtype=smallest_uint_dtype) res = pd.to_numeric(data, downcast='unsigned') tm.assert_numpy_array_equal(res, expected) expected = np.array([1, 2, 3], dtype=smallest_float_dtype) res = pd.to_numeric(data, downcast='float') tm.assert_numpy_array_equal(res, expected) # if we can't successfully cast the given # data to a numeric dtype, do not bother # with the downcast parameter data = ['foo', 2, 3] expected = np.array(data, dtype=object) res = pd.to_numeric(data, errors='ignore', downcast='unsigned') tm.assert_numpy_array_equal(res, expected) # cannot cast to an unsigned integer because # we have a negative number data = ['-1', 2, 3] expected = np.array([-1, 2, 3], dtype=np.int64) res = pd.to_numeric(data, downcast='unsigned') tm.assert_numpy_array_equal(res, expected) # cannot cast to an integer (signed or unsigned) # because we have a float number data = (['1.1', 2, 3], [10000.0, 20000, 3000, 40000.36, 50000, 50000.00]) expected = (np.array([1.1, 2, 3], dtype=np.float64), np.array([10000.0, 20000, 3000, 40000.36, 50000, 50000.00], dtype=np.float64)) for _data, _expected in zip(data, expected): for downcast in ('integer', 'signed', 'unsigned'): res = pd.to_numeric(_data, downcast=downcast) tm.assert_numpy_array_equal(res, _expected) # the smallest integer dtype need not be np.(u)int8 data = ['256', 257, 258] for downcast, expected_dtype in zip( ['integer', 'signed', 'unsigned'], [np.int16, np.int16, np.uint16]): expected = np.array([256, 257, 258], dtype=expected_dtype) res = pd.to_numeric(data, downcast=downcast) tm.assert_numpy_array_equal(res, expected) def test_downcast_limits(self): # Test the limits of each downcast. Bug: #14401. # Check to make sure numpy is new enough to run this test. if _np_version_under1p9: pytest.skip("Numpy version is under 1.9") i = 'integer' u = 'unsigned' dtype_downcast_min_max = [ ('int8', i, [iinfo(np.int8).min, iinfo(np.int8).max]), ('int16', i, [iinfo(np.int16).min, iinfo(np.int16).max]), ('int32', i, [iinfo(np.int32).min, iinfo(np.int32).max]), ('int64', i, [iinfo(np.int64).min, iinfo(np.int64).max]), ('uint8', u, [iinfo(np.uint8).min, iinfo(np.uint8).max]), ('uint16', u, [iinfo(np.uint16).min, iinfo(np.uint16).max]), ('uint32', u, [iinfo(np.uint32).min, iinfo(np.uint32).max]), ('uint64', u, [iinfo(np.uint64).min, iinfo(np.uint64).max]), ('int16', i, [iinfo(np.int8).min, iinfo(np.int8).max + 1]), ('int32', i, [iinfo(np.int16).min, iinfo(np.int16).max + 1]), ('int64', i, [iinfo(np.int32).min, iinfo(np.int32).max + 1]), ('int16', i, [iinfo(np.int8).min - 1, iinfo(np.int16).max]), ('int32', i, [iinfo(np.int16).min - 1, iinfo(np.int32).max]), ('int64', i, [iinfo(np.int32).min - 1, iinfo(np.int64).max]), ('uint16', u, [iinfo(np.uint8).min, iinfo(np.uint8).max + 1]), ('uint32', u, [iinfo(np.uint16).min, iinfo(np.uint16).max + 1]), ('uint64', u, [iinfo(np.uint32).min, iinfo(np.uint32).max + 1]) ] for dtype, downcast, min_max in dtype_downcast_min_max: series = pd.to_numeric(pd.Series(min_max), downcast=downcast) assert series.dtype == dtype
mit
googleinterns/cabby
cabby/geo/visualize.py
1
3273
# coding=utf-8 # Copyright 2020 Google LLC # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. '''Library to support geographical visualization.''' import folium import geopandas as gpd import pandas as pd import shapely.geometry as geom from shapely.geometry import Polygon, Point, LineString from typing import Tuple, Sequence, Optional, Dict, Text import sys import os sys.path.append(os.path.dirname(os.path.dirname(os.getcwd() ))) from cabby.geo import util from cabby.geo import walk from cabby.geo import geo_item def get_osm_map(entity: geo_item.GeoEntity) -> Sequence[folium.Map]: '''Create the OSM maps. Arguments: gdf: the GeoDataFrame from which to create the OSM map. Returns: OSM maps from the GeoDataFrame. ''' mid_point = util.midpoint( entity.geo_landmarks['end_point'].geometry, entity.geo_landmarks['start_point'].geometry) zoom_location = util.list_yx_from_point(mid_point) # create a map map_osm = folium.Map(location=zoom_location, zoom_start=15, tiles='OpenStreetMap') # draw the points colors = [ 'pink', 'black', 'white', 'yellow', 'red', 'green', 'blue', 'orange'] for landmark_type, landmark in entity.geo_landmarks.items(): if landmark.geometry is not None: landmark_geom = util.list_yx_from_point(landmark.geometry) folium.Marker( landmark_geom, popup=f'{landmark_type}: {landmark.main_tag}', icon=folium.Icon(color=colors.pop(0))).add_to(map_osm) lat_lng_list = [] for coord in entity.route.coords: lat_lng_list.append([coord[1], coord[0]]) for index, coord_lat_lng in enumerate(lat_lng_list): folium.Circle(location = coord_lat_lng, radius = 5, color='crimson', ).add_to(map_osm) return map_osm def get_maps_and_instructions(path: Text ) -> Sequence[Tuple[folium.Map, str]]: '''Create the OSM maps and instructions. Arguments: path: The path from the start point to the goal location. Returns: OSM maps from the GeoDataFrame. ''' map_osms_instructions = [] entities = walk.load_entities(path) for entity in entities: map_osm = get_osm_map(entity) features_list = [] for feature_type, feature in entity.geo_features.items(): features_list.append(feature_type + ": " + str(feature)) landmark_list = [] for landmark_type, landmark in entity.geo_landmarks.items(): landmark_list.append(landmark_type + ": " + str(landmark.main_tag)) instruction = '; '.join(features_list) + '; '.join(landmark_list) map_osms_instructions.append((map_osm, instruction)) return map_osms_instructions
apache-2.0
perryjohnson/biplaneblade
sandia_blade_lib/plot_MK.py
1
6585
"""Plot the mass and stiffness data from Sandia and VABS. First, data from mass and stiffness matrices for the Sandia blade are written to the file 'sandia_blade/blade_props_from_VABS.csv' Then, these data are plotted against published data from Griffith & Resor 2011. Usage ----- Open an IPython terminal and type: |> %run plot_MK Author: Perry Roth-Johnson Last modified: April 22, 2014 """ import lib.blade as bl reload(bl) import pandas as pd import matplotlib.pyplot as plt from numpy import average from matplotlib import rc rc('font', size=14.0) def rel_diff(vabs_data, sandia_data): """Calculate the percent relative difference.""" return ((vabs_data-sandia_data)/average([vabs_data,sandia_data]))*100.0 def prep_rel_diff_plot(axis,ymin=-40,ymax=40): """Prepare a relative difference plot.""" axis2 = axis.twinx() axis2.set_ylabel('difference from average [%]', color='m') axis2.set_ylim([ymin,ymax]) for tl in axis2.get_yticklabels(): tl.set_color('m') axis2.grid('on') return axis2 # write all the mass and stiffness matrices from VABS to a csv file ----------- m = bl.MonoplaneBlade('Sandia blade SNL100-00', 'sandia_blade') m.writecsv_mass_and_stiffness_props() # plot VABS and Sandia datasets against one another --------------------------- v=pd.DataFrame.from_csv('sandia_blade/blade_props_from_VABS.csv') s=pd.DataFrame.from_csv('sandia_blade/blade_props_from_Sandia.csv') plt.close('all') # stiffness properties -------------------------------------------------------- f, axarr = plt.subplots(2,2, figsize=(10*1.5,6.5*1.5)) # ref for dual-axis plotting: http://matplotlib.org/examples/api/two_scales.html # flapwise stiffness twin_axis00 = prep_rel_diff_plot(axarr[0,0]) twin_axis00.plot( s['Blade Spanwise Coordinate'], rel_diff(v['K_55, EI_flap'],s['EI_flap']), 'm^:', mec='m', mfc='None', mew=1, label='difference') axarr[0,0].plot(s['Blade Spanwise Coordinate'],s['EI_flap'],'gx--',mfc='None',mew=1,label='Sandia (PreComp)') axarr[0,0].plot(v['Blade Spanwise Coordinate'],v['K_55, EI_flap'],'ko-',mfc='None',mew=1,label='UCLA (VABS)') axarr[0,0].set_xlabel('span [m]') axarr[0,0].set_ylabel('flapwise stiffness [N*m^2]') axarr[0,0].legend() axarr[0,0].grid('on', axis='x') # edgewise stiffness twin_axis01 = prep_rel_diff_plot(axarr[0,1]) twin_axis01.plot( s['Blade Spanwise Coordinate'], rel_diff(v['K_66, EI_edge'],s['EI_edge']), 'm^:', mec='m', mfc='None', mew=1, label='difference') axarr[0,1].plot(s['Blade Spanwise Coordinate'],s['EI_edge'],'gx--',mfc='None',mew=1,label='Sandia (PreComp)') axarr[0,1].plot(v['Blade Spanwise Coordinate'],v['K_66, EI_edge'],'ko-',mfc='None',mew=1,label='UCLA (VABS)') axarr[0,1].set_xlabel('span [m]') axarr[0,1].set_ylabel('edgewise stiffness [N*m^2]') axarr[0,1].grid('on', axis='x') axarr[0,1].legend() # axial stiffness twin_axis10 = prep_rel_diff_plot(axarr[1,0]) twin_axis10.plot( s['Blade Spanwise Coordinate'], rel_diff(v['K_11, EA_axial'],s['EA_axial']), 'm^:', mec='m', mfc='None', mew=1, label='difference') axarr[1,0].plot(s['Blade Spanwise Coordinate'],s['EA_axial'],'gx--',mfc='None',mew=1,label='Sandia (PreComp)') axarr[1,0].plot(v['Blade Spanwise Coordinate'],v['K_11, EA_axial'],'ko-',mfc='None',mew=1,label='UCLA (VABS)') axarr[1,0].set_xlabel('span [m]') axarr[1,0].set_ylabel('axial stiffness [N]') axarr[1,0].legend() axarr[1,0].grid('on', axis='x') # torsional stiffness twin_axis11 = prep_rel_diff_plot(axarr[1,1]) twin_axis11.plot( s['Blade Spanwise Coordinate'], rel_diff(v['K_44, GJ_twist'],s['GJ_twist']), 'm^:', mec='m', mfc='None', mew=1, label='difference') axarr[1,1].plot(s['Blade Spanwise Coordinate'],s['GJ_twist'],'gx--',mfc='None',mew=1,label='Sandia (PreComp)') axarr[1,1].plot(v['Blade Spanwise Coordinate'],v['K_44, GJ_twist'],'ko-',mfc='None',mew=1,label='UCLA (VABS)') axarr[1,1].set_xlabel('span [m]') axarr[1,1].set_ylabel('torsional stiffness [N*m^2]') axarr[1,1].legend() axarr[1,1].grid('on', axis='x') plt.tight_layout() plt.subplots_adjust(left=0.05, bottom=0.07, right=0.94, top=0.96, wspace=0.33, hspace=0.28) plt.savefig('sandia_blade/Sandia_vs_VABS_stiffness_props.png') plt.savefig('sandia_blade/Sandia_vs_VABS_stiffness_props.pdf') # mass properties ------------------------------------------------------------- f2, axarr2 = plt.subplots(2,2, figsize=(10*1.5,6.5*1.5)) # mass density twin_axis2_10 = prep_rel_diff_plot(axarr2[1,0]) twin_axis2_10.plot( s['Blade Spanwise Coordinate'], rel_diff(v['M_11, mu_mass'],s['mu_mass']), 'm^:', mec='m', mfc='None', mew=1, label='difference') axarr2[1,0].plot(s['Blade Spanwise Coordinate'],s['mu_mass'],'gx--',mfc='None',mew=1,label='Sandia (PreComp)') axarr2[1,0].plot(v['Blade Spanwise Coordinate'],v['M_11, mu_mass'],'ko-',mfc='None',mew=1,label='UCLA (VABS)') axarr2[1,0].set_xlabel('span [m]') axarr2[1,0].set_ylabel('mass [kg/m]') axarr2[1,0].legend() axarr2[1,0].grid('on', axis='x') # flapwise mass moment of inertia twin_axis2_00 = prep_rel_diff_plot(axarr2[0,0]) twin_axis2_00.plot( s['Blade Spanwise Coordinate'], rel_diff(v['M_55, i22_flap'],s['i22_flap']), 'm^:', mec='m', mfc='None', mew=1, label='difference') axarr2[0,0].plot(s['Blade Spanwise Coordinate'],s['i22_flap'],'gx--',mfc='None',mew=1,label='Sandia (PreComp)') axarr2[0,0].plot(v['Blade Spanwise Coordinate'],v['M_55, i22_flap'],'ko-',mfc='None',mew=1,label='UCLA (VABS)') axarr2[0,0].set_xlabel('span [m]') axarr2[0,0].set_ylabel('flapwise mass moment of inertia [kg*m]') axarr2[0,0].legend() axarr2[0,0].grid('on', axis='x') # edgewise mass moment of inertia twin_axis2_01 = prep_rel_diff_plot(axarr2[0,1]) twin_axis2_01.plot( s['Blade Spanwise Coordinate'], rel_diff(v['M_66, i33_edge'],s['i33_edge']), 'm^:', mec='m', mfc='None', mew=1, label='difference') axarr2[0,1].plot(s['Blade Spanwise Coordinate'],s['i33_edge'],'gx--',mfc='None',mew=1,label='Sandia (PreComp)') axarr2[0,1].plot(v['Blade Spanwise Coordinate'],v['M_66, i33_edge'],'ko-',mfc='None',mew=1,label='UCLA (VABS)') axarr2[0,1].set_xlabel('span [m]') axarr2[0,1].set_ylabel('edgewise mass moment of inertia [kg*m]') axarr2[0,1].legend() axarr2[0,1].grid('on', axis='x') plt.tight_layout() plt.subplots_adjust(left=0.07, bottom=0.07, right=0.94, top=0.96, wspace=0.33, hspace=0.28) plt.savefig('sandia_blade/Sandia_vs_VABS_mass_props.png') plt.savefig('sandia_blade/Sandia_vs_VABS_mass_props.pdf') plt.show()
gpl-3.0
giorgiop/scikit-learn
examples/mixture/plot_gmm_sin.py
103
6101
""" ================================= Gaussian Mixture Model Sine Curve ================================= This example demonstrates the behavior of Gaussian mixture models fit on data that was not sampled from a mixture of Gaussian random variables. The dataset is formed by 100 points loosely spaced following a noisy sine curve. There is therefore no ground truth value for the number of Gaussian components. The first model is a classical Gaussian Mixture Model with 10 components fit with the Expectation-Maximization algorithm. The second model is a Bayesian Gaussian Mixture Model with a Dirichlet process prior fit with variational inference. The low value of the concentration prior makes the model favor a lower number of active components. This models "decides" to focus its modeling power on the big picture of the structure of the dataset: groups of points with alternating directions modeled by non-diagonal covariance matrices. Those alternating directions roughly capture the alternating nature of the original sine signal. The third model is also a Bayesian Gaussian mixture model with a Dirichlet process prior but this time the value of the concentration prior is higher giving the model more liberty to model the fine-grained structure of the data. The result is a mixture with a larger number of active components that is similar to the first model where we arbitrarily decided to fix the number of components to 10. Which model is the best is a matter of subjective judgement: do we want to favor models that only capture the big picture to summarize and explain most of the structure of the data while ignoring the details or do we prefer models that closely follow the high density regions of the signal? The last two panels show how we can sample from the last two models. The resulting samples distributions do not look exactly like the original data distribution. The difference primarily stems from the approximation error we made by using a model that assumes that the data was generated by a finite number of Gaussian components instead of a continuous noisy sine curve. """ import itertools import numpy as np from scipy import linalg import matplotlib.pyplot as plt import matplotlib as mpl from sklearn import mixture print(__doc__) color_iter = itertools.cycle(['navy', 'c', 'cornflowerblue', 'gold', 'darkorange']) def plot_results(X, Y, means, covariances, index, title): splot = plt.subplot(5, 1, 1 + index) for i, (mean, covar, color) in enumerate(zip( means, covariances, color_iter)): v, w = linalg.eigh(covar) v = 2. * np.sqrt(2.) * np.sqrt(v) u = w[0] / linalg.norm(w[0]) # as the DP will not use every component it has access to # unless it needs it, we shouldn't plot the redundant # components. if not np.any(Y == i): continue plt.scatter(X[Y == i, 0], X[Y == i, 1], .8, color=color) # Plot an ellipse to show the Gaussian component angle = np.arctan(u[1] / u[0]) angle = 180. * angle / np.pi # convert to degrees ell = mpl.patches.Ellipse(mean, v[0], v[1], 180. + angle, color=color) ell.set_clip_box(splot.bbox) ell.set_alpha(0.5) splot.add_artist(ell) plt.xlim(-6., 4. * np.pi - 6.) plt.ylim(-5., 5.) plt.title(title) plt.xticks(()) plt.yticks(()) def plot_samples(X, Y, n_components, index, title): plt.subplot(5, 1, 4 + index) for i, color in zip(range(n_components), color_iter): # as the DP will not use every component it has access to # unless it needs it, we shouldn't plot the redundant # components. if not np.any(Y == i): continue plt.scatter(X[Y == i, 0], X[Y == i, 1], .8, color=color) plt.xlim(-6., 4. * np.pi - 6.) plt.ylim(-5., 5.) plt.title(title) plt.xticks(()) plt.yticks(()) # Parameters n_samples = 100 # Generate random sample following a sine curve np.random.seed(0) X = np.zeros((n_samples, 2)) step = 4. * np.pi / n_samples for i in range(X.shape[0]): x = i * step - 6. X[i, 0] = x + np.random.normal(0, 0.1) X[i, 1] = 3. * (np.sin(x) + np.random.normal(0, .2)) plt.figure(figsize=(10, 10)) plt.subplots_adjust(bottom=.04, top=0.95, hspace=.2, wspace=.05, left=.03, right=.97) # Fit a Gaussian mixture with EM using ten components gmm = mixture.GaussianMixture(n_components=10, covariance_type='full', max_iter=100).fit(X) plot_results(X, gmm.predict(X), gmm.means_, gmm.covariances_, 0, 'Expectation-maximization') dpgmm = mixture.BayesianGaussianMixture( n_components=10, covariance_type='full', weight_concentration_prior=1e-2, weight_concentration_prior_type='dirichlet_process', mean_precision_prior=1e-2, covariance_prior=1e0 * np.eye(2), init_params="random", max_iter=100, random_state=2).fit(X) plot_results(X, dpgmm.predict(X), dpgmm.means_, dpgmm.covariances_, 1, "Bayesian Gaussian mixture models with a Dirichlet process prior " r"for $\gamma_0=0.01$.") X_s, y_s = dpgmm.sample(n_samples=2000) plot_samples(X_s, y_s, dpgmm.n_components, 0, "Gaussian mixture with a Dirichlet process prior " r"for $\gamma_0=0.01$ sampled with $2000$ samples.") dpgmm = mixture.BayesianGaussianMixture( n_components=10, covariance_type='full', weight_concentration_prior=1e+2, weight_concentration_prior_type='dirichlet_process', mean_precision_prior=1e-2, covariance_prior=1e0 * np.eye(2), init_params="kmeans", max_iter=100, random_state=2).fit(X) plot_results(X, dpgmm.predict(X), dpgmm.means_, dpgmm.covariances_, 2, "Bayesian Gaussian mixture models with a Dirichlet process prior " r"for $\gamma_0=100$") X_s, y_s = dpgmm.sample(n_samples=2000) plot_samples(X_s, y_s, dpgmm.n_components, 1, "Gaussian mixture with a Dirichlet process prior " r"for $\gamma_0=100$ sampled with $2000$ samples.") plt.show()
bsd-3-clause
yavalvas/yav_com
build/matplotlib/examples/widgets/slider_demo.py
13
1179
import numpy as np import matplotlib.pyplot as plt from matplotlib.widgets import Slider, Button, RadioButtons fig, ax = plt.subplots() plt.subplots_adjust(left=0.25, bottom=0.25) t = np.arange(0.0, 1.0, 0.001) a0 = 5 f0 = 3 s = a0*np.sin(2*np.pi*f0*t) l, = plt.plot(t,s, lw=2, color='red') plt.axis([0, 1, -10, 10]) axcolor = 'lightgoldenrodyellow' axfreq = plt.axes([0.25, 0.1, 0.65, 0.03], axisbg=axcolor) axamp = plt.axes([0.25, 0.15, 0.65, 0.03], axisbg=axcolor) sfreq = Slider(axfreq, 'Freq', 0.1, 30.0, valinit=f0) samp = Slider(axamp, 'Amp', 0.1, 10.0, valinit=a0) def update(val): amp = samp.val freq = sfreq.val l.set_ydata(amp*np.sin(2*np.pi*freq*t)) fig.canvas.draw_idle() sfreq.on_changed(update) samp.on_changed(update) resetax = plt.axes([0.8, 0.025, 0.1, 0.04]) button = Button(resetax, 'Reset', color=axcolor, hovercolor='0.975') def reset(event): sfreq.reset() samp.reset() button.on_clicked(reset) rax = plt.axes([0.025, 0.5, 0.15, 0.15], axisbg=axcolor) radio = RadioButtons(rax, ('red', 'blue', 'green'), active=0) def colorfunc(label): l.set_color(label) fig.canvas.draw_idle() radio.on_clicked(colorfunc) plt.show()
mit
yavalvas/yav_com
build/matplotlib/examples/user_interfaces/embedding_in_wx2.py
9
2706
#!/usr/bin/env python """ An example of how to use wx or wxagg in an application with the new toolbar - comment out the setA_toolbar line for no toolbar """ # Used to guarantee to use at least Wx2.8 import wxversion wxversion.ensureMinimal('2.8') from numpy import arange, sin, pi import matplotlib # uncomment the following to use wx rather than wxagg #matplotlib.use('WX') #from matplotlib.backends.backend_wx import FigureCanvasWx as FigureCanvas # comment out the following to use wx rather than wxagg matplotlib.use('WXAgg') from matplotlib.backends.backend_wxagg import FigureCanvasWxAgg as FigureCanvas from matplotlib.backends.backend_wx import NavigationToolbar2Wx from matplotlib.figure import Figure import wx class CanvasFrame(wx.Frame): def __init__(self): wx.Frame.__init__(self,None,-1, 'CanvasFrame',size=(550,350)) self.SetBackgroundColour(wx.NamedColour("WHITE")) self.figure = Figure() self.axes = self.figure.add_subplot(111) t = arange(0.0,3.0,0.01) s = sin(2*pi*t) self.axes.plot(t,s) self.canvas = FigureCanvas(self, -1, self.figure) self.sizer = wx.BoxSizer(wx.VERTICAL) self.sizer.Add(self.canvas, 1, wx.LEFT | wx.TOP | wx.GROW) self.SetSizer(self.sizer) self.Fit() self.add_toolbar() # comment this out for no toolbar def add_toolbar(self): self.toolbar = NavigationToolbar2Wx(self.canvas) self.toolbar.Realize() if wx.Platform == '__WXMAC__': # Mac platform (OSX 10.3, MacPython) does not seem to cope with # having a toolbar in a sizer. This work-around gets the buttons # back, but at the expense of having the toolbar at the top self.SetToolBar(self.toolbar) else: # On Windows platform, default window size is incorrect, so set # toolbar width to figure width. tw, th = self.toolbar.GetSizeTuple() fw, fh = self.canvas.GetSizeTuple() # By adding toolbar in sizer, we are able to put it at the bottom # of the frame - so appearance is closer to GTK version. # As noted above, doesn't work for Mac. self.toolbar.SetSize(wx.Size(fw, th)) self.sizer.Add(self.toolbar, 0, wx.LEFT | wx.EXPAND) # update the axes menu on the toolbar self.toolbar.update() def OnPaint(self, event): self.canvas.draw() class App(wx.App): def OnInit(self): 'Create the main window and insert the custom frame' frame = CanvasFrame() frame.Show(True) return True app = App(0) app.MainLoop()
mit
neale/CS-program
434-MachineLearning/final_project/linearClassifier/sklearn/decomposition/tests/test_incremental_pca.py
297
8265
"""Tests for Incremental PCA.""" import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raises from sklearn import datasets from sklearn.decomposition import PCA, IncrementalPCA iris = datasets.load_iris() def test_incremental_pca(): # Incremental PCA on dense arrays. X = iris.data batch_size = X.shape[0] // 3 ipca = IncrementalPCA(n_components=2, batch_size=batch_size) pca = PCA(n_components=2) pca.fit_transform(X) X_transformed = ipca.fit_transform(X) np.testing.assert_equal(X_transformed.shape, (X.shape[0], 2)) assert_almost_equal(ipca.explained_variance_ratio_.sum(), pca.explained_variance_ratio_.sum(), 1) for n_components in [1, 2, X.shape[1]]: ipca = IncrementalPCA(n_components, batch_size=batch_size) ipca.fit(X) cov = ipca.get_covariance() precision = ipca.get_precision() assert_array_almost_equal(np.dot(cov, precision), np.eye(X.shape[1])) def test_incremental_pca_check_projection(): # Test that the projection of data is correct. rng = np.random.RandomState(1999) n, p = 100, 3 X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5]) Xt = 0.1 * rng.randn(1, p) + np.array([3, 4, 5]) # Get the reconstruction of the generated data X # Note that Xt has the same "components" as X, just separated # This is what we want to ensure is recreated correctly Yt = IncrementalPCA(n_components=2).fit(X).transform(Xt) # Normalize Yt /= np.sqrt((Yt ** 2).sum()) # Make sure that the first element of Yt is ~1, this means # the reconstruction worked as expected assert_almost_equal(np.abs(Yt[0][0]), 1., 1) def test_incremental_pca_inverse(): # Test that the projection of data can be inverted. rng = np.random.RandomState(1999) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= .00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed # signal (since the data is almost of rank n_components) ipca = IncrementalPCA(n_components=2, batch_size=10).fit(X) Y = ipca.transform(X) Y_inverse = ipca.inverse_transform(Y) assert_almost_equal(X, Y_inverse, decimal=3) def test_incremental_pca_validation(): # Test that n_components is >=1 and <= n_features. X = [[0, 1], [1, 0]] for n_components in [-1, 0, .99, 3]: assert_raises(ValueError, IncrementalPCA(n_components, batch_size=10).fit, X) def test_incremental_pca_set_params(): # Test that components_ sign is stable over batch sizes. rng = np.random.RandomState(1999) n_samples = 100 n_features = 20 X = rng.randn(n_samples, n_features) X2 = rng.randn(n_samples, n_features) X3 = rng.randn(n_samples, n_features) ipca = IncrementalPCA(n_components=20) ipca.fit(X) # Decreasing number of components ipca.set_params(n_components=10) assert_raises(ValueError, ipca.partial_fit, X2) # Increasing number of components ipca.set_params(n_components=15) assert_raises(ValueError, ipca.partial_fit, X3) # Returning to original setting ipca.set_params(n_components=20) ipca.partial_fit(X) def test_incremental_pca_num_features_change(): # Test that changing n_components will raise an error. rng = np.random.RandomState(1999) n_samples = 100 X = rng.randn(n_samples, 20) X2 = rng.randn(n_samples, 50) ipca = IncrementalPCA(n_components=None) ipca.fit(X) assert_raises(ValueError, ipca.partial_fit, X2) def test_incremental_pca_batch_signs(): # Test that components_ sign is stable over batch sizes. rng = np.random.RandomState(1999) n_samples = 100 n_features = 3 X = rng.randn(n_samples, n_features) all_components = [] batch_sizes = np.arange(10, 20) for batch_size in batch_sizes: ipca = IncrementalPCA(n_components=None, batch_size=batch_size).fit(X) all_components.append(ipca.components_) for i, j in zip(all_components[:-1], all_components[1:]): assert_almost_equal(np.sign(i), np.sign(j), decimal=6) def test_incremental_pca_batch_values(): # Test that components_ values are stable over batch sizes. rng = np.random.RandomState(1999) n_samples = 100 n_features = 3 X = rng.randn(n_samples, n_features) all_components = [] batch_sizes = np.arange(20, 40, 3) for batch_size in batch_sizes: ipca = IncrementalPCA(n_components=None, batch_size=batch_size).fit(X) all_components.append(ipca.components_) for i, j in zip(all_components[:-1], all_components[1:]): assert_almost_equal(i, j, decimal=1) def test_incremental_pca_partial_fit(): # Test that fit and partial_fit get equivalent results. rng = np.random.RandomState(1999) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= .00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed # signal (since the data is almost of rank n_components) batch_size = 10 ipca = IncrementalPCA(n_components=2, batch_size=batch_size).fit(X) pipca = IncrementalPCA(n_components=2, batch_size=batch_size) # Add one to make sure endpoint is included batch_itr = np.arange(0, n + 1, batch_size) for i, j in zip(batch_itr[:-1], batch_itr[1:]): pipca.partial_fit(X[i:j, :]) assert_almost_equal(ipca.components_, pipca.components_, decimal=3) def test_incremental_pca_against_pca_iris(): # Test that IncrementalPCA and PCA are approximate (to a sign flip). X = iris.data Y_pca = PCA(n_components=2).fit_transform(X) Y_ipca = IncrementalPCA(n_components=2, batch_size=25).fit_transform(X) assert_almost_equal(np.abs(Y_pca), np.abs(Y_ipca), 1) def test_incremental_pca_against_pca_random_data(): # Test that IncrementalPCA and PCA are approximate (to a sign flip). rng = np.random.RandomState(1999) n_samples = 100 n_features = 3 X = rng.randn(n_samples, n_features) + 5 * rng.rand(1, n_features) Y_pca = PCA(n_components=3).fit_transform(X) Y_ipca = IncrementalPCA(n_components=3, batch_size=25).fit_transform(X) assert_almost_equal(np.abs(Y_pca), np.abs(Y_ipca), 1) def test_explained_variances(): # Test that PCA and IncrementalPCA calculations match X = datasets.make_low_rank_matrix(1000, 100, tail_strength=0., effective_rank=10, random_state=1999) prec = 3 n_samples, n_features = X.shape for nc in [None, 99]: pca = PCA(n_components=nc).fit(X) ipca = IncrementalPCA(n_components=nc, batch_size=100).fit(X) assert_almost_equal(pca.explained_variance_, ipca.explained_variance_, decimal=prec) assert_almost_equal(pca.explained_variance_ratio_, ipca.explained_variance_ratio_, decimal=prec) assert_almost_equal(pca.noise_variance_, ipca.noise_variance_, decimal=prec) def test_whitening(): # Test that PCA and IncrementalPCA transforms match to sign flip. X = datasets.make_low_rank_matrix(1000, 10, tail_strength=0., effective_rank=2, random_state=1999) prec = 3 n_samples, n_features = X.shape for nc in [None, 9]: pca = PCA(whiten=True, n_components=nc).fit(X) ipca = IncrementalPCA(whiten=True, n_components=nc, batch_size=250).fit(X) Xt_pca = pca.transform(X) Xt_ipca = ipca.transform(X) assert_almost_equal(np.abs(Xt_pca), np.abs(Xt_ipca), decimal=prec) Xinv_ipca = ipca.inverse_transform(Xt_ipca) Xinv_pca = pca.inverse_transform(Xt_pca) assert_almost_equal(X, Xinv_ipca, decimal=prec) assert_almost_equal(X, Xinv_pca, decimal=prec) assert_almost_equal(Xinv_pca, Xinv_ipca, decimal=prec)
unlicense
lindsayad/sympy
sympy/interactive/tests/test_ipythonprinting.py
11
6263
"""Tests that the IPython printing module is properly loaded. """ from sympy.core.compatibility import u from sympy.interactive.session import init_ipython_session from sympy.external import import_module from sympy.utilities.pytest import raises # run_cell was added in IPython 0.11 ipython = import_module("IPython", min_module_version="0.11") # disable tests if ipython is not present if not ipython: disabled = True def test_ipythonprinting(): # Initialize and setup IPython session app = init_ipython_session() app.run_cell("ip = get_ipython()") app.run_cell("inst = ip.instance()") app.run_cell("format = inst.display_formatter.format") app.run_cell("from sympy import Symbol") # Printing without printing extension app.run_cell("a = format(Symbol('pi'))") app.run_cell("a2 = format(Symbol('pi')**2)") # Deal with API change starting at IPython 1.0 if int(ipython.__version__.split(".")[0]) < 1: assert app.user_ns['a']['text/plain'] == "pi" assert app.user_ns['a2']['text/plain'] == "pi**2" else: assert app.user_ns['a'][0]['text/plain'] == "pi" assert app.user_ns['a2'][0]['text/plain'] == "pi**2" # Load printing extension app.run_cell("from sympy import init_printing") app.run_cell("init_printing()") # Printing with printing extension app.run_cell("a = format(Symbol('pi'))") app.run_cell("a2 = format(Symbol('pi')**2)") # Deal with API change starting at IPython 1.0 if int(ipython.__version__.split(".")[0]) < 1: assert app.user_ns['a']['text/plain'] in (u('\N{GREEK SMALL LETTER PI}'), 'pi') assert app.user_ns['a2']['text/plain'] in (u(' 2\n\N{GREEK SMALL LETTER PI} '), ' 2\npi ') else: assert app.user_ns['a'][0]['text/plain'] in (u('\N{GREEK SMALL LETTER PI}'), 'pi') assert app.user_ns['a2'][0]['text/plain'] in (u(' 2\n\N{GREEK SMALL LETTER PI} '), ' 2\npi ') def test_print_builtin_option(): # Initialize and setup IPython session app = init_ipython_session() app.run_cell("ip = get_ipython()") app.run_cell("inst = ip.instance()") app.run_cell("format = inst.display_formatter.format") app.run_cell("from sympy import Symbol") app.run_cell("from sympy import init_printing") app.run_cell("a = format({Symbol('pi'): 3.14, Symbol('n_i'): 3})") # Deal with API change starting at IPython 1.0 if int(ipython.__version__.split(".")[0]) < 1: text = app.user_ns['a']['text/plain'] raises(KeyError, lambda: app.user_ns['a']['text/latex']) else: text = app.user_ns['a'][0]['text/plain'] raises(KeyError, lambda: app.user_ns['a'][0]['text/latex']) # Note : Unicode of Python2 is equivalent to str in Python3. In Python 3 we have one # text type: str which holds Unicode data and two byte types bytes and bytearray. # XXX: How can we make this ignore the terminal width? This test fails if # the terminal is too narrow. assert text in ("{pi: 3.14, n_i: 3}", u('{n\N{LATIN SUBSCRIPT SMALL LETTER I}: 3, \N{GREEK SMALL LETTER PI}: 3.14}'), "{n_i: 3, pi: 3.14}", u('{\N{GREEK SMALL LETTER PI}: 3.14, n\N{LATIN SUBSCRIPT SMALL LETTER I}: 3}')) # If we enable the default printing, then the dictionary's should render # as a LaTeX version of the whole dict: ${\pi: 3.14, n_i: 3}$ app.run_cell("inst.display_formatter.formatters['text/latex'].enabled = True") app.run_cell("init_printing(use_latex=True)") app.run_cell("a = format({Symbol('pi'): 3.14, Symbol('n_i'): 3})") # Deal with API change starting at IPython 1.0 if int(ipython.__version__.split(".")[0]) < 1: text = app.user_ns['a']['text/plain'] latex = app.user_ns['a']['text/latex'] else: text = app.user_ns['a'][0]['text/plain'] latex = app.user_ns['a'][0]['text/latex'] assert text in ("{pi: 3.14, n_i: 3}", u('{n\N{LATIN SUBSCRIPT SMALL LETTER I}: 3, \N{GREEK SMALL LETTER PI}: 3.14}'), "{n_i: 3, pi: 3.14}", u('{\N{GREEK SMALL LETTER PI}: 3.14, n\N{LATIN SUBSCRIPT SMALL LETTER I}: 3}')) assert latex == r'$$\left \{ n_{i} : 3, \quad \pi : 3.14\right \}$$' app.run_cell("inst.display_formatter.formatters['text/latex'].enabled = True") app.run_cell("init_printing(use_latex=True, print_builtin=False)") app.run_cell("a = format({Symbol('pi'): 3.14, Symbol('n_i'): 3})") # Deal with API change starting at IPython 1.0 if int(ipython.__version__.split(".")[0]) < 1: text = app.user_ns['a']['text/plain'] raises(KeyError, lambda: app.user_ns['a']['text/latex']) else: text = app.user_ns['a'][0]['text/plain'] raises(KeyError, lambda: app.user_ns['a'][0]['text/latex']) # Note : Unicode of Python2 is equivalent to str in Python3. In Python 3 we have one # text type: str which holds Unicode data and two byte types bytes and bytearray. # Python 3.3.3 + IPython 0.13.2 gives: '{n_i: 3, pi: 3.14}' # Python 3.3.3 + IPython 1.1.0 gives: '{n_i: 3, pi: 3.14}' # Python 2.7.5 + IPython 1.1.0 gives: '{pi: 3.14, n_i: 3}' assert text in ("{pi: 3.14, n_i: 3}", "{n_i: 3, pi: 3.14}") def test_matplotlib_bad_latex(): # Initialize and setup IPython session app = init_ipython_session() app.run_cell("import IPython") app.run_cell("ip = get_ipython()") app.run_cell("inst = ip.instance()") app.run_cell("format = inst.display_formatter.format") app.run_cell("from sympy import init_printing, Matrix") app.run_cell("init_printing(use_latex='matplotlib')") # The png formatter is not enabled by default in this context app.run_cell("inst.display_formatter.formatters['image/png'].enabled = True") # Make sure no warnings are raised by IPython app.run_cell("import warnings") app.run_cell("warnings.simplefilter('error', IPython.core.formatters.FormatterWarning)") # This should not raise an exception app.run_cell("a = format(Matrix([1, 2, 3]))") # issue 9799 app.run_cell("from sympy import Piecewise, Symbol, Eq") app.run_cell("x = Symbol('x'); pw = format(Piecewise((1, Eq(x, 0)), (0, True)))")
bsd-3-clause
iarroyof/distributionalSemanticStabilityThesis
mklObj.py
2
55729
