repo_name
stringlengths
6
92
path
stringlengths
4
191
copies
stringclasses
322 values
size
stringlengths
4
6
content
stringlengths
821
753k
license
stringclasses
15 values
tawsifkhan/scikit-learn
examples/model_selection/plot_validation_curve.py
229
1823
""" ========================== Plotting Validation Curves ========================== In this plot you can see the training scores and validation scores of an SVM for different values of the kernel parameter gamma. For very low values of gamma, you can see that both the training score and the validation score are low. This is called underfitting. Medium values of gamma will result in high values for both scores, i.e. the classifier is performing fairly well. If gamma is too high, the classifier will overfit, which means that the training score is good but the validation score is poor. """ print(__doc__) import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import load_digits from sklearn.svm import SVC from sklearn.learning_curve import validation_curve digits = load_digits() X, y = digits.data, digits.target param_range = np.logspace(-6, -1, 5) train_scores, test_scores = validation_curve( SVC(), X, y, param_name="gamma", param_range=param_range, cv=10, scoring="accuracy", n_jobs=1) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.title("Validation Curve with SVM") plt.xlabel("$\gamma$") plt.ylabel("Score") plt.ylim(0.0, 1.1) plt.semilogx(param_range, train_scores_mean, label="Training score", color="r") plt.fill_between(param_range, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.2, color="r") plt.semilogx(param_range, test_scores_mean, label="Cross-validation score", color="g") plt.fill_between(param_range, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.2, color="g") plt.legend(loc="best") plt.show()
bsd-3-clause
acshi/osf.io
scripts/annotate_rsvps.py
60
2256
"""Utilities for annotating workshop RSVP data. Example :: import pandas as pd from scripts import annotate_rsvps frame = pd.read_csv('workshop.csv') annotated = annotate_rsvps.process(frame) annotated.to_csv('workshop-annotated.csv') """ import re import logging from dateutil.parser import parse as parse_date from modularodm import Q from modularodm.exceptions import ModularOdmException from website.models import User, Node, NodeLog logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) def find_by_email(email): try: return User.find_one(Q('username', 'iexact', email)) except ModularOdmException: return None def find_by_name(name): try: parts = re.split(r'\s+', name.strip()) except: return None if len(parts) < 2: return None users = User.find( reduce( lambda acc, value: acc & value, [ Q('fullname', 'icontains', part.decode('utf-8', 'ignore')) for part in parts ] ) ).sort('-date_created') if not users: return None if len(users) > 1: logger.warn('Multiple users found for name {}'.format(name)) return users[0] def logs_since(user, date): return NodeLog.find( Q('user', 'eq', user._id) & Q('date', 'gt', date) ) def nodes_since(user, date): return Node.find( Q('creator', 'eq', user._id) & Q('date_created', 'gt', date) ) def process(frame): frame = frame.copy() frame['user_id'] = '' frame['user_logs'] = '' frame['user_nodes'] = '' frame['last_log'] = '' for idx, row in frame.iterrows(): user = ( find_by_email(row['Email address'].strip()) or find_by_name(row['Name']) ) if user: date = parse_date(row['Workshop_date']) frame.loc[idx, 'user_id'] = user._id logs = logs_since(user, date) frame.loc[idx, 'user_logs'] = logs.count() frame.loc[idx, 'user_nodes'] = nodes_since(user, date).count() if logs: frame.loc[idx, 'last_log'] = logs.sort('-date')[0].date.strftime('%c') return frame
apache-2.0
maheshakya/scikit-learn
sklearn/ensemble/tests/test_base.py
28
1334
""" Testing for the base module (sklearn.ensemble.base). """ # Authors: Gilles Louppe # License: BSD 3 clause from numpy.testing import assert_equal from nose.tools import assert_true from sklearn.utils.testing import assert_raise_message from sklearn.datasets import load_iris from sklearn.ensemble import BaggingClassifier from sklearn.linear_model import Perceptron def test_base(): """Check BaseEnsemble methods.""" ensemble = BaggingClassifier(base_estimator=Perceptron(), n_estimators=3) iris = load_iris() ensemble.fit(iris.data, iris.target) ensemble.estimators_ = [] # empty the list and create estimators manually ensemble._make_estimator() ensemble._make_estimator() ensemble._make_estimator() ensemble._make_estimator(append=False) assert_equal(3, len(ensemble)) assert_equal(3, len(ensemble.estimators_)) assert_true(isinstance(ensemble[0], Perceptron)) def test_base_zero_n_estimators(): """Check that instantiating a BaseEnsemble with n_estimators<=0 raises a ValueError.""" ensemble = BaggingClassifier(base_estimator=Perceptron(), n_estimators=0) iris = load_iris() assert_raise_message(ValueError, "n_estimators must be greater than zero, got 0.", ensemble.fit, iris.data, iris.target)
bsd-3-clause
eike-welk/clair
src/clairweb/libclair/test/test_descriptors.py
1
4284
# -*- coding: utf-8 -*- ############################################################################### # Clair - Project to discover prices on e-commerce sites. # # # # Copyright (C) 2016 by Eike Welk # # [email protected] # # # # License: GPL Version 3 # # # # This program is free software: you can redistribute it and/or modify # # it under the terms of the GNU General Public License as published by # # the Free Software Foundation, either version 3 of the License, or # # (at your option) any later version. # # # # This program is distributed in the hope that it will be useful, # # but WITHOUT ANY WARRANTY; without even the implied warranty of # # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # # GNU General Public License for more details. # # # # You should have received a copy of the GNU General Public License # # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################### """ Test module ``descriptors``, which contains tools to define the structure of a table or database. """ #import pytest #contains `skip`, `fail`, `raises`, `config` #IGNORE:W0611 #from numpy import isnan #, nan #IGNORE:E0611 #from pandas.util.testing import assert_frame_equal #import time #import logging #from logging import info #logging.basicConfig(format='%(asctime)s: %(levelname)s: %(message)s', # level=logging.DEBUG) ##Time stamps must be in UTC #logging.Formatter.converter = time.gmtime def test_TypeTag_s(): print("Start") from numpy import nan #IGNORE:E0611 from datetime import datetime from libclair.descriptors import \ NoneD, StrD, IntD, FloatD, DateTimeD, SumTypeD, ListD, DictD assert NoneD.is_py_instance(None) assert not NoneD.is_py_instance(3) assert StrD.is_py_instance("foo") assert not StrD.is_py_instance(3) assert IntD.is_py_instance(23) assert not IntD.is_py_instance(23.5) assert FloatD.is_py_instance(4.2) assert FloatD.is_py_instance(nan) assert not FloatD.is_py_instance(3) assert DateTimeD.is_py_instance(datetime(2000, 1, 1)) assert not DateTimeD.is_py_instance(3) ts = SumTypeD(IntD, FloatD) assert ts.is_py_instance(1) assert ts.is_py_instance(1.41) assert not ts.is_py_instance("a") tl = ListD(FloatD) assert tl.is_py_instance([]) assert tl.is_py_instance([1.2, 3.4]) assert not tl.is_py_instance([1, 3]) tl2 = ListD(SumTypeD(FloatD, IntD)) assert tl2.is_py_instance([1.2, 3, 4]) assert not tl.is_py_instance([1, "a"]) tm = DictD(StrD, IntD) assert tm.is_py_instance({}) assert tm.is_py_instance({"foo": 2, "bar": 3}) assert not tm.is_py_instance({"foo": 2, "bar": 3.1415}) def test_FieldDescriptor(): print("Start") from libclair.descriptors import FieldDescriptor, IntD FieldDescriptor("foo", IntD, 1, "A foo integer.") FieldDescriptor("foo", IntD, None, "A foo integer or None.") def test_TableDescriptor(): print("Start") from libclair.descriptors import TableDescriptor, FieldDescriptor, IntD F = FieldDescriptor TableDescriptor("foo_table", "1.0", "fot", "A table of foo elements", [F("foo1", IntD, 0, "A foo integer."), F("foo2", IntD, None, "A foo integer or None.") ]) if __name__ == "__main__": # test_TypeTag_s() # test_FieldDescriptor() # test_TableDescriptor() pass #IGNORE:W0107
gpl-3.0
depet/scikit-learn
examples/linear_model/plot_logistic.py
8
1400
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Logit function ========================================================= Show in the plot is how the logistic regression would, in this synthetic dataset, classify values as either 0 or 1, i.e. class one or two, using the logit-curve. """ print(__doc__) # Code source: Gael Varoquaux # License: BSD 3 clause import numpy as np import pylab as pl from sklearn import linear_model # this is our test set, it's just a straight line with some # gaussian noise xmin, xmax = -5, 5 n_samples = 100 np.random.seed(0) X = np.random.normal(size=n_samples) y = (X > 0).astype(np.float) X[X > 0] *= 4 X += .3 * np.random.normal(size=n_samples) X = X[:, np.newaxis] # run the classifier clf = linear_model.LogisticRegression(C=1e5) clf.fit(X, y) # and plot the result pl.figure(1, figsize=(4, 3)) pl.clf() pl.scatter(X.ravel(), y, color='black', zorder=20) X_test = np.linspace(-5, 10, 300) def model(x): return 1 / (1 + np.exp(-x)) loss = model(X_test * clf.coef_ + clf.intercept_).ravel() pl.plot(X_test, loss, color='blue', linewidth=3) ols = linear_model.LinearRegression() ols.fit(X, y) pl.plot(X_test, ols.coef_ * X_test + ols.intercept_, linewidth=1) pl.axhline(.5, color='.5') pl.ylabel('y') pl.xlabel('X') pl.xticks(()) pl.yticks(()) pl.ylim(-.25, 1.25) pl.xlim(-4, 10) pl.show()
bsd-3-clause
urschrei/geopandas
examples/nyc_boros.py
8
1394
""" Generate example images for GeoPandas documentation. TODO: autogenerate these from docs themselves Kelsey Jordahl Time-stamp: <Tue May 6 12:17:29 EDT 2014> """ import numpy as np import matplotlib.pyplot as plt from shapely.geometry import Point from geopandas import GeoSeries, GeoDataFrame np.random.seed(1) DPI = 100 # http://www.nyc.gov/html/dcp/download/bytes/nybb_14aav.zip boros = GeoDataFrame.from_file('nybb.shp') boros.set_index('BoroCode', inplace=True) boros.sort() boros.plot() plt.xticks(rotation=90) plt.savefig('nyc.png', dpi=DPI, bbox_inches='tight') #plt.show() boros.geometry.convex_hull.plot() plt.xticks(rotation=90) plt.savefig('nyc_hull.png', dpi=DPI, bbox_inches='tight') #plt.show() N = 2000 # number of random points R = 2000 # radius of buffer in feet xmin, xmax = plt.gca().get_xlim() ymin, ymax = plt.gca().get_ylim() #xmin, xmax, ymin, ymax = 900000, 1080000, 120000, 280000 xc = (xmax - xmin) * np.random.random(N) + xmin yc = (ymax - ymin) * np.random.random(N) + ymin pts = GeoSeries([Point(x, y) for x, y in zip(xc, yc)]) mp = pts.buffer(R).unary_union boros_with_holes = boros.geometry - mp boros_with_holes.plot() plt.xticks(rotation=90) plt.savefig('boros_with_holes.png', dpi=DPI, bbox_inches='tight') plt.show() holes = boros.geometry & mp holes.plot() plt.xticks(rotation=90) plt.savefig('holes.png', dpi=DPI, bbox_inches='tight') plt.show()
bsd-3-clause
aounlutfi/E-commerce-Opimization
src/modeling.py
2
4483
# This file is part of E-Commerce Optimization (ECO) # The (ECO) can be obtained at https://github.com/aounlutfi/E-commerce-Opimization # ECO Copyright (C) 2017 Aoun Lutfi, University of Wollongong in Dubai # Inquiries: [email protected] # The ECO is free software: you can redistribute it and/or modify it under the # terms of the GNU Lesser General Public License as published by the Free Software # Foundation, either version 3 of the License, or (at your option) any later version. # ECO is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; # without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Less General Public License for more details. # You should have received a copy of the GNU Lesser General Public License along with TSAM. # If not, see <http://www.gnu.org/licenses/>. # If you use the ECO or any part of it in any program or publication, please acknowledge # its authors by adding a reference to this publication: # Lutfi, A., Fasciani, S. (2017) Towards Automated Optimization of Web Interfaces and # Application in E-commerce, Accepted for publications at International Journal of # Computing and Information Sciences. import networkx as nx import matplotlib.pyplot as plt import math import time TOP = 0 LEFT = 1 RIGHT = 2 BUTTOM = 3 X = 0 Y = 1 H = 0 W = 1 def modeling(elements, image = None, verbose = False): #remove redundant elements elements = clean_duplicates(elements, verbose) print "number of clean elements: " + str(len(elements)) #setup graph G = nx.Graph() G.clear() i = 0 labels = {} positions = [] #attach elements to nodes for element in elements: G.add_node(i) G.node[i] = element labels[i] = i positions.append(element["center"]) i += 1 dist = [] i = 0 #attach distances to edges for element in elements: temp = list(elements) temp.remove(element) for elem in temp: G.add_edge(elem["id"], element['id']) d = distance(elem, element) dist.append((i, "distance: " + str(d))) G.edge[elem['id']][element['id']] = d i+=1 if verbose: for i in range(0, G.number_of_nodes()): print G.node[i] print "links: " + str(G.number_of_edges()) print G.edges() for element in elements: temp = list(elements) temp.remove(element) for elem in temp: e = G.edge[elem['id']][element['id']] if e: print e #save model details model = "\n-------------------MODEL-------------------------------\n" model += "nodes: " + str(G.number_of_nodes()) + "\n" for i in range(0, G.number_of_nodes()): model += str(G.node[i]) + "\n" model += "links: " + str(G.number_of_edges()) + "\n" model += str(G.edges()) + "\n" for element in elements: temp = list(elements) temp.remove(element) for elem in temp: e = G.edge[elem['id']][element['id']] if e: model += str(e) + "\n" #save to file file = open("tests/model.txt", 'a') file.write(model) file.close() #draw model nx.draw_networkx_edges(G, positions) nx.draw_networkx_edge_labels(G, positions, font_size = 6) nx.draw_networkx_nodes(G, positions, node_size=500, alpha=0.7) nx.draw_networkx_labels(G,positions,labels, font_color='w') if image is not None: plt.imshow(image, "gray") #save model into an image try: if verbose: plt.show() plt.savefig("tests/" + str(time.time()) + "_model.jpg", dpi=900) except Exception, e: plt.savefig("tests/" + str(time.time()) + "_model.jpg", dpi=900) plt.clf() return (G, positions, labels) def clean_duplicates(elements, verbose): #to clean duplicates, go through each element, and look through the remaining elemnts and see if there is a match #if a match exists, remove the duplicate for element in elements: temp = list(elements) temp.remove(element) if verbose: print "checking id: " + str(element['id']) for elem in temp: if abs(elem["center"][X] - element["center"][X])<element["dimentions"][H] and abs(elem["center"][Y] - element["center"][Y])<element["dimentions"][W]: elements.remove(elem) if verbose: print 'removed ' + str(elem['id']) else: if verbose: print 'kept ' + str(elem['id']) id = 0 #reset ids of elements for element in elements: element["id"] = id id += 1 return elements def distance(elem1, elem2): #calculate the distance using euclidean distance return int(round(math.sqrt((elem1["center"][X] - elem2["center"][X])**2 + (elem1["center"][Y] - elem2["center"][Y])**2)))
gpl-3.0
fatadama/estimation
challenge_problem/sim_data/data_loader.py
1
2118
"""@package data_loader Module with functions for loading data from an output file generated by generate_data.py """ import ConfigParser import numpy as np import matplotlib.pyplot as plt def main(): name = 'sims_01_fast' (tsim,XK,YK,mu0,P0,Ns,dt,tf) = load_data(name) print(tsim,XK,YK) print("Loaded simulation with %d runs, initial mean = %f,%f,\n and initial covariance P = [[%f,%f],[%f,%f]]" % (Ns,mu0[0],mu0[1],P0[0,0],P0[0,1],P0[1,0],P0[1,1])) ## load simulation data from a particular case # #@param[in] name name of simulation batch to load; "<name>_settings.ini" and "<name>_data.csv" must exist #@param[in] fpath path to data files #@param[out] tsim simulation time vector #@param[out] XK len(tsim) x 2*Ns matrix of true system states; even columns are position history, odd are velocity #@param[out] YK len(tsim) x Ns matrix of system measurements for Ns Monte Carlo runs #@param[out] mu0 mean initial state #@param[out] P0 initial covariance #@param[out] Ns number of simulations #@param[out] dt sample period of measurements #@param[out] tf final simulation time def load_data(name,fpath='./'): config = ConfigParser.ConfigParser() config.read(fpath + name + "_settings.ini") # sample time dt = float(config.get(name,'ts')) # number of data points Ns = int(config.get(name,'ns')) # final time tf = float(config.get(name,'tf')) # initial covariance P0 = np.zeros((2,2)) P0[0,0] = float(config.get(name,'p0_11')) P0[0,1] = float(config.get(name,'p0_12')) P0[1,0] = float(config.get(name,'p0_21')) P0[1,1] = float(config.get(name,'p0_22')) # initial state mean mu0 = np.zeros(2) mu0[0] = float(config.get(name,'mux_1')) mu0[1] = float(config.get(name,'mux_2')) # load data datain = np.genfromtxt(fpath + name+'_data.csv','float',delimiter=',') ## tsim: simulation time tsim = datain[:,0] inx = sorted( range(1,3*Ns+1,3) + range(2,3*Ns+1,3) ) ## XK: nSteps x 2*Nsims array of state histories XK = datain[:,inx] ## YK: nSteps x Nsims array of measurement of position YK = datain[:,range(3,3*Ns+1,3)] return (tsim,XK,YK,mu0,P0,Ns,dt,tf) if __name__ == "__main__": main()
gpl-2.0
mathemage/h2o-3
py2/h2o_cmd.py
20
16497
import h2o_nodes from h2o_test import dump_json, verboseprint import h2o_util import h2o_print as h2p from h2o_test import OutputObj #************************************************************************ def runStoreView(node=None, **kwargs): print "FIX! disabling runStoreView for now" return {} if not node: node = h2o_nodes.nodes[0] print "\nStoreView:" # FIX! are there keys other than frames and models a = node.frames(**kwargs) # print "storeview frames:", dump_json(a) frameList = [af['key']['name'] for af in a['frames']] for f in frameList: print "frame:", f print "# of frames:", len(frameList) b = node.models() # print "storeview models:", dump_json(b) modelList = [bm['key'] for bm in b['models']] for m in modelList: print "model:", m print "# of models:", len(modelList) return {'keys': frameList + modelList} #************************************************************************ def runExec(node=None, **kwargs): if not node: node = h2o_nodes.nodes[0] a = node.rapids(**kwargs) return a def runInspect(node=None, key=None, verbose=False, **kwargs): if not key: raise Exception('No key for Inspect') if not node: node = h2o_nodes.nodes[0] a = node.frames(key, **kwargs) if verbose: print "inspect of %s:" % key, dump_json(a) return a #************************************************************************ def infoFromParse(parse): if not parse: raise Exception("parse is empty for infoFromParse") # assumes just one result from Frames if 'frames' not in parse: raise Exception("infoFromParse expects parse= param from parse result: %s" % parse) if len(parse['frames'])!=1: raise Exception("infoFromParse expects parse= param from parse result: %s " % parse['frames']) # it it index[0] or key '0' in a dictionary? frame = parse['frames'][0] # need more info about this dataset for debug numCols = len(frame['columns']) numRows = frame['rows'] key_name = frame['frame_id']['name'] return numRows, numCols, key_name #************************************************************************ # make this be the basic way to get numRows, numCols def infoFromInspect(inspect): if not inspect: raise Exception("inspect is empty for infoFromInspect") # assumes just one result from Frames if 'frames' not in inspect: raise Exception("infoFromInspect expects inspect= param from Frames result (single): %s" % inspect) if len(inspect['frames'])!=1: raise Exception("infoFromInspect expects inspect= param from Frames result (single): %s " % inspect['frames']) # it it index[0] or key '0' in a dictionary? frame = inspect['frames'][0] # need more info about this dataset for debug columns = frame['columns'] key_name = frame['frame_id']['name'] missingList = [] labelList = [] typeList = [] for i, colDict in enumerate(columns): # columns is a list if 'missing_count' not in colDict: # debug print "\ncolDict" for k in colDict: print " key: %s" % k # data # domain # string_data # type # label # percentiles # precision # mins # maxs # mean # histogram_base # histogram_bins # histogram_stride # zero_count # missing_count # positive_infinity_count # negative_infinity_count # __meta mins = colDict['mins'] maxs = colDict['maxs'] missing = colDict['missing_count'] label = colDict['label'] stype = colDict['type'] missingList.append(missing) labelList.append(label) typeList.append(stype) if missing!=0: print "%s: col: %s %s, missing: %d" % (key_name, i, label, missing) print "inspect typeList:", typeList # make missingList empty if all 0's if sum(missingList)==0: missingList = [] # no type per col in inspect2 numCols = len(frame['columns']) numRows = frame['rows'] print "\n%s numRows: %s, numCols: %s" % (key_name, numRows, numCols) return missingList, labelList, numRows, numCols #************************************************************************ # does all columns unless you specify column index. # only will return first or specified column def runSummary(node=None, key=None, column=None, expected=None, maxDelta=None, noPrint=False, **kwargs): if not key: raise Exception('No key for Summary') if not node: node = h2o_nodes.nodes[0] # return node.summary(key, **kwargs) i = InspectObj(key=key) # just so I don't have to change names below missingList = i.missingList labelList = i.labelList numRows = i.numRows numCols = i.numCols print "labelList:", labelList assert labelList is not None # doesn't take indices? only column labels? # return first column, unless specified if not (column is None or isinstance(column, (basestring, int))): raise Exception("column param should be string or integer index or None %s %s" % (type(column), column)) # either return the first col, or the col indentified by label. the column identifed could be string or index? if column is None: # means the summary json when we ask for col 0, will be what we return (do all though) colNameToDo = labelList colIndexToDo = range(len(labelList)) elif isinstance(column, int): colNameToDo = [labelList[column]] colIndexToDo = [column] elif isinstance(column, basestring): colNameToDo = [column] if column not in labelList: raise Exception("% not in labellist: %s" % (column, labellist)) colIndexToDo = [labelList.index(column)] else: raise Exception("wrong type %s for column %s" % (type(column), column)) # we get the first column as result after walking across all, if no column parameter desiredResult = None for (colIndex, colName) in zip(colIndexToDo, colNameToDo): print "doing summary on %s %s" % (colIndex, colName) # ugly looking up the colIndex co = SummaryObj(key=key, colIndex=colIndex, colName=colName) if not desiredResult: desiredResult = co if not noPrint: for k,v in co: # only print [0] of mins and maxs because of the e308 values when they don't have dataset values if k=='mins' or k=='maxs': print "%s[0]" % k, v[0] else: print k, v if expected is not None: print "len(co.histogram_bins):", len(co.histogram_bins) print "co.label:", co.label, "mean (2 places):", h2o_util.twoDecimals(co.mean) # what is precision. -1? print "co.label:", co.label, "std dev. (2 places):", h2o_util.twoDecimals(co.sigma) # print "FIX! hacking the co.percentiles because it's short by two" # if co.percentiles: # percentiles = [0] + co.percentiles + [0] # else: # percentiles = None percentiles = co.percentiles assert len(co.percentiles) == len(co.default_percentiles) # the thresholds h2o used, should match what we expected # expected = [0] * 5 # Fix. doesn't check for expected = 0? # max of one bin if maxDelta is None: maxDelta = (co.maxs[0] - co.mins[0])/1000 if expected[0]: h2o_util.assertApproxEqual(co.mins[0], expected[0], tol=maxDelta, msg='min is not approx. expected') if expected[1]: h2o_util.assertApproxEqual(percentiles[2], expected[1], tol=maxDelta, msg='25th percentile is not approx. expected') if expected[2]: h2o_util.assertApproxEqual(percentiles[4], expected[2], tol=maxDelta, msg='50th percentile (median) is not approx. expected') if expected[3]: h2o_util.assertApproxEqual(percentiles[6], expected[3], tol=maxDelta, msg='75th percentile is not approx. expected') if expected[4]: h2o_util.assertApproxEqual(co.maxs[0], expected[4], tol=maxDelta, msg='max is not approx. expected') # figure out the expected max error # use this for comparing to sklearn/sort MAX_QBINS = 1000 if expected[0] and expected[4]: expectedRange = expected[4] - expected[0] # because of floor and ceil effects due we potentially lose 2 bins (worst case) # the extra bin for the max value, is an extra bin..ignore expectedBin = expectedRange/(MAX_QBINS-2) maxErr = expectedBin # should we have some fuzz for fp? else: print "Test won't calculate max expected error" maxErr = 0 pt = h2o_util.twoDecimals(percentiles) # only look at [0] for now...bit e308 numbers if unpopulated due to not enough unique values in dataset column mx = h2o_util.twoDecimals(co.maxs[0]) mn = h2o_util.twoDecimals(co.mins[0]) print "co.label:", co.label, "co.percentiles (2 places):", pt print "co.default_percentiles:", co.default_percentiles print "co.label:", co.label, "co.maxs: (2 places):", mx print "co.label:", co.label, "co.mins: (2 places):", mn # FIX! why would percentiles be None? enums? if pt is None: compareActual = mn, [None] * 3, mx else: compareActual = mn, pt[2], pt[4], pt[6], mx h2p.green_print("actual min/25/50/75/max co.label:", co.label, "(2 places):", compareActual) h2p.green_print("expected min/25/50/75/max co.label:", co.label, "(2 places):", expected) return desiredResult # this parses the json object returned for one col from runSummary...returns an OutputObj object # summaryResult = h2o_cmd.runSummary(key=hex_key, column=0) # co = h2o_cmd.infoFromSummary(summaryResult) # print co.label # legacy def infoFromSummary(summaryResult, column=None): return SummaryObj(summaryResult, column=column) class ParseObj(OutputObj): # the most basic thing is that the data frame has the # of rows and cols we expected # embed that checking here, so every test doesn't have to def __init__(self, parseResult, expectedNumRows=None, expectedNumCols=None, noPrint=False, **kwargs): super(ParseObj, self).__init__(parseResult['frames'][0], "Parse", noPrint=noPrint) # add my stuff self.numRows, self.numCols, self.parse_key = infoFromParse(parseResult) # h2o_import.py does this for test support if 'python_elapsed' in parseResult: self.python_elapsed = parseResult['python_elapsed'] if expectedNumRows is not None: assert self.numRows == expectedNumRows, "%s %s" % (self.numRows, expectedNumRows) if expectedNumCols is not None: assert self.numCols == expectedNumCols, "%s %s" % (self.numCols, expectedNumCols) print "ParseObj created for:", self.parse_key # vars(self) # Let's experiment with creating new objects that are an api I control for generic operations (Inspect) class InspectObj(OutputObj): # the most basic thing is that the data frame has the # of rows and cols we expected # embed that checking here, so every test doesn't have to def __init__(self, key, expectedNumRows=None, expectedNumCols=None, expectedMissingList=None, expectedLabelList=None, noPrint=False, **kwargs): inspectResult = runInspect(key=key) super(InspectObj, self).__init__(inspectResult['frames'][0], "Inspect", noPrint=noPrint) # add my stuff self.missingList, self.labelList, self.numRows, self.numCols = infoFromInspect(inspectResult) if expectedNumRows is not None: assert self.numRows == expectedNumRows, "%s %s" % (self.numRows, expectedNumRows) if expectedNumCols is not None: assert self.numCols == expectedNumCols, "%s %s" % (self.numCols, expectedNumCols) if expectedMissingList is not None: assert self.missingList == expectedMissingList, "%s %s" % (self.MissingList, expectedMissingList) if expectedLabelList is not None: assert self.labelList == expectedLabelList, "%s %s" % (self.labelList, expectedLabelList) print "InspectObj created for:", key #, vars(self) class SummaryObj(OutputObj): @classmethod def check(self, expectedNumRows=None, expectedNumCols=None, expectedLabel=None, expectedType=None, expectedMissing=None, expectedDomain=None, expectedBinsSum=None, noPrint=False, **kwargs): if expectedLabel is not None: assert self.label != expectedLabel if expectedType is not None: assert self.type != expectedType if expectedMissing is not None: assert self.missing != expectedMissing if expectedDomain is not None: assert self.domain != expectedDomain if expectedBinsSum is not None: assert self.binsSum != expectedBinsSum # column is column name? def __init__(self, key, colIndex, colName, expectedNumRows=None, expectedNumCols=None, expectedLabel=None, expectedType=None, expectedMissing=None, expectedDomain=None, expectedBinsSum=None, noPrint=False, timeoutSecs=30, **kwargs): # we need both colInndex and colName for doing Summary efficiently # ugly. assert colIndex is not None assert colName is not None summaryResult = h2o_nodes.nodes[0].summary(key=key, column=colName, timeoutSecs=timeoutSecs, **kwargs) # this should be the same for all the cols? Or does the checksum change? frame = summaryResult['frames'][0] default_percentiles = frame['default_percentiles'] checksum = frame['checksum'] rows = frame['rows'] # assert colIndex < len(frame['columns']), "You're asking for colIndex %s but there are only %s. " % \ # (colIndex, len(frame['columns'])) # coJson = frame['columns'][colIndex] # is it always 0 now? the one I asked for ? coJson = frame['columns'][0] assert checksum !=0 and checksum is not None assert rows!=0 and rows is not None # FIX! why is frame['key'] = None here? # assert frame['key'] == key, "%s %s" % (frame['key'], key) super(SummaryObj, self).__init__(coJson, "Summary for %s" % colName, noPrint=noPrint) # how are enums binned. Stride of 1? (what about domain values) # touch all # print "vars", vars(self) coList = [ len(self.data), self.domain, self.string_data, self.type, self.label, self.percentiles, self.precision, self.mins, self.maxs, self.mean, self.histogram_base, len(self.histogram_bins), self.histogram_stride, self.zero_count, self.missing_count, self.positive_infinity_count, self.negative_infinity_count, ] assert self.label==colName, "%s You must have told me the wrong colName %s for the given colIndex %s" % \ (self.label, colName, colIndex) print "you can look at this attributes in the returned object (which is OutputObj if you assigned to 'co')" for k,v in self: print "%s" % k, # hack these into the column object from the full summary self.default_percentiles = default_percentiles self.checksum = checksum self.rows = rows print "\nSummaryObj for", key, "for colName", colName, "colIndex:", colIndex print "SummaryObj created for:", key # vars(self) # now do the assertion checks self.check(expectedNumRows, expectedNumCols, expectedLabel, expectedType, expectedMissing, expectedDomain, expectedBinsSum, noPrint=noPrint, **kwargs)
apache-2.0
jor-/scipy
scipy/interpolate/interpolate.py
4
97600
from __future__ import division, print_function, absolute_import __all__ = ['interp1d', 'interp2d', 'lagrange', 'PPoly', 'BPoly', 'NdPPoly', 'RegularGridInterpolator', 'interpn'] import itertools import warnings import functools import operator import numpy as np from numpy import (array, transpose, searchsorted, atleast_1d, atleast_2d, ravel, poly1d, asarray, intp) import scipy.special as spec from scipy.special import comb from scipy._lib.six import xrange, integer_types, string_types from . import fitpack from . import dfitpack from . import _fitpack from .polyint import _Interpolator1D from . import _ppoly from .fitpack2 import RectBivariateSpline from .interpnd import _ndim_coords_from_arrays from ._bsplines import make_interp_spline, BSpline def prod(x): """Product of a list of numbers; ~40x faster vs np.prod for Python tuples""" if len(x) == 0: return 1 return functools.reduce(operator.mul, x) def lagrange(x, w): r""" Return a Lagrange interpolating polynomial. Given two 1-D arrays `x` and `w,` returns the Lagrange interpolating polynomial through the points ``(x, w)``. Warning: This implementation is numerically unstable. Do not expect to be able to use more than about 20 points even if they are chosen optimally. Parameters ---------- x : array_like `x` represents the x-coordinates of a set of datapoints. w : array_like `w` represents the y-coordinates of a set of datapoints, i.e. f(`x`). Returns ------- lagrange : `numpy.poly1d` instance The Lagrange interpolating polynomial. Examples -------- Interpolate :math:`f(x) = x^3` by 3 points. >>> from scipy.interpolate import lagrange >>> x = np.array([0, 1, 2]) >>> y = x**3 >>> poly = lagrange(x, y) Since there are only 3 points, Lagrange polynomial has degree 2. Explicitly, it is given by .. math:: \begin{aligned} L(x) &= 1\times \frac{x (x - 2)}{-1} + 8\times \frac{x (x-1)}{2} \\ &= x (-2 + 3x) \end{aligned} >>> from numpy.polynomial.polynomial import Polynomial >>> Polynomial(poly).coef array([ 3., -2., 0.]) """ M = len(x) p = poly1d(0.0) for j in xrange(M): pt = poly1d(w[j]) for k in xrange(M): if k == j: continue fac = x[j]-x[k] pt *= poly1d([1.0, -x[k]])/fac p += pt return p # !! Need to find argument for keeping initialize. If it isn't # !! found, get rid of it! class interp2d(object): """ interp2d(x, y, z, kind='linear', copy=True, bounds_error=False, fill_value=None) Interpolate over a 2-D grid. `x`, `y` and `z` are arrays of values used to approximate some function f: ``z = f(x, y)``. This class returns a function whose call method uses spline interpolation to find the value of new points. If `x` and `y` represent a regular grid, consider using RectBivariateSpline. Note that calling `interp2d` with NaNs present in input values results in undefined behaviour. Methods ------- __call__ Parameters ---------- x, y : array_like Arrays defining the data point coordinates. If the points lie on a regular grid, `x` can specify the column coordinates and `y` the row coordinates, for example:: >>> x = [0,1,2]; y = [0,3]; z = [[1,2,3], [4,5,6]] Otherwise, `x` and `y` must specify the full coordinates for each point, for example:: >>> x = [0,1,2,0,1,2]; y = [0,0,0,3,3,3]; z = [1,2,3,4,5,6] If `x` and `y` are multi-dimensional, they are flattened before use. z : array_like The values of the function to interpolate at the data points. If `z` is a multi-dimensional array, it is flattened before use. The length of a flattened `z` array is either len(`x`)*len(`y`) if `x` and `y` specify the column and row coordinates or ``len(z) == len(x) == len(y)`` if `x` and `y` specify coordinates for each point. kind : {'linear', 'cubic', 'quintic'}, optional The kind of spline interpolation to use. Default is 'linear'. copy : bool, optional If True, the class makes internal copies of x, y and z. If False, references may be used. The default is to copy. bounds_error : bool, optional If True, when interpolated values are requested outside of the domain of the input data (x,y), a ValueError is raised. If False, then `fill_value` is used. fill_value : number, optional If provided, the value to use for points outside of the interpolation domain. If omitted (None), values outside the domain are extrapolated via nearest-neighbor extrapolation. See Also -------- RectBivariateSpline : Much faster 2D interpolation if your input data is on a grid bisplrep, bisplev : Spline interpolation based on FITPACK BivariateSpline : a more recent wrapper of the FITPACK routines interp1d : one dimension version of this function Notes ----- The minimum number of data points required along the interpolation axis is ``(k+1)**2``, with k=1 for linear, k=3 for cubic and k=5 for quintic interpolation. The interpolator is constructed by `bisplrep`, with a smoothing factor of 0. If more control over smoothing is needed, `bisplrep` should be used directly. Examples -------- Construct a 2-D grid and interpolate on it: >>> from scipy import interpolate >>> x = np.arange(-5.01, 5.01, 0.25) >>> y = np.arange(-5.01, 5.01, 0.25) >>> xx, yy = np.meshgrid(x, y) >>> z = np.sin(xx**2+yy**2) >>> f = interpolate.interp2d(x, y, z, kind='cubic') Now use the obtained interpolation function and plot the result: >>> import matplotlib.pyplot as plt >>> xnew = np.arange(-5.01, 5.01, 1e-2) >>> ynew = np.arange(-5.01, 5.01, 1e-2) >>> znew = f(xnew, ynew) >>> plt.plot(x, z[0, :], 'ro-', xnew, znew[0, :], 'b-') >>> plt.show() """ def __init__(self, x, y, z, kind='linear', copy=True, bounds_error=False, fill_value=None): x = ravel(x) y = ravel(y) z = asarray(z) rectangular_grid = (z.size == len(x) * len(y)) if rectangular_grid: if z.ndim == 2: if z.shape != (len(y), len(x)): raise ValueError("When on a regular grid with x.size = m " "and y.size = n, if z.ndim == 2, then z " "must have shape (n, m)") if not np.all(x[1:] >= x[:-1]): j = np.argsort(x) x = x[j] z = z[:, j] if not np.all(y[1:] >= y[:-1]): j = np.argsort(y) y = y[j] z = z[j, :] z = ravel(z.T) else: z = ravel(z) if len(x) != len(y): raise ValueError( "x and y must have equal lengths for non rectangular grid") if len(z) != len(x): raise ValueError( "Invalid length for input z for non rectangular grid") try: kx = ky = {'linear': 1, 'cubic': 3, 'quintic': 5}[kind] except KeyError: raise ValueError("Unsupported interpolation type.") if not rectangular_grid: # TODO: surfit is really not meant for interpolation! self.tck = fitpack.bisplrep(x, y, z, kx=kx, ky=ky, s=0.0) else: nx, tx, ny, ty, c, fp, ier = dfitpack.regrid_smth( x, y, z, None, None, None, None, kx=kx, ky=ky, s=0.0) self.tck = (tx[:nx], ty[:ny], c[:(nx - kx - 1) * (ny - ky - 1)], kx, ky) self.bounds_error = bounds_error self.fill_value = fill_value self.x, self.y, self.z = [array(a, copy=copy) for a in (x, y, z)] self.x_min, self.x_max = np.amin(x), np.amax(x) self.y_min, self.y_max = np.amin(y), np.amax(y) def __call__(self, x, y, dx=0, dy=0, assume_sorted=False): """Interpolate the function. Parameters ---------- x : 1D array x-coordinates of the mesh on which to interpolate. y : 1D array y-coordinates of the mesh on which to interpolate. dx : int >= 0, < kx Order of partial derivatives in x. dy : int >= 0, < ky Order of partial derivatives in y. assume_sorted : bool, optional If False, values of `x` and `y` can be in any order and they are sorted first. If True, `x` and `y` have to be arrays of monotonically increasing values. Returns ------- z : 2D array with shape (len(y), len(x)) The interpolated values. """ x = atleast_1d(x) y = atleast_1d(y) if x.ndim != 1 or y.ndim != 1: raise ValueError("x and y should both be 1-D arrays") if not assume_sorted: x = np.sort(x) y = np.sort(y) if self.bounds_error or self.fill_value is not None: out_of_bounds_x = (x < self.x_min) | (x > self.x_max) out_of_bounds_y = (y < self.y_min) | (y > self.y_max) any_out_of_bounds_x = np.any(out_of_bounds_x) any_out_of_bounds_y = np.any(out_of_bounds_y) if self.bounds_error and (any_out_of_bounds_x or any_out_of_bounds_y): raise ValueError("Values out of range; x must be in %r, y in %r" % ((self.x_min, self.x_max), (self.y_min, self.y_max))) z = fitpack.bisplev(x, y, self.tck, dx, dy) z = atleast_2d(z) z = transpose(z) if self.fill_value is not None: if any_out_of_bounds_x: z[:, out_of_bounds_x] = self.fill_value if any_out_of_bounds_y: z[out_of_bounds_y, :] = self.fill_value if len(z) == 1: z = z[0] return array(z) def _check_broadcast_up_to(arr_from, shape_to, name): """Helper to check that arr_from broadcasts up to shape_to""" shape_from = arr_from.shape if len(shape_to) >= len(shape_from): for t, f in zip(shape_to[::-1], shape_from[::-1]): if f != 1 and f != t: break else: # all checks pass, do the upcasting that we need later if arr_from.size != 1 and arr_from.shape != shape_to: arr_from = np.ones(shape_to, arr_from.dtype) * arr_from return arr_from.ravel() # at least one check failed raise ValueError('%s argument must be able to broadcast up ' 'to shape %s but had shape %s' % (name, shape_to, shape_from)) def _do_extrapolate(fill_value): """Helper to check if fill_value == "extrapolate" without warnings""" return (isinstance(fill_value, string_types) and fill_value == 'extrapolate') class interp1d(_Interpolator1D): """ Interpolate a 1-D function. `x` and `y` are arrays of values used to approximate some function f: ``y = f(x)``. This class returns a function whose call method uses interpolation to find the value of new points. Note that calling `interp1d` with NaNs present in input values results in undefined behaviour. Parameters ---------- x : (N,) array_like A 1-D array of real values. y : (...,N,...) array_like A N-D array of real values. The length of `y` along the interpolation axis must be equal to the length of `x`. kind : str or int, optional Specifies the kind of interpolation as a string ('linear', 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'previous', 'next', where 'zero', 'slinear', 'quadratic' and 'cubic' refer to a spline interpolation of zeroth, first, second or third order; 'previous' and 'next' simply return the previous or next value of the point) or as an integer specifying the order of the spline interpolator to use. Default is 'linear'. axis : int, optional Specifies the axis of `y` along which to interpolate. Interpolation defaults to the last axis of `y`. copy : bool, optional If True, the class makes internal copies of x and y. If False, references to `x` and `y` are used. The default is to copy. bounds_error : bool, optional If True, a ValueError is raised any time interpolation is attempted on a value outside of the range of x (where extrapolation is necessary). If False, out of bounds values are assigned `fill_value`. By default, an error is raised unless ``fill_value="extrapolate"``. fill_value : array-like or (array-like, array_like) or "extrapolate", optional - if a ndarray (or float), this value will be used to fill in for requested points outside of the data range. If not provided, then the default is NaN. The array-like must broadcast properly to the dimensions of the non-interpolation axes. - If a two-element tuple, then the first element is used as a fill value for ``x_new < x[0]`` and the second element is used for ``x_new > x[-1]``. Anything that is not a 2-element tuple (e.g., list or ndarray, regardless of shape) is taken to be a single array-like argument meant to be used for both bounds as ``below, above = fill_value, fill_value``. .. versionadded:: 0.17.0 - If "extrapolate", then points outside the data range will be extrapolated. .. versionadded:: 0.17.0 assume_sorted : bool, optional If False, values of `x` can be in any order and they are sorted first. If True, `x` has to be an array of monotonically increasing values. Attributes ---------- fill_value Methods ------- __call__ See Also -------- splrep, splev Spline interpolation/smoothing based on FITPACK. UnivariateSpline : An object-oriented wrapper of the FITPACK routines. interp2d : 2-D interpolation Examples -------- >>> import matplotlib.pyplot as plt >>> from scipy import interpolate >>> x = np.arange(0, 10) >>> y = np.exp(-x/3.0) >>> f = interpolate.interp1d(x, y) >>> xnew = np.arange(0, 9, 0.1) >>> ynew = f(xnew) # use interpolation function returned by `interp1d` >>> plt.plot(x, y, 'o', xnew, ynew, '-') >>> plt.show() """ def __init__(self, x, y, kind='linear', axis=-1, copy=True, bounds_error=None, fill_value=np.nan, assume_sorted=False): """ Initialize a 1D linear interpolation class.""" _Interpolator1D.__init__(self, x, y, axis=axis) self.bounds_error = bounds_error # used by fill_value setter self.copy = copy if kind in ['zero', 'slinear', 'quadratic', 'cubic']: order = {'zero': 0, 'slinear': 1, 'quadratic': 2, 'cubic': 3}[kind] kind = 'spline' elif isinstance(kind, int): order = kind kind = 'spline' elif kind not in ('linear', 'nearest', 'previous', 'next'): raise NotImplementedError("%s is unsupported: Use fitpack " "routines for other types." % kind) x = array(x, copy=self.copy) y = array(y, copy=self.copy) if not assume_sorted: ind = np.argsort(x) x = x[ind] y = np.take(y, ind, axis=axis) if x.ndim != 1: raise ValueError("the x array must have exactly one dimension.") if y.ndim == 0: raise ValueError("the y array must have at least one dimension.") # Force-cast y to a floating-point type, if it's not yet one if not issubclass(y.dtype.type, np.inexact): y = y.astype(np.float_) # Backward compatibility self.axis = axis % y.ndim # Interpolation goes internally along the first axis self.y = y self._y = self._reshape_yi(self.y) self.x = x del y, x # clean up namespace to prevent misuse; use attributes self._kind = kind self.fill_value = fill_value # calls the setter, can modify bounds_err # Adjust to interpolation kind; store reference to *unbound* # interpolation methods, in order to avoid circular references to self # stored in the bound instance methods, and therefore delayed garbage # collection. See: https://docs.python.org/reference/datamodel.html if kind in ('linear', 'nearest', 'previous', 'next'): # Make a "view" of the y array that is rotated to the interpolation # axis. minval = 2 if kind == 'nearest': # Do division before addition to prevent possible integer # overflow self.x_bds = self.x / 2.0 self.x_bds = self.x_bds[1:] + self.x_bds[:-1] self._call = self.__class__._call_nearest elif kind == 'previous': # Side for np.searchsorted and index for clipping self._side = 'left' self._ind = 0 # Move x by one floating point value to the left self._x_shift = np.nextafter(self.x, -np.inf) self._call = self.__class__._call_previousnext elif kind == 'next': self._side = 'right' self._ind = 1 # Move x by one floating point value to the right self._x_shift = np.nextafter(self.x, np.inf) self._call = self.__class__._call_previousnext else: # Check if we can delegate to numpy.interp (2x-10x faster). cond = self.x.dtype == np.float_ and self.y.dtype == np.float_ cond = cond and self.y.ndim == 1 cond = cond and not _do_extrapolate(fill_value) if cond: self._call = self.__class__._call_linear_np else: self._call = self.__class__._call_linear else: minval = order + 1 rewrite_nan = False xx, yy = self.x, self._y if order > 1: # Quadratic or cubic spline. If input contains even a single # nan, then the output is all nans. We cannot just feed data # with nans to make_interp_spline because it calls LAPACK. # So, we make up a bogus x and y with no nans and use it # to get the correct shape of the output, which we then fill # with nans. # For slinear or zero order spline, we just pass nans through. if np.isnan(self.x).any(): xx = np.linspace(min(self.x), max(self.x), len(self.x)) rewrite_nan = True if np.isnan(self._y).any(): yy = np.ones_like(self._y) rewrite_nan = True self._spline = make_interp_spline(xx, yy, k=order, check_finite=False) if rewrite_nan: self._call = self.__class__._call_nan_spline else: self._call = self.__class__._call_spline if len(self.x) < minval: raise ValueError("x and y arrays must have at " "least %d entries" % minval) @property def fill_value(self): """The fill value.""" # backwards compat: mimic a public attribute return self._fill_value_orig @fill_value.setter def fill_value(self, fill_value): # extrapolation only works for nearest neighbor and linear methods if _do_extrapolate(fill_value): if self.bounds_error: raise ValueError("Cannot extrapolate and raise " "at the same time.") self.bounds_error = False self._extrapolate = True else: broadcast_shape = (self.y.shape[:self.axis] + self.y.shape[self.axis + 1:]) if len(broadcast_shape) == 0: broadcast_shape = (1,) # it's either a pair (_below_range, _above_range) or a single value # for both above and below range if isinstance(fill_value, tuple) and len(fill_value) == 2: below_above = [np.asarray(fill_value[0]), np.asarray(fill_value[1])] names = ('fill_value (below)', 'fill_value (above)') for ii in range(2): below_above[ii] = _check_broadcast_up_to( below_above[ii], broadcast_shape, names[ii]) else: fill_value = np.asarray(fill_value) below_above = [_check_broadcast_up_to( fill_value, broadcast_shape, 'fill_value')] * 2 self._fill_value_below, self._fill_value_above = below_above self._extrapolate = False if self.bounds_error is None: self.bounds_error = True # backwards compat: fill_value was a public attr; make it writeable self._fill_value_orig = fill_value def _call_linear_np(self, x_new): # Note that out-of-bounds values are taken care of in self._evaluate return np.interp(x_new, self.x, self.y) def _call_linear(self, x_new): # 2. Find where in the original data, the values to interpolate # would be inserted. # Note: If x_new[n] == x[m], then m is returned by searchsorted. x_new_indices = searchsorted(self.x, x_new) # 3. Clip x_new_indices so that they are within the range of # self.x indices and at least 1. Removes mis-interpolation # of x_new[n] = x[0] x_new_indices = x_new_indices.clip(1, len(self.x)-1).astype(int) # 4. Calculate the slope of regions that each x_new value falls in. lo = x_new_indices - 1 hi = x_new_indices x_lo = self.x[lo] x_hi = self.x[hi] y_lo = self._y[lo] y_hi = self._y[hi] # Note that the following two expressions rely on the specifics of the # broadcasting semantics. slope = (y_hi - y_lo) / (x_hi - x_lo)[:, None] # 5. Calculate the actual value for each entry in x_new. y_new = slope*(x_new - x_lo)[:, None] + y_lo return y_new def _call_nearest(self, x_new): """ Find nearest neighbour interpolated y_new = f(x_new).""" # 2. Find where in the averaged data the values to interpolate # would be inserted. # Note: use side='left' (right) to searchsorted() to define the # halfway point to be nearest to the left (right) neighbour x_new_indices = searchsorted(self.x_bds, x_new, side='left') # 3. Clip x_new_indices so that they are within the range of x indices. x_new_indices = x_new_indices.clip(0, len(self.x)-1).astype(intp) # 4. Calculate the actual value for each entry in x_new. y_new = self._y[x_new_indices] return y_new def _call_previousnext(self, x_new): """Use previous/next neighbour of x_new, y_new = f(x_new).""" # 1. Get index of left/right value x_new_indices = searchsorted(self._x_shift, x_new, side=self._side) # 2. Clip x_new_indices so that they are within the range of x indices. x_new_indices = x_new_indices.clip(1-self._ind, len(self.x)-self._ind).astype(intp) # 3. Calculate the actual value for each entry in x_new. y_new = self._y[x_new_indices+self._ind-1] return y_new def _call_spline(self, x_new): return self._spline(x_new) def _call_nan_spline(self, x_new): out = self._spline(x_new) out[...] = np.nan return out def _evaluate(self, x_new): # 1. Handle values in x_new that are outside of x. Throw error, # or return a list of mask array indicating the outofbounds values. # The behavior is set by the bounds_error variable. x_new = asarray(x_new) y_new = self._call(self, x_new) if not self._extrapolate: below_bounds, above_bounds = self._check_bounds(x_new) if len(y_new) > 0: # Note fill_value must be broadcast up to the proper size # and flattened to work here y_new[below_bounds] = self._fill_value_below y_new[above_bounds] = self._fill_value_above return y_new def _check_bounds(self, x_new): """Check the inputs for being in the bounds of the interpolated data. Parameters ---------- x_new : array Returns ------- out_of_bounds : bool array The mask on x_new of values that are out of the bounds. """ # If self.bounds_error is True, we raise an error if any x_new values # fall outside the range of x. Otherwise, we return an array indicating # which values are outside the boundary region. below_bounds = x_new < self.x[0] above_bounds = x_new > self.x[-1] # !! Could provide more information about which values are out of bounds if self.bounds_error and below_bounds.any(): raise ValueError("A value in x_new is below the interpolation " "range.") if self.bounds_error and above_bounds.any(): raise ValueError("A value in x_new is above the interpolation " "range.") # !! Should we emit a warning if some values are out of bounds? # !! matlab does not. return below_bounds, above_bounds class _PPolyBase(object): """Base class for piecewise polynomials.""" __slots__ = ('c', 'x', 'extrapolate', 'axis') def __init__(self, c, x, extrapolate=None, axis=0): self.c = np.asarray(c) self.x = np.ascontiguousarray(x, dtype=np.float64) if extrapolate is None: extrapolate = True elif extrapolate != 'periodic': extrapolate = bool(extrapolate) self.extrapolate = extrapolate if self.c.ndim < 2: raise ValueError("Coefficients array must be at least " "2-dimensional.") if not (0 <= axis < self.c.ndim - 1): raise ValueError("axis=%s must be between 0 and %s" % (axis, self.c.ndim-1)) self.axis = axis if axis != 0: # roll the interpolation axis to be the first one in self.c # More specifically, the target shape for self.c is (k, m, ...), # and axis !=0 means that we have c.shape (..., k, m, ...) # ^ # axis # So we roll two of them. self.c = np.rollaxis(self.c, axis+1) self.c = np.rollaxis(self.c, axis+1) if self.x.ndim != 1: raise ValueError("x must be 1-dimensional") if self.x.size < 2: raise ValueError("at least 2 breakpoints are needed") if self.c.ndim < 2: raise ValueError("c must have at least 2 dimensions") if self.c.shape[0] == 0: raise ValueError("polynomial must be at least of order 0") if self.c.shape[1] != self.x.size-1: raise ValueError("number of coefficients != len(x)-1") dx = np.diff(self.x) if not (np.all(dx >= 0) or np.all(dx <= 0)): raise ValueError("`x` must be strictly increasing or decreasing.") dtype = self._get_dtype(self.c.dtype) self.c = np.ascontiguousarray(self.c, dtype=dtype) def _get_dtype(self, dtype): if np.issubdtype(dtype, np.complexfloating) \ or np.issubdtype(self.c.dtype, np.complexfloating): return np.complex_ else: return np.float_ @classmethod def construct_fast(cls, c, x, extrapolate=None, axis=0): """ Construct the piecewise polynomial without making checks. Takes the same parameters as the constructor. Input arguments ``c`` and ``x`` must be arrays of the correct shape and type. The ``c`` array can only be of dtypes float and complex, and ``x`` array must have dtype float. """ self = object.__new__(cls) self.c = c self.x = x self.axis = axis if extrapolate is None: extrapolate = True self.extrapolate = extrapolate return self def _ensure_c_contiguous(self): """ c and x may be modified by the user. The Cython code expects that they are C contiguous. """ if not self.x.flags.c_contiguous: self.x = self.x.copy() if not self.c.flags.c_contiguous: self.c = self.c.copy() def extend(self, c, x, right=None): """ Add additional breakpoints and coefficients to the polynomial. Parameters ---------- c : ndarray, size (k, m, ...) Additional coefficients for polynomials in intervals. Note that the first additional interval will be formed using one of the ``self.x`` end points. x : ndarray, size (m,) Additional breakpoints. Must be sorted in the same order as ``self.x`` and either to the right or to the left of the current breakpoints. right Deprecated argument. Has no effect. .. deprecated:: 0.19 """ if right is not None: warnings.warn("`right` is deprecated and will be removed.") c = np.asarray(c) x = np.asarray(x) if c.ndim < 2: raise ValueError("invalid dimensions for c") if x.ndim != 1: raise ValueError("invalid dimensions for x") if x.shape[0] != c.shape[1]: raise ValueError("x and c have incompatible sizes") if c.shape[2:] != self.c.shape[2:] or c.ndim != self.c.ndim: raise ValueError("c and self.c have incompatible shapes") if c.size == 0: return dx = np.diff(x) if not (np.all(dx >= 0) or np.all(dx <= 0)): raise ValueError("`x` is not sorted.") if self.x[-1] >= self.x[0]: if not x[-1] >= x[0]: raise ValueError("`x` is in the different order " "than `self.x`.") if x[0] >= self.x[-1]: action = 'append' elif x[-1] <= self.x[0]: action = 'prepend' else: raise ValueError("`x` is neither on the left or on the right " "from `self.x`.") else: if not x[-1] <= x[0]: raise ValueError("`x` is in the different order " "than `self.x`.") if x[0] <= self.x[-1]: action = 'append' elif x[-1] >= self.x[0]: action = 'prepend' else: raise ValueError("`x` is neither on the left or on the right " "from `self.x`.") dtype = self._get_dtype(c.dtype) k2 = max(c.shape[0], self.c.shape[0]) c2 = np.zeros((k2, self.c.shape[1] + c.shape[1]) + self.c.shape[2:], dtype=dtype) if action == 'append': c2[k2-self.c.shape[0]:, :self.c.shape[1]] = self.c c2[k2-c.shape[0]:, self.c.shape[1]:] = c self.x = np.r_[self.x, x] elif action == 'prepend': c2[k2-self.c.shape[0]:, :c.shape[1]] = c c2[k2-c.shape[0]:, c.shape[1]:] = self.c self.x = np.r_[x, self.x] self.c = c2 def __call__(self, x, nu=0, extrapolate=None): """ Evaluate the piecewise polynomial or its derivative. Parameters ---------- x : array_like Points to evaluate the interpolant at. nu : int, optional Order of derivative to evaluate. Must be non-negative. extrapolate : {bool, 'periodic', None}, optional If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If 'periodic', periodic extrapolation is used. If None (default), use `self.extrapolate`. Returns ------- y : array_like Interpolated values. Shape is determined by replacing the interpolation axis in the original array with the shape of x. Notes ----- Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable at the breakpoints. The polynomial intervals are considered half-open, ``[a, b)``, except for the last interval which is closed ``[a, b]``. """ if extrapolate is None: extrapolate = self.extrapolate x = np.asarray(x) x_shape, x_ndim = x.shape, x.ndim x = np.ascontiguousarray(x.ravel(), dtype=np.float_) # With periodic extrapolation we map x to the segment # [self.x[0], self.x[-1]]. if extrapolate == 'periodic': x = self.x[0] + (x - self.x[0]) % (self.x[-1] - self.x[0]) extrapolate = False out = np.empty((len(x), prod(self.c.shape[2:])), dtype=self.c.dtype) self._ensure_c_contiguous() self._evaluate(x, nu, extrapolate, out) out = out.reshape(x_shape + self.c.shape[2:]) if self.axis != 0: # transpose to move the calculated values to the interpolation axis l = list(range(out.ndim)) l = l[x_ndim:x_ndim+self.axis] + l[:x_ndim] + l[x_ndim+self.axis:] out = out.transpose(l) return out class PPoly(_PPolyBase): """ Piecewise polynomial in terms of coefficients and breakpoints The polynomial between ``x[i]`` and ``x[i + 1]`` is written in the local power basis:: S = sum(c[m, i] * (xp - x[i])**(k-m) for m in range(k+1)) where ``k`` is the degree of the polynomial. Parameters ---------- c : ndarray, shape (k, m, ...) Polynomial coefficients, order `k` and `m` intervals x : ndarray, shape (m+1,) Polynomial breakpoints. Must be sorted in either increasing or decreasing order. extrapolate : bool or 'periodic', optional If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If 'periodic', periodic extrapolation is used. Default is True. axis : int, optional Interpolation axis. Default is zero. Attributes ---------- x : ndarray Breakpoints. c : ndarray Coefficients of the polynomials. They are reshaped to a 3-dimensional array with the last dimension representing the trailing dimensions of the original coefficient array. axis : int Interpolation axis. Methods ------- __call__ derivative antiderivative integrate solve roots extend from_spline from_bernstein_basis construct_fast See also -------- BPoly : piecewise polynomials in the Bernstein basis Notes ----- High-order polynomials in the power basis can be numerically unstable. Precision problems can start to appear for orders larger than 20-30. """ def _evaluate(self, x, nu, extrapolate, out): _ppoly.evaluate(self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, x, nu, bool(extrapolate), out) def derivative(self, nu=1): """ Construct a new piecewise polynomial representing the derivative. Parameters ---------- nu : int, optional Order of derivative to evaluate. Default is 1, i.e. compute the first derivative. If negative, the antiderivative is returned. Returns ------- pp : PPoly Piecewise polynomial of order k2 = k - n representing the derivative of this polynomial. Notes ----- Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable at the breakpoints. The polynomial intervals are considered half-open, ``[a, b)``, except for the last interval which is closed ``[a, b]``. """ if nu < 0: return self.antiderivative(-nu) # reduce order if nu == 0: c2 = self.c.copy() else: c2 = self.c[:-nu, :].copy() if c2.shape[0] == 0: # derivative of order 0 is zero c2 = np.zeros((1,) + c2.shape[1:], dtype=c2.dtype) # multiply by the correct rising factorials factor = spec.poch(np.arange(c2.shape[0], 0, -1), nu) c2 *= factor[(slice(None),) + (None,)*(c2.ndim-1)] # construct a compatible polynomial return self.construct_fast(c2, self.x, self.extrapolate, self.axis) def antiderivative(self, nu=1): """ Construct a new piecewise polynomial representing the antiderivative. Antiderivative is also the indefinite integral of the function, and derivative is its inverse operation. Parameters ---------- nu : int, optional Order of antiderivative to evaluate. Default is 1, i.e. compute the first integral. If negative, the derivative is returned. Returns ------- pp : PPoly Piecewise polynomial of order k2 = k + n representing the antiderivative of this polynomial. Notes ----- The antiderivative returned by this function is continuous and continuously differentiable to order n-1, up to floating point rounding error. If antiderivative is computed and ``self.extrapolate='periodic'``, it will be set to False for the returned instance. This is done because the antiderivative is no longer periodic and its correct evaluation outside of the initially given x interval is difficult. """ if nu <= 0: return self.derivative(-nu) c = np.zeros((self.c.shape[0] + nu, self.c.shape[1]) + self.c.shape[2:], dtype=self.c.dtype) c[:-nu] = self.c # divide by the correct rising factorials factor = spec.poch(np.arange(self.c.shape[0], 0, -1), nu) c[:-nu] /= factor[(slice(None),) + (None,)*(c.ndim-1)] # fix continuity of added degrees of freedom self._ensure_c_contiguous() _ppoly.fix_continuity(c.reshape(c.shape[0], c.shape[1], -1), self.x, nu - 1) if self.extrapolate == 'periodic': extrapolate = False else: extrapolate = self.extrapolate # construct a compatible polynomial return self.construct_fast(c, self.x, extrapolate, self.axis) def integrate(self, a, b, extrapolate=None): """ Compute a definite integral over a piecewise polynomial. Parameters ---------- a : float Lower integration bound b : float Upper integration bound extrapolate : {bool, 'periodic', None}, optional If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If 'periodic', periodic extrapolation is used. If None (default), use `self.extrapolate`. Returns ------- ig : array_like Definite integral of the piecewise polynomial over [a, b] """ if extrapolate is None: extrapolate = self.extrapolate # Swap integration bounds if needed sign = 1 if b < a: a, b = b, a sign = -1 range_int = np.empty((prod(self.c.shape[2:]),), dtype=self.c.dtype) self._ensure_c_contiguous() # Compute the integral. if extrapolate == 'periodic': # Split the integral into the part over period (can be several # of them) and the remaining part. xs, xe = self.x[0], self.x[-1] period = xe - xs interval = b - a n_periods, left = divmod(interval, period) if n_periods > 0: _ppoly.integrate( self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, xs, xe, False, out=range_int) range_int *= n_periods else: range_int.fill(0) # Map a to [xs, xe], b is always a + left. a = xs + (a - xs) % period b = a + left # If b <= xe then we need to integrate over [a, b], otherwise # over [a, xe] and from xs to what is remained. remainder_int = np.empty_like(range_int) if b <= xe: _ppoly.integrate( self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, a, b, False, out=remainder_int) range_int += remainder_int else: _ppoly.integrate( self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, a, xe, False, out=remainder_int) range_int += remainder_int _ppoly.integrate( self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, xs, xs + left + a - xe, False, out=remainder_int) range_int += remainder_int else: _ppoly.integrate( self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, a, b, bool(extrapolate), out=range_int) # Return range_int *= sign return range_int.reshape(self.c.shape[2:]) def solve(self, y=0., discontinuity=True, extrapolate=None): """ Find real solutions of the the equation ``pp(x) == y``. Parameters ---------- y : float, optional Right-hand side. Default is zero. discontinuity : bool, optional Whether to report sign changes across discontinuities at breakpoints as roots. extrapolate : {bool, 'periodic', None}, optional If bool, determines whether to return roots from the polynomial extrapolated based on first and last intervals, 'periodic' works the same as False. If None (default), use `self.extrapolate`. Returns ------- roots : ndarray Roots of the polynomial(s). If the PPoly object describes multiple polynomials, the return value is an object array whose each element is an ndarray containing the roots. Notes ----- This routine works only on real-valued polynomials. If the piecewise polynomial contains sections that are identically zero, the root list will contain the start point of the corresponding interval, followed by a ``nan`` value. If the polynomial is discontinuous across a breakpoint, and there is a sign change across the breakpoint, this is reported if the `discont` parameter is True. Examples -------- Finding roots of ``[x**2 - 1, (x - 1)**2]`` defined on intervals ``[-2, 1], [1, 2]``: >>> from scipy.interpolate import PPoly >>> pp = PPoly(np.array([[1, -4, 3], [1, 0, 0]]).T, [-2, 1, 2]) >>> pp.solve() array([-1., 1.]) """ if extrapolate is None: extrapolate = self.extrapolate self._ensure_c_contiguous() if np.issubdtype(self.c.dtype, np.complexfloating): raise ValueError("Root finding is only for " "real-valued polynomials") y = float(y) r = _ppoly.real_roots(self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, y, bool(discontinuity), bool(extrapolate)) if self.c.ndim == 2: return r[0] else: r2 = np.empty(prod(self.c.shape[2:]), dtype=object) # this for-loop is equivalent to ``r2[...] = r``, but that's broken # in numpy 1.6.0 for ii, root in enumerate(r): r2[ii] = root return r2.reshape(self.c.shape[2:]) def roots(self, discontinuity=True, extrapolate=None): """ Find real roots of the the piecewise polynomial. Parameters ---------- discontinuity : bool, optional Whether to report sign changes across discontinuities at breakpoints as roots. extrapolate : {bool, 'periodic', None}, optional If bool, determines whether to return roots from the polynomial extrapolated based on first and last intervals, 'periodic' works the same as False. If None (default), use `self.extrapolate`. Returns ------- roots : ndarray Roots of the polynomial(s). If the PPoly object describes multiple polynomials, the return value is an object array whose each element is an ndarray containing the roots. See Also -------- PPoly.solve """ return self.solve(0, discontinuity, extrapolate) @classmethod def from_spline(cls, tck, extrapolate=None): """ Construct a piecewise polynomial from a spline Parameters ---------- tck A spline, as returned by `splrep` or a BSpline object. extrapolate : bool or 'periodic', optional If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If 'periodic', periodic extrapolation is used. Default is True. """ if isinstance(tck, BSpline): t, c, k = tck.tck if extrapolate is None: extrapolate = tck.extrapolate else: t, c, k = tck cvals = np.empty((k + 1, len(t)-1), dtype=c.dtype) for m in xrange(k, -1, -1): y = fitpack.splev(t[:-1], tck, der=m) cvals[k - m, :] = y/spec.gamma(m+1) return cls.construct_fast(cvals, t, extrapolate) @classmethod def from_bernstein_basis(cls, bp, extrapolate=None): """ Construct a piecewise polynomial in the power basis from a polynomial in Bernstein basis. Parameters ---------- bp : BPoly A Bernstein basis polynomial, as created by BPoly extrapolate : bool or 'periodic', optional If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If 'periodic', periodic extrapolation is used. Default is True. """ if not isinstance(bp, BPoly): raise TypeError(".from_bernstein_basis only accepts BPoly instances. " "Got %s instead." % type(bp)) dx = np.diff(bp.x) k = bp.c.shape[0] - 1 # polynomial order rest = (None,)*(bp.c.ndim-2) c = np.zeros_like(bp.c) for a in range(k+1): factor = (-1)**a * comb(k, a) * bp.c[a] for s in range(a, k+1): val = comb(k-a, s-a) * (-1)**s c[k-s] += factor * val / dx[(slice(None),)+rest]**s if extrapolate is None: extrapolate = bp.extrapolate return cls.construct_fast(c, bp.x, extrapolate, bp.axis) class BPoly(_PPolyBase): """Piecewise polynomial in terms of coefficients and breakpoints. The polynomial between ``x[i]`` and ``x[i + 1]`` is written in the Bernstein polynomial basis:: S = sum(c[a, i] * b(a, k; x) for a in range(k+1)), where ``k`` is the degree of the polynomial, and:: b(a, k; x) = binom(k, a) * t**a * (1 - t)**(k - a), with ``t = (x - x[i]) / (x[i+1] - x[i])`` and ``binom`` is the binomial coefficient. Parameters ---------- c : ndarray, shape (k, m, ...) Polynomial coefficients, order `k` and `m` intervals x : ndarray, shape (m+1,) Polynomial breakpoints. Must be sorted in either increasing or decreasing order. extrapolate : bool, optional If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If 'periodic', periodic extrapolation is used. Default is True. axis : int, optional Interpolation axis. Default is zero. Attributes ---------- x : ndarray Breakpoints. c : ndarray Coefficients of the polynomials. They are reshaped to a 3-dimensional array with the last dimension representing the trailing dimensions of the original coefficient array. axis : int Interpolation axis. Methods ------- __call__ extend derivative antiderivative integrate construct_fast from_power_basis from_derivatives See also -------- PPoly : piecewise polynomials in the power basis Notes ----- Properties of Bernstein polynomials are well documented in the literature, see for example [1]_ [2]_ [3]_. References ---------- .. [1] https://en.wikipedia.org/wiki/Bernstein_polynomial .. [2] Kenneth I. Joy, Bernstein polynomials, http://www.idav.ucdavis.edu/education/CAGDNotes/Bernstein-Polynomials.pdf .. [3] E. H. Doha, A. H. Bhrawy, and M. A. Saker, Boundary Value Problems, vol 2011, article ID 829546, :doi:`10.1155/2011/829543`. Examples -------- >>> from scipy.interpolate import BPoly >>> x = [0, 1] >>> c = [[1], [2], [3]] >>> bp = BPoly(c, x) This creates a 2nd order polynomial .. math:: B(x) = 1 \\times b_{0, 2}(x) + 2 \\times b_{1, 2}(x) + 3 \\times b_{2, 2}(x) \\\\ = 1 \\times (1-x)^2 + 2 \\times 2 x (1 - x) + 3 \\times x^2 """ def _evaluate(self, x, nu, extrapolate, out): _ppoly.evaluate_bernstein( self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, x, nu, bool(extrapolate), out) def derivative(self, nu=1): """ Construct a new piecewise polynomial representing the derivative. Parameters ---------- nu : int, optional Order of derivative to evaluate. Default is 1, i.e. compute the first derivative. If negative, the antiderivative is returned. Returns ------- bp : BPoly Piecewise polynomial of order k - nu representing the derivative of this polynomial. """ if nu < 0: return self.antiderivative(-nu) if nu > 1: bp = self for k in range(nu): bp = bp.derivative() return bp # reduce order if nu == 0: c2 = self.c.copy() else: # For a polynomial # B(x) = \sum_{a=0}^{k} c_a b_{a, k}(x), # we use the fact that # b'_{a, k} = k ( b_{a-1, k-1} - b_{a, k-1} ), # which leads to # B'(x) = \sum_{a=0}^{k-1} (c_{a+1} - c_a) b_{a, k-1} # # finally, for an interval [y, y + dy] with dy != 1, # we need to correct for an extra power of dy rest = (None,)*(self.c.ndim-2) k = self.c.shape[0] - 1 dx = np.diff(self.x)[(None, slice(None))+rest] c2 = k * np.diff(self.c, axis=0) / dx if c2.shape[0] == 0: # derivative of order 0 is zero c2 = np.zeros((1,) + c2.shape[1:], dtype=c2.dtype) # construct a compatible polynomial return self.construct_fast(c2, self.x, self.extrapolate, self.axis) def antiderivative(self, nu=1): """ Construct a new piecewise polynomial representing the antiderivative. Parameters ---------- nu : int, optional Order of antiderivative to evaluate. Default is 1, i.e. compute the first integral. If negative, the derivative is returned. Returns ------- bp : BPoly Piecewise polynomial of order k + nu representing the antiderivative of this polynomial. Notes ----- If antiderivative is computed and ``self.extrapolate='periodic'``, it will be set to False for the returned instance. This is done because the antiderivative is no longer periodic and its correct evaluation outside of the initially given x interval is difficult. """ if nu <= 0: return self.derivative(-nu) if nu > 1: bp = self for k in range(nu): bp = bp.antiderivative() return bp # Construct the indefinite integrals on individual intervals c, x = self.c, self.x k = c.shape[0] c2 = np.zeros((k+1,) + c.shape[1:], dtype=c.dtype) c2[1:, ...] = np.cumsum(c, axis=0) / k delta = x[1:] - x[:-1] c2 *= delta[(None, slice(None)) + (None,)*(c.ndim-2)] # Now fix continuity: on the very first interval, take the integration # constant to be zero; on an interval [x_j, x_{j+1}) with j>0, # the integration constant is then equal to the jump of the `bp` at x_j. # The latter is given by the coefficient of B_{n+1, n+1} # *on the previous interval* (other B. polynomials are zero at the # breakpoint). Finally, use the fact that BPs form a partition of unity. c2[:,1:] += np.cumsum(c2[k, :], axis=0)[:-1] if self.extrapolate == 'periodic': extrapolate = False else: extrapolate = self.extrapolate return self.construct_fast(c2, x, extrapolate, axis=self.axis) def integrate(self, a, b, extrapolate=None): """ Compute a definite integral over a piecewise polynomial. Parameters ---------- a : float Lower integration bound b : float Upper integration bound extrapolate : {bool, 'periodic', None}, optional Whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If 'periodic', periodic extrapolation is used. If None (default), use `self.extrapolate`. Returns ------- array_like Definite integral of the piecewise polynomial over [a, b] """ # XXX: can probably use instead the fact that # \int_0^{1} B_{j, n}(x) \dx = 1/(n+1) ib = self.antiderivative() if extrapolate is None: extrapolate = self.extrapolate # ib.extrapolate shouldn't be 'periodic', it is converted to # False for 'periodic. in antiderivative() call. if extrapolate != 'periodic': ib.extrapolate = extrapolate if extrapolate == 'periodic': # Split the integral into the part over period (can be several # of them) and the remaining part. # For simplicity and clarity convert to a <= b case. if a <= b: sign = 1 else: a, b = b, a sign = -1 xs, xe = self.x[0], self.x[-1] period = xe - xs interval = b - a n_periods, left = divmod(interval, period) res = n_periods * (ib(xe) - ib(xs)) # Map a and b to [xs, xe]. a = xs + (a - xs) % period b = a + left # If b <= xe then we need to integrate over [a, b], otherwise # over [a, xe] and from xs to what is remained. if b <= xe: res += ib(b) - ib(a) else: res += ib(xe) - ib(a) + ib(xs + left + a - xe) - ib(xs) return sign * res else: return ib(b) - ib(a) def extend(self, c, x, right=None): k = max(self.c.shape[0], c.shape[0]) self.c = self._raise_degree(self.c, k - self.c.shape[0]) c = self._raise_degree(c, k - c.shape[0]) return _PPolyBase.extend(self, c, x, right) extend.__doc__ = _PPolyBase.extend.__doc__ @classmethod def from_power_basis(cls, pp, extrapolate=None): """ Construct a piecewise polynomial in Bernstein basis from a power basis polynomial. Parameters ---------- pp : PPoly A piecewise polynomial in the power basis extrapolate : bool or 'periodic', optional If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If 'periodic', periodic extrapolation is used. Default is True. """ if not isinstance(pp, PPoly): raise TypeError(".from_power_basis only accepts PPoly instances. " "Got %s instead." % type(pp)) dx = np.diff(pp.x) k = pp.c.shape[0] - 1 # polynomial order rest = (None,)*(pp.c.ndim-2) c = np.zeros_like(pp.c) for a in range(k+1): factor = pp.c[a] / comb(k, k-a) * dx[(slice(None),)+rest]**(k-a) for j in range(k-a, k+1): c[j] += factor * comb(j, k-a) if extrapolate is None: extrapolate = pp.extrapolate return cls.construct_fast(c, pp.x, extrapolate, pp.axis) @classmethod def from_derivatives(cls, xi, yi, orders=None, extrapolate=None): """Construct a piecewise polynomial in the Bernstein basis, compatible with the specified values and derivatives at breakpoints. Parameters ---------- xi : array_like sorted 1D array of x-coordinates yi : array_like or list of array_likes ``yi[i][j]`` is the ``j``-th derivative known at ``xi[i]`` orders : None or int or array_like of ints. Default: None. Specifies the degree of local polynomials. If not None, some derivatives are ignored. extrapolate : bool or 'periodic', optional If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If 'periodic', periodic extrapolation is used. Default is True. Notes ----- If ``k`` derivatives are specified at a breakpoint ``x``, the constructed polynomial is exactly ``k`` times continuously differentiable at ``x``, unless the ``order`` is provided explicitly. In the latter case, the smoothness of the polynomial at the breakpoint is controlled by the ``order``. Deduces the number of derivatives to match at each end from ``order`` and the number of derivatives available. If possible it uses the same number of derivatives from each end; if the number is odd it tries to take the extra one from y2. In any case if not enough derivatives are available at one end or another it draws enough to make up the total from the other end. If the order is too high and not enough derivatives are available, an exception is raised. Examples -------- >>> from scipy.interpolate import BPoly >>> BPoly.from_derivatives([0, 1], [[1, 2], [3, 4]]) Creates a polynomial `f(x)` of degree 3, defined on `[0, 1]` such that `f(0) = 1, df/dx(0) = 2, f(1) = 3, df/dx(1) = 4` >>> BPoly.from_derivatives([0, 1, 2], [[0, 1], [0], [2]]) Creates a piecewise polynomial `f(x)`, such that `f(0) = f(1) = 0`, `f(2) = 2`, and `df/dx(0) = 1`. Based on the number of derivatives provided, the order of the local polynomials is 2 on `[0, 1]` and 1 on `[1, 2]`. Notice that no restriction is imposed on the derivatives at ``x = 1`` and ``x = 2``. Indeed, the explicit form of the polynomial is:: f(x) = | x * (1 - x), 0 <= x < 1 | 2 * (x - 1), 1 <= x <= 2 So that f'(1-0) = -1 and f'(1+0) = 2 """ xi = np.asarray(xi) if len(xi) != len(yi): raise ValueError("xi and yi need to have the same length") if np.any(xi[1:] - xi[:1] <= 0): raise ValueError("x coordinates are not in increasing order") # number of intervals m = len(xi) - 1 # global poly order is k-1, local orders are <=k and can vary try: k = max(len(yi[i]) + len(yi[i+1]) for i in range(m)) except TypeError: raise ValueError("Using a 1D array for y? Please .reshape(-1, 1).") if orders is None: orders = [None] * m else: if isinstance(orders, (integer_types, np.integer)): orders = [orders] * m k = max(k, max(orders)) if any(o <= 0 for o in orders): raise ValueError("Orders must be positive.") c = [] for i in range(m): y1, y2 = yi[i], yi[i+1] if orders[i] is None: n1, n2 = len(y1), len(y2) else: n = orders[i]+1 n1 = min(n//2, len(y1)) n2 = min(n - n1, len(y2)) n1 = min(n - n2, len(y2)) if n1+n2 != n: mesg = ("Point %g has %d derivatives, point %g" " has %d derivatives, but order %d requested" % ( xi[i], len(y1), xi[i+1], len(y2), orders[i])) raise ValueError(mesg) if not (n1 <= len(y1) and n2 <= len(y2)): raise ValueError("`order` input incompatible with" " length y1 or y2.") b = BPoly._construct_from_derivatives(xi[i], xi[i+1], y1[:n1], y2[:n2]) if len(b) < k: b = BPoly._raise_degree(b, k - len(b)) c.append(b) c = np.asarray(c) return cls(c.swapaxes(0, 1), xi, extrapolate) @staticmethod def _construct_from_derivatives(xa, xb, ya, yb): r"""Compute the coefficients of a polynomial in the Bernstein basis given the values and derivatives at the edges. Return the coefficients of a polynomial in the Bernstein basis defined on ``[xa, xb]`` and having the values and derivatives at the endpoints `xa` and `xb` as specified by `ya`` and `yb`. The polynomial constructed is of the minimal possible degree, i.e., if the lengths of `ya` and `yb` are `na` and `nb`, the degree of the polynomial is ``na + nb - 1``. Parameters ---------- xa : float Left-hand end point of the interval xb : float Right-hand end point of the interval ya : array_like Derivatives at `xa`. `ya[0]` is the value of the function, and `ya[i]` for ``i > 0`` is the value of the ``i``-th derivative. yb : array_like Derivatives at `xb`. Returns ------- array coefficient array of a polynomial having specified derivatives Notes ----- This uses several facts from life of Bernstein basis functions. First of all, .. math:: b'_{a, n} = n (b_{a-1, n-1} - b_{a, n-1}) If B(x) is a linear combination of the form .. math:: B(x) = \sum_{a=0}^{n} c_a b_{a, n}, then :math: B'(x) = n \sum_{a=0}^{n-1} (c_{a+1} - c_{a}) b_{a, n-1}. Iterating the latter one, one finds for the q-th derivative .. math:: B^{q}(x) = n!/(n-q)! \sum_{a=0}^{n-q} Q_a b_{a, n-q}, with .. math:: Q_a = \sum_{j=0}^{q} (-)^{j+q} comb(q, j) c_{j+a} This way, only `a=0` contributes to :math: `B^{q}(x = xa)`, and `c_q` are found one by one by iterating `q = 0, ..., na`. At ``x = xb`` it's the same with ``a = n - q``. """ ya, yb = np.asarray(ya), np.asarray(yb) if ya.shape[1:] != yb.shape[1:]: raise ValueError('ya and yb have incompatible dimensions.') dta, dtb = ya.dtype, yb.dtype if (np.issubdtype(dta, np.complexfloating) or np.issubdtype(dtb, np.complexfloating)): dt = np.complex_ else: dt = np.float_ na, nb = len(ya), len(yb) n = na + nb c = np.empty((na+nb,) + ya.shape[1:], dtype=dt) # compute coefficients of a polynomial degree na+nb-1 # walk left-to-right for q in range(0, na): c[q] = ya[q] / spec.poch(n - q, q) * (xb - xa)**q for j in range(0, q): c[q] -= (-1)**(j+q) * comb(q, j) * c[j] # now walk right-to-left for q in range(0, nb): c[-q-1] = yb[q] / spec.poch(n - q, q) * (-1)**q * (xb - xa)**q for j in range(0, q): c[-q-1] -= (-1)**(j+1) * comb(q, j+1) * c[-q+j] return c @staticmethod def _raise_degree(c, d): r"""Raise a degree of a polynomial in the Bernstein basis. Given the coefficients of a polynomial degree `k`, return (the coefficients of) the equivalent polynomial of degree `k+d`. Parameters ---------- c : array_like coefficient array, 1D d : integer Returns ------- array coefficient array, 1D array of length `c.shape[0] + d` Notes ----- This uses the fact that a Bernstein polynomial `b_{a, k}` can be identically represented as a linear combination of polynomials of a higher degree `k+d`: .. math:: b_{a, k} = comb(k, a) \sum_{j=0}^{d} b_{a+j, k+d} \ comb(d, j) / comb(k+d, a+j) """ if d == 0: return c k = c.shape[0] - 1 out = np.zeros((c.shape[0] + d,) + c.shape[1:], dtype=c.dtype) for a in range(c.shape[0]): f = c[a] * comb(k, a) for j in range(d+1): out[a+j] += f * comb(d, j) / comb(k+d, a+j) return out class NdPPoly(object): """ Piecewise tensor product polynomial The value at point ``xp = (x', y', z', ...)`` is evaluated by first computing the interval indices `i` such that:: x[0][i[0]] <= x' < x[0][i[0]+1] x[1][i[1]] <= y' < x[1][i[1]+1] ... and then computing:: S = sum(c[k0-m0-1,...,kn-mn-1,i[0],...,i[n]] * (xp[0] - x[0][i[0]])**m0 * ... * (xp[n] - x[n][i[n]])**mn for m0 in range(k[0]+1) ... for mn in range(k[n]+1)) where ``k[j]`` is the degree of the polynomial in dimension j. This representation is the piecewise multivariate power basis. Parameters ---------- c : ndarray, shape (k0, ..., kn, m0, ..., mn, ...) Polynomial coefficients, with polynomial order `kj` and `mj+1` intervals for each dimension `j`. x : ndim-tuple of ndarrays, shapes (mj+1,) Polynomial breakpoints for each dimension. These must be sorted in increasing order. extrapolate : bool, optional Whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. Default: True. Attributes ---------- x : tuple of ndarrays Breakpoints. c : ndarray Coefficients of the polynomials. Methods ------- __call__ construct_fast See also -------- PPoly : piecewise polynomials in 1D Notes ----- High-order polynomials in the power basis can be numerically unstable. """ def __init__(self, c, x, extrapolate=None): self.x = tuple(np.ascontiguousarray(v, dtype=np.float64) for v in x) self.c = np.asarray(c) if extrapolate is None: extrapolate = True self.extrapolate = bool(extrapolate) ndim = len(self.x) if any(v.ndim != 1 for v in self.x): raise ValueError("x arrays must all be 1-dimensional") if any(v.size < 2 for v in self.x): raise ValueError("x arrays must all contain at least 2 points") if c.ndim < 2*ndim: raise ValueError("c must have at least 2*len(x) dimensions") if any(np.any(v[1:] - v[:-1] < 0) for v in self.x): raise ValueError("x-coordinates are not in increasing order") if any(a != b.size - 1 for a, b in zip(c.shape[ndim:2*ndim], self.x)): raise ValueError("x and c do not agree on the number of intervals") dtype = self._get_dtype(self.c.dtype) self.c = np.ascontiguousarray(self.c, dtype=dtype) @classmethod def construct_fast(cls, c, x, extrapolate=None): """ Construct the piecewise polynomial without making checks. Takes the same parameters as the constructor. Input arguments ``c`` and ``x`` must be arrays of the correct shape and type. The ``c`` array can only be of dtypes float and complex, and ``x`` array must have dtype float. """ self = object.__new__(cls) self.c = c self.x = x if extrapolate is None: extrapolate = True self.extrapolate = extrapolate return self def _get_dtype(self, dtype): if np.issubdtype(dtype, np.complexfloating) \ or np.issubdtype(self.c.dtype, np.complexfloating): return np.complex_ else: return np.float_ def _ensure_c_contiguous(self): if not self.c.flags.c_contiguous: self.c = self.c.copy() if not isinstance(self.x, tuple): self.x = tuple(self.x) def __call__(self, x, nu=None, extrapolate=None): """ Evaluate the piecewise polynomial or its derivative Parameters ---------- x : array-like Points to evaluate the interpolant at. nu : tuple, optional Orders of derivatives to evaluate. Each must be non-negative. extrapolate : bool, optional Whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. Returns ------- y : array-like Interpolated values. Shape is determined by replacing the interpolation axis in the original array with the shape of x. Notes ----- Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable at the breakpoints. The polynomial intervals are considered half-open, ``[a, b)``, except for the last interval which is closed ``[a, b]``. """ if extrapolate is None: extrapolate = self.extrapolate else: extrapolate = bool(extrapolate) ndim = len(self.x) x = _ndim_coords_from_arrays(x) x_shape = x.shape x = np.ascontiguousarray(x.reshape(-1, x.shape[-1]), dtype=np.float_) if nu is None: nu = np.zeros((ndim,), dtype=np.intc) else: nu = np.asarray(nu, dtype=np.intc) if nu.ndim != 1 or nu.shape[0] != ndim: raise ValueError("invalid number of derivative orders nu") dim1 = prod(self.c.shape[:ndim]) dim2 = prod(self.c.shape[ndim:2*ndim]) dim3 = prod(self.c.shape[2*ndim:]) ks = np.array(self.c.shape[:ndim], dtype=np.intc) out = np.empty((x.shape[0], dim3), dtype=self.c.dtype) self._ensure_c_contiguous() _ppoly.evaluate_nd(self.c.reshape(dim1, dim2, dim3), self.x, ks, x, nu, bool(extrapolate), out) return out.reshape(x_shape[:-1] + self.c.shape[2*ndim:]) def _derivative_inplace(self, nu, axis): """ Compute 1D derivative along a selected dimension in-place May result to non-contiguous c array. """ if nu < 0: return self._antiderivative_inplace(-nu, axis) ndim = len(self.x) axis = axis % ndim # reduce order if nu == 0: # noop return else: sl = [slice(None)]*ndim sl[axis] = slice(None, -nu, None) c2 = self.c[tuple(sl)] if c2.shape[axis] == 0: # derivative of order 0 is zero shp = list(c2.shape) shp[axis] = 1 c2 = np.zeros(shp, dtype=c2.dtype) # multiply by the correct rising factorials factor = spec.poch(np.arange(c2.shape[axis], 0, -1), nu) sl = [None]*c2.ndim sl[axis] = slice(None) c2 *= factor[tuple(sl)] self.c = c2 def _antiderivative_inplace(self, nu, axis): """ Compute 1D antiderivative along a selected dimension May result to non-contiguous c array. """ if nu <= 0: return self._derivative_inplace(-nu, axis) ndim = len(self.x) axis = axis % ndim perm = list(range(ndim)) perm[0], perm[axis] = perm[axis], perm[0] perm = perm + list(range(ndim, self.c.ndim)) c = self.c.transpose(perm) c2 = np.zeros((c.shape[0] + nu,) + c.shape[1:], dtype=c.dtype) c2[:-nu] = c # divide by the correct rising factorials factor = spec.poch(np.arange(c.shape[0], 0, -1), nu) c2[:-nu] /= factor[(slice(None),) + (None,)*(c.ndim-1)] # fix continuity of added degrees of freedom perm2 = list(range(c2.ndim)) perm2[1], perm2[ndim+axis] = perm2[ndim+axis], perm2[1] c2 = c2.transpose(perm2) c2 = c2.copy() _ppoly.fix_continuity(c2.reshape(c2.shape[0], c2.shape[1], -1), self.x[axis], nu-1) c2 = c2.transpose(perm2) c2 = c2.transpose(perm) # Done self.c = c2 def derivative(self, nu): """ Construct a new piecewise polynomial representing the derivative. Parameters ---------- nu : ndim-tuple of int Order of derivatives to evaluate for each dimension. If negative, the antiderivative is returned. Returns ------- pp : NdPPoly Piecewise polynomial of orders (k[0] - nu[0], ..., k[n] - nu[n]) representing the derivative of this polynomial. Notes ----- Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable at the breakpoints. The polynomial intervals in each dimension are considered half-open, ``[a, b)``, except for the last interval which is closed ``[a, b]``. """ p = self.construct_fast(self.c.copy(), self.x, self.extrapolate) for axis, n in enumerate(nu): p._derivative_inplace(n, axis) p._ensure_c_contiguous() return p def antiderivative(self, nu): """ Construct a new piecewise polynomial representing the antiderivative. Antiderivative is also the indefinite integral of the function, and derivative is its inverse operation. Parameters ---------- nu : ndim-tuple of int Order of derivatives to evaluate for each dimension. If negative, the derivative is returned. Returns ------- pp : PPoly Piecewise polynomial of order k2 = k + n representing the antiderivative of this polynomial. Notes ----- The antiderivative returned by this function is continuous and continuously differentiable to order n-1, up to floating point rounding error. """ p = self.construct_fast(self.c.copy(), self.x, self.extrapolate) for axis, n in enumerate(nu): p._antiderivative_inplace(n, axis) p._ensure_c_contiguous() return p def integrate_1d(self, a, b, axis, extrapolate=None): r""" Compute NdPPoly representation for one dimensional definite integral The result is a piecewise polynomial representing the integral: .. math:: p(y, z, ...) = \int_a^b dx\, p(x, y, z, ...) where the dimension integrated over is specified with the `axis` parameter. Parameters ---------- a, b : float Lower and upper bound for integration. axis : int Dimension over which to compute the 1D integrals extrapolate : bool, optional Whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. Returns ------- ig : NdPPoly or array-like Definite integral of the piecewise polynomial over [a, b]. If the polynomial was 1-dimensional, an array is returned, otherwise, an NdPPoly object. """ if extrapolate is None: extrapolate = self.extrapolate else: extrapolate = bool(extrapolate) ndim = len(self.x) axis = int(axis) % ndim # reuse 1D integration routines c = self.c swap = list(range(c.ndim)) swap.insert(0, swap[axis]) del swap[axis + 1] swap.insert(1, swap[ndim + axis]) del swap[ndim + axis + 1] c = c.transpose(swap) p = PPoly.construct_fast(c.reshape(c.shape[0], c.shape[1], -1), self.x[axis], extrapolate=extrapolate) out = p.integrate(a, b, extrapolate=extrapolate) # Construct result if ndim == 1: return out.reshape(c.shape[2:]) else: c = out.reshape(c.shape[2:]) x = self.x[:axis] + self.x[axis+1:] return self.construct_fast(c, x, extrapolate=extrapolate) def integrate(self, ranges, extrapolate=None): """ Compute a definite integral over a piecewise polynomial. Parameters ---------- ranges : ndim-tuple of 2-tuples float Sequence of lower and upper bounds for each dimension, ``[(a[0], b[0]), ..., (a[ndim-1], b[ndim-1])]`` extrapolate : bool, optional Whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. Returns ------- ig : array_like Definite integral of the piecewise polynomial over [a[0], b[0]] x ... x [a[ndim-1], b[ndim-1]] """ ndim = len(self.x) if extrapolate is None: extrapolate = self.extrapolate else: extrapolate = bool(extrapolate) if not hasattr(ranges, '__len__') or len(ranges) != ndim: raise ValueError("Range not a sequence of correct length") self._ensure_c_contiguous() # Reuse 1D integration routine c = self.c for n, (a, b) in enumerate(ranges): swap = list(range(c.ndim)) swap.insert(1, swap[ndim - n]) del swap[ndim - n + 1] c = c.transpose(swap) p = PPoly.construct_fast(c, self.x[n], extrapolate=extrapolate) out = p.integrate(a, b, extrapolate=extrapolate) c = out.reshape(c.shape[2:]) return c class RegularGridInterpolator(object): """ Interpolation on a regular grid in arbitrary dimensions The data must be defined on a regular grid; the grid spacing however may be uneven. Linear and nearest-neighbour interpolation are supported. After setting up the interpolator object, the interpolation method (*linear* or *nearest*) may be chosen at each evaluation. Parameters ---------- points : tuple of ndarray of float, with shapes (m1, ), ..., (mn, ) The points defining the regular grid in n dimensions. values : array_like, shape (m1, ..., mn, ...) The data on the regular grid in n dimensions. method : str, optional The method of interpolation to perform. Supported are "linear" and "nearest". This parameter will become the default for the object's ``__call__`` method. Default is "linear". bounds_error : bool, optional If True, when interpolated values are requested outside of the domain of the input data, a ValueError is raised. If False, then `fill_value` is used. fill_value : number, optional If provided, the value to use for points outside of the interpolation domain. If None, values outside the domain are extrapolated. Methods ------- __call__ Notes ----- Contrary to LinearNDInterpolator and NearestNDInterpolator, this class avoids expensive triangulation of the input data by taking advantage of the regular grid structure. If any of `points` have a dimension of size 1, linear interpolation will return an array of `nan` values. Nearest-neighbor interpolation will work as usual in this case. .. versionadded:: 0.14 Examples -------- Evaluate a simple example function on the points of a 3D grid: >>> from scipy.interpolate import RegularGridInterpolator >>> def f(x, y, z): ... return 2 * x**3 + 3 * y**2 - z >>> x = np.linspace(1, 4, 11) >>> y = np.linspace(4, 7, 22) >>> z = np.linspace(7, 9, 33) >>> data = f(*np.meshgrid(x, y, z, indexing='ij', sparse=True)) ``data`` is now a 3D array with ``data[i,j,k] = f(x[i], y[j], z[k])``. Next, define an interpolating function from this data: >>> my_interpolating_function = RegularGridInterpolator((x, y, z), data) Evaluate the interpolating function at the two points ``(x,y,z) = (2.1, 6.2, 8.3)`` and ``(3.3, 5.2, 7.1)``: >>> pts = np.array([[2.1, 6.2, 8.3], [3.3, 5.2, 7.1]]) >>> my_interpolating_function(pts) array([ 125.80469388, 146.30069388]) which is indeed a close approximation to ``[f(2.1, 6.2, 8.3), f(3.3, 5.2, 7.1)]``. See also -------- NearestNDInterpolator : Nearest neighbour interpolation on unstructured data in N dimensions LinearNDInterpolator : Piecewise linear interpolant on unstructured data in N dimensions References ---------- .. [1] Python package *regulargrid* by Johannes Buchner, see https://pypi.python.org/pypi/regulargrid/ .. [2] Wikipedia, "Trilinear interpolation", https://en.wikipedia.org/wiki/Trilinear_interpolation .. [3] Weiser, Alan, and Sergio E. Zarantonello. "A note on piecewise linear and multilinear table interpolation in many dimensions." MATH. COMPUT. 50.181 (1988): 189-196. https://www.ams.org/journals/mcom/1988-50-181/S0025-5718-1988-0917826-0/S0025-5718-1988-0917826-0.pdf """ # this class is based on code originally programmed by Johannes Buchner, # see https://github.com/JohannesBuchner/regulargrid def __init__(self, points, values, method="linear", bounds_error=True, fill_value=np.nan): if method not in ["linear", "nearest"]: raise ValueError("Method '%s' is not defined" % method) self.method = method self.bounds_error = bounds_error if not hasattr(values, 'ndim'): # allow reasonable duck-typed values values = np.asarray(values) if len(points) > values.ndim: raise ValueError("There are %d point arrays, but values has %d " "dimensions" % (len(points), values.ndim)) if hasattr(values, 'dtype') and hasattr(values, 'astype'): if not np.issubdtype(values.dtype, np.inexact): values = values.astype(float) self.fill_value = fill_value if fill_value is not None: fill_value_dtype = np.asarray(fill_value).dtype if (hasattr(values, 'dtype') and not np.can_cast(fill_value_dtype, values.dtype, casting='same_kind')): raise ValueError("fill_value must be either 'None' or " "of a type compatible with values") for i, p in enumerate(points): if not np.all(np.diff(p) > 0.): raise ValueError("The points in dimension %d must be strictly " "ascending" % i) if not np.asarray(p).ndim == 1: raise ValueError("The points in dimension %d must be " "1-dimensional" % i) if not values.shape[i] == len(p): raise ValueError("There are %d points and %d values in " "dimension %d" % (len(p), values.shape[i], i)) self.grid = tuple([np.asarray(p) for p in points]) self.values = values def __call__(self, xi, method=None): """ Interpolation at coordinates Parameters ---------- xi : ndarray of shape (..., ndim) The coordinates to sample the gridded data at method : str The method of interpolation to perform. Supported are "linear" and "nearest". """ method = self.method if method is None else method if method not in ["linear", "nearest"]: raise ValueError("Method '%s' is not defined" % method) ndim = len(self.grid) xi = _ndim_coords_from_arrays(xi, ndim=ndim) if xi.shape[-1] != len(self.grid): raise ValueError("The requested sample points xi have dimension " "%d, but this RegularGridInterpolator has " "dimension %d" % (xi.shape[1], ndim)) xi_shape = xi.shape xi = xi.reshape(-1, xi_shape[-1]) if self.bounds_error: for i, p in enumerate(xi.T): if not np.logical_and(np.all(self.grid[i][0] <= p), np.all(p <= self.grid[i][-1])): raise ValueError("One of the requested xi is out of bounds " "in dimension %d" % i) indices, norm_distances, out_of_bounds = self._find_indices(xi.T) if method == "linear": result = self._evaluate_linear(indices, norm_distances, out_of_bounds) elif method == "nearest": result = self._evaluate_nearest(indices, norm_distances, out_of_bounds) if not self.bounds_error and self.fill_value is not None: result[out_of_bounds] = self.fill_value return result.reshape(xi_shape[:-1] + self.values.shape[ndim:]) def _evaluate_linear(self, indices, norm_distances, out_of_bounds): # slice for broadcasting over trailing dimensions in self.values vslice = (slice(None),) + (None,)*(self.values.ndim - len(indices)) # find relevant values # each i and i+1 represents a edge edges = itertools.product(*[[i, i + 1] for i in indices]) values = 0. for edge_indices in edges: weight = 1. for ei, i, yi in zip(edge_indices, indices, norm_distances): weight *= np.where(ei == i, 1 - yi, yi) values += np.asarray(self.values[edge_indices]) * weight[vslice] return values def _evaluate_nearest(self, indices, norm_distances, out_of_bounds): idx_res = [np.where(yi <= .5, i, i + 1) for i, yi in zip(indices, norm_distances)] return self.values[tuple(idx_res)] def _find_indices(self, xi): # find relevant edges between which xi are situated indices = [] # compute distance to lower edge in unity units norm_distances = [] # check for out of bounds xi out_of_bounds = np.zeros((xi.shape[1]), dtype=bool) # iterate through dimensions for x, grid in zip(xi, self.grid): i = np.searchsorted(grid, x) - 1 i[i < 0] = 0 i[i > grid.size - 2] = grid.size - 2 indices.append(i) norm_distances.append((x - grid[i]) / (grid[i + 1] - grid[i])) if not self.bounds_error: out_of_bounds += x < grid[0] out_of_bounds += x > grid[-1] return indices, norm_distances, out_of_bounds def interpn(points, values, xi, method="linear", bounds_error=True, fill_value=np.nan): """ Multidimensional interpolation on regular grids. Parameters ---------- points : tuple of ndarray of float, with shapes (m1, ), ..., (mn, ) The points defining the regular grid in n dimensions. values : array_like, shape (m1, ..., mn, ...) The data on the regular grid in n dimensions. xi : ndarray of shape (..., ndim) The coordinates to sample the gridded data at method : str, optional The method of interpolation to perform. Supported are "linear" and "nearest", and "splinef2d". "splinef2d" is only supported for 2-dimensional data. bounds_error : bool, optional If True, when interpolated values are requested outside of the domain of the input data, a ValueError is raised. If False, then `fill_value` is used. fill_value : number, optional If provided, the value to use for points outside of the interpolation domain. If None, values outside the domain are extrapolated. Extrapolation is not supported by method "splinef2d". Returns ------- values_x : ndarray, shape xi.shape[:-1] + values.shape[ndim:] Interpolated values at input coordinates. Notes ----- .. versionadded:: 0.14 See also -------- NearestNDInterpolator : Nearest neighbour interpolation on unstructured data in N dimensions LinearNDInterpolator : Piecewise linear interpolant on unstructured data in N dimensions RegularGridInterpolator : Linear and nearest-neighbor Interpolation on a regular grid in arbitrary dimensions RectBivariateSpline : Bivariate spline approximation over a rectangular mesh """ # sanity check 'method' kwarg if method not in ["linear", "nearest", "splinef2d"]: raise ValueError("interpn only understands the methods 'linear', " "'nearest', and 'splinef2d'. You provided %s." % method) if not hasattr(values, 'ndim'): values = np.asarray(values) ndim = values.ndim if ndim > 2 and method == "splinef2d": raise ValueError("The method spline2fd can only be used for " "2-dimensional input data") if not bounds_error and fill_value is None and method == "splinef2d": raise ValueError("The method spline2fd does not support extrapolation.") # sanity check consistency of input dimensions if len(points) > ndim: raise ValueError("There are %d point arrays, but values has %d " "dimensions" % (len(points), ndim)) if len(points) != ndim and method == 'splinef2d': raise ValueError("The method spline2fd can only be used for " "scalar data with one point per coordinate") # sanity check input grid for i, p in enumerate(points): if not np.all(np.diff(p) > 0.): raise ValueError("The points in dimension %d must be strictly " "ascending" % i) if not np.asarray(p).ndim == 1: raise ValueError("The points in dimension %d must be " "1-dimensional" % i) if not values.shape[i] == len(p): raise ValueError("There are %d points and %d values in " "dimension %d" % (len(p), values.shape[i], i)) grid = tuple([np.asarray(p) for p in points]) # sanity check requested xi xi = _ndim_coords_from_arrays(xi, ndim=len(grid)) if xi.shape[-1] != len(grid): raise ValueError("The requested sample points xi have dimension " "%d, but this RegularGridInterpolator has " "dimension %d" % (xi.shape[1], len(grid))) for i, p in enumerate(xi.T): if bounds_error and not np.logical_and(np.all(grid[i][0] <= p), np.all(p <= grid[i][-1])): raise ValueError("One of the requested xi is out of bounds " "in dimension %d" % i) # perform interpolation if method == "linear": interp = RegularGridInterpolator(points, values, method="linear", bounds_error=bounds_error, fill_value=fill_value) return interp(xi) elif method == "nearest": interp = RegularGridInterpolator(points, values, method="nearest", bounds_error=bounds_error, fill_value=fill_value) return interp(xi) elif method == "splinef2d": xi_shape = xi.shape xi = xi.reshape(-1, xi.shape[-1]) # RectBivariateSpline doesn't support fill_value; we need to wrap here idx_valid = np.all((grid[0][0] <= xi[:, 0], xi[:, 0] <= grid[0][-1], grid[1][0] <= xi[:, 1], xi[:, 1] <= grid[1][-1]), axis=0) result = np.empty_like(xi[:, 0]) # make a copy of values for RectBivariateSpline interp = RectBivariateSpline(points[0], points[1], values[:]) result[idx_valid] = interp.ev(xi[idx_valid, 0], xi[idx_valid, 1]) result[np.logical_not(idx_valid)] = fill_value return result.reshape(xi_shape[:-1]) # backward compatibility wrapper class _ppform(PPoly): """ Deprecated piecewise polynomial class. New code should use the `PPoly` class instead. """ def __init__(self, coeffs, breaks, fill=0.0, sort=False): warnings.warn("_ppform is deprecated -- use PPoly instead", category=DeprecationWarning) if sort: breaks = np.sort(breaks) else: breaks = np.asarray(breaks) PPoly.__init__(self, coeffs, breaks) self.coeffs = self.c self.breaks = self.x self.K = self.coeffs.shape[0] self.fill = fill self.a = self.breaks[0] self.b = self.breaks[-1] def __call__(self, x): return PPoly.__call__(self, x, 0, False) def _evaluate(self, x, nu, extrapolate, out): PPoly._evaluate(self, x, nu, extrapolate, out) out[~((x >= self.a) & (x <= self.b))] = self.fill return out @classmethod def fromspline(cls, xk, cvals, order, fill=0.0): # Note: this spline representation is incompatible with FITPACK N = len(xk)-1 sivals = np.empty((order+1, N), dtype=float) for m in xrange(order, -1, -1): fact = spec.gamma(m+1) res = _fitpack._bspleval(xk[:-1], xk, cvals, order, m) res /= fact sivals[order-m, :] = res return cls(sivals, xk, fill=fill)
bsd-3-clause
hainm/scikit-learn
sklearn/decomposition/tests/test_fastica.py
272
7798
""" Test the fastica algorithm. """ import itertools import warnings import numpy as np from scipy import stats from nose.tools import assert_raises from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_warns from sklearn.decomposition import FastICA, fastica, PCA from sklearn.decomposition.fastica_ import _gs_decorrelation from sklearn.externals.six import moves def center_and_norm(x, axis=-1): """ Centers and norms x **in place** Parameters ----------- x: ndarray Array with an axis of observations (statistical units) measured on random variables. axis: int, optional Axis along which the mean and variance are calculated. """ x = np.rollaxis(x, axis) x -= x.mean(axis=0) x /= x.std(axis=0) def test_gs(): # Test gram schmidt orthonormalization # generate a random orthogonal matrix rng = np.random.RandomState(0) W, _, _ = np.linalg.svd(rng.randn(10, 10)) w = rng.randn(10) _gs_decorrelation(w, W, 10) assert_less((w ** 2).sum(), 1.e-10) w = rng.randn(10) u = _gs_decorrelation(w, W, 5) tmp = np.dot(u, W.T) assert_less((tmp[:5] ** 2).sum(), 1.e-10) def test_fastica_simple(add_noise=False): # Test the FastICA algorithm on very simple data. rng = np.random.RandomState(0) # scipy.stats uses the global RNG: np.random.seed(0) n_samples = 1000 # Generate two sources: s1 = (2 * np.sin(np.linspace(0, 100, n_samples)) > 0) - 1 s2 = stats.t.rvs(1, size=n_samples) s = np.c_[s1, s2].T center_and_norm(s) s1, s2 = s # Mixing angle phi = 0.6 mixing = np.array([[np.cos(phi), np.sin(phi)], [np.sin(phi), -np.cos(phi)]]) m = np.dot(mixing, s) if add_noise: m += 0.1 * rng.randn(2, 1000) center_and_norm(m) # function as fun arg def g_test(x): return x ** 3, (3 * x ** 2).mean(axis=-1) algos = ['parallel', 'deflation'] nls = ['logcosh', 'exp', 'cube', g_test] whitening = [True, False] for algo, nl, whiten in itertools.product(algos, nls, whitening): if whiten: k_, mixing_, s_ = fastica(m.T, fun=nl, algorithm=algo) assert_raises(ValueError, fastica, m.T, fun=np.tanh, algorithm=algo) else: X = PCA(n_components=2, whiten=True).fit_transform(m.T) k_, mixing_, s_ = fastica(X, fun=nl, algorithm=algo, whiten=False) assert_raises(ValueError, fastica, X, fun=np.tanh, algorithm=algo) s_ = s_.T # Check that the mixing model described in the docstring holds: if whiten: assert_almost_equal(s_, np.dot(np.dot(mixing_, k_), m)) center_and_norm(s_) s1_, s2_ = s_ # Check to see if the sources have been estimated # in the wrong order if abs(np.dot(s1_, s2)) > abs(np.dot(s1_, s1)): s2_, s1_ = s_ s1_ *= np.sign(np.dot(s1_, s1)) s2_ *= np.sign(np.dot(s2_, s2)) # Check that we have estimated the original sources if not add_noise: assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=2) assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=2) else: assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=1) assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=1) # Test FastICA class _, _, sources_fun = fastica(m.T, fun=nl, algorithm=algo, random_state=0) ica = FastICA(fun=nl, algorithm=algo, random_state=0) sources = ica.fit_transform(m.T) assert_equal(ica.components_.shape, (2, 2)) assert_equal(sources.shape, (1000, 2)) assert_array_almost_equal(sources_fun, sources) assert_array_almost_equal(sources, ica.transform(m.T)) assert_equal(ica.mixing_.shape, (2, 2)) for fn in [np.tanh, "exp(-.5(x^2))"]: ica = FastICA(fun=fn, algorithm=algo, random_state=0) assert_raises(ValueError, ica.fit, m.T) assert_raises(TypeError, FastICA(fun=moves.xrange(10)).fit, m.T) def test_fastica_nowhiten(): m = [[0, 1], [1, 0]] # test for issue #697 ica = FastICA(n_components=1, whiten=False, random_state=0) assert_warns(UserWarning, ica.fit, m) assert_true(hasattr(ica, 'mixing_')) def test_non_square_fastica(add_noise=False): # Test the FastICA algorithm on very simple data. rng = np.random.RandomState(0) n_samples = 1000 # Generate two sources: t = np.linspace(0, 100, n_samples) s1 = np.sin(t) s2 = np.ceil(np.sin(np.pi * t)) s = np.c_[s1, s2].T center_and_norm(s) s1, s2 = s # Mixing matrix mixing = rng.randn(6, 2) m = np.dot(mixing, s) if add_noise: m += 0.1 * rng.randn(6, n_samples) center_and_norm(m) k_, mixing_, s_ = fastica(m.T, n_components=2, random_state=rng) s_ = s_.T # Check that the mixing model described in the docstring holds: assert_almost_equal(s_, np.dot(np.dot(mixing_, k_), m)) center_and_norm(s_) s1_, s2_ = s_ # Check to see if the sources have been estimated # in the wrong order if abs(np.dot(s1_, s2)) > abs(np.dot(s1_, s1)): s2_, s1_ = s_ s1_ *= np.sign(np.dot(s1_, s1)) s2_ *= np.sign(np.dot(s2_, s2)) # Check that we have estimated the original sources if not add_noise: assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=3) assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=3) def test_fit_transform(): # Test FastICA.fit_transform rng = np.random.RandomState(0) X = rng.random_sample((100, 10)) for whiten, n_components in [[True, 5], [False, None]]: n_components_ = (n_components if n_components is not None else X.shape[1]) ica = FastICA(n_components=n_components, whiten=whiten, random_state=0) Xt = ica.fit_transform(X) assert_equal(ica.components_.shape, (n_components_, 10)) assert_equal(Xt.shape, (100, n_components_)) ica = FastICA(n_components=n_components, whiten=whiten, random_state=0) ica.fit(X) assert_equal(ica.components_.shape, (n_components_, 10)) Xt2 = ica.transform(X) assert_array_almost_equal(Xt, Xt2) def test_inverse_transform(): # Test FastICA.inverse_transform n_features = 10 n_samples = 100 n1, n2 = 5, 10 rng = np.random.RandomState(0) X = rng.random_sample((n_samples, n_features)) expected = {(True, n1): (n_features, n1), (True, n2): (n_features, n2), (False, n1): (n_features, n2), (False, n2): (n_features, n2)} for whiten in [True, False]: for n_components in [n1, n2]: n_components_ = (n_components if n_components is not None else X.shape[1]) ica = FastICA(n_components=n_components, random_state=rng, whiten=whiten) with warnings.catch_warnings(record=True): # catch "n_components ignored" warning Xt = ica.fit_transform(X) expected_shape = expected[(whiten, n_components_)] assert_equal(ica.mixing_.shape, expected_shape) X2 = ica.inverse_transform(Xt) assert_equal(X.shape, X2.shape) # reversibility test in non-reduction case if n_components == X.shape[1]: assert_array_almost_equal(X, X2)
bsd-3-clause
fibbo/DIRAC
Core/Utilities/Graphs/GraphUtilities.py
10
14613