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys __author__ = 'Ignacio Arroyo-Fernandez' from modshogun import * from tools.load import LoadMatrix from sklearn.metrics import r2_score import random from math import sqrt import numpy from os import getcwd from sys import stderr from pdb import set_trace as st def open_configuration_file(fileName): """ Loads the input data configuration file. Lines which start with '#' are ignored. No lines different from configuration ones (even blank ones) at top are allowed. The amount of lines at top are exclusively either three or five (see below for allowed contents). The first line may be specifying the train data file in sparse market matrix format. The second line may be specifying the test data file in sparse market matrix format. The third line may be specifying the train labels file. An scalar by line must be associated as label of a vector in training data. The fourth line may be specifying the test labels file. An scalar by line must be associated as label of a vector in test data. The fifth line indicates options for the MKL object: First character : Problem type : valid_options = {r: regression, b: binary, m: multiclass} Second character: Machine mode : valid_options = {l: learning_mode, p: pattern_recognition_mode} Any other characters and amount of they will be ignored or caught as errors. For all configuration lines no other kind of content is allowed (e.g. comments in line ahead). Training data (and its labels) is optional. Whenever no five configuration lines are detected in this file, the first line will be considered as the test data file name, the second line as de test labels and third line as the MKL options. An error exception will be raised otherwise (e.g. no three or no five configuration lines). """ with open(fileName) as f: configuration_lines = f.read().splitlines() problem_modes = {'r':'regression', 'b':'binary', 'm':'multiclass'} machine_modes = {'l':'learning', 'p':'pattern_recognition'} cls = 0 # Counted number of configuration lines from top. ncls = 5 # Number of configuration lines allowed. for line in configuration_lines: if not line.startswith('#'): cls += 1 else: break if cls == ncls: mode = configuration_lines[4] configuration = {} if len(mode) == 2: try: configuration['problem_mode'] = problem_modes[mode[0]] configuration['machine_mode'] = machine_modes[mode[1]] except KeyError: sys.stderr.write('\nERROR: Incorrect configuration file. Invalid machine mode. See help for mklObj.open_configuration_file().') else: sys.stderr.write('\nERROR: Incorrect configuration file. Invalid number of lines. See help for mklObj.open_configuration_file().') exit() Null = ncls # Null index if configuration['machine_mode'] == 'learning': # According to availability of training files, indexes are setted. trf = 0; tsf = 1; trlf = 2 # training_file, test_file, training_labels_file, test_labels_file, mode tslf = 3; mf = Null configuration_lines[ncls] = None del(configuration_lines[ncls+1:]) # All from the first '#' onwards is ignored. elif configuration['machine_mode'] == 'pattern_recognition': trf = 0; tsf = 1; trlf = Null # training_file, test_file, test_labels_file, mode, model_file tslf = 2; mf = 3 configuration_lines[ncls] = None del(configuration_lines[ncls+1:]) configuration['training_file'] = configuration_lines[trf] configuration['test_file'] = configuration_lines[tsf] configuration['training_labels_file'] = configuration_lines[trlf] configuration['test_labels_file'] = configuration_lines[tslf] configuration['model_file'] = configuration_lines[mf] return configuration # Loading toy multiclass data from files def load_multiclassToy(dataRoute, fileTrain, fileLabels): """ :returns: [RealFeatures(training_data), RealFeatures(test_data), MulticlassLabels(train_labels), MulticlassLabels(test_labels)]. It is a set of Shogun training objects for raising a 10-class classification problem. This function is a modified version from http://www.shogun-toolbox.org/static/notebook/current/MKL.html Pay attention to input parameters because their documentations is valid for acquiring data for any multiclass problem with Shogun. :param dataRoute: The allocation directory of plain text file containing the train and test data. :param fileTrain: The name of the text file containing the train and test data. Each row of the file contains a sample vector and each column is a dimension of such a sample vector. :param fileLabels: The name of the text file containing the train and test labels. Each row must to correspond to each sample in fileTrain. It must be at the same directory specified by dataRoute. """ lm = LoadMatrix() dataSet = lm.load_numbers(dataRoute + fileTrain) labels = lm.load_labels(dataRoute + fileLabels) return (RealFeatures(dataSet.T[0:3 * len(dataSet.T) / 4].T), # Return the training set, 3/4 * dataSet RealFeatures(dataSet.T[(3 * len(dataSet.T) / 4):].T), # Return the test set, 1/4 * dataSet MulticlassLabels(labels[0:3 * len(labels) / 4]), # Return corresponding train and test labels MulticlassLabels(labels[(3 * len(labels) / 4):])) # 2D Toy data generator def generate_binToy(file_data = None, file_labels = None): """:return: [RealFeatures(train_data),RealFeatures(train_data),BinaryLabels(train_labels),BinaryLabels(test_labels)] This method generates random 2D training and test data for binary classification. The labels are {-1, 1} vectors. """ num = 30 num_components = 4 means = numpy.zeros((num_components, 2)) means[0] = [-1, 1] means[1] = [2, -1.5] means[2] = [-1, -3] means[3] = [2, 1] covs = numpy.array([[1.0, 0.0], [0.0, 1.0]]) gmm = GMM(num_components) [gmm.set_nth_mean(means[i], i) for i in range(num_components)] [gmm.set_nth_cov(covs, i) for i in range(num_components)] gmm.set_coef(numpy.array([1.0, 0.0, 0.0, 0.0])) xntr = numpy.array([gmm.sample() for i in xrange(num)]).T xnte = numpy.array([gmm.sample() for i in xrange(5000)]).T gmm.set_coef(numpy.array([0.0, 1.0, 0.0, 0.0])) xntr1 = numpy.array([gmm.sample() for i in xrange(num)]).T xnte1 = numpy.array([gmm.sample() for i in xrange(5000)]).T gmm.set_coef(numpy.array([0.0, 0.0, 1.0, 0.0])) xptr = numpy.array([gmm.sample() for i in xrange(num)]).T xpte = numpy.array([gmm.sample() for i in xrange(5000)]).T gmm.set_coef(numpy.array([0.0, 0.0, 0.0, 1.0])) xptr1 = numpy.array([gmm.sample() for i in xrange(num)]).T xpte1 = numpy.array([gmm.sample() for i in xrange(5000)]).T if not file_data: return (RealFeatures(numpy.concatenate((xntr, xntr1, xptr, xptr1), axis=1)), # Train Data RealFeatures(numpy.concatenate((xnte, xnte1, xpte, xpte1), axis=1)), # Test Data BinaryLabels(numpy.concatenate((-numpy.ones(2 * num), numpy.ones(2 * num)))), # Train Labels BinaryLabels(numpy.concatenate((-numpy.ones(10000), numpy.ones(10000))))) # Test Labels else: data_set = numpy.concatenate((numpy.concatenate((xntr, xntr1, xptr, xptr1), axis=1), numpy.concatenate((xnte, xnte1, xpte, xpte1), axis=1)), axis = 1).T labels = numpy.concatenate((numpy.concatenate((-numpy.ones(2 * num), numpy.ones(2 * num))), numpy.concatenate((-numpy.ones(10000), numpy.ones(10000)))), axis = 1).astype(int) indexes = range(len(data_set)) numpy.random.shuffle(indexes) fd = open(file_data, 'w') fl = open(file_labels, 'w') for i in indexes: fd.write('%f %f\n' % (data_set[i][0],data_set[i][1])) fl.write(str(labels[i])+'\n') fd.close() fl.close() #numpy.savetxt(file_data, data_set, fmt='%f') #numpy.savetxt(file_labels, labels, fmt='%d') def load_binData(tr_ts_portion = None, fileTrain = None, fileLabels = None, dataRoute = None): if not dataRoute: dataRoute = getcwd()+'/' assert fileTrain and fileLabels # One (or both) of the input files are not given. assert (tr_ts_portion > 0.0 and tr_ts_portion <= 1.0) # The proportion of dividing the data set into train and test is in (0, 1] lm = LoadMatrix() dataSet = lm.load_numbers(dataRoute + fileTrain) labels = lm.load_labels(dataRoute + fileLabels) return (RealFeatures(dataSet.T[0:tr_ts_portion * len(dataSet.T)].T), # Return the training set, 3/4 * dataSet RealFeatures(dataSet.T[tr_ts_portion * len(dataSet.T):].T), # Return the test set, 1/4 * dataSet BinaryLabels(labels[0:tr_ts_portion * len(labels)]), # Return corresponding train and test labels BinaryLabels(labels[tr_ts_portion * len(labels):])) def load_regression_data(fileTrain = None, fileTest = None, fileLabelsTr = None, fileLabelsTs = None, sparse=False): """ This method loads data from sparse mtx file format ('CSR' preferably. See Python sci.sparse matrix format, also referred to as matrix market read and write methods). Label files should contain a column of these labels, e.g. see the contents of a three labels file: 1.23 -102.45 2.2998438943 Loading uniquely test labels is allowed (training labels are optional). In pattern_recognition mode no training labels are required. None is returned out for corresponding Shogun label object. Feature list returned: [features_tr, features_ts, labels_tr, labels_ts] Returned data is float type (dtype='float64'). This is the minimum data length allowed by Shogun given the sparse distance functions does not allow other ones, e.g. short (float32). """ assert fileTrain and fileTest and fileLabelsTs # Necessary test labels as well as test and train data sets specification. from scipy.io import mmread lm = LoadMatrix() if sparse: sci_data_tr = mmread(fileTrain).asformat('csr').astype('float64').T features_tr = SparseRealFeatures(sci_data_tr) # Reformated as CSR and 'float64' type for sci_data_ts = mmread(fileTest).asformat('csr').astype('float64').T # compatibility with SparseRealFeatures features_ts = SparseRealFeatures(sci_data_ts) else: features_tr = RealFeatures(lm.load_numbers(fileTrain).astype('float64')) features_ts = RealFeatures(lm.load_numbers(fileTest).astype('float64')) labels_ts = RegressionLabels(lm.load_labels(fileLabelsTs)) if fileTrain and fileLabelsTr: # sci_data_x: Any sparse data type in the file. labels_tr = RegressionLabels(lm.load_labels(fileLabelsTr)) else: labels_tr = None return features_tr, features_ts, labels_tr, labels_ts # Exception handling: class customException(Exception): """ This exception prevents training inconsistencies. It could be edited for accepting a complete dictionary of exceptions if desired. """ def __init__(self, message): self.parameter = message def __str__(self): return repr(self.parameter) # Basis kernel parameter generation: def sigmaGen(self, hyperDistribution, size, rango, parameters): """ :return: list of float This module generates the pseudorandom vector of widths for basis Gaussian kernels according to a distribution, i.e. hyperDistribution = {'linear', 'quadratic', 'loggauss'*, 'gaussian'*, 'triangular', # parameters[0] is the median of the distribution. parameters[1] has not effect. 'pareto', 'beta'*, 'gamma', 'weibull'}. Names marked with * require parameters, e.g. for 'gaussian', parameters = [mean, width]. The input 'size' is the amount of segments the distribution domain will be discretized out. The 'rango' input are the minimum and maximum values of the obtained distributed values. The 'parameters' of these weight vector distributions are set to common values of each distribution by default, but they can be modified. :param hyperDistribution: string :param size: It is the number of basis kernels for the MKL object. :param rango: It is the range to which the basis kernel parameters will pertain. For some basis kernels families this input parameter has not effect. :param parameters: It is a list of parameters of the distribution of the random weights, e.g. for a gaussian distribution with mean zero and variance 1, parameters = [0, 1]. For some basis kernel families this input parameter has not effect: {'linear', 'quadratic', 'triangular', 'pareto', 'gamma', 'weilbull', } .. seealso: fit_kernel() function documentation. """ # Validating th inputs assert (isinstance(size, int) and size > 0) assert (rango[0] < rango[1] and len(rango) == 2) # .. todo: Revise the other linespaces of the other distributions. They must be equally consistent than the # .. todo: Gaussian one. Change 'is' when verifying equality between strings (PEP008 recommendation). sig = [] if hyperDistribution == 'linear': line = numpy.linspace(rango[0], rango[1], size*2) sig = random.sample(line, size) return sig elif hyperDistribution == 'quadratic': sig = numpy.square(random.sample(numpy.linspace(int(sqrt(rango[0])), int(sqrt(rango[1]))), size)) return sig elif hyperDistribution == 'gaussian': assert parameters[1] > 0 # The width is greater than zero? i = 0 while i < size: numero = random.gauss(parameters[0], parameters[1]) if rango[0] <= numero <= rango[1]: # Validate the initial point of sig.append(numero) # 'range'. If not met, loop does i += 1 # not end, but resets # If met, the number is appended return sig # to 'sig' width list. elif hyperDistribution == 'triangular': assert rango[0] <= parameters[0] <= rango[1] # The median is in the range? sig = numpy.random.triangular(rango[0], parameters[0], rango[1], size) return sig elif hyperDistribution == 'beta': assert (parameters[0] >= 0 and parameters[1] >= 0) # Alpha and Beta parameters are non-negative? sig = numpy.random.beta(parameters[0], parameters[1], size) * (rango[1] - rango[0]) + rango[0] return sig elif hyperDistribution == 'pareto': return numpy.random.pareto(5, size=size) * (rango[1] - rango[0]) + rango[0] elif hyperDistribution == 'gamma': return numpy.random.gamma(shape=1, size=size) * (rango[1] - rango[0]) + rango[0] elif hyperDistribution == 'weibull': return numpy.random.weibull(2, size=size) * (rango[1] - rango[0]) + rango[0] elif hyperDistribution == 'loggauss': assert parameters[1] > 0 # The width is greater than zero? i = 0 while i < size: numero = random.lognormvariate(parameters[0], parameters[1]) if numero > rango[0] and numero < rango[1]: sig.append(numero) i += 1 return sig else: print 'The entered hyperparameter distribution is not allowed: '+hyperDistribution #pdb.set_trace() # Combining kernels def genKer(self, featsL, featsR, basisFam, widths=[5.0, 4.0, 3.0, 2.0, 1.0], sparse = False): """:return: Shogun CombinedKernel object. This module generates a list of basis kernels. These kernels are tuned according to the vector ''widths''. Input parameters ''featsL'' and ''featsR'' are Shogun feature objects. In the case of a learnt RKHS, these both objects should be derived from the training SLM vectors, by means of the Shogun constructor realFeatures(). This module also appends basis kernels to a Shogun combinedKernel object. The kernels to be append are left in ''combKer'' object (see code), which is returned. We have analyzed some basis families available in Shogun, so possible string values of 'basisFam' are: basisFam = ['gaussian', 'inverseQuadratic', 'polynomial', 'power', 'rationalQuadratic', 'spherical', 'tstudent', 'wave', 'wavelet', 'cauchy', 'exponential'] """ allowed_sparse = ['gaussian', 'polynomial'] # Change this assertion list and function if different kernels are needed. assert not (featsL.get_feature_class() == featsR.get_feature_class() == 'C_SPARSE') or basisFam in allowed_sparse # Sparse type is not compatible with specified kernel or feature types are different. kernels = [] if basisFam == 'gaussian': for w in widths: k=GaussianKernel() #k.init(featsL, featsR) #st() kernels.append(k) kernels[-1].set_width(w) kernels[-1].init(featsL, featsR) #st() elif basisFam == 'inverseQuadratic': # For this (and others below) kernel it is necessary fitting the if not sparse: dst = MinkowskiMetric(l=featsL, r=featsR, k=2) # distance matrix at this moment k = 2 is for l_2 norm else: dst = SparseEuclideanDistance(l=featsL, r=featsR) for w in widths: kernels.append(InverseMultiQuadricKernel(0, w, dst)) elif basisFam == 'polynomial': for w in widths: kernels.append(PolyKernel(0, w, False)) elif basisFam == 'power': # At least for images, the used norm does not make differences in performace if not sparse: dst = MinkowskiMetric(l=featsL, r=featsR, k=2) else: dst = SparseEuclideanDistance(l=featsL, r=featsR) for w in widths: kernels.append(PowerKernel(0, w, dst)) elif basisFam == 'rationalQuadratic': # At least for images, using 3-norm make differences if not sparse: dst = MinkowskiMetric(l=featsL, r=featsR, k=2) # in performance else: dst = SparseEuclideanDistance(l=featsL, r=featsR) for w in widths: kernels.append(RationalQuadraticKernel(0, w, dst)) elif basisFam == 'spherical': # At least for images, the used norm does not make differences in performace if not sparse: dst = MinkowskiMetric(l=featsL, r=featsR, k=2) else: dst = SparseEuclideanDistance(l=featsL, r=featsR) for w in widths: kernels.append(SphericalKernel(0, w, dst)) elif basisFam == 'tstudent': # At least for images, the used norm does not make differences in performace if not sparse: dst = MinkowskiMetric(l=featsL, r=featsR, k=2) else: dst = SparseEuclideanDistance(l=featsL, r=featsR) for w in widths: kernels.append(TStudentKernel(0, w, dst)) elif basisFam == 'wave': # At least for images, the used norm does not make differences in performace if not sparse: dst = MinkowskiMetric(l=featsL, r=featsR, k=2) else: dst = SparseEuclideanDistance(l=featsL, r=featsR) for w in widths: kernels.append(WaveKernel(0, w, dst)) elif basisFam == 'wavelet' and not sparse: # At least for images it is very low the performance with this kernel. for w in widths: # It remains pending, for now, analysing its parameters. kernels.append(WaveletKernel(0, w, 0)) elif basisFam == 'cauchy': if not sparse: dst = MinkowskiMetric(l=featsL, r=featsR, k=2) else: dst = SparseEuclideanDistance(l=featsL, r=featsR) for w in widths: kernels.append(CauchyKernel(0, w, dst)) elif basisFam == 'exponential': # For this kernel it is necessary specifying features at the constructor if not sparse: dst = MinkowskiMetric(l=featsL, r=featsR, k=2) else: dst = SparseEuclideanDistance(l=featsL, r=featsR) for w in widths: kernels.append(ExponentialKernel(featsL, featsR, w, dst, 0)) elif basisFam == 'anova' and not sparse: # This kernel presents a warning in training: """RuntimeWarning: [WARN] In file /home/iarroyof/shogun/src/shogun/classifier/mkl/MKLMulticlass.cpp line 198: CMKLMulticlass::evaluatefinishcriterion(...): deltanew<=0.Switching back to weight norsm difference as criterion. """ for w in widths: kernels.append(ANOVAKernel(0, w)) else: raise NameError('Unknown Kernel family name!!!') combKer = CombinedKernel() #features_tr = CombinedFeatures() for k in kernels: combKer.append_kernel(k) #features_tr.append_feature_obj(featsL) #combKer.init(features_tr, features_tr) #combKer.init(featsL,featsR) return combKer#, features_tr # Defining the compounding kernel object class mklObj(object): """Default self definition of the Multiple Kernel Learning object. This object uses previously defined methods for generating a linear combination of basis kernels that can be constituted from different families. See at fit_kernel() function documentation for details. This function trains the kernel weights. The object has other member functions offering utilities. See the next instantiation and using example: import mklObj as mk kernel = mk.mklObj(weightRegNorm = 2, mklC = 2, # This is the Cparameter of the underlaying SVM. SVMepsilon = 1e-5, threads = 2, MKLepsilon = 0.001, probome = 'Multiclass', verbose = False) # IMPORTANT: Don't use this feature (True) if you are working in pipe mode. # The object will print undesired outputs to the stdout. The above values are the defaults, so if they are suitable for you it is possible instantiating the object by simply stating: kernel = mk.mklObj(). Even it is possible modifying a subset of input parameters (keeping others as default): kernel = mk.mklObj(weightRegNorm = 1, mklC = 10, SVMepsilon = 1e-2). See the documentation of each setter below for allowed setting parameters without new instantiations. Now, once main parameters has been setted, fit the kernel: kernel.fit_kernel(featsTr = feats_train, targetsTr = labelsTr, featsTs = feats_test, targetsTs = labelsTs, kernelFamily = 'gaussian', randomRange = [50, 200], # For homogeneous poly kernels these two parameter randomParams = [50, 20], # sets have not effect. No basis kernel parameters hyper = 'linear', # Also with not effect when kernel family is polynomial pKers = 3) # and some other powering forms. Once the MKL object has been fitted, you can get what you need from it. See getters documentation listed below. """ def __init__(self, weightRegNorm=2.0, mklC=2.0, SVMepsilon=0.01, model_file = None, threads=4, MKLepsilon=0.01, problem='regression', verbose=False, mode = 'learning', sparse = False): """Object initialization. This procedure is regardless of the input data, basis kernels and corresponding hyperparameters (kernel fitting). """ mkl_problem_object = {'regression':(MKLRegression, [mklC, mklC]), 'binary': (MKLClassification, [mklC, mklC]), 'multiclass': (MKLMulticlass, mklC)} self.mode = mode self.sparse = sparse assert not model_file and mode != 'pattern_recognition' or ( model_file and mode == 'pattern_recognition')# Model file or pattern_recognition mode must be specified. self.__problem = problem self.verbose = verbose # inner training process verbose flag self.Matrx = False # Kind of returned learned kernel object. See getter documentation of these self.expansion = False # object configuration parameters for details. Only modifiable by setter. self.__testerr = 0 if mode == 'learning': try: self.mkl = mkl_problem_object[problem][0]() self.mklC = mkl_problem_object[problem][1] except KeyError: sys.stderr.write('Error: Given problem type is not valid.') exit() #################<<<<<<<<<<<>>>>>>>>>> self.mkl.set_C_mkl(5.0) # This is the regularization parameter for the MKL weights regularizer (NOT the SVM C) self.weightRegNorm = weightRegNorm # Setting the basis' weight vector norm self.SVMepsilon = SVMepsilon # setting the transducer stop (convergence) criterion self.MKLepsilon = MKLepsilon # setting the MKL stop criterion. The value suggested by # Shogun examples is 0.001. See setter docs for details elif mode == 'pattern_recognition': [self.mkl, self.mkl_model] = self.load_mkl_model(file_name = model_file, model_type = problem) self.sigmas = self.mkl_model['widths'] self.threads = threads # setting number of training threads. Verify functionality!! def fit_pretrained(self, featsTr, featsTs): """ This method sets up a MKL machine by using parameters from self.mkl_model preloaded dictionary which contains preptrained model paremeters, e.g. weights and widths. """ self.ker = genKer(self, featsTr, featsTs, sparse = self.sparse, basisFam = self.family_translation[self.mkl_model['family']], widths = self.sigmas) self.ker.set_subkernel_weights(self.mkl_model['weights']) # Setting up pretrained weights to the self.ker.init(featsTr, featsTs) # new kernel # Self Function for kernel generation def fit_kernel(self, featsTr, targetsTr, featsTs, targetsTs, randomRange=[1, 50], randomParams=[1, 1], hyper='linear', kernelFamily='gaussian', pKers=3): """ :return: CombinedKernel Shogun object. This method is used for training the desired compound kernel. See documentation of the 'mklObj' object for using example. 'featsTr' and 'featsTs' are the training and test data respectively. 'targetsTr' and 'targetsTs' are the training and test labels, respectively. All they must be Shogun 'RealFeatures' and 'MulticlassLabels' objects respectively. The 'randomRange' parameter defines the range of numbers from which the basis kernel parameters will be drawn, e.g. Gaussian random widths between 1 and 50 (the default). The 'randomParams' input parameter states the parameters of the pseudorandom distribution of the basis kernel parameters to be drawn, e.g. Gaussian-pseudorandom-generated weights with std. deviation equal to 1 and mean equal to 1 (the default). The 'hyper' input parameter defines the distribution of the pseudorandom-generated weights. See documentation of the sigmaGen() method of the 'mklObj' object to see a list of possible basis kernel parameter distributions. The 'kernelFamily' input parameter is the basis kernel family to be append to the desired compound kernel if you select, e.g., the default 'gaussian' family, all elements of the learned linear combination will be gaussians (each differently weighted and parametrized). See documentation of the genKer() method of the 'mklObj' object to see a list of allowed basis kernel families. The 'pKers' input parameter defines the size of the learned kernel linear combination, i.e. how many basis kernels to be weighted in the training and therefore, how many coefficients will have the Fourier series of data (the default is 3). .. note:: In the cases of kernelFamily = {'polynomial' or 'power' or 'tstudent' or 'anova'}, the input parameters {'randomRange', 'randomParams', 'hyper'} have not effect, because these kernel families do not require basis kernel parameters. :param featsTr: RealFeatures Shogun object conflating the training data. :param targetsTr: MulticlassLabels Shogun object conflating the training labels. :param featsTr: RealFeatures Shogun object conflating the test data. :param targetsTr: MulticlassLabels Shogun object conflating the test labels. :param randomRange: It is the range to which the basis kernel parameters will pertain. For some basis kernels families this input parameter has not effect. :param randomParams: It is a list of parameters of the distribution of the random weights, e.g. for a gaussian distribution with mean zero and variance 1, parameters = [0, 1]. For some basis kernel families this input parameter has not effect. :param hyper: string which specifies the name of the basis kernel parameter distribution. See documentation for sigmaGen() function for viewing allowed strings (names). :param kernelFamily: string which specifies the name of the basis kernel family. See documentation for genKer() function for viewing allowed strings (names). :param pKers: This is the number of basis kernels for the MKL object (linear combination). """ # Inner variable copying: self._featsTr = featsTr self._targetsTr = targetsTr self._hyper = hyper self._pkers = pKers self.basisFamily = kernelFamily if self.verbose: # Printing the training progress print '\nNacho, multiple <' + kernelFamily + '> Kernels have been initialized...' print "\nInput main parameters: " print "\nHyperarameter distribution: ", self._hyper, "\nLinear combination size: ", pKers, \ '\nWeight regularization norm: ', self.weightRegNorm, \ 'Weight regularization parameter: ',self.mklC if self.__problem == 'multiclass': print "Classes: ", targetsTr.get_num_classes() elif self.__problem == 'binary': print "Classes: Binary" elif self.__problem == 'regression': print 'Regression problem' # Generating the list of subkernels. Creating the compound kernel. For monomial-nonhomogeneous (polynomial) # kernels the hyperparameters are uniquely the degree of each monomial, in the form of a sequence. MKL finds the # coefficient (weight) for each monomial in order to find a compound polynomial. if kernelFamily == 'polynomial' or kernelFamily == 'power' or \ kernelFamily == 'tstudent' or kernelFamily == 'anova': self.sigmas = range(1, pKers+1) self.ker = genKer(self, self._featsTr, self._featsTr, basisFam=kernelFamily, widths=self.sigmas, sparse = self.sparse) else: # We have called 'sigmas' to any basis kernel parameter, regardless if the kernel is Gaussian or not. So # let's generate the widths: self.sigmas = sorted(sigmaGen(self, hyperDistribution=hyper, size=pKers, rango=randomRange, parameters=randomParams)) try: z = self.sigmas.index(0) self.sigmas[z] = 0.1 except ValueError: pass try: # Verifying if number of kernels is greater or equal to 2 if pKers <= 1 or len(self.sigmas) < 2: raise customException('Senseless MKLClassification use!!!') except customException, (instance): print 'Caugth: ' + instance.parameter print "-----------------------------------------------------" print """The multikernel learning object is meaningless for less than 2 basis kernels, i.e. pKers <= 1, so 'mklObj' couldn't be instantiated.""" print "-----------------------------------------------------" self.ker = genKer(self, self._featsTr, self._featsTr, basisFam=kernelFamily, widths=self.sigmas, sparse = self.sparse) if self.verbose: print 'Widths: ', self.sigmas # Initializing the compound kernel # combf_tr = CombinedFeatures() # combf_tr.append_feature_obj(self._featsTr) # self.ker.init(combf_tr, combf_tr) try: # Verifying if number of kernels was greater or equal to 2 after training if self.ker.get_num_subkernels() < 2: raise customException( 'Multikernel coefficients were less than 2 after training. Revise object settings!!!') except customException, (instance): print 'Caugth: ' + instance.parameter # Verbose for learning surveying if self.verbose: print '\nKernel fitted...' # Initializing the transducer for multiclassification features_tr = CombinedFeatures() features_ts = CombinedFeatures() for k in self.sigmas: features_tr.append_feature_obj(self._featsTr) features_ts.append_feature_obj(featsTs) self.ker.init(features_tr, features_tr) self.mkl.set_kernel(self.ker) self.mkl.set_labels(self._targetsTr) # Train to return the learnt kernel if self.verbose: print '\nLearning the machine coefficients...' # ------------------ The most time consuming code segment -------------------------- self.crashed = False try: self.mkl.train() except SystemError: self.crashed = True self.mkl_model = self.keep_mkl_model(self.mkl, self.ker, self.sigmas) # Let's keep the trained model if self.verbose: # for future use. print 'Kernel trained... Weights: ', self.weights # Evaluate the learnt Kernel. Here it is assumed 'ker' is learnt, so we only need for initialize it again but # with the test set object. Then, set the initialized kernel to the mkl object in order to 'apply'. self.ker.init(features_tr, features_ts) # Now with test examples. The inner product between training #st() def pattern_recognition(self, targetsTs): self.mkl.set_kernel(self.ker) # and test examples generates the corresponding Gram Matrix. if not self.crashed: out = self.mkl.apply() # Applying the obtained Gram Matrix else: out = RegressionLabels(-1.0*numpy.ones(targetsTs.get_num_labels())) self.estimated_out = list(out.get_labels()) # ---------------------------------------------------------------------------------- if self.__problem == 'binary': # If the problem is either binary or multiclass, different evalua = ErrorRateMeasure() # performance measures are computed. self.__testerr = 100 - evalua.evaluate(out, targetsTs) * 100 elif self.__problem == 'multiclass': evalua = MulticlassAccuracy() self.__testerr = evalua.evaluate(out, targetsTs) * 100 elif self.__problem == 'regression': # Determination Coefficient was selected for measuring performance #evalua = MeanSquaredError() #self.__testerr = evalua.evaluate(out, targetsTs) self.__testerr = r2_score(self.estimated_out, list(targetsTs.get_labels())) # Verbose for learning surveying if self.verbose: print 'Kernel evaluation ready. The precision was: ', self.__testerr, '%' def keep_mkl_model(self, mkl, kernel, widths, file_name = None): """ Python reimplementated function for saving a pretrained MKL machine. This method saves a trained MKL machine to the file 'file_name'. If not 'file_name' is given, a dictionary 'mkl_machine' containing parameters of the given trained MKL object is returned. Here we assumed all subkernels of the passed CombinedKernel are of the same family, so uniquely the first kernel is used for verifying if the passed 'kernel' is a Gaussian mixture. If it is so, we insert the 'widths' to the model dictionary 'mkl_machine'. An error is returned otherwise. """ mkl_machine = {} support=[] mkl_machine['num_support_vectors'] = mkl.get_num_support_vectors() mkl_machine['bias']=mkl.get_bias() for i in xrange(mkl_machine['num_support_vectors']): support.append((mkl.get_alpha(i), mkl.get_support_vector(i))) mkl_machine['support'] = support mkl_machine['weights'] = list(kernel.get_subkernel_weights()) mkl_machine['family'] = kernel.get_first_kernel().get_name() mkl_machine['widths'] = widths if file_name: f = open(file_name,'w') f.write(str(mkl_machine)+'\n') f.close() else: return mkl_machine def load_mkl_model(self, file_name, model_type = 'regression'): """ This method receives a file name (if it is not in pwd, full path must be given) and a model type to be loaded {'regression', 'binary', 'multiclass'}. The loaded file must contain a t least a dictionary at its top. This dictionary must contain a key called 'model' whose value must be a dictionary, from which model parameters will be read. For example: {'key_0':value, 'key_1':value,..., 'model':{'family':'PolyKernel', 'bias':1.001,...}, key_n:value} Four objects are returned. The MKL model which is tuned to those parameters stored at the given file. A numpy array containing learned weights of a CombinedKernel. The widths corresponding to returned kernel weights and the kernel family. Be careful with the kernel family you are loading because widths no necessarily are it, but probably 'degrees', e.g. for the PolyKernel family. The Combined kernel must be instantiated outside this method, thereby loading to it corresponding weights and widths. """ with open(file_name, 'r') as pointer: mkl_machine = eval(pointer.read())['learned_model'] if model_type == 'regression': mkl = MKLRegression() # A new two-class MKL object elif model_type == 'binary': mkl = MKLClassification() elif model_type == 'multiclass': mkl = MKLMulticlass() else: sys.stderr.write('ERROR: Unknown problem type in model loading.') exit() mkl.set_bias(mkl_machine['bias']) mkl.create_new_model(mkl_machine['num_support_vectors']) # Initialize the inner SVM for i in xrange(mkl_machine['num_support_vectors']): mkl.set_alpha(i, mkl_machine['support'][i][0]) mkl.set_support_vector(i, mkl_machine['support'][i][1]) mkl_machine['weights'] = numpy.array(mkl_machine['weights']) return mkl, mkl_machine # Getters (properties): @property def family_translation(self): """ """ self.__family_translation = {'PolyKernel':'polynomial', 'GaussianKernel':'gaussian', 'ExponentialKernel':'exponential'} return self.__family_translation @property def mkl_model(self): """ This property stores the MKL model parameters learned by the self-object. These parameters can be stored into a file for future configuration of a non-trained MKL new MKL object. Also probably passed onwards for showing results. """ return self.__mkl_model @property def estimated_out(self): """ This property is the mkl result after applying. """ return self.__estimated_out @property def compoundKernel(self): """This method is used for getting the kernel object, i.e. the learned MKL object, which can be unwrapped into its matrix form instead of getting a Shogun object. Use the input parameters Matrix = True, expansion = False for getting the compound matrix of reals. For instance: mklObj.Matrix = True mklObj.expansion = False kernelMatrix = mklObj.compoundKernel Use Matrix = True, expansion = True for getting the expanded linear combination of matrices and weights separately, for instance: mklObj.Matrix = True mklObj.expansion = True basis, weights = mklObj.compoundKernel Use Matrix = False, expansion = False for getting the learned kernel Shogun object, for instance: mklObj.Matrix = False mklObj.expansion = False kernelObj = mklObj.compoundKernel .. warning:: Be careful with this latter variant of the method becuase of the large amount of needed physical memory. """ if self.Matrx: kernels = [] size = self.ker.get_num_subkernels() for k in xrange(0, size - 1): kernels.append(self.ker.get_kernel(k).get_kernel_matrix()) ws = self.weights if self.expansion: return kernels, ws # Returning the full expansion of the learned kernel. else: return sum(kernels * ws) # Returning the matrix linear combination, in other words, else: # a projector matrix representation. return self.ker # If matrix representation is not required, only the Shogun kernel # object is returned. @property def sigmas(self): """This method is used for getting the current set of basis kernel parameters, i.e. widths, in the case of the gaussian basis kernel. :rtype : list of float """ return self.__sigmas @property def verbose(self): """This is the verbose flag, which is used for monitoring the object training procedure. IMPORTANT: Don't use this feature (True) if you are working in pipe mode. The object will print undesired outputs to the stdout. :rtype : bool """ return self._verbose @property def Matrx(self): """This is a boolean property of the object. Its aim is getting and, mainly, setting the kind of object we want to obtain as learned kernel, i.e. a Kernel Shogun object or a Kernel Matrix whose entries are reals. The latter could require large amounts of physical memory. See the mklObj.compoundKernel property documentation in this object for using details. :rtype :bool """ return self.__Matrx @property def expansion(self): """This is a boolean property. Its aim is getting and, mainly, setting the mklObj object to return the complete expansion of the learned kernel, i.e. a list of basis kernel matrices as well as their corresponding coefficients. This configuration may require large amounts of physical memory. See the mklObj.compoundKernel property documentation in this object for using details. :rtype :bool .. seealso:: the code and examples and documentation about :@property:`compoundKernel` """ return self.__expansion @property def weightRegNorm(self): """ The value of this property is the basis' weight vector norm, e.g. :math:`||\beta||_p`, to be used as regularizer. It controls the smoothing among basis kernel weights of the learned multiple kernel combination. On one hand, If p=1 (the l_1 norm) the weight values B_i will be disproportionally between them, i.e. a few of them will be >> 0,some other simply > 0 and many of them will be zero or very near to zero (the vector B will be sparse). On the other hand, if p = 2 the weights B_i linearly distributed, i.e. their distribution shows an uniform tilt in such a way the differences between pairs of them are not significant, but rather proportional to the tilt of the distribution. To our knowledge, such a tilt is certainly not explicitly taken into account as regularization hyperparameter, although the parameter C \in [0, 1] is directly associated to it as scalar factor. Thus specifically for C \in [0, 1], it operates the vector B by forcing to it to certain orientation which describes a tilt m \in (0, 1)U(1, \infty) (with minima in the extremes of these subsets and maxima in their medians). Given that C \n [0, 1], the scaling effect behaves such that linearly depresses low values of B_i, whilst highlights their high values. The effect of C \in (1, \infty) is still not clearly studied, however it will be a bit different than the above, but keeping its scalar effect. Overall, as p tends to be >> 1 (or even p --> \\infty) the B_i values tend to be ever more uniformly distributed. More specific and complex regularization operators are explained in .. seealso:: Schölkopf, B., & Smola, A. J. (2002). Learning with kernels: Support vector machines, regularization, optimization, and beyond. MIT press. :rtype : vector of float """ return self.__weightRegNorm # function getters @property def weights(self): """This method is used for getting the learned weights of the MKL object. We first get the kernel weights into a list object, before returning it. This is because 'get_subkernel_weights()' causes error while printing to an output file by means of returning a nonlist object. :rtype : list of float """ self.__weights = list(self.ker.get_subkernel_weights()) return self.__weights @property def SVMepsilon(self): """This method is used for getting the SVM convergence criterion (the minimum allowed error commited by the transducer in training). :rtype : float .. seealso:: See at page 22 of Sonnemburg et.al., (2006) Large Scale Multiple Kernel Learning. .. seealso:: @SVMepsilon.setter """ return self.__SVMepsion @property def MKLepsilon(self): """This method is used for getting the MKL convergence criterion (the minimum allowed error committed by the MKL object in test). :rtype : float .. seealso:: See at page 22 of Sonnemburg et.al., (2006) Large Scale Multiple Kernel Learning. .. seealso:: @MKLepsilon.setter """ return self.__MKLepsilon @property def mklC(self): """This method is used for setting regularization parameters. 'mklC' is a real value in multiclass problems, while in binary problems it must be a list of two elements. These must be different when the two classes are imbalanced, but must be equal for balanced densities in binary classification problems. For multiclass problems, imbalanced densities are not considered. :rtype : float .. seealso:: See at page 4 of Bagchi, (2014) SVM Classifiers Based On Imperfect Training Data. .. seealso:: @weightRegNorm property documentation for more details about C as regularization parameter. """ return self.__mklC @property def threads(self): """ This property is used for getting and setting the number of threads in which the training procedure will be will be segmented into a single machine processor core. :rtype : int .. seealso:: @threads.setter documentation. """ return self.__threads # Readonly properties: @property def problem(self): """This method is used for getting the kind of problem the mklObj object will be trained for. If binary == True, the you want to train the object for a two-class classification problem. Otherwise if binary == False, you want to train the object for multiclass classification problems. This property can't be modified once the object has been instantiated. :rtype : bool """ return self.__problem @property def testerr(self): """This method is used for getting the test accuracy after training the MKL object. 'testerr' is a readonly object property. :rtype : float """ return self.__testerr @property def sparse(self): """This method is used for getting the sparse/dense mode of the MKL object. :rtype : float """ return self.__sparse @property def crashed(self): """This method is used for getting the sparse/dense mode of the MKL object. :rtype : float """ return self.__crashed # mklObj (decorated) Setters: Binary configuration of the classifier cant be changed. It is needed to instantiate # a new mklObj object. @crashed.setter def crashed(self, value): assert isinstance(value, bool) # The model is not stored as a dictionary self.__crashed = value @mkl_model.setter def mkl_model(self, value): assert isinstance(value, dict) # The model is not stored as a dictionary self.__mkl_model = value @estimated_out.setter def estimated_out(self, value): self.__estimated_out = value @sparse.setter def sparse(self, value): self.__sparse = value @Matrx.setter def Matrx(self, value): """ :type value: bool .. seealso:: @Matrx property documentation. """ assert isinstance(value, bool) self.__Matrx = value @expansion.setter def expansion(self, value): """ .. seealso:: @expansion property documentation :type value: bool """ assert isinstance(value, bool) self.__expansion = value @sigmas.setter def sigmas(self, value): """ This method is used for setting desired basis kernel parameters for the MKL object. 'value' is a list of real values of 'pKers' length. In 'learning' mode, be careful to avoid mismatching between the number of basis kernels of the current compound kernel and the one you have in mind. A mismatch error could be arisen. In 'pattern_recognition' mode, this quantity is taken from the learned model, which is stored at disk. @type value: list of float .. seealso:: @sigmas property documentation """ try: if self.mode == 'learning': if len(value) == self._pkers: self.__sigmas = value else: raise customException('Size of basis kernel parameter list mismatches the size of the combined\ kernel. You can use len(CMKLobj.sigmas) to revise the mismatching.') elif self.mode == 'pattern_recognition': self.__sigmas = value except customException, (instance): print "Caught: " + instance.parameter @verbose.setter def verbose(self, value): """This method sets to True of False the verbose flag, which is used in turn for monitoring the object training procedure. @type value: bool """ assert isinstance(value, bool) self._verbose = value @weightRegNorm.setter def weightRegNorm(self, value): """This method is used for changing the norm of the weight regularizer of the MKL object. Typically this changing is useful for retrain the model with other regularizer. @type value: float ..seealso:: @weightRegNorm property documentation. """ assert (isinstance(value, float) and value >= 0.0) self.mkl.set_mkl_norm(value) self.__weightRegNorm = value @SVMepsilon.setter def SVMepsilon(self, value): """This method is used for setting the SVM convergence criterion (the minimum allowed error commited by the transducer in training). In other words, the low level of the learning process. The current basis kernel combination is tested as the SVM kernel. Regardless of each basis' weights. @type value: float .. seealso:: Page 22 of Sonnemburg et.al., (2006) Large Scale Multiple Kernel Learning. """ assert (isinstance(value, float) and value >= 0.0) self.mkl.set_epsilon(value) self.__SVMepsion = value @MKLepsilon.setter def MKLepsilon(self, value): """This method is used for setting the MKL convergence criterion (the minimum allowed error committed by the MKL object in test). In other words, the high level of the learning process. The current basis kernel combination is tested as the SVM kernel. The basis' weights are tuned until 'MKLeps' is reached. @type value: float .. seealso:: Page 22 of Sonnemburg et.al., (2006) Large Scale Multiple Kernel Learning. """ assert (isinstance(value, float) and value >= 0.0) self.mkl.set_mkl_epsilon(value) self.__MKLepsilon = value @mklC.setter def mklC(self, value): """This method is used for setting regularization parameters. These are different when the two classes are imbalanced and Equal for balanced densities in binary classification problems. For multiclass problems imbalanced densities are not considered, so uniquely the first argument is caught by the method. If one or both arguments are misplaced the default values are one both them. @type value: float (for multiclass problems), [float, float] for binary and regression problems. .. seealso:: Page 4 of Bagchi,(2014) SVM Classifiers Based On Imperfect Training Data. """ if self.__problem == 'binary' or self.__problem == 'regression': assert len(value) == 2 assert (isinstance(value, (list, float)) and value[0] > 0.0 and value[1] > 0.0) self.mkl.set_C(value[0], value[1]) elif self.__problem == 'multiclass': assert (isinstance(value, float) and value > 0.0) self.mkl.set_C(value) self.__mklC = value @threads.setter def threads(self, value): """This method is used for changing the number of threads we want to be running with a single machine core. These threads are not different parallel processes running in different machine cores. """ assert (isinstance(value, int) and value > 0) self.mkl.parallel.set_num_threads(value) # setting number of training threads self.__threads = value
gpl-2.0
JamesClough/networkx
examples/drawing/giant_component.py
15
2287
#!/usr/bin/env python """ This example illustrates the sudden appearance of a giant connected component in a binomial random graph. Requires pygraphviz and matplotlib to draw. """ # Copyright (C) 2006-2016 # Aric Hagberg <[email protected]> # Dan Schult <[email protected]> # Pieter Swart <[email protected]> # All rights reserved. # BSD license. try: import matplotlib.pyplot as plt except: raise import networkx as nx import math try: import pygraphviz from networkx.drawing.nx_agraph import graphviz_layout layout = graphviz_layout except ImportError: try: import pydotplus from networkx.drawing.nx_pydot import graphviz_layout layout = graphviz_layout except ImportError: print("PyGraphviz and PyDotPlus not found;\n" "drawing with spring layout;\n" "will be slow.") layout = nx.spring_layout n=150 # 150 nodes # p value at which giant component (of size log(n) nodes) is expected p_giant=1.0/(n-1) # p value at which graph is expected to become completely connected p_conn=math.log(n)/float(n) # the following range of p values should be close to the threshold pvals=[0.003, 0.006, 0.008, 0.015] region=220 # for pylab 2x2 subplot layout plt.subplots_adjust(left=0,right=1,bottom=0,top=0.95,wspace=0.01,hspace=0.01) for p in pvals: G=nx.binomial_graph(n,p) pos=layout(G) region+=1 plt.subplot(region) plt.title("p = %6.3f"%(p)) nx.draw(G,pos, with_labels=False, node_size=10 ) # identify largest connected component Gcc=sorted(nx.connected_component_subgraphs(G), key = len, reverse=True) G0=Gcc[0] nx.draw_networkx_edges(G0,pos, with_labels=False, edge_color='r', width=6.0 ) # show other connected components for Gi in Gcc[1:]: if len(Gi)>1: nx.draw_networkx_edges(Gi,pos, with_labels=False, edge_color='r', alpha=0.3, width=5.0 ) plt.savefig("giant_component.png") plt.show() # display
bsd-3-clause
0x0all/scikit-learn
sklearn/manifold/tests/test_t_sne.py
10
9541
import sys from sklearn.externals.six.moves import cStringIO as StringIO import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises_regexp from sklearn.utils import check_random_state from sklearn.manifold.t_sne import _joint_probabilities from sklearn.manifold.t_sne import _kl_divergence from sklearn.manifold.t_sne import _gradient_descent from sklearn.manifold.t_sne import trustworthiness from sklearn.manifold.t_sne import TSNE from sklearn.manifold._utils import _binary_search_perplexity from scipy.optimize import check_grad from scipy.spatial.distance import pdist from scipy.spatial.distance import squareform def test_gradient_descent_stops(): """Test stopping conditions of gradient descent.""" class ObjectiveSmallGradient: def __init__(self): self.it = -1 def __call__(self, _): self.it += 1 return (10 - self.it) / 10.0, np.array([1e-5]) def flat_function(_): return 0.0, np.ones(1) # Gradient norm old_stdout = sys.stdout sys.stdout = StringIO() try: _, error, it = _gradient_descent( ObjectiveSmallGradient(), np.zeros(1), 0, n_iter=100, n_iter_without_progress=100, momentum=0.0, learning_rate=0.0, min_gain=0.0, min_grad_norm=1e-5, min_error_diff=0.0, verbose=2) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert_equal(error, 1.0) assert_equal(it, 0) assert("gradient norm" in out) # Error difference old_stdout = sys.stdout sys.stdout = StringIO() try: _, error, it = _gradient_descent( ObjectiveSmallGradient(), np.zeros(1), 0, n_iter=100, n_iter_without_progress=100, momentum=0.0, learning_rate=0.0, min_gain=0.0, min_grad_norm=0.0, min_error_diff=0.2, verbose=2) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert_equal(error, 0.9) assert_equal(it, 1) assert("error difference" in out) # Maximum number of iterations without improvement old_stdout = sys.stdout sys.stdout = StringIO() try: _, error, it = _gradient_descent( flat_function, np.zeros(1), 0, n_iter=100, n_iter_without_progress=10, momentum=0.0, learning_rate=0.0, min_gain=0.0, min_grad_norm=0.0, min_error_diff=-1.0, verbose=2) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert_equal(error, 0.0) assert_equal(it, 11) assert("did not make any progress" in out) # Maximum number of iterations old_stdout = sys.stdout sys.stdout = StringIO() try: _, error, it = _gradient_descent( ObjectiveSmallGradient(), np.zeros(1), 0, n_iter=11, n_iter_without_progress=100, momentum=0.0, learning_rate=0.0, min_gain=0.0, min_grad_norm=0.0, min_error_diff=0.0, verbose=2) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert_equal(error, 0.0) assert_equal(it, 10) assert("Iteration 10" in out) def test_binary_search(): """Test if the binary search finds Gaussians with desired perplexity.""" random_state = check_random_state(0) distances = random_state.randn(50, 2) distances = distances.dot(distances.T) np.fill_diagonal(distances, 0.0) desired_perplexity = 25.0 P = _binary_search_perplexity(distances, desired_perplexity, verbose=0) P = np.maximum(P, np.finfo(np.double).eps) mean_perplexity = np.mean([np.exp(-np.sum(P[i] * np.log(P[i]))) for i in range(P.shape[0])]) assert_almost_equal(mean_perplexity, desired_perplexity, decimal=3) def test_gradient(): """Test gradient of Kullback-Leibler divergence.""" random_state = check_random_state(0) n_samples = 50 n_features = 2 n_components = 2 alpha = 1.0 distances = random_state.randn(n_samples, n_features) distances = distances.dot(distances.T) np.fill_diagonal(distances, 0.0) X_embedded = random_state.randn(n_samples, n_components) P = _joint_probabilities(distances, desired_perplexity=25.0, verbose=0) fun = lambda params: _kl_divergence(params, P, alpha, n_samples, n_components)[0] grad = lambda params: _kl_divergence(params, P, alpha, n_samples, n_components)[1] assert_almost_equal(check_grad(fun, grad, X_embedded.ravel()), 0.0, decimal=5) def test_trustworthiness(): """Test trustworthiness score.""" random_state = check_random_state(0) # Affine transformation X = random_state.randn(100, 2) assert_equal(trustworthiness(X, 5.0 + X / 10.0), 1.0) # Randomly shuffled X = np.arange(100).reshape(-1, 1) X_embedded = X.copy() random_state.shuffle(X_embedded) assert_less(trustworthiness(X, X_embedded), 0.6) # Completely different X = np.arange(5).reshape(-1, 1) X_embedded = np.array([[0], [2], [4], [1], [3]]) assert_almost_equal(trustworthiness(X, X_embedded, n_neighbors=1), 0.2) def test_preserve_trustworthiness_approximately(): """Nearest neighbors should be preserved approximately.""" random_state = check_random_state(0) X = random_state.randn(100, 2) for init in ('random', 'pca'): tsne = TSNE(n_components=2, perplexity=10, learning_rate=100.0, init=init, random_state=0) X_embedded = tsne.fit_transform(X) assert_almost_equal(trustworthiness(X, X_embedded, n_neighbors=1), 1.0, decimal=1) def test_fit_csr_matrix(): """X can be a sparse matrix.""" random_state = check_random_state(0) X = random_state.randn(100, 2) X[(np.random.randint(0, 100, 50), np.random.randint(0, 2, 50))] = 0.0 X_csr = sp.csr_matrix(X) tsne = TSNE(n_components=2, perplexity=10, learning_rate=100.0, random_state=0) X_embedded = tsne.fit_transform(X_csr) assert_almost_equal(trustworthiness(X_csr, X_embedded, n_neighbors=1), 1.0, decimal=1) def test_preserve_trustworthiness_approximately_with_precomputed_distances(): """Nearest neighbors should be preserved approximately.""" random_state = check_random_state(0) X = random_state.randn(100, 2) D = squareform(pdist(X), "sqeuclidean") tsne = TSNE(n_components=2, perplexity=10, learning_rate=100.0, metric="precomputed", random_state=0) X_embedded = tsne.fit_transform(D) assert_almost_equal(trustworthiness(D, X_embedded, n_neighbors=1, precomputed=True), 1.0, decimal=1) def test_early_exaggeration_too_small(): """Early exaggeration factor must be >= 1.""" tsne = TSNE(early_exaggeration=0.99) assert_raises_regexp(ValueError, "early_exaggeration .*", tsne.fit_transform, np.array([[0.0]])) def test_too_few_iterations(): """Number of gradient descent iterations must be at least 200.""" tsne = TSNE(n_iter=199) assert_raises_regexp(ValueError, "n_iter .*", tsne.fit_transform, np.array([[0.0]])) def test_non_square_precomputed_distances(): """Precomputed distance matrices must be square matrices.""" tsne = TSNE(metric="precomputed") assert_raises_regexp(ValueError, ".* square distance matrix", tsne.fit_transform, np.array([[0.0], [1.0]])) def test_init_not_available(): """'init' must be 'pca' or 'random'.""" assert_raises_regexp(ValueError, "'init' must be either 'pca' or 'random'", TSNE, init="not available") def test_distance_not_available(): """'metric' must be valid.""" tsne = TSNE(metric="not available") assert_raises_regexp(ValueError, "Unknown metric not available.*", tsne.fit_transform, np.array([[0.0], [1.0]])) def test_pca_initialization_not_compatible_with_precomputed_kernel(): """Precomputed distance matrices must be square matrices.""" tsne = TSNE(metric="precomputed", init="pca") assert_raises_regexp(ValueError, "The parameter init=\"pca\" cannot be " "used with metric=\"precomputed\".", tsne.fit_transform, np.array([[0.0], [1.0]])) def test_verbose(): random_state = check_random_state(0) tsne = TSNE(verbose=2) X = random_state.randn(5, 2) old_stdout = sys.stdout sys.stdout = StringIO() try: tsne.fit_transform(X) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert("[t-SNE]" in out) assert("Computing pairwise distances" in out) assert("Computed conditional probabilities" in out) assert("Mean sigma" in out) assert("Finished" in out) assert("early exaggeration" in out) assert("Finished" in out) def test_chebyshev_metric(): """t-SNE should allow metrics that cannot be squared (issue #3526).""" random_state = check_random_state(0) tsne = TSNE(verbose=2, metric="chebyshev") X = random_state.randn(5, 2) tsne.fit_transform(X)
bsd-3-clause
turian/batchtrain
hyperparameters.py
1
5497
from locals import * from collections import OrderedDict import itertools import sklearn.linear_model import sklearn.svm import sklearn.ensemble import sklearn.neighbors import sklearn.semi_supervised import sklearn.naive_bayes # Code from http://rosettacode.org/wiki/Power_set#Python def list_powerset2(lst): return reduce(lambda result, x: result + [subset + [x] for subset in result], lst, [[]]) def powerset(s): return frozenset(map(frozenset, list_powerset2(list(s)))) def all_hyperparameters(odict): hyperparams = list(itertools.product(*odict.values())) for h in hyperparams: yield dict(zip(odict.keys(), h)) MODEL_HYPERPARAMETERS = { "MultinomialNB": OrderedDict({ "alpha": [0.01, 0.032, 0.1, 0.32, 1.0, 10.] }), "SGDClassifier": OrderedDict({ "loss": ['hinge', 'log', 'modified_huber'], "penalty": ['l2', 'l1', 'elasticnet'], "alpha": [0.001, 0.0001, 0.00001, 0.000001], "rho": [0.15, 0.30, 0.55, 0.85, 0.95], # "l1_ratio": [0.05, 0.15, 0.45], "fit_intercept": [True], "n_iter": [1, 5, 25, 100], "shuffle": [True, False], # "epsilon": [ "learning_rate": ["constant", "optimal", "invscaling"], "eta0": [0.001, 0.01, 0.1], "power_t": [0.05, 0.1, 0.25, 0.5, 1.], "warm_start": [True, False], }), "BayesianRidge": OrderedDict({ "n_iter": [100, 300, 1000], "tol": [1e-2, 1e-3, 1e-4], "alpha_1": [1e-5, 1e-6, 1e-7], "alpha_2": [1e-5, 1e-6, 1e-7], "lambda_1": [1e-5, 1e-6, 1e-7], "lambda_2": [1e-5, 1e-6, 1e-7], "normalize": [True, False], }), "Perceptron": OrderedDict({ "penalty": ["l2", "l1", "elasticnet"], "alpha": [1e-2, 1e-3, 1e-4, 1e-5, 1e-6], "n_iter": [1, 5, 25], "shuffle": [True, False], "eta0": [0.1, 1., 10.], "warm_start": [True, False], }), "SVC": OrderedDict({ "C": [0.1, 1, 10, 100], "kernel": ["rbf", "sigmoid", "linear", "poly"], "degree": [1,2,3,4,5], "gamma": [1e-3, 1e-5, 0.], "probability": [False, True], "cache_size": [CACHESIZE], "shrinking": [False, True], }), "SVR": OrderedDict({ "C": [0.1, 1, 10, 100], "epsilon": [0.001, 0.01, 0.1, 1.0], "kernel": ["rbf", "sigmoid", "linear", "poly"], "degree": [1,2,3,4,5], "gamma": [1e-3, 1e-5, 0.], "cache_size": [CACHESIZE], "shrinking": [False, True], }), "GradientBoostingClassifier": OrderedDict({ 'loss': ['deviance'], #'learn_rate': [1., 0.1, 0.01], 'learn_rate': [1., 0.1], #'n_estimators': [10, 32, 100, 320], 'n_estimators': [10, 32, 100], 'max_depth': [1, 3, None], 'min_samples_split': [1, 3], 'min_samples_leaf': [1, 3], #'subsample': [0.032, 0.1, 0.32, 1], 'subsample': [0.1, 0.32, 1], # 'alpha': [0.5, 0.9], }), "GradientBoostingRegressor": OrderedDict({ 'loss': ['ls', 'lad', 'huber', 'quantile'], 'learn_rate': [1., 0.1, 0.01], 'n_estimators': [10, 32, 100, 320], 'max_depth': [1, 3, None], 'min_samples_split': [1, 3], 'min_samples_leaf': [1, 3], 'subsample': [0.032, 0.1, 0.32, 1], }), "RandomForestClassifier": OrderedDict({ 'n_estimators': [10, 32, 100, 320], 'criterion': ['gini', 'entropy'], 'max_depth': [1, 3, None], 'min_samples_split': [1, 3], 'min_samples_leaf': [1, 3], 'min_density': [0.032, 0.1, 0.32], 'max_features': ["sqrt", "log2", None], # 'bootstrap': [True, False], 'bootstrap': [True], 'oob_score': [True, False], # 'verbose': [True], }), "RandomForestRegressor": OrderedDict({ 'n_estimators': [10, 32, 100, 320], 'max_depth': [1, 3, None], 'min_samples_split': [1, 3], 'min_samples_leaf': [1, 3], 'min_density': [0.032, 0.1, 0.32], 'max_features': ["sqrt", "log2", None], # 'bootstrap': [True, False], 'bootstrap': [True], 'oob_score': [True, False], # 'verbose': [True], }), "KNeighborsClassifier": OrderedDict({ 'n_neighbors': [3, 5, 7], 'weights': ['uniform', 'distance'], 'algorithm': ['ball_tree', 'kd_tree', 'brute'], 'leaf_size': [10, 30, 100], 'p': [1, 2], }), "LabelSpreading": OrderedDict({ 'kernel': ['knn', 'rbf'], 'gamma': [10, 20, 100, 200], 'n_neighbors': [3, 5, 7, 9], 'alpha': [0, 0.02, 0.2, 1.0], 'max_iters': [3, 10, 30, 100], 'tol': [1e-5, 1e-3, 1e-1, 1.], }) } MODEL_NAME_TO_CLASS = { "MultinomialNB": sklearn.naive_bayes.MultinomialNB, "SGDClassifier": sklearn.linear_model.SGDClassifier, "BayesianRidge": sklearn.linear_model.BayesianRidge, "Perceptron": sklearn.linear_model.Perceptron, "SVC": sklearn.svm.SVC, "SVR": sklearn.svm.SVR, "GradientBoostingClassifier": sklearn.ensemble.GradientBoostingClassifier, "GradientBoostingRegressor": sklearn.ensemble.GradientBoostingRegressor, "RandomForestClassifier": sklearn.ensemble.RandomForestClassifier, "RandomForestRegressor": sklearn.ensemble.RandomForestRegressor, "KNeighborsClassifier": sklearn.neighbors.KNeighborsClassifier, "LabelSpreading": sklearn.semi_supervised.LabelSpreading, }
bsd-3-clause
rcfduarte/nmsat
projects/examples/scripts/single_neuron_dcinput.py
1
7658
__author__ = 'duarte' from modules.parameters import ParameterSet, ParameterSpace, extract_nestvalid_dict from modules.input_architect import EncodingLayer from modules.net_architect import Network from modules.io import set_storage_locations from modules.signals import iterate_obj_list from modules.analysis import single_neuron_dcresponse import cPickle as pickle import numpy as np import scipy.stats as stats import matplotlib.pyplot as pl import nest # ###################################################################################################################### # Experiment options # ====================================================================================================================== plot = True display = True save = True # ###################################################################################################################### # Extract parameters from file and build global ParameterSet # ====================================================================================================================== params_file = '../parameters/single_neuron_fI.py' parameter_set = ParameterSpace(params_file)[0] parameter_set = parameter_set.clean(termination='pars') if not isinstance(parameter_set, ParameterSet): if isinstance(parameter_set, basestring) or isinstance(parameter_set, dict): parameter_set = ParameterSet(parameter_set) else: raise TypeError("parameter_set must be ParameterSet, string with full path to parameter file or dictionary") # ###################################################################################################################### # Setup extra variables and parameters # ====================================================================================================================== if plot: import modules.visualization as vis vis.set_global_rcParams(parameter_set.kernel_pars['mpl_path']) paths = set_storage_locations(parameter_set, save) np.random.seed(parameter_set.kernel_pars['np_seed']) results = dict() # ###################################################################################################################### # Set kernel and simulation parameters # ====================================================================================================================== print('\nRuning ParameterSet {0}'.format(parameter_set.label)) nest.ResetKernel() nest.set_verbosity('M_WARNING') nest.SetKernelStatus(extract_nestvalid_dict(parameter_set.kernel_pars.as_dict(), param_type='kernel')) # ###################################################################################################################### # Build network # ====================================================================================================================== net = Network(parameter_set.net_pars) # ###################################################################################################################### # Randomize initial variable values # ====================================================================================================================== for idx, n in enumerate(list(iterate_obj_list(net.populations))): if hasattr(parameter_set.net_pars, "randomize_neuron_pars"): randomize = parameter_set.net_pars.randomize_neuron_pars[idx] for k, v in randomize.items(): n.randomize_initial_states(k, randomization_function=v[0], **v[1]) # ###################################################################################################################### # Build and connect input # ====================================================================================================================== enc_layer = EncodingLayer(parameter_set.encoding_pars) enc_layer.connect(parameter_set.encoding_pars, net) # ###################################################################################################################### # Set-up Analysis # ====================================================================================================================== net.connect_devices() # ###################################################################################################################### # Simulate # ====================================================================================================================== if parameter_set.kernel_pars.transient_t: net.simulate(parameter_set.kernel_pars.transient_t) net.flush_records() net.simulate(parameter_set.kernel_pars.sim_time + nest.GetKernelStatus()['resolution']) # ###################################################################################################################### # Extract and store data # ====================================================================================================================== net.extract_population_activity(t_start=parameter_set.kernel_pars.transient_t + nest.GetKernelStatus()['resolution'], t_stop=parameter_set.kernel_pars.sim_time + parameter_set.kernel_pars.transient_t) net.extract_network_activity() net.flush_records() # ###################################################################################################################### # Analyse / plot data # ====================================================================================================================== analysis_interval = [parameter_set.kernel_pars.transient_t + nest.GetKernelStatus()['resolution'], parameter_set.kernel_pars.sim_time + parameter_set.kernel_pars.transient_t] for idd, nam in enumerate(net.population_names): results.update({nam: {}}) results[nam] = single_neuron_dcresponse(net.populations[idd], parameter_set, start=analysis_interval[0], stop=analysis_interval[1], plot=plot, display=display, save=paths['figures'] + paths['label']) idx = np.min(np.where(results[nam]['output_rate'])) print("Rate range for neuron {0} = [{1}, {2}] Hz".format( str(nam), str(np.min(results[nam]['output_rate'][results[nam]['output_rate'] > 0.])), str(np.max(results[nam]['output_rate'][results[nam]['output_rate'] > 0.])))) results[nam].update({'min_rate': np.min(results[nam]['output_rate'][results[nam]['output_rate'] > 0.]), 'max_rate': np.max(results[nam]['output_rate'][results[nam]['output_rate'] > 0.])}) print("Rheobase Current for neuron {0} in [{1}, {2}]".format( str(nam), str(results[nam]['input_amplitudes'][idx - 1]), str(results[nam]['input_amplitudes'][idx]))) x = np.array(results[nam]['input_amplitudes']) y = np.array(results[nam]['output_rate']) iddxs = np.where(y) slope, intercept, r_value, p_value, std_err = stats.linregress(x[iddxs], y[iddxs]) print("fI Slope for neuron {0} = {1} Hz/nA [linreg method]".format(nam, str(slope * 1000.))) results[nam].update({'fI_slope': slope * 1000., 'I_rh': [results[nam]['input_amplitudes'][idx - 1], results[nam]['input_amplitudes'][idx]]}) # ###################################################################################################################### # Save data # ====================================================================================================================== if save: with open(paths['results'] + 'Results_' + parameter_set.label, 'w') as f: pickle.dump(results, f) parameter_set.save(paths['parameters'] + 'Parameters_' + parameter_set.label)
gpl-2.0
kgullikson88/General
Feiden.py
2
4640
from __future__ import division, print_function import os import os.path import pickle import numpy as np from pkg_resources import resource_filename from scipy.interpolate import LinearNDInterpolator as interpnd try: import pandas as pd except ImportError: pd = None from isochrones.isochrone import Isochrone DATADIR = os.getenv('ISOCHRONES', os.path.expanduser(os.path.join('~', '.isochrones'))) if not os.path.exists(DATADIR): os.mkdir(DATADIR) MASTERFILE = '{}/Feiden.h5'.format(DATADIR) TRI_FILE = '{}/Feiden.tri'.format(DATADIR) MAXAGES = np.load(resource_filename('isochrones', 'data/dartmouth_maxages.npz')) MAXAGE = interpnd(MAXAGES['points'], MAXAGES['maxages']) # def _download_h5(): # """ # Downloads HDF5 file containing Dartmouth grids from Zenodo. # """ # #url = 'http://zenodo.org/record/12800/files/dartmouth.h5' # url = 'http://zenodo.org/record/15843/files/dartmouth.h5' # from six.moves import urllib # print('Downloading Dartmouth stellar model data (should happen only once)...') # if os.path.exists(MASTERFILE): # os.remove(MASTERFILE) # urllib.request.urlretrieve(url,MASTERFILE) #def _download_tri(): # """ # Downloads pre-computed triangulation for Dartmouth grids from Zenodo. # """ # #url = 'http://zenodo.org/record/12800/files/dartmouth.tri' # #url = 'http://zenodo.org/record/15843/files/dartmouth.tri' # url = 'http://zenodo.org/record/17627/files/dartmouth.tri' # from six.moves import urllib # print('Downloading Dartmouth isochrone pre-computed triangulation (should happen only once...)') # if os.path.exists(TRI_FILE): # os.remove(TRI_FILE) # urllib.request.urlretrieve(url,TRI_FILE) #if not os.path.exists(MASTERFILE): # _download_h5() #if not os.path.exists(TRI_FILE): # _download_tri() #Check to see if you have the right dataframe and tri file #import hashlib #DF_SHASUM = '0515e83521f03cfe3ab8bafcb9c8187a90fd50c7' #TRI_SHASUM = 'e05a06c799abae3d526ac83ceeea5e6df691a16d' #if hashlib.sha1(open(MASTERFILE, 'rb').read()).hexdigest() != DF_SHASUM: # raise ImportError('You have a wrong/corrupted/outdated Dartmouth DataFrame!' + # ' Delete {} and try re-importing to download afresh.'.format(MASTERFILE)) #if hashlib.sha1(open(TRI_FILE, 'rb').read()).hexdigest() != TRI_SHASUM: # raise ImportError('You have a wrong/corrupted/outdated Dartmouth triangulation!' + # ' Delete {} and try re-importing to download afresh.'.format(TRI_FILE)) # if pd is not None: MASTERDF = pd.read_hdf(MASTERFILE, 'df').dropna() #temporary hack else: MASTERDF = None class Feiden_Isochrone(Isochrone): """Dotter (2008) Stellar Models, at solar a/Fe and He abundances. :param bands: (optional) List of desired photometric bands. Must be a subset of ``['U','B','V','R','I','J','H','K','g','r','i','z','Kepler','D51', 'W1','W2','W3']``, which is the default. W4 is not included because it does not have a well-measured A(lambda)/A(V). """ def __init__(self, bands=None, **kwargs): df = MASTERDF log_ages = np.log10(df['Age']) minage = log_ages.min() maxage = log_ages.max() # make copies that claim to have different metallicities. This is a lie, but makes things work. lowmet = df.copy() lowmet['feh'] = -0.1 highmet = df.copy() highmet['feh'] = 0.1 df = pd.concat((df, lowmet, highmet)) mags = {} if bands is not None: for band in bands: try: if band in ['g', 'r', 'i', 'z']: mags[band] = df['sdss_{}'.format(band)] else: mags[band] = df[band] except: if band == 'kep' or band == 'Kepler': mags[band] = df['Kp'] elif band == 'K': mags['K'] = df['Ks'] else: raise tri = None try: f = open(TRI_FILE, 'rb') tri = pickle.load(f) except: f = open(TRI_FILE, 'rb') tri = pickle.load(f, encoding='latin-1') finally: f.close() Isochrone.__init__(self, m_ini=df['Msun'], age=np.log10(df['Age']), feh=df['feh'], m_act=df['Msun'], logL=df['logL'], Teff=10 ** df['logT'], logg=df['logg'], mags=mags, tri=tri, minage=minage, maxage=maxage, **kwargs)
gpl-3.0
cmcantalupo/geopm
integration/experiment/power_sweep/gen_plot_power_limit.py
1
5090
#!/usr/bin/env python # # Copyright (c) 2015 - 2021, Intel Corporation # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # # * Neither the name of Intel Corporation nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY LOG OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ''' Shows balancer chosen power limits on each socket over time. ''' import pandas import matplotlib.pyplot as plt import matplotlib.cm as cm import numpy as np import sys import os import argparse from experiment import common_args from experiment import plotting def plot_lines(traces, label, analysis_dir): if not os.path.exists(analysis_dir): os.mkdir(analysis_dir) fig, axs = plt.subplots(2) fig.set_size_inches((20, 10)) num_traces = len(traces) colormap = cm.jet colors = [colormap(i) for i in np.linspace(0, 1, num_traces*2)] idx = 0 for path in traces: node_name = path.split('-')[-1] df = pandas.read_csv(path, delimiter='|', comment='#') time = df['TIME'] pl0 = df['MSR::PKG_POWER_LIMIT:PL1_POWER_LIMIT-package-0'] pl1 = df['MSR::PKG_POWER_LIMIT:PL1_POWER_LIMIT-package-1'] rt0 = df['EPOCH_RUNTIME-package-0'] - df['EPOCH_RUNTIME_NETWORK-package-0'] rt1 = df['EPOCH_RUNTIME-package-1'] - df['EPOCH_RUNTIME_NETWORK-package-1'] plot_tgt = False try: tgt = df['POLICY_MAX_EPOCH_RUNTIME'] plot_tgt = True except: sys.stdout.write('POLICY_MAX_EPOCH_RUNTIME missing from trace {}; data will be omitted from plot.\n'.format(path)) color0 = colors[idx] color1 = colors[idx + 1] idx += 2 axs[0].plot(time, pl0, color=color0) axs[0].plot(time, pl1, color=color1) axs[1].plot(time, rt0, label='pkg-0-{}'.format(node_name), color=color0) axs[1].plot(time, rt1, label='pkg-1-{}'.format(node_name), color=color1) axs[0].set_title('Per socket power limits') axs[0].set_ylabel('Power (w)') axs[1].set_title('Per socket runtimes and target') axs[1].set_xlabel('Time (s)') axs[1].set_ylabel('Epoch duration (s)') if plot_tgt: # draw target once on top of other lines axs[1].plot(time, tgt, label='target') fig.legend(loc='lower right') agent = ' '.join(traces[0].split('_')[1:3]).title() fig.suptitle('{} - {}'.format(label, agent), fontsize=20) dirname = os.path.dirname(traces[0]) if len(traces) == 1: plot_name = traces[0].split('.')[0] # gadget_power_governor_330_0.trace-epb001 plot_name += '_' + traces[0].split('-')[1] else: plot_name = '_'.join(traces[0].split('_')[0:3]) # gadget_power_governor outfile = os.path.join(analysis_dir, plot_name + '_power_and_runtime.png') sys.stdout.write('Writing {}...\n'.format(outfile)) fig.savefig(outfile) if __name__ == '__main__': parser = argparse.ArgumentParser() common_args.add_output_dir(parser) common_args.add_label(parser) common_args.add_analysis_dir(parser) # Positional arg for gathering all traces into a list # Works for files listed explicitly, or with a glob pattern e.g. *trace* parser.add_argument('tracepath', metavar='TRACE_PATH', nargs='+', action='store', help='path or glob pattern for trace files to analyze') args, _ = parser.parse_known_args() # see if paths are valid for path in args.tracepath: lp = os.path.join(args.output_dir, path) if not (os.path.isfile(lp) and os.path.getsize(lp) > 0): sys.stderr.write('<geopm> Error: No trace data found in {}\n'.format(lp)) sys.exit(1) plot_lines(args.tracepath, args.label, args.analysis_dir)
bsd-3-clause
eramirem/astroML
book_figures/chapter8/fig_huber_loss.py
3
2933
""" Huber Loss Function ------------------- Figure 8.8 An example of fitting a simple linear model to data which includes outliers (data is from table 1 of Hogg et al 2010). A comparison of linear regression using the squared-loss function (equivalent to ordinary least-squares regression) and the Huber loss function, with c = 1 (i.e., beyond 1 standard deviation, the loss becomes linear). """ # Author: Jake VanderPlas # License: BSD # The figure produced by this code is published in the textbook # "Statistics, Data Mining, and Machine Learning in Astronomy" (2013) # For more information, see http://astroML.github.com # To report a bug or issue, use the following forum: # https://groups.google.com/forum/#!forum/astroml-general from __future__ import print_function, division import numpy as np from matplotlib import pyplot as plt from scipy import optimize from astroML.datasets import fetch_hogg2010test #---------------------------------------------------------------------- # This function adjusts matplotlib settings for a uniform feel in the textbook. # Note that with usetex=True, fonts are rendered with LaTeX. This may # result in an error if LaTeX is not installed on your system. In that case, # you can set usetex to False. from astroML.plotting import setup_text_plots setup_text_plots(fontsize=8, usetex=True) #------------------------------------------------------------ # Get data: this includes outliers data = fetch_hogg2010test() x = data['x'] y = data['y'] dy = data['sigma_y'] # Define the standard squared-loss function def squared_loss(m, b, x, y, dy): y_fit = m * x + b return np.sum(((y - y_fit) / dy) ** 2, -1) # Define the log-likelihood via the Huber loss function def huber_loss(m, b, x, y, dy, c=2): y_fit = m * x + b t = abs((y - y_fit) / dy) flag = t > c return np.sum((~flag) * (0.5 * t ** 2) - (flag) * c * (0.5 * c - t), -1) f_squared = lambda beta: squared_loss(beta[0], beta[1], x=x, y=y, dy=dy) f_huber = lambda beta: huber_loss(beta[0], beta[1], x=x, y=y, dy=dy, c=1) #------------------------------------------------------------ # compute the maximum likelihood using the huber loss beta0 = (2, 30) beta_squared = optimize.fmin(f_squared, beta0) beta_huber = optimize.fmin(f_huber, beta0) print(beta_squared) print(beta_huber) #------------------------------------------------------------ # Plot the results fig = plt.figure(figsize=(5, 5)) ax = fig.add_subplot(111) x_fit = np.linspace(0, 350, 10) ax.plot(x_fit, beta_squared[0] * x_fit + beta_squared[1], '--k', label="squared loss:\n $y=%.2fx + %.1f$" % tuple(beta_squared)) ax.plot(x_fit, beta_huber[0] * x_fit + beta_huber[1], '-k', label="Huber loss:\n $y=%.2fx + %.1f$" % tuple(beta_huber)) ax.legend(loc=4) ax.errorbar(x, y, dy, fmt='.k', lw=1, ecolor='gray') ax.set_xlim(0, 350) ax.set_ylim(100, 700) ax.set_xlabel('$x$') ax.set_ylabel('$y$') plt.show()
bsd-2-clause
cbertinato/pandas
pandas/tests/io/test_packers.py
1
33090
import datetime from distutils.version import LooseVersion import glob from io import BytesIO import os from warnings import catch_warnings import numpy as np import pytest from pandas._libs.tslib import iNaT from pandas.errors import PerformanceWarning import pandas from pandas import ( Categorical, DataFrame, Index, Interval, MultiIndex, NaT, Period, Series, Timestamp, bdate_range, date_range, period_range) import pandas.util.testing as tm from pandas.util.testing import ( assert_categorical_equal, assert_frame_equal, assert_index_equal, assert_series_equal, ensure_clean) from pandas.io.packers import read_msgpack, to_msgpack nan = np.nan try: import blosc # NOQA except ImportError: _BLOSC_INSTALLED = False else: _BLOSC_INSTALLED = True try: import zlib # NOQA except ImportError: _ZLIB_INSTALLED = False else: _ZLIB_INSTALLED = True @pytest.fixture(scope='module') def current_packers_data(): # our current version packers data from pandas.tests.io.generate_legacy_storage_files import ( create_msgpack_data) return create_msgpack_data() @pytest.fixture(scope='module') def all_packers_data(): # our all of our current version packers data from pandas.tests.io.generate_legacy_storage_files import ( create_data) return create_data() def check_arbitrary(a, b): if isinstance(a, (list, tuple)) and isinstance(b, (list, tuple)): assert(len(a) == len(b)) for a_, b_ in zip(a, b): check_arbitrary(a_, b_) elif isinstance(a, DataFrame): assert_frame_equal(a, b) elif isinstance(a, Series): assert_series_equal(a, b) elif isinstance(a, Index): assert_index_equal(a, b) elif isinstance(a, Categorical): # Temp, # Categorical.categories is changed from str to bytes in PY3 # maybe the same as GH 13591 if b.categories.inferred_type == 'string': pass else: tm.assert_categorical_equal(a, b) elif a is NaT: assert b is NaT elif isinstance(a, Timestamp): assert a == b assert a.freq == b.freq else: assert(a == b) @pytest.mark.filterwarnings("ignore:\\nPanel:FutureWarning") class TestPackers: def setup_method(self, method): self.path = '__%s__.msg' % tm.rands(10) def teardown_method(self, method): pass def encode_decode(self, x, compress=None, **kwargs): with ensure_clean(self.path) as p: to_msgpack(p, x, compress=compress, **kwargs) return read_msgpack(p, **kwargs) @pytest.mark.filterwarnings("ignore:\\nPanel:FutureWarning") class TestAPI(TestPackers): def test_string_io(self): df = DataFrame(np.random.randn(10, 2)) s = df.to_msgpack(None) result = read_msgpack(s) tm.assert_frame_equal(result, df) s = df.to_msgpack() result = read_msgpack(s) tm.assert_frame_equal(result, df) s = df.to_msgpack() result = read_msgpack(BytesIO(s)) tm.assert_frame_equal(result, df) s = to_msgpack(None, df) result = read_msgpack(s) tm.assert_frame_equal(result, df) with ensure_clean(self.path) as p: s = df.to_msgpack() with open(p, 'wb') as fh: fh.write(s) result = read_msgpack(p) tm.assert_frame_equal(result, df) def test_path_pathlib(self): df = tm.makeDataFrame() result = tm.round_trip_pathlib(df.to_msgpack, read_msgpack) tm.assert_frame_equal(df, result) def test_path_localpath(self): df = tm.makeDataFrame() result = tm.round_trip_localpath(df.to_msgpack, read_msgpack) tm.assert_frame_equal(df, result) def test_iterator_with_string_io(self): dfs = [DataFrame(np.random.randn(10, 2)) for i in range(5)] s = to_msgpack(None, *dfs) for i, result in enumerate(read_msgpack(s, iterator=True)): tm.assert_frame_equal(result, dfs[i]) def test_invalid_arg(self): # GH10369 class A: def __init__(self): self.read = 0 msg = "Invalid file path or buffer object type: <class '{}'>" with pytest.raises(ValueError, match=msg.format('NoneType')): read_msgpack(path_or_buf=None) with pytest.raises(ValueError, match=msg.format('dict')): read_msgpack(path_or_buf={}) with pytest.raises(ValueError, match=msg.format(r'.