######################################################################## # $HeadURL$ ######################################################################## """ GraphUtilities is a a collection of utility functions and classes used in the DIRAC Graphs package. The DIRAC Graphs package is derived from the GraphTool plotting package of the CMS/Phedex Project by ... <to be added> """ __RCSID__ = "$Id$" import types, time, datetime, calendar, math, pytz, numpy, os from matplotlib.ticker import ScalarFormatter from matplotlib.dates import AutoDateLocator, AutoDateFormatter, DateFormatter, RRuleLocator, \ rrulewrapper, HOURLY, MINUTELY, SECONDLY, YEARLY, MONTHLY, DAILY from dateutil.relativedelta import relativedelta def evalPrefs( *args, **kw ): """ Interpret arguments as preferencies dictionaries or key-value pairs. The overriding order is right most - most important one. Returns a single dictionary of preferencies """ prefs = {} for pDict in list( args ) + [kw]: if type( pDict ) == types.DictType: for key in pDict: if key == "metadata": for mkey in pDict[key]: prefs[mkey] = pDict[key][mkey] else: prefs[key] = pDict[key] return prefs def pixelToPoint( size, dpi ): """ Convert size expressed in pixels into points for a given dpi resolution """ return float( size ) * 100. / float( dpi ) datestrings = ['%x %X', '%x', '%Y-%m-%d %H:%M:%S'] def convert_to_datetime( string ): orig_string = str( string ) try: if type( string ) == datetime.datetime: results = string else: results = eval( str( string ), {'__builtins__':None, 'time':time, 'math':math}, {} ) if type( results ) == types.FloatType or type( results ) == types.IntType: results = datetime.datetime.fromtimestamp( int( results ) ) elif type( results ) == datetime.datetime: pass else: raise ValueError( "Unknown datetime type!" ) except Exception, e: t = None for dateformat in datestrings: try: t = time.strptime( string, dateformat ) timestamp = calendar.timegm( t ) #-time.timezone results = datetime.datetime.fromtimestamp( timestamp ) break except: pass if t == None: try: string = string.split( '.', 1 )[0] t = time.strptime( string, dateformat ) timestamp = time.mktime( t ) #-time.timezone results = datetime.datetime.fromtimestamp( timestamp ) except: raise raise ValueError( "Unable to create time from string!\nExpecting " \ "format of: '12/06/06 12:54:67'\nRecieved:%s" % orig_string ) return results def to_timestamp( val ): try: v = float( val ) if v > 1000000000 and v < 1900000000: return v except: pass val = convert_to_datetime( val ) #return calendar.timegm( val.timetuple() ) return time.mktime( val.timetuple() ) # If the graph has more than `hour_switch` minutes, we print # out hours in the subtitle. hour_switch = 7 # If the graph has more than `day_switch` hours, we print # out days in the subtitle. day_switch = 7 # If the graph has more than `week_switch` days, we print # out the weeks in the subtitle. week_switch = 7 def add_time_to_title( begin, end, metadata = {} ): """ Given a title and two times, adds the time info to the title. Example results: "Number of Attempted Transfers\n(24 Hours from 4:45 12-14-2006 to 5:56 12-15-2006)" There are two important pieces to the subtitle we add - the duration (i.e., '48 Hours') and the time interval (i.e., 11:00 07-02-2007 to 11:00 07-04-2007). We attempt to make the duration match the size of the span (for a bar graph, this would be the width of the individual bar) in order for it to make the most sense. The formatting of the time interval is based upon how much real time there is from the beginning to the end. We made the distinction because some would want to show graphs representing 168 Hours, but needed the format to show the date as well as the time. """ if 'span' in metadata: interval = metadata['span'] else: interval = time_interval( begin, end ) formatting_interval = time_interval( begin, end ) if formatting_interval == 600: format_str = '%H:%M:%S' elif formatting_interval == 3600: format_str = '%Y-%m-%d %H:%M' elif formatting_interval == 86400: format_str = '%Y-%m-%d' elif formatting_interval == 86400 * 7: format_str = 'Week %U of %Y' if interval < 600: format_name = 'Seconds' time_slice = 1 elif interval < 3600 and interval >= 600: format_name = 'Minutes' time_slice = 60 elif interval >= 3600 and interval < 86400: format_name = 'Hours' time_slice = 3600 elif interval >= 86400 and interval < 86400 * 7: format_name = 'Days' time_slice = 86400 elif interval >= 86400 * 7: format_name = 'Weeks' time_slice = 86400 * 7 else: format_str = '%x %X' format_name = 'Seconds' time_slice = 1 begin_tuple = time.localtime( begin ) end_tuple = time.localtime( end ) added_title = '%i %s from ' % ( int( ( end - begin ) / time_slice ), format_name ) added_title += time.strftime( '%s to' % format_str, begin_tuple ) if time_slice < 86400: add_utc = ' UTC' else: add_utc = '' added_title += time.strftime( ' %s%s' % ( format_str, add_utc ), end_tuple ) return added_title def time_interval( begin, end ): """ Determine the appropriate time interval based upon the length of time as indicated by the `starttime` and `endtime` keywords. """ if end - begin < 600 * hour_switch: return 600 if end - begin < 86400 * day_switch: return 3600 elif end - begin < 86400 * 7 * week_switch: return 86400 else: return 86400 * 7 def comma_format( x_orig ): x = float( x_orig ) if x >= 1000: after_comma = x % 1000 before_comma = int( x ) / 1000 return '%s,%03g' % ( comma_format( before_comma ), after_comma ) else: return str( x_orig ) class PrettyScalarFormatter( ScalarFormatter ): def _set_orderOfMagnitude( self, range ): # if scientific notation is to be used, find the appropriate exponent # if using an numerical offset, find the exponent after applying the offset locs = numpy.absolute( self.locs ) if self.offset: oom = math.floor( math.log10( range ) ) else: if locs[0] > locs[-1]: val = locs[0] else: val = locs[-1] if val == 0: oom = 0 else: oom = math.floor( math.log10( val ) ) if oom <= -7: self.orderOfMagnitude = oom elif oom >= 9: self.orderOfMagnitude = oom else: self.orderOfMagnitude = 0 def pprint_val( self, x ): pstring = ScalarFormatter.pprint_val( self, x ) return comma_format( pstring ) class PrettyDateFormatter( AutoDateFormatter ): """ This class provides a formatter which conforms to the desired date formates for the Phedex system. """ def __init__( self, locator ): tz = pytz.timezone( 'UTC' ) AutoDateFormatter.__init__( self, locator, tz = tz ) def __call__( self, x, pos = 0 ): scale = float( self._locator._get_unit() ) if ( scale == 365.0 ): self._formatter = DateFormatter( "%Y", self._tz ) elif ( scale == 30.0 ): self._formatter = DateFormatter( "%b %Y", self._tz ) elif ( ( scale >= 1.0 ) and ( scale <= 7.0 ) ): self._formatter = DateFormatter( "%Y-%m-%d", self._tz ) elif ( scale == ( 1.0 / 24.0 ) ): self._formatter = DateFormatter( "%H:%M", self._tz ) elif ( scale == ( 1.0 / ( 24 * 60 ) ) ): self._formatter = DateFormatter( "%H:%M", self._tz ) elif ( scale == ( 1.0 / ( 24 * 3600 ) ) ): self._formatter = DateFormatter( "%H:%M:%S", self._tz ) else: self._formatter = DateFormatter( "%b %d %Y %H:%M:%S", self._tz ) return self._formatter( x, pos ) class PrettyDateLocator( AutoDateLocator ): def get_locator( self, dmin, dmax ): 'pick the best locator based on a distance' delta = relativedelta( dmax, dmin ) numYears = ( delta.years * 1.0 ) numMonths = ( numYears * 12.0 ) + delta.months numDays = ( numMonths * 31.0 ) + delta.days numHours = ( numDays * 24.0 ) + delta.hours numMinutes = ( numHours * 60.0 ) + delta.minutes numSeconds = ( numMinutes * 60.0 ) + delta.seconds numticks = 5 # self._freq = YEARLY interval = 1 bymonth = 1 bymonthday = 1 byhour = 0 byminute = 0 bysecond = 0 if ( numYears >= numticks ): self._freq = YEARLY elif ( numMonths >= numticks ): self._freq = MONTHLY bymonth = range( 1, 13 ) if ( ( 0 <= numMonths ) and ( numMonths <= 14 ) ): interval = 1 # show every month elif ( ( 15 <= numMonths ) and ( numMonths <= 29 ) ): interval = 3 # show every 3 months elif ( ( 30 <= numMonths ) and ( numMonths <= 44 ) ): interval = 4 # show every 4 months else: # 45 <= numMonths <= 59 interval = 6 # show every 6 months elif ( numDays >= numticks ): self._freq = DAILY bymonth = None bymonthday = range( 1, 32 ) if ( ( 0 <= numDays ) and ( numDays <= 9 ) ): interval = 1 # show every day elif ( ( 10 <= numDays ) and ( numDays <= 19 ) ): interval = 2 # show every 2 days elif ( ( 20 <= numDays ) and ( numDays <= 35 ) ): interval = 3 # show every 3 days elif ( ( 36 <= numDays ) and ( numDays <= 80 ) ): interval = 7 # show every 1 week else: # 100 <= numDays <= ~150 interval = 14 # show every 2 weeks elif ( numHours >= numticks ): self._freq = HOURLY bymonth = None bymonthday = None byhour = range( 0, 24 ) # show every hour if ( ( 0 <= numHours ) and ( numHours <= 14 ) ): interval = 1 # show every hour elif ( ( 15 <= numHours ) and ( numHours <= 30 ) ): interval = 2 # show every 2 hours elif ( ( 30 <= numHours ) and ( numHours <= 45 ) ): interval = 3 # show every 3 hours elif ( ( 45 <= numHours ) and ( numHours <= 68 ) ): interval = 4 # show every 4 hours elif ( ( 68 <= numHours ) and ( numHours <= 90 ) ): interval = 6 # show every 6 hours else: # 90 <= numHours <= 120 interval = 12 # show every 12 hours elif ( numMinutes >= numticks ): self._freq = MINUTELY bymonth = None bymonthday = None byhour = None byminute = range( 0, 60 ) if ( numMinutes > ( 10.0 * numticks ) ): interval = 10 # end if elif ( numSeconds >= numticks ): self._freq = SECONDLY bymonth = None bymonthday = None byhour = None byminute = None bysecond = range( 0, 60 ) if ( numSeconds > ( 10.0 * numticks ) ): interval = 10 # end if else: # do what? # microseconds as floats, but floats from what reference point? pass rrule = rrulewrapper( self._freq, interval = interval, \ dtstart = dmin, until = dmax, \ bymonth = bymonth, bymonthday = bymonthday, \ byhour = byhour, byminute = byminute, \ bysecond = bysecond ) locator = RRuleLocator( rrule, self.tz ) locator.set_axis( self.axis ) locator.set_view_interval( *self.axis.get_view_interval() ) locator.set_data_interval( *self.axis.get_data_interval() ) return locator def pretty_float( num ): if num > 1000: return comma_format( int( num ) ) try: floats = int( max( 2 - max( numpy.floor( numpy.log( abs( num ) + 1e-3 ) / numpy.log( 10. ) ), 0 ), 0 ) ) except: floats = 2 format = "%." + str( floats ) + "f" if type( num ) == types.TupleType: return format % float( num[0] ) else: try: retval = format % float( num ) except: raise Exception( "Unable to convert %s into a float." % ( str( num ) ) ) return retval def statistics( results, span = None, is_timestamp = False ): results = dict( results ) if span != None: parsed_data = {} min_key = min( results.keys() ) max_key = max( results.keys() ) for i in range( min_key, max_key + span, span ): if i in results: parsed_data[i] = results[i] del results[i] else: parsed_data[i] = 0.0 if len( results ) > 0: raise Exception( "Unable to use all the values for the statistics" ) else: parsed_data = results values = parsed_data.values() data_min = min( values ) data_max = max( values ) data_avg = numpy.average( values ) if is_timestamp: current_time = max( parsed_data.keys() ) data_current = parsed_data[ current_time ] return data_min, data_max, data_avg, data_current else: return data_min, data_max, data_avg def makeDataFromCSV( csv ): """ Generate plot data dictionary from a csv file or string """ if os.path.exists( csv ): fdata = open( csv, 'r' ) flines = fdata.readlines() fdata.close() else: flines = csv.split( '\n' ) graph_data = {} labels = flines[0].strip().split( ',' ) if len( labels ) == 2: # simple plot data for line in flines: line = line.strip() if line[0] != '#': key, value = line.split( ',' ) graph_data[key] = value elif len( flines ) == 2: values = flines[1].strip().split( ',' ) for key,value in zip(labels,values): graph_data[key] = value elif len( labels ) > 2: # stacked graph data del labels[0] del flines[0] for label in labels: plot_data = {} index = labels.index( label ) + 1 for line in flines: values = line.strip().split( ',' ) value = values[index].strip() #if value: plot_data[values[0]] = values[index] #else: #plot_data[values[0]] = '0.' #pass graph_data[label] = dict( plot_data ) return graph_data def darkenColor( color, factor=2 ): c1 = int( color[1:3], 16 ) c2 = int( color[3:5], 16 ) c3 = int( color[5:7], 16 ) c1 /= factor c2 /= factor c3 /= factor result = '#' + (str( hex( c1) ).replace( '0x', '' ).zfill( 2 ) + str( hex( c2) ).replace( '0x', '' ).zfill( 2 ) + str( hex( c3) ).replace( '0x', '' ).zfill( 2 ) ) return result
gpl-3.0
PedroTrujilloV/nest-simulator
testsuite/manualtests/stdp_dopa_check.py
14
10098
# -*- coding: utf-8 -*- # # stdp_dopa_check.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. from matplotlib.pylab import * import numpy as n # Test script to reproduce changes in weight of a dopamine modulated STDP synapse in an event-driven way. # Pre- and post-synaptic spike trains are read in from spikes-6-0.gdf # (output of test_stdp_dopa.py). # output: pre/post/dopa \t spike time \t weight # # Synaptic dynamics for dopamine modulated STDP synapses as used in [1], based on [2] # # References: # [1] Potjans W, Morrison A and Diesmann M (2010). Enabling functional neural circuit simulations with distributed computing of neuromodulated plasticity. Front. Comput. Neurosci. 4:141. doi:10.3389/fncom.2010.00141 # [2] Izhikevich, E. M. (2007). Solving the distal reward problem through linkage of STDP and dopamine signaling. Cereb. Cortex 17(10), 2443-2452. # # author: Wiebke Potjans, October 2010 def stdp_dopa(w_init, pre_spikes, post_spikes, dopa_spikes, tau_e, tau_d, A_minus, A_plus, tau_plus, tau_minus, dendritic_delay, delay_d): w = w_init # initial weight w_min = 0. # minimal weight w_max = 200. #maximal weight i=0 # index of presynaptic spike j=0 # index of postsynaptic spike k=0 # index of dopamine spike last_post_spike = dendritic_delay Etrace = 0. Dtrace = 0. last_e_update = 0. last_w_update = 0. last_pre_spike = 0. last_dopa_spike = 0. advance = True while advance: advance = False # next spike is presynaptic if ((pre_spikes[i] < post_spikes[j]) and (pre_spikes[i] < dopa_spikes[k])): dt = pre_spikes[i] - last_post_spike # weight update w = w + Etrace * Dtrace / (1./tau_e+1./tau_d) *(exp((last_e_update-last_w_update)/tau_e)*exp((last_dopa_spike-last_w_update)/tau_d)-exp((last_e_update-pre_spikes[i])/tau_e)*exp((last_dopa_spike-pre_spikes[i])/tau_d)) if(w<w_min): w=w_min if(w>w_max): w=w_max print "pre\t%.4f\t%.4f" % (pre_spikes[i],w) last_w_update = pre_spikes[i] Etrace = Etrace * exp((last_e_update - pre_spikes[i])/tau_e) - A_minus*exp(-dt/tau_minus) last_e_update = pre_spikes[i] last_pre_spike = pre_spikes[i] if i < len(pre_spikes) - 1: i += 1 advance = True # next spike is postsynaptic if( (post_spikes[j] < pre_spikes[i]) and (post_spikes[j] < dopa_spikes[k])): dt = post_spikes[j] - last_pre_spike # weight update w = w - Etrace * Dtrace / (1./tau_e+1./tau_d)*(exp((last_e_update-post_spikes[j])/tau_e)*exp((last_dopa_spike-post_spikes[j])/tau_d)-exp((last_e_update-last_w_update)/tau_e)*exp((last_dopa_spike-last_w_update)/tau_d)) if(w<w_min): w=w_min if(w>w_max): w=w_max print "post\t%.4f\t%.4f" % (post_spikes[j],w) last_w_update = post_spikes[j] Etrace = Etrace * exp((last_e_update - post_spikes[j])/tau_e) + A_plus*exp(-dt/tau_plus) last_e_update = post_spikes[j] last_post_spike = post_spikes[j] if j < len(post_spikes) - 1: j += 1 advance = True # next spike is dopamine spike if ((dopa_spikes[k] < pre_spikes[i]) and (dopa_spikes[k] < post_spikes[j])): # weight update w = w - Etrace * Dtrace / (1./tau_e+1./tau_d) *(exp((last_e_update-dopa_spikes[k])/tau_e)*exp((last_dopa_spike-dopa_spikes[k])/tau_d)-exp((last_e_update-last_w_update)/tau_e)*exp((last_dopa_spike-last_w_update)/tau_d)) if(w<w_min): w=w_min if(w>w_max): w=w_max print "dopa\t%.4f\t%.4f" % (dopa_spikes[k],w) last_w_update = dopa_spikes[k] Dtrace = Dtrace * exp((last_dopa_spike - dopa_spikes[k])/tau_d) + 1/tau_d last_dopa_spike = dopa_spikes[k] if k < len(dopa_spikes) - 1: k += 1 advance = True if(dopa_spikes[k]==dopa_spikes[k-1]): advance = False Dtrace = Dtrace + 1/tau_d if k < len(dopa_spikes) - 1: k += 1 advance = True # pre and postsynaptic spikes are at the same time # Etrace is not updated for this case; therefore no weight update is required if ((pre_spikes[i]==post_spikes[j]) and (pre_spikes[i] < dopa_spikes[k])): if i < len(pre_spikes) - 1: i += 1 advance = True if j < len(post_spikes) -1: j +=1 advance = True # presynaptic spike and dopamine spike are at the same time if ((pre_spikes[i]==dopa_spikes[k]) and (pre_spikes[i] < post_spikes[j])): dt = pre_spikes[i] - last_post_spike w = w + Etrace * Dtrace / (1./tau_e+1./tau_d) *(exp((last_e_update-last_w_update)/tau_e)*exp((last_dopa_spike-last_w_update)/tau_d)-exp((last_e_update-pre_spikes[i])/tau_e)*exp((last_dopa_spike-pre_spikes[i])/tau_d)) if(w<w_min): w=w_min if(w>w_max): w=w_max print "pre\t%.4f\t%.4f" % (pre_spikes[i],w) last_w_update = pre_spikes[i] Etrace = Etrace * exp((last_e_update - pre_spikes[i])/tau_e) - A_minus*exp(-dt/tau_minus) last_e_update = pre_spikes[i] last_pre_spike = pre_spikes[i] if i < len(pre_spikes) - 1: i += 1 advance = True Dtrace = Dtrace * exp((last_dopa_spike - dopa_spikes[k])/tau_d) + 1/tau_d last_dopa_spike = dopa_spikes[k] if k < len(dopa_spikes) - 1: k += 1 advance = True # postsynaptic spike and dopamine spike are at the same time if ((post_spikes[j]==dopa_spikes[k]) and (post_spikes[j] < pre_spikes[i])): # weight update w = w - Etrace * Dtrace / (1./tau_e+1./tau_d)*(exp((last_e_update-post_spikes[j])/tau_e)*exp((last_dopa_spike-post_spikes[j])/tau_d)-exp((last_e_update-last_w_update)/tau_e)*exp((last_dopa_spike-last_w_update)/tau_d)) if(w<w_min): w=w_min if(w>w_max): w=w_max print "post\t%.4f\t%.4f" % (post_spikes[j],w) last_w_update = post_spikes[j] Etrace = Etrace * exp((last_e_update - post_spikes[j])/tau_e) + A_plus*exp(-dt/tau_plus) last_e_update = post_spikes[j] last_post_spike = post_spikes[j] if j < len(post_spikes) - 1: j += 1 advance = True Dtrace = Dtrace * exp((last_dopa_spike - dopa_spikes[k])/tau_d) + 1/tau_d last_dopa_spike = dopa_spikes[k] if k < len(dopa_spikes) - 1: k += 1 advance = True # all three spikes are at the same time if ((post_spikes[j]==dopa_spikes[k]) and (post_spikes[j]==pre_spikes[i])): # weight update w = w - Etrace * Dtrace / (1./tau_e+1./tau_d) *(exp((last_e_update-dopa_spikes[k])/tau_e)*exp((last_dopa_spike-dopa_spikes[k])/tau_d)-exp((last_e_update-last_w_update)/tau_e)*exp((last_dopa_spike-last_w_update)/tau_d)) if(w<w_min): w=w_min if(w>w_max): w=w_max print "dopa\t%.4f\t%.4f" % (dopa_spikes[k],w) last_w_update = dopa_spikes[k] Dtrace = Dtrace * exp((last_dopa_spike - dopa_spikes[k])/tau_d) + 1/tau_d last_dopa_spike = dopa_spikes[k] if k < len(dopa_spikes) - 1: k += 1 advance = True if(dopa_spikes[k]==dopa_spikes[k-1]): advance = False Dtrace = Dtrace + 1/tau_d if k < len(dopa_spikes) - 1: k += 1 advance = True return w # stdp dopa parameters w_init = 35. tau_plus = 20. tau_minus = 15. tau_e = 1000. tau_d = 200. A_minus = 1.5 A_plus = 1.0 dendritic_delay = 1.0 delay_d = 1. # load spikes from simulation with test_stdp_dopa.py spikes = n.loadtxt("spikes-3-0.gdf") pre_spikes = spikes[find(spikes[:,0]==4),1] # delay is purely dendritic # postsynaptic spike arrives at sp_j + dendritic_delay at the synapse post_spikes =spikes[find(spikes[:,0]==5),1] + dendritic_delay # dopa spike arrives at sp_j + delay_d at the synapse dopa_spikes = spikes[find(spikes[:,0]==6),1] + delay_d # calculate development of stdp weight w = stdp_dopa(w_init, pre_spikes, post_spikes, dopa_spikes, tau_e, tau_d, A_minus, A_plus, tau_plus, tau_minus, dendritic_delay, delay_d) print w
gpl-2.0
louispotok/pandas
pandas/tests/frame/test_operators.py
1
42821
# -*- coding: utf-8 -*- from __future__ import print_function from collections import deque from datetime import datetime import operator import pytest from numpy import nan, random import numpy as np from pandas.compat import range from pandas import compat from pandas import (DataFrame, Series, MultiIndex, Timestamp, date_range) import pandas.core.common as com import pandas.io.formats.printing as printing import pandas as pd from pandas.util.testing import (assert_numpy_array_equal, assert_series_equal, assert_frame_equal) import pandas.util.testing as tm from pandas.tests.frame.common import (TestData, _check_mixed_float, _check_mixed_int) class TestDataFrameOperators(TestData): def test_operators(self): garbage = random.random(4) colSeries = Series(garbage, index=np.array(self.frame.columns)) idSum = self.frame + self.frame seriesSum = self.frame + colSeries for col, series in compat.iteritems(idSum): for idx, val in compat.iteritems(series): origVal = self.frame[col][idx] * 2 if not np.isnan(val): assert val == origVal else: assert np.isnan(origVal) for col, series in compat.iteritems(seriesSum): for idx, val in compat.iteritems(series): origVal = self.frame[col][idx] + colSeries[col] if not np.isnan(val): assert val == origVal else: assert np.isnan(origVal) added = self.frame2 + self.frame2 expected = self.frame2 * 2 assert_frame_equal(added, expected) df = DataFrame({'a': ['a', None, 'b']}) assert_frame_equal(df + df, DataFrame({'a': ['aa', np.nan, 'bb']})) # Test for issue #10181 for dtype in ('float', 'int64'): frames = [ DataFrame(dtype=dtype), DataFrame(columns=['A'], dtype=dtype), DataFrame(index=[0], dtype=dtype), ] for df in frames: assert (df + df).equals(df) assert_frame_equal(df + df, df) def test_ops_np_scalar(self): vals, xs = np.random.rand(5, 3), [nan, 7, -23, 2.718, -3.14, np.inf] f = lambda x: DataFrame(x, index=list('ABCDE'), columns=['jim', 'joe', 'jolie']) df = f(vals) for x in xs: assert_frame_equal(df / np.array(x), f(vals / x)) assert_frame_equal(np.array(x) * df, f(vals * x)) assert_frame_equal(df + np.array(x), f(vals + x)) assert_frame_equal(np.array(x) - df, f(x - vals)) def test_operators_boolean(self): # GH 5808 # empty frames, non-mixed dtype result = DataFrame(index=[1]) & DataFrame(index=[1]) assert_frame_equal(result, DataFrame(index=[1])) result = DataFrame(index=[1]) | DataFrame(index=[1]) assert_frame_equal(result, DataFrame(index=[1])) result = DataFrame(index=[1]) & DataFrame(index=[1, 2]) assert_frame_equal(result, DataFrame(index=[1, 2])) result = DataFrame(index=[1], columns=['A']) & DataFrame( index=[1], columns=['A']) assert_frame_equal(result, DataFrame(index=[1], columns=['A'])) result = DataFrame(True, index=[1], columns=['A']) & DataFrame( True, index=[1], columns=['A']) assert_frame_equal(result, DataFrame(True, index=[1], columns=['A'])) result = DataFrame(True, index=[1], columns=['A']) | DataFrame( True, index=[1], columns=['A']) assert_frame_equal(result, DataFrame(True, index=[1], columns=['A'])) # boolean ops result = DataFrame(1, index=[1], columns=['A']) | DataFrame( True, index=[1], columns=['A']) assert_frame_equal(result, DataFrame(1, index=[1], columns=['A'])) def f(): DataFrame(1.0, index=[1], columns=['A']) | DataFrame( True, index=[1], columns=['A']) pytest.raises(TypeError, f) def f(): DataFrame('foo', index=[1], columns=['A']) | DataFrame( True, index=[1], columns=['A']) pytest.raises(TypeError, f) def test_operators_none_as_na(self): df = DataFrame({"col1": [2, 5.0, 123, None], "col2": [1, 2, 3, 4]}, dtype=object) ops = [operator.add, operator.sub, operator.mul, operator.truediv] # since filling converts dtypes from object, changed expected to be # object for op in ops: filled = df.fillna(np.nan) result = op(df, 3) expected = op(filled, 3).astype(object) expected[com.isna(expected)] = None assert_frame_equal(result, expected) result = op(df, df) expected = op(filled, filled).astype(object) expected[com.isna(expected)] = None assert_frame_equal(result, expected) result = op(df, df.fillna(7)) assert_frame_equal(result, expected) result = op(df.fillna(7), df) assert_frame_equal(result, expected, check_dtype=False) def test_comparison_invalid(self): def check(df, df2): for (x, y) in [(df, df2), (df2, df)]: pytest.raises(TypeError, lambda: x == y) pytest.raises(TypeError, lambda: x != y) pytest.raises(TypeError, lambda: x >= y) pytest.raises(TypeError, lambda: x > y) pytest.raises(TypeError, lambda: x < y) pytest.raises(TypeError, lambda: x <= y) # GH4968 # invalid date/int comparisons df = DataFrame(np.random.randint(10, size=(10, 1)), columns=['a']) df['dates'] = date_range('20010101', periods=len(df)) df2 = df.copy() df2['dates'] = df['a'] check(df, df2) df = DataFrame(np.random.randint(10, size=(10, 2)), columns=['a', 'b']) df2 = DataFrame({'a': date_range('20010101', periods=len( df)), 'b': date_range('20100101', periods=len(df))}) check(df, df2) def test_timestamp_compare(self): # make sure we can compare Timestamps on the right AND left hand side # GH4982 df = DataFrame({'dates1': date_range('20010101', periods=10), 'dates2': date_range('20010102', periods=10), 'intcol': np.random.randint(1000000000, size=10), 'floatcol': np.random.randn(10), 'stringcol': list(tm.rands(10))}) df.loc[np.random.rand(len(df)) > 0.5, 'dates2'] = pd.NaT ops = {'gt': 'lt', 'lt': 'gt', 'ge': 'le', 'le': 'ge', 'eq': 'eq', 'ne': 'ne'} for left, right in ops.items(): left_f = getattr(operator, left) right_f = getattr(operator, right) # no nats expected = left_f(df, Timestamp('20010109')) result = right_f(Timestamp('20010109'), df) assert_frame_equal(result, expected) # nats expected = left_f(df, Timestamp('nat')) result = right_f(Timestamp('nat'), df) assert_frame_equal(result, expected) def test_logical_operators(self): def _check_bin_op(op): result = op(df1, df2) expected = DataFrame(op(df1.values, df2.values), index=df1.index, columns=df1.columns) assert result.values.dtype == np.bool_ assert_frame_equal(result, expected) def _check_unary_op(op): result = op(df1) expected = DataFrame(op(df1.values), index=df1.index, columns=df1.columns) assert result.values.dtype == np.bool_ assert_frame_equal(result, expected) df1 = {'a': {'a': True, 'b': False, 'c': False, 'd': True, 'e': True}, 'b': {'a': False, 'b': True, 'c': False, 'd': False, 'e': False}, 'c': {'a': False, 'b': False, 'c': True, 'd': False, 'e': False}, 'd': {'a': True, 'b': False, 'c': False, 'd': True, 'e': True}, 'e': {'a': True, 'b': False, 'c': False, 'd': True, 'e': True}} df2 = {'a': {'a': True, 'b': False, 'c': True, 'd': False, 'e': False}, 'b': {'a': False, 'b': True, 'c': False, 'd': False, 'e': False}, 'c': {'a': True, 'b': False, 'c': True, 'd': False, 'e': False}, 'd': {'a': False, 'b': False, 'c': False, 'd': True, 'e': False}, 'e': {'a': False, 'b': False, 'c': False, 'd': False, 'e': True}} df1 = DataFrame(df1) df2 = DataFrame(df2) _check_bin_op(operator.and_) _check_bin_op(operator.or_) _check_bin_op(operator.xor) # operator.neg is deprecated in numpy >= 1.9 _check_unary_op(operator.inv) @pytest.mark.parametrize('op,res', [('__eq__', False), ('__ne__', True)]) def test_logical_typeerror_with_non_valid(self, op, res): # we are comparing floats vs a string result = getattr(self.frame, op)('foo') assert bool(result.all().all()) is res def test_logical_with_nas(self): d = DataFrame({'a': [np.nan, False], 'b': [True, True]}) # GH4947 # bool comparisons should return bool result = d['a'] | d['b'] expected = Series([False, True]) assert_series_equal(result, expected) # GH4604, automatic casting here result = d['a'].fillna(False) | d['b'] expected = Series([True, True]) assert_series_equal(result, expected) result = d['a'].fillna(False, downcast=False) | d['b'] expected = Series([True, True]) assert_series_equal(result, expected) @pytest.mark.parametrize('df,expected', [ (pd.DataFrame({'a': [-1, 1]}), pd.DataFrame({'a': [1, -1]})), (pd.DataFrame({'a': [False, True]}), pd.DataFrame({'a': [True, False]})), (pd.DataFrame({'a': pd.Series(pd.to_timedelta([-1, 1]))}), pd.DataFrame({'a': pd.Series(pd.to_timedelta([1, -1]))})) ]) def test_neg_numeric(self, df, expected): assert_frame_equal(-df, expected) assert_series_equal(-df['a'], expected['a']) @pytest.mark.parametrize('df', [ pd.DataFrame({'a': ['a', 'b']}), pd.DataFrame({'a': pd.to_datetime(['2017-01-22', '1970-01-01'])}), ]) def test_neg_raises(self, df): with pytest.raises(TypeError): (- df) with pytest.raises(TypeError): (- df['a']) def test_invert(self): assert_frame_equal(-(self.frame < 0), ~(self.frame < 0)) @pytest.mark.parametrize('df', [ pd.DataFrame({'a': [-1, 1]}), pd.DataFrame({'a': [False, True]}), pd.DataFrame({'a': pd.Series(pd.to_timedelta([-1, 1]))}), ]) def test_pos_numeric(self, df): # GH 16073 assert_frame_equal(+df, df) assert_series_equal(+df['a'], df['a']) @pytest.mark.parametrize('df', [ pd.DataFrame({'a': ['a', 'b']}), pd.DataFrame({'a': pd.to_datetime(['2017-01-22', '1970-01-01'])}), ]) def test_pos_raises(self, df): with pytest.raises(TypeError): (+ df) with pytest.raises(TypeError): (+ df['a']) def test_arith_flex_frame(self): ops = ['add', 'sub', 'mul', 'div', 'truediv', 'pow', 'floordiv', 'mod'] if not compat.PY3: aliases = {} else: aliases = {'div': 'truediv'} for op in ops: try: alias = aliases.get(op, op) f = getattr(operator, alias) result = getattr(self.frame, op)(2 * self.frame) exp = f(self.frame, 2 * self.frame) assert_frame_equal(result, exp) # vs mix float result = getattr(self.mixed_float, op)(2 * self.mixed_float) exp = f(self.mixed_float, 2 * self.mixed_float) assert_frame_equal(result, exp) _check_mixed_float(result, dtype=dict(C=None)) # vs mix int if op in ['add', 'sub', 'mul']: result = getattr(self.mixed_int, op)(2 + self.mixed_int) exp = f(self.mixed_int, 2 + self.mixed_int) # no overflow in the uint dtype = None if op in ['sub']: dtype = dict(B='uint64', C=None) elif op in ['add', 'mul']: dtype = dict(C=None) assert_frame_equal(result, exp) _check_mixed_int(result, dtype=dtype) # rops r_f = lambda x, y: f(y, x) result = getattr(self.frame, 'r' + op)(2 * self.frame) exp = r_f(self.frame, 2 * self.frame) assert_frame_equal(result, exp) # vs mix float result = getattr(self.mixed_float, op)( 2 * self.mixed_float) exp = f(self.mixed_float, 2 * self.mixed_float) assert_frame_equal(result, exp) _check_mixed_float(result, dtype=dict(C=None)) result = getattr(self.intframe, op)(2 * self.intframe) exp = f(self.intframe, 2 * self.intframe) assert_frame_equal(result, exp) # vs mix int if op in ['add', 'sub', 'mul']: result = getattr(self.mixed_int, op)( 2 + self.mixed_int) exp = f(self.mixed_int, 2 + self.mixed_int) # no overflow in the uint dtype = None if op in ['sub']: dtype = dict(B='uint64', C=None) elif op in ['add', 'mul']: dtype = dict(C=None) assert_frame_equal(result, exp) _check_mixed_int(result, dtype=dtype) except: printing.pprint_thing("Failing operation %r" % op) raise # ndim >= 3 ndim_5 = np.ones(self.frame.shape + (3, 4, 5)) msg = "Unable to coerce to Series/DataFrame" with tm.assert_raises_regex(ValueError, msg): f(self.frame, ndim_5) with tm.assert_raises_regex(ValueError, msg): getattr(self.frame, op)(ndim_5) # res_add = self.frame.add(self.frame) # res_sub = self.frame.sub(self.frame) # res_mul = self.frame.mul(self.frame) # res_div = self.frame.div(2 * self.frame) # assert_frame_equal(res_add, self.frame + self.frame) # assert_frame_equal(res_sub, self.frame - self.frame) # assert_frame_equal(res_mul, self.frame * self.frame) # assert_frame_equal(res_div, self.frame / (2 * self.frame)) const_add = self.frame.add(1) assert_frame_equal(const_add, self.frame + 1) # corner cases result = self.frame.add(self.frame[:0]) assert_frame_equal(result, self.frame * np.nan) result = self.frame[:0].add(self.frame) assert_frame_equal(result, self.frame * np.nan) with tm.assert_raises_regex(NotImplementedError, 'fill_value'): self.frame.add(self.frame.iloc[0], fill_value=3) with tm.assert_raises_regex(NotImplementedError, 'fill_value'): self.frame.add(self.frame.iloc[0], axis='index', fill_value=3) def test_arith_flex_zero_len_raises(self): # GH#19522 passing fill_value to frame flex arith methods should # raise even in the zero-length special cases ser_len0 = pd.Series([]) df_len0 = pd.DataFrame([], columns=['A', 'B']) df = pd.DataFrame([[1, 2], [3, 4]], columns=['A', 'B']) with tm.assert_raises_regex(NotImplementedError, 'fill_value'): df.add(ser_len0, fill_value='E') with tm.assert_raises_regex(NotImplementedError, 'fill_value'): df_len0.sub(df['A'], axis=None, fill_value=3) def test_binary_ops_align(self): # test aligning binary ops # GH 6681 index = MultiIndex.from_product([list('abc'), ['one', 'two', 'three'], [1, 2, 3]], names=['first', 'second', 'third']) df = DataFrame(np.arange(27 * 3).reshape(27, 3), index=index, columns=['value1', 'value2', 'value3']).sort_index() idx = pd.IndexSlice for op in ['add', 'sub', 'mul', 'div', 'truediv']: opa = getattr(operator, op, None) if opa is None: continue x = Series([1.0, 10.0, 100.0], [1, 2, 3]) result = getattr(df, op)(x, level='third', axis=0) expected = pd.concat([opa(df.loc[idx[:, :, i], :], v) for i, v in x.iteritems()]).sort_index() assert_frame_equal(result, expected) x = Series([1.0, 10.0], ['two', 'three']) result = getattr(df, op)(x, level='second', axis=0) expected = (pd.concat([opa(df.loc[idx[:, i], :], v) for i, v in x.iteritems()]) .reindex_like(df).sort_index()) assert_frame_equal(result, expected) # GH9463 (alignment level of dataframe with series) midx = MultiIndex.from_product([['A', 'B'], ['a', 'b']]) df = DataFrame(np.ones((2, 4), dtype='int64'), columns=midx) s = pd.Series({'a': 1, 'b': 2}) df2 = df.copy() df2.columns.names = ['lvl0', 'lvl1'] s2 = s.copy() s2.index.name = 'lvl1' # different cases of integer/string level names: res1 = df.mul(s, axis=1, level=1) res2 = df.mul(s2, axis=1, level=1) res3 = df2.mul(s, axis=1, level=1) res4 = df2.mul(s2, axis=1, level=1) res5 = df2.mul(s, axis=1, level='lvl1') res6 = df2.mul(s2, axis=1, level='lvl1') exp = DataFrame(np.array([[1, 2, 1, 2], [1, 2, 1, 2]], dtype='int64'), columns=midx) for res in [res1, res2]: assert_frame_equal(res, exp) exp.columns.names = ['lvl0', 'lvl1'] for res in [res3, res4, res5, res6]: assert_frame_equal(res, exp) def test_arith_mixed(self): left = DataFrame({'A': ['a', 'b', 'c'], 'B': [1, 2, 3]}) result = left + left expected = DataFrame({'A': ['aa', 'bb', 'cc'], 'B': [2, 4, 6]}) assert_frame_equal(result, expected) def test_arith_getitem_commute(self): df = DataFrame({'A': [1.1, 3.3], 'B': [2.5, -3.9]}) self._test_op(df, operator.add) self._test_op(df, operator.sub) self._test_op(df, operator.mul) self._test_op(df, operator.truediv) self._test_op(df, operator.floordiv) self._test_op(df, operator.pow) self._test_op(df, lambda x, y: y + x) self._test_op(df, lambda x, y: y - x) self._test_op(df, lambda x, y: y * x) self._test_op(df, lambda x, y: y / x) self._test_op(df, lambda x, y: y ** x) self._test_op(df, lambda x, y: x + y) self._test_op(df, lambda x, y: x - y) self._test_op(df, lambda x, y: x * y) self._test_op(df, lambda x, y: x / y) self._test_op(df, lambda x, y: x ** y) @staticmethod def _test_op(df, op): result = op(df, 1) if not df.columns.is_unique: raise ValueError("Only unique columns supported by this test") for col in result.columns: assert_series_equal(result[col], op(df[col], 1)) def test_bool_flex_frame(self): data = np.random.randn(5, 3) other_data = np.random.randn(5, 3) df = DataFrame(data) other = DataFrame(other_data) ndim_5 = np.ones(df.shape + (1, 3)) # Unaligned def _check_unaligned_frame(meth, op, df, other): part_o = other.loc[3:, 1:].copy() rs = meth(part_o) xp = op(df, part_o.reindex(index=df.index, columns=df.columns)) assert_frame_equal(rs, xp) # DataFrame assert df.eq(df).values.all() assert not df.ne(df).values.any() for op in ['eq', 'ne', 'gt', 'lt', 'ge', 'le']: f = getattr(df, op) o = getattr(operator, op) # No NAs assert_frame_equal(f(other), o(df, other)) _check_unaligned_frame(f, o, df, other) # ndarray assert_frame_equal(f(other.values), o(df, other.values)) # scalar assert_frame_equal(f(0), o(df, 0)) # NAs msg = "Unable to coerce to Series/DataFrame" assert_frame_equal(f(np.nan), o(df, np.nan)) with tm.assert_raises_regex(ValueError, msg): f(ndim_5) # Series def _test_seq(df, idx_ser, col_ser): idx_eq = df.eq(idx_ser, axis=0) col_eq = df.eq(col_ser) idx_ne = df.ne(idx_ser, axis=0) col_ne = df.ne(col_ser) assert_frame_equal(col_eq, df == Series(col_ser)) assert_frame_equal(col_eq, -col_ne) assert_frame_equal(idx_eq, -idx_ne) assert_frame_equal(idx_eq, df.T.eq(idx_ser).T) assert_frame_equal(col_eq, df.eq(list(col_ser))) assert_frame_equal(idx_eq, df.eq(Series(idx_ser), axis=0)) assert_frame_equal(idx_eq, df.eq(list(idx_ser), axis=0)) idx_gt = df.gt(idx_ser, axis=0) col_gt = df.gt(col_ser) idx_le = df.le(idx_ser, axis=0) col_le = df.le(col_ser) assert_frame_equal(col_gt, df > Series(col_ser)) assert_frame_equal(col_gt, -col_le) assert_frame_equal(idx_gt, -idx_le) assert_frame_equal(idx_gt, df.T.gt(idx_ser).T) idx_ge = df.ge(idx_ser, axis=0) col_ge = df.ge(col_ser) idx_lt = df.lt(idx_ser, axis=0) col_lt = df.lt(col_ser) assert_frame_equal(col_ge, df >= Series(col_ser)) assert_frame_equal(col_ge, -col_lt) assert_frame_equal(idx_ge, -idx_lt) assert_frame_equal(idx_ge, df.T.ge(idx_ser).T) idx_ser = Series(np.random.randn(5)) col_ser = Series(np.random.randn(3)) _test_seq(df, idx_ser, col_ser) # list/tuple _test_seq(df, idx_ser.values, col_ser.values) # NA df.loc[0, 0] = np.nan rs = df.eq(df) assert not rs.loc[0, 0] rs = df.ne(df) assert rs.loc[0, 0] rs = df.gt(df) assert not rs.loc[0, 0] rs = df.lt(df) assert not rs.loc[0, 0] rs = df.ge(df) assert not rs.loc[0, 0] rs = df.le(df) assert not rs.loc[0, 0] # complex arr = np.array([np.nan, 1, 6, np.nan]) arr2 = np.array([2j, np.nan, 7, None]) df = DataFrame({'a': arr}) df2 = DataFrame({'a': arr2}) rs = df.gt(df2) assert not rs.values.any() rs = df.ne(df2) assert rs.values.all() arr3 = np.array([2j, np.nan, None]) df3 = DataFrame({'a': arr3}) rs = df3.gt(2j) assert not rs.values.any() # corner, dtype=object df1 = DataFrame({'col': ['foo', np.nan, 'bar']}) df2 = DataFrame({'col': ['foo', datetime.now(), 'bar']}) result = df1.ne(df2) exp = DataFrame({'col': [False, True, False]}) assert_frame_equal(result, exp) def test_dti_tz_convert_to_utc(self): base = pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], tz='UTC') idx1 = base.tz_convert('Asia/Tokyo')[:2] idx2 = base.tz_convert('US/Eastern')[1:] df1 = DataFrame({'A': [1, 2]}, index=idx1) df2 = DataFrame({'A': [1, 1]}, index=idx2) exp = DataFrame({'A': [np.nan, 3, np.nan]}, index=base) assert_frame_equal(df1 + df2, exp) def test_arith_flex_series(self): df = self.simple row = df.xs('a') col = df['two'] # after arithmetic refactor, add truediv here ops = ['add', 'sub', 'mul', 'mod'] for op in ops: f = getattr(df, op) op = getattr(operator, op) assert_frame_equal(f(row), op(df, row)) assert_frame_equal(f(col, axis=0), op(df.T, col).T) # special case for some reason assert_frame_equal(df.add(row, axis=None), df + row) # cases which will be refactored after big arithmetic refactor assert_frame_equal(df.div(row), df / row) assert_frame_equal(df.div(col, axis=0), (df.T / col).T) # broadcasting issue in GH7325 df = DataFrame(np.arange(3 * 2).reshape((3, 2)), dtype='int64') expected = DataFrame([[nan, np.inf], [1.0, 1.5], [1.0, 1.25]]) result = df.div(df[0], axis='index') assert_frame_equal(result, expected) df = DataFrame(np.arange(3 * 2).reshape((3, 2)), dtype='float64') expected = DataFrame([[np.nan, np.inf], [1.0, 1.5], [1.0, 1.25]]) result = df.div(df[0], axis='index') assert_frame_equal(result, expected) def test_arith_non_pandas_object(self): df = self.simple val1 = df.xs('a').values added = DataFrame(df.values + val1, index=df.index, columns=df.columns) assert_frame_equal(df + val1, added) added = DataFrame((df.values.T + val1).T, index=df.index, columns=df.columns) assert_frame_equal(df.add(val1, axis=0), added) val2 = list(df['two']) added = DataFrame(df.values + val2, index=df.index, columns=df.columns) assert_frame_equal(df + val2, added) added = DataFrame((df.values.T + val2).T, index=df.index, columns=df.columns) assert_frame_equal(df.add(val2, axis='index'), added) val3 = np.random.rand(*df.shape) added = DataFrame(df.values + val3, index=df.index, columns=df.columns) assert_frame_equal(df.add(val3), added) @pytest.mark.parametrize('values', [[1, 2], (1, 2), np.array([1, 2]), range(1, 3), deque([1, 2])]) def test_arith_alignment_non_pandas_object(self, values): # GH 17901 df = DataFrame({'A': [1, 1], 'B': [1, 1]}) expected = DataFrame({'A': [2, 2], 'B': [3, 3]}) result = df + values assert_frame_equal(result, expected) def test_combineFrame(self): frame_copy = self.frame.reindex(self.frame.index[::2]) del frame_copy['D'] frame_copy['C'][:5] = nan added = self.frame + frame_copy indexer = added['A'].dropna().index exp = (self.frame['A'] * 2).copy() tm.assert_series_equal(added['A'].dropna(), exp.loc[indexer]) exp.loc[~exp.index.isin(indexer)] = np.nan tm.assert_series_equal(added['A'], exp.loc[added['A'].index]) assert np.isnan(added['C'].reindex(frame_copy.index)[:5]).all() # assert(False) assert np.isnan(added['D']).all() self_added = self.frame + self.frame tm.assert_index_equal(self_added.index, self.frame.index) added_rev = frame_copy + self.frame assert np.isnan(added['D']).all() assert np.isnan(added_rev['D']).all() # corner cases # empty plus_empty = self.frame + self.empty assert np.isnan(plus_empty.values).all() empty_plus = self.empty + self.frame assert np.isnan(empty_plus.values).all() empty_empty = self.empty + self.empty assert empty_empty.empty # out of order reverse = self.frame.reindex(columns=self.frame.columns[::-1]) assert_frame_equal(reverse + self.frame, self.frame * 2) # mix vs float64, upcast added = self.frame + self.mixed_float _check_mixed_float(added, dtype='float64') added = self.mixed_float + self.frame _check_mixed_float(added, dtype='float64') # mix vs mix added = self.mixed_float + self.mixed_float2 _check_mixed_float(added, dtype=dict(C=None)) added = self.mixed_float2 + self.mixed_float _check_mixed_float(added, dtype=dict(C=None)) # with int added = self.frame + self.mixed_int _check_mixed_float(added, dtype='float64') def test_combineSeries(self): # Series series = self.frame.xs(self.frame.index[0]) added = self.frame + series for key, s in compat.iteritems(added): assert_series_equal(s, self.frame[key] + series[key]) larger_series = series.to_dict() larger_series['E'] = 1 larger_series = Series(larger_series) larger_added = self.frame + larger_series for key, s in compat.iteritems(self.frame): assert_series_equal(larger_added[key], s + series[key]) assert 'E' in larger_added assert np.isnan(larger_added['E']).all() # no upcast needed added = self.mixed_float + series _check_mixed_float(added) # vs mix (upcast) as needed added = self.mixed_float + series.astype('float32') _check_mixed_float(added, dtype=dict(C=None)) added = self.mixed_float + series.astype('float16') _check_mixed_float(added, dtype=dict(C=None)) # these raise with numexpr.....as we are adding an int64 to an # uint64....weird vs int # added = self.mixed_int + (100*series).astype('int64') # _check_mixed_int(added, dtype = dict(A = 'int64', B = 'float64', C = # 'int64', D = 'int64')) # added = self.mixed_int + (100*series).astype('int32') # _check_mixed_int(added, dtype = dict(A = 'int32', B = 'float64', C = # 'int32', D = 'int64')) # TimeSeries ts = self.tsframe['A'] # 10890 # we no longer allow auto timeseries broadcasting # and require explicit broadcasting added = self.tsframe.add(ts, axis='index') for key, col in compat.iteritems(self.tsframe): result = col + ts assert_series_equal(added[key], result, check_names=False) assert added[key].name == key if col.name == ts.name: assert result.name == 'A' else: assert result.name is None smaller_frame = self.tsframe[:-5] smaller_added = smaller_frame.add(ts, axis='index') tm.assert_index_equal(smaller_added.index, self.tsframe.index) smaller_ts = ts[:-5] smaller_added2 = self.tsframe.add(smaller_ts, axis='index') assert_frame_equal(smaller_added, smaller_added2) # length 0, result is all-nan result = self.tsframe.add(ts[:0], axis='index') expected = DataFrame(np.nan, index=self.tsframe.index, columns=self.tsframe.columns) assert_frame_equal(result, expected) # Frame is all-nan result = self.tsframe[:0].add(ts, axis='index') expected = DataFrame(np.nan, index=self.tsframe.index, columns=self.tsframe.columns) assert_frame_equal(result, expected) # empty but with non-empty index frame = self.tsframe[:1].reindex(columns=[]) result = frame.mul(ts, axis='index') assert len(result) == len(ts) def test_combineFunc(self): result = self.frame * 2 tm.assert_numpy_array_equal(result.values, self.frame.values * 2) # vs mix result = self.mixed_float * 2 for c, s in compat.iteritems(result): tm.assert_numpy_array_equal( s.values, self.mixed_float[c].values * 2) _check_mixed_float(result, dtype=dict(C=None)) result = self.empty * 2 assert result.index is self.empty.index assert len(result.columns) == 0 def test_comparisons(self): df1 = tm.makeTimeDataFrame() df2 = tm.makeTimeDataFrame() row = self.simple.xs('a') ndim_5 = np.ones(df1.shape + (1, 1, 1)) def test_comp(func): result = func(df1, df2) tm.assert_numpy_array_equal(result.values, func(df1.values, df2.values)) with tm.assert_raises_regex(ValueError, 'Wrong number of dimensions'): func(df1, ndim_5) result2 = func(self.simple, row) tm.assert_numpy_array_equal(result2.values, func(self.simple.values, row.values)) result3 = func(self.frame, 0) tm.assert_numpy_array_equal(result3.values, func(self.frame.values, 0)) with tm.assert_raises_regex(ValueError, 'Can only compare identically' '-labeled DataFrame'): func(self.simple, self.simple[:2]) test_comp(operator.eq) test_comp(operator.ne) test_comp(operator.lt) test_comp(operator.gt) test_comp(operator.ge) test_comp(operator.le) def test_comparison_protected_from_errstate(self): missing_df = tm.makeDataFrame() missing_df.iloc[0]['A'] = np.nan with np.errstate(invalid='ignore'): expected = missing_df.values < 0 with np.errstate(invalid='raise'): result = (missing_df < 0).values tm.assert_numpy_array_equal(result, expected) def test_boolean_comparison(self): # GH 4576 # boolean comparisons with a tuple/list give unexpected results df = DataFrame(np.arange(6).reshape((3, 2))) b = np.array([2, 2]) b_r = np.atleast_2d([2, 2]) b_c = b_r.T l = (2, 2, 2) tup = tuple(l) # gt expected = DataFrame([[False, False], [False, True], [True, True]]) result = df > b assert_frame_equal(result, expected) result = df.values > b assert_numpy_array_equal(result, expected.values) result = df > l assert_frame_equal(result, expected) result = df > tup assert_frame_equal(result, expected) result = df > b_r assert_frame_equal(result, expected) result = df.values > b_r assert_numpy_array_equal(result, expected.values) pytest.raises(ValueError, df.__gt__, b_c) pytest.raises(ValueError, df.values.__gt__, b_c) # == expected = DataFrame([[False, False], [True, False], [False, False]]) result = df == b assert_frame_equal(result, expected) result = df == l assert_frame_equal(result, expected) result = df == tup assert_frame_equal(result, expected) result = df == b_r assert_frame_equal(result, expected) result = df.values == b_r assert_numpy_array_equal(result, expected.values) pytest.raises(ValueError, lambda: df == b_c) assert df.values.shape != b_c.shape # with alignment df = DataFrame(np.arange(6).reshape((3, 2)), columns=list('AB'), index=list('abc')) expected.index = df.index expected.columns = df.columns result = df == l assert_frame_equal(result, expected) result = df == tup assert_frame_equal(result, expected) def test_combine_generic(self): df1 = self.frame df2 = self.frame.loc[self.frame.index[:-5], ['A', 'B', 'C']] combined = df1.combine(df2, np.add) combined2 = df2.combine(df1, np.add) assert combined['D'].isna().all() assert combined2['D'].isna().all() chunk = combined.loc[combined.index[:-5], ['A', 'B', 'C']] chunk2 = combined2.loc[combined2.index[:-5], ['A', 'B', 'C']] exp = self.frame.loc[self.frame.index[:-5], ['A', 'B', 'C']].reindex_like(chunk) * 2 assert_frame_equal(chunk, exp) assert_frame_equal(chunk2, exp) def test_inplace_ops_alignment(self): # inplace ops / ops alignment # GH 8511 columns = list('abcdefg') X_orig = DataFrame(np.arange(10 * len(columns)) .reshape(-1, len(columns)), columns=columns, index=range(10)) Z = 100 * X_orig.iloc[:, 1:-1].copy() block1 = list('bedcf') subs = list('bcdef') # add X = X_orig.copy() result1 = (X[block1] + Z).reindex(columns=subs) X[block1] += Z result2 = X.reindex(columns=subs) X = X_orig.copy() result3 = (X[block1] + Z[block1]).reindex(columns=subs) X[block1] += Z[block1] result4 = X.reindex(columns=subs) assert_frame_equal(result1, result2) assert_frame_equal(result1, result3) assert_frame_equal(result1, result4) # sub X = X_orig.copy() result1 = (X[block1] - Z).reindex(columns=subs) X[block1] -= Z result2 = X.reindex(columns=subs) X = X_orig.copy() result3 = (X[block1] - Z[block1]).reindex(columns=subs) X[block1] -= Z[block1] result4 = X.reindex(columns=subs) assert_frame_equal(result1, result2) assert_frame_equal(result1, result3) assert_frame_equal(result1, result4) def test_inplace_ops_identity(self): # GH 5104 # make sure that we are actually changing the object s_orig = Series([1, 2, 3]) df_orig = DataFrame(np.random.randint(0, 5, size=10).reshape(-1, 5)) # no dtype change s = s_orig.copy() s2 = s s += 1 assert_series_equal(s, s2) assert_series_equal(s_orig + 1, s) assert s is s2 assert s._data is s2._data df = df_orig.copy() df2 = df df += 1 assert_frame_equal(df, df2) assert_frame_equal(df_orig + 1, df) assert df is df2 assert df._data is df2._data # dtype change s = s_orig.copy() s2 = s s += 1.5 assert_series_equal(s, s2) assert_series_equal(s_orig + 1.5, s) df = df_orig.copy() df2 = df df += 1.5 assert_frame_equal(df, df2) assert_frame_equal(df_orig + 1.5, df) assert df is df2 assert df._data is df2._data # mixed dtype arr = np.random.randint(0, 10, size=5) df_orig = DataFrame({'A': arr.copy(), 'B': 'foo'}) df = df_orig.copy() df2 = df df['A'] += 1 expected = DataFrame({'A': arr.copy() + 1, 'B': 'foo'}) assert_frame_equal(df, expected) assert_frame_equal(df2, expected) assert df._data is df2._data df = df_orig.copy() df2 = df df['A'] += 1.5 expected = DataFrame({'A': arr.copy() + 1.5, 'B': 'foo'}) assert_frame_equal(df, expected) assert_frame_equal(df2, expected) assert df._data is df2._data @pytest.mark.parametrize('op', ['add', 'and', 'div', 'floordiv', 'mod', 'mul', 'or', 'pow', 'sub', 'truediv', 'xor']) def test_inplace_ops_identity2(self, op): if compat.PY3 and op == 'div': return df = DataFrame({'a': [1., 2., 3.], 'b': [1, 2, 3]}) operand = 2 if op in ('and', 'or', 'xor'): # cannot use floats for boolean ops df['a'] = [True, False, True] df_copy = df.copy() iop = '__i{}__'.format(op) op = '__{}__'.format(op) # no id change and value is correct getattr(df, iop)(operand) expected = getattr(df_copy, op)(operand) assert_frame_equal(df, expected) expected = id(df) assert id(df) == expected def test_alignment_non_pandas(self): index = ['A', 'B', 'C'] columns = ['X', 'Y', 'Z'] df = pd.DataFrame(np.random.randn(3, 3), index=index, columns=columns) align = pd.core.ops._align_method_FRAME for val in [[1, 2, 3], (1, 2, 3), np.array([1, 2, 3], dtype=np.int64), range(1, 4)]: tm.assert_series_equal(align(df, val, 'index'), Series([1, 2, 3], index=df.index)) tm.assert_series_equal(align(df, val, 'columns'), Series([1, 2, 3], index=df.columns)) # length mismatch msg = 'Unable to coerce to Series, length must be 3: given 2' for val in [[1, 2], (1, 2), np.array([1, 2]), range(1, 3)]: with tm.assert_raises_regex(ValueError, msg): align(df, val, 'index') with tm.assert_raises_regex(ValueError, msg): align(df, val, 'columns') val = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) tm.assert_frame_equal(align(df, val, 'index'), DataFrame(val, index=df.index, columns=df.columns)) tm.assert_frame_equal(align(df, val, 'columns'), DataFrame(val, index=df.index, columns=df.columns)) # shape mismatch msg = 'Unable to coerce to DataFrame, shape must be' val = np.array([[1, 2, 3], [4, 5, 6]]) with tm.assert_raises_regex(ValueError, msg): align(df, val, 'index') with tm.assert_raises_regex(ValueError, msg): align(df, val, 'columns') val = np.zeros((3, 3, 3)) with pytest.raises(ValueError): align(df, val, 'index') with pytest.raises(ValueError): align(df, val, 'columns')
bsd-3-clause
parroyo/Zappa
tests/tests.py
1
64700