*\.A')): read_msgpack(path_or_buf=A()) class TestNumpy(TestPackers): def test_numpy_scalar_float(self): x = np.float32(np.random.rand()) x_rec = self.encode_decode(x) tm.assert_almost_equal(x, x_rec) def test_numpy_scalar_complex(self): x = np.complex64(np.random.rand() + 1j * np.random.rand()) x_rec = self.encode_decode(x) assert np.allclose(x, x_rec) def test_scalar_float(self): x = np.random.rand() x_rec = self.encode_decode(x) tm.assert_almost_equal(x, x_rec) def test_scalar_bool(self): x = np.bool_(1) x_rec = self.encode_decode(x) tm.assert_almost_equal(x, x_rec) x = np.bool_(0) x_rec = self.encode_decode(x) tm.assert_almost_equal(x, x_rec) def test_scalar_complex(self): x = np.random.rand() + 1j * np.random.rand() x_rec = self.encode_decode(x) assert np.allclose(x, x_rec) def test_list_numpy_float(self): x = [np.float32(np.random.rand()) for i in range(5)] x_rec = self.encode_decode(x) # current msgpack cannot distinguish list/tuple tm.assert_almost_equal(tuple(x), x_rec) x_rec = self.encode_decode(tuple(x)) tm.assert_almost_equal(tuple(x), x_rec) def test_list_numpy_float_complex(self): if not hasattr(np, 'complex128'): pytest.skip('numpy can not handle complex128') x = [np.float32(np.random.rand()) for i in range(5)] + \ [np.complex128(np.random.rand() + 1j * np.random.rand()) for i in range(5)] x_rec = self.encode_decode(x) assert np.allclose(x, x_rec) def test_list_float(self): x = [np.random.rand() for i in range(5)] x_rec = self.encode_decode(x) # current msgpack cannot distinguish list/tuple tm.assert_almost_equal(tuple(x), x_rec) x_rec = self.encode_decode(tuple(x)) tm.assert_almost_equal(tuple(x), x_rec) def test_list_float_complex(self): x = [np.random.rand() for i in range(5)] + \ [(np.random.rand() + 1j * np.random.rand()) for i in range(5)] x_rec = self.encode_decode(x) assert np.allclose(x, x_rec) def test_dict_float(self): x = {'foo': 1.0, 'bar': 2.0} x_rec = self.encode_decode(x) tm.assert_almost_equal(x, x_rec) def test_dict_complex(self): x = {'foo': 1.0 + 1.0j, 'bar': 2.0 + 2.0j} x_rec = self.encode_decode(x) tm.assert_dict_equal(x, x_rec) for key in x: tm.assert_class_equal(x[key], x_rec[key], obj="complex value") def test_dict_numpy_float(self): x = {'foo': np.float32(1.0), 'bar': np.float32(2.0)} x_rec = self.encode_decode(x) tm.assert_almost_equal(x, x_rec) def test_dict_numpy_complex(self): x = {'foo': np.complex128(1.0 + 1.0j), 'bar': np.complex128(2.0 + 2.0j)} x_rec = self.encode_decode(x) tm.assert_dict_equal(x, x_rec) for key in x: tm.assert_class_equal(x[key], x_rec[key], obj="numpy complex128") def test_numpy_array_float(self): # run multiple times for n in range(10): x = np.random.rand(10) for dtype in ['float32', 'float64']: x = x.astype(dtype) x_rec = self.encode_decode(x) tm.assert_almost_equal(x, x_rec) def test_numpy_array_complex(self): x = (np.random.rand(5) + 1j * np.random.rand(5)).astype(np.complex128) x_rec = self.encode_decode(x) assert (all(map(lambda x, y: x == y, x, x_rec)) and x.dtype == x_rec.dtype) def test_list_mixed(self): x = [1.0, np.float32(3.5), np.complex128(4.25), 'foo', np.bool_(1)] x_rec = self.encode_decode(x) # current msgpack cannot distinguish list/tuple tm.assert_almost_equal(tuple(x), x_rec) x_rec = self.encode_decode(tuple(x)) tm.assert_almost_equal(tuple(x), x_rec) class TestBasic(TestPackers): def test_timestamp(self): for i in [Timestamp( '20130101'), Timestamp('20130101', tz='US/Eastern'), Timestamp('201301010501')]: i_rec = self.encode_decode(i) assert i == i_rec def test_nat(self): nat_rec = self.encode_decode(NaT) assert NaT is nat_rec def test_datetimes(self): for i in [datetime.datetime(2013, 1, 1), datetime.datetime(2013, 1, 1, 5, 1), datetime.date(2013, 1, 1), np.datetime64(datetime.datetime(2013, 1, 5, 2, 15))]: i_rec = self.encode_decode(i) assert i == i_rec def test_timedeltas(self): for i in [datetime.timedelta(days=1), datetime.timedelta(days=1, seconds=10), np.timedelta64(1000000)]: i_rec = self.encode_decode(i) assert i == i_rec def test_periods(self): # 13463 for i in [Period('2010-09', 'M'), Period('2014-Q1', 'Q')]: i_rec = self.encode_decode(i) assert i == i_rec def test_intervals(self): # 19967 for i in [Interval(0, 1), Interval(0, 1, 'left'), Interval(10, 25., 'right')]: i_rec = self.encode_decode(i) assert i == i_rec class TestIndex(TestPackers): def setup_method(self, method): super().setup_method(method) self.d = { 'string': tm.makeStringIndex(100), 'date': tm.makeDateIndex(100), 'int': tm.makeIntIndex(100), 'rng': tm.makeRangeIndex(100), 'float': tm.makeFloatIndex(100), 'empty': Index([]), 'tuple': Index(zip(['foo', 'bar', 'baz'], [1, 2, 3])), 'period': Index(period_range('2012-1-1', freq='M', periods=3)), 'date2': Index(date_range('2013-01-1', periods=10)), 'bdate': Index(bdate_range('2013-01-02', periods=10)), 'cat': tm.makeCategoricalIndex(100), 'interval': tm.makeIntervalIndex(100), 'timedelta': tm.makeTimedeltaIndex(100, 'H') } self.mi = { 'reg': MultiIndex.from_tuples([('bar', 'one'), ('baz', 'two'), ('foo', 'two'), ('qux', 'one'), ('qux', 'two')], names=['first', 'second']), } def test_basic_index(self): for s, i in self.d.items(): i_rec = self.encode_decode(i) tm.assert_index_equal(i, i_rec) # datetime with no freq (GH5506) i = Index([Timestamp('20130101'), Timestamp('20130103')]) i_rec = self.encode_decode(i) tm.assert_index_equal(i, i_rec) # datetime with timezone i = Index([Timestamp('20130101 9:00:00'), Timestamp( '20130103 11:00:00')]).tz_localize('US/Eastern') i_rec = self.encode_decode(i) tm.assert_index_equal(i, i_rec) def test_multi_index(self): for s, i in self.mi.items(): i_rec = self.encode_decode(i) tm.assert_index_equal(i, i_rec) def test_unicode(self): i = tm.makeUnicodeIndex(100) i_rec = self.encode_decode(i) tm.assert_index_equal(i, i_rec) def categorical_index(self): # GH15487 df = DataFrame(np.random.randn(10, 2)) df = df.astype({0: 'category'}).set_index(0) result = self.encode_decode(df) tm.assert_frame_equal(result, df) class TestSeries(TestPackers): def setup_method(self, method): super().setup_method(method) self.d = {} s = tm.makeStringSeries() s.name = 'string' self.d['string'] = s s = tm.makeObjectSeries() s.name = 'object' self.d['object'] = s s = Series(iNaT, dtype='M8[ns]', index=range(5)) self.d['date'] = s data = { 'A': [0., 1., 2., 3., np.nan], 'B': [0, 1, 0, 1, 0], 'C': ['foo1', 'foo2', 'foo3', 'foo4', 'foo5'], 'D': date_range('1/1/2009', periods=5), 'E': [0., 1, Timestamp('20100101'), 'foo', 2.], 'F': [Timestamp('20130102', tz='US/Eastern')] * 2 + [Timestamp('20130603', tz='CET')] * 3, 'G': [Timestamp('20130102', tz='US/Eastern')] * 5, 'H': Categorical([1, 2, 3, 4, 5]), 'I': Categorical([1, 2, 3, 4, 5], ordered=True), 'J': (np.bool_(1), 2, 3, 4, 5), } self.d['float'] = Series(data['A']) self.d['int'] = Series(data['B']) self.d['mixed'] = Series(data['E']) self.d['dt_tz_mixed'] = Series(data['F']) self.d['dt_tz'] = Series(data['G']) self.d['cat_ordered'] = Series(data['H']) self.d['cat_unordered'] = Series(data['I']) self.d['numpy_bool_mixed'] = Series(data['J']) def test_basic(self): # run multiple times here for n in range(10): for s, i in self.d.items(): i_rec = self.encode_decode(i) assert_series_equal(i, i_rec) class TestCategorical(TestPackers): def setup_method(self, method): super().setup_method(method) self.d = {} self.d['plain_str'] = Categorical(['a', 'b', 'c', 'd', 'e']) self.d['plain_str_ordered'] = Categorical(['a', 'b', 'c', 'd', 'e'], ordered=True) self.d['plain_int'] = Categorical([5, 6, 7, 8]) self.d['plain_int_ordered'] = Categorical([5, 6, 7, 8], ordered=True) def test_basic(self): # run multiple times here for n in range(10): for s, i in self.d.items(): i_rec = self.encode_decode(i) assert_categorical_equal(i, i_rec) @pytest.mark.filterwarnings("ignore:\\nPanel:FutureWarning") class TestNDFrame(TestPackers): def setup_method(self, method): super().setup_method(method) data = { 'A': [0., 1., 2., 3., np.nan], 'B': [0, 1, 0, 1, 0], 'C': ['foo1', 'foo2', 'foo3', 'foo4', 'foo5'], 'D': date_range('1/1/2009', periods=5), 'E': [0., 1, Timestamp('20100101'), 'foo', 2.], 'F': [Timestamp('20130102', tz='US/Eastern')] * 5, 'G': [Timestamp('20130603', tz='CET')] * 5, 'H': Categorical(['a', 'b', 'c', 'd', 'e']), 'I': Categorical(['a', 'b', 'c', 'd', 'e'], ordered=True), } self.frame = { 'float': DataFrame(dict(A=data['A'], B=Series(data['A']) + 1)), 'int': DataFrame(dict(A=data['B'], B=Series(data['B']) + 1)), 'mixed': DataFrame(data)} def test_basic_frame(self): for s, i in self.frame.items(): i_rec = self.encode_decode(i) assert_frame_equal(i, i_rec) def test_multi(self): i_rec = self.encode_decode(self.frame) for k in self.frame.keys(): assert_frame_equal(self.frame[k], i_rec[k]) packed_items = tuple([self.frame['float'], self.frame['float'].A, self.frame['float'].B, None]) l_rec = self.encode_decode(packed_items) check_arbitrary(packed_items, l_rec) # this is an oddity in that packed lists will be returned as tuples packed_items = [self.frame['float'], self.frame['float'].A, self.frame['float'].B, None] l_rec = self.encode_decode(packed_items) assert isinstance(l_rec, tuple) check_arbitrary(packed_items, l_rec) def test_iterator(self): packed_items = [self.frame['float'], self.frame['float'].A, self.frame['float'].B, None] with ensure_clean(self.path) as path: to_msgpack(path, *packed_items) for i, packed in enumerate(read_msgpack(path, iterator=True)): check_arbitrary(packed, packed_items[i]) def tests_datetimeindex_freq_issue(self): # GH 5947 # inferring freq on the datetimeindex df = DataFrame([1, 2, 3], index=date_range('1/1/2013', '1/3/2013')) result = self.encode_decode(df) assert_frame_equal(result, df) df = DataFrame([1, 2], index=date_range('1/1/2013', '1/2/2013')) result = self.encode_decode(df) assert_frame_equal(result, df) def test_dataframe_duplicate_column_names(self): # GH 9618 expected_1 = DataFrame(columns=['a', 'a']) expected_2 = DataFrame(columns=[1] * 100) expected_2.loc[0] = np.random.randn(100) expected_3 = DataFrame(columns=[1, 1]) expected_3.loc[0] = ['abc', np.nan] result_1 = self.encode_decode(expected_1) result_2 = self.encode_decode(expected_2) result_3 = self.encode_decode(expected_3) assert_frame_equal(result_1, expected_1) assert_frame_equal(result_2, expected_2) assert_frame_equal(result_3, expected_3) @pytest.mark.filterwarnings("ignore:Sparse:FutureWarning") @pytest.mark.filterwarnings("ignore:Series.to_sparse:FutureWarning") @pytest.mark.filterwarnings("ignore:DataFrame.to_sparse:FutureWarning") class TestSparse(TestPackers): def _check_roundtrip(self, obj, comparator, **kwargs): # currently these are not implemetned # i_rec = self.encode_decode(obj) # comparator(obj, i_rec, **kwargs) msg = r"msgpack sparse (series|frame) is not implemented" with pytest.raises(NotImplementedError, match=msg): self.encode_decode(obj) def test_sparse_series(self): s = tm.makeStringSeries() s[3:5] = np.nan ss = s.to_sparse() self._check_roundtrip(ss, tm.assert_series_equal, check_series_type=True) ss2 = s.to_sparse(kind='integer') self._check_roundtrip(ss2, tm.assert_series_equal, check_series_type=True) ss3 = s.to_sparse(fill_value=0) self._check_roundtrip(ss3, tm.assert_series_equal, check_series_type=True) def test_sparse_frame(self): s = tm.makeDataFrame() s.loc[3:5, 1:3] = np.nan s.loc[8:10, -2] = np.nan ss = s.to_sparse() self._check_roundtrip(ss, tm.assert_frame_equal, check_frame_type=True) ss2 = s.to_sparse(kind='integer') self._check_roundtrip(ss2, tm.assert_frame_equal, check_frame_type=True) ss3 = s.to_sparse(fill_value=0) self._check_roundtrip(ss3, tm.assert_frame_equal, check_frame_type=True) class TestCompression(TestPackers): """See https://github.com/pandas-dev/pandas/pull/9783 """ def setup_method(self, method): try: from sqlalchemy import create_engine self._create_sql_engine = create_engine except ImportError: self._SQLALCHEMY_INSTALLED = False else: self._SQLALCHEMY_INSTALLED = True super().setup_method(method) data = { 'A': np.arange(1000, dtype=np.float64), 'B': np.arange(1000, dtype=np.int32), 'C': list(100 * 'abcdefghij'), 'D': date_range(datetime.datetime(2015, 4, 1), periods=1000), 'E': [datetime.timedelta(days=x) for x in range(1000)], } self.frame = { 'float': DataFrame({k: data[k] for k in ['A', 'A']}), 'int': DataFrame({k: data[k] for k in ['B', 'B']}), 'mixed': DataFrame(data), } def test_plain(self): i_rec = self.encode_decode(self.frame) for k in self.frame.keys(): assert_frame_equal(self.frame[k], i_rec[k]) def _test_compression(self, compress): i_rec = self.encode_decode(self.frame, compress=compress) for k in self.frame.keys(): value = i_rec[k] expected = self.frame[k] assert_frame_equal(value, expected) # make sure that we can write to the new frames for block in value._data.blocks: assert block.values.flags.writeable def test_compression_zlib(self): if not _ZLIB_INSTALLED: pytest.skip('no zlib') self._test_compression('zlib') def test_compression_blosc(self): if not _BLOSC_INSTALLED: pytest.skip('no blosc') self._test_compression('blosc') def _test_compression_warns_when_decompress_caches( self, monkeypatch, compress): not_garbage = [] control = [] # copied data compress_module = globals()[compress] real_decompress = compress_module.decompress def decompress(ob): """mock decompress function that delegates to the real decompress but caches the result and a copy of the result. """ res = real_decompress(ob) not_garbage.append(res) # hold a reference to this bytes object control.append(bytearray(res)) # copy the data here to check later return res # types mapped to values to add in place. rhs = { np.dtype('float64'): 1.0, np.dtype('int32'): 1, np.dtype('object'): 'a', np.dtype('datetime64[ns]'): np.timedelta64(1, 'ns'), np.dtype('timedelta64[ns]'): np.timedelta64(1, 'ns'), } with monkeypatch.context() as m, \ tm.assert_produces_warning(PerformanceWarning) as ws: m.setattr(compress_module, 'decompress', decompress) i_rec = self.encode_decode(self.frame, compress=compress) for k in self.frame.keys(): value = i_rec[k] expected = self.frame[k] assert_frame_equal(value, expected) # make sure that we can write to the new frames even though # we needed to copy the data for block in value._data.blocks: assert block.values.flags.writeable # mutate the data in some way block.values[0] += rhs[block.dtype] for w in ws: # check the messages from our warnings assert str(w.message) == ('copying data after decompressing; ' 'this may mean that decompress is ' 'caching its result') for buf, control_buf in zip(not_garbage, control): # make sure none of our mutations above affected the # original buffers assert buf == control_buf def test_compression_warns_when_decompress_caches_zlib(self, monkeypatch): if not _ZLIB_INSTALLED: pytest.skip('no zlib') self._test_compression_warns_when_decompress_caches( monkeypatch, 'zlib') def test_compression_warns_when_decompress_caches_blosc(self, monkeypatch): if not _BLOSC_INSTALLED: pytest.skip('no blosc') self._test_compression_warns_when_decompress_caches( monkeypatch, 'blosc') def _test_small_strings_no_warn(self, compress): empty = np.array([], dtype='uint8') with tm.assert_produces_warning(None): empty_unpacked = self.encode_decode(empty, compress=compress) tm.assert_numpy_array_equal(empty_unpacked, empty) assert empty_unpacked.flags.writeable char = np.array([ord(b'a')], dtype='uint8') with tm.assert_produces_warning(None): char_unpacked = self.encode_decode(char, compress=compress) tm.assert_numpy_array_equal(char_unpacked, char) assert char_unpacked.flags.writeable # if this test fails I am sorry because the interpreter is now in a # bad state where b'a' points to 98 == ord(b'b'). char_unpacked[0] = ord(b'b') # we compare the ord of bytes b'a' with unicode 'a' because the should # always be the same (unless we were able to mutate the shared # character singleton in which case ord(b'a') == ord(b'b'). assert ord(b'a') == ord('a') tm.assert_numpy_array_equal( char_unpacked, np.array([ord(b'b')], dtype='uint8'), ) def test_small_strings_no_warn_zlib(self): if not _ZLIB_INSTALLED: pytest.skip('no zlib') self._test_small_strings_no_warn('zlib') def test_small_strings_no_warn_blosc(self): if not _BLOSC_INSTALLED: pytest.skip('no blosc') self._test_small_strings_no_warn('blosc') def test_readonly_axis_blosc(self): # GH11880 if not _BLOSC_INSTALLED: pytest.skip('no blosc') df1 = DataFrame({'A': list('abcd')}) df2 = DataFrame(df1, index=[1., 2., 3., 4.]) assert 1 in self.encode_decode(df1['A'], compress='blosc') assert 1. in self.encode_decode(df2['A'], compress='blosc') def test_readonly_axis_zlib(self): # GH11880 df1 = DataFrame({'A': list('abcd')}) df2 = DataFrame(df1, index=[1., 2., 3., 4.]) assert 1 in self.encode_decode(df1['A'], compress='zlib') assert 1. in self.encode_decode(df2['A'], compress='zlib') def test_readonly_axis_blosc_to_sql(self): # GH11880 if not _BLOSC_INSTALLED: pytest.skip('no blosc') if not self._SQLALCHEMY_INSTALLED: pytest.skip('no sqlalchemy') expected = DataFrame({'A': list('abcd')}) df = self.encode_decode(expected, compress='blosc') eng = self._create_sql_engine("sqlite:///:memory:") df.to_sql('test', eng, if_exists='append') result = pandas.read_sql_table('test', eng, index_col='index') result.index.names = [None] assert_frame_equal(expected, result) def test_readonly_axis_zlib_to_sql(self): # GH11880 if not _ZLIB_INSTALLED: pytest.skip('no zlib') if not self._SQLALCHEMY_INSTALLED: pytest.skip('no sqlalchemy') expected = DataFrame({'A': list('abcd')}) df = self.encode_decode(expected, compress='zlib') eng = self._create_sql_engine("sqlite:///:memory:") df.to_sql('test', eng, if_exists='append') result = pandas.read_sql_table('test', eng, index_col='index') result.index.names = [None] assert_frame_equal(expected, result) class TestEncoding(TestPackers): def setup_method(self, method): super().setup_method(method) data = { 'A': ['\u2019'] * 1000, 'B': np.arange(1000, dtype=np.int32), 'C': list(100 * 'abcdefghij'), 'D': date_range(datetime.datetime(2015, 4, 1), periods=1000), 'E': [datetime.timedelta(days=x) for x in range(1000)], 'G': [400] * 1000 } self.frame = { 'float': DataFrame({k: data[k] for k in ['A', 'A']}), 'int': DataFrame({k: data[k] for k in ['B', 'B']}), 'mixed': DataFrame(data), } self.utf_encodings = ['utf8', 'utf16', 'utf32'] def test_utf(self): # GH10581 for encoding in self.utf_encodings: for frame in self.frame.values(): result = self.encode_decode(frame, encoding=encoding) assert_frame_equal(result, frame) def test_default_encoding(self): for frame in self.frame.values(): result = frame.to_msgpack() expected = frame.to_msgpack(encoding='utf8') assert result == expected result = self.encode_decode(frame) assert_frame_equal(result, frame) files = glob.glob(os.path.join(os.path.dirname(__file__), "data", "legacy_msgpack", "*", "*.msgpack")) @pytest.fixture(params=files) def legacy_packer(request, datapath): return datapath(request.param) @pytest.mark.filterwarnings("ignore:\\nPanel:FutureWarning") @pytest.mark.filterwarnings("ignore:Sparse:FutureWarning") class TestMsgpack: """ How to add msgpack tests: 1. Install pandas version intended to output the msgpack. 2. Execute "generate_legacy_storage_files.py" to create the msgpack. $ python generate_legacy_storage_files.py <output_dir> msgpack 3. Move the created pickle to "data/legacy_msgpack/<version>" directory. """ minimum_structure = {'series': ['float', 'int', 'mixed', 'ts', 'mi', 'dup'], 'frame': ['float', 'int', 'mixed', 'mi'], 'panel': ['float'], 'index': ['int', 'date', 'period'], 'mi': ['reg2']} def check_min_structure(self, data, version): for typ, v in self.minimum_structure.items(): if typ == "panel": # FIXME: kludge; get this key out of the legacy file continue assert typ in data, '"{0}" not found in unpacked data'.format(typ) for kind in v: msg = '"{0}" not found in data["{1}"]'.format(kind, typ) assert kind in data[typ], msg def compare(self, current_data, all_data, vf, version): # GH12277 encoding default used to be latin-1, now utf-8 if LooseVersion(version) < LooseVersion('0.18.0'): data = read_msgpack(vf, encoding='latin-1') else: data = read_msgpack(vf) if "panel" in data: # FIXME: kludge; get the key out of the stored file del data["panel"] self.check_min_structure(data, version) for typ, dv in data.items(): assert typ in all_data, ('unpacked data contains ' 'extra key "{0}"' .format(typ)) for dt, result in dv.items(): assert dt in current_data[typ], ('data["{0}"] contains extra ' 'key "{1}"'.format(typ, dt)) try: expected = current_data[typ][dt] except KeyError: continue # use a specific comparator # if available comp_method = "compare_{typ}_{dt}".format(typ=typ, dt=dt) comparator = getattr(self, comp_method, None) if comparator is not None: comparator(result, expected, typ, version) else: check_arbitrary(result, expected) return data def compare_series_dt_tz(self, result, expected, typ, version): # 8260 # dtype is object < 0.17.0 if LooseVersion(version) < LooseVersion('0.17.0'): expected = expected.astype(object) tm.assert_series_equal(result, expected) else: tm.assert_series_equal(result, expected) def compare_frame_dt_mixed_tzs(self, result, expected, typ, version): # 8260 # dtype is object < 0.17.0 if LooseVersion(version) < LooseVersion('0.17.0'): expected = expected.astype(object) tm.assert_frame_equal(result, expected) else: tm.assert_frame_equal(result, expected) def test_msgpacks_legacy(self, current_packers_data, all_packers_data, legacy_packer, datapath): version = os.path.basename(os.path.dirname(legacy_packer)) # GH12142 0.17 files packed in P2 can't be read in P3 if (version.startswith('0.17.') and legacy_packer.split('.')[-4][-1] == '2'): msg = "Files packed in Py2 can't be read in Py3 ({})" pytest.skip(msg.format(version)) try: with catch_warnings(record=True): self.compare(current_packers_data, all_packers_data, legacy_packer, version) except ImportError: # blosc not installed pass def test_msgpack_period_freq(self): # https://github.com/pandas-dev/pandas/issues/24135 s = Series(np.random.rand(5), index=date_range('20130101', periods=5)) r = read_msgpack(s.to_msgpack()) repr(r)
bsd-3-clause
vipmunot/Data-Analysis-using-Python
Exploratory Data Visualization/Multiple plots-216.py
1
2691
## 1. Recap ## import pandas as pd import matplotlib.pyplot as plt unrate = pd.read_csv('unrate.csv') unrate['DATE'] = pd.to_datetime(unrate['DATE']) plt.plot(unrate['DATE'].head(12),unrate['VALUE'].head(12)) plt.xticks(rotation=90) plt.xlabel('Month') plt.ylabel('Unemployment Rate') plt.title('Monthly Unemployment Trends, 1948') ## 2. Matplotlib Classes ## import matplotlib.pyplot as plt fig = plt.figure() ax1 = fig.add_subplot(2,1,1) ax2 = fig.add_subplot(2,1,2) plt.show() ## 4. Adding Data ## fig = plt.figure() ax1 = fig.add_subplot(2,1,1) ax2 = fig.add_subplot(2,1,2) ax1.plot(unrate['DATE'].head(12),unrate['VALUE'].head(12)) ax2.plot(unrate['DATE'].iloc[12:24],unrate['VALUE'].iloc[12:24]) plt.show() ## 5. Formatting And Spacing ## fig = plt.figure(figsize=(12,6)) ax1 = fig.add_subplot(2,1,1) ax2 = fig.add_subplot(2,1,2) ax1.plot(unrate[0:12]['DATE'], unrate[0:12]['VALUE']) ax1.set_title('Monthly Unemployment Rate, 1948') ax2.plot(unrate[12:24]['DATE'], unrate[12:24]['VALUE']) ax2.set_title('Monthly Unemployment Rate, 1949') plt.show() ## 6. Comparing Across More Years ## fig = plt.figure(figsize=(12,12)) x = [0,12,24,36,48] y = [12,24,36,48,60] for i in range(5): ax = fig.add_subplot(5,1,(i+1)) ax.plot(unrate[x[i]:y[i]]['DATE'],unrate[x[i]:y[i]]['VALUE']) plt.show() ## 7. Overlaying Line Charts ## unrate['MONTH'] = unrate['DATE'].dt.month fig = plt.figure(figsize=(6,3)) plt.plot(unrate[0:12]['MONTH'], unrate[0:12]['VALUE'],c='red') plt.plot(unrate[12:24]['MONTH'], unrate[12:24]['VALUE'],c='blue') plt.show() ## 8. Adding More Lines ## fig = plt.figure(figsize=(10,6)) x = [0,12,24,36,48] y = [12,24,36,48,60] color = ['red','blue','green','orange','black'] for i in range(5): plt.plot(unrate[x[i]:y[i]]['MONTH'],unrate[x[i]:y[i]]['VALUE'],c = color[i]) plt.show() ## 9. Adding A Legend ## fig = plt.figure(figsize=(10,6)) colors = ['red', 'blue', 'green', 'orange', 'black'] for i in range(5): start_index = i*12 end_index = (i+1)*12 label = str(1948 + i) subset = unrate[start_index:end_index] plt.plot(subset['MONTH'], subset['VALUE'], c=colors[i],label=label) plt.legend(loc='upper left') plt.show() ## 10. Final Tweaks ## fig = plt.figure(figsize=(10,6)) colors = ['red', 'blue', 'green', 'orange', 'black'] for i in range(5): start_index = i*12 end_index = (i+1)*12 subset = unrate[start_index:end_index] label = str(1948 + i) plt.plot(subset['MONTH'], subset['VALUE'], c=colors[i], label=label) plt.legend(loc='upper left') plt.title("Monthly Unemployment Trends, 1948-1952") plt.xlabel('Month, Integer') plt.ylabel('Unemployment Rate, Percent') plt.show()
mit
NLeSC/cptm
cptm/utils/topics.py
1
1882
import pandas as pd def get_top_topic_words(topics, opinions, t, top=10): """Return dataframe containing top topics and opinions. Parameters t : str - index of topic number top : int - the number of words to store in the dataframe Returns Pandas DataFrame The DataFrame contains top topic words, weights of topic words and for each perspective opinion words and weigths of opinion words. """ t = str(t) topic = topics[t].copy() topic.sort(ascending=False) topic = topic[0:top] df_t = pd.DataFrame(topic) df_t.reset_index(level=0, inplace=True) df_t.columns = ['topic', 'weights_topic'] dfs = [df_t] for p, o in opinions.iteritems(): opinion = o[t].copy() opinion.sort(ascending=False) opinion = opinion[0:top] df_o = pd.DataFrame(opinion) df_o.reset_index(level=0, inplace=True) df_o.columns = ['{}'.format(p), 'weights_{}'.format(p)] dfs.append(df_o) return pd.concat(dfs, axis=1) def topic_str(df, single_line=False, weights=False, opinions=True): if opinions: opinion_labels = [l for l in df.columns if not l.startswith('weights')] else: opinion_labels = [l for l in df.columns if l.startswith('topic')] if not single_line: if not weights: return str(df[opinion_labels]) else: return str(df) else: lines = [] if not weights: for l in opinion_labels: lines.append(u'{}:\t'.format(l)+' '.join(df[l])) else: for l in opinion_labels: zipped = zip(df[l], df['weights_{}'.format(l)]) line = [u'{}*{:.4f}'.format(wo, we) for wo, we in zipped] lines.append(' '.join([u'{}:\t'.format(l)]+line)) return u'\n'.join(lines)
apache-2.0
sfepy/sfepy
examples/linear_elasticity/dispersion_analysis.py
2
35004
#!/usr/bin/env python """ Dispersion analysis of a heterogeneous finite scale periodic cell. The periodic cell mesh has to contain two subdomains Y1 (with the cell ids 1), Y2 (with the cell ids 2), so that different material properties can be defined in each of the subdomains (see ``--pars`` option). The command line parameters can be given in any consistent unit set, for example the basic SI units. The ``--unit-multipliers`` option can be used to rescale the input units to ones more suitable to the simulation, for example to prevent having different matrix blocks with large differences of matrix entries magnitudes. The results are then in the rescaled units. Usage Examples -------------- Default material parameters, a square periodic cell with a spherical inclusion, logs also standard pressure dilatation and shear waves, no eigenvectors:: python examples/linear_elasticity/dispersion_analysis.py meshes/2d/special/circle_in_square.mesh --log-std-waves --eigs-only As above, with custom eigenvalue solver parameters, and different number of eigenvalues, mesh size and units used in the calculation:: python examples/linear_elasticity/dispersion_analysis.py meshes/2d/special/circle_in_square.mesh --solver-conf="kind='eig.scipy', method='eigsh', tol=1e-10, maxiter=1000, which='LM', sigma=0" --log-std-waves -n 5 --range=0,640,101 --mode=omega --unit-multipliers=1e-6,1e-2,1e-3 --mesh-size=1e-2 --eigs-only Default material parameters, a square periodic cell with a square inclusion, and a very small mesh to allow comparing the omega and kappa modes (full matrix solver required!):: python examples/linear_elasticity/dispersion_analysis.py meshes/2d/square_2m.mesh --solver-conf="kind='eig.scipy', method='eigh'" --log-std-waves -n 10 --range=0,640,101 --mesh-size=1e-2 --mode=omega --eigs-only --no-legends --unit-multipliers=1e-6,1e-2,1e-3 -o output/omega python examples/linear_elasticity/dispersion_analysis.py meshes/2d/square_2m.mesh --solver-conf="kind='eig.qevp', method='companion', mode='inverted', solver={kind='eig.scipy', method='eig'}" --log-std-waves -n 500 --range=0,4000000,1001 --mesh-size=1e-2 --mode=kappa --eigs-only --no-legends --unit-multipliers=1e-6,1e-2,1e-3 -o output/kappa View/compare the resulting logs:: python script/plot_logs.py output/omega/frequencies.txt --no-legends -g 1 -o mode-omega.png python script/plot_logs.py output/kappa/wave-numbers.txt --no-legends -o mode-kappa.png python script/plot_logs.py output/kappa/wave-numbers.txt --no-legends --swap-axes -o mode-kappa-t.png In contrast to the heterogeneous square periodic cell, a homogeneous square periodic cell (the region Y2 is empty):: python examples/linear_elasticity/dispersion_analysis.py meshes/2d/square_1m.mesh --solver-conf="kind='eig.scipy', method='eigh'" --log-std-waves -n 10 --range=0,640,101 --mesh-size=1e-2 --mode=omega --eigs-only --no-legends --unit-multipliers=1e-6,1e-2,1e-3 -o output/omega-h python script/plot_logs.py output/omega-h/frequencies.txt --no-legends -g 1 -o mode-omega-h.png Use the Brillouin stepper:: python examples/linear_elasticity/dispersion_analysis.py meshes/2d/special/circle_in_square.mesh --log-std-waves -n=60 --eigs-only --no-legends --stepper=brillouin python script/plot_logs.py output/frequencies.txt -g 0 --rc="'font.size':14, 'lines.linewidth' : 3, 'lines.markersize' : 4" -o brillouin-stepper-kappas.png python script/plot_logs.py output/frequencies.txt -g 1 --no-legends --rc="'font.size':14, 'lines.linewidth' : 3, 'lines.markersize' : 4" -o brillouin-stepper-omegas.png Additional arguments can be passed to the problem configuration's :func:`define()` function using the ``--define-kwargs`` option. In this file, only the mesh vertex separation parameter `mesh_eps` can be used:: python examples/linear_elasticity/dispersion_analysis.py meshes/2d/special/circle_in_square.mesh --log-std-waves --eigs-only --define-kwargs="mesh_eps=1e-10" --save-regions """ from __future__ import absolute_import import os import sys sys.path.append('.') import gc from copy import copy from argparse import ArgumentParser, RawDescriptionHelpFormatter import numpy as nm import matplotlib.pyplot as plt from sfepy.base.base import import_file, output, Struct from sfepy.base.conf import dict_from_string, ProblemConf from sfepy.base.ioutils import ensure_path, remove_files_patterns, save_options from sfepy.base.log import Log from sfepy.discrete.fem import MeshIO from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson as stiffness import sfepy.mechanics.matcoefs as mc from sfepy.mechanics.units import apply_unit_multipliers, apply_units_to_pars import sfepy.discrete.fem.periodic as per from sfepy.discrete.fem.meshio import convert_complex_output from sfepy.homogenization.utils import define_box_regions from sfepy.discrete import Problem from sfepy.mechanics.tensors import get_von_mises_stress from sfepy.solvers import Solver from sfepy.solvers.ts import get_print_info, TimeStepper from sfepy.linalg.utils import output_array_stats, max_diff_csr pars_kinds = { 'young1' : 'stress', 'poisson1' : 'one', 'density1' : 'density', 'young2' : 'stress', 'poisson2' : 'one', 'density2' : 'density', } def define(filename_mesh, pars, approx_order, refinement_level, solver_conf, plane='strain', post_process=False, mesh_eps=1e-8): io = MeshIO.any_from_filename(filename_mesh) bbox = io.read_bounding_box() dim = bbox.shape[1] options = { 'absolute_mesh_path' : True, 'refinement_level' : refinement_level, 'allow_empty_regions' : True, 'post_process_hook' : 'compute_von_mises' if post_process else None, } fields = { 'displacement': ('complex', dim, 'Omega', approx_order), } materials = { 'm' : ({ 'D' : {'Y1' : stiffness(dim, young=pars.young1, poisson=pars.poisson1, plane=plane), 'Y2' : stiffness(dim, young=pars.young2, poisson=pars.poisson2, plane=plane)}, 'density' : {'Y1' : pars.density1, 'Y2' : pars.density2}, },), 'wave' : 'get_wdir', } variables = { 'u' : ('unknown field', 'displacement', 0), 'v' : ('test field', 'displacement', 'u'), } regions = { 'Omega' : 'all', 'Y1': 'cells of group 1', 'Y2': 'cells of group 2', } regions.update(define_box_regions(dim, bbox[0], bbox[1], mesh_eps)) ebcs = { } if dim == 3: epbcs = { 'periodic_x' : (['Left', 'Right'], {'u.all' : 'u.all'}, 'match_x_plane'), 'periodic_y' : (['Near', 'Far'], {'u.all' : 'u.all'}, 'match_y_plane'), 'periodic_z' : (['Top', 'Bottom'], {'u.all' : 'u.all'}, 'match_z_plane'), } else: epbcs = { 'periodic_x' : (['Left', 'Right'], {'u.all' : 'u.all'}, 'match_y_line'), 'periodic_y' : (['Bottom', 'Top'], {'u.all' : 'u.all'}, 'match_x_line'), } per.set_accuracy(mesh_eps) functions = { 'match_x_plane' : (per.match_x_plane,), 'match_y_plane' : (per.match_y_plane,), 'match_z_plane' : (per.match_z_plane,), 'match_x_line' : (per.match_x_line,), 'match_y_line' : (per.match_y_line,), 'get_wdir' : (get_wdir,), } integrals = { 'i' : 2 * approx_order, } equations = { 'K' : 'dw_lin_elastic.i.Omega(m.D, v, u)', 'S' : 'dw_elastic_wave.i.Omega(m.D, wave.vec, v, u)', 'R' : """1j * dw_elastic_wave_cauchy.i.Omega(m.D, wave.vec, u, v) - 1j * dw_elastic_wave_cauchy.i.Omega(m.D, wave.vec, v, u)""", 'M' : 'dw_dot.i.Omega(m.density, v, u)', } solver_0 = solver_conf.copy() solver_0['name'] = 'eig' return locals() def get_wdir(ts, coors, mode=None, equations=None, term=None, problem=None, wdir=None, **kwargs): if mode == 'special': return {'vec' : wdir} def set_wave_dir(pb, wdir): materials = pb.get_materials() wave_mat = materials['wave'] wave_mat.set_extra_args(wdir=wdir) def save_materials(output_dir, pb, options): stiffness = pb.evaluate('ev_integrate_mat.2.Omega(m.D, u)', mode='el_avg', copy_materials=False, verbose=False) young, poisson = mc.youngpoisson_from_stiffness(stiffness, plane=options.plane) density = pb.evaluate('ev_integrate_mat.2.Omega(m.density, u)', mode='el_avg', copy_materials=False, verbose=False) out = {} out['young'] = Struct(name='young', mode='cell', data=young[..., None, None]) out['poisson'] = Struct(name='poisson', mode='cell', data=poisson[..., None, None]) out['density'] = Struct(name='density', mode='cell', data=density) materials_filename = os.path.join(output_dir, 'materials.vtk') pb.save_state(materials_filename, out=out) def get_std_wave_fun(pb, options): stiffness = pb.evaluate('ev_integrate_mat.2.Omega(m.D, u)', mode='el_avg', copy_materials=False, verbose=False) young, poisson = mc.youngpoisson_from_stiffness(stiffness, plane=options.plane) density = pb.evaluate('ev_integrate_mat.2.Omega(m.density, u)', mode='el_avg', copy_materials=False, verbose=False) lam, mu = mc.lame_from_youngpoisson(young, poisson, plane=options.plane) alam = nm.average(lam) amu = nm.average(mu) adensity = nm.average(density) cp = nm.sqrt((alam + 2.0 * amu) / adensity) cs = nm.sqrt(amu / adensity) output('average p-wave speed:', cp) output('average shear wave speed:', cs) log_names = [r'$\omega_p$', r'$\omega_s$'] log_plot_kwargs = [{'ls' : '--', 'color' : 'k'}, {'ls' : '--', 'color' : 'gray'}] if options.mode == 'omega': fun = lambda wmag, wdir: (cp * wmag, cs * wmag) else: fun = lambda wmag, wdir: (wmag / cp, wmag / cs) return fun, log_names, log_plot_kwargs def get_stepper(rng, pb, options): if options.stepper == 'linear': stepper = TimeStepper(rng[0], rng[1], dt=None, n_step=rng[2]) return stepper bbox = pb.domain.mesh.get_bounding_box() bzone = 2.0 * nm.pi / (bbox[1] - bbox[0]) num = rng[2] // 3 class BrillouinStepper(Struct): """ Step over 1. Brillouin zone in xy plane. """ def __init__(self, t0, t1, dt=None, n_step=None, step=None, **kwargs): Struct.__init__(self, t0=t0, t1=t1, dt=dt, n_step=n_step, step=step) self.n_digit, self.format, self.suffix = get_print_info(self.n_step) def __iter__(self): ts = TimeStepper(0, bzone[0], dt=None, n_step=num) for ii, val in ts: yield ii, val, nm.array([1.0, 0.0]) if ii == (num-2): break ts = TimeStepper(0, bzone[1], dt=None, n_step=num) for ii, k1 in ts: wdir = nm.array([bzone[0], k1]) val = nm.linalg.norm(wdir) wdir = wdir / val yield num + ii, val, wdir if ii == (num-2): break wdir = nm.array([bzone[0], bzone[1]]) val = nm.linalg.norm(wdir) wdir = wdir / val ts = TimeStepper(0, 1, dt=None, n_step=num) for ii, _ in ts: yield 2 * num + ii, val * (1.0 - float(ii)/(num-1)), wdir stepper = BrillouinStepper(0, 1, n_step=rng[2]) return stepper def compute_von_mises(out, pb, state, extend=False, wmag=None, wdir=None): """ Calculate the von Mises stress. """ stress = pb.evaluate('ev_cauchy_stress.i.Omega(m.D, u)', mode='el_avg') vms = get_von_mises_stress(stress.squeeze()) vms.shape = (vms.shape[0], 1, 1, 1) out['von_mises_stress'] = Struct(name='output_data', mode='cell', data=vms) return out def save_eigenvectors(filename, svecs, wmag, wdir, pb): if svecs is None: return variables = pb.get_variables() # Make full eigenvectors (add DOFs fixed by boundary conditions). vecs = nm.empty((variables.di.ptr[-1], svecs.shape[1]), dtype=svecs.dtype) for ii in range(svecs.shape[1]): vecs[:, ii] = variables.make_full_vec(svecs[:, ii]) # Save the eigenvectors. out = {} state = pb.create_state() pp_name = pb.conf.options.get('post_process_hook') pp = getattr(pb.conf.funmod, pp_name if pp_name is not None else '', lambda out, *args, **kwargs: out) for ii in range(svecs.shape[1]): state.set_full(vecs[:, ii]) aux = state.create_output_dict() aux2 = {} pp(aux2, pb, state, wmag=wmag, wdir=wdir) aux.update(convert_complex_output(aux2)) out.update({key + '%03d' % ii : aux[key] for key in aux}) pb.save_state(filename, out=out) def assemble_matrices(define, mod, pars, set_wave_dir, options, wdir=None): """ Assemble the blocks of dispersion eigenvalue problem matrices. """ define_dict = define(filename_mesh=options.mesh_filename, pars=pars, approx_order=options.order, refinement_level=options.refine, solver_conf=options.solver_conf, plane=options.plane, post_process=options.post_process, **options.define_kwargs) conf = ProblemConf.from_dict(define_dict, mod) pb = Problem.from_conf(conf) pb.dispersion_options = options pb.set_output_dir(options.output_dir) dim = pb.domain.shape.dim # Set the normalized wave vector direction to the material(s). if wdir is None: wdir = nm.asarray(options.wave_dir[:dim], dtype=nm.float64) wdir = wdir / nm.linalg.norm(wdir) set_wave_dir(pb, wdir) bbox = pb.domain.mesh.get_bounding_box() size = (bbox[1] - bbox[0]).max() scaling0 = apply_unit_multipliers([1.0], ['length'], options.unit_multipliers)[0] scaling = scaling0 if options.mesh_size is not None: scaling *= options.mesh_size / size output('scaling factor of periodic cell mesh coordinates:', scaling) output('new mesh size with applied unit multipliers:', scaling * size) pb.domain.mesh.coors[:] *= scaling pb.set_mesh_coors(pb.domain.mesh.coors, update_fields=True) bzone = 2.0 * nm.pi / (scaling * size) output('1. Brillouin zone size:', bzone * scaling0) output('1. Brillouin zone size with applied unit multipliers:', bzone) pb.time_update() pb.update_materials() # Assemble the matrices. mtxs = {} for key, eq in pb.equations.iteritems(): mtxs[key] = mtx = pb.mtx_a.copy() mtx = eq.evaluate(mode='weak', dw_mode='matrix', asm_obj=mtx) mtx.eliminate_zeros() output_array_stats(mtx.data, 'nonzeros in %s' % key) output('symmetry checks:') output('%s - %s^T:' % (key, key), max_diff_csr(mtx, mtx.T)) output('%s - %s^H:' % (key, key), max_diff_csr(mtx, mtx.H)) return pb, wdir, bzone, mtxs def setup_n_eigs(options, pb, mtxs): """ Setup the numbers of eigenvalues based on options and numbers of DOFs. """ solver_n_eigs = n_eigs = options.n_eigs n_dof = mtxs['K'].shape[0] if options.mode == 'omega': if options.n_eigs > n_dof: n_eigs = n_dof solver_n_eigs = None else: if options.n_eigs > 2 * n_dof: n_eigs = 2 * n_dof solver_n_eigs = None return solver_n_eigs, n_eigs def build_evp_matrices(mtxs, val, mode, pb): """ Build the matrices of the dispersion eigenvalue problem. """ if mode == 'omega': mtx_a = mtxs['K'] + val**2 * mtxs['S'] + val * mtxs['R'] output('A - A^H:', max_diff_csr(mtx_a, mtx_a.H)) evp_mtxs = (mtx_a, mtxs['M']) else: evp_mtxs = (mtxs['S'], mtxs['R'], mtxs['K'] - val**2 * mtxs['M']) return evp_mtxs def process_evp_results(eigs, svecs, val, wdir, bzone, pb, mtxs, options, std_wave_fun=None): """ Transform eigenvalues to either omegas or kappas, depending on `mode`. Transform eigenvectors, if available, depending on `mode`. Return also the values to log. """ if options.mode == 'omega': omegas = nm.sqrt(eigs) output('eigs, omegas:') for ii, om in enumerate(omegas): output('{:>3}. {: .10e}, {:.10e}'.format(ii, eigs[ii], om)) if options.stepper == 'linear': out = tuple(eigs) + tuple(omegas) else: out = tuple(val * wdir) + tuple(omegas) if std_wave_fun is not None: out = out + std_wave_fun(val, wdir) return omegas, svecs, out else: kappas = eigs.copy() rks = kappas.copy() # Mask modes far from 1. Brillouin zone. max_kappa = 1.2 * bzone kappas[kappas.real > max_kappa] = nm.nan # Mask non-physical modes. kappas[kappas.real < 0] = nm.nan kappas[nm.abs(kappas.imag) > 1e-10] = nm.nan out = tuple(kappas.real) output('raw kappas, masked real part:',) for ii, kr in enumerate(kappas.real): output('{:>3}. {: 23.5e}, {:.10e}'.format(ii, rks[ii], kr)) if svecs is not None: n_dof = mtxs['K'].shape[0] # Select only vectors corresponding to physical modes. ii = nm.isfinite(kappas.real) svecs = svecs[:n_dof, ii] if std_wave_fun is not None: out = out + tuple(ii if ii <= max_kappa else nm.nan for ii in std_wave_fun(val, wdir)) return kappas, svecs, out helps = { 'pars' : 'material parameters in Y1, Y2 subdomains in basic units.' ' The default parameters are:' ' young1, poisson1, density1, young2, poisson2, density2' ' [default: %(default)s]', 'conf' : 'if given, an alternative problem description file with apply_units() and' ' define() functions [default: %(default)s]', 'define_kwargs' : 'additional keyword arguments passed to define()', 'mesh_size' : 'desired mesh size (max. of bounding box dimensions) in basic units' ' - the input periodic cell mesh is rescaled to this size' ' [default: %(default)s]', 'unit_multipliers' : 'basic unit multipliers (time, length, mass) [default: %(default)s]', 'plane' : 'for 2D problems, plane strain or stress hypothesis selection' ' [default: %(default)s]', 'wave_dir' : 'the wave vector direction (will be normalized)' ' [default: %(default)s]', 'mode' : 'solution mode: omega = solve a generalized EVP for omega,' ' kappa = solve a quadratic generalized EVP for kappa' ' [default: %(default)s]', 'stepper' : 'the range stepper. For "brillouin", only the number' ' of items from --range is used' ' [default: %(default)s]', 'range' : 'the wave vector magnitude / frequency range' ' (like numpy.linspace) depending on the mode option' ' [default: %(default)s]', 'order' : 'displacement field approximation order [default: %(default)s]', 'refine' : 'number of uniform mesh refinements [default: %(default)s]', 'n_eigs' : 'the number of eigenvalues to compute [default: %(default)s]', 'eigs_only' : 'compute only eigenvalues, not eigenvectors', 'post_process' : 'post-process eigenvectors', 'solver_conf' : 'eigenvalue problem solver configuration options' ' [default: %(default)s]', 'save_regions' : 'save defined regions into' ' <output_directory>/regions.vtk', 'save_materials' : 'save material parameters into' ' <output_directory>/materials.vtk', 'log_std_waves' : 'log also standard pressure dilatation and shear waves', 'no_legends' : 'do not show legends in the log plots', 'no_show' : 'do not show the log figure', 'silent' : 'do not print messages to screen', 'clear' : 'clear old solution files from output directory', 'output_dir' : 'output directory [default: %(default)s]', 'mesh_filename' : 'input periodic cell mesh file name [default: %(default)s]', } def main(): # Aluminium and epoxy. default_pars = '70e9,0.35,2.799e3,3.8e9,0.27,1.142e3' default_solver_conf = ("kind='eig.scipy',method='eigsh',tol=1.0e-5," "maxiter=1000,which='LM',sigma=0.0") parser = ArgumentParser(description=__doc__, formatter_class=RawDescriptionHelpFormatter) parser.add_argument('--pars', metavar='name1=value1,name2=value2,...' ' or value1,value2,...', action='store', dest='pars', default=default_pars, help=helps['pars']) parser.add_argument('--conf', metavar='filename', action='store', dest='conf', default=None, help=helps['conf']) parser.add_argument('--define-kwargs', metavar='dict-like', action='store', dest='define_kwargs', default=None, help=helps['define_kwargs']) parser.add_argument('--mesh-size', type=float, metavar='float', action='store', dest='mesh_size', default=None, help=helps['mesh_size']) parser.add_argument('--unit-multipliers', metavar='c_time,c_length,c_mass', action='store', dest='unit_multipliers', default='1.0,1.0,1.0', help=helps['unit_multipliers']) parser.add_argument('--plane', action='store', dest='plane', choices=['strain', 'stress'], default='strain', help=helps['plane']) parser.add_argument('--wave-dir', metavar='float,float[,float]', action='store', dest='wave_dir', default='1.0,0.0,0.0', help=helps['wave_dir']) parser.add_argument('--mode', action='store', dest='mode', choices=['omega', 'kappa'], default='omega', help=helps['mode']) parser.add_argument('--stepper', action='store', dest='stepper', choices=['linear', 'brillouin'], default='linear', help=helps['stepper']) parser.add_argument('--range', metavar='start,stop,count', action='store', dest='range', default='0,6.4,33', help=helps['range']) parser.add_argument('--order', metavar='int', type=int, action='store', dest='order', default=1, help=helps['order']) parser.add_argument('--refine', metavar='int', type=int, action='store', dest='refine', default=0, help=helps['refine']) parser.add_argument('-n', '--n-eigs', metavar='int', type=int, action='store', dest='n_eigs', default=6, help=helps['n_eigs']) group = parser.add_mutually_exclusive_group() group.add_argument('--eigs-only', action='store_true', dest='eigs_only', default=False, help=helps['eigs_only']) group.add_argument('--post-process', action='store_true', dest='post_process', default=False, help=helps['post_process']) parser.add_argument('--solver-conf', metavar='dict-like', action='store', dest='solver_conf', default=default_solver_conf, help=helps['solver_conf']) parser.add_argument('--save-regions', action='store_true', dest='save_regions', default=False, help=helps['save_regions']) parser.add_argument('--save-materials', action='store_true', dest='save_materials', default=False, help=helps['save_materials']) parser.add_argument('--log-std-waves', action='store_true', dest='log_std_waves', default=False, help=helps['log_std_waves']) parser.add_argument('--no-legends', action='store_false', dest='show_legends', default=True, help=helps['no_legends']) parser.add_argument('--no-show', action='store_false', dest='show', default=True, help=helps['no_show']) parser.add_argument('--silent', action='store_true', dest='silent', default=False, help=helps['silent']) parser.add_argument('-c', '--clear', action='store_true', dest='clear', default=False, help=helps['clear']) parser.add_argument('-o', '--output-dir', metavar='path', action='store', dest='output_dir', default='output', help=helps['output_dir']) parser.add_argument('mesh_filename', default='', help=helps['mesh_filename']) options = parser.parse_args() output_dir = options.output_dir output.set_output(filename=os.path.join(output_dir,'output_log.txt'), combined=options.silent == False) if options.conf is not None: mod = import_file(options.conf) else: mod = sys.modules[__name__] pars_kinds = mod.pars_kinds define = mod.define set_wave_dir = mod.set_wave_dir setup_n_eigs = mod.setup_n_eigs build_evp_matrices = mod.build_evp_matrices save_materials = mod.save_materials get_std_wave_fun = mod.get_std_wave_fun get_stepper = mod.get_stepper process_evp_results = mod.process_evp_results save_eigenvectors = mod.save_eigenvectors try: options.pars = dict_from_string(options.pars) except: aux = [float(ii) for ii in options.pars.split(',')] options.pars = {key : aux[ii] for ii, key in enumerate(pars_kinds.keys())} options.unit_multipliers = [float(ii) for ii in options.unit_multipliers.split(',')] options.wave_dir = [float(ii) for ii in options.wave_dir.split(',')] aux = options.range.split(',') options.range = [float(aux[0]), float(aux[1]), int(aux[2])] options.solver_conf = dict_from_string(options.solver_conf) options.define_kwargs = dict_from_string(options.define_kwargs) if options.clear: remove_files_patterns(output_dir, ['*.h5', '*.vtk', '*.txt'], ignores=['output_log.txt'], verbose=True) filename = os.path.join(output_dir, 'options.txt') ensure_path(filename) save_options(filename, [('options', vars(options))], quote_command_line=True) pars = apply_units_to_pars(options.pars, pars_kinds, options.unit_multipliers) output('material parameter names and kinds:') output(pars_kinds) output('material parameters with applied unit multipliers:') output(pars) pars = Struct(**pars) if options.mode == 'omega': rng = copy(options.range) rng[:2] = apply_unit_multipliers(options.range[:2], ['wave_number', 'wave_number'], options.unit_multipliers) output('wave number range with applied unit multipliers:', rng) else: if options.stepper == 'brillouin': raise ValueError('Cannot use "brillouin" stepper in kappa mode!') rng = copy(options.range) rng[:2] = apply_unit_multipliers(options.range[:2], ['frequency', 'frequency'], options.unit_multipliers) output('frequency range with applied unit multipliers:', rng) pb, wdir, bzone, mtxs = assemble_matrices(define, mod, pars, set_wave_dir, options) dim = pb.domain.shape.dim if dim != 2: options.plane = 'strain' if options.save_regions: pb.save_regions_as_groups(os.path.join(output_dir, 'regions')) if options.save_materials: save_materials(output_dir, pb, options) conf = pb.solver_confs['eig'] eig_solver = Solver.any_from_conf(conf) n_eigs, options.n_eigs = setup_n_eigs(options, pb, mtxs) get_color = lambda ii: plt.cm.viridis((float(ii) / (max(options.n_eigs, 2) - 1))) plot_kwargs = [{'color' : get_color(ii), 'ls' : '', 'marker' : 'o'} for ii in range(options.n_eigs)] get_color_dim = lambda ii: plt.cm.viridis((float(ii) / (max(dim, 2) -1))) plot_kwargs_dim = [{'color' : get_color_dim(ii), 'ls' : '', 'marker' : 'o'} for ii in range(dim)] log_names = [] log_plot_kwargs = [] if options.log_std_waves: std_wave_fun, log_names, log_plot_kwargs = get_std_wave_fun( pb, options) else: std_wave_fun = None stepper = get_stepper(rng, pb, options) if options.mode == 'omega': eigenshapes_filename = os.path.join(output_dir, 'frequency-eigenshapes-%s.vtk' % stepper.suffix) if options.stepper == 'linear': log = Log([[r'$\lambda_{%d}$' % ii for ii in range(options.n_eigs)], [r'$\omega_{%d}$' % ii for ii in range(options.n_eigs)] + log_names], plot_kwargs=[plot_kwargs, plot_kwargs + log_plot_kwargs], formats=[['{:.12e}'] * options.n_eigs, ['{:.12e}'] * (options.n_eigs + len(log_names))], yscales=['linear', 'linear'], xlabels=[r'$\kappa$', r'$\kappa$'], ylabels=[r'eigenvalues $\lambda_i$', r'frequencies $\omega_i$'], show_legends=options.show_legends, is_plot=options.show, log_filename=os.path.join(output_dir, 'frequencies.txt'), aggregate=1000, sleep=0.1) else: log = Log([[r'$\kappa_{%d}$'% ii for ii in range(dim)], [r'$\omega_{%d}$' % ii for ii in range(options.n_eigs)] + log_names], plot_kwargs=[plot_kwargs_dim, plot_kwargs + log_plot_kwargs], formats=[['{:.12e}'] * dim, ['{:.12e}'] * (options.n_eigs + len(log_names))], yscales=['linear', 'linear'], xlabels=[r'', r''], ylabels=[r'wave vector $\kappa$', r'frequencies $\omega_i$'], show_legends=options.show_legends, is_plot=options.show, log_filename=os.path.join(output_dir, 'frequencies.txt'), aggregate=1000, sleep=0.1) for aux in stepper: if options.stepper == 'linear': iv, wmag = aux else: iv, wmag, wdir = aux output('step %d: wave vector %s' % (iv, wmag * wdir)) if options.stepper == 'brillouin': pb, _, bzone, mtxs = assemble_matrices( define, mod, pars, set_wave_dir, options, wdir=wdir) evp_mtxs = build_evp_matrices(mtxs, wmag, options.mode, pb) if options.eigs_only: eigs = eig_solver(*evp_mtxs, n_eigs=n_eigs, eigenvectors=False) svecs = None else: eigs, svecs = eig_solver(*evp_mtxs, n_eigs=n_eigs, eigenvectors=True) omegas, svecs, out = process_evp_results( eigs, svecs, wmag, wdir, bzone, pb, mtxs, options, std_wave_fun=std_wave_fun ) if options.stepper == 'linear': log(*out, x=[wmag, wmag]) else: log(*out, x=[iv, iv]) save_eigenvectors(eigenshapes_filename % iv, svecs, wmag, wdir, pb) gc.collect() log(save_figure=os.path.join(output_dir, 'frequencies.png')) log(finished=True) else: eigenshapes_filename = os.path.join(output_dir, 'wave-number-eigenshapes-%s.vtk' % stepper.suffix) log = Log([[r'$\kappa_{%d}$' % ii for ii in range(options.n_eigs)] + log_names], plot_kwargs=[plot_kwargs + log_plot_kwargs], formats=[['{:.12e}'] * (options.n_eigs + len(log_names))], yscales=['linear'], xlabels=[r'$\omega$'], ylabels=[r'wave numbers $\kappa_i$'], show_legends=options.show_legends, is_plot=options.show, log_filename=os.path.join(output_dir, 'wave-numbers.txt'), aggregate=1000, sleep=0.1) for io, omega in stepper: output('step %d: frequency %s' % (io, omega)) evp_mtxs = build_evp_matrices(mtxs, omega, options.mode, pb) if options.eigs_only: eigs = eig_solver(*evp_mtxs, n_eigs=n_eigs, eigenvectors=False) svecs = None else: eigs, svecs = eig_solver(*evp_mtxs, n_eigs=n_eigs, eigenvectors=True) kappas, svecs, out = process_evp_results( eigs, svecs, omega, wdir, bzone, pb, mtxs, options, std_wave_fun=std_wave_fun ) log(*out, x=[omega]) save_eigenvectors(eigenshapes_filename % io, svecs, kappas, wdir, pb) gc.collect() log(save_figure=os.path.join(output_dir, 'wave-numbers.png')) log(finished=True) if __name__ == '__main__': main()
bsd-3-clause
tosolveit/scikit-learn
sklearn/datasets/lfw.py
141
19372
"""Loader for the Labeled Faces in the Wild (LFW) dataset This dataset is a collection of JPEG pictures of famous people collected over the internet, all details are available on the official website: http://vis-www.cs.umass.edu/lfw/ Each picture is centered on a single face. The typical task is called Face Verification: given a pair of two pictures, a binary classifier must predict whether the two images are from the same person. An alternative task, Face Recognition or Face Identification is: given the picture of the face of an unknown person, identify the name of the person by referring to a gallery of previously seen pictures of identified persons. Both Face Verification and Face Recognition are tasks that are typically performed on the output of a model trained to perform Face Detection. The most popular model for Face Detection is called Viola-Johns and is implemented in the OpenCV library. The LFW faces were extracted by this face detector from various online websites. """ # Copyright (c) 2011 Olivier Grisel <[email protected]> # License: BSD 3 clause from os import listdir, makedirs, remove from os.path import join, exists, isdir from sklearn.utils import deprecated import logging import numpy as np try: import urllib.request as urllib # for backwards compatibility except ImportError: import urllib from .base import get_data_home, Bunch from ..externals.joblib import Memory from ..externals.six import b logger = logging.getLogger(__name__) BASE_URL = "http://vis-www.cs.umass.edu/lfw/" ARCHIVE_NAME = "lfw.tgz" FUNNELED_ARCHIVE_NAME = "lfw-funneled.tgz" TARGET_FILENAMES = [ 'pairsDevTrain.txt', 'pairsDevTest.txt', 'pairs.txt', ] def scale_face(face): """Scale back to 0-1 range in case of normalization for plotting""" scaled = face - face.min() scaled /= scaled.max() return scaled # # Common private utilities for data fetching from the original LFW website # local disk caching, and image decoding. # def check_fetch_lfw(data_home=None, funneled=True, download_if_missing=True): """Helper function to download any missing LFW data""" data_home = get_data_home(data_home=data_home) lfw_home = join(data_home, "lfw_home") if funneled: archive_path = join(lfw_home, FUNNELED_ARCHIVE_NAME) data_folder_path = join(lfw_home, "lfw_funneled") archive_url = BASE_URL + FUNNELED_ARCHIVE_NAME else: archive_path = join(lfw_home, ARCHIVE_NAME) data_folder_path = join(lfw_home, "lfw") archive_url = BASE_URL + ARCHIVE_NAME if not exists(lfw_home): makedirs(lfw_home) for target_filename in TARGET_FILENAMES: target_filepath = join(lfw_home, target_filename) if not exists(target_filepath): if download_if_missing: url = BASE_URL + target_filename logger.warning("Downloading LFW metadata: %s", url) urllib.urlretrieve(url, target_filepath) else: raise IOError("%s is missing" % target_filepath) if not exists(data_folder_path): if not exists(archive_path): if download_if_missing: logger.warning("Downloading LFW data (~200MB): %s", archive_url) urllib.urlretrieve(archive_url, archive_path) else: raise IOError("%s is missing" % target_filepath) import tarfile logger.info("Decompressing the data archive to %s", data_folder_path) tarfile.open(archive_path, "r:gz").extractall(path=lfw_home) remove(archive_path) return lfw_home, data_folder_path def _load_imgs(file_paths, slice_, color, resize): """Internally used to load images""" # Try to import imread and imresize from PIL. We do this here to prevent # the whole sklearn.datasets module from depending on PIL. try: try: from scipy.misc import imread except ImportError: from scipy.misc.pilutil import imread from scipy.misc import imresize except ImportError: raise ImportError("The Python Imaging Library (PIL)" " is required to load data from jpeg files") # compute the portion of the images to load to respect the slice_ parameter # given by the caller default_slice = (slice(0, 250), slice(0, 250)) if slice_ is None: slice_ = default_slice else: slice_ = tuple(s or ds for s, ds in zip(slice_, default_slice)) h_slice, w_slice = slice_ h = (h_slice.stop - h_slice.start) // (h_slice.step or 1) w = (w_slice.stop - w_slice.start) // (w_slice.step or 1) if resize is not None: resize = float(resize) h = int(resize * h) w = int(resize * w) # allocate some contiguous memory to host the decoded image slices n_faces = len(file_paths) if not color: faces = np.zeros((n_faces, h, w), dtype=np.float32) else: faces = np.zeros((n_faces, h, w, 3), dtype=np.float32) # iterate over the collected file path to load the jpeg files as numpy # arrays for i, file_path in enumerate(file_paths): if i % 1000 == 0: logger.info("Loading face #%05d / %05d", i + 1, n_faces) # Checks if jpeg reading worked. Refer to issue #3594 for more # details. img = imread(file_path) if img.ndim is 0: raise RuntimeError("Failed to read the image file %s, " "Please make sure that libjpeg is installed" % file_path) face = np.asarray(img[slice_], dtype=np.float32) face /= 255.0 # scale uint8 coded colors to the [0.0, 1.0] floats if resize is not None: face = imresize(face, resize) if not color: # average the color channels to compute a gray levels # representaion face = face.mean(axis=2) faces[i, ...] = face return faces # # Task #1: Face Identification on picture with names # def _fetch_lfw_people(data_folder_path, slice_=None, color=False, resize=None, min_faces_per_person=0): """Perform the actual data loading for the lfw people dataset This operation is meant to be cached by a joblib wrapper. """ # scan the data folder content to retain people with more that # `min_faces_per_person` face pictures person_names, file_paths = [], [] for person_name in sorted(listdir(data_folder_path)): folder_path = join(data_folder_path, person_name) if not isdir(folder_path): continue paths = [join(folder_path, f) for f in listdir(folder_path)] n_pictures = len(paths) if n_pictures >= min_faces_per_person: person_name = person_name.replace('_', ' ') person_names.extend([person_name] * n_pictures) file_paths.extend(paths) n_faces = len(file_paths) if n_faces == 0: raise ValueError("min_faces_per_person=%d is too restrictive" % min_faces_per_person) target_names = np.unique(person_names) target = np.searchsorted(target_names, person_names) faces = _load_imgs(file_paths, slice_, color, resize) # shuffle the faces with a deterministic RNG scheme to avoid having # all faces of the same person in a row, as it would break some # cross validation and learning algorithms such as SGD and online # k-means that make an IID assumption indices = np.arange(n_faces) np.random.RandomState(42).shuffle(indices) faces, target = faces[indices], target[indices] return faces, target, target_names def fetch_lfw_people(data_home=None, funneled=True, resize=0.5, min_faces_per_person=0, color=False, slice_=(slice(70, 195), slice(78, 172)), download_if_missing=True): """Loader for the Labeled Faces in the Wild (LFW) people dataset This dataset is a collection of JPEG pictures of famous people collected on the internet, all details are available on the official website: http://vis-www.cs.umass.edu/lfw/ Each picture is centered on a single face. Each pixel of each channel (color in RGB) is encoded by a float in range 0.0 - 1.0. The task is called Face Recognition (or Identification): given the picture of a face, find the name of the person given a training set (gallery). The original images are 250 x 250 pixels, but the default slice and resize arguments reduce them to 62 x 74. Parameters ---------- data_home : optional, default: None Specify another download and cache folder for the datasets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. funneled : boolean, optional, default: True Download and use the funneled variant of the dataset. resize : float, optional, default 0.5 Ratio used to resize the each face picture. min_faces_per_person : int, optional, default None The extracted dataset will only retain pictures of people that have at least `min_faces_per_person` different pictures. color : boolean, optional, default False Keep the 3 RGB channels instead of averaging them to a single gray level channel. If color is True the shape of the data has one more dimension than than the shape with color = False. slice_ : optional Provide a custom 2D slice (height, width) to extract the 'interesting' part of the jpeg files and avoid use statistical correlation from the background download_if_missing : optional, True by default If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. Returns ------- dataset : dict-like object with the following attributes: dataset.data : numpy array of shape (13233, 2914) Each row corresponds to a ravelled face image of original size 62 x 47 pixels. Changing the ``slice_`` or resize parameters will change the shape of the output. dataset.images : numpy array of shape (13233, 62, 47) Each row is a face image corresponding to one of the 5749 people in the dataset. Changing the ``slice_`` or resize parameters will change the shape of the output. dataset.target : numpy array of shape (13233,) Labels associated to each face image. Those labels range from 0-5748 and correspond to the person IDs. dataset.DESCR : string Description of the Labeled Faces in the Wild (LFW) dataset. """ lfw_home, data_folder_path = check_fetch_lfw( data_home=data_home, funneled=funneled, download_if_missing=download_if_missing) logger.info('Loading LFW people faces from %s', lfw_home) # wrap the loader in a memoizing function that will return memmaped data # arrays for optimal memory usage m = Memory(cachedir=lfw_home, compress=6, verbose=0) load_func = m.cache(_fetch_lfw_people) # load and memoize the pairs as np arrays faces, target, target_names = load_func( data_folder_path, resize=resize, min_faces_per_person=min_faces_per_person, color=color, slice_=slice_) # pack the results as a Bunch instance return Bunch(data=faces.reshape(len(faces), -1), images=faces, target=target, target_names=target_names, DESCR="LFW faces dataset") # # Task #2: Face Verification on pairs of face pictures # def _fetch_lfw_pairs(index_file_path, data_folder_path, slice_=None, color=False, resize=None): """Perform the actual data loading for the LFW pairs dataset This operation is meant to be cached by a joblib wrapper. """ # parse the index file to find the number of pairs to be able to allocate # the right amount of memory before starting to decode the jpeg files with open(index_file_path, 'rb') as index_file: split_lines = [ln.strip().split(b('\t')) for ln in index_file] pair_specs = [sl for sl in split_lines if len(sl) > 2] n_pairs = len(pair_specs) # interating over the metadata lines for each pair to find the filename to # decode and load in memory target = np.zeros(n_pairs, dtype=np.int) file_paths = list() for i, components in enumerate(pair_specs): if len(components) == 3: target[i] = 1 pair = ( (components[0], int(components[1]) - 1), (components[0], int(components[2]) - 1), ) elif len(components) == 4: target[i] = 0 pair = ( (components[0], int(components[1]) - 1), (components[2], int(components[3]) - 1), ) else: raise ValueError("invalid line %d: %r" % (i + 1, components)) for j, (name, idx) in enumerate(pair): try: person_folder = join(data_folder_path, name) except TypeError: person_folder = join(data_folder_path, str(name, 'UTF-8')) filenames = list(sorted(listdir(person_folder))) file_path = join(person_folder, filenames[idx]) file_paths.append(file_path) pairs = _load_imgs(file_paths, slice_, color, resize) shape = list(pairs.shape) n_faces = shape.pop(0) shape.insert(0, 2) shape.insert(0, n_faces // 2) pairs.shape = shape return pairs, target, np.array(['Different persons', 'Same person']) @deprecated("Function 'load_lfw_people' has been deprecated in 0.17 and will be " "removed in 0.19." "Use fetch_lfw_people(download_if_missing=False) instead.") def load_lfw_people(download_if_missing=False, **kwargs): """Alias for fetch_lfw_people(download_if_missing=False) Check fetch_lfw_people.__doc__ for the documentation and parameter list. """ return fetch_lfw_people(download_if_missing=download_if_missing, **kwargs) def fetch_lfw_pairs(subset='train', data_home=None, funneled=True, resize=0.5, color=False, slice_=(slice(70, 195), slice(78, 172)), download_if_missing=True): """Loader for the Labeled Faces in the Wild (LFW) pairs dataset This dataset is a collection of JPEG pictures of famous people collected on the internet, all details are available on the official website: http://vis-www.cs.umass.edu/lfw/ Each picture is centered on a single face. Each pixel of each channel (color in RGB) is encoded by a float in range 0.0 - 1.0. The task is called Face Verification: given a pair of two pictures, a binary classifier must predict whether the two images are from the same person. In the official `README.txt`_ this task is described as the "Restricted" task. As I am not sure as to implement the "Unrestricted" variant correctly, I left it as unsupported for now. .. _`README.txt`: http://vis-www.cs.umass.edu/lfw/README.txt The original images are 250 x 250 pixels, but the default slice and resize arguments reduce them to 62 x 74. Read more in the :ref:`User Guide <labeled_faces_in_the_wild>`. Parameters ---------- subset : optional, default: 'train' Select the dataset to load: 'train' for the development training set, 'test' for the development test set, and '10_folds' for the official evaluation set that is meant to be used with a 10-folds cross validation. data_home : optional, default: None Specify another download and cache folder for the datasets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. funneled : boolean, optional, default: True Download and use the funneled variant of the dataset. resize : float, optional, default 0.5 Ratio used to resize the each face picture. color : boolean, optional, default False Keep the 3 RGB channels instead of averaging them to a single gray level channel. If color is True the shape of the data has one more dimension than than the shape with color = False. slice_ : optional Provide a custom 2D slice (height, width) to extract the 'interesting' part of the jpeg files and avoid use statistical correlation from the background download_if_missing : optional, True by default If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. Returns ------- The data is returned as a Bunch object with the following attributes: data : numpy array of shape (2200, 5828) Each row corresponds to 2 ravel'd face images of original size 62 x 47 pixels. Changing the ``slice_`` or resize parameters will change the shape of the output. pairs : numpy array of shape (2200, 2, 62, 47) Each row has 2 face images corresponding to same or different person from the dataset containing 5749 people. Changing the ``slice_`` or resize parameters will change the shape of the output. target : numpy array of shape (13233,) Labels associated to each pair of images. The two label values being different persons or the same person. DESCR : string Description of the Labeled Faces in the Wild (LFW) dataset. """ lfw_home, data_folder_path = check_fetch_lfw( data_home=data_home, funneled=funneled, download_if_missing=download_if_missing) logger.info('Loading %s LFW pairs from %s', subset, lfw_home) # wrap the loader in a memoizing function that will return memmaped data # arrays for optimal memory usage m = Memory(cachedir=lfw_home, compress=6, verbose=0) load_func = m.cache(_fetch_lfw_pairs) # select the right metadata file according to the requested subset label_filenames = { 'train': 'pairsDevTrain.txt', 'test': 'pairsDevTest.txt', '10_folds': 'pairs.txt', } if subset not in label_filenames: raise ValueError("subset='%s' is invalid: should be one of %r" % ( subset, list(sorted(label_filenames.keys())))) index_file_path = join(lfw_home, label_filenames[subset]) # load and memoize the pairs as np arrays pairs, target, target_names = load_func( index_file_path, data_folder_path, resize=resize, color=color, slice_=slice_) # pack the results as a Bunch instance return Bunch(data=pairs.reshape(len(pairs), -1), pairs=pairs, target=target, target_names=target_names, DESCR="'%s' segment of the LFW pairs dataset" % subset) @deprecated("Function 'load_lfw_pairs' has been deprecated in 0.17 and will be " "removed in 0.19." "Use fetch_lfw_pairs(download_if_missing=False) instead.") def load_lfw_pairs(download_if_missing=False, **kwargs): """Alias for fetch_lfw_pairs(download_if_missing=False) Check fetch_lfw_pairs.__doc__ for the documentation and parameter list. """ return fetch_lfw_pairs(download_if_missing=download_if_missing, **kwargs)
bsd-3-clause
nhuntwalker/astroML
examples/algorithms/plot_bayesian_blocks.py
3
2706
""" Bayesian Blocks for Histograms ------------------------------ .. currentmodule:: astroML Bayesian Blocks is a dynamic histogramming method which optimizes one of several possible fitness functions to determine an optimal binning for data, where the bins are not necessarily uniform width. The astroML implementation is based on [1]_. For more discussion of this technique, see the blog post at [2]_. The code below uses a fitness function suitable for event data with possible repeats. More fitness functions are available: see :mod:`density_estimation` References ~~~~~~~~~~ .. [1] Scargle, J `et al.` (2012) http://adsabs.harvard.edu/abs/2012arXiv1207.5578S .. [2] http://jakevdp.github.com/blog/2012/09/12/dynamic-programming-in-python/ """ # Author: Jake VanderPlas <[email protected]> # License: BSD # The figure is an example from astroML: see http://astroML.github.com import numpy as np from scipy import stats from matplotlib import pyplot as plt from astroML.plotting import hist # draw a set of variables np.random.seed(0) t = np.concatenate([stats.cauchy(-5, 1.8).rvs(500), stats.cauchy(-4, 0.8).rvs(2000), stats.cauchy(-1, 0.3).rvs(500), stats.cauchy(2, 0.8).rvs(1000), stats.cauchy(4, 1.5).rvs(500)]) # truncate values to a reasonable range t = t[(t > -15) & (t < 15)] #------------------------------------------------------------ # First figure: show normal histogram binning fig = plt.figure(figsize=(10, 4)) fig.subplots_adjust(left=0.1, right=0.95, bottom=0.15) ax1 = fig.add_subplot(121) ax1.hist(t, bins=15, histtype='stepfilled', alpha=0.2, normed=True) ax1.set_xlabel('t') ax1.set_ylabel('P(t)') ax2 = fig.add_subplot(122) ax2.hist(t, bins=200, histtype='stepfilled', alpha=0.2, normed=True) ax2.set_xlabel('t') ax2.set_ylabel('P(t)') #------------------------------------------------------------ # Second & Third figure: Knuth bins & Bayesian Blocks fig = plt.figure(figsize=(10, 4)) fig.subplots_adjust(left=0.1, right=0.95, bottom=0.15) for bins, title, subplot in zip(['knuth', 'blocks'], ["Knuth's rule", 'Bayesian blocks'], [121, 122]): ax = fig.add_subplot(subplot) # plot a standard histogram in the background, with alpha transparency hist(t, bins=200, histtype='stepfilled', alpha=0.2, normed=True, label='standard histogram') # plot an adaptive-width histogram on top hist(t, bins=bins, ax=ax, color='black', histtype='step', normed=True, label=title) ax.legend(prop=dict(size=12)) ax.set_xlabel('t') ax.set_ylabel('P(t)') plt.show()
bsd-2-clause
ky822/scikit-learn
sklearn/utils/estimator_checks.py
9
51912
from __future__ import print_function import types import warnings import sys import traceback import inspect import pickle from copy import deepcopy import numpy as np from scipy import sparse import struct from sklearn.externals.six.moves import zip from sklearn.externals.joblib import hash, Memory from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regex from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_in from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import META_ESTIMATORS from sklearn.utils.testing import set_random_state from sklearn.utils.testing import assert_greater from sklearn.utils.testing import SkipTest from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_warns from sklearn.base import (clone, ClassifierMixin, RegressorMixin, TransformerMixin, ClusterMixin, BaseEstimator) from sklearn.metrics import accuracy_score, adjusted_rand_score, f1_score from sklearn.lda import LDA from sklearn.random_projection import BaseRandomProjection from sklearn.feature_selection import SelectKBest from sklearn.svm.base import BaseLibSVM from sklearn.pipeline import make_pipeline from sklearn.utils.validation import DataConversionWarning from sklearn.utils import ConvergenceWarning from sklearn.cross_validation import train_test_split from sklearn.utils import shuffle from sklearn.preprocessing import StandardScaler from sklearn.datasets import load_iris, load_boston, make_blobs BOSTON = None CROSS_DECOMPOSITION = ['PLSCanonical', 'PLSRegression', 'CCA', 'PLSSVD'] MULTI_OUTPUT = ['CCA', 'DecisionTreeRegressor', 'ElasticNet', 'ExtraTreeRegressor', 'ExtraTreesRegressor', 'GaussianProcess', 'KNeighborsRegressor', 'KernelRidge', 'Lars', 'Lasso', 'LassoLars', 'LinearRegression', 'MultiTaskElasticNet', 'MultiTaskElasticNetCV', 'MultiTaskLasso', 'MultiTaskLassoCV', 'OrthogonalMatchingPursuit', 'PLSCanonical', 'PLSRegression', 'RANSACRegressor', 'RadiusNeighborsRegressor', 'RandomForestRegressor', 'Ridge', 'RidgeCV'] def _yield_non_meta_checks(name, Estimator): yield check_estimators_dtypes yield check_fit_score_takes_y yield check_dtype_object yield check_estimators_fit_returns_self # Check that all estimator yield informative messages when # trained on empty datasets yield check_estimators_empty_data_messages if name not in CROSS_DECOMPOSITION + ['SpectralEmbedding']: # SpectralEmbedding is non-deterministic, # see issue #4236 # cross-decomposition's "transform" returns X and Y yield check_pipeline_consistency if name not in ['Imputer']: # Test that all estimators check their input for NaN's and infs yield check_estimators_nan_inf if name not in ['GaussianProcess']: # FIXME! # in particular GaussianProcess! yield check_estimators_overwrite_params if hasattr(Estimator, 'sparsify'): yield check_sparsify_coefficients yield check_estimator_sparse_data # Test that estimators can be pickled, and once pickled # give the same answer as before. yield check_estimators_pickle def _yield_classifier_checks(name, Classifier): # test classfiers can handle non-array data yield check_classifier_data_not_an_array # test classifiers trained on a single label always return this label yield check_classifiers_one_label yield check_classifiers_classes yield check_estimators_partial_fit_n_features # basic consistency testing yield check_classifiers_train if (name not in ["MultinomialNB", "LabelPropagation", "LabelSpreading"] # TODO some complication with -1 label and name not in ["DecisionTreeClassifier", "ExtraTreeClassifier"]): # We don't raise a warning in these classifiers, as # the column y interface is used by the forests. yield check_supervised_y_2d # test if NotFittedError is raised yield check_estimators_unfitted if 'class_weight' in Classifier().get_params().keys(): yield check_class_weight_classifiers def _yield_regressor_checks(name, Regressor): # TODO: test with intercept # TODO: test with multiple responses # basic testing yield check_regressors_train yield check_regressor_data_not_an_array yield check_estimators_partial_fit_n_features yield check_regressors_no_decision_function yield check_supervised_y_2d if name != 'CCA': # check that the regressor handles int input yield check_regressors_int # Test if NotFittedError is raised yield check_estimators_unfitted def _yield_transformer_checks(name, Transformer): # All transformers should either deal with sparse data or raise an # exception with type TypeError and an intelligible error message if name not in ['AdditiveChi2Sampler', 'Binarizer', 'Normalizer', 'PLSCanonical', 'PLSRegression', 'CCA', 'PLSSVD']: yield check_transformer_data_not_an_array # these don't actually fit the data, so don't raise errors if name not in ['AdditiveChi2Sampler', 'Binarizer', 'FunctionTransformer', 'Normalizer']: # basic tests yield check_transformer_general yield check_transformers_unfitted def _yield_clustering_checks(name, Clusterer): yield check_clusterer_compute_labels_predict if name not in ('WardAgglomeration', "FeatureAgglomeration"): # this is clustering on the features # let's not test that here. yield check_clustering yield check_estimators_partial_fit_n_features def _yield_all_checks(name, Estimator): for check in _yield_non_meta_checks(name, Estimator): yield check if issubclass(Estimator, ClassifierMixin): for check in _yield_classifier_checks(name, Estimator): yield check if issubclass(Estimator, RegressorMixin): for check in _yield_regressor_checks(name, Estimator): yield check if issubclass(Estimator, TransformerMixin): for check in _yield_transformer_checks(name, Estimator): yield check if issubclass(Estimator, ClusterMixin): for check in _yield_clustering_checks(name, Estimator): yield check yield check_fit2d_predict1d yield check_fit2d_1sample yield check_fit2d_1feature yield check_fit1d_1feature yield check_fit1d_1sample def check_estimator(Estimator): """Check if estimator adheres to sklearn conventions. This estimator will run an extensive test-suite for input validation, shapes, etc. Additional tests for classifiers, regressors, clustering or transformers will be run if the Estimator class inherits from the corresponding mixin from sklearn.base. Parameters ---------- Estimator : class Class to check. """ name = Estimator.__class__.__name__ check_parameters_default_constructible(name, Estimator) for check in _yield_all_checks(name, Estimator): check(name, Estimator) def _boston_subset(n_samples=200): global BOSTON if BOSTON is None: boston = load_boston() X, y = boston.data, boston.target X, y = shuffle(X, y, random_state=0) X, y = X[:n_samples], y[:n_samples] X = StandardScaler().fit_transform(X) BOSTON = X, y return BOSTON def set_fast_parameters(estimator): # speed up some estimators params = estimator.get_params() if ("n_iter" in params and estimator.__class__.__name__ != "TSNE"): estimator.set_params(n_iter=5) if "max_iter" in params: warnings.simplefilter("ignore", ConvergenceWarning) if estimator.max_iter is not None: estimator.set_params(max_iter=min(5, estimator.max_iter)) # LinearSVR if estimator.__class__.__name__ == 'LinearSVR': estimator.set_params(max_iter=20) if "n_resampling" in params: # randomized lasso estimator.set_params(n_resampling=5) if "n_estimators" in params: # especially gradient boosting with default 100 estimator.set_params(n_estimators=min(5, estimator.n_estimators)) if "max_trials" in params: # RANSAC estimator.set_params(max_trials=10) if "n_init" in params: # K-Means estimator.set_params(n_init=2) if estimator.__class__.__name__ == "SelectFdr": # be tolerant of noisy datasets (not actually speed) estimator.set_params(alpha=.5) if estimator.__class__.