# -*- coding: utf8 -*- import base64 import collections import json from contextlib import nested from cStringIO import StringIO as OldStringIO from io import BytesIO, StringIO import flask import mock import os import random import string import zipfile import re import unittest import shutil import sys import tempfile from click.exceptions import ClickException from lambda_packages import lambda_packages from .utils import placebo_session, patch_open from zappa.cli import ZappaCLI, shamelessly_promote from zappa.ext.django_zappa import get_django_wsgi from zappa.handler import LambdaHandler, lambda_handler from zappa.letsencrypt import get_cert_and_update_domain, create_domain_key, create_domain_csr, create_chained_certificate, get_cert, cleanup, parse_account_key, parse_csr, sign_certificate, encode_certificate, register_account, verify_challenge from zappa.util import (detect_django_settings, copytree, detect_flask_apps, add_event_source, remove_event_source, get_event_source_status, parse_s3_url, human_size, string_to_timestamp) from zappa.wsgi import create_wsgi_request, common_log from zappa.zappa import Zappa, ASSUME_POLICY, ATTACH_POLICY def random_string(length): return ''.join(random.choice(string.printable) for _ in range(length)) class TestZappa(unittest.TestCase): def setUp(self): self.sleep_patch = mock.patch('time.sleep', return_value=None) # Tests expect us-east-1. # If the user has set a different region in env variables, we set it aside for now and use us-east-1 self.users_current_region_name = os.environ.get('AWS_DEFAULT_REGION', None) os.environ['AWS_DEFAULT_REGION'] = 'us-east-1' if not os.environ.get('PLACEBO_MODE') == 'record': self.sleep_patch.start() def tearDown(self): if not os.environ.get('PLACEBO_MODE') == 'record': self.sleep_patch.stop() del os.environ['AWS_DEFAULT_REGION'] if self.users_current_region_name is not None: # Give the user their AWS region back, we're done testing with us-east-1. os.environ['AWS_DEFAULT_REGION'] = self.users_current_region_name ## # Sanity Tests ## def test_test(self): self.assertTrue(True) ## # Basic Tests ## def test_zappa(self): self.assertTrue(True) Zappa() @mock.patch('zappa.zappa.find_packages') @mock.patch('os.remove') def test_copy_editable_packages(self, mock_remove, mock_find_packages): temp_package_dir = '/var/folders/rn/9tj3_p0n1ln4q4jn1lgqy4br0000gn/T/1480455339' egg_links = [ '/user/test/.virtualenvs/test/lib/python2.7/site-packages/package-python.egg-link' ] egg_path = "/some/other/directory/package" mock_find_packages.return_value = ["package", "package.subpackage", "package.another"] temp_egg_link = os.path.join(temp_package_dir, 'package-python.egg-link') z = Zappa() with nested( patch_open(), mock.patch('glob.glob'), mock.patch('zappa.zappa.copytree') ) as ((mock_open, mock_file), mock_glob, mock_copytree): # We read in the contents of the egg-link file mock_file.read.return_value = "{}\n.".format(egg_path) # we use glob.glob to get the egg-links in the temp packages directory mock_glob.return_value = [temp_egg_link] z.copy_editable_packages(egg_links, temp_package_dir) # make sure we copied the right directories mock_copytree.assert_called_with( os.path.join(egg_path, 'package'), os.path.join(temp_package_dir, 'package'), symlinks=False ) self.assertEqual(mock_copytree.call_count, 1) # make sure it removes the egg-link from the temp packages directory mock_remove.assert_called_with(temp_egg_link) self.assertEqual(mock_remove.call_count, 1) def test_create_lambda_package(self): # mock the pip.get_installed_distributions() to include a package in lambda_packages so that the code # for zipping pre-compiled packages gets called mock_named_tuple = collections.namedtuple('mock_named_tuple', ['project_name', 'location']) mock_return_val = [mock_named_tuple(lambda_packages.keys()[0], '/path')] # choose name of 1st package in lambda_packages with mock.patch('pip.get_installed_distributions', return_value=mock_return_val): z = Zappa() path = z.create_lambda_zip(handler_file=os.path.realpath(__file__)) self.assertTrue(os.path.isfile(path)) os.remove(path) def test_get_manylinux(self): z = Zappa() self.assertNotEqual(z.get_manylinux_wheel('pandas'), None) self.assertEqual(z.get_manylinux_wheel('derpderpderpderp'), None) # mock the pip.get_installed_distributions() to include a package in manylinux so that the code # for zipping pre-compiled packages gets called mock_named_tuple = collections.namedtuple('mock_named_tuple', ['project_name', 'location']) mock_return_val = [mock_named_tuple('pandas', '/path')] with mock.patch('pip.get_installed_distributions', return_value=mock_return_val): z = Zappa() path = z.create_lambda_zip(handler_file=os.path.realpath(__file__)) self.assertTrue(os.path.isfile(path)) os.remove(path) def test_load_credentials(self): z = Zappa() z.aws_region = 'us-east-1' z.load_credentials() self.assertEqual(z.boto_session.region_name, 'us-east-1') self.assertEqual(z.aws_region, 'us-east-1') z.aws_region = 'eu-west-1' z.profile_name = 'default' z.load_credentials() self.assertEqual(z.boto_session.region_name, 'eu-west-1') self.assertEqual(z.aws_region, 'eu-west-1') creds = { 'AWS_ACCESS_KEY_ID': 'AK123', 'AWS_SECRET_ACCESS_KEY': 'JKL456', 'AWS_DEFAULT_REGION': 'us-west-1' } with mock.patch.dict('os.environ', creds): z.aws_region = None z.load_credentials() loaded_creds = z.boto_session._session.get_credentials() self.assertEqual(loaded_creds.access_key, 'AK123') self.assertEqual(loaded_creds.secret_key, 'JKL456') self.assertEqual(z.boto_session.region_name, 'us-west-1') def test_create_api_gateway_routes_with_different_auth_methods(self): z = Zappa() z.parameter_depth = 1 z.integration_response_codes = [200] z.method_response_codes = [200] z.http_methods = ['GET'] z.credentials_arn = 'arn:aws:iam::12345:role/ZappaLambdaExecution' lambda_arn = 'arn:aws:lambda:us-east-1:12345:function:helloworld' # No auth at all z.create_stack_template(lambda_arn, 'helloworld', False, {}, False, None) parsable_template = json.loads(z.cf_template.to_json()) self.assertEqual("NONE", parsable_template["Resources"]["GET0"]["Properties"]["AuthorizationType"]) self.assertEqual("NONE", parsable_template["Resources"]["GET1"]["Properties"]["AuthorizationType"]) self.assertEqual(False, parsable_template["Resources"]["GET0"]["Properties"]["ApiKeyRequired"]) self.assertEqual(False, parsable_template["Resources"]["GET1"]["Properties"]["ApiKeyRequired"]) # IAM auth z.create_stack_template(lambda_arn, 'helloworld', False, {}, True, None) parsable_template = json.loads(z.cf_template.to_json()) self.assertEqual("AWS_IAM", parsable_template["Resources"]["GET0"]["Properties"]["AuthorizationType"]) self.assertEqual("AWS_IAM", parsable_template["Resources"]["GET1"]["Properties"]["AuthorizationType"]) self.assertEqual(False, parsable_template["Resources"]["GET0"]["Properties"]["ApiKeyRequired"]) self.assertEqual(False, parsable_template["Resources"]["GET1"]["Properties"]["ApiKeyRequired"]) # CORS with auth z.create_stack_template(lambda_arn, 'helloworld', False, {}, True, None, True) parsable_template = json.loads(z.cf_template.to_json()) self.assertEqual("AWS_IAM", parsable_template["Resources"]["GET0"]["Properties"]["AuthorizationType"]) self.assertEqual("AWS_IAM", parsable_template["Resources"]["GET1"]["Properties"]["AuthorizationType"]) self.assertEqual("NONE", parsable_template["Resources"]["OPTIONS0"]["Properties"]["AuthorizationType"]) self.assertEqual("NONE", parsable_template["Resources"]["OPTIONS1"]["Properties"]["AuthorizationType"]) self.assertEqual("MOCK", parsable_template["Resources"]["OPTIONS0"]["Properties"]["Integration"]["Type"]) self.assertEqual("MOCK", parsable_template["Resources"]["OPTIONS1"]["Properties"]["Integration"]["Type"]) self.assertEqual("'Content-Type,X-Amz-Date,Authorization,X-Api-Key,X-Amz-Security-Token'", parsable_template["Resources"]["OPTIONS0"]["Properties"]["Integration"]["IntegrationResponses"][0]["ResponseParameters"]["method.response.header.Access-Control-Allow-Headers"]) self.assertEqual("'Content-Type,X-Amz-Date,Authorization,X-Api-Key,X-Amz-Security-Token'", parsable_template["Resources"]["OPTIONS1"]["Properties"]["Integration"]["IntegrationResponses"][0]["ResponseParameters"]["method.response.header.Access-Control-Allow-Headers"]) self.assertTrue(parsable_template["Resources"]["OPTIONS0"]["Properties"]["MethodResponses"][0]["ResponseParameters"]["method.response.header.Access-Control-Allow-Headers"]) self.assertTrue(parsable_template["Resources"]["OPTIONS1"]["Properties"]["MethodResponses"][0]["ResponseParameters"]["method.response.header.Access-Control-Allow-Headers"]) self.assertEqual(False, parsable_template["Resources"]["GET0"]["Properties"]["ApiKeyRequired"]) self.assertEqual(False, parsable_template["Resources"]["GET1"]["Properties"]["ApiKeyRequired"]) # API Key auth z.create_stack_template(lambda_arn, 'helloworld', True, {}, True, None) parsable_template = json.loads(z.cf_template.to_json()) self.assertEqual("AWS_IAM", parsable_template["Resources"]["GET0"]["Properties"]["AuthorizationType"]) self.assertEqual("AWS_IAM", parsable_template["Resources"]["GET1"]["Properties"]["AuthorizationType"]) self.assertEqual(True, parsable_template["Resources"]["GET0"]["Properties"]["ApiKeyRequired"]) self.assertEqual(True, parsable_template["Resources"]["GET1"]["Properties"]["ApiKeyRequired"]) # Authorizer and IAM authorizer = { "function": "runapi.authorization.gateway_authorizer.evaluate_token", "result_ttl": 300, "token_header": "Authorization", "validation_expression": "xxx" } z.create_stack_template(lambda_arn, 'helloworld', False, {}, True, authorizer) parsable_template = json.loads(z.cf_template.to_json()) self.assertEqual("AWS_IAM", parsable_template["Resources"]["GET0"]["Properties"]["AuthorizationType"]) self.assertEqual("AWS_IAM", parsable_template["Resources"]["GET1"]["Properties"]["AuthorizationType"]) with self.assertRaises(KeyError): parsable_template["Resources"]["Authorizer"] # Authorizer with validation expression invocations_uri = 'arn:aws:apigateway:us-east-1:lambda:path/2015-03-31/functions/' + lambda_arn + '/invocations' z.create_stack_template(lambda_arn, 'helloworld', False, {}, False, authorizer) parsable_template = json.loads(z.cf_template.to_json()) self.assertEqual("CUSTOM", parsable_template["Resources"]["GET0"]["Properties"]["AuthorizationType"]) self.assertEqual("CUSTOM", parsable_template["Resources"]["GET1"]["Properties"]["AuthorizationType"]) self.assertEqual("TOKEN", parsable_template["Resources"]["Authorizer"]["Properties"]["Type"]) self.assertEqual("ZappaAuthorizer", parsable_template["Resources"]["Authorizer"]["Properties"]["Name"]) self.assertEqual(300, parsable_template["Resources"]["Authorizer"]["Properties"]["AuthorizerResultTtlInSeconds"]) self.assertEqual(invocations_uri, parsable_template["Resources"]["Authorizer"]["Properties"]["AuthorizerUri"]) self.assertEqual(z.credentials_arn, parsable_template["Resources"]["Authorizer"]["Properties"]["AuthorizerCredentials"]) self.assertEqual("xxx", parsable_template["Resources"]["Authorizer"]["Properties"]["IdentityValidationExpression"]) # Authorizer without validation expression authorizer.pop('validation_expression', None) z.create_stack_template(lambda_arn, 'helloworld', False, {}, False, authorizer) parsable_template = json.loads(z.cf_template.to_json()) self.assertEqual("CUSTOM", parsable_template["Resources"]["GET0"]["Properties"]["AuthorizationType"]) self.assertEqual("CUSTOM", parsable_template["Resources"]["GET1"]["Properties"]["AuthorizationType"]) self.assertEqual("TOKEN", parsable_template["Resources"]["Authorizer"]["Properties"]["Type"]) with self.assertRaises(KeyError): parsable_template["Resources"]["Authorizer"]["Properties"]["IdentityValidationExpression"] # Authorizer with arn authorizer = { "arn": "arn:aws:lambda:us-east-1:123456789012:function:my-function", } z.create_stack_template(lambda_arn, 'helloworld', False, {}, False, authorizer) parsable_template = json.loads(z.cf_template.to_json()) self.assertEqual('arn:aws:apigateway:us-east-1:lambda:path/2015-03-31/functions/arn:aws:lambda:us-east-1:123456789012:function:my-function/invocations', parsable_template["Resources"]["Authorizer"]["Properties"]["AuthorizerUri"]) def test_policy_json(self): # ensure the policy docs are valid JSON json.loads(ASSUME_POLICY) json.loads(ATTACH_POLICY) def test_schedule_events(self): z = Zappa() path = os.getcwd() # z.schedule_events # TODO ## # Logging ## def test_logging(self): """ TODO """ Zappa() ## # Mapping and pattern tests ## def test_redirect_pattern(self): test_urls = [ # a regular endpoint url 'https://asdf1234.execute-api.us-east-1.amazonaws.com/env/path/to/thing', # an external url (outside AWS) 'https://github.com/Miserlou/zappa/issues?q=is%3Aissue+is%3Aclosed', # a local url '/env/path/to/thing' ] for code in ['301', '302']: pattern = Zappa.selection_pattern(code) for url in test_urls: self.assertRegexpMatches(url, pattern) def test_b64_pattern(self): head = '\{"http_status": ' for code in ['400', '401', '402', '403', '404', '500']: pattern = Zappa.selection_pattern(code) document = head + code + random_string(50) self.assertRegexpMatches(document, pattern) for bad_code in ['200', '301', '302']: document = base64.b64encode(head + bad_code + random_string(50)) self.assertNotRegexpMatches(document, pattern) def test_200_pattern(self): pattern = Zappa.selection_pattern('200') self.assertEqual(pattern, '') ## # WSGI ## def test_wsgi_event(self): ## This is a pre-proxy+ event # event = { # "body": "", # "headers": { # "Via": "1.1 e604e934e9195aaf3e36195adbcb3e18.cloudfront.net (CloudFront)", # "Accept-Language": "en-US,en;q=0.5", # "Accept-Encoding": "gzip", # "CloudFront-Is-SmartTV-Viewer": "false", # "CloudFront-Forwarded-Proto": "https", # "X-Forwarded-For": "109.81.209.118, 216.137.58.43", # "CloudFront-Viewer-Country": "CZ", # "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8", # "X-Forwarded-Proto": "https", # "X-Amz-Cf-Id": "LZeP_TZxBgkDt56slNUr_H9CHu1Us5cqhmRSswOh1_3dEGpks5uW-g==", # "CloudFront-Is-Tablet-Viewer": "false", # "X-Forwarded-Port": "443", # "CloudFront-Is-Mobile-Viewer": "false", # "CloudFront-Is-Desktop-Viewer": "true", # "Content-Type": "application/json" # }, # "params": { # "parameter_1": "asdf1", # "parameter_2": "asdf2", # }, # "method": "POST", # "query": { # "dead": "beef" # } # } event = { u'body': None, u'resource': u'/', u'requestContext': { u'resourceId': u'6cqjw9qu0b', u'apiId': u'9itr2lba55', u'resourcePath': u'/', u'httpMethod': u'GET', u'requestId': u'c17cb1bf-867c-11e6-b938-ed697406e3b5', u'accountId': u'724336686645', u'identity': { u'apiKey': None, u'userArn': None, u'cognitoAuthenticationType': None, u'caller': None, u'userAgent': u'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:48.0) Gecko/20100101 Firefox/48.0', u'user': None, u'cognitoIdentityPoolId': None, u'cognitoIdentityId': None, u'cognitoAuthenticationProvider': None, u'sourceIp': u'50.191.225.98', u'accountId': None, }, u'stage': u'devorr', }, u'queryStringParameters': None, u'httpMethod': u'GET', u'pathParameters': None, u'headers': { u'Via': u'1.1 6801928d54163af944bf854db8d5520e.cloudfront.net (CloudFront)', u'Accept-Language': u'en-US,en;q=0.5', u'Accept-Encoding': u'gzip, deflate, br', u'CloudFront-Is-SmartTV-Viewer': u'false', u'CloudFront-Forwarded-Proto': u'https', u'X-Forwarded-For': u'50.191.225.98, 204.246.168.101', u'CloudFront-Viewer-Country': u'US', u'Accept': u'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', u'Upgrade-Insecure-Requests': u'1', u'Host': u'9itr2lba55.execute-api.us-east-1.amazonaws.com', u'X-Forwarded-Proto': u'https', u'X-Amz-Cf-Id': u'qgNdqKT0_3RMttu5KjUdnvHI3OKm1BWF8mGD2lX8_rVrJQhhp-MLDw==', u'CloudFront-Is-Tablet-Viewer': u'false', u'X-Forwarded-Port': u'443', u'User-Agent': u'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:48.0) Gecko/20100101 Firefox/48.0', u'CloudFront-Is-Mobile-Viewer': u'false', u'CloudFront-Is-Desktop-Viewer': u'true', }, u'stageVariables': None, u'path': u'/', } request = create_wsgi_request(event) # def test_wsgi_path_info(self): # # Test no parameters (site.com/) # event = { # "body": {}, # "headers": {}, # "pathParameters": {}, # "path": u'/', # "httpMethod": "GET", # "queryStringParameters": {} # } # request = create_wsgi_request(event, trailing_slash=True) # self.assertEqual("/", request['PATH_INFO']) # request = create_wsgi_request(event, trailing_slash=False) # self.assertEqual("/", request['PATH_INFO']) # # Test parameters (site.com/asdf1/asdf2 or site.com/asdf1/asdf2/) # event_asdf2 = {u'body': None, u'resource': u'/{proxy+}', u'requestContext': {u'resourceId': u'dg451y', u'apiId': u'79gqbxq31c', u'resourcePath': u'/{proxy+}', u'httpMethod': u'GET', u'requestId': u'766df67f-8991-11e6-b2c4-d120fedb94e5', u'accountId': u'724336686645', u'identity': {u'apiKey': None, u'userArn': None, u'cognitoAuthenticationType': None, u'caller': None, u'userAgent': u'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:49.0) Gecko/20100101 Firefox/49.0', u'user': None, u'cognitoIdentityPoolId': None, u'cognitoIdentityId': None, u'cognitoAuthenticationProvider': None, u'sourceIp': u'96.90.37.59', u'accountId': None}, u'stage': u'devorr'}, u'queryStringParameters': None, u'httpMethod': u'GET', u'pathParameters': {u'proxy': u'asdf1/asdf2'}, u'headers': {u'Via': u'1.1 b2aeb492548a8a2d4036401355f928dd.cloudfront.net (CloudFront)', u'Accept-Language': u'en-US,en;q=0.5', u'Accept-Encoding': u'gzip, deflate, br', u'X-Forwarded-Port': u'443', u'X-Forwarded-For': u'96.90.37.59, 54.240.144.50', u'CloudFront-Viewer-Country': u'US', u'Accept': u'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', u'Upgrade-Insecure-Requests': u'1', u'Host': u'79gqbxq31c.execute-api.us-east-1.amazonaws.com', u'X-Forwarded-Proto': u'https', u'X-Amz-Cf-Id': u'BBFP-RhGDrQGOzoCqjnfB2I_YzWt_dac9S5vBcSAEaoM4NfYhAQy7Q==', u'User-Agent': u'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:49.0) Gecko/20100101 Firefox/49.0', u'CloudFront-Forwarded-Proto': u'https'}, u'stageVariables': None, u'path': u'/asdf1/asdf2'} # event_asdf2_slash = {u'body': None, u'resource': u'/{proxy+}', u'requestContext': {u'resourceId': u'dg451y', u'apiId': u'79gqbxq31c', u'resourcePath': u'/{proxy+}', u'httpMethod': u'GET', u'requestId': u'd6fda925-8991-11e6-8bd8-b5ec6db19d57', u'accountId': u'724336686645', u'identity': {u'apiKey': None, u'userArn': None, u'cognitoAuthenticationType': None, u'caller': None, u'userAgent': u'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:49.0) Gecko/20100101 Firefox/49.0', u'user': None, u'cognitoIdentityPoolId': None, u'cognitoIdentityId': None, u'cognitoAuthenticationProvider': None, u'sourceIp': u'96.90.37.59', u'accountId': None}, u'stage': u'devorr'}, u'queryStringParameters': None, u'httpMethod': u'GET', u'pathParameters': {u'proxy': u'asdf1/asdf2'}, u'headers': {u'Via': u'1.1 c70173a50d0076c99b5e680eb32d40bb.cloudfront.net (CloudFront)', u'Accept-Language': u'en-US,en;q=0.5', u'Accept-Encoding': u'gzip, deflate, br', u'X-Forwarded-Port': u'443', u'X-Forwarded-For': u'96.90.37.59, 54.240.144.53', u'CloudFront-Viewer-Country': u'US', u'Accept': u'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', u'Upgrade-Insecure-Requests': u'1', u'Host': u'79gqbxq31c.execute-api.us-east-1.amazonaws.com', u'X-Forwarded-Proto': u'https', u'Cookie': u'zappa=AQ4', u'X-Amz-Cf-Id': u'aU_i-iuT3llVUfXv2zv6uU-m77Oga7ANhd5ZYrCoqXBy4K7I2x3FZQ==', u'User-Agent': u'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:49.0) Gecko/20100101 Firefox/49.0', u'CloudFront-Forwarded-Proto': u'https'}, u'stageVariables': None, u'path': u'/asdf1/asdf2/'} # request = create_wsgi_request(event, trailing_slash=True) # self.assertEqual("/asdf1/asdf2/", request['PATH_INFO']) # request = create_wsgi_request(event, trailing_slash=False) # self.assertEqual("/asdf1/asdf2", request['PATH_INFO']) # request = create_wsgi_request(event, trailing_slash=False, script_name='asdf1') # self.assertEqual("/asdf1/asdf2", request['PATH_INFO']) def test_wsgi_path_info_unquoted(self): event = { "body": {}, "headers": {}, "pathParameters": {}, "path": '/path%3A1', # encoded /path:1 "httpMethod": "GET", "queryStringParameters": {}, "requestContext": {} } request = create_wsgi_request(event, trailing_slash=True) self.assertEqual("/path:1", request['PATH_INFO']) def test_wsgi_logging(self): # event = { # "body": {}, # "headers": {}, # "params": { # "parameter_1": "asdf1", # "parameter_2": "asdf2", # }, # "httpMethod": "GET", # "query": {} # } event = {u'body': None, u'resource': u'/{proxy+}', u'requestContext': {u'resourceId': u'dg451y', u'apiId': u'79gqbxq31c', u'resourcePath': u'/{proxy+}', u'httpMethod': u'GET', u'requestId': u'766df67f-8991-11e6-b2c4-d120fedb94e5', u'accountId': u'724336686645', u'identity': {u'apiKey': None, u'userArn': None, u'cognitoAuthenticationType': None, u'caller': None, u'userAgent': u'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:49.0) Gecko/20100101 Firefox/49.0', u'user': None, u'cognitoIdentityPoolId': None, u'cognitoIdentityId': None, u'cognitoAuthenticationProvider': None, u'sourceIp': u'96.90.37.59', u'accountId': None}, u'stage': u'devorr'}, u'queryStringParameters': None, u'httpMethod': u'GET', u'pathParameters': {u'proxy': u'asdf1/asdf2'}, u'headers': {u'Via': u'1.1 b2aeb492548a8a2d4036401355f928dd.cloudfront.net (CloudFront)', u'Accept-Language': u'en-US,en;q=0.5', u'Accept-Encoding': u'gzip, deflate, br', u'X-Forwarded-Port': u'443', u'X-Forwarded-For': u'96.90.37.59, 54.240.144.50', u'CloudFront-Viewer-Country': u'US', u'Accept': u'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', u'Upgrade-Insecure-Requests': u'1', u'Host': u'79gqbxq31c.execute-api.us-east-1.amazonaws.com', u'X-Forwarded-Proto': u'https', u'X-Amz-Cf-Id': u'BBFP-RhGDrQGOzoCqjnfB2I_YzWt_dac9S5vBcSAEaoM4NfYhAQy7Q==', u'User-Agent': u'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:49.0) Gecko/20100101 Firefox/49.0', u'CloudFront-Forwarded-Proto': u'https'}, u'stageVariables': None, u'path': u'/asdf1/asdf2'} environ = create_wsgi_request(event, trailing_slash=False) response_tuple = collections.namedtuple('Response', ['status_code', 'content']) response = response_tuple(200, 'hello') le = common_log(environ, response, response_time=True) le = common_log(environ, response, response_time=False) def test_wsgi_multipart(self): #event = {u'body': u'LS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS03Njk1MjI4NDg0Njc4MTc2NTgwNjMwOTYxDQpDb250ZW50LURpc3Bvc2l0aW9uOiBmb3JtLWRhdGE7IG5hbWU9Im15c3RyaW5nIg0KDQpkZGQNCi0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tNzY5NTIyODQ4NDY3ODE3NjU4MDYzMDk2MS0tDQo=', u'headers': {u'Content-Type': u'multipart/form-data; boundary=---------------------------7695228484678176580630961', u'Via': u'1.1 38205a04d96d60185e88658d3185ccee.cloudfront.net (CloudFront)', u'Accept-Language': u'en-US,en;q=0.5', u'Accept-Encoding': u'gzip, deflate, br', u'CloudFront-Is-SmartTV-Viewer': u'false', u'CloudFront-Forwarded-Proto': u'https', u'X-Forwarded-For': u'71.231.27.57, 104.246.180.51', u'CloudFront-Viewer-Country': u'US', u'Accept': u'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', u'User-Agent': u'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:45.0) Gecko/20100101 Firefox/45.0', u'Host': u'xo2z7zafjh.execute-api.us-east-1.amazonaws.com', u'X-Forwarded-Proto': u'https', u'Cookie': u'zappa=AQ4', u'CloudFront-Is-Tablet-Viewer': u'false', u'X-Forwarded-Port': u'443', u'Referer': u'https://xo8z7zafjh.execute-api.us-east-1.amazonaws.com/former/post', u'CloudFront-Is-Mobile-Viewer': u'false', u'X-Amz-Cf-Id': u'31zxcUcVyUxBOMk320yh5NOhihn5knqrlYQYpGGyOngKKwJb0J0BAQ==', u'CloudFront-Is-Desktop-Viewer': u'true'}, u'params': {u'parameter_1': u'post'}, u'method': u'POST', u'query': {}} event = { u'body': u'LS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS03Njk1MjI4NDg0Njc4MTc2NTgwNjMwOTYxDQpDb250ZW50LURpc3Bvc2l0aW9uOiBmb3JtLWRhdGE7IG5hbWU9Im15c3RyaW5nIg0KDQpkZGQNCi0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tNzY5NTIyODQ4NDY3ODE3NjU4MDYzMDk2MS0tDQo=', u'resource': u'/', u'requestContext': { u'resourceId': u'6cqjw9qu0b', u'apiId': u'9itr2lba55', u'resourcePath': u'/', u'httpMethod': u'POST', u'requestId': u'c17cb1bf-867c-11e6-b938-ed697406e3b5', u'accountId': u'724336686645', u'identity': { u'apiKey': None, u'userArn': None, u'cognitoAuthenticationType': None, u'caller': None, u'userAgent': u'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:48.0) Gecko/20100101 Firefox/48.0', u'user': None, u'cognitoIdentityPoolId': None, u'cognitoIdentityId': None, u'cognitoAuthenticationProvider': None, u'sourceIp': u'50.191.225.98', u'accountId': None, }, u'stage': u'devorr', }, u'queryStringParameters': None, u'httpMethod': u'POST', u'pathParameters': None, u'headers': {u'Content-Type': u'multipart/form-data; boundary=---------------------------7695228484678176580630961', u'Via': u'1.1 38205a04d96d60185e88658d3185ccee.cloudfront.net (CloudFront)', u'Accept-Language': u'en-US,en;q=0.5', u'Accept-Encoding': u'gzip, deflate, br', u'CloudFront-Is-SmartTV-Viewer': u'false', u'CloudFront-Forwarded-Proto': u'https', u'X-Forwarded-For': u'71.231.27.57, 104.246.180.51', u'CloudFront-Viewer-Country': u'US', u'Accept': u'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', u'User-Agent': u'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:45.0) Gecko/20100101 Firefox/45.0', u'Host': u'xo2z7zafjh.execute-api.us-east-1.amazonaws.com', u'X-Forwarded-Proto': u'https', u'Cookie': u'zappa=AQ4', u'CloudFront-Is-Tablet-Viewer': u'false', u'X-Forwarded-Port': u'443', u'Referer': u'https://xo8z7zafjh.execute-api.us-east-1.amazonaws.com/former/post', u'CloudFront-Is-Mobile-Viewer': u'false', u'X-Amz-Cf-Id': u'31zxcUcVyUxBOMk320yh5NOhihn5knqrlYQYpGGyOngKKwJb0J0BAQ==', u'CloudFront-Is-Desktop-Viewer': u'true'}, u'stageVariables': None, u'path': u'/', } environ = create_wsgi_request(event, trailing_slash=False) response_tuple = collections.namedtuple('Response', ['status_code', 'content']) response = response_tuple(200, 'hello') def test_wsgi_without_body(self): event = { u'body': None, u'resource': u'/', u'requestContext': { u'resourceId': u'6cqjw9qu0b', u'apiId': u'9itr2lba55', u'resourcePath': u'/', u'httpMethod': u'POST', u'requestId': u'c17cb1bf-867c-11e6-b938-ed697406e3b5', u'accountId': u'724336686645', u'identity': { u'apiKey': None, u'userArn': None, u'cognitoAuthenticationType': None, u'caller': None, u'userAgent': u'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:48.0) Gecko/20100101 Firefox/48.0', u'user': None, u'cognitoIdentityPoolId': None, u'cognitoIdentityId': None, u'cognitoAuthenticationProvider': None, u'sourceIp': u'50.191.225.98', u'accountId': None, }, u'stage': u'devorr', }, u'queryStringParameters': None, u'httpMethod': u'POST', u'pathParameters': None, u'headers': {u'Via': u'1.1 38205a04d96d60185e88658d3185ccee.cloudfront.net (CloudFront)', u'Accept-Language': u'en-US,en;q=0.5', u'Accept-Encoding': u'gzip, deflate, br', u'CloudFront-Is-SmartTV-Viewer': u'false', u'CloudFront-Forwarded-Proto': u'https', u'X-Forwarded-For': u'71.231.27.57, 104.246.180.51', u'CloudFront-Viewer-Country': u'US', u'Accept': u'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', u'User-Agent': u'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:45.0) Gecko/20100101 Firefox/45.0', u'Host': u'xo2z7zafjh.execute-api.us-east-1.amazonaws.com', u'X-Forwarded-Proto': u'https', u'Cookie': u'zappa=AQ4', u'CloudFront-Is-Tablet-Viewer': u'false', u'X-Forwarded-Port': u'443', u'Referer': u'https://xo8z7zafjh.execute-api.us-east-1.amazonaws.com/former/post', u'CloudFront-Is-Mobile-Viewer': u'false', u'X-Amz-Cf-Id': u'31zxcUcVyUxBOMk320yh5NOhihn5knqrlYQYpGGyOngKKwJb0J0BAQ==', u'CloudFront-Is-Desktop-Viewer': u'true'}, u'stageVariables': None, u'path': u'/', } environ = create_wsgi_request(event, trailing_slash=False) response_tuple = collections.namedtuple('Response', ['status_code', 'content']) response = response_tuple(200, 'hello') ## # Handler ## ## # CLI ## def test_cli_sanity(self): zappa_cli = ZappaCLI() return def test_load_settings(self): zappa_cli = ZappaCLI() zappa_cli.api_stage = 'ttt888' zappa_cli.load_settings('test_settings.json') self.assertEqual(False, zappa_cli.stage_config['touch']) def test_load_extended_settings(self): zappa_cli = ZappaCLI() zappa_cli.api_stage = 'extendo' zappa_cli.load_settings('test_settings.json') self.assertEqual('lmbda', zappa_cli.stage_config['s3_bucket']) self.assertEqual(True, zappa_cli.stage_config['touch']) zappa_cli = ZappaCLI() zappa_cli.api_stage = 'extendofail' with self.assertRaises(ClickException): zappa_cli.load_settings('test_settings.json') zappa_cli = ZappaCLI() zappa_cli.api_stage = 'ttt888' with self.assertRaises(RuntimeError): zappa_cli.load_settings('tests/test_bad_circular_extends_settings.json') zappa_cli = ZappaCLI() zappa_cli.api_stage = 'extendo2' zappa_cli.load_settings('test_settings.json') self.assertEqual('lmbda2', zappa_cli.stage_config['s3_bucket']) # Second Extension self.assertTrue(zappa_cli.stage_config['touch']) # First Extension self.assertTrue(zappa_cli.stage_config['delete_local_zip']) # The base def test_load_settings_yaml(self): zappa_cli = ZappaCLI() zappa_cli.api_stage = 'ttt888' zappa_cli.load_settings('tests/test_settings.yml') self.assertEqual(False, zappa_cli.stage_config['touch']) zappa_cli = ZappaCLI() zappa_cli.api_stage = 'extendo' zappa_cli.load_settings('tests/test_settings.yml') self.assertEqual('lmbda', zappa_cli.stage_config['s3_bucket']) self.assertEqual(True, zappa_cli.stage_config['touch']) def test_load_settings_toml(self): zappa_cli = ZappaCLI() zappa_cli.api_stage = 'ttt888' zappa_cli.load_settings('tests/test_settings.toml') self.assertEqual(False, zappa_cli.stage_config['touch']) def test_settings_extension(self): """ Make sure Zappa uses settings in the proper order: JSON, TOML, YAML. """ tempdir = tempfile.mkdtemp(prefix="zappa-test-settings") shutil.copy("tests/test_one_env.json", tempdir + "/zappa_settings.json") shutil.copy("tests/test_settings.yml", tempdir + "/zappa_settings.yml") shutil.copy("tests/test_settings.toml", tempdir + "/zappa_settings.toml") orig_cwd = os.getcwd() os.chdir(tempdir) try: zappa_cli = ZappaCLI() # With all three, we should get the JSON file first. self.assertEqual(zappa_cli.get_json_or_yaml_settings(), "zappa_settings.json") zappa_cli.load_settings_file() self.assertIn("lonely", zappa_cli.zappa_settings) os.unlink("zappa_settings.json") # Without the JSON file, we should get the TOML file. self.assertEqual(zappa_cli.get_json_or_yaml_settings(), "zappa_settings.toml") zappa_cli.load_settings_file() self.assertIn("ttt888", zappa_cli.zappa_settings) self.assertNotIn("devor", zappa_cli.zappa_settings) os.unlink("zappa_settings.toml") # With just the YAML file, we should get it. self.assertEqual(zappa_cli.get_json_or_yaml_settings(), "zappa_settings.yml") zappa_cli.load_settings_file() self.assertIn("ttt888", zappa_cli.zappa_settings) self.assertIn("devor", zappa_cli.zappa_settings) os.unlink("zappa_settings.yml") # Without anything, we should get an exception. self.assertRaises( ClickException, zappa_cli.get_json_or_yaml_settings) finally: os.chdir(orig_cwd) shutil.rmtree(tempdir) def test_cli_utility(self): zappa_cli = ZappaCLI() zappa_cli.api_stage = 'ttt888' zappa_cli.load_settings('test_settings.json') zappa_cli.create_package() zappa_cli.remove_local_zip() logs = [ { 'timestamp': '12345', 'message': '[START RequestId] test' }, { 'timestamp': '12345', 'message': '[REPORT RequestId] test' }, { 'timestamp': '12345', 'message': '[END RequestId] test' }, { 'timestamp': '12345', 'message': 'test' }, { 'timestamp': '1480001341214', 'message': '[INFO] 2016-11-24T15:29:13.326Z c0cb52d1-b25a-11e6-9b73-f940ce24319a 59.111.125.48 - - [24/Nov/2016:15:29:13 +0000] "GET / HTTP/1.1" 200 2590 "" "python-requests/2.11.0" 0/4.672' }, { 'timestamp': '1480001341214', 'message': '[INFO] 2016-11-24T15:29:13.326Z c0cb52d1-b25a-11e6-9b73-f940ce24319a 59.111.125.48 - - [24/Nov/2016:15:29:13 +0000] "GET / HTTP/1.1" 400 2590 "" "python-requests/2.11.0" 0/4.672' }, { 'timestamp': '1480001341215', 'message': '[1480001341258] [DEBUG] 2016-11-24T15:29:01.258Z b890d8f6-b25a-11e6-b6bc-718f7ec807df Zappa Event: {}' } ] zappa_cli.print_logs(logs) zappa_cli.print_logs(logs, colorize=False) zappa_cli.print_logs(logs, colorize=False, http=True) zappa_cli.print_logs(logs, colorize=True, http=True) zappa_cli.print_logs(logs, colorize=True, http=False) zappa_cli.print_logs(logs, colorize=True, non_http=True) zappa_cli.print_logs(logs, colorize=True, non_http=False) zappa_cli.print_logs(logs, colorize=True, non_http=True, http=True) zappa_cli.print_logs(logs, colorize=True, non_http=False, http=False) zappa_cli.check_for_update() def test_cli_args(self): zappa_cli = ZappaCLI() # Sanity argv = '-s test_settings.json derp ttt888'.split() with self.assertRaises(SystemExit) as system_exit: zappa_cli.handle(argv) self.assertEqual(system_exit.exception.code, 2) def test_cli_error_exit_code(self): # Discussion: https://github.com/Miserlou/Zappa/issues/407 zappa_cli = ZappaCLI() # Sanity argv = '-s test_settings.json status devor'.split() with self.assertRaises(SystemExit) as system_exit: zappa_cli.handle(argv) self.assertEqual(system_exit.exception.code, 1) def test_cli_default(self): # Discussion: https://github.com/Miserlou/Zappa/issues/422 zappa_cli = ZappaCLI() argv = '-s tests/test_one_env.json status'.split() # It'll fail, but at least it'll cover it. with self.assertRaises(SystemExit) as system_exit: zappa_cli.handle(argv) self.assertEqual(system_exit.exception.code, 1) zappa_cli = ZappaCLI() argv = '-s tests/test_one_env.json status --all'.split() # It'll fail, but at least it'll cover it. with self.assertRaises(SystemExit) as system_exit: zappa_cli.handle(argv) self.assertEqual(system_exit.exception.code, 1) zappa_cli = ZappaCLI() argv = '-s test_settings.json status'.split() with self.assertRaises(SystemExit) as system_exit: zappa_cli.handle(argv) self.assertEqual(system_exit.exception.code, 2) def test_cli_negative_rollback(self): zappa_cli = ZappaCLI() argv = '-s test_settings.json rollback -n -1 dev'.split() output = StringIO() old_stderr, sys.stderr = sys.stderr, output with self.assertRaises(SystemExit) as system_exit: zappa_cli.handle(argv) self.assertEqual(system_exit.exception.code, 2) error_msg = output.getvalue().strip() expected = r".*This argument must be positive \(got -1\)$" self.assertRegexpMatches(error_msg, expected) sys.stderr = old_stderr @mock.patch('zappa.cli.ZappaCLI.dispatch_command') def test_cli_invoke(self, _): zappa_cli = ZappaCLI() argv = '-s test_settings.json invoke '.split() raw_tests = ( ['--raw', 'devor', '"print 1+2"'], ['devor', '"print 1+2"', '--raw'] ) for cmd in raw_tests: zappa_cli.handle(argv + cmd) args = zappa_cli.vargs self.assertFalse(args['all']) self.assertTrue(args['raw']) self.assertEquals(args['command_rest'], '"print 1+2"') self.assertEquals(args['command_env'], 'devor') all_raw_tests = ( ['--all', '--raw', '"print 1+2"'], ['"print 1+2"', '--all', '--raw'], ['--raw', '"print 1+2"', '--all'], ['--all', '"print 1+2"', '--raw'] ) for cmd in all_raw_tests: zappa_cli.handle(argv + cmd) args = zappa_cli.vargs self.assertTrue(args['all']) self.assertTrue(args['raw']) self.assertEquals(args['command_rest'], '"print 1+2"') self.assertEquals(args['command_env'], None) zappa_cli.handle(argv + ['devor', 'myapp.my_func']) args = zappa_cli.vargs self.assertEquals(args['command_rest'], 'myapp.my_func') all_func_tests = ( ['--all', 'myapp.my_func'], ['myapp.my_func', '--all'] ) for cmd in all_func_tests: zappa_cli.handle(argv + cmd) args = zappa_cli.vargs self.assertTrue(args['all']) self.assertEquals(args['command_rest'], 'myapp.my_func') @mock.patch('zappa.cli.ZappaCLI.dispatch_command') def test_cli_manage(self, _): zappa_cli = ZappaCLI() argv = '-s test_settings.json manage '.split() all_tests = ( ['--all', 'showmigrations', 'admin'], ['showmigrations', 'admin', '--all'] ) for cmd in all_tests: zappa_cli.handle(argv + cmd) args = zappa_cli.vargs self.assertTrue(args['all']) self.assertItemsEqual( args['command_rest'], ['showmigrations', 'admin'] ) cmd = ['devor', 'showmigrations', 'admin'] zappa_cli.handle(argv + cmd) args = zappa_cli.vargs self.assertFalse(args['all']) self.assertItemsEqual( args['command_rest'], ['showmigrations', 'admin'] ) cmd = ['devor', '"shell --version"'] zappa_cli.handle(argv + cmd) args = zappa_cli.vargs self.assertFalse(args['all']) self.assertItemsEqual(args['command_rest'], ['"shell --version"']) def test_bad_json_catch(self): zappa_cli = ZappaCLI() self.assertRaises(ValueError, zappa_cli.load_settings_file, 'tests/test_bad_settings.json') def test_bad_stage_name_catch(self): zappa_cli = ZappaCLI() self.assertRaises(ValueError, zappa_cli.load_settings, 'tests/test_bad_stage_name_settings.json') def test_bad_environment_vars_catch(self): zappa_cli = ZappaCLI() zappa_cli.api_stage = 'ttt888' self.assertRaises(ValueError, zappa_cli.load_settings, 'tests/test_bad_environment_vars.json') def test_cli_init(self): if os.path.isfile('zappa_settings.json'): os.remove('zappa_settings.json') # Test directly zappa_cli = ZappaCLI() # Via http://stackoverflow.com/questions/2617057/how-to-supply-stdin-files-and-environment-variable-inputs-to-python-unit-tests inputs = ['dev', 'lmbda', 'test_settings', 'y', ''] def test_for(inputs): input_generator = (i for i in inputs) with mock.patch('__builtin__.raw_input', lambda prompt: next(input_generator)): zappa_cli.init() if os.path.isfile('zappa_settings.json'): os.remove('zappa_settings.json') test_for(inputs) test_for(['dev', 'lmbda', 'test_settings', 'n', '']) test_for(['dev', 'lmbda', 'test_settings', '', '']) test_for(['dev', 'lmbda', 'test_settings', 'p', '']) test_for(['dev', 'lmbda', 'test_settings', 'y', '']) test_for(['dev', 'lmbda', 'test_settings', 'p', 'n']) # Test via handle() input_generator = (i for i in inputs) with mock.patch('__builtin__.raw_input', lambda prompt: next(input_generator)): zappa_cli = ZappaCLI() argv = ['init'] zappa_cli.handle(argv) if os.path.isfile('zappa_settings.json'): os.remove('zappa_settings.json') def test_domain_name_match(self): # Simple sanity check zone = Zappa.get_best_match_zone(all_zones={ 'HostedZones': [ { 'Name': 'example.com.au.', 'Id': 'zone-correct', 'Config': { 'PrivateZone': False } } ]}, domain='www.example.com.au') assert zone == 'zone-correct' # No match test zone = Zappa.get_best_match_zone(all_zones={'HostedZones': [ { 'Name': 'example.com.au.', 'Id': 'zone-incorrect', 'Config': { 'PrivateZone': False } } ]}, domain='something-else.com.au') assert zone is None # More involved, better match should win. zone = Zappa.get_best_match_zone(all_zones={'HostedZones': [ { 'Name': 'example.com.au.', 'Id': 'zone-incorrect', 'Config': { 'PrivateZone': False } }, { 'Name': 'subdomain.example.com.au.', 'Id': 'zone-correct', 'Config': { 'PrivateZone': False } } ]}, domain='www.subdomain.example.com.au') assert zone == 'zone-correct' # Check private zone is not matched zone = Zappa.get_best_match_zone(all_zones={ 'HostedZones': [ { 'Name': 'example.com.au.', 'Id': 'zone-private', 'Config': { 'PrivateZone': True } } ]}, domain='www.example.com.au') assert zone is None # More involved, should ignore the private zone and match the public. zone = Zappa.get_best_match_zone(all_zones={'HostedZones': [ { 'Name': 'subdomain.example.com.au.', 'Id': 'zone-private', 'Config': { 'PrivateZone': True } }, { 'Name': 'subdomain.example.com.au.', 'Id': 'zone-public', 'Config': { 'PrivateZone': False } } ]}, domain='www.subdomain.example.com.au') assert zone == 'zone-public' ## # Let's Encrypt / ACME ## def test_lets_encrypt_sanity(self): # We need a fake account key and crt import subprocess proc = subprocess.Popen(["openssl genrsa 2048 > /tmp/account.key"], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = proc.communicate() if proc.returncode != 0: raise IOError("OpenSSL Error: {0}".format(err)) proc = subprocess.Popen(["openssl req -x509 -newkey rsa:2048 -subj '/C=US/ST=Denial/L=Springfield/O=Dis/CN=www.example.com' -passout pass:foo -keyout /tmp/key.key -out test_signed.crt -days 1 > /tmp/signed.crt"], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = proc.communicate() if proc.returncode != 0: raise IOError("OpenSSL Error: {0}".format(err)) DEFAULT_CA = "https://acme-staging.api.letsencrypt.org" CA = "https://acme-staging.api.letsencrypt.org" try: result = register_account() except ValueError as e: pass # that's fine. create_domain_key() create_domain_csr('herp.derp.wtf') parse_account_key() parse_csr() create_chained_certificate() try: result = sign_certificate() except ValueError as e: pass # that's fine. result = verify_challenge('http://echo.jsontest.com/status/valid') try: result = verify_challenge('http://echo.jsontest.com/status/fail') except ValueError as e: pass # that's fine. try: result = verify_challenge('http://bing.com') except ValueError as e: pass # that's fine. encode_certificate(b'123') # without domain testing.. zappa_cli = ZappaCLI() zappa_cli.api_stage = 'ttt888' zappa_cli.load_settings('test_settings.json') get_cert_and_update_domain(zappa_cli, 'kerplah', 'zzzz', domain=None, clean_up=True) os.remove('test_signed.crt') cleanup() def test_certify_sanity_checks(self): """ Make sure 'zappa certify': * Writes a warning with the --no-cleanup flag. * Errors out when a deployment hasn't taken place. * Writes errors when certificate settings haven't been specified. * Calls Zappa correctly for creates vs. updates. """ old_stdout = sys.stderr sys.stdout = OldStringIO() # print() barfs on io.* types. try: zappa_cli = ZappaCLI() try: zappa_cli.certify(no_cleanup=True) except AttributeError: # Since zappa_cli.zappa isn't initalized, the certify() call # fails when it tries to inspect what Zappa has deployed. pass log_output = sys.stdout.getvalue() self.assertIn("You are calling certify with", log_output) self.assertIn("--no-cleanup", log_output) class ZappaMock(object): def __init__(self): self.function_versions = [] self.domain_names = {} self.calls = [] def get_lambda_function_versions(self, function_name): return self.function_versions def get_domain_name(self, domain): return self.domain_names.get(domain) def create_domain_name(self, *args, **kw): self.calls.append(("create_domain_name", args, kw)) def update_domain_name(self, *args, **kw): self.calls.append(("update_domain_name", args, kw)) zappa_cli.zappa = ZappaMock() self.assertRaises(ClickException, zappa_cli.certify) # Make sure we get an error if we don't configure the domain. zappa_cli.zappa.function_versions = ["$LATEST"] zappa_cli.api_stage = "stage" zappa_cli.zappa_settings = {"stage": {}} try: zappa_cli.certify() except ClickException as e: log_output = str(e) self.assertIn("Can't certify a domain without", log_output) self.assertIn("domain", log_output) # Without any LetsEncrypt settings, we should get a message about # not having a lets_encrypt_key setting. zappa_cli.zappa_settings["stage"]["domain"] = "test.example.com" try: zappa_cli.certify() self.fail("Expected a ClickException") except ClickException as e: log_output = str(e) self.assertIn("Can't certify a domain without", log_output) self.assertIn("lets_encrypt_key", log_output) # With partial settings, we should get a message about not having # certificate, certificate_key, and certificate_chain zappa_cli.zappa_settings["stage"]["certificate"] = "foo" try: zappa_cli.certify() self.fail("Expected a ClickException") except ClickException as e: log_output = str(e) self.assertIn("Can't certify a domain without", log_output) self.assertIn("certificate_key", log_output) self.assertIn("certificate_chain", log_output) zappa_cli.zappa_settings["stage"]["certificate_key"] = "key" try: zappa_cli.certify() self.fail("Expected a ClickException") except ClickException as e: log_output = str(e) self.assertIn("Can't certify a domain without", log_output) self.assertIn("certificate_key", log_output) self.assertIn("certificate_chain", log_output) zappa_cli.zappa_settings["stage"]["certificate_chain"] = "chain" del zappa_cli.zappa_settings["stage"]["certificate_key"] try: zappa_cli.certify() self.fail("Expected a ClickException") except ClickException as e: log_output = str(e) self.assertIn("Can't certify a domain without", log_output) self.assertIn("certificate_key", log_output) self.assertIn("certificate_chain", log_output) # With all certificate settings, make sure Zappa's domain calls # are executed. cert_file = tempfile.NamedTemporaryFile() cert_file.write("Hello world") cert_file.flush() zappa_cli.zappa_settings["stage"].update({ "certificate": cert_file.name, "certificate_key": cert_file.name, "certificate_chain": cert_file.name }) sys.stdout.truncate(0) zappa_cli.certify(no_cleanup=True) self.assertEquals(len(zappa_cli.zappa.calls), 1) self.assertTrue(zappa_cli.zappa.calls[0][0] == "create_domain_name") log_output = sys.stdout.getvalue() self.assertIn("Created a new domain name", log_output) zappa_cli.zappa.calls = [] zappa_cli.zappa.domain_names["test.example.com"] = "*.example.com" sys.stdout.truncate(0) zappa_cli.certify(no_cleanup=True) self.assertEquals(len(zappa_cli.zappa.calls), 1) self.assertTrue(zappa_cli.zappa.calls[0][0] == "update_domain_name") log_output = sys.stdout.getvalue() self.assertNotIn("Created a new domain name", log_output) finally: sys.stdout = old_stdout ## # Django ## def test_detect_dj(self): # Sanity settings_modules = detect_django_settings() def test_dj_wsgi(self): # Sanity settings_modules = detect_django_settings() settings = """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(os.path.dirname(__file__)) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.7/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'alskdfjalsdkf=0*%do-ayvy*m2k=vss*$7)j8q!@u0+d^na7mi2(^!l!d' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True TEMPLATE_DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = 'blah.urls' WSGI_APPLICATION = 'hackathon_starter.wsgi.application' # Database # https://docs.djangoproject.com/en/1.7/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Internationalization # https://docs.djangoproject.com/en/1.7/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True """ djts = open("dj_test_settings.py", "w") djts.write(settings) djts.close() app = get_django_wsgi('dj_test_settings') os.remove('dj_test_settings.py') os.remove('dj_test_settings.pyc') ## # Util / Misc ## def test_human_units(self): human_size(1) human_size(9999999999999) def test_string_to_timestamp(self): boo = string_to_timestamp("asdf") self.assertTrue(boo == 0) yay = string_to_timestamp("1h") self.assertTrue(type(yay) == int) self.assertTrue(yay > 0) yay = string_to_timestamp("4m") self.assertTrue(type(yay) == int) self.assertTrue(yay > 0) yay = string_to_timestamp("1mm") self.assertTrue(type(yay) == int) self.assertTrue(yay > 0) yay = string_to_timestamp("1mm1w1d1h1m1s1ms1us") self.assertTrue(type(yay) == int) self.assertTrue(yay > 0) def test_event_name(self): zappa = Zappa() truncated = zappa.get_event_name("basldfkjalsdkfjalsdkfjaslkdfjalsdkfjadlsfkjasdlfkjasdlfkjasdflkjasdf-asdfasdfasdfasdfasdf", "this.is.my.dang.function.wassup.yeah.its.long") self.assertTrue(len(truncated) <= 64) self.assertTrue(truncated.endswith("this.is.my.dang.function.wassup.yeah.its.long")) truncated = zappa.get_event_name("basldfkjalsdkfjalsdkfjaslkdfjalsdkfjadlsfkjasdlfkjasdlfkjasdflkjasdf-asdfasdfasdfasdfasdf", "thisidoasdfaljksdfalskdjfalsdkfjasldkfjalsdkfjalsdkfjalsdfkjalasdfasdfasdfasdklfjasldkfjalsdkjfaslkdfjasldkfjasdflkjdasfskdj") self.assertTrue(len(truncated) <= 64) truncated = zappa.get_event_name("a", "b") self.assertTrue(len(truncated) <= 64) self.assertEqual(truncated, "a-b") def test_detect_dj(self): # Sanity settings_modules = detect_django_settings() def test_detect_flask(self): # Sanity settings_modules = detect_flask_apps() def test_shameless(self): shamelessly_promote() def test_s3_url_parser(self): remote_bucket, remote_file = parse_s3_url('s3://my-project-config-files/filename.json') self.assertEqual(remote_bucket, 'my-project-config-files') self.assertEqual(remote_file, 'filename.json') remote_bucket, remote_file = parse_s3_url('s3://your-bucket/account.key') self.assertEqual(remote_bucket, 'your-bucket') self.assertEqual(remote_file, 'account.key') remote_bucket, remote_file = parse_s3_url('s3://my-config-bucket/super-secret-config.json') self.assertEqual(remote_bucket, 'my-config-bucket') self.assertEqual(remote_file, 'super-secret-config.json') remote_bucket, remote_file = parse_s3_url('s3://your-secure-bucket/account.key') self.assertEqual(remote_bucket, 'your-secure-bucket') self.assertEqual(remote_file, 'account.key') remote_bucket, remote_file = parse_s3_url('s3://your-bucket/subfolder/account.key') self.assertEqual(remote_bucket, 'your-bucket') self.assertEqual(remote_file, 'subfolder/account.key') # Sad path remote_bucket, remote_file = parse_s3_url('/dev/null') self.assertEqual(remote_bucket, '') def test_remote_env_package(self): zappa_cli = ZappaCLI() zappa_cli.api_stage = 'depricated_remote_env' zappa_cli.load_settings('test_settings.json') self.assertEqual('lmbda-env', zappa_cli.stage_config['remote_env_bucket']) self.assertEqual('dev/env.json', zappa_cli.stage_config['remote_env_file']) zappa_cli.create_package() with zipfile.ZipFile(zappa_cli.zip_path, 'r') as lambda_zip: content = lambda_zip.read('zappa_settings.py') zappa_cli.remove_local_zip() m = re.search("REMOTE_ENV='(.*)'", content) self.assertEqual(m.group(1), 's3://lmbda-env/dev/env.json') zappa_cli = ZappaCLI() zappa_cli.api_stage = 'remote_env' zappa_cli.load_settings('test_settings.json') self.assertEqual('s3://lmbda-env/prod/env.json', zappa_cli.stage_config['remote_env']) zappa_cli.create_package() with zipfile.ZipFile(zappa_cli.zip_path, 'r') as lambda_zip: content = lambda_zip.read('zappa_settings.py') zappa_cli.remove_local_zip() m = re.search("REMOTE_ENV='(.*)'", content) self.assertEqual(m.group(1), 's3://lmbda-env/prod/env.json') def test_package_only(self): for delete_local_zip in [True, False]: zappa_cli = ZappaCLI() if delete_local_zip: zappa_cli.api_stage = 'build_package_only_delete_local_zip_true' else: zappa_cli.api_stage = 'build_package_only_delete_local_zip_false' zappa_cli.load_settings('test_settings.json') zappa_cli.package() zappa_cli.on_exit() # simulate the command exits # the zip should never be removed self.assertEqual(os.path.isfile(zappa_cli.zip_path), True) # cleanup os.remove(zappa_cli.zip_path) def test_flask_logging_bug(self): """ This checks whether Flask can write errors sanely. https://github.com/Miserlou/Zappa/issues/283 """ event = { "body": {}, "headers": {}, "pathParameters": {}, "path": '/', "httpMethod": "GET", "queryStringParameters": {}, "requestContext": {} } old_stderr = sys.stderr sys.stderr = BytesIO() try: environ = create_wsgi_request(event) app = flask.Flask(__name__) with app.request_context(environ): app.logger.error(u"This is a test") log_output = sys.stderr.getvalue() self.assertNotIn( "'str' object has no attribute 'write'", log_output) self.assertNotIn( "Logged from file tests.py", log_output) finally: sys.stderr = old_stderr def test_slim_handler(self): zappa_cli = ZappaCLI() zappa_cli.api_stage = 'slim_handler' zappa_cli.load_settings('test_settings.json') zappa_cli.create_package() self.assertTrue(os.path.isfile(zappa_cli.handler_path)) self.assertTrue(os.path.isfile(zappa_cli.zip_path)) zappa_cli.remove_local_zip() if __name__ == '__main__': unittest.main()
mit
yw374cornell/e-mission-server
emission/analysis/modelling/tour_model/prior_unused/cluster_pipeline.py
1
11691
# Standard imports import logging import os, sys import math import numpy as np import matplotlib # matplotlib.use('Agg') import pygmaps from sklearn.cluster import KMeans from sklearn import manifold import matplotlib.pyplot as plt # Our imports import emission.analysis.modelling.tour_model.prior_unused.route_matching as etmr import emission.analysis.modelling.tour_model.kmedoid as emkm import emission.core.get_database as edb import emission.analysis.modelling.tour_model.trajectory_matching.route_matching as eart import emission.analysis.modelling.tour_model.trajectory_matching.prior_unused.util as eaut """ Notes Usage: python cluster_pipeline.py <username> Username must be associated with UUID in user_uuid.secret High level overview: -This script provides a series of tools to help you evaluate your clustering algorithm across different methods of calculating distance. -For a particular user that you pass in to this script, we will generate and plot clusters on a 2d-plane using MDS. colors correspond to a kmedoid generated clusters -we also compare kmedoid generated clusters to ground truth clusters and returns accuracy score """ if not os.path.exists('mds_plots'): os.makedirs('mds_plots') def extract_features(model_name, user_id, method=None, is_ground_truth=False): data = None if model_name == 'kmeans': data = generate_section_matrix(user_id) return data elif model_name == 'kmedoid': data = get_user_disMat(user_id, method=method, is_ground_truth=is_ground_truth) return data def generate_clusters(model_name, data, user_id, method=None, is_ground_truth=False): clusters = None if model_name == 'kmeans': clusters = kmeans(data) elif model_name == 'kmedoid': clusters = get_user_clusters(user_id, method=method, nClusters=-1, is_ground_truth=is_ground_truth) return clusters def evaluate_clusters(): pass ######################################################################################################### # LOW LEVEL ABSTRACTION # ######################################################################################################### def get_user_sections(user_id): sections = list(edb.get_section_db().find({'$and':[{'user_id': user_id},{'type': 'move'}]})) return sections def get_user_disMat(user, method, is_ground_truth=False): ## update route clusters: logging.debug("Generating route clusters for %s" % user) if is_ground_truth: cluster_section_ids = edb.get_ground_truth_sections(user) routes_user = emkm.user_route_data2(cluster_section_ids) user_disMat = etmr.update_user_routeDistanceMatrix(str(user) + '_ground_truth',routes_user,step1=100000,step2=100000,method=method) else: routes_user = user_route_data(user,edb.get_section_db()) #print(routes_user) user_disMat = etmr.update_user_routeDistanceMatrix(user,routes_user,step1=100000,step2=100000,method=method) logging.debug((type(user_disMat))) return user_disMat def get_user_clusters(user, method, nClusters, is_ground_truth=False): if is_ground_truth: routes_user = user_route_data2(user) else: routes_user = user_route_data(user,edb.get_section_db()) if nClusters == -1: nClusters = int(math.ceil(len(routes_user)/8) + 1) clusters_user = emkm.kmedoids(routes_user,nClusters,user,method=method) #update_user_routeClusters(user,clusters_user[2],method=method) return clusters_user def get_user_list(): user_list = edb.get_section_db().distinct('user_id') return user_list def plot_cluster_trajectories(): for cluster_label in clusters: sections = clusters[cluster_label] section = sections[0] start_point = section['track_points'][0]['track_location']['coordinates'] mymap = pygmaps.maps(start_point[1], start_point[0], 16) #mymap = pygmaps.maps(37.428, -122.145, 16) for section in sections: path = [] for track_point in section['track_points']: coordinates = track_point['track_location']['coordinates'] #path.append(coordinates) path.append((coordinates[1], coordinates[0])) #path = [(37.429, -122.145),(37.428, -122.145),(37.427, -122.145),(37.427, -122.146),(37.427, -122.146)] mymap.addpath(path,"#00FF00") mymap.draw(str(cluster_label) + '_cluster.html') def plot_mds(clusters, user_disMat, method, user_id, is_ground_truth=False): routes_dict = {} c = 0 for key in user_disMat.keys(): routes_dict[key] = c c += 1 num_routes = len(routes_dict.keys()) matrix_shape = (num_routes, num_routes) similarity_matrix = np.zeros(matrix_shape) for route1 in user_disMat.keys(): for route2 in user_disMat[route1]: route1_index = routes_dict[route1] route2_index = routes_dict[route2] similarity_matrix[route1_index][route2_index] = user_disMat[route1][route2] #similarity_matrix[route2_index][route1_index] = user_disMat[route1][route2] seed = np.random.RandomState(seed=3) mds = manifold.MDS(n_components=2, max_iter=3000, eps=1e-9, random_state=seed, dissimilarity="precomputed", n_jobs=1) reduced_coordinates = mds.fit_transform(similarity_matrix) cluster_num = 0 cleaned_clusters = {} for cluster in clusters[2]: for route in clusters[2][cluster]: #print(route) route_index = routes_dict[route] if cluster_num in cleaned_clusters: cleaned_clusters[cluster_num].append(reduced_coordinates[route_index]) else: cleaned_clusters[cluster_num] = [reduced_coordinates[route_index]] cluster_num += 1 used_colors = [] cluster_colors = {} for cluster_index in cleaned_clusters: stop = False while not stop: random_color = np.random.rand(1)[0] if random_color not in used_colors: stop = True cluster_colors[cluster_index] = random_color used_colors.append(random_color) plot_colors = [] x_coords = [] y_coords = [] for cluster_index in cleaned_clusters: route_coordinates = cleaned_clusters[cluster_index] for coord in route_coordinates: plot_colors.append(cluster_colors[cluster_index]) x_coords.append(coord[0]) y_coords.append(coord[1]) plt.scatter(x_coords, y_coords, c=plot_colors) x1 = np.mean(x_coords) - 10*np.std(x_coords) x2 = np.mean(x_coords) + 10*np.std(x_coords) y1 = np.mean(y_coords) - 10*np.std(y_coords) y2 = np.mean(y_coords) + 10*np.std(y_coords) plt.axis((x1, x2, y1, y2)) if is_ground_truth: f_name = 'mds_plots/ground_truth_' + str(user_id) + '_' + method + '.png' else: f_name = 'mds_plots/' + str(user_id) + '_' + method + '.png' plt.savefig(f_name) #K MEANS HELPER FUNCTIONS def generate_section_matrix(user_id): sections = get_user_sections(user_id) inv_feature_dict = {0: 'start_lat', 1: 'start_lng', 2: 'end_lat', 3: 'end_lng', 4: 'duration', 5: 'distance'} feature_dict = {'start_lat': 0, 'start_lng': 1, 'end_lat': 2, 'end_lng': 3, 'duration': 4, 'distance': 5} data = np.zeros((len(sections), len(feature_dict))) c = 0 while c < len(sections): section = sections[c] start_point = section['track_points'][0]['track_location']['coordinates'] end_point = section['track_points'][-1]['track_location']['coordinates'] start_lat = start_point[1] start_lng = start_point[0] end_lat = end_point[1] end_lng = end_point[0] duration = section['duration'] distance = section['distance'] data[c][feature_dict['start_lat']] = start_lat data[c][feature_dict['start_lng']] = start_lng data[c][feature_dict['end_lat']] = end_lat data[c][feature_dict['end_lng']] = end_lng data[c][feature_dict['duration']] = duration data[c][feature_dict['distance']] = distance c += 1 return data def kmeans(data): sections = get_user_sections(user_id) k_means = KMeans(init='k-means++', n_clusters=3, n_init=10) k_means.fit(data) k_means_labels = k_means.labels_ c = 0 clusters = {} while c < k_means_labels.shape[0]: if k_means_labels[c] not in clusters: clusters[k_means_labels[c]] = [sections[c]] else: clusters[k_means_labels[c]].append(sections[c]) c += 1 return clusters def user_route_data2(section_ids): data_feature = {} # for section in database.find({'$and':[{'user_id': user_id},{'type': 'move'},{'confirmed_mode': {'$ne': ''}}]}): for _id in section_ids: try: data_feature[_id] = eart.getRoute(_id) except Exception as e: pass #print(data_feature.keys()) return data_feature ######################################################################################################### # END OF LOW LEVEL ABSTRACTION # ######################################################################################################### #user_list = get_user_list() user_uuid = eaut.read_uuids() if len(sys.argv) == 2: user_id = user_uuid[sys.argv[1]] logging.debug(user_id) #PARAMETERS methods = ['dtw', 'lcs', 'Frechet'] #what metrics for distance to use #EXPERIMENT 1: KMeans with following features: start_lat, start_lng, end_lat, end_lng, duration, distance """ print("Working on KMeans with simple features...") data = extract_features('kmeans', user_id) clusters = generate_clusters('kmeans', data, user_id) print("Finished.") """ #EXPERIMENT 2-4: KMedoids with various methods of calculating distance between route A and route B for method in methods: logging.debug("Working on KMedoid with %s as distance metric." % method) #user_disMat, clusters_user = generate_route_clusters(user_id, method=method, nClusters=-1) data = extract_features('kmedoid', user_id, method) clusters = generate_clusters('kmedoid', data, user_id, method) logging.debug(data) plot_mds(clusters, data, method, user_id) logging.debug("Finished %s." % method) def get_ground_truth_sections(username, section_collection): """ Returns all of the routes associated with a username's ground truthed sections """ ground_cluster_collection = edb.get_groundClusters_db() clusters = ground_cluster_collection.find_one({"clusters":{"$exists":True}})["clusters"] ground_truth_sections = [] get_username = lambda x: x[0].split("_")[0] clusters = filter(lambda x: username == get_username(x), clusters.items()) for key, section_ids in clusters: ground_truth_sections.extend(section_ids) ground_truth_section_data = {} for section_id in ground_truth_sections: section_data = section_collection.find_one({'_id' : section_id}) if section_data is not None: ground_truth_section_data[section_data['_id']] = getRoute(section_data['_id']) else: logging.debug("%s not found" % section_id) return ground_truth_section_data """ methods = ['dtw'] for method in methods: print("test") data = extract_features('kmedoid', 'jeff', method, is_ground_truth=True) print(data) clusters = generate_clusters('kmedoid', data, 'jeff', method, is_ground_truth=True) plot_mds(clusters, data, method, 'jeff') """
bsd-3-clause