__name__ == "TheilSenRegressor": estimator.max_subpopulation = 100 if isinstance(estimator, BaseRandomProjection): # Due to the jl lemma and often very few samples, the number # of components of the random matrix projection will be probably # greater than the number of features. # So we impose a smaller number (avoid "auto" mode) estimator.set_params(n_components=1) if isinstance(estimator, SelectKBest): # SelectKBest has a default of k=10 # which is more feature than we have in most case. estimator.set_params(k=1) class NotAnArray(object): " An object that is convertable to an array" def __init__(self, data): self.data = data def __array__(self, dtype=None): return self.data def _is_32bit(): """Detect if process is 32bit Python.""" return struct.calcsize('P') * 8 == 32 def check_estimator_sparse_data(name, Estimator): rng = np.random.RandomState(0) X = rng.rand(40, 10) X[X < .8] = 0 X_csr = sparse.csr_matrix(X) y = (4 * rng.rand(40)).astype(np.int) for sparse_format in ['csr', 'csc', 'dok', 'lil', 'coo', 'dia', 'bsr']: X = X_csr.asformat(sparse_format) # catch deprecation warnings with warnings.catch_warnings(): if name in ['Scaler', 'StandardScaler']: estimator = Estimator(with_mean=False) else: estimator = Estimator() set_fast_parameters(estimator) # fit and predict try: estimator.fit(X, y) if hasattr(estimator, "predict"): pred = estimator.predict(X) assert_equal(pred.shape, (X.shape[0],)) if hasattr(estimator, 'predict_proba'): probs = estimator.predict_proba(X) assert_equal(probs.shape, (X.shape[0], 4)) except TypeError as e: if 'sparse' not in repr(e): print("Estimator %s doesn't seem to fail gracefully on " "sparse data: error message state explicitly that " "sparse input is not supported if this is not the case." % name) raise except Exception: print("Estimator %s doesn't seem to fail gracefully on " "sparse data: it should raise a TypeError if sparse input " "is explicitly not supported." % name) raise def check_dtype_object(name, Estimator): # check that estimators treat dtype object as numeric if possible rng = np.random.RandomState(0) X = rng.rand(40, 10).astype(object) y = (X[:, 0] * 4).astype(np.int) y = multioutput_estimator_convert_y_2d(name, y) with warnings.catch_warnings(): estimator = Estimator() set_fast_parameters(estimator) estimator.fit(X, y) if hasattr(estimator, "predict"): estimator.predict(X) if hasattr(estimator, "transform"): estimator.transform(X) try: estimator.fit(X, y.astype(object)) except Exception as e: if "Unknown label type" not in str(e): raise X[0, 0] = {'foo': 'bar'} msg = "argument must be a string or a number" assert_raises_regex(TypeError, msg, estimator.fit, X, y) @ignore_warnings def check_fit2d_predict1d(name, Estimator): # check by fitting a 2d array and prediting with a 1d array rnd = np.random.RandomState(0) X = 3 * rnd.uniform(size=(20, 3)) y = X[:, 0].astype(np.int) y = multioutput_estimator_convert_y_2d(name, y) estimator = Estimator() set_fast_parameters(estimator) if hasattr(estimator, "n_components"): estimator.n_components = 1 if hasattr(estimator, "n_clusters"): estimator.n_clusters = 1 set_random_state(estimator, 1) estimator.fit(X, y) for method in ["predict", "transform", "decision_function", "predict_proba"]: if hasattr(estimator, method): try: assert_warns(DeprecationWarning, getattr(estimator, method), X[0]) except ValueError: pass @ignore_warnings def check_fit2d_1sample(name, Estimator): # check by fitting a 2d array and prediting with a 1d array rnd = np.random.RandomState(0) X = 3 * rnd.uniform(size=(1, 10)) y = X[:, 0].astype(np.int) y = multioutput_estimator_convert_y_2d(name, y) estimator = Estimator() set_fast_parameters(estimator) if hasattr(estimator, "n_components"): estimator.n_components = 1 if hasattr(estimator, "n_clusters"): estimator.n_clusters = 1 set_random_state(estimator, 1) try: estimator.fit(X, y) except ValueError: pass @ignore_warnings def check_fit2d_1feature(name, Estimator): # check by fitting a 2d array and prediting with a 1d array rnd = np.random.RandomState(0) X = 3 * rnd.uniform(size=(10, 1)) y = X[:, 0].astype(np.int) y = multioutput_estimator_convert_y_2d(name, y) estimator = Estimator() set_fast_parameters(estimator) if hasattr(estimator, "n_components"): estimator.n_components = 1 if hasattr(estimator, "n_clusters"): estimator.n_clusters = 1 set_random_state(estimator, 1) try: estimator.fit(X, y) except ValueError: pass @ignore_warnings def check_fit1d_1feature(name, Estimator): # check fitting 1d array with 1 feature rnd = np.random.RandomState(0) X = 3 * rnd.uniform(size=(20)) y = X.astype(np.int) y = multioutput_estimator_convert_y_2d(name, y) estimator = Estimator() set_fast_parameters(estimator) if hasattr(estimator, "n_components"): estimator.n_components = 1 if hasattr(estimator, "n_clusters"): estimator.n_clusters = 1 set_random_state(estimator, 1) try: estimator.fit(X, y) except ValueError: pass @ignore_warnings def check_fit1d_1sample(name, Estimator): # check fitting 1d array with 1 feature rnd = np.random.RandomState(0) X = 3 * rnd.uniform(size=(20)) y = np.array([1]) y = multioutput_estimator_convert_y_2d(name, y) estimator = Estimator() set_fast_parameters(estimator) if hasattr(estimator, "n_components"): estimator.n_components = 1 if hasattr(estimator, "n_clusters"): estimator.n_clusters = 1 set_random_state(estimator, 1) try: estimator.fit(X, y) except ValueError : pass def check_transformer_general(name, Transformer): X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, n_features=2, cluster_std=0.1) X = StandardScaler().fit_transform(X) X -= X.min() _check_transformer(name, Transformer, X, y) _check_transformer(name, Transformer, X.tolist(), y.tolist()) def check_transformer_data_not_an_array(name, Transformer): X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, n_features=2, cluster_std=0.1) X = StandardScaler().fit_transform(X) # We need to make sure that we have non negative data, for things # like NMF X -= X.min() - .1 this_X = NotAnArray(X) this_y = NotAnArray(np.asarray(y)) _check_transformer(name, Transformer, this_X, this_y) def check_transformers_unfitted(name, Transformer): X, y = _boston_subset() with warnings.catch_warnings(record=True): transformer = Transformer() assert_raises((AttributeError, ValueError), transformer.transform, X) def _check_transformer(name, Transformer, X, y): if name in ('CCA', 'LocallyLinearEmbedding', 'KernelPCA') and _is_32bit(): # Those transformers yield non-deterministic output when executed on # a 32bit Python. The same transformers are stable on 64bit Python. # FIXME: try to isolate a minimalistic reproduction case only depending # on numpy & scipy and/or maybe generate a test dataset that does not # cause such unstable behaviors. msg = name + ' is non deterministic on 32bit Python' raise SkipTest(msg) n_samples, n_features = np.asarray(X).shape # catch deprecation warnings with warnings.catch_warnings(record=True): transformer = Transformer() set_random_state(transformer) set_fast_parameters(transformer) # fit if name in CROSS_DECOMPOSITION: y_ = np.c_[y, y] y_[::2, 1] *= 2 else: y_ = y transformer.fit(X, y_) X_pred = transformer.fit_transform(X, y=y_) if isinstance(X_pred, tuple): for x_pred in X_pred: assert_equal(x_pred.shape[0], n_samples) else: # check for consistent n_samples assert_equal(X_pred.shape[0], n_samples) if hasattr(transformer, 'transform'): if name in CROSS_DECOMPOSITION: X_pred2 = transformer.transform(X, y_) X_pred3 = transformer.fit_transform(X, y=y_) else: X_pred2 = transformer.transform(X) X_pred3 = transformer.fit_transform(X, y=y_) if isinstance(X_pred, tuple) and isinstance(X_pred2, tuple): for x_pred, x_pred2, x_pred3 in zip(X_pred, X_pred2, X_pred3): assert_array_almost_equal( x_pred, x_pred2, 2, "fit_transform and transform outcomes not consistent in %s" % Transformer) assert_array_almost_equal( x_pred, x_pred3, 2, "consecutive fit_transform outcomes not consistent in %s" % Transformer) else: assert_array_almost_equal( X_pred, X_pred2, 2, "fit_transform and transform outcomes not consistent in %s" % Transformer) assert_array_almost_equal( X_pred, X_pred3, 2, "consecutive fit_transform outcomes not consistent in %s" % Transformer) assert_equal(len(X_pred2), n_samples) assert_equal(len(X_pred3), n_samples) # raises error on malformed input for transform if hasattr(X, 'T'): # If it's not an array, it does not have a 'T' property assert_raises(ValueError, transformer.transform, X.T) @ignore_warnings def check_pipeline_consistency(name, Estimator): if name in ('CCA', 'LocallyLinearEmbedding', 'KernelPCA') and _is_32bit(): # Those transformers yield non-deterministic output when executed on # a 32bit Python. The same transformers are stable on 64bit Python. # FIXME: try to isolate a minimalistic reproduction case only depending # scipy and/or maybe generate a test dataset that does not # cause such unstable behaviors. msg = name + ' is non deterministic on 32bit Python' raise SkipTest(msg) # check that make_pipeline(est) gives same score as est X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, n_features=2, cluster_std=0.1) X -= X.min() y = multioutput_estimator_convert_y_2d(name, y) estimator = Estimator() set_fast_parameters(estimator) set_random_state(estimator) pipeline = make_pipeline(estimator) estimator.fit(X, y) pipeline.fit(X, y) funcs = ["score", "fit_transform"] for func_name in funcs: func = getattr(estimator, func_name, None) if func is not None: func_pipeline = getattr(pipeline, func_name) result = func(X, y) result_pipe = func_pipeline(X, y) assert_array_almost_equal(result, result_pipe) @ignore_warnings def check_fit_score_takes_y(name, Estimator): # check that all estimators accept an optional y # in fit and score so they can be used in pipelines rnd = np.random.RandomState(0) X = rnd.uniform(size=(10, 3)) y = np.arange(10) % 3 y = multioutput_estimator_convert_y_2d(name, y) estimator = Estimator() set_fast_parameters(estimator) set_random_state(estimator) funcs = ["fit", "score", "partial_fit", "fit_predict", "fit_transform"] for func_name in funcs: func = getattr(estimator, func_name, None) if func is not None: func(X, y) args = inspect.getargspec(func).args assert_true(args[2] in ["y", "Y"]) @ignore_warnings def check_estimators_dtypes(name, Estimator): rnd = np.random.RandomState(0) X_train_32 = 3 * rnd.uniform(size=(20, 5)).astype(np.float32) X_train_64 = X_train_32.astype(np.float64) X_train_int_64 = X_train_32.astype(np.int64) X_train_int_32 = X_train_32.astype(np.int32) y = X_train_int_64[:, 0] y = multioutput_estimator_convert_y_2d(name, y) for X_train in [X_train_32, X_train_64, X_train_int_64, X_train_int_32]: with warnings.catch_warnings(record=True): estimator = Estimator() set_fast_parameters(estimator) set_random_state(estimator, 1) estimator.fit(X_train, y) for method in ["predict", "transform", "decision_function", "predict_proba"]: if hasattr(estimator, method): getattr(estimator, method)(X_train) def check_estimators_empty_data_messages(name, Estimator): e = Estimator() set_fast_parameters(e) set_random_state(e, 1) X_zero_samples = np.empty(0).reshape(0, 3) # The precise message can change depending on whether X or y is # validated first. Let us test the type of exception only: assert_raises(ValueError, e.fit, X_zero_samples, []) X_zero_features = np.empty(0).reshape(3, 0) # the following y should be accepted by both classifiers and regressors # and ignored by unsupervised models y = multioutput_estimator_convert_y_2d(name, np.array([1, 0, 1])) msg = "0 feature\(s\) \(shape=\(3, 0\)\) while a minimum of \d* is required." assert_raises_regex(ValueError, msg, e.fit, X_zero_features, y) def check_estimators_nan_inf(name, Estimator): rnd = np.random.RandomState(0) X_train_finite = rnd.uniform(size=(10, 3)) X_train_nan = rnd.uniform(size=(10, 3)) X_train_nan[0, 0] = np.nan X_train_inf = rnd.uniform(size=(10, 3)) X_train_inf[0, 0] = np.inf y = np.ones(10) y[:5] = 0 y = multioutput_estimator_convert_y_2d(name, y) error_string_fit = "Estimator doesn't check for NaN and inf in fit." error_string_predict = ("Estimator doesn't check for NaN and inf in" " predict.") error_string_transform = ("Estimator doesn't check for NaN and inf in" " transform.") for X_train in [X_train_nan, X_train_inf]: # catch deprecation warnings with warnings.catch_warnings(record=True): estimator = Estimator() set_fast_parameters(estimator) set_random_state(estimator, 1) # try to fit try: estimator.fit(X_train, y) except ValueError as e: if 'inf' not in repr(e) and 'NaN' not in repr(e): print(error_string_fit, Estimator, e) traceback.print_exc(file=sys.stdout) raise e except Exception as exc: print(error_string_fit, Estimator, exc) traceback.print_exc(file=sys.stdout) raise exc else: raise AssertionError(error_string_fit, Estimator) # actually fit estimator.fit(X_train_finite, y) # predict if hasattr(estimator, "predict"): try: estimator.predict(X_train) except ValueError as e: if 'inf' not in repr(e) and 'NaN' not in repr(e): print(error_string_predict, Estimator, e) traceback.print_exc(file=sys.stdout) raise e except Exception as exc: print(error_string_predict, Estimator, exc) traceback.print_exc(file=sys.stdout) else: raise AssertionError(error_string_predict, Estimator) # transform if hasattr(estimator, "transform"): try: estimator.transform(X_train) except ValueError as e: if 'inf' not in repr(e) and 'NaN' not in repr(e): print(error_string_transform, Estimator, e) traceback.print_exc(file=sys.stdout) raise e except Exception as exc: print(error_string_transform, Estimator, exc) traceback.print_exc(file=sys.stdout) else: raise AssertionError(error_string_transform, Estimator) def check_estimators_pickle(name, Estimator): """Test that we can pickle all estimators""" check_methods = ["predict", "transform", "decision_function", "predict_proba"] X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, n_features=2, cluster_std=0.1) # some estimators can't do features less than 0 X -= X.min() # some estimators only take multioutputs y = multioutput_estimator_convert_y_2d(name, y) # catch deprecation warnings with warnings.catch_warnings(record=True): estimator = Estimator() set_random_state(estimator) set_fast_parameters(estimator) estimator.fit(X, y) result = dict() for method in check_methods: if hasattr(estimator, method): result[method] = getattr(estimator, method)(X) # pickle and unpickle! pickled_estimator = pickle.dumps(estimator) unpickled_estimator = pickle.loads(pickled_estimator) for method in result: unpickled_result = getattr(unpickled_estimator, method)(X) assert_array_almost_equal(result[method], unpickled_result) def check_estimators_partial_fit_n_features(name, Alg): # check if number of features changes between calls to partial_fit. if not hasattr(Alg, 'partial_fit'): return X, y = make_blobs(n_samples=50, random_state=1) X -= X.min() with warnings.catch_warnings(record=True): alg = Alg() set_fast_parameters(alg) if isinstance(alg, ClassifierMixin): classes = np.unique(y) alg.partial_fit(X, y, classes=classes) else: alg.partial_fit(X, y) assert_raises(ValueError, alg.partial_fit, X[:, :-1], y) def check_clustering(name, Alg): X, y = make_blobs(n_samples=50, random_state=1) X, y = shuffle(X, y, random_state=7) X = StandardScaler().fit_transform(X) n_samples, n_features = X.shape # catch deprecation and neighbors warnings with warnings.catch_warnings(record=True): alg = Alg() set_fast_parameters(alg) if hasattr(alg, "n_clusters"): alg.set_params(n_clusters=3) set_random_state(alg) if name == 'AffinityPropagation': alg.set_params(preference=-100) alg.set_params(max_iter=100) # fit alg.fit(X) # with lists alg.fit(X.tolist()) assert_equal(alg.labels_.shape, (n_samples,)) pred = alg.labels_ assert_greater(adjusted_rand_score(pred, y), 0.4) # fit another time with ``fit_predict`` and compare results if name is 'SpectralClustering': # there is no way to make Spectral clustering deterministic :( return set_random_state(alg) with warnings.catch_warnings(record=True): pred2 = alg.fit_predict(X) assert_array_equal(pred, pred2) def check_clusterer_compute_labels_predict(name, Clusterer): """Check that predict is invariant of compute_labels""" X, y = make_blobs(n_samples=20, random_state=0) clusterer = Clusterer() if hasattr(clusterer, "compute_labels"): # MiniBatchKMeans if hasattr(clusterer, "random_state"): clusterer.set_params(random_state=0) X_pred1 = clusterer.fit(X).predict(X) clusterer.set_params(compute_labels=False) X_pred2 = clusterer.fit(X).predict(X) assert_array_equal(X_pred1, X_pred2) def check_classifiers_one_label(name, Classifier): error_string_fit = "Classifier can't train when only one class is present." error_string_predict = ("Classifier can't predict when only one class is " "present.") rnd = np.random.RandomState(0) X_train = rnd.uniform(size=(10, 3)) X_test = rnd.uniform(size=(10, 3)) y = np.ones(10) # catch deprecation warnings with warnings.catch_warnings(record=True): classifier = Classifier() set_fast_parameters(classifier) # try to fit try: classifier.fit(X_train, y) except ValueError as e: if 'class' not in repr(e): print(error_string_fit, Classifier, e) traceback.print_exc(file=sys.stdout) raise e else: return except Exception as exc: print(error_string_fit, Classifier, exc) traceback.print_exc(file=sys.stdout) raise exc # predict try: assert_array_equal(classifier.predict(X_test), y) except Exception as exc: print(error_string_predict, Classifier, exc) raise exc def check_classifiers_train(name, Classifier): X_m, y_m = make_blobs(n_samples=300, random_state=0) X_m, y_m = shuffle(X_m, y_m, random_state=7) X_m = StandardScaler().fit_transform(X_m) # generate binary problem from multi-class one y_b = y_m[y_m != 2] X_b = X_m[y_m != 2] for (X, y) in [(X_m, y_m), (X_b, y_b)]: # catch deprecation warnings classes = np.unique(y) n_classes = len(classes) n_samples, n_features = X.shape with warnings.catch_warnings(record=True): classifier = Classifier() if name in ['BernoulliNB', 'MultinomialNB']: X -= X.min() set_fast_parameters(classifier) set_random_state(classifier) # raises error on malformed input for fit assert_raises(ValueError, classifier.fit, X, y[:-1]) # fit classifier.fit(X, y) # with lists classifier.fit(X.tolist(), y.tolist()) assert_true(hasattr(classifier, "classes_")) y_pred = classifier.predict(X) assert_equal(y_pred.shape, (n_samples,)) # training set performance if name not in ['BernoulliNB', 'MultinomialNB']: assert_greater(accuracy_score(y, y_pred), 0.83) # raises error on malformed input for predict assert_raises(ValueError, classifier.predict, X.T) if hasattr(classifier, "decision_function"): try: # decision_function agrees with predict decision = classifier.decision_function(X) if n_classes is 2: assert_equal(decision.shape, (n_samples,)) dec_pred = (decision.ravel() > 0).astype(np.int) assert_array_equal(dec_pred, y_pred) if (n_classes is 3 and not isinstance(classifier, BaseLibSVM)): # 1on1 of LibSVM works differently assert_equal(decision.shape, (n_samples, n_classes)) assert_array_equal(np.argmax(decision, axis=1), y_pred) # raises error on malformed input assert_raises(ValueError, classifier.decision_function, X.T) # raises error on malformed input for decision_function assert_raises(ValueError, classifier.decision_function, X.T) except NotImplementedError: pass if hasattr(classifier, "predict_proba"): # predict_proba agrees with predict y_prob = classifier.predict_proba(X) assert_equal(y_prob.shape, (n_samples, n_classes)) assert_array_equal(np.argmax(y_prob, axis=1), y_pred) # check that probas for all classes sum to one assert_array_almost_equal(np.sum(y_prob, axis=1), np.ones(n_samples)) # raises error on malformed input assert_raises(ValueError, classifier.predict_proba, X.T) # raises error on malformed input for predict_proba assert_raises(ValueError, classifier.predict_proba, X.T) def check_estimators_fit_returns_self(name, Estimator): """Check if self is returned when calling fit""" X, y = make_blobs(random_state=0, n_samples=9, n_features=4) y = multioutput_estimator_convert_y_2d(name, y) # some want non-negative input X -= X.min() estimator = Estimator() set_fast_parameters(estimator) set_random_state(estimator) assert_true(estimator.fit(X, y) is estimator) @ignore_warnings def check_estimators_unfitted(name, Estimator): """Check that predict raises an exception in an unfitted estimator. Unfitted estimators should raise either AttributeError or ValueError. The specific exception type NotFittedError inherits from both and can therefore be adequately raised for that purpose. """ # Common test for Regressors as well as Classifiers X, y = _boston_subset() with warnings.catch_warnings(record=True): est = Estimator() msg = "fit" if hasattr(est, 'predict'): assert_raise_message((AttributeError, ValueError), msg, est.predict, X) if hasattr(est, 'decision_function'): assert_raise_message((AttributeError, ValueError), msg, est.decision_function, X) if hasattr(est, 'predict_proba'): assert_raise_message((AttributeError, ValueError), msg, est.predict_proba, X) if hasattr(est, 'predict_log_proba'): assert_raise_message((AttributeError, ValueError), msg, est.predict_log_proba, X) def check_supervised_y_2d(name, Estimator): if "MultiTask" in name: # These only work on 2d, so this test makes no sense return rnd = np.random.RandomState(0) X = rnd.uniform(size=(10, 3)) y = np.arange(10) % 3 # catch deprecation warnings with warnings.catch_warnings(record=True): estimator = Estimator() set_fast_parameters(estimator) set_random_state(estimator) # fit estimator.fit(X, y) y_pred = estimator.predict(X) set_random_state(estimator) # Check that when a 2D y is given, a DataConversionWarning is # raised with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always", DataConversionWarning) warnings.simplefilter("ignore", RuntimeWarning) estimator.fit(X, y[:, np.newaxis]) y_pred_2d = estimator.predict(X) msg = "expected 1 DataConversionWarning, got: %s" % ( ", ".join([str(w_x) for w_x in w])) if name not in MULTI_OUTPUT: # check that we warned if we don't support multi-output assert_greater(len(w), 0, msg) assert_true("DataConversionWarning('A column-vector y" " was passed when a 1d array was expected" in msg) assert_array_almost_equal(y_pred.ravel(), y_pred_2d.ravel()) def check_classifiers_classes(name, Classifier): X, y = make_blobs(n_samples=30, random_state=0, cluster_std=0.1) X, y = shuffle(X, y, random_state=7) X = StandardScaler().fit_transform(X) # We need to make sure that we have non negative data, for things # like NMF X -= X.min() - .1 y_names = np.array(["one", "two", "three"])[y] for y_names in [y_names, y_names.astype('O')]: if name in ["LabelPropagation", "LabelSpreading"]: # TODO some complication with -1 label y_ = y else: y_ = y_names classes = np.unique(y_) # catch deprecation warnings with warnings.catch_warnings(record=True): classifier = Classifier() if name == 'BernoulliNB': classifier.set_params(binarize=X.mean()) set_fast_parameters(classifier) set_random_state(classifier) # fit classifier.fit(X, y_) y_pred = classifier.predict(X) # training set performance assert_array_equal(np.unique(y_), np.unique(y_pred)) if np.any(classifier.classes_ != classes): print("Unexpected classes_ attribute for %r: " "expected %s, got %s" % (classifier, classes, classifier.classes_)) def check_regressors_int(name, Regressor): X, _ = _boston_subset() X = X[:50] rnd = np.random.RandomState(0) y = rnd.randint(3, size=X.shape[0]) y = multioutput_estimator_convert_y_2d(name, y) rnd = np.random.RandomState(0) # catch deprecation warnings with warnings.catch_warnings(record=True): # separate estimators to control random seeds regressor_1 = Regressor() regressor_2 = Regressor() set_fast_parameters(regressor_1) set_fast_parameters(regressor_2) set_random_state(regressor_1) set_random_state(regressor_2) if name in CROSS_DECOMPOSITION: y_ = np.vstack([y, 2 * y + rnd.randint(2, size=len(y))]) y_ = y_.T else: y_ = y # fit regressor_1.fit(X, y_) pred1 = regressor_1.predict(X) regressor_2.fit(X, y_.astype(np.float)) pred2 = regressor_2.predict(X) assert_array_almost_equal(pred1, pred2, 2, name) def check_regressors_train(name, Regressor): X, y = _boston_subset() y = StandardScaler().fit_transform(y.reshape(-1, 1)) # X is already scaled y = y.ravel() y = multioutput_estimator_convert_y_2d(name, y) rnd = np.random.RandomState(0) # catch deprecation warnings with warnings.catch_warnings(record=True): regressor = Regressor() set_fast_parameters(regressor) if not hasattr(regressor, 'alphas') and hasattr(regressor, 'alpha'): # linear regressors need to set alpha, but not generalized CV ones regressor.alpha = 0.01 if name == 'PassiveAggressiveRegressor': regressor.C = 0.01 # raises error on malformed input for fit assert_raises(ValueError, regressor.fit, X, y[:-1]) # fit if name in CROSS_DECOMPOSITION: y_ = np.vstack([y, 2 * y + rnd.randint(2, size=len(y))]) y_ = y_.T else: y_ = y set_random_state(regressor) regressor.fit(X, y_) regressor.fit(X.tolist(), y_.tolist()) y_pred = regressor.predict(X) assert_equal(y_pred.shape, y_.shape) # TODO: find out why PLS and CCA fail. RANSAC is random # and furthermore assumes the presence of outliers, hence # skipped if name not in ('PLSCanonical', 'CCA', 'RANSACRegressor'): print(regressor) assert_greater(regressor.score(X, y_), 0.5) @ignore_warnings def check_regressors_no_decision_function(name, Regressor): # checks whether regressors have decision_function or predict_proba rng = np.random.RandomState(0) X = rng.normal(size=(10, 4)) y = multioutput_estimator_convert_y_2d(name, X[:, 0]) regressor = Regressor() set_fast_parameters(regressor) if hasattr(regressor, "n_components"): # FIXME CCA, PLS is not robust to rank 1 effects regressor.n_components = 1 regressor.fit(X, y) funcs = ["decision_function", "predict_proba", "predict_log_proba"] for func_name in funcs: func = getattr(regressor, func_name, None) if func is None: # doesn't have function continue # has function. Should raise deprecation warning msg = func_name assert_warns_message(DeprecationWarning, msg, func, X) def check_class_weight_classifiers(name, Classifier): if name == "NuSVC": # the sparse version has a parameter that doesn't do anything raise SkipTest if name.endswith("NB"): # NaiveBayes classifiers have a somewhat different interface. # FIXME SOON! raise SkipTest for n_centers in [2, 3]: # create a very noisy dataset X, y = make_blobs(centers=n_centers, random_state=0, cluster_std=20) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5, random_state=0) n_centers = len(np.unique(y_train)) if n_centers == 2: class_weight = {0: 1000, 1: 0.0001} else: class_weight = {0: 1000, 1: 0.0001, 2: 0.0001} with warnings.catch_warnings(record=True): classifier = Classifier(class_weight=class_weight) if hasattr(classifier, "n_iter"): classifier.set_params(n_iter=100) if hasattr(classifier, "min_weight_fraction_leaf"): classifier.set_params(min_weight_fraction_leaf=0.01) set_random_state(classifier) classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test) assert_greater(np.mean(y_pred == 0), 0.89) def check_class_weight_balanced_classifiers(name, Classifier, X_train, y_train, X_test, y_test, weights): with warnings.catch_warnings(record=True): classifier = Classifier() if hasattr(classifier, "n_iter"): classifier.set_params(n_iter=100) set_random_state(classifier) classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test) classifier.set_params(class_weight='balanced') classifier.fit(X_train, y_train) y_pred_balanced = classifier.predict(X_test) assert_greater(f1_score(y_test, y_pred_balanced, average='weighted'), f1_score(y_test, y_pred, average='weighted')) def check_class_weight_balanced_linear_classifier(name, Classifier): """Test class weights with non-contiguous class labels.""" X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y = np.array([1, 1, 1, -1, -1]) with warnings.catch_warnings(record=True): classifier = Classifier() if hasattr(classifier, "n_iter"): # This is a very small dataset, default n_iter are likely to prevent # convergence classifier.set_params(n_iter=1000) set_random_state(classifier) # Let the model compute the class frequencies classifier.set_params(class_weight='balanced') coef_balanced = classifier.fit(X, y).coef_.copy() # Count each label occurrence to reweight manually n_samples = len(y) n_classes = float(len(np.unique(y))) class_weight = {1: n_samples / (np.sum(y == 1) * n_classes), -1: n_samples / (np.sum(y == -1) * n_classes)} classifier.set_params(class_weight=class_weight) coef_manual = classifier.fit(X, y).coef_.copy() assert_array_almost_equal(coef_balanced, coef_manual) def check_estimators_overwrite_params(name, Estimator): X, y = make_blobs(random_state=0, n_samples=9) y = multioutput_estimator_convert_y_2d(name, y) # some want non-negative input X -= X.min() with warnings.catch_warnings(record=True): # catch deprecation warnings estimator = Estimator() set_fast_parameters(estimator) set_random_state(estimator) # Make a physical copy of the orginal estimator parameters before fitting. params = estimator.get_params() original_params = deepcopy(params) # Fit the model estimator.fit(X, y) # Compare the state of the model parameters with the original parameters new_params = estimator.get_params() for param_name, original_value in original_params.items(): new_value = new_params[param_name] # We should never change or mutate the internal state of input # parameters by default. To check this we use the joblib.hash function # that introspects recursively any subobjects to compute a checksum. # The only exception to this rule of immutable constructor parameters # is possible RandomState instance but in this check we explicitly # fixed the random_state params recursively to be integer seeds. assert_equal(hash(new_value), hash(original_value), "Estimator %s should not change or mutate " " the parameter %s from %s to %s during fit." % (name, param_name, original_value, new_value)) def check_sparsify_coefficients(name, Estimator): X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [-1, -2], [2, 2], [-2, -2]]) y = [1, 1, 1, 2, 2, 2, 3, 3, 3] est = Estimator() est.fit(X, y) pred_orig = est.predict(X) # test sparsify with dense inputs est.sparsify() assert_true(sparse.issparse(est.coef_)) pred = est.predict(X) assert_array_equal(pred, pred_orig) # pickle and unpickle with sparse coef_ est = pickle.loads(pickle.dumps(est)) assert_true(sparse.issparse(est.coef_)) pred = est.predict(X) assert_array_equal(pred, pred_orig) def check_classifier_data_not_an_array(name, Estimator): X = np.array([[3, 0], [0, 1], [0, 2], [1, 1], [1, 2], [2, 1]]) y = [1, 1, 1, 2, 2, 2] y = multioutput_estimator_convert_y_2d(name, y) check_estimators_data_not_an_array(name, Estimator, X, y) def check_regressor_data_not_an_array(name, Estimator): X, y = _boston_subset(n_samples=50) y = multioutput_estimator_convert_y_2d(name, y) check_estimators_data_not_an_array(name, Estimator, X, y) def check_estimators_data_not_an_array(name, Estimator, X, y): if name in CROSS_DECOMPOSITION: raise SkipTest # catch deprecation warnings with warnings.catch_warnings(record=True): # separate estimators to control random seeds estimator_1 = Estimator() estimator_2 = Estimator() set_fast_parameters(estimator_1) set_fast_parameters(estimator_2) set_random_state(estimator_1) set_random_state(estimator_2) y_ = NotAnArray(np.asarray(y)) X_ = NotAnArray(np.asarray(X)) # fit estimator_1.fit(X_, y_) pred1 = estimator_1.predict(X_) estimator_2.fit(X, y) pred2 = estimator_2.predict(X) assert_array_almost_equal(pred1, pred2, 2, name) def check_parameters_default_constructible(name, Estimator): classifier = LDA() # test default-constructibility # get rid of deprecation warnings with warnings.catch_warnings(record=True): if name in META_ESTIMATORS: estimator = Estimator(classifier) else: estimator = Estimator() # test cloning clone(estimator) # test __repr__ repr(estimator) # test that set_params returns self assert_true(estimator.set_params() is estimator) # test if init does nothing but set parameters # this is important for grid_search etc. # We get the default parameters from init and then # compare these against the actual values of the attributes. # this comes from getattr. Gets rid of deprecation decorator. init = getattr(estimator.__init__, 'deprecated_original', estimator.__init__) try: args, varargs, kws, defaults = inspect.getargspec(init) except TypeError: # init is not a python function. # true for mixins return params = estimator.get_params() if name in META_ESTIMATORS: # they need a non-default argument args = args[2:] else: args = args[1:] if args: # non-empty list assert_equal(len(args), len(defaults)) else: return for arg, default in zip(args, defaults): assert_in(type(default), [str, int, float, bool, tuple, type(None), np.float64, types.FunctionType, Memory]) if arg not in params.keys(): # deprecated parameter, not in get_params assert_true(default is None) continue if isinstance(params[arg], np.ndarray): assert_array_equal(params[arg], default) else: assert_equal(params[arg], default) def multioutput_estimator_convert_y_2d(name, y): # Estimators in mono_output_task_error raise ValueError if y is of 1-D # Convert into a 2-D y for those estimators. if name in (['MultiTaskElasticNetCV', 'MultiTaskLassoCV', 'MultiTaskLasso', 'MultiTaskElasticNet']): return y[:, np.newaxis] return y def check_non_transformer_estimators_n_iter(name, estimator, multi_output=False): # Check if all iterative solvers, run for more than one iteratiom iris = load_iris() X, y_ = iris.data, iris.target if multi_output: y_ = y_[:, np.newaxis] set_random_state(estimator, 0) if name == 'AffinityPropagation': estimator.fit(X) else: estimator.fit(X, y_) assert_greater(estimator.n_iter_, 0) def check_transformer_n_iter(name, estimator): if name in CROSS_DECOMPOSITION: # Check using default data X = [[0., 0., 1.], [1., 0., 0.], [2., 2., 2.], [2., 5., 4.]] y_ = [[0.1, -0.2], [0.9, 1.1], [0.1, -0.5], [0.3, -0.2]] else: X, y_ = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, n_features=2, cluster_std=0.1) X -= X.min() - 0.1 set_random_state(estimator, 0) estimator.fit(X, y_) # These return a n_iter per component. if name in CROSS_DECOMPOSITION: for iter_ in estimator.n_iter_: assert_greater(iter_, 1) else: assert_greater(estimator.n_iter_, 1) def check_get_params_invariance(name, estimator): class T(BaseEstimator): """Mock classifier """ def __init__(self): pass def fit(self, X, y): return self if name in ('FeatureUnion', 'Pipeline'): e = estimator([('clf', T())]) elif name in ('GridSearchCV' 'RandomizedSearchCV'): return else: e = estimator() shallow_params = e.get_params(deep=False) deep_params = e.get_params(deep=True) assert_true(all(item in deep_params.items() for item in shallow_params.items()))
bsd-3-clause
Achuth17/scikit-learn
examples/linear_model/plot_logistic.py
312
1426
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Logit function ========================================================= Show in the plot is how the logistic regression would, in this synthetic dataset, classify values as either 0 or 1, i.e. class one or two, using the logit-curve. """ print(__doc__) # Code source: Gael Varoquaux # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model # this is our test set, it's just a straight line with some # Gaussian noise xmin, xmax = -5, 5 n_samples = 100 np.random.seed(0) X = np.random.normal(size=n_samples) y = (X > 0).astype(np.float) X[X > 0] *= 4 X += .3 * np.random.normal(size=n_samples) X = X[:, np.newaxis] # run the classifier clf = linear_model.LogisticRegression(C=1e5) clf.fit(X, y) # and plot the result plt.figure(1, figsize=(4, 3)) plt.clf() plt.scatter(X.ravel(), y, color='black', zorder=20) X_test = np.linspace(-5, 10, 300) def model(x): return 1 / (1 + np.exp(-x)) loss = model(X_test * clf.coef_ + clf.intercept_).ravel() plt.plot(X_test, loss, color='blue', linewidth=3) ols = linear_model.LinearRegression() ols.fit(X, y) plt.plot(X_test, ols.coef_ * X_test + ols.intercept_, linewidth=1) plt.axhline(.5, color='.5') plt.ylabel('y') plt.xlabel('X') plt.xticks(()) plt.yticks(()) plt.ylim(-.25, 1.25) plt.xlim(-4, 10) plt.show()
bsd-3-clause
massmutual/scikit-learn
examples/manifold/plot_compare_methods.py
259
4031
""" ========================================= Comparison of Manifold Learning methods ========================================= An illustration of dimensionality reduction on the S-curve dataset with various manifold learning methods. For a discussion and comparison of these algorithms, see the :ref:`manifold module page <manifold>` For a similar example, where the methods are applied to a sphere dataset, see :ref:`example_manifold_plot_manifold_sphere.py` Note that the purpose of the MDS is to find a low-dimensional representation of the data (here 2D) in which the distances respect well the distances in the original high-dimensional space, unlike other manifold-learning algorithms, it does not seeks an isotropic representation of the data in the low-dimensional space. """ # Author: Jake Vanderplas -- <[email protected]> print(__doc__) from time import time import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib.ticker import NullFormatter from sklearn import manifold, datasets # Next line to silence pyflakes. This import is needed. Axes3D n_points = 1000 X, color = datasets.samples_generator.make_s_curve(n_points, random_state=0) n_neighbors = 10 n_components = 2 fig = plt.figure(figsize=(15, 8)) plt.suptitle("Manifold Learning with %i points, %i neighbors" % (1000, n_neighbors), fontsize=14) try: # compatibility matplotlib < 1.0 ax = fig.add_subplot(251, projection='3d') ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=color, cmap=plt.cm.Spectral) ax.view_init(4, -72) except: ax = fig.add_subplot(251, projection='3d') plt.scatter(X[:, 0], X[:, 2], c=color, cmap=plt.cm.Spectral) methods = ['standard', 'ltsa', 'hessian', 'modified'] labels = ['LLE', 'LTSA', 'Hessian LLE', 'Modified LLE'] for i, method in enumerate(methods): t0 = time() Y = manifold.LocallyLinearEmbedding(n_neighbors, n_components, eigen_solver='auto', method=method).fit_transform(X) t1 = time() print("%s: %.2g sec" % (methods[i], t1 - t0)) ax = fig.add_subplot(252 + i) plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral) plt.title("%s (%.2g sec)" % (labels[i], t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') t0 = time() Y = manifold.Isomap(n_neighbors, n_components).fit_transform(X) t1 = time() print("Isomap: %.2g sec" % (t1 - t0)) ax = fig.add_subplot(257) plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral) plt.title("Isomap (%.2g sec)" % (t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') t0 = time() mds = manifold.MDS(n_components, max_iter=100, n_init=1) Y = mds.fit_transform(X) t1 = time() print("MDS: %.2g sec" % (t1 - t0)) ax = fig.add_subplot(258) plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral) plt.title("MDS (%.2g sec)" % (t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') t0 = time() se = manifold.SpectralEmbedding(n_components=n_components, n_neighbors=n_neighbors) Y = se.fit_transform(X) t1 = time() print("SpectralEmbedding: %.2g sec" % (t1 - t0)) ax = fig.add_subplot(259) plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral) plt.title("SpectralEmbedding (%.2g sec)" % (t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') t0 = time() tsne = manifold.TSNE(n_components=n_components, init='pca', random_state=0) Y = tsne.fit_transform(X) t1 = time() print("t-SNE: %.2g sec" % (t1 - t0)) ax = fig.add_subplot(250) plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral) plt.title("t-SNE (%.2g sec)" % (t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') plt.show()
bsd-3-clause
karstenw/nodebox-pyobjc
examples/Extended Application/sklearn/examples/datasets/plot_iris_dataset.py
1
2738