danielfrg/cyhdfs3
cyhdfs3/tests/test_avro.py
2
2559
from __future__ import print_function, absolute_import import sys import posixpath import subprocess import numpy as np import pandas as pd import pandas.util.testing as pdt import cyavro from utils import * avroschema = """ {"type": "record", "name": "from_bytes_test", "fields":[ {"name": "id", "type": "int"}, {"name": "name", "type": "string"} ] } """ @pytest.mark.parametrize(("codec",), [("null", ), ("deflate", ), ("snappy", )]) def test_avro_move_read(hdfs, request, tmpdir, codec): testname = request.node.name.replace('[', '_').replace(']', '_') hdfs_path = posixpath.join(TEST_DIR, testname + '.avro') local_path = tmpdir.join(testname + '.avro').realpath().strpath # Create an avrofile writer = cyavro.AvroWriter(local_path, codec, avroschema) ids = np.random.randint(100, size=10) ids = np.arange(10) names = pdt.rands_array(10, 10) df_write = pd.DataFrame({"id": ids, "name": names}) df_write = cyavro.prepare_pandas_df_for_write(df_write, avroschema, copy=False) writer.write(df_write) writer.close() # Move file to hdfs out = subprocess.call("hadoop fs -put {} {}".format(local_path, hdfs_path), shell=True) assert out == 0 # Read avro and compare data with hdfs.open(hdfs_path, 'r') as f: reader = f.read_avro() reader.init_buffers() df_read = pd.DataFrame(reader.read_chunk()) pdt.assert_frame_equal(df_write, df_read) reader.close() @pytest.mark.parametrize(("codec",), [("null", ), ("deflate", ), ("snappy", )]) def test_avro_write_read(hdfs, request, tmpdir, codec): testname = request.node.name hdfs_path = posixpath.join(TEST_DIR, testname + '.avro') local_path = tmpdir.join(testname + '.avro').realpath().strpath # Create an avrofile writer = cyavro.AvroWriter(local_path, codec, avroschema) ids = np.random.randint(100, size=10) ids = np.arange(10) names = pdt.rands_array(10, 10) df_write = pd.DataFrame({"id": ids, "name": names}) df_write = cyavro.prepare_pandas_df_for_write(df_write, avroschema, copy=False) writer.write(df_write) writer.close() # Read avro file bytes from localfile and write them to hdfs data = '' with open(local_path, 'rb') as f: data = f.read() with hdfs.open(hdfs_path, 'w') as f: f.write(data) # Read avro file bytes from hdfs and compare with hdfs.open(hdfs_path, 'r') as f: read_data = f.read() assert len(data) == len(read_data) assert data == read_data
apache-2.0
michigraber/scikit-learn
examples/cluster/plot_birch_vs_minibatchkmeans.py
333
3694
""" ================================= Compare BIRCH and MiniBatchKMeans ================================= This example compares the timing of Birch (with and without the global clustering step) and MiniBatchKMeans on a synthetic dataset having 100,000 samples and 2 features generated using make_blobs. If ``n_clusters`` is set to None, the data is reduced from 100,000 samples to a set of 158 clusters. This can be viewed as a preprocessing step before the final (global) clustering step that further reduces these 158 clusters to 100 clusters. """ # Authors: Manoj Kumar <[email protected] # Alexandre Gramfort <[email protected]> # License: BSD 3 clause print(__doc__) from itertools import cycle from time import time import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as colors from sklearn.preprocessing import StandardScaler from sklearn.cluster import Birch, MiniBatchKMeans from sklearn.datasets.samples_generator import make_blobs # Generate centers for the blobs so that it forms a 10 X 10 grid. xx = np.linspace(-22, 22, 10) yy = np.linspace(-22, 22, 10) xx, yy = np.meshgrid(xx, yy) n_centres = np.hstack((np.ravel(xx)[:, np.newaxis], np.ravel(yy)[:, np.newaxis])) # Generate blobs to do a comparison between MiniBatchKMeans and Birch. X, y = make_blobs(n_samples=100000, centers=n_centres, random_state=0) # Use all colors that matplotlib provides by default. colors_ = cycle(colors.cnames.keys()) fig = plt.figure(figsize=(12, 4)) fig.subplots_adjust(left=0.04, right=0.98, bottom=0.1, top=0.9) # Compute clustering with Birch with and without the final clustering step # and plot. birch_models = [Birch(threshold=1.7, n_clusters=None), Birch(threshold=1.7, n_clusters=100)] final_step = ['without global clustering', 'with global clustering'] for ind, (birch_model, info) in enumerate(zip(birch_models, final_step)): t = time() birch_model.fit(X) time_ = time() - t print("Birch %s as the final step took %0.2f seconds" % ( info, (time() - t))) # Plot result labels = birch_model.labels_ centroids = birch_model.subcluster_centers_ n_clusters = np.unique(labels).size print("n_clusters : %d" % n_clusters) ax = fig.add_subplot(1, 3, ind + 1) for this_centroid, k, col in zip(centroids, range(n_clusters), colors_): mask = labels == k ax.plot(X[mask, 0], X[mask, 1], 'w', markerfacecolor=col, marker='.') if birch_model.n_clusters is None: ax.plot(this_centroid[0], this_centroid[1], '+', markerfacecolor=col, markeredgecolor='k', markersize=5) ax.set_ylim([-25, 25]) ax.set_xlim([-25, 25]) ax.set_autoscaley_on(False) ax.set_title('Birch %s' % info) # Compute clustering with MiniBatchKMeans. mbk = MiniBatchKMeans(init='k-means++', n_clusters=100, batch_size=100, n_init=10, max_no_improvement=10, verbose=0, random_state=0) t0 = time() mbk.fit(X) t_mini_batch = time() - t0 print("Time taken to run MiniBatchKMeans %0.2f seconds" % t_mini_batch) mbk_means_labels_unique = np.unique(mbk.labels_) ax = fig.add_subplot(1, 3, 3) for this_centroid, k, col in zip(mbk.cluster_centers_, range(n_clusters), colors_): mask = mbk.labels_ == k ax.plot(X[mask, 0], X[mask, 1], 'w', markerfacecolor=col, marker='.') ax.plot(this_centroid[0], this_centroid[1], '+', markeredgecolor='k', markersize=5) ax.set_xlim([-25, 25]) ax.set_ylim([-25, 25]) ax.set_title("MiniBatchKMeans") ax.set_autoscaley_on(False) plt.show()
bsd-3-clause
hamish2014/optTune
examples/tMOPSO_simulated_annealing_f2py.py
1
3155
""" Tune the simulated annealing algorithm from the scipy package to the generalized Rosenbrock problem, for multiple objective function evaluation (OFE) budgets simulatenously. Same as the other example, except a fortran version of fast sa is used. """ import numpy, os from optTune import tMOPSO, get_F_vals_at_specified_OFE_budgets, linearFunction print('Please note this example only works on Linux, and requires gfortran') if not os.path.exists('anneal_fortran.so'): os.system('f2py -c -m anneal_fortran anneal.f90') from anneal_fortran import anneal_module D = 5 #number of dimensions for Rosenbrock problem def anneal(CPVs, OFE_budgets, randomSeed): #fast_sa_run - Function signature: # fast_sa_run(prob_id,x0,t0,dwell,m,n,quench,boltzmann,maxevals,lower,upper,random_seed,[d]) anneal_module.fast_sa_run(prob_id = 1 , x0 = -2.048 + 2*2.048*numpy.random.rand(D), t0 = 500.0, dwell = int(CPVs[0]), m = CPVs[1], n = 1.0, quench = 1.0, boltzmann = 1.0, maxevals = max(OFE_budgets), lower = -2.048*numpy.ones(D), upper = 2.048*numpy.ones(D), random_seed = randomSeed) return get_F_vals_at_specified_OFE_budgets(F=anneal_module.fval_hist.copy(), E=anneal_module.eval_hist.copy(), E_desired=OFE_budgets) def CPV_valid(CPVs, OFE_budget): if CPVs[0] < 5: return False,'dwell,CPVs[0] < 5' if CPVs[1] < 0.0001: return False,'CPVs[1] < 0.0001' return True,'' tuningOpt = tMOPSO( optAlg = anneal, CPV_lb = numpy.array([10, 0.0]), CPV_ub = numpy.array([50, 5.0]), CPV_validity_checks = CPV_valid, OFE_budgets=numpy.logspace(1,3,30).astype(int), sampleSizes = [2,8,20], #resampling size of 30 resampling_interruption_confidence = 0.6, gammaBudget = 30*1000*50, #increase to get a smoother result ... OFE_assessment_overshoot_function = linearFunction(2, 100 ), N = 10, printLevel=1, ) print(tuningOpt) Fmin_values = [ d.fv[1] for d in tuningOpt.PFA.designs ] OFE_budgets = [ d.fv[0] for d in tuningOpt.PFA.designs ] dwell_values = [ int(d.xv[1]) for d in tuningOpt.PFA.designs ] m_values = [ d.xv[2] for d in tuningOpt.PFA.designs ] print('OFE budget Fmin dwell m ') for a,b,c,d in zip(OFE_budgets, Fmin_values, dwell_values, m_values): print(' %i %6.4f %i %4.2f' % (a,b,c,d)) from matplotlib import pyplot p1 = pyplot.semilogx(OFE_budgets, dwell_values, 'g.')[0] pyplot.ylabel('dwell') pyplot.ylim( min(dwell_values) - 1, max( dwell_values) + 1) pyplot.twinx() p2 = pyplot.semilogx(OFE_budgets, m_values, 'bx')[0] pyplot.ylim( 0, max(m_values)*1.1) pyplot.ylabel('m (rate of cool)') pyplot.legend([p1,p2],['dwell','m'], loc='best') pyplot.xlabel('OFE budget') pyplot.xlim(min(OFE_budgets)-1,max(OFE_budgets)+60) pyplot.title('Optimal CPVs for different OFE budgets') pyplot.show()
gpl-3.0
DistrictDataLabs/03-censusables
censusables/stars1.py
1
5966
"""MVP (Really week 1 progress) This script assumes that geo joins have already been done by the geojoin script and that there is a business/county join that's passed in on the command line. """ import argparse import json import matplotlib.pyplot as plt import pandas as pd parser = argparse.ArgumentParser(__doc__) parser.add_argument("join", help="Business/county join file") parser.add_argument("businesses", help="Yelp business file") parser.add_argument("reviews", help="Yelp review file") parser.add_argument("census2010", help="ACS1 county estimates for 2010") parser.add_argument("census2011", help="ACS1 county estimates for 2010") parser.add_argument("census2012", help="ACS1 county estimates for 2010") parser.add_argument("census2013", help="ACS1 county estimates for 2010") parser.add_argument("-V", "--no-vegas", action='store_true') parser.add_argument("-f", "--image-format", default='png') args = parser.parse_args() oname = 'nolv_' if args.no_vegas else '' wolv = ' (without Las Vegas)' if args.no_vegas else '' imsuff = '.' + args.image_format # Load reviews reviews = pd.DataFrame(json.loads(l) for l in open(args.reviews)) reviews['YEAR'] = reviews.date.str.slice(0, 4).astype('int64') # # Reduce reviews to business-year review averages # reviews = (reviews[['stars']] # .groupby([reviews.business_id, reviews.YEAR]) # .mean() # .reset_index() # ) # Load the geo join data and join with the reviews join = pd.DataFrame(json.loads(l) for l in open(args.join)) if args.no_vegas: join = join[join.GISJOIN.apply(lambda g: not g.startswith('G32'))] bus_reviews = reviews[['business_id', 'YEAR', 'stars']].merge(join) # Get review means by GISJOIN and year reviews = (bus_reviews[['stars']] .groupby([bus_reviews.GISJOIN, bus_reviews.YEAR]) .mean() .reset_index() ) # Load the one-year census data census = (pd.read_csv(args.census2010), pd.read_csv(args.census2011), pd.read_csv(args.census2012), pd.read_csv(args.census2013), ) # Select the columns we want and concat. This is awkward, because # 1) column names for demographic data are different across years, and # 2) when I downloaded 2013, i didn't ask for unweighted totals. This is # an easy mistake to make. But I know I want GISJOIN, YEAR and the last 49 # columns, so... census = [c[['GISJOIN', 'YEAR'] + list(c.columns[-49:])] for c in census] # Assign more useful column names: for c in census: c.columns = ''' GISJOIN YEAR TOTAL M M_4 M5_9 M10_14 M15_17 M18_19 M20 M21 M22_24 M25_29 M30_34 M35_39 M40_44 M45_49 M50_54 M55_59 M60_61 M62_64 M65_66 M67_69 M70_74 M75_79 M80_84 M85_ F F_4 F5_9 F10_14 F15_17 F18_19 F20 F21 F22_24 F25_29 F30_34 F35_39 F40_44 F45_49 F50_54 F55_59 F60_61 F62_64 F65_66 F67_69 F70_74 F75_79 F80_84 F85_ '''.strip().split() # Combine census = pd.concat(census, ignore_index=True) # Compute young and old columns: age_groups = {} for n in ''' M18_19 M20 M21 M22_24 M25_29 M30_34F18_19 F20 F21 F22_24 F25_29 F30_34 '''.strip().split(): age_groups[n] = 'young' for n in ''' M35_39 M40_44 M45_49 M50_54 M55_59 M60_61 M62_64 M65_66 M67_69 M70_74 M75_79 M80_84 M85_ F35_39 F40_44 F45_49 F50_54 F55_59 F60_61 F62_64 F65_66 F67_69 F70_74 F75_79 F80_84 F85_ '''.strip().split(): age_groups[n] = 'old' yo = census.groupby(age_groups, axis=1).sum() census = pd.concat((census, yo), axis=1) # Normalize by total population norm = census[census.columns[3:]].div(census.TOTAL, axis=0) census = pd.concat((census[census.columns[:3]], norm), axis=1) # Join with reviews census = census.merge(reviews) # Whew, now we're ready to explore relationships. Plot response # rate vs age-group fraction for young and old. fig, ax = plt.subplots(2, 1) ax[0].scatter(census.young, census.stars, c='r', label='young') ax[0].set_title("Yelp review means by fraction young for multiple years" + wolv) ax[1].scatter(census.old, census.stars, c='b', label='old') ax[1].set_title("Yelp review means by fraction old for multiple years" + wolv) plt.savefig(oname+'review_means_young_and_old_multiyear' + imsuff) # Well, no obvious pattern there. Perhaps it would be clearer if we # aggregate by year. census4 = (census[census.columns[1:]] .groupby(census.GISJOIN) .mean() ) c4 = census4.reset_index() fig, ax = plt.subplots(2, 1) ax[0].scatter(census4.young, census4.stars, c='r', label='young') ax[1].scatter(census4.old, census4.stars, c='b', label='old') ax[0].set_title("Yelp review mean by fraction young mean over 4 years" + wolv) ax[1].set_title("Yelp review mean by fraction old mean over 4 years" + wolv) plt.savefig(oname+'review_means_young_and_old_mean' + imsuff) # Nope, wtf that weird peak in the middle. There must be some other # effect. We only have 15 counties. Let's see how reviews are # distributed among them: ax = plt.figure().add_subplot(1,1,1) census4.stars.plot(kind='bar') ax.set_title("Review means by county" + wolv) plt.subplots_adjust(bottom=.2) plt.savefig(oname+'mean_reviews_by_county' + imsuff) # The reviews are dominated by a single county, which is Clark County, # NV, which includes Las Vegas. Hm. Yelp reviews are probably # concentrated in just the sort of businesses that are prominent in # Las Vegas. Let's look at yelp reviews by category. The category is # in an array value. cats = [] for d in (json.loads(l) for l in open(args.businesses)): for c in d['categories']: cats.append(dict(business_id = d['business_id'], category=c)) cats = pd.DataFrame(cats).merge(bus_reviews) cats = cats[['stars']].groupby(cats.category).mean() ax = plt.figure().add_subplot(1,1,1) cats.plot(kind='bar') ax.set_title("Review meanss by category") plt.subplots_adjust(bottom=.4) plt.savefig('review_means_by_category' + imsuff)
apache-2.0
JuBra/cobrapy
cobra/flux_analysis/double_deletion.py
2
23264
from warnings import warn from itertools import chain, product from six import iteritems, string_types import numpy from ..solvers import get_solver_name, solver_dict from ..manipulation.delete import find_gene_knockout_reactions, \ get_compiled_gene_reaction_rules from .deletion_worker import CobraDeletionPool, CobraDeletionMockPool try: import scipy except ImportError: moma = None else: from . import moma try: from pandas import DataFrame except: DataFrame = None # Utility functions def generate_matrix_indexes(ids1, ids2): """map an identifier to an entry in the square result matrix""" return {id: index for index, id in enumerate(set(chain(ids1, ids2)))} def yield_upper_tria_indexes(ids1, ids2, id_to_index): """gives the necessary indexes in the upper triangle ids1 and ids2 are lists of the identifiers i.e. gene id's or reaction indexes to be knocked out. id_to_index maps each identifier to its index in the result matrix. Note that this does not return indexes for the diagonal. Those have to be computed separately.""" # sets to check for inclusion in o(1) id_set1 = set(ids1) id_set2 = set(ids2) for id1, id2 in product(ids1, ids2): # indexes in the result matrix index1 = id_to_index[id1] index2 = id_to_index[id2] # upper triangle if index2 > index1: yield ((index1, index2), (id1, id2)) # lower triangle but would be skipped, so return in upper triangle elif id2 not in id_set1 or id1 not in id_set2: yield((index2, index1), (id2, id1)) # note that order flipped def _format_upper_triangular_matrix(row_indexes, column_indexes, matrix): """reformat the square upper-triangular result matrix For example, results may look like this [[ A B C D] [ - - - -] [ - - E F] [ - - - G]] In this case, the second row was skipped. This means we have row_indexes [0, 2, 3] and column_indexes [0, 1, 2, 3] First, it will reflect the upper triangle into the lower triangle [[ A B C D] [ B - - -] [ C - E F] [ D - F G]] Finally, it will remove the missing rows and return [[ A B C D] [ C - E F] [ D - F G]] """ results = matrix.copy() # Thse select the indexes for the upper triangle. However, switching # the order selects the lower triangle. triu1, triu2 = numpy.triu_indices(matrix.shape[0]) # This makes reflection pretty easy results[triu2, triu1] = results[triu1, triu2] # Remove the missing rows and return. return results[row_indexes, :][:, column_indexes] def format_results_frame(row_ids, column_ids, matrix, return_frame=False): """format results as a pandas.DataFrame if desired/possible Otherwise returns a dict of {"x": row_ids, "y": column_ids", "data": result_matrx}""" if return_frame and DataFrame: return DataFrame(data=matrix, index=row_ids, columns=column_ids) elif return_frame and not DataFrame: warn("could not import pandas.DataFrame") return {"x": row_ids, "y": column_ids, "data": matrix} def double_deletion(cobra_model, element_list_1=None, element_list_2=None, element_type='gene', **kwargs): """Wrapper for double_gene_deletion and double_reaction_deletion .. deprecated :: 0.4 Use double_reaction_deletion and double_gene_deletion """ warn("deprecated - use single_reaction_deletion and single_gene_deletion") if element_type == "reaction": return double_reaction_deletion(cobra_model, element_list_1, element_list_2, **kwargs) elif element_type == "gene": return double_gene_deletion(cobra_model, element_list_1, element_list_2, **kwargs) else: raise Exception("unknown element type") def double_reaction_deletion(cobra_model, reaction_list1=None, reaction_list2=None, method="fba", return_frame=False, solver=None, zero_cutoff=1e-12, **kwargs): """sequentially knocks out pairs of reactions in a model cobra_model : :class:`~cobra.core.Model.Model` cobra model in which to perform deletions reaction_list1 : [:class:`~cobra.core.Reaction.Reaction`:] (or their id's) Reactions to be deleted. These will be the rows in the result. If not provided, all reactions will be used. reaction_list2 : [:class:`~cobra.core.Reaction`:] (or their id's) Reactions to be deleted. These will be the rows in the result. If not provided, reaction_list1 will be used. method: "fba" or "moma" Procedure used to predict the growth rate solver: str for solver name This must be a QP-capable solver for MOMA. If left unspecified, a suitable solver will be automatically chosen. zero_cutoff: float When checking to see if a value is 0, this threshold is used. return_frame: bool If true, formats the results as a pandas.Dataframe. Otherwise returns a dict of the form: {"x": row_labels, "y": column_labels", "data": 2D matrix} """ # handle arguments which need to be passed on if solver is None: solver = get_solver_name(qp=(method == "moma")) kwargs["solver"] = solver kwargs["zero_cutoff"] = zero_cutoff # generate other arguments # identifiers for reactions are their indexes if reaction_list1 is None: reaction_indexes1 = range(len(cobra_model.reactions)) else: reaction_indexes1 = [cobra_model.reactions.index(r) for r in reaction_list1] if reaction_list2 is None: reaction_indexes2 = reaction_indexes1 else: reaction_indexes2 = [cobra_model.reactions.index(r) for r in reaction_list2] reaction_to_result = generate_matrix_indexes(reaction_indexes1, reaction_indexes2) # Determine 0 flux reactions. If an optimal solution passes no flux # through the deleted reactions, then we know removing them will # not change the solution. wt_solution = solver_dict[solver].solve(cobra_model) if wt_solution.status == "optimal": kwargs["wt_growth_rate"] = wt_solution.f kwargs["no_flux_reaction_indexes"] = \ {i for i, v in enumerate(wt_solution.x) if abs(v) < zero_cutoff} else: warn("wild-type solution status is '%s'" % wt_solution.status) # call the computing functions if method == "fba": results = _double_reaction_deletion_fba( cobra_model, reaction_indexes1, reaction_indexes2, reaction_to_result, **kwargs) elif method == "moma": results = _double_reaction_deletion_moma( cobra_model, reaction_indexes1, reaction_indexes2, reaction_to_result, **kwargs) else: raise ValueError("Unknown deletion method '%s'" % method) # convert upper triangular matrix to full matrix full_result = _format_upper_triangular_matrix( [reaction_to_result[i] for i in reaction_indexes1], # row indexes [reaction_to_result[i] for i in reaction_indexes2], # col indexes results) # format appropriately with labels row_ids = [cobra_model.reactions[i].id for i in reaction_indexes1] column_ids = [cobra_model.reactions[i].id for i in reaction_indexes2] return format_results_frame(row_ids, column_ids, full_result, return_frame) def double_gene_deletion(cobra_model, gene_list1=None, gene_list2=None, method="fba", return_frame=False, solver=None, zero_cutoff=1e-12, **kwargs): """sequentially knocks out pairs of genes in a model cobra_model : :class:`~cobra.core.Model.Model` cobra model in which to perform deletions gene_list1 : [:class:`~cobra.core.Gene.Gene`:] (or their id's) Genes to be deleted. These will be the rows in the result. If not provided, all reactions will be used. gene_list1 : [:class:`~cobra.core.Gene.Gene`:] (or their id's) Genes to be deleted. These will be the rows in the result. If not provided, reaction_list1 will be used. method: "fba" or "moma" Procedure used to predict the growth rate solver: str for solver name This must be a QP-capable solver for MOMA. If left unspecified, a suitable solver will be automatically chosen. zero_cutoff: float When checking to see if a value is 0, this threshold is used. number_of_processes: int for number of processes to use. If unspecified, the number of parallel processes to use will be automatically determined. Setting this to 1 explicitly disables used of the multiprocessing library. .. note:: multiprocessing is not supported with method=moma return_frame: bool If true, formats the results as a pandas.Dataframe. Otherwise returns a dict of the form: {"x": row_labels, "y": column_labels", "data": 2D matrix} """ # handle arguments which need to be passed on if solver is None: solver = get_solver_name(qp=(method == "moma")) kwargs["solver"] = solver kwargs["zero_cutoff"] = zero_cutoff # generate other arguments # identifiers for genes if gene_list1 is None: gene_ids1 = cobra_model.genes.list_attr("id") else: gene_ids1 = [str(i) for i in gene_list1] if gene_list2 is None: gene_ids2 = gene_ids1 else: gene_ids2 = [str(i) for i in gene_list2] # The gene_id_to_result dict will map each gene id to the index # in the result matrix. gene_id_to_result = generate_matrix_indexes(gene_ids1, gene_ids2) # Determine 0 flux reactions. If an optimal solution passes no flux # through the deleted reactions, then we know removing them will # not change the solution. wt_solution = solver_dict[solver].solve(cobra_model) if wt_solution.status == "optimal": kwargs["wt_growth_rate"] = wt_solution.f kwargs["no_flux_reaction_indexes"] = \ {i for i, v in enumerate(wt_solution.x) if abs(v) < zero_cutoff} else: warn("wild-type solution status is '%s'" % wt_solution.status) if method == "fba": result = _double_gene_deletion_fba(cobra_model, gene_ids1, gene_ids2, gene_id_to_result, **kwargs) elif method == "moma": result = _double_gene_deletion_moma(cobra_model, gene_ids1, gene_ids2, gene_id_to_result, **kwargs) else: raise ValueError("Unknown deletion method '%s'" % method) # convert upper triangular matrix to full matrix full_result = _format_upper_triangular_matrix( [gene_id_to_result[id] for id in gene_ids1], # row indexes [gene_id_to_result[id] for id in gene_ids2], # col indexes, result) # format as a Dataframe if required return format_results_frame(gene_ids1, gene_ids2, full_result, return_frame) def _double_reaction_deletion_fba(cobra_model, reaction_indexes1, reaction_indexes2, reaction_to_result, solver, number_of_processes=None, zero_cutoff=1e-15, wt_growth_rate=None, no_flux_reaction_indexes=set(), **kwargs): """compute double reaction deletions using fba cobra_model: model reaction_indexes1, reaction_indexes2: reaction indexes (used as unique identifiers) reaction_to_result: maps each reaction identifier to the entry in the result matrix no_flux_reaction_indexes: set of indexes for reactions in the model which carry no flux in an optimal solution. For deletions only in this set, the result will beset to wt_growth_rate. returns an upper triangular square matrix """ if solver is None: solver = get_solver_name() # generate the square result matrix n_results = len(reaction_to_result) results = numpy.empty((n_results, n_results)) results.fill(numpy.nan) PoolClass = CobraDeletionMockPool if number_of_processes == 1 \ else CobraDeletionPool # explicitly disable multiprocessing with PoolClass(cobra_model, n_processes=number_of_processes, solver=solver, **kwargs) as pool: # precompute all single deletions in the pool and store them along # the diagonal for reaction_index, result_index in iteritems(reaction_to_result): pool.submit((reaction_index, ), label=result_index) for result_index, value in pool.receive_all(): # if singly lethal, set everything in row and column to 0 value = value if abs(value) > zero_cutoff else 0. if value == 0.: results[result_index, :] = 0. results[:, result_index] = 0. else: # only the diagonal needs to be set results[result_index, result_index] = value # Run double knockouts in the upper triangle index_selector = yield_upper_tria_indexes( reaction_indexes1, reaction_indexes2, reaction_to_result) for result_index, (r1_index, r2_index) in index_selector: # skip if the result was already computed to be lethal if results[result_index] == 0: continue # reactions removed carry no flux if r1_index in no_flux_reaction_indexes and \ r2_index in no_flux_reaction_indexes: results[result_index] = wt_growth_rate continue pool.submit((r1_index, r2_index), label=result_index) # get results for result in pool.receive_all(): results[result[0]] = result[1] return results def _double_gene_deletion_fba(cobra_model, gene_ids1, gene_ids2, gene_id_to_result, solver, number_of_processes=None, zero_cutoff=1e-12, wt_growth_rate=None, no_flux_reaction_indexes=set(), **kwargs): """compute double gene deletions using fba cobra_model: model gene_ids1, gene_ids2: lists of id's to be knocked out gene_id_to_result: maps each gene identifier to the entry in the result matrix no_flux_reaction_indexes: set of indexes for reactions in the model which carry no flux in an optimal solution. For deletions only in this set, the result will beset to wt_growth_rate. returns an upper triangular square matrix """ # Because each gene reaction rule will be evaluated multiple times # the reaction has multiple associated genes being deleted, compiling # the gene reaction rules ahead of time increases efficiency greatly. compiled_rules = get_compiled_gene_reaction_rules(cobra_model) n_results = len(gene_id_to_result) results = numpy.empty((n_results, n_results)) results.fill(numpy.nan) if number_of_processes == 1: # explicitly disable multiprocessing PoolClass = CobraDeletionMockPool else: PoolClass = CobraDeletionPool with PoolClass(cobra_model, n_processes=number_of_processes, solver=solver, **kwargs) as pool: # precompute all single deletions in the pool and store them along # the diagonal for gene_id, gene_result_index in iteritems(gene_id_to_result): ko_reactions = find_gene_knockout_reactions( cobra_model, (cobra_model.genes.get_by_id(gene_id),)) ko_indexes = [cobra_model.reactions.index(i) for i in ko_reactions] pool.submit(ko_indexes, label=gene_result_index) for result_index, value in pool.receive_all(): # if singly lethal, set everything in row and column to 0 value = value if abs(value) > zero_cutoff else 0. if value == 0.: results[result_index, :] = 0. results[:, result_index] = 0. else: # only the diagonal needs to be set results[result_index, result_index] = value # Run double knockouts in the upper triangle index_selector = yield_upper_tria_indexes(gene_ids1, gene_ids2, gene_id_to_result) for result_index, (gene1, gene2) in index_selector: # if singly lethal the results have already been set if results[result_index] == 0: continue ko_reactions = find_gene_knockout_reactions( cobra_model, (gene1, gene2), compiled_rules) ko_indexes = [cobra_model.reactions.index(i) for i in ko_reactions] # if all removed gene indexes carry no flux if len(set(ko_indexes) - no_flux_reaction_indexes) == 0: results[result_index] = wt_growth_rate continue pool.submit(ko_indexes, label=result_index) for result in pool.receive_all(): value = result[1] if value < zero_cutoff: value = 0 results[result[0]] = value return results def _double_reaction_deletion_moma(cobra_model, reaction_indexes1, reaction_indexes2, reaction_to_result, solver, number_of_processes=1, zero_cutoff=1e-15, wt_growth_rate=None, no_flux_reaction_indexes=set(), **kwargs): """compute double reaction deletions using moma cobra_model: model reaction_indexes1, reaction_indexes2: reaction indexes (used as unique identifiers) reaction_to_result: maps each reaction identifier to the entry in the result matrix no_flux_reaction_indexes: set of indexes for reactions in the model which carry no flux in an optimal solution. For deletions only in this set, the result will beset to wt_growth_rate. number_of_processes: must be 1. Parallel MOMA not yet implmemented returns an upper triangular square matrix """ if number_of_processes > 1: raise NotImplementedError("parallel MOMA not implemented") if moma is None: raise RuntimeError("scipy required for MOMA") # generate the square result matrix n_results = len(reaction_to_result) results = numpy.empty((n_results, n_results)) results.fill(numpy.nan) # function to compute reaction knockouts with moma moma_model, moma_obj = moma.create_euclidian_moma_model(cobra_model) def run(indexes): # If all the reactions carry no flux, deletion will have no effect. if no_flux_reaction_indexes.issuperset(indexes): return wt_growth_rate return moma.moma_knockout(moma_model, moma_obj, indexes, solver=solver, **kwargs).f # precompute all single deletions and store them along the diagonal for reaction_index, result_index in iteritems(reaction_to_result): value = run((reaction_index,)) value = value if abs(value) > zero_cutoff else 0. results[result_index, result_index] = value # if singly lethal, the entire row and column are set to 0 if value == 0.: results[result_index, :] = 0. results[:, result_index] = 0. # Run double knockouts in the upper triangle index_selector = yield_upper_tria_indexes( reaction_indexes1, reaction_indexes2, reaction_to_result) for result_index, (r1_index, r2_index) in index_selector: # skip if the result was already computed to be lethal if results[result_index] == 0: continue else: results[result_index] = run((r1_index, r2_index)) return results def _double_gene_deletion_moma(cobra_model, gene_ids1, gene_ids2, gene_id_to_result, solver, number_of_processes=1, zero_cutoff=1e-12, wt_growth_rate=None, no_flux_reaction_indexes=set(), **kwargs): """compute double gene deletions using moma cobra_model: model gene_ids1, gene_ids2: lists of id's to be knocked out gene_id_to_result: maps each gene identifier to the entry in the result matrix number_of_processes: must be 1. Parallel MOMA not yet implemented no_flux_reaction_indexes: set of indexes for reactions in the model which carry no flux in an optimal solution. For deletions only in this set, the result will beset to wt_growth_rate. returns an upper triangular square matrix """ if number_of_processes > 1: raise NotImplementedError("parallel MOMA not implemented") if moma is None: raise RuntimeError("scipy required for MOMA") # Because each gene reaction rule will be evaluated multiple times # the reaction has multiple associated genes being deleted, compiling # the gene reaction rules ahead of time increases efficiency greatly. compiled_rules = get_compiled_gene_reaction_rules(cobra_model) # function to compute reaction knockouts with moma moma_model, moma_obj = moma.create_euclidian_moma_model(cobra_model) def run(gene_ids): ko_reactions = find_gene_knockout_reactions(cobra_model, gene_ids) ko_indexes = map(cobra_model.reactions.index, ko_reactions) # If all the reactions carry no flux, deletion will have no effect. if no_flux_reaction_indexes.issuperset(gene_ids): return wt_growth_rate return moma.moma_knockout(moma_model, moma_obj, ko_indexes, solver=solver, **kwargs).f n_results = len(gene_id_to_result) results = numpy.empty((n_results, n_results)) results.fill(numpy.nan) # precompute all single deletions and store them along the diagonal for gene_id, result_index in iteritems(gene_id_to_result): value = run((gene_id,)) value = value if abs(value) > zero_cutoff else 0. results[result_index, result_index] = value # If singly lethal, the entire row and column are set to 0. if value == 0.: results[result_index, :] = 0. results[:, result_index] = 0. # Run double knockouts in the upper triangle index_selector = yield_upper_tria_indexes(gene_ids1, gene_ids2, gene_id_to_result) for result_index, (gene1, gene2) in index_selector: # if singly lethal the results have already been set if results[result_index] == 0: continue results[result_index] = run((gene1, gene2)) return results
lgpl-2.1
charanpald/wallhack
wallhack/modelselect/RealDataTreeProcess.py
1
1243
from sandbox.util.PathDefaults import PathDefaults from sandbox.util import Util from exp.modelselect.ModelSelectUtils import ModelSelectUtils import matplotlib.pyplot as plt import logging import numpy outputDir = PathDefaults.getOutputDir() + "modelPenalisation/regression/CART/" datasets = ModelSelectUtils.getRegressionDatasets(True) gammas = numpy.unique(numpy.array(numpy.round(2**numpy.arange(1, 7.25, 0.25)-1), dtype=numpy.int)) print(gammas) #To use the betas in practice, pick the lowest value so far for datasetName, numRealisations in datasets: try: A = numpy.load(outputDir + datasetName + "Beta.npz")["arr_0"] inds = gammas>10 tempGamma = numpy.sqrt(gammas[inds]) tempA = A[inds, :] tempA = numpy.clip(tempA, 0, 1) plt.figure(0) plt.plot(tempGamma, Util.cumMin(tempA[:, 0]), label="50") plt.plot(tempGamma, Util.cumMin(tempA[:, 1]), label="100") plt.plot(tempGamma, Util.cumMin(tempA[:, 2]), label="200") plt.legend() plt.title(datasetName) plt.xlabel("gamma") plt.ylabel("Beta") plt.show() except: print("Dataset not found " + datasetName)
gpl-3.0
rhyolight/nupic.research
projects/sp_paper/run_sp_tm_model.py
4
13849
## ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2016, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- import importlib import os from optparse import OptionParser import yaml import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from matplotlib import rcParams rcParams.update({'figure.autolayout': True}) from nupic.frameworks.opf.metrics import MetricSpec from nupic.frameworks.opf.model_factory import ModelFactory from nupic.frameworks.opf.prediction_metrics_manager import MetricsManager from nupic.frameworks.opf import metrics from nupic.frameworks.opf.htm_prediction_model import HTMPredictionModel import pandas as pd from htmresearch.support.sequence_learning_utils import * from matplotlib import rcParams rcParams.update({'figure.autolayout': True}) rcParams['pdf.fonttype'] = 42 plt.ion() DATA_DIR = "../../htmresearch/data" MODEL_PARAMS_DIR = "./model_params" def getMetricSpecs(predictedField, stepsAhead=5): _METRIC_SPECS = ( MetricSpec(field=predictedField, metric='multiStep', inferenceElement='multiStepBestPredictions', params={'errorMetric': 'negativeLogLikelihood', 'window': 1000, 'steps': stepsAhead}), MetricSpec(field=predictedField, metric='multiStep', inferenceElement='multiStepBestPredictions', params={'errorMetric': 'nrmse', 'window': 1000, 'steps': stepsAhead}), ) return _METRIC_SPECS def createModel(modelParams): model = ModelFactory.create(modelParams) model.enableInference({"predictedField": predictedField}) return model def getModelParamsFromName(dataSet): # importName = "model_params.%s_model_params" % ( # dataSet.replace(" ", "_").replace("-", "_") # ) # print "Importing model params from %s" % importName try: importedModelParams = yaml.safe_load( open('model_params/nyc_taxi_model_params.yaml')) # importedModelParams = importlib.import_module(importName).MODEL_PARAMS except ImportError: raise Exception("No model params exist for '%s'. Run swarm first!" % dataSet) return importedModelParams def _getArgs(): parser = OptionParser(usage="%prog PARAMS_DIR OUTPUT_DIR [options]" "\n\nCompare TM performance with trivial predictor using " "model outputs in prediction directory " "and outputting results to result directory.") parser.add_option("-d", "--dataSet", type=str, default='nyc_taxi', dest="dataSet", help="DataSet Name, choose from rec-center-hourly, nyc_taxi") parser.add_option("-p", "--plot", default=False, dest="plot", help="Set to True to plot result") parser.add_option("--stepsAhead", help="How many steps ahead to predict. [default: %default]", default=5, type=int) parser.add_option("--trainSP", help="Whether to train SP", default=True, dest="trainSP", type=int) parser.add_option("--boostStrength", help="strength of boosting", default=1, dest="boostStrength", type=int) parser.add_option("-c", "--classifier", type=str, default='SDRClassifierRegion', dest="classifier", help="Classifier Type: SDRClassifierRegion or CLAClassifierRegion") (options, remainder) = parser.parse_args() print options return options, remainder def getInputRecord(df, predictedField, i): inputRecord = { predictedField: float(df[predictedField][i]), "timeofday": float(df["timeofday"][i]), "dayofweek": float(df["dayofweek"][i]), } return inputRecord def printTPRegionParams(tpregion): """ Note: assumes we are using TemporalMemory/TPShim in the TPRegion """ tm = tpregion.getSelf()._tfdr print "------------PY TemporalMemory Parameters ------------------" print "numberOfCols =", tm.getColumnDimensions() print "cellsPerColumn =", tm.getCellsPerColumn() print "minThreshold =", tm.getMinThreshold() print "activationThreshold =", tm.getActivationThreshold() print "newSynapseCount =", tm.getMaxNewSynapseCount() print "initialPerm =", tm.getInitialPermanence() print "connectedPerm =", tm.getConnectedPermanence() print "permanenceInc =", tm.getPermanenceIncrement() print "permanenceDec =", tm.getPermanenceDecrement() print "predictedSegmentDecrement=", tm.getPredictedSegmentDecrement() print def runMultiplePass(df, model, nMultiplePass, nTrain): """ run CLA model through data record 0:nTrain nMultiplePass passes """ predictedField = model.getInferenceArgs()['predictedField'] print "run TM through the train data multiple times" for nPass in xrange(nMultiplePass): for j in xrange(nTrain): inputRecord = getInputRecord(df, predictedField, j) result = model.run(inputRecord) if j % 100 == 0: print " pass %i, record %i" % (nPass, j) # reset temporal memory model._getTPRegion().getSelf()._tfdr.reset() return model def runMultiplePassSPonly(df, model, nMultiplePass, nTrain): """ run CLA model SP through data record 0:nTrain nMultiplePass passes """ predictedField = model.getInferenceArgs()['predictedField'] print "run TM through the train data multiple times" for nPass in xrange(nMultiplePass): for j in xrange(nTrain): inputRecord = getInputRecord(df, predictedField, j) model._sensorCompute(inputRecord) model._spCompute() if j % 400 == 0: print " pass %i, record %i" % (nPass, j) return model if __name__ == "__main__": (_options, _args) = _getArgs() dataSet = _options.dataSet plot = _options.plot classifierType = _options.classifier trainSP = bool(_options.trainSP) boostStrength = _options.boostStrength DATE_FORMAT = '%Y-%m-%d %H:%M:%S' predictedField = "passenger_count" modelParams = getModelParamsFromName("nyc_taxi") modelParams['modelParams']['clParams']['steps'] = str(_options.stepsAhead) modelParams['modelParams']['clParams']['regionName'] = classifierType modelParams['modelParams']['spParams']['boostStrength'] = boostStrength print "Creating model from %s..." % dataSet # use customized CLA model model = HTMPredictionModel(**modelParams['modelParams']) model.enableInference({"predictedField": predictedField}) model.enableLearning() model._spLearningEnabled = bool(trainSP) model._tpLearningEnabled = True print model._spLearningEnabled printTPRegionParams(model._getTPRegion()) inputData = "%s/%s.csv" % (DATA_DIR, dataSet.replace(" ", "_")) sensor = model._getSensorRegion() encoderList = sensor.getSelf().encoder.getEncoderList() if sensor.getSelf().disabledEncoder is not None: classifier_encoder = sensor.getSelf().disabledEncoder.getEncoderList() classifier_encoder = classifier_encoder[0] else: classifier_encoder = None _METRIC_SPECS = getMetricSpecs(predictedField, stepsAhead=_options.stepsAhead) metric = metrics.getModule(_METRIC_SPECS[0]) metricsManager = MetricsManager(_METRIC_SPECS, model.getFieldInfo(), model.getInferenceType()) if plot: plotCount = 1 plotHeight = max(plotCount * 3, 6) fig = plt.figure(figsize=(14, plotHeight)) gs = gridspec.GridSpec(plotCount, 1) plt.title(predictedField) plt.ylabel('Data') plt.xlabel('Timed') plt.tight_layout() plt.ion() print "Load dataset: ", dataSet df = pd.read_csv(inputData, header=0, skiprows=[1, 2]) nTrain = 5000 maxBucket = classifier_encoder.n - classifier_encoder.w + 1 likelihoodsVecAll = np.zeros((maxBucket, len(df))) prediction_nstep = None time_step = [] actual_data = [] patternNZ_track = [] predict_data = np.zeros((_options.stepsAhead, 0)) predict_data_ML = [] negLL_track = [] activeCellNum = [] trueBucketIndex = [] sp = model._getSPRegion().getSelf()._sfdr spActiveCellsCount = np.zeros(sp.getColumnDimensions()) for i in xrange(len(df)): inputRecord = getInputRecord(df, predictedField, i) result = model.run(inputRecord) trueBucketIndex.append(model._getClassifierInputRecord(inputRecord).bucketIndex) # inspect SP sp = model._getSPRegion().getSelf()._sfdr spOutput = model._getSPRegion().getOutputData('bottomUpOut') spActiveCellsCount[spOutput.nonzero()[0]] += 1 tp = model._getTPRegion() tm = tp.getSelf()._tfdr activeColumn = tm.getActiveCells() activeCellNum.append(len(activeColumn)) result.metrics = metricsManager.update(result) negLL = result.metrics["multiStepBestPredictions:multiStep:" "errorMetric='negativeLogLikelihood':steps=%d:window=1000:" "field=%s"%(_options.stepsAhead, predictedField)] if i % 100 == 0 and i>0: negLL = result.metrics["multiStepBestPredictions:multiStep:" "errorMetric='negativeLogLikelihood':steps=%d:window=1000:" "field=%s"%(_options.stepsAhead, predictedField)] nrmse = result.metrics["multiStepBestPredictions:multiStep:" "errorMetric='nrmse':steps=%d:window=1000:" "field=%s"%(_options.stepsAhead, predictedField)] numActiveCell = np.mean(activeCellNum[-100:]) print "After %i records, %d-step negLL=%f nrmse=%f ActiveCell %f " % \ (i, _options.stepsAhead, negLL, nrmse, numActiveCell) last_prediction = prediction_nstep prediction_nstep = \ result.inferences["multiStepBestPredictions"][_options.stepsAhead] bucketLL = \ result.inferences['multiStepBucketLikelihoods'][_options.stepsAhead] likelihoodsVec = np.zeros((maxBucket,)) if bucketLL is not None: for (k, v) in bucketLL.items(): likelihoodsVec[k] = v time_step.append(i) actual_data.append(inputRecord[predictedField]) predict_data_ML.append( result.inferences['multiStepBestPredictions'][_options.stepsAhead]) negLL_track.append(negLL) likelihoodsVecAll[0:len(likelihoodsVec), i] = likelihoodsVec predData_TM_n_step = np.roll(np.array(predict_data_ML), _options.stepsAhead) nTest = len(actual_data) - nTrain - _options.stepsAhead NRMSE_TM = NRMSE(actual_data[nTrain:nTrain+nTest], predData_TM_n_step[nTrain:nTrain+nTest]) print "NRMSE on test data: ", NRMSE_TM # calculate neg-likelihood predictions = np.transpose(likelihoodsVecAll) truth = np.roll(actual_data, -5) from nupic.encoders.scalar import ScalarEncoder as NupicScalarEncoder encoder = NupicScalarEncoder(w=1, minval=0, maxval=40000, n=22, forced=True) bucketIndex2 = [] negLL = [] minProb = 0.0001 for i in xrange(len(truth)): bucketIndex2.append(np.where(encoder.encode(truth[i]))[0]) outOfBucketProb = 1 - sum(predictions[i,:]) prob = predictions[i, bucketIndex2[i]] if prob == 0: prob = outOfBucketProb if prob < minProb: prob = minProb negLL.append( -np.log(prob)) negLL = computeLikelihood(predictions, truth, encoder) negLL[:5000] = np.nan x = range(len(negLL)) if not os.path.exists("./results/nyc_taxi/"): os.makedirs("./results/nyc_taxi/") np.savez('./results/nyc_taxi/{}{}TMprediction_SPLearning_{}_boost_{}'.format( dataSet, classifierType, trainSP, boostStrength), predictions, predict_data_ML, truth) activeDutyCycle = np.zeros(sp.getColumnDimensions(), dtype=np.float32) sp.getActiveDutyCycles(activeDutyCycle) overlapDutyCycle = np.zeros(sp.getColumnDimensions(), dtype=np.float32) sp.getOverlapDutyCycles(overlapDutyCycle) if not os.path.exists("./figures/nyc_taxi/"): os.makedirs("./figures/nyc_taxi/") plt.figure() plt.clf() plt.subplot(2, 2, 1) plt.hist(overlapDutyCycle) plt.xlabel('overlapDutyCycle') plt.subplot(2, 2, 2) plt.hist(activeDutyCycle) plt.xlim([0, .1]) plt.xlabel('activeDutyCycle-1000') plt.subplot(2, 2, 3) totalActiveDutyCycle = spActiveCellsCount.astype('float32') / len(df) dutyCycleDist, binEdge = np.histogram(totalActiveDutyCycle, bins=20, range=[-0.0025, 0.0975]) dutyCycleDist = dutyCycleDist.astype('float32')/np.sum(dutyCycleDist) binWidth = np.mean(binEdge[1:]-binEdge[:-1]) binCenter = binEdge[:-1] + binWidth/2 plt.bar(binCenter, dutyCycleDist, width=0.005) plt.xlim([-0.0025, .1]) plt.ylim([0, .7]) plt.xlabel('activeDutyCycle-Total') plt.savefig('figures/nyc_taxi/DutyCycle_SPLearning_{}_boost_{}.pdf'.format( trainSP, boostStrength))
gpl-3.0
prheenan/Research
Perkins/AnalysisUtil/ForceExtensionAnalysis/DataCorrection/CorrectionByFFT.py
1
7635
# force floating point division. Can still use integer with // from __future__ import division # This file is used for importing the common utilities classes. import numpy as np import matplotlib.pyplot as plt import sys from scipy.fftpack import rfft,irfft from scipy.interpolate import interp1d from FitUtil.FitUtils.Python.FitUtil import GenFit import copy from Research.Perkins.AnalysisUtil.ForceExtensionAnalysis import FEC_Util class CorrectionObject: def __init__(self,MaxInvolsSizeMeters = 10e-9,FractionForOffset = 0.2, SpatialGridUpSample = 5,MaxFourierSpaceComponent=10e-9): """ Creates a sklearn-style object for correcting data Args MaxInvolsSizeMeters: Maximum possible decay constant (in separation) from trigger point to zero. FractionForOffset: how much of the approach/retract curve is used for offsetting SpatialGridUpSample: how much to up-sample the separation grid, to get a uniform fourier series MaxFourierSpaceComponent: the maximum spatial component to the Fourier series. This is 1/(2*f_nyquist), where f_nyquist is the nysquist 'frequency' (inverse sptial dimension) """ self.MaxInvolsSizeMeters = MaxInvolsSizeMeters self.FractionForOffset = FractionForOffset self.SpatialGridUpSample = SpatialGridUpSample self.MaxFourierSpaceComponent = MaxFourierSpaceComponent def ZeroForceAndSeparation(self,Obj,IsApproach): """ See FEC_Util.ZeroForceAndSeparation """ return FEC_Util.ZeroForceAndSeparation(Obj,IsApproach, self.FractionForOffset) def FitInvols(self,Obj): """ Fit to the invols on the (approach!) portion of Obj Args: Obj: TimeSepForceObject. We get just the approach from it and fit to that Returns: Nothing, but sets the object for future predicts """ Approach,Retract = FEC_Util.GetApproachRetract(Obj) # get the zeroed force and separation SeparationZeroed,ForceZeroed = self.ZeroForceAndSeparation(Approach, True) ArbOffset = max(np.abs(ForceZeroed)) A = max(ForceZeroed) # adding in the arbitrary offset actually helps quite a bit. # we fit versus time, which also helps. FittingFunction = lambda t,tau : np.log(A * np.exp(-t/tau)+ArbOffset) # for fitting, flip time around MaxTau = self.MaxInvolsSizeMeters params,_,_ = GenFit(SeparationZeroed,np.log(ForceZeroed+ArbOffset), model=FittingFunction, bounds=(0,MaxTau)) # tau is the first (only) parameter self.Lambda= params[0] self.MaxForceForDecay = max(ForceZeroed) def PredictInvols(self,Obj,IsApproach): """ Given an object, predicts the invols portion of its curve. *must* call after a fit Args: Obj: see FitInvols, except this is *either* the approach or retract IsApproach: see FitInvols Returns: Predicted, Zero-offset invols decay for Obj """ SeparationZeroed,_ = self.ZeroForceAndSeparation(Obj,IsApproach) return self.MaxForceForDecay * np.exp(-SeparationZeroed/self.Lambda) def FitInterference(self,Obj): """ Given a TimeSepForce Object, fits to the interference artifact Args: Obj: TImeSepForceObject Returns: Nothing, but sets internal state for future predict """ Approach,_ = FEC_Util.GetApproachRetract(Obj) # get the zeroed force and separation SeparationZeroed,ForceZeroed = self.ZeroForceAndSeparation(Approach, True) # get the residuals (essentially, no 'invols') part FourierComponents = max(SeparationZeroed)/self.MaxFourierSpaceComponent NumFourierTerms = np.ceil(FourierComponents/self.SpatialGridUpSample) # down-spample the number of terms to match the grid # get the fourier transform in *space*. Need to interpolate onto # uniform gridding N = SeparationZeroed.size self.linear_grid = np.linspace(0,max(SeparationZeroed), N*self.SpatialGridUpSample) # how many actual terms does that translate into? ForceInterp =interp1d(x=SeparationZeroed, y=Approach.Force,kind='linear') self.fft_coeffs = rfft(ForceInterp(self.linear_grid)) # remove all the high-frequecy stuff NumTotalTermsPlusDC = int(2*NumFourierTerms+1) self.fft_coeffs[NumTotalTermsPlusDC:] = 0 def PredictInterference(self,Obj,IsApproach): """ Given a previous PredictIntereference, returns the prediction of the fft (ie: at each spatial point in Obj.Force, returns the prediction) Args: Obj: See FitInterference IsApproach: True if we are predicting the approach Returns: prediction of fft coefficients """ # interpolate back to the original grid SeparationZeroed,_ = self.ZeroForceAndSeparation(Obj, IsApproach) N = SeparationZeroed.size fft_representation = irfft(self.fft_coeffs) MaxGrid = np.max(self.linear_grid) # should only interpolate (correct) out to however much approach # data we have GoodInterpolationIndices = np.where(SeparationZeroed <= MaxGrid) BadIdx = np.where(SeparationZeroed > MaxGrid) fft_pred = np.zeros(SeparationZeroed.size) # determine the interpolator -- should be able to use everywhere # we are within range GoodInterpolator = interp1d(x=self.linear_grid,y=fft_representation) fft_pred[GoodInterpolationIndices] =\ GoodInterpolator(SeparationZeroed[GoodInterpolationIndices]) # everything else just gets the DC offset, which is the 0-th component fft_pred[BadIdx] = fft_representation[0] return fft_pred def CorrectApproachAndRetract(self,Obj): """ Given an object, corrects and returns the approach and retract portions of the curve (dwell excepted) Args: Obj: see FitInterference Returns: Tuple of two TimeSepForce Objects, one for approach, one for Retract. Throws out the dwell portion """ Approach,Retract = FEC_Util.GetApproachRetract(Obj) SeparationZeroed,ForceZeroed = self.\ ZeroForceAndSeparation(Approach,IsApproach=True) # fit the interference artifact self.FitInterference(Approach) fft_pred = self.PredictInterference(Approach, IsApproach=True) # make a prediction without the wiggles Approach.Force -= fft_pred # just for clarities sake, the approach has now been corrected ApproachCorrected = Approach RetractNoInvols = Retract fft_pred_retract = self.PredictInterference(RetractNoInvols, IsApproach=False) RetractCorrected = copy.deepcopy(RetractNoInvols) RetractCorrected.Force -= fft_pred_retract return ApproachCorrected,RetractCorrected
gpl-3.0
zigahertz/2013-Sep-HR-ML-sprint
py/titanic.py
1
3415
import os import csv as csv import numpy as np import matplotlib.pyplot as plt path = os.getcwd() csv_file_object = csv.reader(open(path + '/train.csv', 'rb')) header = csv_file_object.next() data = [] for row in csv_file_object: data.append(row) data = np.array(data) number_passengers = np.size(data[0::, 0].astype(np.float)) number_survived = np.sum(data[0::, 0].astype(np.float)) prop_surv = number_survived / number_passengers # proportion of survivors print '# passengers: ' + str(number_passengers) print '# survived: ' + str(number_survived) print '# % survive: ' + str(prop_surv) print women_only_stats = data[0::, 3] == 'female' men_only_stats = data[0::, 3] != 'female' women_onboard = data[women_only_stats, 0].astype(np.float) men_onboard = data[men_only_stats, 0].astype(np.float) print 'wos: ' + str(len(women_only_stats)) proportion_women_survived = np.sum(women_onboard) / np.size(women_onboard) proportion_men_survived = np.sum(men_onboard) / np.size(men_onboard) print 'proportion women survived: %s' % proportion_women_survived print 'proportion men survived: %s' % proportion_men_survived test_file_object = csv.reader(open(path + '/test.csv', 'rb')) header = test_file_object.next() open_file_object = csv.writer(open(path + '/genderbasedmodelpy.csv', 'wb')) for row in test_file_object: if row[2] == 'female': row.insert(0, '1') open_file_object.writerow(row) else: row.insert(0, '0') open_file_object.writerow(row) ### Multivariate Prediction ### fare_ceiling = 40 data[data[0::,8].astype(np.float) >= fare_ceiling, 8] = fare_ceiling - 1.0 fare_bracket_size = 10 num_price_brackets = fare_ceiling / fare_bracket_size num_classes = 3 survival_table = np.zeros((2, num_classes, num_price_brackets)) for i in xrange(num_classes): for j in xrange(num_price_brackets): women_only_stats = data[(data[0::, 3] == 'female') & \ (data[0::, 1].astype(np.float) == i+1) & \ (data[0:, 8].astype(np.float) >= j * fare_bracket_size) & \ (data[0:, 8].astype(np.float) < (j+1) * fare_bracket_size), 0] men_only_stats = data[(data[0::, 3] != 'female') & \ (data[0::, 1].astype(np.float) == i+1) & \ (data[0:, 8].astype(np.float) >= j * fare_bracket_size) & \ (data[0:, 8].astype(np.float) < (j+1) * fare_bracket_size), 0] survival_table[0, i, j] = np.mean(women_only_stats.astype(np.float)) survival_table[1, i, j] = np.mean(men_only_stats.astype(np.float)) survival_table[survival_table != survival_table] = 0 survival_table[survival_table < 0.5] = 0 survival_table[survival_table >= 0.5] = 1 print survival_table test_file_object = csv.reader(open(path + '/test.csv', 'rb')) new_open_file_object = csv.writer(open(path + '/genderclasspricebasedmodelpy.csv', 'wb')) header = test_file_object.next() for row in test_file_object: for j in xrange(num_price_brackets): try: row[7] = float(row(7)) except: bin_fare = 3 - float(row[0]) break if row[7] > fare_ceiling: bin_fare = num_price_brackets - 1 break if row[7] >= j*fare_bracket_size and row[7] < (j+1)*fare_bracket_size: bin_fare = j break if row[2] == 'female': row.insert(0, int(survival_table[0, float(row[0])-1, bin_fare])) new_open_file_object.writerow(row) else: row.insert(0, int(survival_table[1, float(row[0])-1, bin_fare])) new_open_file_object.writerow(row)
mit
Jean13/CVE_Compare
python/v1.2/setup.py
1
1092
''' CVE_Compare.py Dependencies Run: python setup.py ''' import subprocess, sys def check_path(): try: # Find where PIP.exe is p = subprocess.Popen(["where.exe", "pip.exe"], stdout = subprocess.PIPE) path = str(p.stdout.read()) # Clean up the path found before adding to system path path = path[:path.find("\\pip")] path = path[2:-1] path = path.replace("\\\\", "\\") # Check whether PIP is in the PATH, and if not, add it sys_path = str(sys.path) if sys_path.find(path): print("[*] PIP in PATH. \n") else: sys.path.append(path) print("[*] PIP added to PATH. \n") except Exception as e: print(e) def setup(package): try: p = subprocess.Popen(["pip.exe", "install", package], stdout = sys.stdout) # Print output p.communicate() except Exception as e: print(e) check_path() setup("pathlib") setup("requests") setup("numpy") setup("xlrd") setup("pandas")
apache-2.0
AtsushiSakai/PythonRobotics
PathTracking/pure_pursuit/pure_pursuit.py
1
6184
""" Path tracking simulation with pure pursuit steering and PID speed control. author: Atsushi Sakai (@Atsushi_twi) Guillaume Jacquenot (@Gjacquenot) """ import numpy as np import math import matplotlib.pyplot as plt # Parameters k = 0.1 # look forward gain Lfc = 2.0 # [m] look-ahead distance Kp = 1.0 # speed proportional gain dt = 0.1 # [s] time tick WB = 2.9 # [m] wheel base of vehicle show_animation = True class State: def __init__(self, x=0.0, y=0.0, yaw=0.0, v=0.0): self.x = x self.y = y self.yaw = yaw self.v = v self.rear_x = self.x - ((WB / 2) * math.cos(self.yaw)) self.rear_y = self.y - ((WB / 2) * math.sin(self.yaw)) def update(self, a, delta): self.x += self.v * math.cos(self.yaw) * dt self.y += self.v * math.sin(self.yaw) * dt self.yaw += self.v / WB * math.tan(delta) * dt self.v += a * dt self.rear_x = self.x - ((WB / 2) * math.cos(self.yaw)) self.rear_y = self.y - ((WB / 2) * math.sin(self.yaw)) def calc_distance(self, point_x, point_y): dx = self.rear_x - point_x dy = self.rear_y - point_y return math.hypot(dx, dy) class States: def __init__(self): self.x = [] self.y = [] self.yaw = [] self.v = [] self.t = [] def append(self, t, state): self.x.append(state.x) self.y.append(state.y) self.yaw.append(state.yaw) self.v.append(state.v) self.t.append(t) def proportional_control(target, current): a = Kp * (target - current) return a class TargetCourse: def __init__(self, cx, cy): self.cx = cx self.cy = cy self.old_nearest_point_index = None def search_target_index(self, state): # To speed up nearest point search, doing it at only first time. if self.old_nearest_point_index is None: # search nearest point index dx = [state.rear_x - icx for icx in self.cx] dy = [state.rear_y - icy for icy in self.cy] d = np.hypot(dx, dy) ind = np.argmin(d) self.old_nearest_point_index = ind else: ind = self.old_nearest_point_index distance_this_index = state.calc_distance(self.cx[ind], self.cy[ind]) while True: distance_next_index = state.calc_distance(self.cx[ind + 1], self.cy[ind + 1]) if distance_this_index < distance_next_index: break ind = ind + 1 if (ind + 1) < len(self.cx) else ind distance_this_index = distance_next_index self.old_nearest_point_index = ind Lf = k * state.v + Lfc # update look ahead distance # search look ahead target point index while Lf > state.calc_distance(self.cx[ind], self.cy[ind]): if (ind + 1) >= len(self.cx): break # not exceed goal ind += 1 return ind, Lf def pure_pursuit_steer_control(state, trajectory, pind): ind, Lf = trajectory.search_target_index(state) if pind >= ind: ind = pind if ind < len(trajectory.cx): tx = trajectory.cx[ind] ty = trajectory.cy[ind] else: # toward goal tx = trajectory.cx[-1] ty = trajectory.cy[-1] ind = len(trajectory.cx) - 1 alpha = math.atan2(ty - state.rear_y, tx - state.rear_x) - state.yaw delta = math.atan2(2.0 * WB * math.sin(alpha) / Lf, 1.0) return delta, ind def plot_arrow(x, y, yaw, length=1.0, width=0.5, fc="r", ec="k"): """ Plot arrow """ if not isinstance(x, float): for ix, iy, iyaw in zip(x, y, yaw): plot_arrow(ix, iy, iyaw) else: plt.arrow(x, y, length * math.cos(yaw), length * math.sin(yaw), fc=fc, ec=ec, head_width=width, head_length=width) plt.plot(x, y) def main(): # target course cx = np.arange(0, 50, 0.5) cy = [math.sin(ix / 5.0) * ix / 2.0 for ix in cx] target_speed = 10.0 / 3.6 # [m/s] T = 100.0 # max simulation time # initial state state = State(x=-0.0, y=-3.0, yaw=0.0, v=0.0) lastIndex = len(cx) - 1 time = 0.0 states = States() states.append(time, state) target_course = TargetCourse(cx, cy) target_ind, _ = target_course.search_target_index(state) while T >= time and lastIndex > target_ind: # Calc control input ai = proportional_control(target_speed, state.v) di, target_ind = pure_pursuit_steer_control( state, target_course, target_ind) state.update(ai, di) # Control vehicle time += dt states.append(time, state) if show_animation: # pragma: no cover plt.cla() # for stopping simulation with the esc key. plt.gcf().canvas.mpl_connect( 'key_release_event', lambda event: [exit(0) if event.key == 'escape' else None]) plot_arrow(state.x, state.y, state.yaw) plt.plot(cx, cy, "-r", label="course") plt.plot(states.x, states.y, "-b", label="trajectory") plt.plot(cx[target_ind], cy[target_ind], "xg", label="target") plt.axis("equal") plt.grid(True) plt.title("Speed[km/h]:" + str(state.v * 3.6)[:4]) plt.pause(0.001) # Test assert lastIndex >= target_ind, "Cannot goal" if show_animation: # pragma: no cover plt.cla() plt.plot(cx, cy, ".r", label="course") plt.plot(states.x, states.y, "-b", label="trajectory") plt.legend() plt.xlabel("x[m]") plt.ylabel("y[m]") plt.axis("equal") plt.grid(True) plt.subplots(1) plt.plot(states.t, [iv * 3.6 for iv in states.v], "-r") plt.xlabel("Time[s]") plt.ylabel("Speed[km/h]") plt.grid(True) plt.show() if __name__ == '__main__': print("Pure pursuit path tracking simulation start") main()
mit
dfridovi/path_planning
src/python/filter/map.py
1
6696
""" Copyright (c) 2015, The Regents of the University of California (Regents). All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS AS IS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Please contact the author(s) of this library if you have any questions. Author: David Fridovich-Keil ( [email protected] ) """ ########################################################################### # # Map class to test the filtering approach to mapping. # ########################################################################### import numpy as np from numpy import matlib import matplotlib.pyplot as plt from landmark import Landmark class Map: # Constructor. def __init__(self): self.size_ = 0 self.registry_ = {} # Add a landmark. def AddLandmark(self, p): if p.GetID() in self.registry_: print "This landmark is already in the map. Did not add." return # Add to state vector and assign identiy covariance. position = p.GetLocation() if self.size_ == 0: self.point_size_ = len(position) self.state_ = position self.covariance_ = np.matlib.eye(self.point_size_) elif len(position) != self.point_size_: print "Point size does not match. Did not add." return else: self.state_ = np.vstack([self.state_, position]) old_covariance = self.covariance_ self.covariance_ = np.matlib.eye(old_covariance.shape[0] + self.point_size_) self.covariance_[:-self.point_size_, :-self.point_size_] = old_covariance # Update the registry. self.registry_[p.GetID()] = self.size_ self.size_ += 1 # Update a landmark. This is a pure Kalman update. def UpdateLandmark(self, p): if p.GetID() not in self.registry_: print "This landmark is not in the registry. Did not update." return # Extract index and position. index = self.registry_[p.GetID()] position = p.GetLocation() # Generate observation vector z. z = np.matlib.zeros(self.state_.shape) z[index*self.point_size_:(index + 1)*self.point_size_] = position # Generate measurement matrix H. H = np.matlib.zeros(self.covariance_.shape) H[index*self.point_size_:(index + 1)*self.point_size_, index*self.point_size_:(index + 1)*self.point_size_] = \ np.matlib.eye(self.point_size_) # Generate measurement covariance R. R = np.matlib.zeros(self.covariance_.shape) np.fill_diagonal(R, float("inf")) R[index*self.point_size_:(index + 1)*self.point_size_, index*self.point_size_:(index + 1)*self.point_size_] = \ np.matlib.eye(self.point_size_) # Calculate innovation residual y and covariance S. y = z - H * self.state_ S = H * self.covariance_ * H.T + R # Calculate Kalman gain and posteriors. K = self.covariance_ * H.T * np.linalg.inv(S) self.state_ = self.state_ + K * y self.covariance_ = (np.matlib.eye(len(z)) - K * H) * self.covariance_ # Visualize as a scatterplot. def Visualize2D(self): if self.point_size_ != 2: print "Points must be in 2D." return x_coordinates = np.zeros(len(self.state_) / 2) x_coordinates[:] = self.state_[0:len(self.state_):2].flatten() y_coordinates = np.zeros(len(self.state_) / 2) y_coordinates[:] = self.state_[1:len(self.state_):2].flatten() fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(x_coordinates, y_coordinates, color="green") return fig # Visualize as a scatterplot. def VisualizeLines2D(self, true_positions): if self.point_size_ != 2: print "Points must be in 2D." return if len(true_positions) != self.size_: print "Incorrect number of true positions." return # Extract estimated coordinates. x_coordinates = np.zeros(len(self.state_) / 2) x_coordinates[:] = self.state_[0:len(self.state_):2].flatten() y_coordinates = np.zeros(len(self.state_) / 2) y_coordinates[:] = self.state_[1:len(self.state_):2].flatten() # Extract true coordinates. true_x = np.zeros(len(self.state_) / 2) true_y = np.zeros(len(self.state_) / 2) for ii, position in enumerate(true_positions): true_x[ii] = position[0] true_y[ii] = position[1] # Plot. fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(x_coordinates, y_coordinates, color="green") ax.scatter(true_x, true_y, color="red") for ii in range(self.size_): ax.plot([true_x[ii], x_coordinates[ii]], [true_y[ii], y_coordinates[ii]], 'b-', lw=2) return fig # Getters. def Size(self): return self.size_ def PointSize(self): return self.point_size_ def State(self): return self.state_ def Covariance(self): return self.covariance_
bsd-3-clause
aylward/ITKTubeTK
examples/archive/TubeGraphKernels/expdrive.py
7
7820
############################################################################## # # Library: TubeTK # # Copyright 2010 Kitware Inc. 28 Corporate Drive, # Clifton Park, NY, 12065, USA. # # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ############################################################################## """Data generation driver. """ __license__ = "Apache License, Version 2.0" __author__ = "Roland Kwitt, Kitware Inc., 2013" __email__ = "E-Mail: [email protected]" __status__ = "Development" import sys import os import json import logging import numpy as np from itertools import * from optparse import OptionParser from sklearn.cross_validation import KFold from sklearn.cross_validation import ShuffleSplit import exputils as Utils LOGGING_LEVELS = { 'critical': logging.CRITICAL, 'error': logging.ERROR, 'warning': logging.WARNING, 'info': logging.INFO, 'debug': logging.DEBUG} def main(argv=None): if argv is None: argv = sys.argv parser = OptionParser() parser.add_option("", "--stage", help="Processing stage (0 = Run all)" , type="int" ) parser.add_option("", "--dest", help="Destination base directory", default="/tmp/") parser.add_option("", "--data", help="Data file in JSON format (see README for format)") parser.add_option("", "--cvruns", help="Number of cross-validation runs (1 == single split)", type="int", default=1) parser.add_option("", "--config", help="Config file with relative executable paths") parser.add_option("", "--cells", help="Number of CVT cells to use for ATLAS building", type="int", default=1000) parser.add_option("", "--logat", help="Log at the specified logging level") parser.add_option("", "--graphKernelType", help="Graph kernel type (see TubeGraphKernel)", type="int", default=0) parser.add_option("", "--subtreeHeight", help="Subtree height of the WL subtree kernel (see TubeGraphKernel)", type="int", default=1) parser.add_option("", "--defaultLabelType", help="Specify default labeling of graph nodes (see TubeGraphKernel)", type="int", default=0) parser.add_option("", "--globalLabelFile", help="Specify a global label file to use") parser.add_option("", "--segmentationImage", help="Image with brain segmentations (e.g., provided with SPL phantom)") parser.add_option("", "--logto", help="Log to the specified file") parser.add_option("", "--phantom", help="Phantom file to use") parser.add_option("", "--phantomType", help="Specify the phantom type that is used (Supported phantoms are are: SPL, BrainWeb)") (options, args) = parser.parse_args() # Logger configuration logging.basicConfig(level=LOGGING_LEVELS.get(options.logat, logging.NOTSET), filename=options.logto, format='%(asctime)s [%(funcName)s] %(levelname)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S') if (not os.path.exists(options.dest) or not os.path.isdir(options.dest)): print "Error: Destination directory invalid!" return -1 if (not Utils.check_file(options.data)): print "Error: Data file not given or invalid!" return -1 if (not Utils.check_file(options.config)): print "Error: Config file is missing!" return -1 if (options.phantom is None): print "Error: No phantom given!" return -1 if (options.phantomType is None): print "Error: No phantom type given!" return -1 config_fid = open(options.config).read() config = json.loads(config_fid) json_fid = open(options.data).read() json_dat = json.loads( json_fid ) subject_dir_list = [] # Directories with subject data subject_lab_list = [] # The group label for each subject, e.g., 'Male', 'Female' for e in json_dat["Data"]: subject_dir_list.append(e["Source"]) subject_lab_list.append(e["Group"].rstrip()) logger = logging.getLogger() N = len(json_dat["Data"]) cv = ShuffleSplit(N, n_iter=options.cvruns, test_size=0.3, random_state=0) Utils.ensure_dir(options.dest) logger.debug("Destination directory = %s" % options.dest) logger.debug("Phantom file = %s", options.phantom) logger.debug("#CVT cells = %d", options.cells) logger.debug("Cross-validation runs = %d" % options.cvruns) logger.debug("#Subjects = %d", N) try: stage_opt = dict() stage_opt["groupLabel"] = subject_lab_list stage_opt["subjects"] = subject_dir_list stage_opt["dest"] = options.dest stage_opt["phantom"] = options.phantom stage_opt["phantomType"] = options.phantomType stage_opt["cells"] = options.cells stage_opt["graphKernelType"] = options.graphKernelType stage_opt["subtreeHeight"] = options.subtreeHeight stage_opt["defaultLabelType"] = options.defaultLabelType stage_opt["globalLabelFile"] = options.globalLabelFile stage_opt["segmentationImage"] = options.segmentationImage stage_opt["randomSeed"] = 1234 # Random seed for repeatability if (options.stage == 1): # MRA ToF images (includes skull) stage_opt["mra_wSkull_glob"] = "*MRA.mha" # MRI T1 images (includes skull) stage_opt["mri_wSkull_glob"] = "*T1-Flash.mha" # MRA Tof images (skull-stripped) stage_opt["mri_nSkull_glob"] = "*SkullStripped*.mha" Utils.compute_registrations(config, stage_opt) elif (options.stage == 2): Utils.transform_tubes_to_phantom(config, stage_opt) elif (options.stage == 3): Utils.compute_ind_atlas_edm(config, stage_opt) elif (options.stage > 3 and options.stage < 24): for cv_id,(train,test) in enumerate(cv): stage_opt["id"] = cv_id + 1 # Cross-validation ID stage_opt["trn"] = train # Trn indices stage_opt["tst"] = test # Tst indices res = { 4 : Utils.compute_grp_atlas_sum, 5 : Utils.compute_grp_atlas_cvt, 6 : Utils.compute_ind_graph_grp, 7 : Utils.compute_grp_graph_grp, 8 : Utils.compute_glo_atlas_edm, 9 : Utils.compute_glo_atlas_cvt, 10: Utils.compute_ind_graph_common, 11: Utils.compute_grp_graph_common, 12: Utils.compute_ind_graph_grp_testing, 13: Utils.compute_ind_graph_common_testing, 14: Utils.compute_ind_tube_prob_testing, 15: Utils.compute_ind_graph_prob_testing, 16: Utils.compute_glo_label_map, 17: Utils.compute_trn_gk, 18: Utils.compute_tst_gk, 19: Utils.compute_full_gk, 20: Utils.trn_classifier, 21: Utils.tst_classifier, 22: Utils.evaluate_classifier_from_full_gk, 23: Utils.compute_distance_signatures }[options.stage](config, stage_opt) else: print "Error: Stage %d not available!" % options.stage except Exception as e: print e return -1 if __name__ == "__main__": sys.exit( main() )
apache-2.0
sandeepkrjha/pgmpy
pgmpy/estimators/base.py
5
16290
#!/usr/bin/env python from warnings import warn import numpy as np import pandas as pd from scipy.stats import chisquare class BaseEstimator(object): def __init__(self, data, state_names=None, complete_samples_only=True): """ Base class for estimators in pgmpy; `ParameterEstimator`, `StructureEstimator` and `StructureScore` derive from this class. Parameters ---------- data: pandas DataFrame object datafame object where each column represents one variable. (If some values in the data are missing the data cells should be set to `numpy.NaN`. Note that pandas converts each column containing `numpy.NaN`s to dtype `float`.) state_names: dict (optional) A dict indicating, for each variable, the discrete set of states (or values) that the variable can take. If unspecified, the observed values in the data set are taken to be the only possible states. complete_samples_only: bool (optional, default `True`) Specifies how to deal with missing data, if present. If set to `True` all rows that contain `np.Nan` somewhere are ignored. If `False` then, for each variable, every row where neither the variable nor its parents are `np.NaN` is used. This sets the behavior of the `state_count`-method. """ self.data = data self.complete_samples_only = complete_samples_only variables = list(data.columns.values) if not isinstance(state_names, dict): self.state_names = {var: self._collect_state_names(var) for var in variables} else: self.state_names = dict() for var in variables: if var in state_names: if not set(self._collect_state_names(var)) <= set(state_names[var]): raise ValueError("Data contains unexpected states for variable '{0}'.".format(str(var))) self.state_names[var] = sorted(state_names[var]) else: self.state_names[var] = self._collect_state_names(var) def _collect_state_names(self, variable): "Return a list of states that the variable takes in the data" states = sorted(list(self.data.ix[:, variable].dropna().unique())) return states def state_counts(self, variable, parents=[], complete_samples_only=None): """ Return counts how often each state of 'variable' occured in the data. If a list of parents is provided, counting is done conditionally for each state configuration of the parents. Parameters ---------- variable: string Name of the variable for which the state count is to be done. parents: list Optional list of variable parents, if conditional counting is desired. Order of parents in list is reflected in the returned DataFrame complete_samples_only: bool Specifies how to deal with missing data, if present. If set to `True` all rows that contain `np.NaN` somewhere are ignored. If `False` then every row where neither the variable nor its parents are `np.NaN` is used. Desired default behavior can be passed to the class constructor. Returns ------- state_counts: pandas.DataFrame Table with state counts for 'variable' Examples -------- >>> import pandas as pd >>> from pgmpy.estimators import BaseEstimator >>> data = pd.DataFrame(data={'A': ['a1', 'a1', 'a2'], 'B': ['b1', 'b2', 'b1'], 'C': ['c1', 'c1', 'c2']}) >>> estimator = BaseEstimator(data) >>> estimator.state_counts('A') A a1 2 a2 1 >>> estimator.state_counts('C', parents=['A', 'B']) A a1 a2 B b1 b2 b1 b2 C c1 1 1 0 0 c2 0 0 1 0 """ # default for how to deal with missing data can be set in class constructor if complete_samples_only is None: complete_samples_only = self.complete_samples_only # ignores either any row containing NaN, or only those where the variable or its parents is NaN data = self.data.dropna() if complete_samples_only else self.data.dropna(subset=[variable] + parents) if not parents: # count how often each state of 'variable' occured state_count_data = data.ix[:, variable].value_counts() state_counts = state_count_data.reindex(self.state_names[variable]).fillna(0).to_frame() else: parents_states = [self.state_names[parent] for parent in parents] # count how often each state of 'variable' occured, conditional on parents' states state_count_data = data.groupby([variable] + parents).size().unstack(parents) # reindex rows & columns to sort them and to add missing ones # missing row = some state of 'variable' did not occur in data # missing column = some state configuration of current 'variable's parents # did not occur in data row_index = self.state_names[variable] column_index = pd.MultiIndex.from_product(parents_states, names=parents) state_counts = state_count_data.reindex(index=row_index, columns=column_index).fillna(0) return state_counts def test_conditional_independence(self, X, Y, Zs=[]): """Chi-square conditional independence test. Tests the null hypothesis that X is independent from Y given Zs. This is done by comparing the observed frequencies with the expected frequencies if X,Y were conditionally independent, using a chisquare deviance statistic. The expected frequencies given independence are `P(X,Y,Zs) = P(X|Zs)*P(Y|Zs)*P(Zs)`. The latter term can be computed as `P(X,Zs)*P(Y,Zs)/P(Zs). Parameters ---------- X: int, string, hashable object A variable name contained in the data set Y: int, string, hashable object A variable name contained in the data set, different from X Zs: list of variable names A list of variable names contained in the data set, different from X and Y. This is the separating set that (potentially) makes X and Y independent. Default: [] Returns ------- chi2: float The chi2 test statistic. p_value: float The p_value, i.e. the probability of observing the computed chi2 statistic (or an even higher value), given the null hypothesis that X _|_ Y | Zs. sufficient_data: bool A flag that indicates if the sample size is considered sufficient. As in [4], require at least 5 samples per parameter (on average). That is, the size of the data set must be greater than `5 * (c(X) - 1) * (c(Y) - 1) * prod([c(Z) for Z in Zs])` (c() denotes the variable cardinality). References ---------- [1] Koller & Friedman, Probabilistic Graphical Models - Principles and Techniques, 2009 Section 18.2.2.3 (page 789) [2] Neapolitan, Learning Bayesian Networks, Section 10.3 (page 600ff) http://www.cs.technion.ac.il/~dang/books/Learning%20Bayesian%20Networks(Neapolitan,%20Richard).pdf [3] Chi-square test https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test#Test_of_independence [4] Tsamardinos et al., The max-min hill-climbing BN structure learning algorithm, 2005, Section 4 Examples -------- >>> import pandas as pd >>> import numpy as np >>> from pgmpy.estimators import ConstraintBasedEstimator >>> data = pd.DataFrame(np.random.randint(0, 2, size=(50000, 4)), columns=list('ABCD')) >>> data['E'] = data['A'] + data['B'] + data['C'] >>> c = ConstraintBasedEstimator(data) >>> print(c.test_conditional_independence('A', 'C')) # independent (0.95035644482050263, 0.8132617142699442, True) >>> print(c.test_conditional_independence('A', 'B', 'D')) # independent (5.5227461320130899, 0.59644169242588885, True) >>> print(c.test_conditional_independence('A', 'B', ['D', 'E'])) # dependent (9192.5172226063387, 0.0, True) """ if isinstance(Zs, (frozenset, list, set, tuple,)): Zs = list(Zs) else: Zs = [Zs] num_params = ((len(self.state_names[X])-1) * (len(self.state_names[Y])-1) * np.prod([len(self.state_names[Z]) for Z in Zs])) sufficient_data = len(self.data) >= num_params * 5 if not sufficient_data: warn("Insufficient data for testing {0} _|_ {1} | {2}. ".format(X, Y, Zs) + "At least {0} samples recommended, {1} present.".format(5 * num_params, len(self.data))) # compute actual frequency/state_count table: # = P(X,Y,Zs) XYZ_state_counts = pd.crosstab(index=self.data[X], columns=[self.data[Y]] + [self.data[Z] for Z in Zs]) # reindex to add missing rows & columns (if some values don't appear in data) row_index = self.state_names[X] column_index = pd.MultiIndex.from_product( [self.state_names[Y]] + [self.state_names[Z] for Z in Zs], names=[Y]+Zs) XYZ_state_counts = XYZ_state_counts.reindex(index=row_index, columns=column_index).fillna(0) # compute the expected frequency/state_count table if X _|_ Y | Zs: # = P(X|Zs)*P(Y|Zs)*P(Zs) = P(X,Zs)*P(Y,Zs)/P(Zs) if Zs: XZ_state_counts = XYZ_state_counts.sum(axis=1, level=Zs) # marginalize out Y YZ_state_counts = XYZ_state_counts.sum().unstack(Zs) # marginalize out X else: XZ_state_counts = XYZ_state_counts.sum(axis=1) YZ_state_counts = XYZ_state_counts.sum() Z_state_counts = YZ_state_counts.sum() # marginalize out both XYZ_expected = pd.DataFrame(index=XYZ_state_counts.index, columns=XYZ_state_counts.columns) for X_val in XYZ_expected.index: if Zs: for Y_val in XYZ_expected.columns.levels[0]: XYZ_expected.loc[X_val, Y_val] = (XZ_state_counts.loc[X_val] * YZ_state_counts.loc[Y_val] / Z_state_counts).values else: for Y_val in XYZ_expected.columns: XYZ_expected.loc[X_val, Y_val] = (XZ_state_counts.loc[X_val] * YZ_state_counts.loc[Y_val] / float(Z_state_counts)) observed = XYZ_state_counts.values.flatten() expected = XYZ_expected.fillna(0).values.flatten() # remove elements where the expected value is 0; # this also corrects the degrees of freedom for chisquare observed, expected = zip(*((o, e) for o, e in zip(observed, expected) if not e == 0)) chi2, significance_level = chisquare(observed, expected) return (chi2, significance_level, sufficient_data) class ParameterEstimator(BaseEstimator): def __init__(self, model, data, **kwargs): """ Base class for parameter estimators in pgmpy. Parameters ---------- model: pgmpy.models.BayesianModel or pgmpy.models.MarkovModel or pgmpy.models.NoisyOrModel model for which parameter estimation is to be done data: pandas DataFrame object datafame object with column names identical to the variable names of the model. (If some values in the data are missing the data cells should be set to `numpy.NaN`. Note that pandas converts each column containing `numpy.NaN`s to dtype `float`.) state_names: dict (optional) A dict indicating, for each variable, the discrete set of states (or values) that the variable can take. If unspecified, the observed values in the data set are taken to be the only possible states. complete_samples_only: bool (optional, default `True`) Specifies how to deal with missing data, if present. If set to `True` all rows that contain `np.Nan` somewhere are ignored. If `False` then, for each variable, every row where neither the variable nor its parents are `np.NaN` is used. This sets the behavior of the `state_count`-method. """ if not set(model.nodes()) <= set(data.columns.values): raise ValueError("variable names of the model must be identical to column names in data") self.model = model super(ParameterEstimator, self).__init__(data, **kwargs) def state_counts(self, variable, **kwargs): """ Return counts how often each state of 'variable' occured in the data. If the variable has parents, counting is done conditionally for each state configuration of the parents. Parameters ---------- variable: string Name of the variable for which the state count is to be done. complete_samples_only: bool Specifies how to deal with missing data, if present. If set to `True` all rows that contain `np.NaN` somewhere are ignored. If `False` then every row where neither the variable nor its parents are `np.NaN` is used. Desired default behavior can be passed to the class constructor. Returns ------- state_counts: pandas.DataFrame Table with state counts for 'variable' Examples -------- >>> import pandas as pd >>> from pgmpy.models import BayesianModel >>> from pgmpy.estimators import ParameterEstimator >>> model = BayesianModel([('A', 'C'), ('B', 'C')]) >>> data = pd.DataFrame(data={'A': ['a1', 'a1', 'a2'], 'B': ['b1', 'b2', 'b1'], 'C': ['c1', 'c1', 'c2']}) >>> estimator = ParameterEstimator(model, data) >>> estimator.state_counts('A') A a1 2 a2 1 >>> estimator.state_counts('C') A a1 a2 B b1 b2 b1 b2 C c1 1 1 0 0 c2 0 0 1 0 """ parents = sorted(self.model.get_parents(variable)) return super(ParameterEstimator, self).state_counts(variable, parents=parents, **kwargs) def get_parameters(self): pass class StructureEstimator(BaseEstimator): def __init__(self, data, **kwargs): """ Base class for structure estimators in pgmpy. Parameters ---------- data: pandas DataFrame object datafame object where each column represents one variable. (If some values in the data are missing the data cells should be set to `numpy.NaN`. Note that pandas converts each column containing `numpy.NaN`s to dtype `float`.) state_names: dict (optional) A dict indicating, for each variable, the discrete set of states (or values) that the variable can take. If unspecified, the observed values in the data set are taken to be the only possible states. complete_samples_only: bool (optional, default `True`) Specifies how to deal with missing data, if present. If set to `True` all rows that contain `np.Nan` somewhere are ignored. If `False` then, for each variable, every row where neither the variable nor its parents are `np.NaN` is used. This sets the behavior of the `state_count`-method. """ super(StructureEstimator, self).__init__(data, **kwargs) def estimate(self): pass
mit
magnunor/hyperspy
hyperspy/misc/holography/tools.py
4
3063
# -*- coding: utf-8 -*- # Copyright 2007-2017 The HyperSpy developers # # This file is part of HyperSpy. # # HyperSpy is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # HyperSpy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with HyperSpy. If not, see <http://www.gnu.org/licenses/>. import numpy as np import matplotlib.pyplot as plt from scipy.fftpack import fft2, fftshift import logging _logger = logging.getLogger(__name__) def calculate_carrier_frequency(holo_data, sb_position, scale): """ Calculates fringe carrier frequency of a hologram Parameters ---------- holo_data: ndarray The data of the hologram. sb_position: tuple Position of the sideband with the reference to non-shifted FFT scale: tuple Scale of the axes that will be used for the calculation. Returns ------- Carrier frequency """ shape = holo_data.shape origins = [np.array((0, 0)), np.array((0, shape[1])), np.array((shape[0], shape[1])), np.array((shape[0], 0))] origin_index = np.argmin( [np.linalg.norm(origin - sb_position) for origin in origins]) return np.linalg.norm(np.multiply( origins[origin_index] - sb_position, scale)) def estimate_fringe_contrast_fourier( holo_data, sb_position, apodization='hanning'): """ Estimates average fringe contrast of a hologram by dividing amplitude of maximum pixel of sideband by amplitude of FFT's origin. Parameters ---------- holo_data: ndarray The data of the hologram. sb_position: tuple Position of the sideband with the reference to non-shifted FFT apodization: string, None Use 'hanning', 'hamming' or None to apply apodization window in real space before FFT Apodization is typically needed to suppress the striking due to sharp edges of the which often results in underestimation of the fringe contrast. (Default: 'hanning') Returns ------- Fringe contrast as a float """ holo_shape = holo_data.shape if apodization: if apodization == 'hanning': window_x = np.hanning(holo_shape[0]) window_y = np.hanning(holo_shape[1]) elif apodization == 'hamming': window_x = np.hamming(holo_shape[0]) window_y = np.hamming(holo_shape[1]) window_2d = np.sqrt(np.outer(window_x, window_y)) data = holo_data * window_2d else: data = holo_data fft_exp = fft2(data) return 2 * np.abs(fft_exp[tuple(sb_position)]) / np.abs(fft_exp[0, 0])
gpl-3.0
thientu/scikit-learn
benchmarks/bench_rcv1_logreg_convergence.py
149
7173
# Authors: Tom Dupre la Tour <[email protected]> # Olivier Grisel <[email protected]> # # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np import gc import time from sklearn.externals.joblib import Memory from sklearn.linear_model import (LogisticRegression, SGDClassifier) from sklearn.datasets import fetch_rcv1 from sklearn.linear_model.sag import get_auto_step_size from sklearn.linear_model.sag_fast import get_max_squared_sum try: import lightning.classification as lightning_clf except ImportError: lightning_clf = None m = Memory(cachedir='.', verbose=0) # compute logistic loss def get_loss(w, intercept, myX, myy, C): n_samples = myX.shape[0] w = w.ravel() p = np.mean(np.log(1. + np.exp(-myy * (myX.dot(w) + intercept)))) print("%f + %f" % (p, w.dot(w) / 2. / C / n_samples)) p += w.dot(w) / 2. / C / n_samples return p # We use joblib to cache individual fits. Note that we do not pass the dataset # as argument as the hashing would be too slow, so we assume that the dataset # never changes. @m.cache() def bench_one(name, clf_type, clf_params, n_iter): clf = clf_type(**clf_params) try: clf.set_params(max_iter=n_iter, random_state=42) except: clf.set_params(n_iter=n_iter, random_state=42) st = time.time() clf.fit(X, y) end = time.time() try: C = 1.0 / clf.alpha / n_samples except: C = clf.C try: intercept = clf.intercept_ except: intercept = 0. train_loss = get_loss(clf.coef_, intercept, X, y, C) train_score = clf.score(X, y) test_score = clf.score(X_test, y_test) duration = end - st return train_loss, train_score, test_score, duration def bench(clfs): for (name, clf, iter_range, train_losses, train_scores, test_scores, durations) in clfs: print("training %s" % name) clf_type = type(clf) clf_params = clf.get_params() for n_iter in iter_range: gc.collect() train_loss, train_score, test_score, duration = bench_one( name, clf_type, clf_params, n_iter) train_losses.append(train_loss) train_scores.append(train_score) test_scores.append(test_score) durations.append(duration) print("classifier: %s" % name) print("train_loss: %.8f" % train_loss) print("train_score: %.8f" % train_score) print("test_score: %.8f" % test_score) print("time for fit: %.8f seconds" % duration) print("") print("") return clfs def plot_train_losses(clfs): plt.figure() for (name, _, _, train_losses, _, _, durations) in clfs: plt.plot(durations, train_losses, '-o', label=name) plt.legend(loc=0) plt.xlabel("seconds") plt.ylabel("train loss") def plot_train_scores(clfs): plt.figure() for (name, _, _, _, train_scores, _, durations) in clfs: plt.plot(durations, train_scores, '-o', label=name) plt.legend(loc=0) plt.xlabel("seconds") plt.ylabel("train score") plt.ylim((0.92, 0.96)) def plot_test_scores(clfs): plt.figure() for (name, _, _, _, _, test_scores, durations) in clfs: plt.plot(durations, test_scores, '-o', label=name) plt.legend(loc=0) plt.xlabel("seconds") plt.ylabel("test score") plt.ylim((0.92, 0.96)) def plot_dloss(clfs): plt.figure() pobj_final = [] for (name, _, _, train_losses, _, _, durations) in clfs: pobj_final.append(train_losses[-1]) indices = np.argsort(pobj_final) pobj_best = pobj_final[indices[0]] for (name, _, _, train_losses, _, _, durations) in clfs: log_pobj = np.log(abs(np.array(train_losses) - pobj_best)) / np.log(10) plt.plot(durations, log_pobj, '-o', label=name) plt.legend(loc=0) plt.xlabel("seconds") plt.ylabel("log(best - train_loss)") rcv1 = fetch_rcv1() X = rcv1.data n_samples, n_features = X.shape # consider the binary classification problem 'CCAT' vs the rest ccat_idx = rcv1.target_names.tolist().index('CCAT') y = rcv1.target.tocsc()[:, ccat_idx].toarray().ravel().astype(np.float64) y[y == 0] = -1 # parameters C = 1. fit_intercept = True tol = 1.0e-14 # max_iter range sgd_iter_range = list(range(1, 121, 10)) newton_iter_range = list(range(1, 25, 3)) lbfgs_iter_range = list(range(1, 242, 12)) liblinear_iter_range = list(range(1, 37, 3)) liblinear_dual_iter_range = list(range(1, 85, 6)) sag_iter_range = list(range(1, 37, 3)) clfs = [ ("LR-liblinear", LogisticRegression(C=C, tol=tol, solver="liblinear", fit_intercept=fit_intercept, intercept_scaling=1), liblinear_iter_range, [], [], [], []), ("LR-liblinear-dual", LogisticRegression(C=C, tol=tol, dual=True, solver="liblinear", fit_intercept=fit_intercept, intercept_scaling=1), liblinear_dual_iter_range, [], [], [], []), ("LR-SAG", LogisticRegression(C=C, tol=tol, solver="sag", fit_intercept=fit_intercept), sag_iter_range, [], [], [], []), ("LR-newton-cg", LogisticRegression(C=C, tol=tol, solver="newton-cg", fit_intercept=fit_intercept), newton_iter_range, [], [], [], []), ("LR-lbfgs", LogisticRegression(C=C, tol=tol, solver="lbfgs", fit_intercept=fit_intercept), lbfgs_iter_range, [], [], [], []), ("SGD", SGDClassifier(alpha=1.0 / C / n_samples, penalty='l2', loss='log', fit_intercept=fit_intercept, verbose=0), sgd_iter_range, [], [], [], [])] if lightning_clf is not None and not fit_intercept: alpha = 1. / C / n_samples # compute the same step_size than in LR-sag max_squared_sum = get_max_squared_sum(X) step_size = get_auto_step_size(max_squared_sum, alpha, "log", fit_intercept) clfs.append( ("Lightning-SVRG", lightning_clf.SVRGClassifier(alpha=alpha, eta=step_size, tol=tol, loss="log"), sag_iter_range, [], [], [], [])) clfs.append( ("Lightning-SAG", lightning_clf.SAGClassifier(alpha=alpha, eta=step_size, tol=tol, loss="log"), sag_iter_range, [], [], [], [])) # We keep only 200 features, to have a dense dataset, # and compare to lightning SAG, which seems incorrect in the sparse case. X_csc = X.tocsc() nnz_in_each_features = X_csc.indptr[1:] - X_csc.indptr[:-1] X = X_csc[:, np.argsort(nnz_in_each_features)[-200:]] X = X.toarray() print("dataset: %.3f MB" % (X.nbytes / 1e6)) # Split training and testing. Switch train and test subset compared to # LYRL2004 split, to have a larger training dataset. n = 23149 X_test = X[:n, :] y_test = y[:n] X = X[n:, :] y = y[n:] clfs = bench(clfs) plot_train_scores(clfs) plot_test_scores(clfs) plot_train_losses(clfs) plot_dloss(clfs) plt.show()
bsd-3-clause
ztultrebor/BARKEVIOUS
oddsmaker.py
1
2120
# coding: utf-8 #read in libraries import pandas as pd import datetime def read_odds(filenm, today_schedule): odds = pd.read_csv(filenm) if any([date != str(datetime.date.today()) for date in odds['Date']]): raise ValueError('Check that Odds.csv has been update for today') conversion = { 'ATL':'Atlanta Hawks', 'BOS':'Boston Celtics', 'BRK':'Brooklyn Nets', 'CHA':'Charlotte Hornets', 'CHI':'Chicago Bulls', 'CLE':'Cleveland Cavaliers', 'DAL':'Dallas Mavericks', 'DEN':'Denver Nuggets', 'DET':'Detroit Pistons', 'GS':'Golden State Warriors', 'HOU':'Houston Rockets', 'IND':'Indiana Pacers', 'LAC':'Los Angeles Clippers', 'LAL':'Los Angeles Lakers', 'MEM':'Memphis Grizzlies', 'MIA':'Miami Heat', 'MIL':'Milwaukee Bucks', 'MIN':'Minnesota Timberwolves', 'NO':'New Orleans Pelicans', 'NY':'New York Knicks', 'OKC':'Oklahoma City Thunder', 'ORL':'Orlando Magic', 'PHI':'Philadelphia 76ers', 'PHX':'Phoenix Suns', 'POR':'Portland Trail Blazers', 'SAC':'Sacramento Kings', 'SA':'San Antonio Spurs', 'TOR':'Toronto Raptors', 'UTA':'Utah Jazz', 'WSH':'Washington Wizards'} teams = [conversion[team] for team in odds.Team] odds.Team = teams prob = [] for team in odds.Team: if not today_schedule[today_schedule.Home==team].empty: prob.append(today_schedule.Prob[today_schedule.Home==team].iloc[0]) elif not today_schedule[today_schedule.Away==team].empty: prob.append(1 - today_schedule.Prob[today_schedule.Away==team].iloc[0]) odds['Prob'] = prob return odds
mit
QuantumElephant/horton
horton/scripts/atomdb.py
4
22763
# -*- coding: utf-8 -*- # HORTON: Helpful Open-source Research TOol for N-fermion systems. # Copyright (C) 2011-2017 The HORTON Development Team # # This file is part of HORTON. # # HORTON is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 3 # of the License, or (at your option) any later version. # # HORTON is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, see <http://www.gnu.org/licenses/> # # -- """Code used by ``horton-atomdb.py``""" from glob import glob import os import re import stat from string import Template as BaseTemplate import numpy as np import matplotlib.pyplot as pt from horton.io.iodata import IOData from horton.log import log from horton.periodic import periodic from horton.scripts.common import iter_elements from horton.units import angstrom __all__ = [ 'iter_mults', 'iter_states', 'plot_atoms', 'Template', 'EnergyTable', 'atom_programs', ] # Presets for spin multiplicites. The first element is according to Hund's rule. # Following elements are reasonable. mult_presets = { 1: [2], 2: [1, 3], 3: [2, 4], 4: [1, 3], 5: [2, 4], 6: [3, 5, 1], 7: [4, 2], 8: [3, 1], 9: [2], 10: [1], 11: [2], 12: [1, 3], 13: [2, 4], 14: [3, 5, 1], 15: [4, 2], 16: [3, 1], 17: [2], 18: [1], 19: [2], 20: [1, 3], 21: [2, 4], 22: [3, 5, 1], 23: [4, 6, 2], 24: [7, 5, 3, 1], 25: [6, 4, 2], 26: [5, 3, 1], 27: [4, 2], 28: [3, 1], 29: [2], 30: [1], 31: [2, 4, 6], 32: [3, 1, 5], 33: [4, 2], 34: [3, 1], 35: [2], 36: [1], 37: [2], 38: [1, 3], 39: [2, 4], 40: [3, 1, 5], 41: [6, 4, 2], 42: [7, 5, 3, 1], 43: [6, 4, 2], 44: [5, 3, 1], 45: [4, 2], 46: [1, 3], 47: [2], 48: [1], 49: [2, 4], 50: [3, 1, 5], 51: [4, 2], 52: [3, 1], 53: [2], 54: [1], 55: [2], 56: [1, 3], 57: [2, 4], 58: [3, 1, 5], 59: [4, 2, 6], 60: [5, 1, 3, 7], 61: [6, 2, 4, 8], 62: [7, 1, 3, 5, 9], 63: [8, 2, 4, 6, 10], 64: [9, 1, 3, 5, 7, 11], 65: [6, 2, 4, 8, 10, 12], 66: [5, 1, 3, 7, 9, 11], 67: [4, 2, 6, 8, 10], 68: [3, 1, 5, 7, 9], 69: [2, 4, 6, 8], 70: [1, 2, 5, 7], 71: [2, 4, 6], 72: [3, 5, 1], 73: [4, 2, 6], 74: [5, 1, 3, 7], 75: [6, 2, 4, 8], 76: [5, 1, 3], 77: [4, 2], 78: [3, 1], 79: [2], 80: [1], 81: [2, 4], 82: [3, 1, 5], 83: [4, 2], 84: [3, 1], 85: [2], 86: [1], } def iter_mults(nel, hund): """Iterate over atomic spin multiplicites for the given number of electrons **Arguments:** nel The number of electrons (1-56) hund When set to True, only one spin multiplicity is returned. Otherwise several reasonable spin multiplicities are given. """ if hund: yield mult_presets[nel][0] else: for mult in mult_presets[nel]: yield mult def iter_states(elements, max_cation, max_anion, hund): """Iterate over all requested atomic states **Arguments:** elements A string that is suitable for ``iter_elements`` template An instance of the ``atomdb.Template`` class max_cation The limit for the most positive cation max_anion The limit for the most negative anion hund Flag to adhere to hund's rule for the spin multiplicities. """ for number in iter_elements(elements): # Loop over all charge states for this element for charge in xrange(-max_anion, max_cation+1): nel = number - charge if nel <= 0: continue # loop over multiplicities for mult in iter_mults(nel, hund): yield number, charge, mult def plot_atoms(proatomdb, dn='.'): """Make PNG figures for all atoms in a pro-atom database. Warning: this script writes a bunch of PNG files! Parameters ---------- proatomdb : horton.part.proatomdb.ProAtomDB A database of pro-atoms. dn : str Directory where the PNG files will be written. Local directory if not given. """ def get_color(index): """Return a nice color for a given index.""" colors = ["#FF0000", "#FFAA00", "#00AA00", "#00AAFF", "#0000FF", "#FF00FF", "#777777"] return colors[index % len(colors)] lss = {True: '-', False: ':'} for number in proatomdb.get_numbers(): r = proatomdb.get_rgrid(number).radii symbol = periodic[number].symbol charges = proatomdb.get_charges(number) suffix = '%03i_%s' % (number, symbol.lower().rjust(2, '_')) # The density (rho) pt.clf() for i, charge in enumerate(charges): record = proatomdb.get_record(number, charge) y = record.rho ls = lss[record.safe] color = get_color(i) label = 'q=%+i' % charge pt.semilogy(r/angstrom, y, lw=2, ls=ls, label=label, color=color) pt.xlim(0, 3) pt.ylim(ymin=1e-5) pt.xlabel('Distance from the nucleus [A]') pt.ylabel('Spherically averaged density [Bohr**-3]') pt.title('Proatoms for element %s (%i)' % (symbol, number)) pt.legend(loc=0) fn_png = '%s/dens_%s.png' % (dn, suffix) pt.savefig(fn_png) if log.do_medium: log('Written', fn_png) # 4*pi*r**2*rho pt.clf() for i, charge in enumerate(charges): record = proatomdb.get_record(number, charge) y = record.rho ls = lss[record.safe] color = get_color(i) label = 'q=%+i' % charge pt.plot(r/angstrom, 4*np.pi*r**2*y, lw=2, ls=ls, label=label, color=color) pt.xlim(0, 3) pt.ylim(ymin=0.0) pt.xlabel('Distance from the nucleus [A]') pt.ylabel('4*pi*r**2*density [Bohr**-1]') pt.title('Proatoms for element %s (%i)' % (symbol, number)) pt.legend(loc=0) fn_png = '%s/rdens_%s.png' % (dn, suffix) pt.savefig(fn_png) if log.do_medium: log('Written', fn_png) fukui_data = [] if number - charges[0] == 1: record0 = proatomdb.get_record(number, charges[0]) fukui_data.append((record0.rho, record0.safe, '%+i' % charges[0])) for i, charge in enumerate(charges[1:]): record0 = proatomdb.get_record(number, charge) record1 = proatomdb.get_record(number, charges[i]) fukui_data.append(( record0.rho - record1.rho, record0.safe and record1.safe, '%+i-%+i' % (charge, charges[i]) )) # The Fukui functions pt.clf() for i, (f, safe, label) in enumerate(fukui_data): ls = lss[safe] color = get_color(i) pt.semilogy(r/angstrom, f, lw=2, ls=ls, label=label, color=color, alpha=1.0) pt.semilogy(r/angstrom, -f, lw=2, ls=ls, color=color, alpha=0.2) pt.xlim(0, 3) pt.ylim(ymin=1e-5) pt.xlabel('Distance from the nucleus [A]') pt.ylabel('Fukui function [Bohr**-3]') pt.title('Proatoms for element %s (%i)' % (symbol, number)) pt.legend(loc=0) fn_png = '%s/fukui_%s.png' % (dn, suffix) pt.savefig(fn_png) if log.do_medium: log('Written', fn_png) # 4*pi*r**2*Fukui pt.clf() for i, (f, safe, label) in enumerate(fukui_data): ls = lss[safe] color = get_color(i) pt.plot(r/angstrom, 4*np.pi*r**2*f, lw=2, ls=ls, label=label, color=color) pt.xlim(0, 3) pt.xlabel('Distance from the nucleus [A]') pt.ylabel('4*pi*r**2*Fukui [Bohr**-1]') pt.title('Proatoms for element %s (%i)' % (symbol, number)) pt.legend(loc=0) fn_png = '%s/rfukui_%s.png' % (dn, suffix) pt.savefig(fn_png) if log.do_medium: log('Written', fn_png) class Template(BaseTemplate): """A template with modifications to support inclusion of other files.""" idpattern = r'[_a-z0-9.:-]+' def __init__(self, *args, **kwargs): BaseTemplate.__init__(self, *args, **kwargs) self._init_include_names() self._load_includes() def _init_include_names(self): """Return a list of include variables The include variables in the template are variables of the form ${file:name} or ${line:name}. This routine lists all the names encountered. Duplicates are eliminated. """ pattern = '%s{(?P<braced>%s)}' % (re.escape(self.delimiter), self.idpattern) file_names = set([]) line_names = set([]) for mo in re.finditer(pattern, self.template): braced = mo.group('braced') if braced is not None and braced.startswith('file:'): file_names.add(braced[5:]) if braced is not None and braced.startswith('line:'): line_names.add(braced[5:]) self.file_names = list(file_names) self.line_names = list(line_names) def _load_includes(self): """Load included files for a given element number""" self.includes = [] # Load files for name in self.file_names: records = [] for fn in sorted(glob('%s.[0-9][0-9][0-9]_[0-9][0-9][0-9]_[0-9][0-9]' % name)): with open(fn) as f: s = f.read() # chop of one final newline if present (mostly the case) if s[-1] == '\n': s = s[:-1] number = int(fn[-10:-7]) pop = int(fn[-6:-3]) mult = int(fn[-2:]) records.append((number, pop, mult, s)) self.includes.append((name, 'file', records)) # Load lines for name in self.line_names: with open(name) as f: records = [] for line in f: # ignore empty lines if len(line.strip()) == 0: continue number = int(line[:3]) assert line[3] == '_' pop = int(line[4:7]) assert line[7] == '_' mult = int(line[8:10]) assert line[10] == ' ' s = line[11:-1] records.append((number, pop, mult, s)) self.includes.append((name, 'line', records)) def _log_includes(self): # log the include names if len(self.file_names) + len(self.line_names) > 0 and log.do_medium: log('The following includes were detected in the template:') for name, kind, records in self.includes: log(' %s (%s)' % (name, kind)) for n, p, m, s in self.includes[name]: log(' %03i_%03i_%02i' % (n, p, m)) def get_subs(self, number, pop, mult): subs = {} for name, kind, records in self.includes: found_s = None for n, p, m, s in records: if ((n==0) or (number==n)) and ((p==0) or (pop==p)) and ((m==0) or (mult==m)): # match found_s = s break if found_s is None: raise KeyError('No matching include found for \'%s\' (%03i_%03i_%02i)' % (name, number, pop, mult)) subs['%s:%s' % (kind, name)] = s return subs class EnergyTable(object): def __init__(self): self.all = {} def add(self, number, pop, energy): cases = self.all.setdefault(number, {}) cases[pop] = energy def log(self): log(' Nr Pop Chg Energy Ionization Affinity') log.hline() for number, cases in sorted(self.all.iteritems()): for pop, energy in sorted(cases.iteritems()): energy_prev = cases.get(pop-1) if energy_prev is None: ip_str = '' else: ip_str = '% 18.10f' % (energy_prev - energy) energy_next = cases.get(pop+1) if energy_next is None: ea_str = '' else: ea_str = '% 18.10f' % (energy - energy_next) log('%3i %3i %+3i % 18.10f %18s %18s' % ( number, pop, number-pop, energy, ip_str, ea_str )) log.blank() class AtomProgram(object): name = None run_script = None def write_input(self, number, charge, mult, template, do_overwrite): # Directory stuff nel = number - charge dn_mult = '%03i_%s_%03i_q%+03i/mult%02i' % ( number, periodic[number].symbol.lower().rjust(2, '_'), nel, charge, mult) # Figure out if we want to write fn_inp = '%s/atom.in' % dn_mult exists = os.path.isfile(fn_inp) do_write = not exists or do_overwrite if do_write: try: subs = template.get_subs(number, nel, mult) except KeyError: if log.do_warning: log.warn('Could not find all subs for %03i.%03i.%03i. Skipping.' % (number, nel, mult)) return dn_mult, False if not os.path.isdir(dn_mult): os.makedirs(dn_mult) with open(fn_inp, 'w') as f: f.write(template.substitute( subs, charge=str(charge), mult=str(mult), number=str(number), element=periodic[number].symbol, )) if log.do_medium: if exists: log('Overwritten: ', fn_inp) else: log('Written new: ', fn_inp) elif log.do_medium: log('Not overwriting: ', fn_inp) return dn_mult, do_write def write_run_script(self): # write the script fn_script = 'run_%s.sh' % self.name exists = os.path.isfile(fn_script) if not exists: with open(fn_script, 'w') as f: print >> f, self.run_script log('Written new: ', fn_script) else: log('Not overwriting: ', fn_script) # make the script executable os.chmod(fn_script, stat.S_IXUSR | os.stat(fn_script).st_mode) def _get_energy(self, mol, dn_mult): return mol.energy def load_atom(self, dn_mult, ext): fn = '%s/atom.%s' % (dn_mult, ext) if not os.path.isfile(fn): return None, None try: mol = IOData.from_file(fn) except: return None, None mol.energy = self._get_energy(mol, dn_mult) return mol, mol.energy run_gaussian_script = """\ #!/bin/bash # make sure %(name)s and formchk are available before running this script. MISSING=0 if ! which %(name)s &>/dev/null; then echo "%(name)s binary not found."; MISSING=1; fi if ! which formchk &>/dev/null; then echo "formchk binary not found."; MISSING=1; fi if [ $MISSING -eq 1 ]; then echo "The required programs are not present on your system. Giving up."; exit -1; fi function do_atom { echo "Computing in ${1}" cd ${1} if [ -e atom.out ]; then echo "Output file present in ${1}, not recomputing." else %(name)s atom.in > atom.out RETCODE=$? if [ $RETCODE == 0 ]; then formchk atom.chk atom.fchk rm -f atom.out.failed else # Rename the output of the failed job such that it gets recomputed # when the run script is executed again. mv atom.out atom.out.failed fi rm atom.chk fi cd - } for ATOMDIR in [01][0-9][0-9]_*_[01][0-9][0-9]_q[-+][0-9][0-9]/mult[0-9][0-9]; do do_atom ${ATOMDIR} done """ class G09AtomProgram(AtomProgram): name = 'g09' run_script = run_gaussian_script % {'name': 'g09'} def write_input(self, number, charge, mult, template, do_overwrite): if '%chk=atom.chk\n' not in template.template: raise ValueError('The template must contain a line \'%chk=atom.chk\'') return AtomProgram.write_input(self, number, charge, mult, template, do_overwrite) def load_atom(self, dn_mult): return AtomProgram.load_atom(self, dn_mult, 'fchk') class G03AtomProgram(G09AtomProgram): name = 'g03' run_script = run_gaussian_script % {'name': 'g03'} run_orca_script = """\ #!/bin/bash # make sure orca and orca2mkl are available before running this script. MISSING=0 if ! which orca &>/dev/null; then echo "orca binary not found."; MISSING=1; fi if ! which orca_2mkl &>/dev/null; then echo "orca_2mkl binary not found."; MISSING=1; fi if [ $MISSING -eq 1 ]; then echo "The required programs are not present on your system. Giving up."; exit -1; fi function do_atom { echo "Computing in ${1}" cd ${1} if [ -e atom.out ]; then echo "Output file present in ${1}, not recomputing." else orca atom.in > atom.out RETCODE=$? if [ $RETCODE == 0 ]; then orca_2mkl atom -molden rm -f atom.out.failed else # Rename the output of the failed job such that it gets recomputed # when the run script is executed again. mv atom.out atom.out.failed fi fi cd - } for ATOMDIR in [01][0-9][0-9]_*_[01][0-9][0-9]_q[-+][0-9][0-9]/mult[0-9][0-9]; do do_atom ${ATOMDIR} done """ class OrcaAtomProgram(AtomProgram): name = 'orca' run_script = run_orca_script def _get_energy(self, mol, dn_mult): with open('%s/atom.out' % dn_mult) as f: for line in f: if line.startswith('Total Energy :'): return float(line[25:43]) def load_atom(self, dn_mult): return AtomProgram.load_atom(self, dn_mult, 'molden.input') run_cp2k_script = """\ #!/bin/bash # Note: if you want to use an mpi-parallel CP2K binary, uncomment the following # line and fill in the right binary and mpirun script: #CP2K_BIN="mpirun -n4 cp2k.popt" # Find a non-mpi CP2K binary if needed. if [ -z "$CP2K_BIN" ]; then # Find all potential non-mpi CP2K binaries in the $PATH CP2K_BINS=$(find ${PATH//:/ } -name "cp2k.s*") # Check for any known non-mpi cp2k binary name in order of preference: for KNOWN_CP2K in cp2k.ssmp cp2k.sopt cp2k.sdbg; do for TMP in ${CP2K_BINS}; do if [ $(basename $TMP) == ${KNOWN_CP2K} ]; then CP2K_BIN=$TMP break fi done if [ -n $CP2K_BIN ]; then break; fi done MISSING=0 if [ -z $CP2K_BIN ]; then echo "No non-mpi CP2K binary found."; MISSING=1; fi if [ $MISSING -eq 1 ]; then echo "The required programs are not present on your system. Giving up."; exit -1; fi fi echo "Using the following CP2K binary: $CP2K_BIN" function do_atom { echo "Computing in ${1}" cd ${1} if [ -e atom.cp2k.out ]; then echo "Output file present in ${1}, not recomputing." else $CP2K_BIN atom.in > atom.cp2k.out RETCODE=$? if [ $RETCODE == 0 ]; then rm -f atom.cp2k.out.failed else # Rename the output of the failed job such that it gets recomputed # when the run script is executed again. mv atom.cp2k.out atom.cp2k.out.failed fi fi cd - } for ATOMDIR in [01][0-9][0-9]_*_[01][0-9][0-9]_q[-+][0-9][0-9]/mult[0-9][0-9]; do do_atom ${ATOMDIR} done """ class CP2KAtomProgram(AtomProgram): name = 'cp2k' run_script = run_cp2k_script def write_input(self, number, charge, mult, template, do_overwrite): if '&ATOM' not in template.template: raise ValueError('The template must be a CP2K atom input. (\'&ATOM\' not found.)') return AtomProgram.write_input(self, number, charge, mult, template, do_overwrite) def load_atom(self, dn_mult): return AtomProgram.load_atom(self, dn_mult, 'cp2k.out') run_psi4_script = """\ #!/bin/bash # make sure psi4 is available before running this script. MISSING=0 if ! which psi4 &>/dev/null; then echo "psi4 binary not found."; MISSING=1; fi if [ $MISSING -eq 1 ]; then echo "The required programs are not present on your system. Giving up."; exit -1; fi function do_atom { echo "Computing in ${1}" cd ${1} if [ -e atom.out ]; then echo "Output file present in ${1}, not recomputing." else psi4 atom.in RETCODE=$? if [ $RETCODE == 0 ]; then rm -f atom.out.failed else # Rename the output of the failed job such that it gets recomputed # when the run script is executed again. mv atom.out atom.out.failed fi fi cd - } for ATOMDIR in [01][0-9][0-9]_*_[01][0-9][0-9]_q[-+][0-9][0-9]/mult[0-9][0-9]; do do_atom ${ATOMDIR} done """ class Psi4AtomProgram(AtomProgram): name = 'psi4' run_script = run_psi4_script def _get_energy(self, mol, dn_mult): with open('%s/atom.out' % dn_mult) as f: for line in f: if 'Final Energy' in line: return float(line.split()[-1]) def write_input(self, number, charge, mult, template, do_overwrite): found = False for line in template.template.split('\n'): words = line.lower().split() if 'molden_write' in words and 'true' in words: found = True break if not found: raise ValueError('The template must contain a line with \'molden_write true\'.') return AtomProgram.write_input(self, number, charge, mult, template, do_overwrite) def load_atom(self, dn_mult): return AtomProgram.load_atom(self, dn_mult, 'default.molden') atom_programs = {} for APC in globals().values(): if isinstance(APC, type) and issubclass(APC, AtomProgram) and not APC is AtomProgram: atom_programs[APC.name] = APC()
gpl-3.0