""" ========================================================= The Iris Dataset ========================================================= This data sets consists of 3 different types of irises' (Setosa, Versicolour, and Virginica) petal and sepal length, stored in a 150x4 numpy.ndarray The rows being the samples and the columns being: Sepal Length, Sepal Width, Petal Length and Petal Width. The below plot uses the first two features. See `here <https://en.wikipedia.org/wiki/Iris_flower_data_set>`_ for more information on this dataset. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn import datasets from sklearn.decomposition import PCA # nodebox section if __name__ == '__builtin__': # were in nodebox import os import tempfile W = 800 inset = 20 size(W, 600) plt.cla() plt.clf() plt.close('all') def tempimage(): fob = tempfile.NamedTemporaryFile(mode='w+b', suffix='.png', delete=False) fname = fob.name fob.close() return fname imgx = 20 imgy = 0 def pltshow(plt, dpi=150): global imgx, imgy temppath = tempimage() plt.savefig(temppath, dpi=dpi) dx,dy = imagesize(temppath) w = min(W,dx) image(temppath,imgx,imgy,width=w) imgy = imgy + dy + 20 os.remove(temppath) size(W, HEIGHT+dy+40) else: def pltshow(mplpyplot): mplpyplot.show() # nodebox section end # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. y = iris.target x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 plt.figure(2, figsize=(8, 6)) plt.clf() # Plot the training points plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Set1, edgecolor='k') plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) # To getter a better understanding of interaction of the dimensions # plot the first three PCA dimensions fig = plt.figure(1, figsize=(8, 6)) ax = Axes3D(fig, elev=-150, azim=110) X_reduced = PCA(n_components=3).fit_transform(iris.data) ax.scatter(X_reduced[:, 0], X_reduced[:, 1], X_reduced[:, 2], c=y, cmap=plt.cm.Set1, edgecolor='k', s=40) ax.set_title("First three PCA directions") ax.set_xlabel("1st eigenvector") ax.w_xaxis.set_ticklabels([]) ax.set_ylabel("2nd eigenvector") ax.w_yaxis.set_ticklabels([]) ax.set_zlabel("3rd eigenvector") ax.w_zaxis.set_ticklabels([]) #plt.show() pltshow(plt)
mit
jgomezdans/KaFKA
kafka/inference/solvers.py
1
5323
#!/usr/bin/env python """Some solvers""" # KaFKA A fast Kalman filter implementation for raster based datasets. # Copyright (c) 2017 J Gomez-Dans. All rights reserved. # # This file is part of KaFKA. # # KaFKA is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # KaFKA is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with KaFKA. If not, see <http://www.gnu.org/licenses/>. from collections import namedtuple import numpy as np import scipy.sparse as sp import matplotlib.pyplot as plt #from utils import matrix_squeeze, spsolve2, reconstruct_array # Set up logging import logging LOG = logging.getLogger(__name__+".solvers") __author__ = "J Gomez-Dans" __copyright__ = "Copyright 2017 J Gomez-Dans" __version__ = "1.0 (09.03.2017)" __license__ = "GPLv3" __email__ = "[email protected]" def variational_kalman( observations, mask, state_mask, uncertainty, H_matrix, n_params, x_forecast, P_forecast, P_forecast_inv, the_metadata, approx_diagonal=True): """We can just use """ if len(H_matrix) == 2: non_linear = True H0, H_matrix_ = H_matrix else: H0 = 0. non_linear = False R_mat = sp.diags(uncertainty.diagonal()[state_mask.flatten()]) LOG.info("Creating linear problem") y = observations[state_mask] y = np.where(mask[state_mask], y, 0.) y_orig = y*1. if non_linear: y = y + H_matrix_.dot(x_forecast) - H0 #Aa = matrix_squeeze (P_forecast_inv, mask=maska.ravel()) A = H_matrix_.T.dot(R_mat).dot(H_matrix_) + P_forecast_inv b = H_matrix_.T.dot(R_mat).dot(y) + P_forecast_inv.dot (x_forecast) b = b.astype(np.float32) A = A.astype(np.float32) # Here we can either do a spLU of A, and solve, or we can have a first go # by assuming P_forecast_inv is diagonal, and use the inverse of A_approx as # a preconditioner LOG.info("Solving") AI = sp.linalg.splu (A) x_analysis = AI.solve (b) # So retval is the solution vector and A is the Hessian # (->inv(A) is posterior cov) fwd_modelled = H_matrix_.dot(x_analysis-x_forecast) + H0 innovations = y_orig - fwd_modelled #x_analysis = reconstruct_array ( x_analysis_prime, x_forecast, # mask.ravel(), n_params=n_params) return x_analysis, None, A, innovations, fwd_modelled def sort_band_data(H_matrix, observations, uncertainty, mask, x0, x_forecast, state_mask): if len(H_matrix) == 2: non_linear = True H0, H_matrix_ = H_matrix else: H0 = 0. H_matrix_ = H_matrix non_linear = False R = uncertainty.diagonal()[state_mask.flatten()] y = observations[state_mask] y = np.where(mask[state_mask], y, 0.) y_orig = y*1. if non_linear: y = y + H_matrix_.dot(x0) - H0 return H_matrix_, H0, R, y, y_orig def variational_kalman_multiband( observations_b, mask_b, state_mask, uncertainty_b, H_matrix_b, n_params, x0, x_forecast, P_forecast, P_forecast_inv, the_metadata_b, approx_diagonal=True): """We can just use """ n_bands = len(observations_b) y = [] y_orig = [] H_matrix = [] H0 = [] R_mat = [] for i in range(n_bands): a, b, c, d, e = sort_band_data(H_matrix_b[i], observations_b[i], uncertainty_b[i], mask_b[i], x0, x_forecast, state_mask) H_matrix.append(a) H0.append(b) R_mat.append(c) y.append(d) y_orig.append(e) H_matrix_ = sp.vstack(H_matrix) H0 = np.hstack(H0) R_mat = sp.diags(np.hstack(R_mat)) y = np.hstack(y) y_orig = np.hstack(y_orig) #Aa = matrix_squeeze (P_forecast_inv, mask=maska.ravel()) A = H_matrix_.T.dot(R_mat).dot(H_matrix_) + P_forecast_inv b = H_matrix_.T.dot(R_mat).dot(y) + P_forecast_inv.dot (x_forecast) b = b.astype(np.float32) A = A.astype(np.float32) # Here we can either do a spLU of A, and solve, or we can have a first go # by assuming P_forecast_inv is diagonal, and use the inverse of A_approx as # a preconditioner LOG.info("Solving") AI = sp.linalg.splu (A) x_analysis = AI.solve (b) # So retval is the solution vector and A is the Hessian # (->inv(A) is posterior cov) fwd_modelled = H_matrix_.dot(x_analysis-x_forecast) + H0 innovations = y_orig - fwd_modelled """ For now I am going to return innovations as y_orig - H0 as That is what is needed by the Hessian correction. Need to discuss with Jose What the intention for innovations is and then we can find the best solution""" innovations = y_orig - H0 #x_analysis = reconstruct_array ( x_analysis_prime, x_forecast, # mask.ravel(), n_params=n_params) return x_analysis, None, A, innovations, fwd_modelled
gpl-3.0
CKehl/pylearn2
pylearn2/models/tests/test_s3c_inference.py
44
14386
from __future__ import print_function from pylearn2.models.s3c import S3C from pylearn2.models.s3c import E_Step_Scan from pylearn2.models.s3c import Grad_M_Step from pylearn2.models.s3c import E_Step from pylearn2.utils import contains_nan from theano import function import numpy as np from theano.compat.six.moves import xrange import theano.tensor as T from theano import config #from pylearn2.utils import serial def broadcast(mat, shape_0): rval = mat if mat.shape[0] != shape_0: assert mat.shape[0] == 1 rval = np.zeros((shape_0, mat.shape[1]),dtype=mat.dtype) for i in xrange(shape_0): rval[i,:] = mat[0,:] return rval class Test_S3C_Inference: def setUp(self): # Temporarily change config.floatX to float64, as s3c inference # tests currently fail due to numerical issues for float32. self.prev_floatX = config.floatX config.floatX = 'float64' def tearDown(self): # Restore previous value of floatX config.floatX = self.prev_floatX def __init__(self): """ gets a small batch of data sets up an S3C model """ # We also have to change the value of config.floatX in __init__. self.prev_floatX = config.floatX config.floatX = 'float64' try: self.tol = 1e-5 #dataset = serial.load('${PYLEARN2_DATA_PATH}/stl10/stl10_patches/data.pkl') #X = dataset.get_batch_design(1000) #X = X[:,0:5] X = np.random.RandomState([1,2,3]).randn(1000,5) X -= X.mean() X /= X.std() m, D = X.shape N = 5 #don't give the model an e_step or learning rate so it won't spend years compiling a learn_func self.model = S3C(nvis = D, nhid = N, irange = .1, init_bias_hid = 0., init_B = 3., min_B = 1e-8, max_B = 1000., init_alpha = 1., min_alpha = 1e-8, max_alpha = 1000., init_mu = 1., e_step = None, m_step = Grad_M_Step(), min_bias_hid = -1e30, max_bias_hid = 1e30, ) self.model.make_pseudoparams() self.h_new_coeff_schedule = [.1, .2, .3, .4, .5, .6, .7, .8, .9, 1. ] self.e_step = E_Step_Scan(h_new_coeff_schedule = self.h_new_coeff_schedule) self.e_step.register_model(self.model) self.X = X self.N = N self.m = m finally: config.floatX = self.prev_floatX def test_match_unrolled(self): """ tests that inference with scan matches result using unrolled loops """ unrolled_e_step = E_Step(h_new_coeff_schedule = self.h_new_coeff_schedule) unrolled_e_step.register_model(self.model) V = T.matrix() scan_result = self.e_step.infer(V) unrolled_result = unrolled_e_step.infer(V) outputs = [] for key in scan_result: outputs.append(scan_result[key]) outputs.append(unrolled_result[key]) f = function([V], outputs) outputs = f(self.X) assert len(outputs) % 2 == 0 for i in xrange(0,len(outputs),2): assert np.allclose(outputs[i],outputs[i+1]) def test_grad_s(self): "tests that the gradients with respect to s_i are 0 after doing a mean field update of s_i " model = self.model e_step = self.e_step X = self.X assert X.shape[0] == self.m model.test_batch_size = X.shape[0] init_H = e_step.init_H_hat(V = X) init_Mu1 = e_step.init_S_hat(V = X) prev_setting = config.compute_test_value config.compute_test_value= 'off' H, Mu1 = function([], outputs=[init_H, init_Mu1])() config.compute_test_value = prev_setting H = broadcast(H, self.m) Mu1 = broadcast(Mu1, self.m) H = np.cast[config.floatX](self.model.rng.uniform(0.,1.,H.shape)) Mu1 = np.cast[config.floatX](self.model.rng.uniform(-5.,5.,Mu1.shape)) H_var = T.matrix(name='H_var') H_var.tag.test_value = H Mu1_var = T.matrix(name='Mu1_var') Mu1_var.tag.test_value = Mu1 idx = T.iscalar() idx.tag.test_value = 0 S = e_step.infer_S_hat(V = X, H_hat = H_var, S_hat = Mu1_var) s_idx = S[:,idx] s_i_func = function([H_var,Mu1_var,idx],s_idx) sigma0 = 1. / model.alpha Sigma1 = e_step.infer_var_s1_hat() mu0 = T.zeros_like(model.mu) #by truncated KL, I mean that I am dropping terms that don't depend on H and Mu1 # (they don't affect the outcome of this test and some of them are intractable ) trunc_kl = - model.entropy_hs(H_hat = H_var, var_s0_hat = sigma0, var_s1_hat = Sigma1) + \ model.expected_energy_vhs(V = X, H_hat = H_var, S_hat = Mu1_var, var_s0_hat = sigma0, var_s1_hat = Sigma1) grad_Mu1 = T.grad(trunc_kl.sum(), Mu1_var) grad_Mu1_idx = grad_Mu1[:,idx] grad_func = function([H_var, Mu1_var, idx], grad_Mu1_idx) for i in xrange(self.N): Mu1[:,i] = s_i_func(H, Mu1, i) g = grad_func(H,Mu1,i) assert not contains_nan(g) g_abs_max = np.abs(g).max() if g_abs_max > self.tol: raise Exception('after mean field step, gradient of kl divergence wrt mean field parameter should be 0, but here the max magnitude of a gradient element is '+str(g_abs_max)+' after updating s_'+str(i)) def test_value_s(self): "tests that the value of the kl divergence decreases with each update to s_i " model = self.model e_step = self.e_step X = self.X assert X.shape[0] == self.m init_H = e_step.init_H_hat(V = X) init_Mu1 = e_step.init_S_hat(V = X) prev_setting = config.compute_test_value config.compute_test_value= 'off' H, Mu1 = function([], outputs=[init_H, init_Mu1])() config.compute_test_value = prev_setting H = broadcast(H, self.m) Mu1 = broadcast(Mu1, self.m) H = np.cast[config.floatX](self.model.rng.uniform(0.,1.,H.shape)) Mu1 = np.cast[config.floatX](self.model.rng.uniform(-5.,5.,Mu1.shape)) H_var = T.matrix(name='H_var') H_var.tag.test_value = H Mu1_var = T.matrix(name='Mu1_var') Mu1_var.tag.test_value = Mu1 idx = T.iscalar() idx.tag.test_value = 0 S = e_step.infer_S_hat( V = X, H_hat = H_var, S_hat = Mu1_var) s_idx = S[:,idx] s_i_func = function([H_var,Mu1_var,idx],s_idx) sigma0 = 1. / model.alpha Sigma1 = e_step.infer_var_s1_hat() mu0 = T.zeros_like(model.mu) #by truncated KL, I mean that I am dropping terms that don't depend on H and Mu1 # (they don't affect the outcome of this test and some of them are intractable ) trunc_kl = - model.entropy_hs(H_hat = H_var, var_s0_hat = sigma0, var_s1_hat = Sigma1) + \ model.expected_energy_vhs(V = X, H_hat = H_var, S_hat = Mu1_var, var_s0_hat = sigma0, var_s1_hat = Sigma1) trunc_kl_func = function([H_var, Mu1_var], trunc_kl) for i in xrange(self.N): prev_kl = trunc_kl_func(H,Mu1) Mu1[:,i] = s_i_func(H, Mu1, i) new_kl = trunc_kl_func(H,Mu1) increase = new_kl - prev_kl mx = increase.max() if mx > 1e-3: raise Exception('after mean field step in s, kl divergence should decrease, but some elements increased by as much as '+str(mx)+' after updating s_'+str(i)) def test_grad_h(self): "tests that the gradients with respect to h_i are 0 after doing a mean field update of h_i " model = self.model e_step = self.e_step X = self.X assert X.shape[0] == self.m init_H = e_step.init_H_hat(V = X) init_Mu1 = e_step.init_S_hat(V = X) prev_setting = config.compute_test_value config.compute_test_value= 'off' H, Mu1 = function([], outputs=[init_H, init_Mu1])() config.compute_test_value = prev_setting H = broadcast(H, self.m) Mu1 = broadcast(Mu1, self.m) H = np.cast[config.floatX](self.model.rng.uniform(0.,1.,H.shape)) Mu1 = np.cast[config.floatX](self.model.rng.uniform(-5.,5.,Mu1.shape)) H_var = T.matrix(name='H_var') H_var.tag.test_value = H Mu1_var = T.matrix(name='Mu1_var') Mu1_var.tag.test_value = Mu1 idx = T.iscalar() idx.tag.test_value = 0 new_H = e_step.infer_H_hat(V = X, H_hat = H_var, S_hat = Mu1_var) h_idx = new_H[:,idx] updates_func = function([H_var,Mu1_var,idx], h_idx) sigma0 = 1. / model.alpha Sigma1 = e_step.infer_var_s1_hat() mu0 = T.zeros_like(model.mu) #by truncated KL, I mean that I am dropping terms that don't depend on H and Mu1 # (they don't affect the outcome of this test and some of them are intractable ) trunc_kl = - model.entropy_hs(H_hat = H_var, var_s0_hat = sigma0, var_s1_hat = Sigma1) + \ model.expected_energy_vhs(V = X, H_hat = H_var, S_hat = Mu1_var, var_s0_hat = sigma0, var_s1_hat = Sigma1) grad_H = T.grad(trunc_kl.sum(), H_var) assert len(grad_H.type.broadcastable) == 2 #from theano.printing import min_informative_str #print min_informative_str(grad_H) #grad_H = Print('grad_H')(grad_H) #grad_H_idx = grad_H[:,idx] grad_func = function([H_var, Mu1_var], grad_H) failed = False for i in xrange(self.N): rval = updates_func(H, Mu1, i) H[:,i] = rval g = grad_func(H,Mu1)[:,i] assert not contains_nan(g) g_abs_max = np.abs(g).max() if g_abs_max > self.tol: #print "new values of H" #print H[:,i] #print "gradient on new values of H" #print g failed = True print('iteration ',i) #print 'max value of new H: ',H[:,i].max() #print 'H for failing g: ' failing_h = H[np.abs(g) > self.tol, i] #print failing_h #from matplotlib import pyplot as plt #plt.scatter(H[:,i],g) #plt.show() #ignore failures extremely close to h=1 high_mask = failing_h > .001 low_mask = failing_h < .999 mask = high_mask * low_mask print('masked failures: ',mask.shape[0],' err ',g_abs_max) if mask.sum() > 0: print('failing h passing the range mask') print(failing_h[ mask.astype(bool) ]) raise Exception('after mean field step, gradient of kl divergence' ' wrt freshly updated variational parameter should be 0, ' 'but here the max magnitude of a gradient element is ' +str(g_abs_max)+' after updating h_'+str(i)) #assert not failed def test_value_h(self): "tests that the value of the kl divergence decreases with each update to h_i " model = self.model e_step = self.e_step X = self.X assert X.shape[0] == self.m init_H = e_step.init_H_hat(V = X) init_Mu1 = e_step.init_S_hat(V = X) prev_setting = config.compute_test_value config.compute_test_value= 'off' H, Mu1 = function([], outputs=[init_H, init_Mu1])() config.compute_test_value = prev_setting H = broadcast(H, self.m) Mu1 = broadcast(Mu1, self.m) H = np.cast[config.floatX](self.model.rng.uniform(0.,1.,H.shape)) Mu1 = np.cast[config.floatX](self.model.rng.uniform(-5.,5.,Mu1.shape)) H_var = T.matrix(name='H_var') H_var.tag.test_value = H Mu1_var = T.matrix(name='Mu1_var') Mu1_var.tag.test_value = Mu1 idx = T.iscalar() idx.tag.test_value = 0 newH = e_step.infer_H_hat(V = X, H_hat = H_var, S_hat = Mu1_var) h_idx = newH[:,idx] h_i_func = function([H_var,Mu1_var,idx],h_idx) sigma0 = 1. / model.alpha Sigma1 = e_step.infer_var_s1_hat() mu0 = T.zeros_like(model.mu) #by truncated KL, I mean that I am dropping terms that don't depend on H and Mu1 # (they don't affect the outcome of this test and some of them are intractable ) trunc_kl = - model.entropy_hs(H_hat = H_var, var_s0_hat = sigma0, var_s1_hat = Sigma1) + \ model.expected_energy_vhs(V = X, H_hat = H_var, S_hat = Mu1_var, var_s0_hat = sigma0, var_s1_hat = Sigma1) trunc_kl_func = function([H_var, Mu1_var], trunc_kl) for i in xrange(self.N): prev_kl = trunc_kl_func(H,Mu1) H[:,i] = h_i_func(H, Mu1, i) #we don't update mu, the whole point of the split e step is we don't have to new_kl = trunc_kl_func(H,Mu1) increase = new_kl - prev_kl print('failures after iteration ',i,': ',(increase > self.tol).sum()) mx = increase.max() if mx > 1e-4: print('increase amounts of failing examples:') print(increase[increase > self.tol]) print('failing H:') print(H[increase > self.tol,:]) print('failing Mu1:') print(Mu1[increase > self.tol,:]) print('failing V:') print(X[increase > self.tol,:]) raise Exception('after mean field step in h, kl divergence should decrease, but some elements increased by as much as '+str(mx)+' after updating h_'+str(i)) if __name__ == '__main__': obj = Test_S3C_Inference() #obj.test_grad_h() #obj.test_grad_s() #obj.test_value_s() obj.test_value_h()
bsd-3-clause
heli522/scikit-learn
sklearn/utils/arpack.py
265
64837
""" This contains a copy of the future version of scipy.sparse.linalg.eigen.arpack.eigsh It's an upgraded wrapper of the ARPACK library which allows the use of shift-invert mode for symmetric matrices. Find a few eigenvectors and eigenvalues of a matrix. Uses ARPACK: http://www.caam.rice.edu/software/ARPACK/ """ # Wrapper implementation notes # # ARPACK Entry Points # ------------------- # The entry points to ARPACK are # - (s,d)seupd : single and double precision symmetric matrix # - (s,d,c,z)neupd: single,double,complex,double complex general matrix # This wrapper puts the *neupd (general matrix) interfaces in eigs() # and the *seupd (symmetric matrix) in eigsh(). # There is no Hermetian complex/double complex interface. # To find eigenvalues of a Hermetian matrix you # must use eigs() and not eigsh() # It might be desirable to handle the Hermetian case differently # and, for example, return real eigenvalues. # Number of eigenvalues returned and complex eigenvalues # ------------------------------------------------------ # The ARPACK nonsymmetric real and double interface (s,d)naupd return # eigenvalues and eigenvectors in real (float,double) arrays. # Since the eigenvalues and eigenvectors are, in general, complex # ARPACK puts the real and imaginary parts in consecutive entries # in real-valued arrays. This wrapper puts the real entries # into complex data types and attempts to return the requested eigenvalues # and eigenvectors. # Solver modes # ------------ # ARPACK and handle shifted and shift-inverse computations # for eigenvalues by providing a shift (sigma) and a solver. __docformat__ = "restructuredtext en" __all__ = ['eigs', 'eigsh', 'svds', 'ArpackError', 'ArpackNoConvergence'] import warnings from scipy.sparse.linalg.eigen.arpack import _arpack import numpy as np from scipy.sparse.linalg.interface import aslinearoperator, LinearOperator from scipy.sparse import identity, isspmatrix, isspmatrix_csr from scipy.linalg import lu_factor, lu_solve from scipy.sparse.sputils import isdense from scipy.sparse.linalg import gmres, splu import scipy from distutils.version import LooseVersion _type_conv = {'f': 's', 'd': 'd', 'F': 'c', 'D': 'z'} _ndigits = {'f': 5, 'd': 12, 'F': 5, 'D': 12} DNAUPD_ERRORS = { 0: "Normal exit.", 1: "Maximum number of iterations taken. " "All possible eigenvalues of OP has been found. IPARAM(5) " "returns the number of wanted converged Ritz values.", 2: "No longer an informational error. Deprecated starting " "with release 2 of ARPACK.", 3: "No shifts could be applied during a cycle of the " "Implicitly restarted Arnoldi iteration. One possibility " "is to increase the size of NCV relative to NEV. ", -1: "N must be positive.", -2: "NEV must be positive.", -3: "NCV-NEV >= 2 and less than or equal to N.", -4: "The maximum number of Arnoldi update iterations allowed " "must be greater than zero.", -5: " WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI'", -6: "BMAT must be one of 'I' or 'G'.", -7: "Length of private work array WORKL is not sufficient.", -8: "Error return from LAPACK eigenvalue calculation;", -9: "Starting vector is zero.", -10: "IPARAM(7) must be 1,2,3,4.", -11: "IPARAM(7) = 1 and BMAT = 'G' are incompatible.", -12: "IPARAM(1) must be equal to 0 or 1.", -13: "NEV and WHICH = 'BE' are incompatible.", -9999: "Could not build an Arnoldi factorization. " "IPARAM(5) returns the size of the current Arnoldi " "factorization. The user is advised to check that " "enough workspace and array storage has been allocated." } SNAUPD_ERRORS = DNAUPD_ERRORS ZNAUPD_ERRORS = DNAUPD_ERRORS.copy() ZNAUPD_ERRORS[-10] = "IPARAM(7) must be 1,2,3." CNAUPD_ERRORS = ZNAUPD_ERRORS DSAUPD_ERRORS = { 0: "Normal exit.", 1: "Maximum number of iterations taken. " "All possible eigenvalues of OP has been found.", 2: "No longer an informational error. Deprecated starting with " "release 2 of ARPACK.", 3: "No shifts could be applied during a cycle of the Implicitly " "restarted Arnoldi iteration. One possibility is to increase " "the size of NCV relative to NEV. ", -1: "N must be positive.", -2: "NEV must be positive.", -3: "NCV must be greater than NEV and less than or equal to N.", -4: "The maximum number of Arnoldi update iterations allowed " "must be greater than zero.", -5: "WHICH must be one of 'LM', 'SM', 'LA', 'SA' or 'BE'.", -6: "BMAT must be one of 'I' or 'G'.", -7: "Length of private work array WORKL is not sufficient.", -8: "Error return from trid. eigenvalue calculation; " "Informational error from LAPACK routine dsteqr .", -9: "Starting vector is zero.", -10: "IPARAM(7) must be 1,2,3,4,5.", -11: "IPARAM(7) = 1 and BMAT = 'G' are incompatible.", -12: "IPARAM(1) must be equal to 0 or 1.", -13: "NEV and WHICH = 'BE' are incompatible. ", -9999: "Could not build an Arnoldi factorization. " "IPARAM(5) returns the size of the current Arnoldi " "factorization. The user is advised to check that " "enough workspace and array storage has been allocated.", } SSAUPD_ERRORS = DSAUPD_ERRORS DNEUPD_ERRORS = { 0: "Normal exit.", 1: "The Schur form computed by LAPACK routine dlahqr " "could not be reordered by LAPACK routine dtrsen. " "Re-enter subroutine dneupd with IPARAM(5)NCV and " "increase the size of the arrays DR and DI to have " "dimension at least dimension NCV and allocate at least NCV " "columns for Z. NOTE: Not necessary if Z and V share " "the same space. Please notify the authors if this error " "occurs.", -1: "N must be positive.", -2: "NEV must be positive.", -3: "NCV-NEV >= 2 and less than or equal to N.", -5: "WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI'", -6: "BMAT must be one of 'I' or 'G'.", -7: "Length of private work WORKL array is not sufficient.", -8: "Error return from calculation of a real Schur form. " "Informational error from LAPACK routine dlahqr .", -9: "Error return from calculation of eigenvectors. " "Informational error from LAPACK routine dtrevc.", -10: "IPARAM(7) must be 1,2,3,4.", -11: "IPARAM(7) = 1 and BMAT = 'G' are incompatible.", -12: "HOWMNY = 'S' not yet implemented", -13: "HOWMNY must be one of 'A' or 'P' if RVEC = .true.", -14: "DNAUPD did not find any eigenvalues to sufficient " "accuracy.", -15: "DNEUPD got a different count of the number of converged " "Ritz values than DNAUPD got. This indicates the user " "probably made an error in passing data from DNAUPD to " "DNEUPD or that the data was modified before entering " "DNEUPD", } SNEUPD_ERRORS = DNEUPD_ERRORS.copy() SNEUPD_ERRORS[1] = ("The Schur form computed by LAPACK routine slahqr " "could not be reordered by LAPACK routine strsen . " "Re-enter subroutine dneupd with IPARAM(5)=NCV and " "increase the size of the arrays DR and DI to have " "dimension at least dimension NCV and allocate at least " "NCV columns for Z. NOTE: Not necessary if Z and V share " "the same space. Please notify the authors if this error " "occurs.") SNEUPD_ERRORS[-14] = ("SNAUPD did not find any eigenvalues to sufficient " "accuracy.") SNEUPD_ERRORS[-15] = ("SNEUPD got a different count of the number of " "converged Ritz values than SNAUPD got. This indicates " "the user probably made an error in passing data from " "SNAUPD to SNEUPD or that the data was modified before " "entering SNEUPD") ZNEUPD_ERRORS = {0: "Normal exit.", 1: "The Schur form computed by LAPACK routine csheqr " "could not be reordered by LAPACK routine ztrsen. " "Re-enter subroutine zneupd with IPARAM(5)=NCV and " "increase the size of the array D to have " "dimension at least dimension NCV and allocate at least " "NCV columns for Z. NOTE: Not necessary if Z and V share " "the same space. Please notify the authors if this error " "occurs.", -1: "N must be positive.", -2: "NEV must be positive.", -3: "NCV-NEV >= 1 and less than or equal to N.", -5: "WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI'", -6: "BMAT must be one of 'I' or 'G'.", -7: "Length of private work WORKL array is not sufficient.", -8: "Error return from LAPACK eigenvalue calculation. " "This should never happened.", -9: "Error return from calculation of eigenvectors. " "Informational error from LAPACK routine ztrevc.", -10: "IPARAM(7) must be 1,2,3", -11: "IPARAM(7) = 1 and BMAT = 'G' are incompatible.", -12: "HOWMNY = 'S' not yet implemented", -13: "HOWMNY must be one of 'A' or 'P' if RVEC = .true.", -14: "ZNAUPD did not find any eigenvalues to sufficient " "accuracy.", -15: "ZNEUPD got a different count of the number of " "converged Ritz values than ZNAUPD got. This " "indicates the user probably made an error in passing " "data from ZNAUPD to ZNEUPD or that the data was " "modified before entering ZNEUPD"} CNEUPD_ERRORS = ZNEUPD_ERRORS.copy() CNEUPD_ERRORS[-14] = ("CNAUPD did not find any eigenvalues to sufficient " "accuracy.") CNEUPD_ERRORS[-15] = ("CNEUPD got a different count of the number of " "converged Ritz values than CNAUPD got. This indicates " "the user probably made an error in passing data from " "CNAUPD to CNEUPD or that the data was modified before " "entering CNEUPD") DSEUPD_ERRORS = { 0: "Normal exit.", -1: "N must be positive.", -2: "NEV must be positive.", -3: "NCV must be greater than NEV and less than or equal to N.", -5: "WHICH must be one of 'LM', 'SM', 'LA', 'SA' or 'BE'.", -6: "BMAT must be one of 'I' or 'G'.", -7: "Length of private work WORKL array is not sufficient.", -8: ("Error return from trid. eigenvalue calculation; " "Information error from LAPACK routine dsteqr."), -9: "Starting vector is zero.", -10: "IPARAM(7) must be 1,2,3,4,5.", -11: "IPARAM(7) = 1 and BMAT = 'G' are incompatible.", -12: "NEV and WHICH = 'BE' are incompatible.", -14: "DSAUPD did not find any eigenvalues to sufficient accuracy.", -15: "HOWMNY must be one of 'A' or 'S' if RVEC = .true.", -16: "HOWMNY = 'S' not yet implemented", -17: ("DSEUPD got a different count of the number of converged " "Ritz values than DSAUPD got. This indicates the user " "probably made an error in passing data from DSAUPD to " "DSEUPD or that the data was modified before entering " "DSEUPD.") } SSEUPD_ERRORS = DSEUPD_ERRORS.copy() SSEUPD_ERRORS[-14] = ("SSAUPD did not find any eigenvalues " "to sufficient accuracy.") SSEUPD_ERRORS[-17] = ("SSEUPD got a different count of the number of " "converged " "Ritz values than SSAUPD got. This indicates the user " "probably made an error in passing data from SSAUPD to " "SSEUPD or that the data was modified before entering " "SSEUPD.") _SAUPD_ERRORS = {'d': DSAUPD_ERRORS, 's': SSAUPD_ERRORS} _NAUPD_ERRORS = {'d': DNAUPD_ERRORS, 's': SNAUPD_ERRORS, 'z': ZNAUPD_ERRORS, 'c': CNAUPD_ERRORS} _SEUPD_ERRORS = {'d': DSEUPD_ERRORS, 's': SSEUPD_ERRORS} _NEUPD_ERRORS = {'d': DNEUPD_ERRORS, 's': SNEUPD_ERRORS, 'z': ZNEUPD_ERRORS, 'c': CNEUPD_ERRORS} # accepted values of parameter WHICH in _SEUPD _SEUPD_WHICH = ['LM', 'SM', 'LA', 'SA', 'BE'] # accepted values of parameter WHICH in _NAUPD _NEUPD_WHICH = ['LM', 'SM', 'LR', 'SR', 'LI', 'SI'] class ArpackError(RuntimeError): """ ARPACK error """ def __init__(self, info, infodict=_NAUPD_ERRORS): msg = infodict.get(info, "Unknown error") RuntimeError.__init__(self, "ARPACK error %d: %s" % (info, msg)) class ArpackNoConvergence(ArpackError): """ ARPACK iteration did not converge Attributes ---------- eigenvalues : ndarray Partial result. Converged eigenvalues. eigenvectors : ndarray Partial result. Converged eigenvectors. """ def __init__(self, msg, eigenvalues, eigenvectors): ArpackError.__init__(self, -1, {-1: msg}) self.eigenvalues = eigenvalues self.eigenvectors = eigenvectors class _ArpackParams(object): def __init__(self, n, k, tp, mode=1, sigma=None, ncv=None, v0=None, maxiter=None, which="LM", tol=0): if k <= 0: raise ValueError("k must be positive, k=%d" % k) if maxiter is None: maxiter = n * 10 if maxiter <= 0: raise ValueError("maxiter must be positive, maxiter=%d" % maxiter) if tp not in 'fdFD': raise ValueError("matrix type must be 'f', 'd', 'F', or 'D'") if v0 is not None: # ARPACK overwrites its initial resid, make a copy self.resid = np.array(v0, copy=True) info = 1 else: self.resid = np.zeros(n, tp) info = 0 if sigma is None: #sigma not used self.sigma = 0 else: self.sigma = sigma if ncv is None: ncv = 2 * k + 1 ncv = min(ncv, n) self.v = np.zeros((n, ncv), tp) # holds Ritz vectors self.iparam = np.zeros(11, "int") # set solver mode and parameters ishfts = 1 self.mode = mode self.iparam[0] = ishfts self.iparam[2] = maxiter self.iparam[3] = 1 self.iparam[6] = mode self.n = n self.tol = tol self.k = k self.maxiter = maxiter self.ncv = ncv self.which = which self.tp = tp self.info = info self.converged = False self.ido = 0 def _raise_no_convergence(self): msg = "No convergence (%d iterations, %d/%d eigenvectors converged)" k_ok = self.iparam[4] num_iter = self.iparam[2] try: ev, vec = self.extract(True) except ArpackError as err: msg = "%s [%s]" % (msg, err) ev = np.zeros((0,)) vec = np.zeros((self.n, 0)) k_ok = 0 raise ArpackNoConvergence(msg % (num_iter, k_ok, self.k), ev, vec) class _SymmetricArpackParams(_ArpackParams): def __init__(self, n, k, tp, matvec, mode=1, M_matvec=None, Minv_matvec=None, sigma=None, ncv=None, v0=None, maxiter=None, which="LM", tol=0): # The following modes are supported: # mode = 1: # Solve the standard eigenvalue problem: # A*x = lambda*x : # A - symmetric # Arguments should be # matvec = left multiplication by A # M_matvec = None [not used] # Minv_matvec = None [not used] # # mode = 2: # Solve the general eigenvalue problem: # A*x = lambda*M*x # A - symmetric # M - symmetric positive definite # Arguments should be # matvec = left multiplication by A # M_matvec = left multiplication by M # Minv_matvec = left multiplication by M^-1 # # mode = 3: # Solve the general eigenvalue problem in shift-invert mode: # A*x = lambda*M*x # A - symmetric # M - symmetric positive semi-definite # Arguments should be # matvec = None [not used] # M_matvec = left multiplication by M # or None, if M is the identity # Minv_matvec = left multiplication by [A-sigma*M]^-1 # # mode = 4: # Solve the general eigenvalue problem in Buckling mode: # A*x = lambda*AG*x # A - symmetric positive semi-definite # AG - symmetric indefinite # Arguments should be # matvec = left multiplication by A # M_matvec = None [not used] # Minv_matvec = left multiplication by [A-sigma*AG]^-1 # # mode = 5: # Solve the general eigenvalue problem in Cayley-transformed mode: # A*x = lambda*M*x # A - symmetric # M - symmetric positive semi-definite # Arguments should be # matvec = left multiplication by A # M_matvec = left multiplication by M # or None, if M is the identity # Minv_matvec = left multiplication by [A-sigma*M]^-1 if mode == 1: if matvec is None: raise ValueError("matvec must be specified for mode=1") if M_matvec is not None: raise ValueError("M_matvec cannot be specified for mode=1") if Minv_matvec is not None: raise ValueError("Minv_matvec cannot be specified for mode=1") self.OP = matvec self.B = lambda x: x self.bmat = 'I' elif mode == 2: if matvec is None: raise ValueError("matvec must be specified for mode=2") if M_matvec is None: raise ValueError("M_matvec must be specified for mode=2") if Minv_matvec is None: raise ValueError("Minv_matvec must be specified for mode=2") self.OP = lambda x: Minv_matvec(matvec(x)) self.OPa = Minv_matvec self.OPb = matvec self.B = M_matvec self.bmat = 'G' elif mode == 3: if matvec is not None: raise ValueError("matvec must not be specified for mode=3") if Minv_matvec is None: raise ValueError("Minv_matvec must be specified for mode=3") if M_matvec is None: self.OP = Minv_matvec self.OPa = Minv_matvec self.B = lambda x: x self.bmat = 'I' else: self.OP = lambda x: Minv_matvec(M_matvec(x)) self.OPa = Minv_matvec self.B = M_matvec self.bmat = 'G' elif mode == 4: if matvec is None: raise ValueError("matvec must be specified for mode=4") if M_matvec is not None: raise ValueError("M_matvec must not be specified for mode=4") if Minv_matvec is None: raise ValueError("Minv_matvec must be specified for mode=4") self.OPa = Minv_matvec self.OP = lambda x: self.OPa(matvec(x)) self.B = matvec self.bmat = 'G' elif mode == 5: if matvec is None: raise ValueError("matvec must be specified for mode=5") if Minv_matvec is None: raise ValueError("Minv_matvec must be specified for mode=5") self.OPa = Minv_matvec self.A_matvec = matvec if M_matvec is None: self.OP = lambda x: Minv_matvec(matvec(x) + sigma * x) self.B = lambda x: x self.bmat = 'I' else: self.OP = lambda x: Minv_matvec(matvec(x) + sigma * M_matvec(x)) self.B = M_matvec self.bmat = 'G' else: raise ValueError("mode=%i not implemented" % mode) if which not in _SEUPD_WHICH: raise ValueError("which must be one of %s" % ' '.join(_SEUPD_WHICH)) if k >= n: raise ValueError("k must be less than rank(A), k=%d" % k) _ArpackParams.__init__(self, n, k, tp, mode, sigma, ncv, v0, maxiter, which, tol) if self.ncv > n or self.ncv <= k: raise ValueError("ncv must be k<ncv<=n, ncv=%s" % self.ncv) self.workd = np.zeros(3 * n, self.tp) self.workl = np.zeros(self.ncv * (self.ncv + 8), self.tp) ltr = _type_conv[self.tp] if ltr not in ["s", "d"]: raise ValueError("Input matrix is not real-valued.") self._arpack_solver = _arpack.__dict__[ltr + 'saupd'] self._arpack_extract = _arpack.__dict__[ltr + 'seupd'] self.iterate_infodict = _SAUPD_ERRORS[ltr] self.extract_infodict = _SEUPD_ERRORS[ltr] self.ipntr = np.zeros(11, "int") def iterate(self): self.ido, self.resid, self.v, self.iparam, self.ipntr, self.info = \ self._arpack_solver(self.ido, self.bmat, self.which, self.k, self.tol, self.resid, self.v, self.iparam, self.ipntr, self.workd, self.workl, self.info) xslice = slice(self.ipntr[0] - 1, self.ipntr[0] - 1 + self.n) yslice = slice(self.ipntr[1] - 1, self.ipntr[1] - 1 + self.n) if self.ido == -1: # initialization self.workd[yslice] = self.OP(self.workd[xslice]) elif self.ido == 1: # compute y = Op*x if self.mode == 1: self.workd[yslice] = self.OP(self.workd[xslice]) elif self.mode == 2: self.workd[xslice] = self.OPb(self.workd[xslice]) self.workd[yslice] = self.OPa(self.workd[xslice]) elif self.mode == 5: Bxslice = slice(self.ipntr[2] - 1, self.ipntr[2] - 1 + self.n) Ax = self.A_matvec(self.workd[xslice]) self.workd[yslice] = self.OPa(Ax + (self.sigma * self.workd[Bxslice])) else: Bxslice = slice(self.ipntr[2] - 1, self.ipntr[2] - 1 + self.n) self.workd[yslice] = self.OPa(self.workd[Bxslice]) elif self.ido == 2: self.workd[yslice] = self.B(self.workd[xslice]) elif self.ido == 3: raise ValueError("ARPACK requested user shifts. Assure ISHIFT==0") else: self.converged = True if self.info == 0: pass elif self.info == 1: self._raise_no_convergence() else: raise ArpackError(self.info, infodict=self.iterate_infodict) def extract(self, return_eigenvectors): rvec = return_eigenvectors ierr = 0 howmny = 'A' # return all eigenvectors sselect = np.zeros(self.ncv, 'int') # unused d, z, ierr = self._arpack_extract(rvec, howmny, sselect, self.sigma, self.bmat, self.which, self.k, self.tol, self.resid, self.v, self.iparam[0:7], self.ipntr, self.workd[0:2 * self.n], self.workl, ierr) if ierr != 0: raise ArpackError(ierr, infodict=self.extract_infodict) k_ok = self.iparam[4] d = d[:k_ok] z = z[:, :k_ok] if return_eigenvectors: return d, z else: return d class _UnsymmetricArpackParams(_ArpackParams): def __init__(self, n, k, tp, matvec, mode=1, M_matvec=None, Minv_matvec=None, sigma=None, ncv=None, v0=None, maxiter=None, which="LM", tol=0): # The following modes are supported: # mode = 1: # Solve the standard eigenvalue problem: # A*x = lambda*x # A - square matrix # Arguments should be # matvec = left multiplication by A # M_matvec = None [not used] # Minv_matvec = None [not used] # # mode = 2: # Solve the generalized eigenvalue problem: # A*x = lambda*M*x # A - square matrix # M - symmetric, positive semi-definite # Arguments should be # matvec = left multiplication by A # M_matvec = left multiplication by M # Minv_matvec = left multiplication by M^-1 # # mode = 3,4: # Solve the general eigenvalue problem in shift-invert mode: # A*x = lambda*M*x # A - square matrix # M - symmetric, positive semi-definite # Arguments should be # matvec = None [not used] # M_matvec = left multiplication by M # or None, if M is the identity # Minv_matvec = left multiplication by [A-sigma*M]^-1 # if A is real and mode==3, use the real part of Minv_matvec # if A is real and mode==4, use the imag part of Minv_matvec # if A is complex and mode==3, # use real and imag parts of Minv_matvec if mode == 1: if matvec is None: raise ValueError("matvec must be specified for mode=1") if M_matvec is not None: raise ValueError("M_matvec cannot be specified for mode=1") if Minv_matvec is not None: raise ValueError("Minv_matvec cannot be specified for mode=1") self.OP = matvec self.B = lambda x: x self.bmat = 'I' elif mode == 2: if matvec is None: raise ValueError("matvec must be specified for mode=2") if M_matvec is None: raise ValueError("M_matvec must be specified for mode=2") if Minv_matvec is None: raise ValueError("Minv_matvec must be specified for mode=2") self.OP = lambda x: Minv_matvec(matvec(x)) self.OPa = Minv_matvec self.OPb = matvec self.B = M_matvec self.bmat = 'G' elif mode in (3, 4): if matvec is None: raise ValueError("matvec must be specified " "for mode in (3,4)") if Minv_matvec is None: raise ValueError("Minv_matvec must be specified " "for mode in (3,4)") self.matvec = matvec if tp in 'DF': # complex type if mode == 3: self.OPa = Minv_matvec else: raise ValueError("mode=4 invalid for complex A") else: # real type if mode == 3: self.OPa = lambda x: np.real(Minv_matvec(x)) else: self.OPa = lambda x: np.imag(Minv_matvec(x)) if M_matvec is None: self.B = lambda x: x self.bmat = 'I' self.OP = self.OPa else: self.B = M_matvec self.bmat = 'G' self.OP = lambda x: self.OPa(M_matvec(x)) else: raise ValueError("mode=%i not implemented" % mode) if which not in _NEUPD_WHICH: raise ValueError("Parameter which must be one of %s" % ' '.join(_NEUPD_WHICH)) if k >= n - 1: raise ValueError("k must be less than rank(A)-1, k=%d" % k) _ArpackParams.__init__(self, n, k, tp, mode, sigma, ncv, v0, maxiter, which, tol) if self.ncv > n or self.ncv <= k + 1: raise ValueError("ncv must be k+1<ncv<=n, ncv=%s" % self.ncv) self.workd = np.zeros(3 * n, self.tp) self.workl = np.zeros(3 * self.ncv * (self.ncv + 2), self.tp) ltr = _type_conv[self.tp] self._arpack_solver = _arpack.__dict__[ltr + 'naupd'] self._arpack_extract = _arpack.__dict__[ltr + 'neupd'] self.iterate_infodict = _NAUPD_ERRORS[ltr] self.extract_infodict = _NEUPD_ERRORS[ltr] self.ipntr = np.zeros(14, "int") if self.tp in 'FD': self.rwork = np.zeros(self.ncv, self.tp.lower()) else: self.rwork = None def iterate(self): if self.tp in 'fd': self.ido, self.resid, self.v, self.iparam, self.ipntr, self.info =\ self._arpack_solver(self.ido, self.bmat, self.which, self.k, self.tol, self.resid, self.v, self.iparam, self.ipntr, self.workd, self.workl, self.info) else: self.ido, self.resid, self.v, self.iparam, self.ipntr, self.info =\ self._arpack_solver(self.ido, self.bmat, self.which, self.k, self.tol, self.resid, self.v, self.iparam, self.ipntr, self.workd, self.workl, self.rwork, self.info) xslice = slice(self.ipntr[0] - 1, self.ipntr[0] - 1 + self.n) yslice = slice(self.ipntr[1] - 1, self.ipntr[1] - 1 + self.n) if self.ido == -1: # initialization self.workd[yslice] = self.OP(self.workd[xslice]) elif self.ido == 1: # compute y = Op*x if self.mode in (1, 2): self.workd[yslice] = self.OP(self.workd[xslice]) else: Bxslice = slice(self.ipntr[2] - 1, self.ipntr[2] - 1 + self.n) self.workd[yslice] = self.OPa(self.workd[Bxslice]) elif self.ido == 2: self.workd[yslice] = self.B(self.workd[xslice]) elif self.ido == 3: raise ValueError("ARPACK requested user shifts. Assure ISHIFT==0") else: self.converged = True if self.info == 0: pass elif self.info == 1: self._raise_no_convergence() else: raise ArpackError(self.info, infodict=self.iterate_infodict) def extract(self, return_eigenvectors): k, n = self.k, self.n ierr = 0 howmny = 'A' # return all eigenvectors sselect = np.zeros(self.ncv, 'int') # unused sigmar = np.real(self.sigma) sigmai = np.imag(self.sigma) workev = np.zeros(3 * self.ncv, self.tp) if self.tp in 'fd': dr = np.zeros(k + 1, self.tp) di = np.zeros(k + 1, self.tp) zr = np.zeros((n, k + 1), self.tp) dr, di, zr, ierr = \ self._arpack_extract( return_eigenvectors, howmny, sselect, sigmar, sigmai, workev, self.bmat, self.which, k, self.tol, self.resid, self.v, self.iparam, self.ipntr, self.workd, self.workl, self.info) if ierr != 0: raise ArpackError(ierr, infodict=self.extract_infodict) nreturned = self.iparam[4] # number of good eigenvalues returned # Build complex eigenvalues from real and imaginary parts d = dr + 1.0j * di # Arrange the eigenvectors: complex eigenvectors are stored as # real,imaginary in consecutive columns z = zr.astype(self.tp.upper()) # The ARPACK nonsymmetric real and double interface (s,d)naupd # return eigenvalues and eigenvectors in real (float,double) # arrays. # Efficiency: this should check that return_eigenvectors == True # before going through this construction. if sigmai == 0: i = 0 while i <= k: # check if complex if abs(d[i].imag) != 0: # this is a complex conjugate pair with eigenvalues # in consecutive columns if i < k: z[:, i] = zr[:, i] + 1.0j * zr[:, i + 1] z[:, i + 1] = z[:, i].conjugate() i += 1 else: #last eigenvalue is complex: the imaginary part of # the eigenvector has not been returned #this can only happen if nreturned > k, so we'll # throw out this case. nreturned -= 1 i += 1 else: # real matrix, mode 3 or 4, imag(sigma) is nonzero: # see remark 3 in <s,d>neupd.f # Build complex eigenvalues from real and imaginary parts i = 0 while i <= k: if abs(d[i].imag) == 0: d[i] = np.dot(zr[:, i], self.matvec(zr[:, i])) else: if i < k: z[:, i] = zr[:, i] + 1.0j * zr[:, i + 1] z[:, i + 1] = z[:, i].conjugate() d[i] = ((np.dot(zr[:, i], self.matvec(zr[:, i])) + np.dot(zr[:, i + 1], self.matvec(zr[:, i + 1]))) + 1j * (np.dot(zr[:, i], self.matvec(zr[:, i + 1])) - np.dot(zr[:, i + 1], self.matvec(zr[:, i])))) d[i + 1] = d[i].conj() i += 1 else: #last eigenvalue is complex: the imaginary part of # the eigenvector has not been returned #this can only happen if nreturned > k, so we'll # throw out this case. nreturned -= 1 i += 1 # Now we have k+1 possible eigenvalues and eigenvectors # Return the ones specified by the keyword "which" if nreturned <= k: # we got less or equal as many eigenvalues we wanted d = d[:nreturned] z = z[:, :nreturned] else: # we got one extra eigenvalue (likely a cc pair, but which?) # cut at approx precision for sorting rd = np.round(d, decimals=_ndigits[self.tp]) if self.which in ['LR', 'SR']: ind = np.argsort(rd.real) elif self.which in ['LI', 'SI']: # for LI,SI ARPACK returns largest,smallest # abs(imaginary) why? ind = np.argsort(abs(rd.imag)) else: ind = np.argsort(abs(rd)) if self.which in ['LR', 'LM', 'LI']: d = d[ind[-k:]] z = z[:, ind[-k:]] if self.which in ['SR', 'SM', 'SI']: d = d[ind[:k]] z = z[:, ind[:k]] else: # complex is so much simpler... d, z, ierr =\ self._arpack_extract( return_eigenvectors, howmny, sselect, self.sigma, workev, self.bmat, self.which, k, self.tol, self.resid, self.v, self.iparam, self.ipntr, self.workd, self.workl, self.rwork, ierr) if ierr != 0: raise ArpackError(ierr, infodict=self.extract_infodict) k_ok = self.iparam[4] d = d[:k_ok] z = z[:, :k_ok] if return_eigenvectors: return d, z else: return d def _aslinearoperator_with_dtype(m): m = aslinearoperator(m) if not hasattr(m, 'dtype'): x = np.zeros(m.shape[1]) m.dtype = (m * x).dtype return m class SpLuInv(LinearOperator): """ SpLuInv: helper class to repeatedly solve M*x=b using a sparse LU-decopposition of M """ def __init__(self, M): self.M_lu = splu(M) LinearOperator.__init__(self, M.shape, self._matvec, dtype=M.dtype) self.isreal = not np.issubdtype(self.dtype, np.complexfloating) def _matvec(self, x): # careful here: splu.solve will throw away imaginary # part of x if M is real if self.isreal and np.issubdtype(x.dtype, np.complexfloating): return (self.M_lu.solve(np.real(x)) + 1j * self.M_lu.solve(np.imag(x))) else: return self.M_lu.solve(x) class LuInv(LinearOperator): """ LuInv: helper class to repeatedly solve M*x=b using an LU-decomposition of M """ def __init__(self, M): self.M_lu = lu_factor(M) LinearOperator.__init__(self, M.shape, self._matvec, dtype=M.dtype) def _matvec(self, x): return lu_solve(self.M_lu, x) class IterInv(LinearOperator): """ IterInv: helper class to repeatedly solve M*x=b using an iterative method. """ def __init__(self, M, ifunc=gmres, tol=0): if tol <= 0: # when tol=0, ARPACK uses machine tolerance as calculated # by LAPACK's _LAMCH function. We should match this tol = np.finfo(M.dtype).eps self.M = M self.ifunc = ifunc self.tol = tol if hasattr(M, 'dtype'): dtype = M.dtype else: x = np.zeros(M.shape[1]) dtype = (M * x).dtype LinearOperator.__init__(self, M.shape, self._matvec, dtype=dtype) def _matvec(self, x): b, info = self.ifunc(self.M, x, tol=self.tol) if info != 0: raise ValueError("Error in inverting M: function " "%s did not converge (info = %i)." % (self.ifunc.__name__, info)) return b class IterOpInv(LinearOperator): """ IterOpInv: helper class to repeatedly solve [A-sigma*M]*x = b using an iterative method """ def __init__(self, A, M, sigma, ifunc=gmres, tol=0): if tol <= 0: # when tol=0, ARPACK uses machine tolerance as calculated # by LAPACK's _LAMCH function. We should match this tol = np.finfo(A.dtype).eps self.A = A self.M = M self.sigma = sigma self.ifunc = ifunc self.tol = tol x = np.zeros(A.shape[1]) if M is None: dtype = self.mult_func_M_None(x).dtype self.OP = LinearOperator(self.A.shape, self.mult_func_M_None, dtype=dtype) else: dtype = self.mult_func(x).dtype self.OP = LinearOperator(self.A.shape, self.mult_func, dtype=dtype) LinearOperator.__init__(self, A.shape, self._matvec, dtype=dtype) def mult_func(self, x): return self.A.matvec(x) - self.sigma * self.M.matvec(x) def mult_func_M_None(self, x): return self.A.matvec(x) - self.sigma * x def _matvec(self, x): b, info = self.ifunc(self.OP, x, tol=self.tol) if info != 0: raise ValueError("Error in inverting [A-sigma*M]: function " "%s did not converge (info = %i)." % (self.ifunc.__name__, info)) return b def get_inv_matvec(M, symmetric=False, tol=0): if isdense(M): return LuInv(M).matvec elif isspmatrix(M): if isspmatrix_csr(M) and symmetric: M = M.T return SpLuInv(M).matvec else: return IterInv(M, tol=tol).matvec def get_OPinv_matvec(A, M, sigma, symmetric=False, tol=0): if sigma == 0: return get_inv_matvec(A, symmetric=symmetric, tol=tol) if M is None: #M is the identity matrix if isdense(A): if (np.issubdtype(A.dtype, np.complexfloating) or np.imag(sigma) == 0): A = np.copy(A) else: A = A + 0j A.flat[::A.shape[1] + 1] -= sigma return LuInv(A).matvec elif isspmatrix(A): A = A - sigma * identity(A.shape[0]) if symmetric and isspmatrix_csr(A): A = A.T return SpLuInv(A.tocsc()).matvec else: return IterOpInv(_aslinearoperator_with_dtype(A), M, sigma, tol=tol).matvec else: if ((not isdense(A) and not isspmatrix(A)) or (not isdense(M) and not isspmatrix(M))): return IterOpInv(_aslinearoperator_with_dtype(A), _aslinearoperator_with_dtype(M), sigma, tol=tol).matvec elif isdense(A) or isdense(M): return LuInv(A - sigma * M).matvec else: OP = A - sigma * M if symmetric and isspmatrix_csr(OP): OP = OP.T return SpLuInv(OP.tocsc()).matvec def _eigs(A, k=6, M=None, sigma=None, which='LM', v0=None, ncv=None, maxiter=None, tol=0, return_eigenvectors=True, Minv=None, OPinv=None, OPpart=None): """ Find k eigenvalues and eigenvectors of the square matrix A. Solves ``A * x[i] = w[i] * x[i]``, the standard eigenvalue problem for w[i] eigenvalues with corresponding eigenvectors x[i]. If M is specified, solves ``A * x[i] = w[i] * M * x[i]``, the generalized eigenvalue problem for w[i] eigenvalues with corresponding eigenvectors x[i] Parameters ---------- A : An N x N matrix, array, sparse matrix, or LinearOperator representing \ the operation A * x, where A is a real or complex square matrix. k : int, default 6 The number of eigenvalues and eigenvectors desired. `k` must be smaller than N. It is not possible to compute all eigenvectors of a matrix. return_eigenvectors : boolean, default True Whether to return the eigenvectors along with the eigenvalues. M : An N x N matrix, array, sparse matrix, or LinearOperator representing the operation M*x for the generalized eigenvalue problem ``A * x = w * M * x`` M must represent a real symmetric matrix. For best results, M should be of the same type as A. Additionally: * If sigma==None, M is positive definite * If sigma is specified, M is positive semi-definite If sigma==None, eigs requires an operator to compute the solution of the linear equation `M * x = b`. This is done internally via a (sparse) LU decomposition for an explicit matrix M, or via an iterative solver for a general linear operator. Alternatively, the user can supply the matrix or operator Minv, which gives x = Minv * b = M^-1 * b sigma : real or complex Find eigenvalues near sigma using shift-invert mode. This requires an operator to compute the solution of the linear system `[A - sigma * M] * x = b`, where M is the identity matrix if unspecified. This is computed internally via a (sparse) LU decomposition for explicit matrices A & M, or via an iterative solver if either A or M is a general linear operator. Alternatively, the user can supply the matrix or operator OPinv, which gives x = OPinv * b = [A - sigma * M]^-1 * b. For a real matrix A, shift-invert can either be done in imaginary mode or real mode, specified by the parameter OPpart ('r' or 'i'). Note that when sigma is specified, the keyword 'which' (below) refers to the shifted eigenvalues w'[i] where: * If A is real and OPpart == 'r' (default), w'[i] = 1/2 * [ 1/(w[i]-sigma) + 1/(w[i]-conj(sigma)) ] * If A is real and OPpart == 'i', w'[i] = 1/2i * [ 1/(w[i]-sigma) - 1/(w[i]-conj(sigma)) ] * If A is complex, w'[i] = 1/(w[i]-sigma) v0 : array Starting vector for iteration. ncv : integer The number of Lanczos vectors generated `ncv` must be greater than `k`; it is recommended that ``ncv > 2*k``. which : string ['LM' | 'SM' | 'LR' | 'SR' | 'LI' | 'SI'] Which `k` eigenvectors and eigenvalues to find: - 'LM' : largest magnitude - 'SM' : smallest magnitude - 'LR' : largest real part - 'SR' : smallest real part - 'LI' : largest imaginary part - 'SI' : smallest imaginary part When sigma != None, 'which' refers to the shifted eigenvalues w'[i] (see discussion in 'sigma', above). ARPACK is generally better at finding large values than small values. If small eigenvalues are desired, consider using shift-invert mode for better performance. maxiter : integer Maximum number of Arnoldi update iterations allowed tol : float Relative accuracy for eigenvalues (stopping criterion) The default value of 0 implies machine precision. return_eigenvectors : boolean Return eigenvectors (True) in addition to eigenvalues Minv : N x N matrix, array, sparse matrix, or linear operator See notes in M, above. OPinv : N x N matrix, array, sparse matrix, or linear operator See notes in sigma, above. OPpart : 'r' or 'i'. See notes in sigma, above Returns ------- w : array Array of k eigenvalues. v : array An array of `k` eigenvectors. ``v[:, i]`` is the eigenvector corresponding to the eigenvalue w[i]. Raises ------ ArpackNoConvergence When the requested convergence is not obtained. The currently converged eigenvalues and eigenvectors can be found as ``eigenvalues`` and ``eigenvectors`` attributes of the exception object. See Also -------- eigsh : eigenvalues and eigenvectors for symmetric matrix A svds : singular value decomposition for a matrix A Examples -------- Find 6 eigenvectors of the identity matrix: >>> from sklearn.utils.arpack import eigs >>> id = np.identity(13) >>> vals, vecs = eigs(id, k=6) >>> vals array([ 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j]) >>> vecs.shape (13, 6) Notes ----- This function is a wrapper to the ARPACK [1]_ SNEUPD, DNEUPD, CNEUPD, ZNEUPD, functions which use the Implicitly Restarted Arnoldi Method to find the eigenvalues and eigenvectors [2]_. References ---------- .. [1] ARPACK Software, http://www.caam.rice.edu/software/ARPACK/ .. [2] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK USERS GUIDE: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia, PA, 1998. """ if A.shape[0] != A.shape[1]: raise ValueError('expected square matrix (shape=%s)' % (A.shape,)) if M is not None: if M.shape != A.shape: raise ValueError('wrong M dimensions %s, should be %s' % (M.shape, A.shape)) if np.dtype(M.dtype).char.lower() != np.dtype(A.dtype).char.lower(): warnings.warn('M does not have the same type precision as A. ' 'This may adversely affect ARPACK convergence') n = A.shape[0] if k <= 0 or k >= n: raise ValueError("k must be between 1 and rank(A)-1") if sigma is None: matvec = _aslinearoperator_with_dtype(A).matvec if OPinv is not None: raise ValueError("OPinv should not be specified " "with sigma = None.") if OPpart is not None: raise ValueError("OPpart should not be specified with " "sigma = None or complex A") if M is None: #standard eigenvalue problem mode = 1 M_matvec = None Minv_matvec = None if Minv is not None: raise ValueError("Minv should not be " "specified with M = None.") else: #general eigenvalue problem mode = 2 if Minv is None: Minv_matvec = get_inv_matvec(M, symmetric=True, tol=tol) else: Minv = _aslinearoperator_with_dtype(Minv) Minv_matvec = Minv.matvec M_matvec = _aslinearoperator_with_dtype(M).matvec else: #sigma is not None: shift-invert mode if np.issubdtype(A.dtype, np.complexfloating): if OPpart is not None: raise ValueError("OPpart should not be specified " "with sigma=None or complex A") mode = 3 elif OPpart is None or OPpart.lower() == 'r': mode = 3 elif OPpart.lower() == 'i': if np.imag(sigma) == 0: raise ValueError("OPpart cannot be 'i' if sigma is real") mode = 4 else: raise ValueError("OPpart must be one of ('r','i')") matvec = _aslinearoperator_with_dtype(A).matvec if Minv is not None: raise ValueError("Minv should not be specified when sigma is") if OPinv is None: Minv_matvec = get_OPinv_matvec(A, M, sigma, symmetric=False, tol=tol) else: OPinv = _aslinearoperator_with_dtype(OPinv) Minv_matvec = OPinv.matvec if M is None: M_matvec = None else: M_matvec = _aslinearoperator_with_dtype(M).matvec params = _UnsymmetricArpackParams(n, k, A.dtype.char, matvec, mode, M_matvec, Minv_matvec, sigma, ncv, v0, maxiter, which, tol) while not params.converged: params.iterate() return params.extract(return_eigenvectors) def _eigsh(A, k=6, M=None, sigma=None, which='LM', v0=None, ncv=None, maxiter=None, tol=0, return_eigenvectors=True, Minv=None, OPinv=None, mode='normal'): """ Find k eigenvalues and eigenvectors of the real symmetric square matrix or complex hermitian matrix A. Solves ``A * x[i] = w[i] * x[i]``, the standard eigenvalue problem for w[i] eigenvalues with corresponding eigenvectors x[i]. If M is specified, solves ``A * x[i] = w[i] * M * x[i]``, the generalized eigenvalue problem for w[i] eigenvalues with corresponding eigenvectors x[i] Parameters ---------- A : An N x N matrix, array, sparse matrix, or LinearOperator representing the operation A * x, where A is a real symmetric matrix For buckling mode (see below) A must additionally be positive-definite k : integer The number of eigenvalues and eigenvectors desired. `k` must be smaller than N. It is not possible to compute all eigenvectors of a matrix. M : An N x N matrix, array, sparse matrix, or linear operator representing the operation M * x for the generalized eigenvalue problem ``A * x = w * M * x``. M must represent a real, symmetric matrix. For best results, M should be of the same type as A. Additionally: * If sigma == None, M is symmetric positive definite * If sigma is specified, M is symmetric positive semi-definite * In buckling mode, M is symmetric indefinite. If sigma == None, eigsh requires an operator to compute the solution of the linear equation `M * x = b`. This is done internally via a (sparse) LU decomposition for an explicit matrix M, or via an iterative solver for a general linear operator. Alternatively, the user can supply the matrix or operator Minv, which gives x = Minv * b = M^-1 * b sigma : real Find eigenvalues near sigma using shift-invert mode. This requires an operator to compute the solution of the linear system `[A - sigma * M] x = b`, where M is the identity matrix if unspecified. This is computed internally via a (sparse) LU decomposition for explicit matrices A & M, or via an iterative solver if either A or M is a general linear operator. Alternatively, the user can supply the matrix or operator OPinv, which gives x = OPinv * b = [A - sigma * M]^-1 * b. Note that when sigma is specified, the keyword 'which' refers to the shifted eigenvalues w'[i] where: - if mode == 'normal', w'[i] = 1 / (w[i] - sigma) - if mode == 'cayley', w'[i] = (w[i] + sigma) / (w[i] - sigma) - if mode == 'buckling', w'[i] = w[i] / (w[i] - sigma) (see further discussion in 'mode' below) v0 : array Starting vector for iteration. ncv : integer The number of Lanczos vectors generated ncv must be greater than k and smaller than n; it is recommended that ncv > 2*k which : string ['LM' | 'SM' | 'LA' | 'SA' | 'BE'] If A is a complex hermitian matrix, 'BE' is invalid. Which `k` eigenvectors and eigenvalues to find - 'LM' : Largest (in magnitude) eigenvalues - 'SM' : Smallest (in magnitude) eigenvalues - 'LA' : Largest (algebraic) eigenvalues - 'SA' : Smallest (algebraic) eigenvalues - 'BE' : Half (k/2) from each end of the spectrum When k is odd, return one more (k/2+1) from the high end When sigma != None, 'which' refers to the shifted eigenvalues w'[i] (see discussion in 'sigma', above). ARPACK is generally better at finding large values than small values. If small eigenvalues are desired, consider using shift-invert mode for better performance. maxiter : integer Maximum number of Arnoldi update iterations allowed tol : float Relative accuracy for eigenvalues (stopping criterion). The default value of 0 implies machine precision. Minv : N x N matrix, array, sparse matrix, or LinearOperator See notes in M, above OPinv : N x N matrix, array, sparse matrix, or LinearOperator See notes in sigma, above. return_eigenvectors : boolean Return eigenvectors (True) in addition to eigenvalues mode : string ['normal' | 'buckling' | 'cayley'] Specify strategy to use for shift-invert mode. This argument applies only for real-valued A and sigma != None. For shift-invert mode, ARPACK internally solves the eigenvalue problem ``OP * x'[i] = w'[i] * B * x'[i]`` and transforms the resulting Ritz vectors x'[i] and Ritz values w'[i] into the desired eigenvectors and eigenvalues of the problem ``A * x[i] = w[i] * M * x[i]``. The modes are as follows: - 'normal' : OP = [A - sigma * M]^-1 * M B = M w'[i] = 1 / (w[i] - sigma) - 'buckling' : OP = [A - sigma * M]^-1 * A B = A w'[i] = w[i] / (w[i] - sigma) - 'cayley' : OP = [A - sigma * M]^-1 * [A + sigma * M] B = M w'[i] = (w[i] + sigma) / (w[i] - sigma) The choice of mode will affect which eigenvalues are selected by the keyword 'which', and can also impact the stability of convergence (see [2] for a discussion) Returns ------- w : array Array of k eigenvalues v : array An array of k eigenvectors The v[i] is the eigenvector corresponding to the eigenvector w[i] Raises ------ ArpackNoConvergence When the requested convergence is not obtained. The currently converged eigenvalues and eigenvectors can be found as ``eigenvalues`` and ``eigenvectors`` attributes of the exception object. See Also -------- eigs : eigenvalues and eigenvectors for a general (nonsymmetric) matrix A svds : singular value decomposition for a matrix A Notes ----- This function is a wrapper to the ARPACK [1]_ SSEUPD and DSEUPD functions which use the Implicitly Restarted Lanczos Method to find the eigenvalues and eigenvectors [2]_. Examples -------- >>> from sklearn.utils.arpack import eigsh >>> id = np.identity(13) >>> vals, vecs = eigsh(id, k=6) >>> vals # doctest: +SKIP array([ 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j]) >>> print(vecs.shape) (13, 6) References ---------- .. [1] ARPACK Software, http://www.caam.rice.edu/software/ARPACK/ .. [2] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK USERS GUIDE: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia, PA, 1998. """ # complex hermitian matrices should be solved with eigs if np.issubdtype(A.dtype, np.complexfloating): if mode != 'normal': raise ValueError("mode=%s cannot be used with " "complex matrix A" % mode) if which == 'BE': raise ValueError("which='BE' cannot be used with complex matrix A") elif which == 'LA': which = 'LR' elif which == 'SA': which = 'SR' ret = eigs(A, k, M=M, sigma=sigma, which=which, v0=v0, ncv=ncv, maxiter=maxiter, tol=tol, return_eigenvectors=return_eigenvectors, Minv=Minv, OPinv=OPinv) if return_eigenvectors: return ret[0].real, ret[1] else: return ret.real if A.shape[0] != A.shape[1]: raise ValueError('expected square matrix (shape=%s)' % (A.shape,)) if M is not None: if M.shape != A.shape: raise ValueError('wrong M dimensions %s, should be %s' % (M.shape, A.shape)) if np.dtype(M.dtype).char.lower() != np.dtype(A.dtype).char.lower(): warnings.warn('M does not have the same type precision as A. ' 'This may adversely affect ARPACK convergence') n = A.shape[0] if k <= 0 or k >= n: raise ValueError("k must be between 1 and rank(A)-1") if sigma is None: A = _aslinearoperator_with_dtype(A) matvec = A.matvec if OPinv is not None: raise ValueError("OPinv should not be specified " "with sigma = None.") if M is None: #standard eigenvalue problem mode = 1 M_matvec = None Minv_matvec = None if Minv is not None: raise ValueError("Minv should not be " "specified with M = None.") else: #general eigenvalue problem mode = 2 if Minv is None: Minv_matvec = get_inv_matvec(M, symmetric=True, tol=tol) else: Minv = _aslinearoperator_with_dtype(Minv) Minv_matvec = Minv.matvec M_matvec = _aslinearoperator_with_dtype(M).matvec else: # sigma is not None: shift-invert mode if Minv is not None: raise ValueError("Minv should not be specified when sigma is") # normal mode if mode == 'normal': mode = 3 matvec = None if OPinv is None: Minv_matvec = get_OPinv_matvec(A, M, sigma, symmetric=True, tol=tol) else: OPinv = _aslinearoperator_with_dtype(OPinv) Minv_matvec = OPinv.matvec if M is None: M_matvec = None else: M = _aslinearoperator_with_dtype(M) M_matvec = M.matvec # buckling mode elif mode == 'buckling': mode = 4 if OPinv is None: Minv_matvec = get_OPinv_matvec(A, M, sigma, symmetric=True, tol=tol) else: Minv_matvec = _aslinearoperator_with_dtype(OPinv).matvec matvec = _aslinearoperator_with_dtype(A).matvec M_matvec = None # cayley-transform mode elif mode == 'cayley': mode = 5 matvec = _aslinearoperator_with_dtype(A).matvec if OPinv is None: Minv_matvec = get_OPinv_matvec(A, M, sigma, symmetric=True, tol=tol) else: Minv_matvec = _aslinearoperator_with_dtype(OPinv).matvec if M is None: M_matvec = None else: M_matvec = _aslinearoperator_with_dtype(M).matvec # unrecognized mode else: raise ValueError("unrecognized mode '%s'" % mode) params = _SymmetricArpackParams(n, k, A.dtype.char, matvec, mode, M_matvec, Minv_matvec, sigma, ncv, v0, maxiter, which, tol) while not params.converged: params.iterate() return params.extract(return_eigenvectors) def _svds(A, k=6, ncv=None, tol=0): """Compute k singular values/vectors for a sparse matrix using ARPACK. Parameters ---------- A : sparse matrix Array to compute the SVD on k : int, optional Number of singular values and vectors to compute. ncv : integer The number of Lanczos vectors generated ncv must be greater than k+1 and smaller than n; it is recommended that ncv > 2*k tol : float, optional Tolerance for singular values. Zero (default) means machine precision. Notes ----- This is a naive implementation using an eigensolver on A.H * A or A * A.H, depending on which one is more efficient. """ if not (isinstance(A, np.ndarray) or isspmatrix(A)): A = np.asarray(A) n, m = A.shape if np.issubdtype(A.dtype, np.complexfloating): herm = lambda x: x.T.conjugate() eigensolver = eigs else: herm = lambda x: x.T eigensolver = eigsh if n > m: X = A XH = herm(A) else: XH = A X = herm(A) if hasattr(XH, 'dot'): def matvec_XH_X(x): return XH.dot(X.dot(x)) else: def matvec_XH_X(x): return np.dot(XH, np.dot(X, x)) XH_X = LinearOperator(matvec=matvec_XH_X, dtype=X.dtype, shape=(X.shape[1], X.shape[1])) # Ignore deprecation warnings here: dot on matrices is deprecated, # but this code is a backport anyhow with warnings.catch_warnings(): warnings.simplefilter('ignore', DeprecationWarning) eigvals, eigvec = eigensolver(XH_X, k=k, tol=tol ** 2) s = np.sqrt(eigvals) if n > m: v = eigvec if hasattr(X, 'dot'): u = X.dot(v) / s else: u = np.dot(X, v) / s vh = herm(v) else: u = eigvec if hasattr(X, 'dot'): vh = herm(X.dot(u) / s) else: vh = herm(np.dot(X, u) / s) return u, s, vh # check if backport is actually needed: if scipy.version.version >= LooseVersion('0.10'): from scipy.sparse.linalg import eigs, eigsh, svds else: eigs, eigsh, svds = _eigs, _eigsh, _svds
bsd-3-clause
nlproc/splunkml
bin/multiclassify.py
1
2142
import sys, os, itertools try: import cStringIO as StringIO except: import StringIO import numpy as np import scipy.sparse as sp from gensim.corpora import TextCorpus from gensim.models import LsiModel, TfidfModel, LdaModel from gensim.matutils import corpus2csc from sklearn.feature_extraction import FeatureHasher from sklearn.feature_extraction.text import CountVectorizer from sklearn.decomposition import PCA def is_number(str): try: n = float(str) return True except (ValueError, TypeError): return False def process_records(records, fields, target, textmodel=None): tokenize = CountVectorizer().build_analyzer() input = None X = None y_labels = [] for i, record in enumerate(records): nums = [] strs = [] y_labels.append(record.get(target)) for field in fields: if is_number(record.get(field)): nums.append(record[field]) else: strs.append(str(record.get(field) or "").lower()) if strs: if input is None: input = StringIO.StringIO() print >> input, " ".join(tokenize(" ".join(strs))) if nums: if X is None: X = sp.lil_matrix((len(records),len(nums))) X[i] = np.array(nums, dtype=np.float64) if input is not None: if X is not None: X_2 = X.tocsr() else: X_2 = None if isinstance(textmodel,basestring): if textmodel == 'lsi': corpus = TextCorpus(input) textmodel = LsiModel(corpus, chunksize=1000) elif textmodel == 'tfidf': corpus = TextCorpus(input) textmodel = TfidfModel(corpus) elif textmodel == 'hashing': textmodel = None hasher = FeatureHasher(n_features=2 ** 18, input_type="string") input.seek(0) X = hasher.transform(tokenize(line.strip()) for line in input) if textmodel: num_terms = len(textmodel.id2word or getattr(textmodel, 'dfs',[])) X = corpus2csc(textmodel[corpus], num_terms).transpose() if X_2 is not None: # print >> sys.stderr, "X SHAPE:", X.shape # print >> sys.stderr, "X_2 SHAPE:", X_2.shape X = sp.hstack([X, X_2], format='csr') elif X is not None: textmodel = None X = X.tocsr() print >> sys.stderr, "X SHAPE:", X.shape return X, y_labels, textmodel
apache-2.0
ZenDevelopmentSystems/scikit-learn
sklearn/metrics/cluster/unsupervised.py
230
8281
""" Unsupervised evaluation metrics. """ # Authors: Robert Layton <[email protected]> # # License: BSD 3 clause import numpy as np from ...utils import check_random_state from ..pairwise import pairwise_distances def silhouette_score(X, labels, metric='euclidean', sample_size=None, random_state=None, **kwds): """Compute the mean Silhouette Coefficient of all samples. The Silhouette Coefficient is calculated using the mean intra-cluster distance (``a``) and the mean nearest-cluster distance (``b``) for each sample. The Silhouette Coefficient for a sample is ``(b - a) / max(a, b)``. To clarify, ``b`` is the distance between a sample and the nearest cluster that the sample is not a part of. Note that Silhouette Coefficent is only defined if number of labels is 2 <= n_labels <= n_samples - 1. This function returns the mean Silhouette Coefficient over all samples. To obtain the values for each sample, use :func:`silhouette_samples`. The best value is 1 and the worst value is -1. Values near 0 indicate overlapping clusters. Negative values generally indicate that a sample has been assigned to the wrong cluster, as a different cluster is more similar. Read more in the :ref:`User Guide <silhouette_coefficient>`. Parameters ---------- X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \ [n_samples_a, n_features] otherwise Array of pairwise distances between samples, or a feature array. labels : array, shape = [n_samples] Predicted labels for each sample. metric : string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by :func:`metrics.pairwise.pairwise_distances <sklearn.metrics.pairwise.pairwise_distances>`. If X is the distance array itself, use ``metric="precomputed"``. sample_size : int or None The size of the sample to use when computing the Silhouette Coefficient on a random subset of the data. If ``sample_size is None``, no sampling is used. random_state : integer or numpy.RandomState, optional The generator used to randomly select a subset of samples if ``sample_size is not None``. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. `**kwds` : optional keyword parameters Any further parameters are passed directly to the distance function. If using a scipy.spatial.distance metric, the parameters are still metric dependent. See the scipy docs for usage examples. Returns ------- silhouette : float Mean Silhouette Coefficient for all samples. References ---------- .. [1] `Peter J. Rousseeuw (1987). "Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster Analysis". Computational and Applied Mathematics 20: 53-65. <http://www.sciencedirect.com/science/article/pii/0377042787901257>`_ .. [2] `Wikipedia entry on the Silhouette Coefficient <http://en.wikipedia.org/wiki/Silhouette_(clustering)>`_ """ n_labels = len(np.unique(labels)) n_samples = X.shape[0] if not 1 < n_labels < n_samples: raise ValueError("Number of labels is %d. Valid values are 2 " "to n_samples - 1 (inclusive)" % n_labels) if sample_size is not None: random_state = check_random_state(random_state) indices = random_state.permutation(X.shape[0])[:sample_size] if metric == "precomputed": X, labels = X[indices].T[indices].T, labels[indices] else: X, labels = X[indices], labels[indices] return np.mean(silhouette_samples(X, labels, metric=metric, **kwds)) def silhouette_samples(X, labels, metric='euclidean', **kwds): """Compute the Silhouette Coefficient for each sample. The Silhouette Coefficient is a measure of how well samples are clustered with samples that are similar to themselves. Clustering models with a high Silhouette Coefficient are said to be dense, where samples in the same cluster are similar to each other, and well separated, where samples in different clusters are not very similar to each other. The Silhouette Coefficient is calculated using the mean intra-cluster distance (``a``) and the mean nearest-cluster distance (``b``) for each sample. The Silhouette Coefficient for a sample is ``(b - a) / max(a, b)``. Note that Silhouette Coefficent is only defined if number of labels is 2 <= n_labels <= n_samples - 1. This function returns the Silhouette Coefficient for each sample. The best value is 1 and the worst value is -1. Values near 0 indicate overlapping clusters. Read more in the :ref:`User Guide <silhouette_coefficient>`. Parameters ---------- X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \ [n_samples_a, n_features] otherwise Array of pairwise distances between samples, or a feature array. labels : array, shape = [n_samples] label values for each sample metric : string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by :func:`sklearn.metrics.pairwise.pairwise_distances`. If X is the distance array itself, use "precomputed" as the metric. `**kwds` : optional keyword parameters Any further parameters are passed directly to the distance function. If using a ``scipy.spatial.distance`` metric, the parameters are still metric dependent. See the scipy docs for usage examples. Returns ------- silhouette : array, shape = [n_samples] Silhouette Coefficient for each samples. References ---------- .. [1] `Peter J. Rousseeuw (1987). "Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster Analysis". Computational and Applied Mathematics 20: 53-65. <http://www.sciencedirect.com/science/article/pii/0377042787901257>`_ .. [2] `Wikipedia entry on the Silhouette Coefficient <http://en.wikipedia.org/wiki/Silhouette_(clustering)>`_ """ distances = pairwise_distances(X, metric=metric, **kwds) n = labels.shape[0] A = np.array([_intra_cluster_distance(distances[i], labels, i) for i in range(n)]) B = np.array([_nearest_cluster_distance(distances[i], labels, i) for i in range(n)]) sil_samples = (B - A) / np.maximum(A, B) return sil_samples def _intra_cluster_distance(distances_row, labels, i): """Calculate the mean intra-cluster distance for sample i. Parameters ---------- distances_row : array, shape = [n_samples] Pairwise distance matrix between sample i and each sample. labels : array, shape = [n_samples] label values for each sample i : int Sample index being calculated. It is excluded from calculation and used to determine the current label Returns ------- a : float Mean intra-cluster distance for sample i """ mask = labels == labels[i] mask[i] = False if not np.any(mask): # cluster of size 1 return 0 a = np.mean(distances_row[mask]) return a def _nearest_cluster_distance(distances_row, labels, i): """Calculate the mean nearest-cluster distance for sample i. Parameters ---------- distances_row : array, shape = [n_samples] Pairwise distance matrix between sample i and each sample. labels : array, shape = [n_samples] label values for each sample i : int Sample index being calculated. It is used to determine the current label. Returns ------- b : float Mean nearest-cluster distance for sample i """ label = labels[i] b = np.min([np.mean(distances_row[labels == cur_label]) for cur_label in set(labels) if not cur_label == label]) return b
bsd-3-clause
tomlof/scikit-learn
examples/svm/plot_custom_kernel.py
93
1562
""" ====================== SVM with custom kernel ====================== Simple usage of Support Vector Machines to classify a sample. It will plot the decision surface and the support vectors. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset Y = iris.target def my_kernel(X, Y): """ We create a custom kernel: (2 0) k(X, Y) = X ( ) Y.T (0 1) """ M = np.array([[2, 0], [0, 1.0]]) return np.dot(np.dot(X, M), Y.T) h = .02 # step size in the mesh # we create an instance of SVM and fit out data. clf = svm.SVC(kernel=my_kernel) clf.fit(X, Y) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, x_max]x[y_min, y_max]. x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired, edgecolors='k') plt.title('3-Class classification using Support Vector Machine with custom' ' kernel') plt.axis('tight') plt.show()
bsd-3-clause
mila-iqia/babyai
scripts/il_perf.py
1
2047
#!/usr/bin/env python3 import argparse import pandas import os import json import re import numpy as np from scipy import stats from babyai import plotting as bp parser = argparse.ArgumentParser("Analyze performance of imitation learning") parser.add_argument("--path", default='.', help="path to model logs") parser.add_argument("--regex", default='.*', help="filter out some logs") parser.add_argument("--other", default=None, help="path to model logs for ttest comparison") parser.add_argument("--other_regex", default='.*', help="filter out some logs from comparison") parser.add_argument("--window", type=int, default=100, help="size of sliding window average, 10 for GoToRedBallGrey, 100 otherwise") args = parser.parse_args() def get_data(path, regex): df = pandas.concat(bp.load_logs(path), sort=True) fps = bp.get_fps(df) models = df['model'].unique() models = [model for model in df['model'].unique() if re.match(regex, model)] maxes = [] for model in models: df_model = df[df['model'] == model] success_rate = df_model['validation_success_rate'] success_rate = success_rate.rolling(args.window, center=True).mean() success_rate = max(success_rate[np.logical_not(np.isnan(success_rate))]) print(model, success_rate) maxes.append(success_rate) return np.array(maxes), fps if args.other is not None: print("is this architecture better") print(args.regex) maxes, fps = get_data(args.path, args.regex) result = {'samples': len(maxes), 'mean': maxes.mean(), 'std': maxes.std(), 'fps_mean': fps.mean(), 'fps_std': fps.std()} print(result) if args.other is not None: print("\nthan this one") maxes_ttest, fps = get_data(args.other, args.other_regex) result = {'samples': len(maxes_ttest), 'mean': maxes_ttest.mean(), 'std': maxes_ttest.std(), 'fps_mean': fps.mean(), 'fps_std': fps.std()} print(result) ttest = stats.ttest_ind(maxes, maxes_ttest, equal_var=False) print(f"\n{ttest}")
bsd-3-clause
beni55/networkx
examples/drawing/giant_component.py
33
2084
#!/usr/bin/env python """ This example illustrates the sudden appearance of a giant connected component in a binomial random graph. Requires pygraphviz and matplotlib to draw. """ # Copyright (C) 2006-2008 # Aric Hagberg <[email protected]> # Dan Schult <[email protected]> # Pieter Swart <[email protected]> # All rights reserved. # BSD license. try: import matplotlib.pyplot as plt except: raise import networkx as nx import math try: from networkx import graphviz_layout layout=nx.graphviz_layout except ImportError: print("PyGraphviz not found; drawing with spring layout; will be slow.") layout=nx.spring_layout n=150 # 150 nodes # p value at which giant component (of size log(n) nodes) is expected p_giant=1.0/(n-1) # p value at which graph is expected to become completely connected p_conn=math.log(n)/float(n) # the following range of p values should be close to the threshold pvals=[0.003, 0.006, 0.008, 0.015] region=220 # for pylab 2x2 subplot layout plt.subplots_adjust(left=0,right=1,bottom=0,top=0.95,wspace=0.01,hspace=0.01) for p in pvals: G=nx.binomial_graph(n,p) pos=layout(G) region+=1 plt.subplot(region) plt.title("p = %6.3f"%(p)) nx.draw(G,pos, with_labels=False, node_size=10 ) # identify largest connected component Gcc=sorted(nx.connected_component_subgraphs(G), key = len, reverse=True) G0=Gcc[0] nx.draw_networkx_edges(G0,pos, with_labels=False, edge_color='r', width=6.0 ) # show other connected components for Gi in Gcc[1:]: if len(Gi)>1: nx.draw_networkx_edges(Gi,pos, with_labels=False, edge_color='r', alpha=0.3, width=5.0 ) plt.savefig("giant_component.png") plt.show() # display
bsd-3-clause