trichter/sito
colormap.py
1
3124
#!/usr/bin/python # by TR import numpy as np import scipy as sp import matplotlib.pyplot as plt import matplotlib.colors import os import glob CM_DATA = '/home/richter/Data/cm/' def combine(cmaps, name, splitters=None, get_cdict=False): if not splitters: N = len(cmaps) splitters = np.linspace(0, 1, N + 1) cdict = {} for i, m in enumerate(cmaps): m = plt.get_cmap(m) if hasattr(m, '_segmentdata'): m = m._segmentdata for color in m: m[color] = np.array(m[color]) m[color][:, 0] = (splitters[i] + (m[color][:, 0] - m[color][0, 0]) / (m[color][-1, 0] - m[color][0, 0]) * (splitters[i + 1] - splitters[i])) try: cdict[color] = np.concatenate((cdict[color], m[color])) except KeyError: cdict[color] = m[color] if get_cdict: return cdict else: return matplotlib.colors.LinearSegmentedColormap(name, cdict) def show_colormaps(mode='mpl', path=CM_DATA + '*.gpf', cmaps=None): plt.rc('text', usetex=False) a = np.outer(np.ones(10), np.arange(0, 1, 0.01)) plt.figure(figsize=(10, 5)) plt.subplots_adjust(top=0.99, bottom=0.01, left=0.01, right=0.8) if mode == 'mpl': cmaps = [m for m in plt.cm.datad if not m.endswith("_r")] elif mode == 'local': cmaps = [createColormapFromGPF(f) for f in glob.glob(path)] elif cmaps is None: raise ValueError("Mode has to be 'mpl' or 'local' or cmaps=list of cmaps") cmaps.sort() l = len(cmaps) + 1 for i, m in enumerate(cmaps): plt.subplot(l, 1, i + 1) plt.axis("off") plt.imshow(a, aspect='auto', cmap=plt.get_cmap(m), origin="lower") plt.annotate(m.name if hasattr(m, 'name') else m, (1, 0.5), xycoords='axes fraction', fontsize=10, ha='left', va='center') return cmaps def createColormapFromGPF(file_, get_dict=False): data = sp.loadtxt(file_) cdict = {'red': np.take(data, (0, 1, 1), axis=1), 'green': np.take(data, (0, 2, 2), axis=1), 'blue': np.take(data, (0, 3, 3), axis=1)} name = os.path.splitext(os.path.basename(file_))[0] if get_dict: return cdict else: return matplotlib.colors.LinearSegmentedColormap(name, cdict) def getXcorrColormap(name='xcorr', get_dict=False): cdict = {'red': ((0.00, 0, 0), (0.35, 0, 0), (0.50, 1, 1), (0.65, 1, 1), (1.00, 1, 1)), 'green': ((0.00, 0, 0), (0.35, 1, 1), (0.50, 1, 1), (0.65, 1, 1), (1.00, 0, 0)), 'blue': ((0.00, 1, 1), (0.35, 1, 1), (0.50, 1, 1), (0.65, 0, 0), (1.00, 0, 0))} if get_dict: return cdict else: return matplotlib.colors.LinearSegmentedColormap(name, cdict) if __name__ == '__main__': pass
mit
MartinDelzant/scikit-learn
sklearn/manifold/tests/test_isomap.py
226
3941
from itertools import product import numpy as np from numpy.testing import assert_almost_equal, assert_array_almost_equal from sklearn import datasets from sklearn import manifold from sklearn import neighbors from sklearn import pipeline from sklearn import preprocessing from sklearn.utils.testing import assert_less eigen_solvers = ['auto', 'dense', 'arpack'] path_methods = ['auto', 'FW', 'D'] def test_isomap_simple_grid(): # Isomap should preserve distances when all neighbors are used N_per_side = 5 Npts = N_per_side ** 2 n_neighbors = Npts - 1 # grid of equidistant points in 2D, n_components = n_dim X = np.array(list(product(range(N_per_side), repeat=2))) # distances from each point to all others G = neighbors.kneighbors_graph(X, n_neighbors, mode='distance').toarray() for eigen_solver in eigen_solvers: for path_method in path_methods: clf = manifold.Isomap(n_neighbors=n_neighbors, n_components=2, eigen_solver=eigen_solver, path_method=path_method) clf.fit(X) G_iso = neighbors.kneighbors_graph(clf.embedding_, n_neighbors, mode='distance').toarray() assert_array_almost_equal(G, G_iso) def test_isomap_reconstruction_error(): # Same setup as in test_isomap_simple_grid, with an added dimension N_per_side = 5 Npts = N_per_side ** 2 n_neighbors = Npts - 1 # grid of equidistant points in 2D, n_components = n_dim X = np.array(list(product(range(N_per_side), repeat=2))) # add noise in a third dimension rng = np.random.RandomState(0) noise = 0.1 * rng.randn(Npts, 1) X = np.concatenate((X, noise), 1) # compute input kernel G = neighbors.kneighbors_graph(X, n_neighbors, mode='distance').toarray() centerer = preprocessing.KernelCenterer() K = centerer.fit_transform(-0.5 * G ** 2) for eigen_solver in eigen_solvers: for path_method in path_methods: clf = manifold.Isomap(n_neighbors=n_neighbors, n_components=2, eigen_solver=eigen_solver, path_method=path_method) clf.fit(X) # compute output kernel G_iso = neighbors.kneighbors_graph(clf.embedding_, n_neighbors, mode='distance').toarray() K_iso = centerer.fit_transform(-0.5 * G_iso ** 2) # make sure error agrees reconstruction_error = np.linalg.norm(K - K_iso) / Npts assert_almost_equal(reconstruction_error, clf.reconstruction_error()) def test_transform(): n_samples = 200 n_components = 10 noise_scale = 0.01 # Create S-curve dataset X, y = datasets.samples_generator.make_s_curve(n_samples, random_state=0) # Compute isomap embedding iso = manifold.Isomap(n_components, 2) X_iso = iso.fit_transform(X) # Re-embed a noisy version of the points rng = np.random.RandomState(0) noise = noise_scale * rng.randn(*X.shape) X_iso2 = iso.transform(X + noise) # Make sure the rms error on re-embedding is comparable to noise_scale assert_less(np.sqrt(np.mean((X_iso - X_iso2) ** 2)), 2 * noise_scale) def test_pipeline(): # check that Isomap works fine as a transformer in a Pipeline # only checks that no error is raised. # TODO check that it actually does something useful X, y = datasets.make_blobs(random_state=0) clf = pipeline.Pipeline( [('isomap', manifold.Isomap()), ('clf', neighbors.KNeighborsClassifier())]) clf.fit(X, y) assert_less(.9, clf.score(X, y))
bsd-3-clause
SiLab-Bonn/monopix_daq
monopix_daq/analysis/plotting_base.py
1
17517
import numpy as np import math import logging import shutil import os,sys import matplotlib import random import datetime import tables import matplotlib.pyplot as plt from collections import OrderedDict from scipy.optimize import curve_fit from scipy.stats import norm from matplotlib.figure import Figure from matplotlib.artist import setp from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from mpl_toolkits.axes_grid1 import make_axes_locatable from matplotlib import colors, cm from matplotlib import gridspec from matplotlib.backends.backend_pdf import PdfPages from decimal import Decimal import matplotlib.ticker as ticker COL_SIZE = 36 ##TODO change hard coded values ROW_SIZE = 129 TITLE_COLOR = '#07529a' OVERTEXT_COLOR = '#07529a' import monopix_daq.analysis.utils class PlottingBase(object): def __init__(self, fout, save_png=False ,save_single_pdf=False): self.logger = logging.getLogger() #self.logger.setLevel(loglevel) self.plot_cnt = 0 self.save_png = save_png self.save_single_pdf = save_single_pdf self.filename = fout self.out_file = PdfPages(self.filename) def _save_plots(self, fig, suffix=None, tight=True): increase_count = False bbox_inches = 'tight' if tight else '' fig.tight_layout() if suffix is None: suffix = str(self.plot_cnt) self.out_file.savefig(fig, bbox_inches=bbox_inches) if self.save_png: fig.savefig(self.filename[:-4] + '_' + suffix + '.png') #, bbox_inches=bbox_inches) increase_count = True if self.save_single_pdf: fig.savefig(self.filename[:-4] + '_' + suffix + '.pdf') #, bbox_inches=bbox_inches) increase_count = True if increase_count: self.plot_cnt += 1 def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): if self.out_file is not None and isinstance(self.out_file, PdfPages): self.logger.info('Closing output PDF file: %s', str(self.out_file._file.fh.name)) self.out_file.close() shutil.copyfile(self.filename, os.path.join(os.path.split(self.filename)[0], 'last_scan.pdf')) def _add_title(self,text,fig): #fig.subplots_adjust(top=0.85) #y_coord = 0.92 #fig.text(0.1, y_coord, text, fontsize=12, color=OVERTEXT_COLOR, transform=fig.transFigure) fig.suptitle(text, fontsize=12,color=OVERTEXT_COLOR) def table_1value(self,dat,n_row=30,n_col=3, page_title="Chip configurations"): keys=np.sort(np.array(dat.keys())) ##fill table cellText=[["" for i in range(n_col*2)] for j in range(n_row)] for i,k in enumerate(keys): cellText[i%n_row][i/n_row*2]=k cellText[i%n_row][i/n_row*2+1]=dat[k] colLabels=[] colWidths=[] for i in range(n_col): colLabels.append("Parameter") colWidths.append(0.2) ## width for param name colLabels.append("Value") colWidths.append(0.15) ## width for value fig = Figure() FigureCanvas(fig) ax = fig.add_subplot(111) fig.patch.set_visible(False) ax.set_adjustable('box') ax.axis('off') ax.axis('tight') tab=ax.table(cellText=cellText, colLabels=colLabels, colWidths = colWidths, loc='upper center') tab.auto_set_font_size(False) tab.set_fontsize(4) for key, cell in tab.get_celld().items(): cell.set_linewidth(0.1) if page_title is not None and len(page_title)>0: self._add_title(page_title,fig) tab.scale(1,0.7) self.out_file.savefig(fig) #self._save_plots(fig, suffix=None, tight=True) #fig = Figure() #FigureCanvas(fig) #ax = fig.add_subplot(111) #ax.set_adjustable('box') def plot_2d_pixel_4(self, dat, page_title="Pixel configurations", title=["Preamp","Inj","Mon","TDAC"], x_axis_title="Column", y_axis_title="Row", z_axis_title="", z_min=[0,0,0,0], z_max=[1,1,1,15]): fig = Figure() FigureCanvas(fig) for i in range(4): ax = fig.add_subplot(221+i) cmap = cm.get_cmap('plasma') cmap.set_bad('w') cmap.set_over('r') # Make noisy pixels red # if z_max[i]+2-z_min[i] < 20: # bounds = np.linspace(start=z_min[i], stop=z_max[i] + 1, # num=z_max[i]+2-z_min[i], # endpoint=True) # norm = colors.BoundaryNorm(bounds, cmap.N) # else: # norm = colors.BoundaryNorm() im=ax.imshow(np.transpose(dat[i]),origin='lower',aspect="auto", vmax=z_max[i]+1,vmin=z_min[i], interpolation='none', cmap=cmap #, norm=norm ) ax.set_title(title[i]) ax.set_ylim((-0.5, ROW_SIZE-0.5)) ax.set_xlim((-0.5, COL_SIZE-0.5)) divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.1) cb = fig.colorbar(im, cax=cax) cb.set_label(z_axis_title) if page_title is not None and len(page_title)>0: fig.suptitle(page_title, fontsize=12,color=OVERTEXT_COLOR, y=1.05) self._save_plots(fig) def plot_1d_pixel_hists(self,hist2d_array, mask=None, bins=30, top_axis_factor=None, top_axis_title="Threshold [e]", x_axis_title="Test pulse injection [V]", y_axis_title="# of pixel", dat_title=["TH=0.81V"], page_title=None, title="Threshold dispersion"): if mask is None: mask=np.ones([COL_SIZE, ROW_SIZE],dtype=int) elif isinstance(mask,list): mask=np.array(mask) fig = Figure() FigureCanvas(fig) ax = fig.add_subplot(111) ax.set_adjustable('box') for hist2d in hist2d_array: hist2d=hist2d[mask==1] hist=ax.hist(hist2d.reshape([-1]), bins=bins, histtype="step") ax.set_xbound(hist[1][0],hist[1][-1]) ax.set_xlabel(x_axis_title) ax.set_ylabel(y_axis_title) if top_axis_factor is None: ax.set_title(title,color=TITLE_COLOR) else: ax2=ax.twiny() ax2.set_xbound(hist[1][0]*top_axis_factor,hist[1][-1]*top_axis_factor) ax2.set_xlabel(top_axis_title) pad=40 ax.set_title(title,pad=40,color=TITLE_COLOR) if page_title is not None and len(page_title)>0: self._add_title(page_title,fig) self._save_plots(fig) def plot_2d_pixel_hist(self, hist2d, page_title=None, title="Hit Occupancy", z_axis_title=None, z_min=0, z_max=None): if z_max == 'median': z_max = 2.0 * np.ma.median(hist2d[hist2d>0]) elif z_max == 'maximum': z_max = np.ma.max(hist2d) elif z_max is None: z_max = np.percentile(hist2d, q=90) if np.any(hist2d > z_max): z_max = 1.1 * z_max if hist2d.all() is np.ma.masked: z_max = 1.0 if z_min is None: z_min = np.ma.min(hist2d) if z_min == z_max or hist2d.all() is np.ma.masked: z_min = 0 x_axis_title="Column" y_axis_title="Row" fig = Figure() FigureCanvas(fig) ax = fig.add_subplot(111) ax.set_adjustable('box') #extent = [0.5, 400.5, 192.5, 0.5] bounds = np.linspace(start=z_min, stop=z_max, num=255, endpoint=True) cmap = cm.get_cmap('viridis') cmap.set_bad('k') cmap.set_over('r') # Make noisy pixels red cmap.set_under('w') #norm = colors.BoundaryNorm(bounds, cmap.N) im = ax.imshow(np.transpose(hist2d), interpolation='none', aspect='auto', vmax=z_max,vmin=z_min, cmap=cmap, # norm=norm, origin='lower') # TODO: use pcolor or pcolormesh ax.set_ylim((-0.5, ROW_SIZE-0.5)) ax.set_xlim((-0.5, COL_SIZE-0.5)) ax.set_title(title + r' ($\Sigma$ = {0})'.format((0 if hist2d.all() is np.ma.masked else np.ma.sum(hist2d))), color=TITLE_COLOR) ax.set_xlabel(x_axis_title) ax.set_ylabel(y_axis_title) divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.2) cb = fig.colorbar(im, cax=cax) cb.set_label(z_axis_title) if page_title is not None and len(page_title)>0: self._add_title(page_title,fig) self._save_plots(fig) def plot_2d_hist(self, hist2d, bins=None, page_title=None, title="Hit Occupancy", x_axis_title="Test pulse injection [V]", y_axis_title="Counts", z_axis_title=None, z_min=1, z_max=None, z_scale="lin"): if z_max == 'median': z_max = 2 * np.ma.median(hist2d) elif z_max == 'maximum': z_max = np.ma.max(hist2d)*1.1 elif z_max is None: z_max = np.percentile(hist2d, q=90) if np.any(hist2d > z_max): z_max = 1.1 * z_max if z_max < 1 or hist2d.all() is np.ma.masked: z_max = 1.0 if z_min is None: z_min = np.ma.min(hist2d) if z_min == z_max or hist2d.all() is np.ma.masked: z_min = 0 fig = Figure() FigureCanvas(fig) ax = fig.add_subplot(111) ax.set_adjustable('box') bounds = np.linspace(start=z_min, stop=z_max + 1, num=255, endpoint=True) cmap = cm.get_cmap('viridis') cmap.set_over('r') cmap.set_under('w') if z_scale=="log": norm = colors.LogNorm() cmap.set_bad('w') else: norm = None cmap.set_bad('k') im = ax.imshow(np.transpose(hist2d), interpolation='none', aspect='auto', vmax=z_max+1,vmin=z_min, cmap=cmap,norm=norm, extent=[bins[0][0],bins[0][-1],bins[1][0],bins[1][-1]], origin='lower') ax.set_title(title + r' ($\Sigma$ = {0})'.format((0 if hist2d.all() is np.ma.masked else np.ma.sum(hist2d))), color=TITLE_COLOR) ax.set_xlabel(x_axis_title) ax.set_ylabel(y_axis_title) divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.2) cb = fig.colorbar(im, cax=cax) cb.set_label(z_axis_title) if page_title is not None and len(page_title)>0: self._add_title(page_title,fig) self._save_plots(fig) def plot_2d_hist_4(self, dat, page_title="Pixel configurations", bins=None, title=["Preamp","Inj","Mon","TDAC"], x_axis_title="Column", y_axis_title="Row", z_axis_title="", z_min=[0,0,0,0], z_max=[1,1,1,15]): fig = Figure() FigureCanvas(fig) for i in range(4): ax = fig.add_subplot(221+i) if z_max[i]=='maximum': z_max[i]=np.max(dat[i]) cmap = cm.get_cmap('viridis') cmap.set_bad('w') cmap.set_over('r') # Make noisy pixels red im=ax.imshow(np.transpose(dat[i]),origin='lower',aspect="auto", vmax=z_max[i]+1,vmin=z_min[i], interpolation='none', extent=[bins[0][0],bins[0][-1],bins[1][0],bins[1][-1]], cmap=cmap #, norm=norm ) ax.set_title(title[i]) #ax.set_ylim((-0.5, ROW_SIZE-0.5)) #ax.set_xlim((-0.5, COL_SIZE-0.5)) divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.1) cb = fig.colorbar(im, cax=cax) cb.set_label(z_axis_title) if page_title is not None and len(page_title)>0: fig.suptitle(page_title, fontsize=12,color=OVERTEXT_COLOR, y=1.05) self._save_plots(fig) def plot_scurve(self,dat, top_axis_factor=None, top_axis_title="Threshold [e]", x_axis_title="Test pulse injection [V]", y_axis_title="# of pixel", y_max=200, y_min=None, x_min=None, x_max=None, reverse=True, dat_title=["TH=0.81V"], page_title=None, title="Pixel xx-xx"): fig = Figure() FigureCanvas(fig) ax = fig.add_subplot(111) ax.set_adjustable('box') for i, d in enumerate(dat): color = next(ax._get_lines.prop_cycler)['color'] ax.plot(d["x"], d["y"],linestyle="", marker="o",color=color,label=dat_title[i]) if np.isnan(d["A"]): continue x,y=monopix_daq.analysis.utils.scurve_from_fit(d["x"], d["A"],d["mu"],d["sigma"],reverse=reverse,n=500) ax.plot(x,y,linestyle="-", marker="",color=color) if x_min is None: x_min=np.min(d["x"]) if x_max is None: x_max=np.max(d["x"]) if y_min is None: y_min=np.min(d["y"]) if y_max is None: y_max=np.max(d["y"]) ax.set_xbound(x_min,x_max) ax.set_ybound(y_min,y_max) ax.set_xlabel(x_axis_title) ax.set_ylabel(y_axis_title) if top_axis_factor is None: ax.set_title(title,color=TITLE_COLOR) else: ax2=ax.twiny() ax2.set_xbound(x_min*top_axis_factor,x_max*top_axis_factor) ax2.set_xlabel(top_axis_title) pad=40 ax.set_title(title,pad=40,color=TITLE_COLOR) ax.legend() if page_title is not None and len(page_title)>0: self._add_title(page_title,fig) self._save_plots(fig) def plot_1d_pixel_hists_gauss(self,hist2d_array, mask=None, bins=100, top_axis_factor=None, top_axis_title="Threshold [e]", x_axis_title="Test pulse injection [V]", y_axis_title="# of pixel", dat_title=["TH=0.81V"], page_title=None, title="Threshold dispersion"): if mask is None: mask=np.ones([COL_SIZE, ROW_SIZE],dtype=int) elif isinstance(mask,list): mask=np.array(mask) fig = Figure() FigureCanvas(fig) ax = fig.add_subplot(111) ax.set_adjustable('box') for hist2d in hist2d_array: hist2d=hist2d[mask==1] hist_median=np.median(hist2d) if np.isnan(hist_median)==True: hist_median=0 d = np.abs(hist2d - np.median(hist2d)) mdev = np.median(d) if np.isnan(mdev)==True: mdev=0 hist_std=np.std(hist2d) hist_min=hist_median-10*mdev hist_max=hist_median+10*mdev hist=ax.hist(hist2d.reshape([-1]), range=(hist_min,hist_max), bins=bins, histtype="step") bin_center = (hist[1][1:] + hist[1][:-1]) / 2.0 ##### gauss_func=monopix_daq.analysis.utils.gauss_func ##### signal_params=monopix_daq.analysis.utils.fit_gauss(bin_center, hist[0]) ##### ax.set_xbound(hist[1][0],hist[1][-1]) ax.set_xlabel(x_axis_title) ax.set_ylabel(y_axis_title) if top_axis_factor is None: ax.set_title(title,color=TITLE_COLOR) str_fit="Amp= "+ str('%.2E' %Decimal(signal_params[0]))+"\nMean= "+ str("%.4f" %signal_params[1])+"\nSigma= "+ str("%.4f" %signal_params[2])+")" else: ax2=ax.twiny() ax2.set_xbound(hist[1][0]*top_axis_factor,hist[1][-1]*top_axis_factor) ax2.set_xlabel(top_axis_title) pad=40 ax.set_title(title,pad=40,color=TITLE_COLOR) str_fit="Amp= "+ str('%.2E' %Decimal(signal_params[0]))+"\nMean= "+ str("%.4f" %signal_params[1])+ str(' (%.2E' %Decimal(signal_params[1]*top_axis_factor))+")\nSigma= "+ str("%.4f" %signal_params[2])+ str(' (%.2E' %Decimal(signal_params[2]*top_axis_factor))+")" ax.plot(bin_center, gauss_func(bin_center, *signal_params[0:3]), 'g-', label=str_fit) ax.legend() if page_title is not None and len(page_title)>0: self._add_title(page_title,fig) self._save_plots(fig)
gpl-2.0
meteorcloudy/tensorflow
tensorflow/contrib/factorization/python/ops/gmm_test.py
41
8716
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for ops.gmm.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.factorization.python.ops import gmm as gmm_lib from tensorflow.contrib.learn.python.learn.estimators import kmeans from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import random_seed as random_seed_lib from tensorflow.python.ops import array_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import random_ops from tensorflow.python.platform import test from tensorflow.python.training import queue_runner class GMMTest(test.TestCase): def input_fn(self, batch_size=None, points=None): batch_size = batch_size or self.batch_size points = points if points is not None else self.points num_points = points.shape[0] def _fn(): x = constant_op.constant(points) if batch_size == num_points: return x, None indices = random_ops.random_uniform(constant_op.constant([batch_size]), minval=0, maxval=num_points-1, dtype=dtypes.int32, seed=10) return array_ops.gather(x, indices), None return _fn def setUp(self): np.random.seed(3) random_seed_lib.set_random_seed(2) self.num_centers = 2 self.num_dims = 2 self.num_points = 4000 self.batch_size = self.num_points self.true_centers = self.make_random_centers(self.num_centers, self.num_dims) self.points, self.assignments = self.make_random_points( self.true_centers, self.num_points) # Use initial means from kmeans (just like scikit-learn does). clusterer = kmeans.KMeansClustering(num_clusters=self.num_centers) clusterer.fit(input_fn=lambda: (constant_op.constant(self.points), None), steps=30) self.initial_means = clusterer.clusters() @staticmethod def make_random_centers(num_centers, num_dims): return np.round( np.random.rand(num_centers, num_dims).astype(np.float32) * 500) @staticmethod def make_random_points(centers, num_points): num_centers, num_dims = centers.shape assignments = np.random.choice(num_centers, num_points) offsets = np.round( np.random.randn(num_points, num_dims).astype(np.float32) * 20) points = centers[assignments] + offsets return (points, assignments) def test_weights(self): """Tests the shape of the weights.""" gmm = gmm_lib.GMM(self.num_centers, initial_clusters=self.initial_means, random_seed=4, config=run_config.RunConfig(tf_random_seed=2)) gmm.fit(input_fn=self.input_fn(), steps=0) weights = gmm.weights() self.assertAllEqual(list(weights.shape), [self.num_centers]) def test_clusters(self): """Tests the shape of the clusters.""" gmm = gmm_lib.GMM(self.num_centers, initial_clusters=self.initial_means, random_seed=4, config=run_config.RunConfig(tf_random_seed=2)) gmm.fit(input_fn=self.input_fn(), steps=0) clusters = gmm.clusters() self.assertAllEqual(list(clusters.shape), [self.num_centers, self.num_dims]) def test_fit(self): gmm = gmm_lib.GMM(self.num_centers, initial_clusters='random', random_seed=4, config=run_config.RunConfig(tf_random_seed=2)) gmm.fit(input_fn=self.input_fn(), steps=1) score1 = gmm.score(input_fn=self.input_fn(batch_size=self.num_points), steps=1) gmm.fit(input_fn=self.input_fn(), steps=10) score2 = gmm.score(input_fn=self.input_fn(batch_size=self.num_points), steps=1) self.assertLess(score1, score2) def test_infer(self): gmm = gmm_lib.GMM(self.num_centers, initial_clusters=self.initial_means, random_seed=4, config=run_config.RunConfig(tf_random_seed=2)) gmm.fit(input_fn=self.input_fn(), steps=60) clusters = gmm.clusters() # Make a small test set num_points = 40 points, true_assignments = self.make_random_points(clusters, num_points) assignments = [] for item in gmm.predict_assignments( input_fn=self.input_fn(points=points, batch_size=num_points)): assignments.append(item) assignments = np.ravel(assignments) self.assertAllEqual(true_assignments, assignments) def _compare_with_sklearn(self, cov_type): # sklearn version. iterations = 40 np.random.seed(5) sklearn_assignments = np.asarray([0, 0, 1, 0, 0, 0, 1, 0, 0, 1]) sklearn_means = np.asarray([[144.83417719, 254.20130341], [274.38754816, 353.16074346]]) sklearn_covs = np.asarray([[[395.0081194, -4.50389512], [-4.50389512, 408.27543989]], [[385.17484203, -31.27834935], [-31.27834935, 391.74249925]]]) # skflow version. gmm = gmm_lib.GMM(self.num_centers, initial_clusters=self.initial_means, covariance_type=cov_type, config=run_config.RunConfig(tf_random_seed=2)) gmm.fit(input_fn=self.input_fn(), steps=iterations) points = self.points[:10, :] skflow_assignments = [] for item in gmm.predict_assignments( input_fn=self.input_fn(points=points, batch_size=10)): skflow_assignments.append(item) self.assertAllClose(sklearn_assignments, np.ravel(skflow_assignments).astype(int)) self.assertAllClose(sklearn_means, gmm.clusters()) if cov_type == 'full': self.assertAllClose(sklearn_covs, gmm.covariances(), rtol=0.01) else: for d in [0, 1]: self.assertAllClose( np.diag(sklearn_covs[d]), gmm.covariances()[d, :], rtol=0.01) def test_compare_full(self): self._compare_with_sklearn('full') def test_compare_diag(self): self._compare_with_sklearn('diag') def test_random_input_large(self): # sklearn version. iterations = 5 # that should be enough to know whether this diverges np.random.seed(5) num_classes = 20 x = np.array([[np.random.random() for _ in range(100)] for _ in range(num_classes)], dtype=np.float32) # skflow version. gmm = gmm_lib.GMM(num_classes, covariance_type='full', config=run_config.RunConfig(tf_random_seed=2)) def get_input_fn(x): def input_fn(): return constant_op.constant(x.astype(np.float32)), None return input_fn gmm.fit(input_fn=get_input_fn(x), steps=iterations) self.assertFalse(np.isnan(gmm.clusters()).any()) class GMMTestQueues(test.TestCase): def input_fn(self): def _fn(): queue = data_flow_ops.FIFOQueue(capacity=10, dtypes=dtypes.float32, shapes=[10, 3]) enqueue_op = queue.enqueue(array_ops.zeros([10, 3], dtype=dtypes.float32)) queue_runner.add_queue_runner(queue_runner.QueueRunner(queue, [enqueue_op])) return queue.dequeue(), None return _fn # This test makes sure that there are no deadlocks when using a QueueRunner. # Note that since cluster initialization is dependent on inputs, if input # is generated using a QueueRunner, one has to make sure that these runners # are started before the initialization. def test_queues(self): gmm = gmm_lib.GMM(2, covariance_type='diag') gmm.fit(input_fn=self.input_fn(), steps=1) if __name__ == '__main__': test.main()
apache-2.0
PMende/Ecclesia
src/output/shapes.py
1
3455
from __future__ import absolute_import, division, print_function from builtins import ( ascii, bytes, chr, dict, filter, hex, input, int, map, next, oct, open, pow, range, round, str, super, zip) # Standard library imports import os from itertools import cycle import json import numpy as np # Imports for working with shapefiles from shapely.geometry import ( shape, mapping ) from descartes import PolygonPatch import fiona from fiona.crs import from_epsg # matplotlib imports import matplotlib.pyplot as plt from matplotlib.colors import ( to_rgb, to_hex ) def generate_colors(values, cmap, reference=1.): '''Generate colors from a matplotlib colormap Parameters ---------- Values : numpy array Values to map to RGBA tuples according to the provided colormap cmap: matplotlib colormap object reference: float, default: 1 A reference to use for the values provided Returns ------- _colors: list, RGBA tuples ''' _colors = [cmap(value/reference) for value in values] return _colors def plot_shapes( shapelist, shape_colors, alpha=0.85, fig_file=None, center_of_mass_arr=None, patch_lw = 1.5, cutout = None): '''Function for plotting generated districts ''' _patches = [ PolygonPatch(shape['shape']) if cutout is None else PolygonPatch(shape['shape'].intersection(cutout)) for shape in shapelist ] for patch, color in zip(_patches, cycle(shape_colors)): patch.set_facecolor(color) patch.set_linewidth(patch_lw) patch.set_alpha(alpha) fig, ax = plt.subplots() fig.patch.set_alpha(0.0) for patch in _patches: ax.add_patch(patch) if center_of_mass_arr is not None: ax.plot(center_of_mass_arr[:,0], center_of_mass_arr[:,1]) ax.relim() ax.autoscale_view() ax.axis('off') ymin, ymax = ax.get_ylim() xmin, xmax = ax.get_xlim() aspect_ratio = (ymax - ymin)/(xmax - xmin) x_size = 20 fig.set_size_inches((x_size, x_size*aspect_ratio)) if fig_file: try: fig.savefig(fig_file, bbox_inches='tight') except IOError as e: raise(e) return None def generate_shapefiles(districts, location, schema, all_schema_values, epsg_spec): crs = from_epsg(epsg_spec) with fiona.open(location, 'w', 'ESRI Shapefile', schema, crs=crs) as c: for district, schema_values in zip(districts, all_schema_values): c.write(schema_values) def geojson_from_shapefile(source, target, simp_factor): with fiona.collection(source, "r") as shapefile: features = [feature for feature in shapefile] crs = " ".join( "+{}={}".format(key,value) for key, value in shapefile.crs.items() ) for feature in features: feature['geometry'] = mapping( shape(feature['geometry']).simplify(simp_factor) ) my_layer = { "type": "FeatureCollection", "features": features, "crs": { "type": "link", "properties": {"href": "kmeans_districts.crs", "type": "proj4"} } } crs_target = os.path.splitext(target)[0]+'.crs' with open(target, "w") as f: f.write(unicode(json.dumps(my_layer))) with open(crs_target, "w") as f: f.write(unicode(crs))
gpl-3.0
pythonvietnam/scikit-learn
sklearn/cross_decomposition/cca_.py
209
3150
from .pls_ import _PLS __all__ = ['CCA'] class CCA(_PLS): """CCA Canonical Correlation Analysis. CCA inherits from PLS with mode="B" and deflation_mode="canonical". Read more in the :ref:`User Guide <cross_decomposition>`. Parameters ---------- n_components : int, (default 2). number of components to keep. scale : boolean, (default True) whether to scale the data? max_iter : an integer, (default 500) the maximum number of iterations of the NIPALS inner loop tol : non-negative real, default 1e-06. the tolerance used in the iterative algorithm copy : boolean Whether the deflation be done on a copy. Let the default value to True unless you don't care about side effects Attributes ---------- x_weights_ : array, [p, n_components] X block weights vectors. y_weights_ : array, [q, n_components] Y block weights vectors. x_loadings_ : array, [p, n_components] X block loadings vectors. y_loadings_ : array, [q, n_components] Y block loadings vectors. x_scores_ : array, [n_samples, n_components] X scores. y_scores_ : array, [n_samples, n_components] Y scores. x_rotations_ : array, [p, n_components] X block to latents rotations. y_rotations_ : array, [q, n_components] Y block to latents rotations. n_iter_ : array-like Number of iterations of the NIPALS inner loop for each component. Notes ----- For each component k, find the weights u, v that maximizes max corr(Xk u, Yk v), such that ``|u| = |v| = 1`` Note that it maximizes only the correlations between the scores. The residual matrix of X (Xk+1) block is obtained by the deflation on the current X score: x_score. The residual matrix of Y (Yk+1) block is obtained by deflation on the current Y score. Examples -------- >>> from sklearn.cross_decomposition import CCA >>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [3.,5.,4.]] >>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]] >>> cca = CCA(n_components=1) >>> cca.fit(X, Y) ... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE CCA(copy=True, max_iter=500, n_components=1, scale=True, tol=1e-06) >>> X_c, Y_c = cca.transform(X, Y) References ---------- Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case. Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000. In french but still a reference: Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic. See also -------- PLSCanonical PLSSVD """ def __init__(self, n_components=2, scale=True, max_iter=500, tol=1e-06, copy=True): _PLS.__init__(self, n_components=n_components, scale=scale, deflation_mode="canonical", mode="B", norm_y_weights=True, algorithm="nipals", max_iter=max_iter, tol=tol, copy=copy)
bsd-3-clause
anhaidgroup/py_stringsimjoin
py_stringsimjoin/join/jaccard_join_py.py
1
10448
# jaccard join from joblib import delayed, Parallel import pandas as pd from py_stringsimjoin.join.set_sim_join import set_sim_join from py_stringsimjoin.utils.generic_helper import convert_dataframe_to_array, \ get_attrs_to_project, get_num_processes_to_launch, remove_redundant_attrs, \ split_table from py_stringsimjoin.utils.missing_value_handler import \ get_pairs_with_missing_value from py_stringsimjoin.utils.validation import validate_attr, \ validate_attr_type, validate_comp_op_for_sim_measure, validate_key_attr, \ validate_input_table, validate_threshold, validate_tokenizer, \ validate_output_attrs def jaccard_join_py(ltable, rtable, l_key_attr, r_key_attr, l_join_attr, r_join_attr, tokenizer, threshold, comp_op='>=', allow_empty=True, allow_missing=False, l_out_attrs=None, r_out_attrs=None, l_out_prefix='l_', r_out_prefix='r_', out_sim_score=True, n_jobs=1, show_progress=True): """Join two tables using Jaccard similarity measure. For two sets X and Y, the Jaccard similarity score between them is given by: :math:`jaccard(X, Y) = \\frac{|X \\cap Y|}{|X \\cup Y|}` In the case where both X and Y are empty sets, we define their Jaccard score to be 1. Finds tuple pairs from left table and right table such that the Jaccard similarity between the join attributes satisfies the condition on input threshold. For example, if the comparison operator is '>=', finds tuple pairs whose Jaccard similarity between the strings that are the values of the join attributes is greater than or equal to the input threshold, as specified in "threshold". Args: ltable (DataFrame): left input table. rtable (DataFrame): right input table. l_key_attr (string): key attribute in left table. r_key_attr (string): key attribute in right table. l_join_attr (string): join attribute in left table. r_join_attr (string): join attribute in right table. tokenizer (Tokenizer): tokenizer to be used to tokenize join attributes. threshold (float): Jaccard similarity threshold to be satisfied. comp_op (string): comparison operator. Supported values are '>=', '>' and '=' (defaults to '>='). allow_empty (boolean): flag to indicate whether tuple pairs with empty set of tokens in both the join attributes should be included in the output (defaults to True). allow_missing (boolean): flag to indicate whether tuple pairs with missing value in at least one of the join attributes should be included in the output (defaults to False). If this flag is set to True, a tuple in ltable with missing value in the join attribute will be matched with every tuple in rtable and vice versa. l_out_attrs (list): list of attribute names from the left table to be included in the output table (defaults to None). r_out_attrs (list): list of attribute names from the right table to be included in the output table (defaults to None). l_out_prefix (string): prefix to be used for the attribute names coming from the left table, in the output table (defaults to 'l\_'). r_out_prefix (string): prefix to be used for the attribute names coming from the right table, in the output table (defaults to 'r\_'). out_sim_score (boolean): flag to indicate whether similarity score should be included in the output table (defaults to True). Setting this flag to True will add a column named '_sim_score' in the output table. This column will contain the similarity scores for the tuple pairs in the output. n_jobs (int): number of parallel jobs to use for the computation (defaults to 1). If -1 is given, all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used (where n_cpus is the total number of CPUs in the machine). Thus for n_jobs = -2, all CPUs but one are used. If (n_cpus + 1 + n_jobs) becomes less than 1, then no parallel computing code will be used (i.e., equivalent to the default). show_progress (boolean): flag to indicate whether task progress should be displayed to the user (defaults to True). Returns: An output table containing tuple pairs that satisfy the join condition (DataFrame). """ # check if the input tables are dataframes validate_input_table(ltable, 'left table') validate_input_table(rtable, 'right table') # check if the key attributes and join attributes exist validate_attr(l_key_attr, ltable.columns, 'key attribute', 'left table') validate_attr(r_key_attr, rtable.columns, 'key attribute', 'right table') validate_attr(l_join_attr, ltable.columns, 'join attribute', 'left table') validate_attr(r_join_attr, rtable.columns, 'join attribute', 'right table') # check if the join attributes are not of numeric type validate_attr_type(l_join_attr, ltable[l_join_attr].dtype, 'join attribute', 'left table') validate_attr_type(r_join_attr, rtable[r_join_attr].dtype, 'join attribute', 'right table') # check if the input tokenizer is valid validate_tokenizer(tokenizer) # check if the input threshold is valid validate_threshold(threshold, 'JACCARD') # check if the comparison operator is valid validate_comp_op_for_sim_measure(comp_op, 'JACCARD') # check if the output attributes exist validate_output_attrs(l_out_attrs, ltable.columns, r_out_attrs, rtable.columns) # check if the key attributes are unique and do not contain missing values validate_key_attr(l_key_attr, ltable, 'left table') validate_key_attr(r_key_attr, rtable, 'right table') # set return_set flag of tokenizer to be True, in case it is set to False revert_tokenizer_return_set_flag = False if not tokenizer.get_return_set(): tokenizer.set_return_set(True) revert_tokenizer_return_set_flag = True # remove redundant attrs from output attrs. l_out_attrs = remove_redundant_attrs(l_out_attrs, l_key_attr) r_out_attrs = remove_redundant_attrs(r_out_attrs, r_key_attr) # get attributes to project. l_proj_attrs = get_attrs_to_project(l_out_attrs, l_key_attr, l_join_attr) r_proj_attrs = get_attrs_to_project(r_out_attrs, r_key_attr, r_join_attr) # Do a projection on the input dataframes to keep only the required # attributes. Then, remove rows with missing value in join attribute from # the input dataframes. Then, convert the resulting dataframes into ndarray. ltable_array = convert_dataframe_to_array(ltable, l_proj_attrs, l_join_attr) rtable_array = convert_dataframe_to_array(rtable, r_proj_attrs, r_join_attr) # computes the actual number of jobs to launch. n_jobs = min(get_num_processes_to_launch(n_jobs), len(rtable_array)) if n_jobs <= 1: # if n_jobs is 1, do not use any parallel code. output_table = set_sim_join(ltable_array, rtable_array, l_proj_attrs, r_proj_attrs, l_key_attr, r_key_attr, l_join_attr, r_join_attr, tokenizer, 'JACCARD', threshold, comp_op, allow_empty, l_out_attrs, r_out_attrs, l_out_prefix, r_out_prefix, out_sim_score, show_progress) else: # if n_jobs is above 1, split the right table into n_jobs splits and # join each right table split with the whole of left table in a separate # process. r_splits = split_table(rtable_array, n_jobs) results = Parallel(n_jobs=n_jobs)(delayed(set_sim_join)( ltable_array, r_splits[job_index], l_proj_attrs, r_proj_attrs, l_key_attr, r_key_attr, l_join_attr, r_join_attr, tokenizer, 'JACCARD', threshold, comp_op, allow_empty, l_out_attrs, r_out_attrs, l_out_prefix, r_out_prefix, out_sim_score, (show_progress and (job_index==n_jobs-1))) for job_index in range(n_jobs)) output_table = pd.concat(results) # If allow_missing flag is set, then compute all pairs with missing value in # at least one of the join attributes and then add it to the output # obtained from the join. if allow_missing: missing_pairs = get_pairs_with_missing_value( ltable, rtable, l_key_attr, r_key_attr, l_join_attr, r_join_attr, l_out_attrs, r_out_attrs, l_out_prefix, r_out_prefix, out_sim_score, show_progress) output_table = pd.concat([output_table, missing_pairs]) # add an id column named '_id' to the output table. output_table.insert(0, '_id', range(0, len(output_table))) # revert the return_set flag of tokenizer, in case it was modified. if revert_tokenizer_return_set_flag: tokenizer.set_return_set(False) return output_table
bsd-3-clause
ryfeus/lambda-packs
Sklearn_scipy_numpy/source/scipy/signal/signaltools.py
4
88095
# Author: Travis Oliphant # 1999 -- 2002 from __future__ import division, print_function, absolute_import import warnings import threading from . import sigtools from scipy._lib.six import callable from scipy._lib._version import NumpyVersion from scipy import fftpack, linalg from numpy import (allclose, angle, arange, argsort, array, asarray, atleast_1d, atleast_2d, cast, dot, exp, expand_dims, iscomplexobj, mean, ndarray, newaxis, ones, pi, poly, polyadd, polyder, polydiv, polymul, polysub, polyval, prod, product, r_, ravel, real_if_close, reshape, roots, sort, sum, take, transpose, unique, where, zeros, zeros_like) import numpy as np from scipy.special import factorial from .windows import get_window from ._arraytools import axis_slice, axis_reverse, odd_ext, even_ext, const_ext __all__ = ['correlate', 'fftconvolve', 'convolve', 'convolve2d', 'correlate2d', 'order_filter', 'medfilt', 'medfilt2d', 'wiener', 'lfilter', 'lfiltic', 'sosfilt', 'deconvolve', 'hilbert', 'hilbert2', 'cmplx_sort', 'unique_roots', 'invres', 'invresz', 'residue', 'residuez', 'resample', 'detrend', 'lfilter_zi', 'sosfilt_zi', 'filtfilt', 'decimate', 'vectorstrength'] _modedict = {'valid': 0, 'same': 1, 'full': 2} _boundarydict = {'fill': 0, 'pad': 0, 'wrap': 2, 'circular': 2, 'symm': 1, 'symmetric': 1, 'reflect': 4} _rfft_mt_safe = (NumpyVersion(np.__version__) >= '1.9.0.dev-e24486e') _rfft_lock = threading.Lock() def _valfrommode(mode): try: val = _modedict[mode] except KeyError: if mode not in [0, 1, 2]: raise ValueError("Acceptable mode flags are 'valid' (0)," " 'same' (1), or 'full' (2).") val = mode return val def _bvalfromboundary(boundary): try: val = _boundarydict[boundary] << 2 except KeyError: if val not in [0, 1, 2]: raise ValueError("Acceptable boundary flags are 'fill', 'wrap'" " (or 'circular'), \n and 'symm'" " (or 'symmetric').") val = boundary << 2 return val def _check_valid_mode_shapes(shape1, shape2): for d1, d2 in zip(shape1, shape2): if not d1 >= d2: raise ValueError( "in1 should have at least as many items as in2 in " "every dimension for 'valid' mode.") def correlate(in1, in2, mode='full'): """ Cross-correlate two N-dimensional arrays. Cross-correlate `in1` and `in2`, with the output size determined by the `mode` argument. Parameters ---------- in1 : array_like First input. in2 : array_like Second input. Should have the same number of dimensions as `in1`; if sizes of `in1` and `in2` are not equal then `in1` has to be the larger array. mode : str {'full', 'valid', 'same'}, optional A string indicating the size of the output: ``full`` The output is the full discrete linear cross-correlation of the inputs. (Default) ``valid`` The output consists only of those elements that do not rely on the zero-padding. ``same`` The output is the same size as `in1`, centered with respect to the 'full' output. Returns ------- correlate : array An N-dimensional array containing a subset of the discrete linear cross-correlation of `in1` with `in2`. Notes ----- The correlation z of two d-dimensional arrays x and y is defined as: z[...,k,...] = sum[..., i_l, ...] x[..., i_l,...] * conj(y[..., i_l + k,...]) Examples -------- Implement a matched filter using cross-correlation, to recover a signal that has passed through a noisy channel. >>> from scipy import signal >>> sig = np.repeat([0., 1., 1., 0., 1., 0., 0., 1.], 128) >>> sig_noise = sig + np.random.randn(len(sig)) >>> corr = signal.correlate(sig_noise, np.ones(128), mode='same') / 128 >>> import matplotlib.pyplot as plt >>> clock = np.arange(64, len(sig), 128) >>> fig, (ax_orig, ax_noise, ax_corr) = plt.subplots(3, 1, sharex=True) >>> ax_orig.plot(sig) >>> ax_orig.plot(clock, sig[clock], 'ro') >>> ax_orig.set_title('Original signal') >>> ax_noise.plot(sig_noise) >>> ax_noise.set_title('Signal with noise') >>> ax_corr.plot(corr) >>> ax_corr.plot(clock, corr[clock], 'ro') >>> ax_corr.axhline(0.5, ls=':') >>> ax_corr.set_title('Cross-correlated with rectangular pulse') >>> ax_orig.margins(0, 0.1) >>> fig.tight_layout() >>> fig.show() """ in1 = asarray(in1) in2 = asarray(in2) # Don't use _valfrommode, since correlate should not accept numeric modes try: val = _modedict[mode] except KeyError: raise ValueError("Acceptable mode flags are 'valid'," " 'same', or 'full'.") if in1.ndim == in2.ndim == 0: return in1 * in2 elif not in1.ndim == in2.ndim: raise ValueError("in1 and in2 should have the same dimensionality") if mode == 'valid': _check_valid_mode_shapes(in1.shape, in2.shape) # numpy is significantly faster for 1d if in1.ndim == 1 and in2.ndim == 1: return np.correlate(in1, in2, mode) ps = [i - j + 1 for i, j in zip(in1.shape, in2.shape)] out = np.empty(ps, in1.dtype) z = sigtools._correlateND(in1, in2, out, val) else: # numpy is significantly faster for 1d if in1.ndim == 1 and in2.ndim == 1 and (in1.size >= in2.size): return np.correlate(in1, in2, mode) # _correlateND is far slower when in2.size > in1.size, so swap them # and then undo the effect afterward swapped_inputs = (mode == 'full') and (in2.size > in1.size) if swapped_inputs: in1, in2 = in2, in1 ps = [i + j - 1 for i, j in zip(in1.shape, in2.shape)] # zero pad input in1zpadded = np.zeros(ps, in1.dtype) sc = [slice(0, i) for i in in1.shape] in1zpadded[sc] = in1.copy() if mode == 'full': out = np.empty(ps, in1.dtype) elif mode == 'same': out = np.empty(in1.shape, in1.dtype) z = sigtools._correlateND(in1zpadded, in2, out, val) # Reverse and conjugate to undo the effect of swapping inputs if swapped_inputs: slice_obj = [slice(None, None, -1)] * len(z.shape) z = z[slice_obj].conj() return z def _centered(arr, newsize): # Return the center newsize portion of the array. newsize = asarray(newsize) currsize = array(arr.shape) startind = (currsize - newsize) // 2 endind = startind + newsize myslice = [slice(startind[k], endind[k]) for k in range(len(endind))] return arr[tuple(myslice)] def _next_regular(target): """ Find the next regular number greater than or equal to target. Regular numbers are composites of the prime factors 2, 3, and 5. Also known as 5-smooth numbers or Hamming numbers, these are the optimal size for inputs to FFTPACK. Target must be a positive integer. """ if target <= 6: return target # Quickly check if it's already a power of 2 if not (target & (target-1)): return target match = float('inf') # Anything found will be smaller p5 = 1 while p5 < target: p35 = p5 while p35 < target: # Ceiling integer division, avoiding conversion to float # (quotient = ceil(target / p35)) quotient = -(-target // p35) # Quickly find next power of 2 >= quotient try: p2 = 2**((quotient - 1).bit_length()) except AttributeError: # Fallback for Python <2.7 p2 = 2**(len(bin(quotient - 1)) - 2) N = p2 * p35 if N == target: return N elif N < match: match = N p35 *= 3 if p35 == target: return p35 if p35 < match: match = p35 p5 *= 5 if p5 == target: return p5 if p5 < match: match = p5 return match def fftconvolve(in1, in2, mode="full"): """Convolve two N-dimensional arrays using FFT. Convolve `in1` and `in2` using the fast Fourier transform method, with the output size determined by the `mode` argument. This is generally much faster than `convolve` for large arrays (n > ~500), but can be slower when only a few output values are needed, and can only output float arrays (int or object array inputs will be cast to float). Parameters ---------- in1 : array_like First input. in2 : array_like Second input. Should have the same number of dimensions as `in1`; if sizes of `in1` and `in2` are not equal then `in1` has to be the larger array. mode : str {'full', 'valid', 'same'}, optional A string indicating the size of the output: ``full`` The output is the full discrete linear convolution of the inputs. (Default) ``valid`` The output consists only of those elements that do not rely on the zero-padding. ``same`` The output is the same size as `in1`, centered with respect to the 'full' output. Returns ------- out : array An N-dimensional array containing a subset of the discrete linear convolution of `in1` with `in2`. Examples -------- Autocorrelation of white noise is an impulse. (This is at least 100 times as fast as `convolve`.) >>> from scipy import signal >>> sig = np.random.randn(1000) >>> autocorr = signal.fftconvolve(sig, sig[::-1], mode='full') >>> import matplotlib.pyplot as plt >>> fig, (ax_orig, ax_mag) = plt.subplots(2, 1) >>> ax_orig.plot(sig) >>> ax_orig.set_title('White noise') >>> ax_mag.plot(np.arange(-len(sig)+1,len(sig)), autocorr) >>> ax_mag.set_title('Autocorrelation') >>> fig.tight_layout() >>> fig.show() Gaussian blur implemented using FFT convolution. Notice the dark borders around the image, due to the zero-padding beyond its boundaries. The `convolve2d` function allows for other types of image boundaries, but is far slower. >>> from scipy import misc >>> face = misc.face(gray=True) >>> kernel = np.outer(signal.gaussian(70, 8), signal.gaussian(70, 8)) >>> blurred = signal.fftconvolve(face, kernel, mode='same') >>> fig, (ax_orig, ax_kernel, ax_blurred) = plt.subplots(1, 3) >>> ax_orig.imshow(face, cmap='gray') >>> ax_orig.set_title('Original') >>> ax_orig.set_axis_off() >>> ax_kernel.imshow(kernel, cmap='gray') >>> ax_kernel.set_title('Gaussian kernel') >>> ax_kernel.set_axis_off() >>> ax_blurred.imshow(blurred, cmap='gray') >>> ax_blurred.set_title('Blurred') >>> ax_blurred.set_axis_off() >>> fig.show() """ in1 = asarray(in1) in2 = asarray(in2) if in1.ndim == in2.ndim == 0: # scalar inputs return in1 * in2 elif not in1.ndim == in2.ndim: raise ValueError("in1 and in2 should have the same dimensionality") elif in1.size == 0 or in2.size == 0: # empty arrays return array([]) s1 = array(in1.shape) s2 = array(in2.shape) complex_result = (np.issubdtype(in1.dtype, complex) or np.issubdtype(in2.dtype, complex)) shape = s1 + s2 - 1 if mode == "valid": _check_valid_mode_shapes(s1, s2) # Speed up FFT by padding to optimal size for FFTPACK fshape = [_next_regular(int(d)) for d in shape] fslice = tuple([slice(0, int(sz)) for sz in shape]) # Pre-1.9 NumPy FFT routines are not threadsafe. For older NumPys, make # sure we only call rfftn/irfftn from one thread at a time. if not complex_result and (_rfft_mt_safe or _rfft_lock.acquire(False)): try: ret = (np.fft.irfftn(np.fft.rfftn(in1, fshape) * np.fft.rfftn(in2, fshape), fshape)[fslice]. copy()) finally: if not _rfft_mt_safe: _rfft_lock.release() else: # If we're here, it's either because we need a complex result, or we # failed to acquire _rfft_lock (meaning rfftn isn't threadsafe and # is already in use by another thread). In either case, use the # (threadsafe but slower) SciPy complex-FFT routines instead. ret = fftpack.ifftn(fftpack.fftn(in1, fshape) * fftpack.fftn(in2, fshape))[fslice].copy() if not complex_result: ret = ret.real if mode == "full": return ret elif mode == "same": return _centered(ret, s1) elif mode == "valid": return _centered(ret, s1 - s2 + 1) else: raise ValueError("Acceptable mode flags are 'valid'," " 'same', or 'full'.") def convolve(in1, in2, mode='full'): """ Convolve two N-dimensional arrays. Convolve `in1` and `in2`, with the output size determined by the `mode` argument. Parameters ---------- in1 : array_like First input. in2 : array_like Second input. Should have the same number of dimensions as `in1`; if sizes of `in1` and `in2` are not equal then `in1` has to be the larger array. mode : str {'full', 'valid', 'same'}, optional A string indicating the size of the output: ``full`` The output is the full discrete linear convolution of the inputs. (Default) ``valid`` The output consists only of those elements that do not rely on the zero-padding. ``same`` The output is the same size as `in1`, centered with respect to the 'full' output. Returns ------- convolve : array An N-dimensional array containing a subset of the discrete linear convolution of `in1` with `in2`. See also -------- numpy.polymul : performs polynomial multiplication (same operation, but also accepts poly1d objects) Examples -------- Smooth a square pulse using a Hann window: >>> from scipy import signal >>> sig = np.repeat([0., 1., 0.], 100) >>> win = signal.hann(50) >>> filtered = signal.convolve(sig, win, mode='same') / sum(win) >>> import matplotlib.pyplot as plt >>> fig, (ax_orig, ax_win, ax_filt) = plt.subplots(3, 1, sharex=True) >>> ax_orig.plot(sig) >>> ax_orig.set_title('Original pulse') >>> ax_orig.margins(0, 0.1) >>> ax_win.plot(win) >>> ax_win.set_title('Filter impulse response') >>> ax_win.margins(0, 0.1) >>> ax_filt.plot(filtered) >>> ax_filt.set_title('Filtered signal') >>> ax_filt.margins(0, 0.1) >>> fig.tight_layout() >>> fig.show() """ volume = asarray(in1) kernel = asarray(in2) if volume.ndim == kernel.ndim == 0: return volume * kernel # fastpath to faster numpy 1d convolve if volume.ndim == 1 and kernel.ndim == 1 and volume.size >= kernel.size: return np.convolve(volume, kernel, mode) slice_obj = [slice(None, None, -1)] * len(kernel.shape) if np.iscomplexobj(kernel): return correlate(volume, kernel[slice_obj].conj(), mode) else: return correlate(volume, kernel[slice_obj], mode) def order_filter(a, domain, rank): """ Perform an order filter on an N-dimensional array. Perform an order filter on the array in. The domain argument acts as a mask centered over each pixel. The non-zero elements of domain are used to select elements surrounding each input pixel which are placed in a list. The list is sorted, and the output for that pixel is the element corresponding to rank in the sorted list. Parameters ---------- a : ndarray The N-dimensional input array. domain : array_like A mask array with the same number of dimensions as `in`. Each dimension should have an odd number of elements. rank : int A non-negative integer which selects the element from the sorted list (0 corresponds to the smallest element, 1 is the next smallest element, etc.). Returns ------- out : ndarray The results of the order filter in an array with the same shape as `in`. Examples -------- >>> from scipy import signal >>> x = np.arange(25).reshape(5, 5) >>> domain = np.identity(3) >>> x array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19], [20, 21, 22, 23, 24]]) >>> signal.order_filter(x, domain, 0) array([[ 0., 0., 0., 0., 0.], [ 0., 0., 1., 2., 0.], [ 0., 5., 6., 7., 0.], [ 0., 10., 11., 12., 0.], [ 0., 0., 0., 0., 0.]]) >>> signal.order_filter(x, domain, 2) array([[ 6., 7., 8., 9., 4.], [ 11., 12., 13., 14., 9.], [ 16., 17., 18., 19., 14.], [ 21., 22., 23., 24., 19.], [ 20., 21., 22., 23., 24.]]) """ domain = asarray(domain) size = domain.shape for k in range(len(size)): if (size[k] % 2) != 1: raise ValueError("Each dimension of domain argument " " should have an odd number of elements.") return sigtools._order_filterND(a, domain, rank) def medfilt(volume, kernel_size=None): """ Perform a median filter on an N-dimensional array. Apply a median filter to the input array using a local window-size given by `kernel_size`. Parameters ---------- volume : array_like An N-dimensional input array. kernel_size : array_like, optional A scalar or an N-length list giving the size of the median filter window in each dimension. Elements of `kernel_size` should be odd. If `kernel_size` is a scalar, then this scalar is used as the size in each dimension. Default size is 3 for each dimension. Returns ------- out : ndarray An array the same size as input containing the median filtered result. """ volume = atleast_1d(volume) if kernel_size is None: kernel_size = [3] * len(volume.shape) kernel_size = asarray(kernel_size) if kernel_size.shape == (): kernel_size = np.repeat(kernel_size.item(), volume.ndim) for k in range(len(volume.shape)): if (kernel_size[k] % 2) != 1: raise ValueError("Each element of kernel_size should be odd.") domain = ones(kernel_size) numels = product(kernel_size, axis=0) order = numels // 2 return sigtools._order_filterND(volume, domain, order) def wiener(im, mysize=None, noise=None): """ Perform a Wiener filter on an N-dimensional array. Apply a Wiener filter to the N-dimensional array `im`. Parameters ---------- im : ndarray An N-dimensional array. mysize : int or array_like, optional A scalar or an N-length list giving the size of the Wiener filter window in each dimension. Elements of mysize should be odd. If mysize is a scalar, then this scalar is used as the size in each dimension. noise : float, optional The noise-power to use. If None, then noise is estimated as the average of the local variance of the input. Returns ------- out : ndarray Wiener filtered result with the same shape as `im`. """ im = asarray(im) if mysize is None: mysize = [3] * len(im.shape) mysize = asarray(mysize) if mysize.shape == (): mysize = np.repeat(mysize.item(), im.ndim) # Estimate the local mean lMean = correlate(im, ones(mysize), 'same') / product(mysize, axis=0) # Estimate the local variance lVar = (correlate(im ** 2, ones(mysize), 'same') / product(mysize, axis=0) - lMean ** 2) # Estimate the noise power if needed. if noise is None: noise = mean(ravel(lVar), axis=0) res = (im - lMean) res *= (1 - noise / lVar) res += lMean out = where(lVar < noise, lMean, res) return out def convolve2d(in1, in2, mode='full', boundary='fill', fillvalue=0): """ Convolve two 2-dimensional arrays. Convolve `in1` and `in2` with output size determined by `mode`, and boundary conditions determined by `boundary` and `fillvalue`. Parameters ---------- in1, in2 : array_like Two-dimensional input arrays to be convolved. mode : str {'full', 'valid', 'same'}, optional A string indicating the size of the output: ``full`` The output is the full discrete linear convolution of the inputs. (Default) ``valid`` The output consists only of those elements that do not rely on the zero-padding. ``same`` The output is the same size as `in1`, centered with respect to the 'full' output. boundary : str {'fill', 'wrap', 'symm'}, optional A flag indicating how to handle boundaries: ``fill`` pad input arrays with fillvalue. (default) ``wrap`` circular boundary conditions. ``symm`` symmetrical boundary conditions. fillvalue : scalar, optional Value to fill pad input arrays with. Default is 0. Returns ------- out : ndarray A 2-dimensional array containing a subset of the discrete linear convolution of `in1` with `in2`. Examples -------- Compute the gradient of an image by 2D convolution with a complex Scharr operator. (Horizontal operator is real, vertical is imaginary.) Use symmetric boundary condition to avoid creating edges at the image boundaries. >>> from scipy import signal >>> from scipy import misc >>> face = misc.face(gray=True) >>> scharr = np.array([[ -3-3j, 0-10j, +3 -3j], ... [-10+0j, 0+ 0j, +10 +0j], ... [ -3+3j, 0+10j, +3 +3j]]) # Gx + j*Gy >>> grad = signal.convolve2d(face, scharr, boundary='symm', mode='same') >>> import matplotlib.pyplot as plt >>> fig, (ax_orig, ax_mag, ax_ang) = plt.subplots(1, 3) >>> ax_orig.imshow(face, cmap='gray') >>> ax_orig.set_title('Original') >>> ax_orig.set_axis_off() >>> ax_mag.imshow(np.absolute(grad), cmap='gray') >>> ax_mag.set_title('Gradient magnitude') >>> ax_mag.set_axis_off() >>> ax_ang.imshow(np.angle(grad), cmap='hsv') # hsv is cyclic, like angles >>> ax_ang.set_title('Gradient orientation') >>> ax_ang.set_axis_off() >>> fig.show() """ in1 = asarray(in1) in2 = asarray(in2) if mode == 'valid': _check_valid_mode_shapes(in1.shape, in2.shape) val = _valfrommode(mode) bval = _bvalfromboundary(boundary) with warnings.catch_warnings(): warnings.simplefilter('ignore', np.ComplexWarning) # FIXME: some cast generates a warning here out = sigtools._convolve2d(in1, in2, 1, val, bval, fillvalue) return out def correlate2d(in1, in2, mode='full', boundary='fill', fillvalue=0): """ Cross-correlate two 2-dimensional arrays. Cross correlate `in1` and `in2` with output size determined by `mode`, and boundary conditions determined by `boundary` and `fillvalue`. Parameters ---------- in1, in2 : array_like Two-dimensional input arrays to be convolved. mode : str {'full', 'valid', 'same'}, optional A string indicating the size of the output: ``full`` The output is the full discrete linear cross-correlation of the inputs. (Default) ``valid`` The output consists only of those elements that do not rely on the zero-padding. ``same`` The output is the same size as `in1`, centered with respect to the 'full' output. boundary : str {'fill', 'wrap', 'symm'}, optional A flag indicating how to handle boundaries: ``fill`` pad input arrays with fillvalue. (default) ``wrap`` circular boundary conditions. ``symm`` symmetrical boundary conditions. fillvalue : scalar, optional Value to fill pad input arrays with. Default is 0. Returns ------- correlate2d : ndarray A 2-dimensional array containing a subset of the discrete linear cross-correlation of `in1` with `in2`. Examples -------- Use 2D cross-correlation to find the location of a template in a noisy image: >>> from scipy import signal >>> from scipy import misc >>> face = misc.face(gray=True) - misc.face(gray=True).mean() >>> template = np.copy(face[300:365, 670:750]) # right eye >>> template -= template.mean() >>> face = face + np.random.randn(*face.shape) * 50 # add noise >>> corr = signal.correlate2d(face, template, boundary='symm', mode='same') >>> y, x = np.unravel_index(np.argmax(corr), corr.shape) # find the match >>> import matplotlib.pyplot as plt >>> fig, (ax_orig, ax_template, ax_corr) = plt.subplots(1, 3) >>> ax_orig.imshow(face, cmap='gray') >>> ax_orig.set_title('Original') >>> ax_orig.set_axis_off() >>> ax_template.imshow(template, cmap='gray') >>> ax_template.set_title('Template') >>> ax_template.set_axis_off() >>> ax_corr.imshow(corr, cmap='gray') >>> ax_corr.set_title('Cross-correlation') >>> ax_corr.set_axis_off() >>> ax_orig.plot(x, y, 'ro') >>> fig.show() """ in1 = asarray(in1) in2 = asarray(in2) if mode == 'valid': _check_valid_mode_shapes(in1.shape, in2.shape) val = _valfrommode(mode) bval = _bvalfromboundary(boundary) with warnings.catch_warnings(): warnings.simplefilter('ignore', np.ComplexWarning) # FIXME: some cast generates a warning here out = sigtools._convolve2d(in1, in2, 0, val, bval, fillvalue) return out def medfilt2d(input, kernel_size=3): """ Median filter a 2-dimensional array. Apply a median filter to the `input` array using a local window-size given by `kernel_size` (must be odd). Parameters ---------- input : array_like A 2-dimensional input array. kernel_size : array_like, optional A scalar or a list of length 2, giving the size of the median filter window in each dimension. Elements of `kernel_size` should be odd. If `kernel_size` is a scalar, then this scalar is used as the size in each dimension. Default is a kernel of size (3, 3). Returns ------- out : ndarray An array the same size as input containing the median filtered result. """ image = asarray(input) if kernel_size is None: kernel_size = [3] * 2 kernel_size = asarray(kernel_size) if kernel_size.shape == (): kernel_size = np.repeat(kernel_size.item(), 2) for size in kernel_size: if (size % 2) != 1: raise ValueError("Each element of kernel_size should be odd.") return sigtools._medfilt2d(image, kernel_size) def lfilter(b, a, x, axis=-1, zi=None): """ Filter data along one-dimension with an IIR or FIR filter. Filter a data sequence, `x`, using a digital filter. This works for many fundamental data types (including Object type). The filter is a direct form II transposed implementation of the standard difference equation (see Notes). Parameters ---------- b : array_like The numerator coefficient vector in a 1-D sequence. a : array_like The denominator coefficient vector in a 1-D sequence. If ``a[0]`` is not 1, then both `a` and `b` are normalized by ``a[0]``. x : array_like An N-dimensional input array. axis : int, optional The axis of the input data array along which to apply the linear filter. The filter is applied to each subarray along this axis. Default is -1. zi : array_like, optional Initial conditions for the filter delays. It is a vector (or array of vectors for an N-dimensional input) of length ``max(len(a),len(b))-1``. If `zi` is None or is not given then initial rest is assumed. See `lfiltic` for more information. Returns ------- y : array The output of the digital filter. zf : array, optional If `zi` is None, this is not returned, otherwise, `zf` holds the final filter delay values. Notes ----- The filter function is implemented as a direct II transposed structure. This means that the filter implements:: a[0]*y[n] = b[0]*x[n] + b[1]*x[n-1] + ... + b[nb]*x[n-nb] - a[1]*y[n-1] - ... - a[na]*y[n-na] using the following difference equations:: y[m] = b[0]*x[m] + z[0,m-1] z[0,m] = b[1]*x[m] + z[1,m-1] - a[1]*y[m] ... z[n-3,m] = b[n-2]*x[m] + z[n-2,m-1] - a[n-2]*y[m] z[n-2,m] = b[n-1]*x[m] - a[n-1]*y[m] where m is the output sample number and n=max(len(a),len(b)) is the model order. The rational transfer function describing this filter in the z-transform domain is:: -1 -nb b[0] + b[1]z + ... + b[nb] z Y(z) = ---------------------------------- X(z) -1 -na a[0] + a[1]z + ... + a[na] z """ a = np.atleast_1d(a) if len(a) == 1: # This path only supports types fdgFDGO to mirror _linear_filter below. # Any of b, a, x, or zi can set the dtype, but there is no default # casting of other types; instead a NotImplementedError is raised. b = np.asarray(b) a = np.asarray(a) if b.ndim != 1 and a.ndim != 1: raise ValueError('object of too small depth for desired array') x = np.asarray(x) inputs = [b, a, x] if zi is not None: # _linear_filter does not broadcast zi, but does do expansion of singleton dims. zi = np.asarray(zi) if zi.ndim != x.ndim: raise ValueError('object of too small depth for desired array') expected_shape = list(x.shape) expected_shape[axis] = b.shape[0] - 1 expected_shape = tuple(expected_shape) # check the trivial case where zi is the right shape first if zi.shape != expected_shape: strides = zi.ndim * [None] if axis < 0: axis += zi.ndim for k in range(zi.ndim): if k == axis and zi.shape[k] == expected_shape[k]: strides[k] = zi.strides[k] elif k != axis and zi.shape[k] == expected_shape[k]: strides[k] = zi.strides[k] elif k != axis and zi.shape[k] == 1: strides[k] = 0 else: raise ValueError('Unexpected shape for zi: expected ' '%s, found %s.' % (expected_shape, zi.shape)) zi = np.lib.stride_tricks.as_strided(zi, expected_shape, strides) inputs.append(zi) dtype = np.result_type(*inputs) if dtype.char not in 'fdgFDGO': raise NotImplementedError("input type '%s' not supported" % dtype) b = np.array(b, dtype=dtype) a = np.array(a, dtype=dtype, copy=False) b /= a[0] x = np.array(x, dtype=dtype, copy=False) out_full = np.apply_along_axis(lambda y: np.convolve(b, y), axis, x) ind = out_full.ndim * [slice(None)] if zi is not None: ind[axis] = slice(zi.shape[axis]) out_full[ind] += zi ind[axis] = slice(out_full.shape[axis] - len(b) + 1) out = out_full[ind] if zi is None: return out else: ind[axis] = slice(out_full.shape[axis] - len(b) + 1, None) zf = out_full[ind] return out, zf else: if zi is None: return sigtools._linear_filter(b, a, x, axis) else: return sigtools._linear_filter(b, a, x, axis, zi) def lfiltic(b, a, y, x=None): """ Construct initial conditions for lfilter. Given a linear filter (b, a) and initial conditions on the output `y` and the input `x`, return the initial conditions on the state vector zi which is used by `lfilter` to generate the output given the input. Parameters ---------- b : array_like Linear filter term. a : array_like Linear filter term. y : array_like Initial conditions. If ``N=len(a) - 1``, then ``y = {y[-1], y[-2], ..., y[-N]}``. If `y` is too short, it is padded with zeros. x : array_like, optional Initial conditions. If ``M=len(b) - 1``, then ``x = {x[-1], x[-2], ..., x[-M]}``. If `x` is not given, its initial conditions are assumed zero. If `x` is too short, it is padded with zeros. Returns ------- zi : ndarray The state vector ``zi``. ``zi = {z_0[-1], z_1[-1], ..., z_K-1[-1]}``, where ``K = max(M,N)``. See Also -------- lfilter """ N = np.size(a) - 1 M = np.size(b) - 1 K = max(M, N) y = asarray(y) if y.dtype.kind in 'bui': # ensure calculations are floating point y = y.astype(np.float64) zi = zeros(K, y.dtype) if x is None: x = zeros(M, y.dtype) else: x = asarray(x) L = np.size(x) if L < M: x = r_[x, zeros(M - L)] L = np.size(y) if L < N: y = r_[y, zeros(N - L)] for m in range(M): zi[m] = sum(b[m + 1:] * x[:M - m], axis=0) for m in range(N): zi[m] -= sum(a[m + 1:] * y[:N - m], axis=0) return zi def deconvolve(signal, divisor): """Deconvolves ``divisor`` out of ``signal``. Returns the quotient and remainder such that ``signal = convolve(divisor, quotient) + remainder`` Parameters ---------- signal : array_like Signal data, typically a recorded signal divisor : array_like Divisor data, typically an impulse response or filter that was applied to the original signal Returns ------- quotient : ndarray Quotient, typically the recovered original signal remainder : ndarray Remainder Examples -------- Deconvolve a signal that's been filtered: >>> from scipy import signal >>> original = [0, 1, 0, 0, 1, 1, 0, 0] >>> impulse_response = [2, 1] >>> recorded = signal.convolve(impulse_response, original) >>> recorded array([0, 2, 1, 0, 2, 3, 1, 0, 0]) >>> recovered, remainder = signal.deconvolve(recorded, impulse_response) >>> recovered array([ 0., 1., 0., 0., 1., 1., 0., 0.]) See also -------- numpy.polydiv : performs polynomial division (same operation, but also accepts poly1d objects) """ num = atleast_1d(signal) den = atleast_1d(divisor) N = len(num) D = len(den) if D > N: quot = [] rem = num else: input = ones(N - D + 1, float) input[1:] = 0 quot = lfilter(num, den, input) rem = num - convolve(den, quot, mode='full') return quot, rem def hilbert(x, N=None, axis=-1): """ Compute the analytic signal, using the Hilbert transform. The transformation is done along the last axis by default. Parameters ---------- x : array_like Signal data. Must be real. N : int, optional Number of Fourier components. Default: ``x.shape[axis]`` axis : int, optional Axis along which to do the transformation. Default: -1. Returns ------- xa : ndarray Analytic signal of `x`, of each 1-D array along `axis` Notes ----- The analytic signal ``x_a(t)`` of signal ``x(t)`` is: .. math:: x_a = F^{-1}(F(x) 2U) = x + i y where `F` is the Fourier transform, `U` the unit step function, and `y` the Hilbert transform of `x`. [1]_ In other words, the negative half of the frequency spectrum is zeroed out, turning the real-valued signal into a complex signal. The Hilbert transformed signal can be obtained from ``np.imag(hilbert(x))``, and the original signal from ``np.real(hilbert(x))``. Examples --------- In this example we use the Hilbert transform to determine the amplitude envelope and instantaneous frequency of an amplitude-modulated signal. >>> import numpy as np >>> import matplotlib.pyplot as plt >>> from scipy.signal import hilbert, chirp >>> duration = 1.0 >>> fs = 400.0 >>> samples = int(fs*duration) >>> t = np.arange(samples) / fs We create a chirp of which the frequency increases from 20 Hz to 100 Hz and apply an amplitude modulation. >>> signal = chirp(t, 20.0, t[-1], 100.0) >>> signal *= (1.0 + 0.5 * np.sin(2.0*np.pi*3.0*t) ) The amplitude envelope is given by magnitude of the analytic signal. The instantaneous frequency can be obtained by differentiating the instantaneous phase in respect to time. The instantaneous phase corresponds to the phase angle of the analytic signal. >>> analytic_signal = hilbert(signal) >>> amplitude_envelope = np.abs(analytic_signal) >>> instantaneous_phase = np.unwrap(np.angle(analytic_signal)) >>> instantaneous_frequency = np.diff(instantaneous_phase) / (2.0*np.pi) * fs >>> fig = plt.figure() >>> ax0 = fig.add_subplot(211) >>> ax0.plot(t, signal, label='signal') >>> ax0.plot(t, amplitude_envelope, label='envelope') >>> ax0.set_xlabel("time in seconds") >>> ax0.legend() >>> ax1 = fig.add_subplot(212) >>> ax1.plot(t[1:], instantaneous_frequency) >>> ax1.set_xlabel("time in seconds") >>> ax1.set_ylim(0.0, 120.0) References ---------- .. [1] Wikipedia, "Analytic signal". http://en.wikipedia.org/wiki/Analytic_signal .. [2] Leon Cohen, "Time-Frequency Analysis", 1995. Chapter 2. .. [3] Alan V. Oppenheim, Ronald W. Schafer. Discrete-Time Signal Processing, Third Edition, 2009. Chapter 12. ISBN 13: 978-1292-02572-8 """ x = asarray(x) if iscomplexobj(x): raise ValueError("x must be real.") if N is None: N = x.shape[axis] if N <= 0: raise ValueError("N must be positive.") Xf = fftpack.fft(x, N, axis=axis) h = zeros(N) if N % 2 == 0: h[0] = h[N // 2] = 1 h[1:N // 2] = 2 else: h[0] = 1 h[1:(N + 1) // 2] = 2 if len(x.shape) > 1: ind = [newaxis] * x.ndim ind[axis] = slice(None) h = h[ind] x = fftpack.ifft(Xf * h, axis=axis) return x def hilbert2(x, N=None): """ Compute the '2-D' analytic signal of `x` Parameters ---------- x : array_like 2-D signal data. N : int or tuple of two ints, optional Number of Fourier components. Default is ``x.shape`` Returns ------- xa : ndarray Analytic signal of `x` taken along axes (0,1). References ---------- .. [1] Wikipedia, "Analytic signal", http://en.wikipedia.org/wiki/Analytic_signal """ x = atleast_2d(x) if len(x.shape) > 2: raise ValueError("x must be 2-D.") if iscomplexobj(x): raise ValueError("x must be real.") if N is None: N = x.shape elif isinstance(N, int): if N <= 0: raise ValueError("N must be positive.") N = (N, N) elif len(N) != 2 or np.any(np.asarray(N) <= 0): raise ValueError("When given as a tuple, N must hold exactly " "two positive integers") Xf = fftpack.fft2(x, N, axes=(0, 1)) h1 = zeros(N[0], 'd') h2 = zeros(N[1], 'd') for p in range(2): h = eval("h%d" % (p + 1)) N1 = N[p] if N1 % 2 == 0: h[0] = h[N1 // 2] = 1 h[1:N1 // 2] = 2 else: h[0] = 1 h[1:(N1 + 1) // 2] = 2 exec("h%d = h" % (p + 1), globals(), locals()) h = h1[:, newaxis] * h2[newaxis, :] k = len(x.shape) while k > 2: h = h[:, newaxis] k -= 1 x = fftpack.ifft2(Xf * h, axes=(0, 1)) return x def cmplx_sort(p): """Sort roots based on magnitude. Parameters ---------- p : array_like The roots to sort, as a 1-D array. Returns ------- p_sorted : ndarray Sorted roots. indx : ndarray Array of indices needed to sort the input `p`. """ p = asarray(p) if iscomplexobj(p): indx = argsort(abs(p)) else: indx = argsort(p) return take(p, indx, 0), indx def unique_roots(p, tol=1e-3, rtype='min'): """ Determine unique roots and their multiplicities from a list of roots. Parameters ---------- p : array_like The list of roots. tol : float, optional The tolerance for two roots to be considered equal. Default is 1e-3. rtype : {'max', 'min, 'avg'}, optional How to determine the returned root if multiple roots are within `tol` of each other. - 'max': pick the maximum of those roots. - 'min': pick the minimum of those roots. - 'avg': take the average of those roots. Returns ------- pout : ndarray The list of unique roots, sorted from low to high. mult : ndarray The multiplicity of each root. Notes ----- This utility function is not specific to roots but can be used for any sequence of values for which uniqueness and multiplicity has to be determined. For a more general routine, see `numpy.unique`. Examples -------- >>> from scipy import signal >>> vals = [0, 1.3, 1.31, 2.8, 1.25, 2.2, 10.3] >>> uniq, mult = signal.unique_roots(vals, tol=2e-2, rtype='avg') Check which roots have multiplicity larger than 1: >>> uniq[mult > 1] array([ 1.305]) """ if rtype in ['max', 'maximum']: comproot = np.max elif rtype in ['min', 'minimum']: comproot = np.min elif rtype in ['avg', 'mean']: comproot = np.mean else: raise ValueError("`rtype` must be one of " "{'max', 'maximum', 'min', 'minimum', 'avg', 'mean'}") p = asarray(p) * 1.0 tol = abs(tol) p, indx = cmplx_sort(p) pout = [] mult = [] indx = -1 curp = p[0] + 5 * tol sameroots = [] for k in range(len(p)): tr = p[k] if abs(tr - curp) < tol: sameroots.append(tr) curp = comproot(sameroots) pout[indx] = curp mult[indx] += 1 else: pout.append(tr) curp = tr sameroots = [tr] indx += 1 mult.append(1) return array(pout), array(mult) def invres(r, p, k, tol=1e-3, rtype='avg'): """ Compute b(s) and a(s) from partial fraction expansion. If ``M = len(b)`` and ``N = len(a)``:: b(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1] H(s) = ------ = ---------------------------------------------- a(s) a[0] x**(N-1) + a[1] x**(N-2) + ... + a[N-1] r[0] r[1] r[-1] = -------- + -------- + ... + --------- + k(s) (s-p[0]) (s-p[1]) (s-p[-1]) If there are any repeated roots (closer than tol), then the partial fraction expansion has terms like:: r[i] r[i+1] r[i+n-1] -------- + ----------- + ... + ----------- (s-p[i]) (s-p[i])**2 (s-p[i])**n Parameters ---------- r : ndarray Residues. p : ndarray Poles. k : ndarray Coefficients of the direct polynomial term. tol : float, optional The tolerance for two roots to be considered equal. Default is 1e-3. rtype : {'max', 'min, 'avg'}, optional How to determine the returned root if multiple roots are within `tol` of each other. 'max': pick the maximum of those roots. 'min': pick the minimum of those roots. 'avg': take the average of those roots. See Also -------- residue, unique_roots """ extra = k p, indx = cmplx_sort(p) r = take(r, indx, 0) pout, mult = unique_roots(p, tol=tol, rtype=rtype) p = [] for k in range(len(pout)): p.extend([pout[k]] * mult[k]) a = atleast_1d(poly(p)) if len(extra) > 0: b = polymul(extra, a) else: b = [0] indx = 0 for k in range(len(pout)): temp = [] for l in range(len(pout)): if l != k: temp.extend([pout[l]] * mult[l]) for m in range(mult[k]): t2 = temp[:] t2.extend([pout[k]] * (mult[k] - m - 1)) b = polyadd(b, r[indx] * atleast_1d(poly(t2))) indx += 1 b = real_if_close(b) while allclose(b[0], 0, rtol=1e-14) and (b.shape[-1] > 1): b = b[1:] return b, a def residue(b, a, tol=1e-3, rtype='avg'): """ Compute partial-fraction expansion of b(s) / a(s). If ``M = len(b)`` and ``N = len(a)``, then the partial-fraction expansion H(s) is defined as:: b(s) b[0] s**(M-1) + b[1] s**(M-2) + ... + b[M-1] H(s) = ------ = ---------------------------------------------- a(s) a[0] s**(N-1) + a[1] s**(N-2) + ... + a[N-1] r[0] r[1] r[-1] = -------- + -------- + ... + --------- + k(s) (s-p[0]) (s-p[1]) (s-p[-1]) If there are any repeated roots (closer together than `tol`), then H(s) has terms like:: r[i] r[i+1] r[i+n-1] -------- + ----------- + ... + ----------- (s-p[i]) (s-p[i])**2 (s-p[i])**n Returns ------- r : ndarray Residues. p : ndarray Poles. k : ndarray Coefficients of the direct polynomial term. See Also -------- invres, numpy.poly, unique_roots """ b, a = map(asarray, (b, a)) rscale = a[0] k, b = polydiv(b, a) p = roots(a) r = p * 0.0 pout, mult = unique_roots(p, tol=tol, rtype=rtype) p = [] for n in range(len(pout)): p.extend([pout[n]] * mult[n]) p = asarray(p) # Compute the residue from the general formula indx = 0 for n in range(len(pout)): bn = b.copy() pn = [] for l in range(len(pout)): if l != n: pn.extend([pout[l]] * mult[l]) an = atleast_1d(poly(pn)) # bn(s) / an(s) is (s-po[n])**Nn * b(s) / a(s) where Nn is # multiplicity of pole at po[n] sig = mult[n] for m in range(sig, 0, -1): if sig > m: # compute next derivative of bn(s) / an(s) term1 = polymul(polyder(bn, 1), an) term2 = polymul(bn, polyder(an, 1)) bn = polysub(term1, term2) an = polymul(an, an) r[indx + m - 1] = (polyval(bn, pout[n]) / polyval(an, pout[n]) / factorial(sig - m)) indx += sig return r / rscale, p, k def residuez(b, a, tol=1e-3, rtype='avg'): """ Compute partial-fraction expansion of b(z) / a(z). If ``M = len(b)`` and ``N = len(a)``:: b(z) b[0] + b[1] z**(-1) + ... + b[M-1] z**(-M+1) H(z) = ------ = ---------------------------------------------- a(z) a[0] + a[1] z**(-1) + ... + a[N-1] z**(-N+1) r[0] r[-1] = --------------- + ... + ---------------- + k[0] + k[1]z**(-1) ... (1-p[0]z**(-1)) (1-p[-1]z**(-1)) If there are any repeated roots (closer than tol), then the partial fraction expansion has terms like:: r[i] r[i+1] r[i+n-1] -------------- + ------------------ + ... + ------------------ (1-p[i]z**(-1)) (1-p[i]z**(-1))**2 (1-p[i]z**(-1))**n See also -------- invresz, unique_roots """ b, a = map(asarray, (b, a)) gain = a[0] brev, arev = b[::-1], a[::-1] krev, brev = polydiv(brev, arev) if krev == []: k = [] else: k = krev[::-1] b = brev[::-1] p = roots(a) r = p * 0.0 pout, mult = unique_roots(p, tol=tol, rtype=rtype) p = [] for n in range(len(pout)): p.extend([pout[n]] * mult[n]) p = asarray(p) # Compute the residue from the general formula (for discrete-time) # the polynomial is in z**(-1) and the multiplication is by terms # like this (1-p[i] z**(-1))**mult[i]. After differentiation, # we must divide by (-p[i])**(m-k) as well as (m-k)! indx = 0 for n in range(len(pout)): bn = brev.copy() pn = [] for l in range(len(pout)): if l != n: pn.extend([pout[l]] * mult[l]) an = atleast_1d(poly(pn))[::-1] # bn(z) / an(z) is (1-po[n] z**(-1))**Nn * b(z) / a(z) where Nn is # multiplicity of pole at po[n] and b(z) and a(z) are polynomials. sig = mult[n] for m in range(sig, 0, -1): if sig > m: # compute next derivative of bn(s) / an(s) term1 = polymul(polyder(bn, 1), an) term2 = polymul(bn, polyder(an, 1)) bn = polysub(term1, term2) an = polymul(an, an) r[indx + m - 1] = (polyval(bn, 1.0 / pout[n]) / polyval(an, 1.0 / pout[n]) / factorial(sig - m) / (-pout[n]) ** (sig - m)) indx += sig return r / gain, p, k def invresz(r, p, k, tol=1e-3, rtype='avg'): """ Compute b(z) and a(z) from partial fraction expansion. If ``M = len(b)`` and ``N = len(a)``:: b(z) b[0] + b[1] z**(-1) + ... + b[M-1] z**(-M+1) H(z) = ------ = ---------------------------------------------- a(z) a[0] + a[1] z**(-1) + ... + a[N-1] z**(-N+1) r[0] r[-1] = --------------- + ... + ---------------- + k[0] + k[1]z**(-1)... (1-p[0]z**(-1)) (1-p[-1]z**(-1)) If there are any repeated roots (closer than tol), then the partial fraction expansion has terms like:: r[i] r[i+1] r[i+n-1] -------------- + ------------------ + ... + ------------------ (1-p[i]z**(-1)) (1-p[i]z**(-1))**2 (1-p[i]z**(-1))**n See Also -------- residuez, unique_roots, invres """ extra = asarray(k) p, indx = cmplx_sort(p) r = take(r, indx, 0) pout, mult = unique_roots(p, tol=tol, rtype=rtype) p = [] for k in range(len(pout)): p.extend([pout[k]] * mult[k]) a = atleast_1d(poly(p)) if len(extra) > 0: b = polymul(extra, a) else: b = [0] indx = 0 brev = asarray(b)[::-1] for k in range(len(pout)): temp = [] # Construct polynomial which does not include any of this root for l in range(len(pout)): if l != k: temp.extend([pout[l]] * mult[l]) for m in range(mult[k]): t2 = temp[:] t2.extend([pout[k]] * (mult[k] - m - 1)) brev = polyadd(brev, (r[indx] * atleast_1d(poly(t2)))[::-1]) indx += 1 b = real_if_close(brev[::-1]) return b, a def resample(x, num, t=None, axis=0, window=None): """ Resample `x` to `num` samples using Fourier method along the given axis. The resampled signal starts at the same value as `x` but is sampled with a spacing of ``len(x) / num * (spacing of x)``. Because a Fourier method is used, the signal is assumed to be periodic. Parameters ---------- x : array_like The data to be resampled. num : int The number of samples in the resampled signal. t : array_like, optional If `t` is given, it is assumed to be the sample positions associated with the signal data in `x`. axis : int, optional The axis of `x` that is resampled. Default is 0. window : array_like, callable, string, float, or tuple, optional Specifies the window applied to the signal in the Fourier domain. See below for details. Returns ------- resampled_x or (resampled_x, resampled_t) Either the resampled array, or, if `t` was given, a tuple containing the resampled array and the corresponding resampled positions. Notes ----- The argument `window` controls a Fourier-domain window that tapers the Fourier spectrum before zero-padding to alleviate ringing in the resampled values for sampled signals you didn't intend to be interpreted as band-limited. If `window` is a function, then it is called with a vector of inputs indicating the frequency bins (i.e. fftfreq(x.shape[axis]) ). If `window` is an array of the same length as `x.shape[axis]` it is assumed to be the window to be applied directly in the Fourier domain (with dc and low-frequency first). For any other type of `window`, the function `scipy.signal.get_window` is called to generate the window. The first sample of the returned vector is the same as the first sample of the input vector. The spacing between samples is changed from ``dx`` to ``dx * len(x) / num``. If `t` is not None, then it represents the old sample positions, and the new sample positions will be returned as well as the new samples. As noted, `resample` uses FFT transformations, which can be very slow if the number of input or output samples is large and prime; see `scipy.fftpack.fft`. Examples -------- Note that the end of the resampled data rises to meet the first sample of the next cycle: >>> from scipy import signal >>> x = np.linspace(0, 10, 20, endpoint=False) >>> y = np.cos(-x**2/6.0) >>> f = signal.resample(y, 100) >>> xnew = np.linspace(0, 10, 100, endpoint=False) >>> import matplotlib.pyplot as plt >>> plt.plot(x, y, 'go-', xnew, f, '.-', 10, y[0], 'ro') >>> plt.legend(['data', 'resampled'], loc='best') >>> plt.show() """ x = asarray(x) X = fftpack.fft(x, axis=axis) Nx = x.shape[axis] if window is not None: if callable(window): W = window(fftpack.fftfreq(Nx)) elif isinstance(window, ndarray): if window.shape != (Nx,): raise ValueError('window must have the same length as data') W = window else: W = fftpack.ifftshift(get_window(window, Nx)) newshape = [1] * x.ndim newshape[axis] = len(W) W.shape = newshape X = X * W sl = [slice(None)] * len(x.shape) newshape = list(x.shape) newshape[axis] = num N = int(np.minimum(num, Nx)) Y = zeros(newshape, 'D') sl[axis] = slice(0, (N + 1) // 2) Y[sl] = X[sl] sl[axis] = slice(-(N - 1) // 2, None) Y[sl] = X[sl] y = fftpack.ifft(Y, axis=axis) * (float(num) / float(Nx)) if x.dtype.char not in ['F', 'D']: y = y.real if t is None: return y else: new_t = arange(0, num) * (t[1] - t[0]) * Nx / float(num) + t[0] return y, new_t def vectorstrength(events, period): ''' Determine the vector strength of the events corresponding to the given period. The vector strength is a measure of phase synchrony, how well the timing of the events is synchronized to a single period of a periodic signal. If multiple periods are used, calculate the vector strength of each. This is called the "resonating vector strength". Parameters ---------- events : 1D array_like An array of time points containing the timing of the events. period : float or array_like The period of the signal that the events should synchronize to. The period is in the same units as `events`. It can also be an array of periods, in which case the outputs are arrays of the same length. Returns ------- strength : float or 1D array The strength of the synchronization. 1.0 is perfect synchronization and 0.0 is no synchronization. If `period` is an array, this is also an array with each element containing the vector strength at the corresponding period. phase : float or array The phase that the events are most strongly synchronized to in radians. If `period` is an array, this is also an array with each element containing the phase for the corresponding period. References ---------- van Hemmen, JL, Longtin, A, and Vollmayr, AN. Testing resonating vector strength: Auditory system, electric fish, and noise. Chaos 21, 047508 (2011); doi: 10.1063/1.3670512 van Hemmen, JL. Vector strength after Goldberg, Brown, and von Mises: biological and mathematical perspectives. Biol Cybern. 2013 Aug;107(4):385-96. doi: 10.1007/s00422-013-0561-7. van Hemmen, JL and Vollmayr, AN. Resonating vector strength: what happens when we vary the "probing" frequency while keeping the spike times fixed. Biol Cybern. 2013 Aug;107(4):491-94. doi: 10.1007/s00422-013-0560-8 ''' events = asarray(events) period = asarray(period) if events.ndim > 1: raise ValueError('events cannot have dimensions more than 1') if period.ndim > 1: raise ValueError('period cannot have dimensions more than 1') # we need to know later if period was originally a scalar scalarperiod = not period.ndim events = atleast_2d(events) period = atleast_2d(period) if (period <= 0).any(): raise ValueError('periods must be positive') # this converts the times to vectors vectors = exp(dot(2j*pi/period.T, events)) # the vector strength is just the magnitude of the mean of the vectors # the vector phase is the angle of the mean of the vectors vectormean = mean(vectors, axis=1) strength = abs(vectormean) phase = angle(vectormean) # if the original period was a scalar, return scalars if scalarperiod: strength = strength[0] phase = phase[0] return strength, phase def detrend(data, axis=-1, type='linear', bp=0): """ Remove linear trend along axis from data. Parameters ---------- data : array_like The input data. axis : int, optional The axis along which to detrend the data. By default this is the last axis (-1). type : {'linear', 'constant'}, optional The type of detrending. If ``type == 'linear'`` (default), the result of a linear least-squares fit to `data` is subtracted from `data`. If ``type == 'constant'``, only the mean of `data` is subtracted. bp : array_like of ints, optional A sequence of break points. If given, an individual linear fit is performed for each part of `data` between two break points. Break points are specified as indices into `data`. Returns ------- ret : ndarray The detrended input data. Examples -------- >>> from scipy import signal >>> randgen = np.random.RandomState(9) >>> npoints = 1000 >>> noise = randgen.randn(npoints) >>> x = 3 + 2*np.linspace(0, 1, npoints) + noise >>> (signal.detrend(x) - noise).max() < 0.01 True """ if type not in ['linear', 'l', 'constant', 'c']: raise ValueError("Trend type must be 'linear' or 'constant'.") data = asarray(data) dtype = data.dtype.char if dtype not in 'dfDF': dtype = 'd' if type in ['constant', 'c']: ret = data - expand_dims(mean(data, axis), axis) return ret else: dshape = data.shape N = dshape[axis] bp = sort(unique(r_[0, bp, N])) if np.any(bp > N): raise ValueError("Breakpoints must be less than length " "of data along given axis.") Nreg = len(bp) - 1 # Restructure data so that axis is along first dimension and # all other dimensions are collapsed into second dimension rnk = len(dshape) if axis < 0: axis = axis + rnk newdims = r_[axis, 0:axis, axis + 1:rnk] newdata = reshape(transpose(data, tuple(newdims)), (N, prod(dshape, axis=0) // N)) newdata = newdata.copy() # make sure we have a copy if newdata.dtype.char not in 'dfDF': newdata = newdata.astype(dtype) # Find leastsq fit and remove it for each piece for m in range(Nreg): Npts = bp[m + 1] - bp[m] A = ones((Npts, 2), dtype) A[:, 0] = cast[dtype](arange(1, Npts + 1) * 1.0 / Npts) sl = slice(bp[m], bp[m + 1]) coef, resids, rank, s = linalg.lstsq(A, newdata[sl]) newdata[sl] = newdata[sl] - dot(A, coef) # Put data back in original shape. tdshape = take(dshape, newdims, 0) ret = reshape(newdata, tuple(tdshape)) vals = list(range(1, rnk)) olddims = vals[:axis] + [0] + vals[axis:] ret = transpose(ret, tuple(olddims)) return ret def lfilter_zi(b, a): """ Compute an initial state `zi` for the lfilter function that corresponds to the steady state of the step response. A typical use of this function is to set the initial state so that the output of the filter starts at the same value as the first element of the signal to be filtered. Parameters ---------- b, a : array_like (1-D) The IIR filter coefficients. See `lfilter` for more information. Returns ------- zi : 1-D ndarray The initial state for the filter. Notes ----- A linear filter with order m has a state space representation (A, B, C, D), for which the output y of the filter can be expressed as:: z(n+1) = A*z(n) + B*x(n) y(n) = C*z(n) + D*x(n) where z(n) is a vector of length m, A has shape (m, m), B has shape (m, 1), C has shape (1, m) and D has shape (1, 1) (assuming x(n) is a scalar). lfilter_zi solves:: zi = A*zi + B In other words, it finds the initial condition for which the response to an input of all ones is a constant. Given the filter coefficients `a` and `b`, the state space matrices for the transposed direct form II implementation of the linear filter, which is the implementation used by scipy.signal.lfilter, are:: A = scipy.linalg.companion(a).T B = b[1:] - a[1:]*b[0] assuming `a[0]` is 1.0; if `a[0]` is not 1, `a` and `b` are first divided by a[0]. Examples -------- The following code creates a lowpass Butterworth filter. Then it applies that filter to an array whose values are all 1.0; the output is also all 1.0, as expected for a lowpass filter. If the `zi` argument of `lfilter` had not been given, the output would have shown the transient signal. >>> from numpy import array, ones >>> from scipy.signal import lfilter, lfilter_zi, butter >>> b, a = butter(5, 0.25) >>> zi = lfilter_zi(b, a) >>> y, zo = lfilter(b, a, ones(10), zi=zi) >>> y array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]) Another example: >>> x = array([0.5, 0.5, 0.5, 0.0, 0.0, 0.0, 0.0]) >>> y, zf = lfilter(b, a, x, zi=zi*x[0]) >>> y array([ 0.5 , 0.5 , 0.5 , 0.49836039, 0.48610528, 0.44399389, 0.35505241]) Note that the `zi` argument to `lfilter` was computed using `lfilter_zi` and scaled by `x[0]`. Then the output `y` has no transient until the input drops from 0.5 to 0.0. """ # FIXME: Can this function be replaced with an appropriate # use of lfiltic? For example, when b,a = butter(N,Wn), # lfiltic(b, a, y=numpy.ones_like(a), x=numpy.ones_like(b)). # # We could use scipy.signal.normalize, but it uses warnings in # cases where a ValueError is more appropriate, and it allows # b to be 2D. b = np.atleast_1d(b) if b.ndim != 1: raise ValueError("Numerator b must be 1-D.") a = np.atleast_1d(a) if a.ndim != 1: raise ValueError("Denominator a must be 1-D.") while len(a) > 1 and a[0] == 0.0: a = a[1:] if a.size < 1: raise ValueError("There must be at least one nonzero `a` coefficient.") if a[0] != 1.0: # Normalize the coefficients so a[0] == 1. b = b / a[0] a = a / a[0] n = max(len(a), len(b)) # Pad a or b with zeros so they are the same length. if len(a) < n: a = np.r_[a, np.zeros(n - len(a))] elif len(b) < n: b = np.r_[b, np.zeros(n - len(b))] IminusA = np.eye(n - 1) - linalg.companion(a).T B = b[1:] - a[1:] * b[0] # Solve zi = A*zi + B zi = np.linalg.solve(IminusA, B) # For future reference: we could also use the following # explicit formulas to solve the linear system: # # zi = np.zeros(n - 1) # zi[0] = B.sum() / IminusA[:,0].sum() # asum = 1.0 # csum = 0.0 # for k in range(1,n-1): # asum += a[k] # csum += b[k] - a[k]*b[0] # zi[k] = asum*zi[0] - csum return zi def sosfilt_zi(sos): """ Compute an initial state `zi` for the sosfilt function that corresponds to the steady state of the step response. A typical use of this function is to set the initial state so that the output of the filter starts at the same value as the first element of the signal to be filtered. Parameters ---------- sos : array_like Array of second-order filter coefficients, must have shape ``(n_sections, 6)``. See `sosfilt` for the SOS filter format specification. Returns ------- zi : ndarray Initial conditions suitable for use with ``sosfilt``, shape ``(n_sections, 2)``. See Also -------- sosfilt, zpk2sos Notes ----- .. versionadded:: 0.16.0 Examples -------- Filter a rectangular pulse that begins at time 0, with and without the use of the `zi` argument of `scipy.signal.sosfilt`. >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> sos = signal.butter(9, 0.125, output='sos') >>> zi = signal.sosfilt_zi(sos) >>> x = (np.arange(250) < 100).astype(int) >>> f1 = signal.sosfilt(sos, x) >>> f2, zo = signal.sosfilt(sos, x, zi=zi) >>> plt.plot(x, 'k--', label='x') >>> plt.plot(f1, 'b', alpha=0.5, linewidth=2, label='filtered') >>> plt.plot(f2, 'g', alpha=0.25, linewidth=4, label='filtered with zi') >>> plt.legend(loc='best') >>> plt.show() """ sos = np.asarray(sos) if sos.ndim != 2 or sos.shape[1] != 6: raise ValueError('sos must be shape (n_sections, 6)') n_sections = sos.shape[0] zi = np.empty((n_sections, 2)) scale = 1.0 for section in range(n_sections): b = sos[section, :3] a = sos[section, 3:] zi[section] = scale * lfilter_zi(b, a) # If H(z) = B(z)/A(z) is this section's transfer function, then # b.sum()/a.sum() is H(1), the gain at omega=0. That's the steady # state value of this section's step response. scale *= b.sum() / a.sum() return zi def _filtfilt_gust(b, a, x, axis=-1, irlen=None): """Forward-backward IIR filter that uses Gustafsson's method. Apply the IIR filter defined by `(b,a)` to `x` twice, first forward then backward, using Gustafsson's initial conditions [1]_. Let ``y_fb`` be the result of filtering first forward and then backward, and let ``y_bf`` be the result of filtering first backward then forward. Gustafsson's method is to compute initial conditions for the forward pass and the backward pass such that ``y_fb == y_bf``. Parameters ---------- b : scalar or 1-D ndarray Numerator coefficients of the filter. a : scalar or 1-D ndarray Denominator coefficients of the filter. x : ndarray Data to be filtered. axis : int, optional Axis of `x` to be filtered. Default is -1. irlen : int or None, optional The length of the nonnegligible part of the impulse response. If `irlen` is None, or if the length of the signal is less than ``2 * irlen``, then no part of the impulse response is ignored. Returns ------- y : ndarray The filtered data. x0 : ndarray Initial condition for the forward filter. x1 : ndarray Initial condition for the backward filter. Notes ----- Typically the return values `x0` and `x1` are not needed by the caller. The intended use of these return values is in unit tests. References ---------- .. [1] F. Gustaffson. Determining the initial states in forward-backward filtering. Transactions on Signal Processing, 46(4):988-992, 1996. """ # In the comments, "Gustafsson's paper" and [1] refer to the # paper referenced in the docstring. b = np.atleast_1d(b) a = np.atleast_1d(a) order = max(len(b), len(a)) - 1 if order == 0: # The filter is just scalar multiplication, with no state. scale = (b[0] / a[0])**2 y = scale * x return y, np.array([]), np.array([]) if axis != -1 or axis != x.ndim - 1: # Move the axis containing the data to the end. x = np.swapaxes(x, axis, x.ndim - 1) # n is the number of samples in the data to be filtered. n = x.shape[-1] if irlen is None or n <= 2*irlen: m = n else: m = irlen # Create Obs, the observability matrix (called O in the paper). # This matrix can be interpreted as the operator that propagates # an arbitrary initial state to the output, assuming the input is # zero. # In Gustafsson's paper, the forward and backward filters are not # necessarily the same, so he has both O_f and O_b. We use the same # filter in both directions, so we only need O. The same comment # applies to S below. Obs = np.zeros((m, order)) zi = np.zeros(order) zi[0] = 1 Obs[:, 0] = lfilter(b, a, np.zeros(m), zi=zi)[0] for k in range(1, order): Obs[k:, k] = Obs[:-k, 0] # Obsr is O^R (Gustafsson's notation for row-reversed O) Obsr = Obs[::-1] # Create S. S is the matrix that applies the filter to the reversed # propagated initial conditions. That is, # out = S.dot(zi) # is the same as # tmp, _ = lfilter(b, a, zeros(), zi=zi) # Propagate ICs. # out = lfilter(b, a, tmp[::-1]) # Reverse and filter. # Equations (5) & (6) of [1] S = lfilter(b, a, Obs[::-1], axis=0) # Sr is S^R (row-reversed S) Sr = S[::-1] # M is [(S^R - O), (O^R - S)] if m == n: M = np.hstack((Sr - Obs, Obsr - S)) else: # Matrix described in section IV of [1]. M = np.zeros((2*m, 2*order)) M[:m, :order] = Sr - Obs M[m:, order:] = Obsr - S # Naive forward-backward and backward-forward filters. # These have large transients because the filters use zero initial # conditions. y_f = lfilter(b, a, x) y_fb = lfilter(b, a, y_f[..., ::-1])[..., ::-1] y_b = lfilter(b, a, x[..., ::-1])[..., ::-1] y_bf = lfilter(b, a, y_b) delta_y_bf_fb = y_bf - y_fb if m == n: delta = delta_y_bf_fb else: start_m = delta_y_bf_fb[..., :m] end_m = delta_y_bf_fb[..., -m:] delta = np.concatenate((start_m, end_m), axis=-1) # ic_opt holds the "optimal" initial conditions. # The following code computes the result shown in the formula # of the paper between equations (6) and (7). if delta.ndim == 1: ic_opt = linalg.lstsq(M, delta)[0] else: # Reshape delta so it can be used as an array of multiple # right-hand-sides in linalg.lstsq. delta2d = delta.reshape(-1, delta.shape[-1]).T ic_opt0 = linalg.lstsq(M, delta2d)[0].T ic_opt = ic_opt0.reshape(delta.shape[:-1] + (M.shape[-1],)) # Now compute the filtered signal using equation (7) of [1]. # First, form [S^R, O^R] and call it W. if m == n: W = np.hstack((Sr, Obsr)) else: W = np.zeros((2*m, 2*order)) W[:m, :order] = Sr W[m:, order:] = Obsr # Equation (7) of [1] says # Y_fb^opt = Y_fb^0 + W * [x_0^opt; x_{N-1}^opt] # `wic` is (almost) the product on the right. # W has shape (m, 2*order), and ic_opt has shape (..., 2*order), # so we can't use W.dot(ic_opt). Instead, we dot ic_opt with W.T, # so wic has shape (..., m). wic = ic_opt.dot(W.T) # `wic` is "almost" the product of W and the optimal ICs in equation # (7)--if we're using a truncated impulse response (m < n), `wic` # contains only the adjustments required for the ends of the signal. # Here we form y_opt, taking this into account if necessary. y_opt = y_fb if m == n: y_opt += wic else: y_opt[..., :m] += wic[..., :m] y_opt[..., -m:] += wic[..., -m:] x0 = ic_opt[..., :order] x1 = ic_opt[..., -order:] if axis != -1 or axis != x.ndim - 1: # Restore the data axis to its original position. x0 = np.swapaxes(x0, axis, x.ndim - 1) x1 = np.swapaxes(x1, axis, x.ndim - 1) y_opt = np.swapaxes(y_opt, axis, x.ndim - 1) return y_opt, x0, x1 def filtfilt(b, a, x, axis=-1, padtype='odd', padlen=None, method='pad', irlen=None): """ A forward-backward filter. This function applies a linear filter twice, once forward and once backwards. The combined filter has linear phase. The function provides options for handling the edges of the signal. When `method` is "pad", the function pads the data along the given axis in one of three ways: odd, even or constant. The odd and even extensions have the corresponding symmetry about the end point of the data. The constant extension extends the data with the values at the end points. On both the forward and backward passes, the initial condition of the filter is found by using `lfilter_zi` and scaling it by the end point of the extended data. When `method` is "gust", Gustafsson's method [1]_ is used. Initial conditions are chosen for the forward and backward passes so that the forward-backward filter gives the same result as the backward-forward filter. Parameters ---------- b : (N,) array_like The numerator coefficient vector of the filter. a : (N,) array_like The denominator coefficient vector of the filter. If ``a[0]`` is not 1, then both `a` and `b` are normalized by ``a[0]``. x : array_like The array of data to be filtered. axis : int, optional The axis of `x` to which the filter is applied. Default is -1. padtype : str or None, optional Must be 'odd', 'even', 'constant', or None. This determines the type of extension to use for the padded signal to which the filter is applied. If `padtype` is None, no padding is used. The default is 'odd'. padlen : int or None, optional The number of elements by which to extend `x` at both ends of `axis` before applying the filter. This value must be less than ``x.shape[axis] - 1``. ``padlen=0`` implies no padding. The default value is ``3 * max(len(a), len(b))``. method : str, optional Determines the method for handling the edges of the signal, either "pad" or "gust". When `method` is "pad", the signal is padded; the type of padding is determined by `padtype` and `padlen`, and `irlen` is ignored. When `method` is "gust", Gustafsson's method is used, and `padtype` and `padlen` are ignored. irlen : int or None, optional When `method` is "gust", `irlen` specifies the length of the impulse response of the filter. If `irlen` is None, no part of the impulse response is ignored. For a long signal, specifying `irlen` can significantly improve the performance of the filter. Returns ------- y : ndarray The filtered output, an array of type numpy.float64 with the same shape as `x`. See Also -------- lfilter_zi, lfilter Notes ----- The option to use Gustaffson's method was added in scipy version 0.16.0. References ---------- .. [1] F. Gustaffson, "Determining the initial states in forward-backward filtering", Transactions on Signal Processing, Vol. 46, pp. 988-992, 1996. Examples -------- The examples will use several functions from `scipy.signal`. >>> from scipy import signal >>> import matplotlib.pyplot as plt First we create a one second signal that is the sum of two pure sine waves, with frequencies 5 Hz and 250 Hz, sampled at 2000 Hz. >>> t = np.linspace(0, 1.0, 2001) >>> xlow = np.sin(2 * np.pi * 5 * t) >>> xhigh = np.sin(2 * np.pi * 250 * t) >>> x = xlow + xhigh Now create a lowpass Butterworth filter with a cutoff of 0.125 times the Nyquist rate, or 125 Hz, and apply it to ``x`` with `filtfilt`. The result should be approximately ``xlow``, with no phase shift. >>> b, a = signal.butter(8, 0.125) >>> y = signal.filtfilt(b, a, x, padlen=150) >>> np.abs(y - xlow).max() 9.1086182074789912e-06 We get a fairly clean result for this artificial example because the odd extension is exact, and with the moderately long padding, the filter's transients have dissipated by the time the actual data is reached. In general, transient effects at the edges are unavoidable. The following example demonstrates the option ``method="gust"``. First, create a filter. >>> b, a = signal.ellip(4, 0.01, 120, 0.125) # Filter to be applied. >>> np.random.seed(123456) `sig` is a random input signal to be filtered. >>> n = 60 >>> sig = np.random.randn(n)**3 + 3*np.random.randn(n).cumsum() Apply `filtfilt` to `sig`, once using the Gustafsson method, and once using padding, and plot the results for comparison. >>> fgust = signal.filtfilt(b, a, sig, method="gust") >>> fpad = signal.filtfilt(b, a, sig, padlen=50) >>> plt.plot(sig, 'k-', label='input') >>> plt.plot(fgust, 'b-', linewidth=4, label='gust') >>> plt.plot(fpad, 'c-', linewidth=1.5, label='pad') >>> plt.legend(loc='best') >>> plt.show() The `irlen` argument can be used to improve the performance of Gustafsson's method. Estimate the impulse response length of the filter. >>> z, p, k = signal.tf2zpk(b, a) >>> eps = 1e-9 >>> r = np.max(np.abs(p)) >>> approx_impulse_len = int(np.ceil(np.log(eps) / np.log(r))) >>> approx_impulse_len 137 Apply the filter to a longer signal, with and without the `irlen` argument. The difference between `y1` and `y2` is small. For long signals, using `irlen` gives a significant performance improvement. >>> x = np.random.randn(5000) >>> y1 = signal.filtfilt(b, a, x, method='gust') >>> y2 = signal.filtfilt(b, a, x, method='gust', irlen=approx_impulse_len) >>> print(np.max(np.abs(y1 - y2))) 1.80056858312e-10 """ b = np.atleast_1d(b) a = np.atleast_1d(a) x = np.asarray(x) if method not in ["pad", "gust"]: raise ValueError("method must be 'pad' or 'gust'.") if method == "gust": y, z1, z2 = _filtfilt_gust(b, a, x, axis=axis, irlen=irlen) return y # `method` is "pad"... ntaps = max(len(a), len(b)) if padtype not in ['even', 'odd', 'constant', None]: raise ValueError(("Unknown value '%s' given to padtype. padtype " "must be 'even', 'odd', 'constant', or None.") % padtype) if padtype is None: padlen = 0 if padlen is None: # Original padding; preserved for backwards compatibility. edge = ntaps * 3 else: edge = padlen # x's 'axis' dimension must be bigger than edge. if x.shape[axis] <= edge: raise ValueError("The length of the input vector x must be at least " "padlen, which is %d." % edge) if padtype is not None and edge > 0: # Make an extension of length `edge` at each # end of the input array. if padtype == 'even': ext = even_ext(x, edge, axis=axis) elif padtype == 'odd': ext = odd_ext(x, edge, axis=axis) else: ext = const_ext(x, edge, axis=axis) else: ext = x # Get the steady state of the filter's step response. zi = lfilter_zi(b, a) # Reshape zi and create x0 so that zi*x0 broadcasts # to the correct value for the 'zi' keyword argument # to lfilter. zi_shape = [1] * x.ndim zi_shape[axis] = zi.size zi = np.reshape(zi, zi_shape) x0 = axis_slice(ext, stop=1, axis=axis) # Forward filter. (y, zf) = lfilter(b, a, ext, axis=axis, zi=zi * x0) # Backward filter. # Create y0 so zi*y0 broadcasts appropriately. y0 = axis_slice(y, start=-1, axis=axis) (y, zf) = lfilter(b, a, axis_reverse(y, axis=axis), axis=axis, zi=zi * y0) # Reverse y. y = axis_reverse(y, axis=axis) if edge > 0: # Slice the actual signal from the extended signal. y = axis_slice(y, start=edge, stop=-edge, axis=axis) return y def sosfilt(sos, x, axis=-1, zi=None): """ Filter data along one dimension using cascaded second-order sections Filter a data sequence, `x`, using a digital IIR filter defined by `sos`. This is implemented by performing `lfilter` for each second-order section. See `lfilter` for details. Parameters ---------- sos : array_like Array of second-order filter coefficients, must have shape ``(n_sections, 6)``. Each row corresponds to a second-order section, with the first three columns providing the numerator coefficients and the last three providing the denominator coefficients. x : array_like An N-dimensional input array. axis : int, optional The axis of the input data array along which to apply the linear filter. The filter is applied to each subarray along this axis. Default is -1. zi : array_like, optional Initial conditions for the cascaded filter delays. It is a (at least 2D) vector of shape ``(n_sections, ..., 2, ...)``, where ``..., 2, ...`` denotes the shape of `x`, but with ``x.shape[axis]`` replaced by 2. If `zi` is None or is not given then initial rest (i.e. all zeros) is assumed. Note that these initial conditions are *not* the same as the initial conditions given by `lfiltic` or `lfilter_zi`. Returns ------- y : ndarray The output of the digital filter. zf : ndarray, optional If `zi` is None, this is not returned, otherwise, `zf` holds the final filter delay values. See Also -------- zpk2sos, sos2zpk, sosfilt_zi Notes ----- The filter function is implemented as a series of second-order filters with direct-form II transposed structure. It is designed to minimize numerical precision errors for high-order filters. .. versionadded:: 0.16.0 Examples -------- Plot a 13th-order filter's impulse response using both `lfilter` and `sosfilt`, showing the instability that results from trying to do a 13th-order filter in a single stage (the numerical error pushes some poles outside of the unit circle): >>> import matplotlib.pyplot as plt >>> from scipy import signal >>> b, a = signal.ellip(13, 0.009, 80, 0.05, output='ba') >>> sos = signal.ellip(13, 0.009, 80, 0.05, output='sos') >>> x = np.zeros(700) >>> x[0] = 1. >>> y_tf = signal.lfilter(b, a, x) >>> y_sos = signal.sosfilt(sos, x) >>> plt.plot(y_tf, 'r', label='TF') >>> plt.plot(y_sos, 'k', label='SOS') >>> plt.legend(loc='best') >>> plt.show() """ x = np.asarray(x) sos = atleast_2d(sos) if sos.ndim != 2: raise ValueError('sos array must be 2D') n_sections, m = sos.shape if m != 6: raise ValueError('sos array must be shape (n_sections, 6)') use_zi = zi is not None if use_zi: zi = np.asarray(zi) x_zi_shape = list(x.shape) x_zi_shape[axis] = 2 x_zi_shape = tuple([n_sections] + x_zi_shape) if zi.shape != x_zi_shape: raise ValueError('Invalid zi shape. With axis=%r, an input with ' 'shape %r, and an sos array with %d sections, zi ' 'must have shape %r.' % (axis, x.shape, n_sections, x_zi_shape)) zf = zeros_like(zi) for section in range(n_sections): if use_zi: x, zf[section] = lfilter(sos[section, :3], sos[section, 3:], x, axis, zi=zi[section]) else: x = lfilter(sos[section, :3], sos[section, 3:], x, axis) out = (x, zf) if use_zi else x return out from scipy.signal.filter_design import cheby1 from scipy.signal.fir_filter_design import firwin def decimate(x, q, n=None, ftype='iir', axis=-1): """ Downsample the signal by using a filter. By default, an order 8 Chebyshev type I filter is used. A 30 point FIR filter with hamming window is used if `ftype` is 'fir'. Parameters ---------- x : ndarray The signal to be downsampled, as an N-dimensional array. q : int The downsampling factor. n : int, optional The order of the filter (1 less than the length for 'fir'). ftype : str {'iir', 'fir'}, optional The type of the lowpass filter. axis : int, optional The axis along which to decimate. Returns ------- y : ndarray The down-sampled signal. See also -------- resample """ if not isinstance(q, int): raise TypeError("q must be an integer") if n is None: if ftype == 'fir': n = 30 else: n = 8 if ftype == 'fir': b = firwin(n + 1, 1. / q, window='hamming') a = 1. else: b, a = cheby1(n, 0.05, 0.8 / q) y = lfilter(b, a, x, axis=axis) sl = [slice(None)] * y.ndim sl[axis] = slice(None, None, q) return y[sl]
mit
JohnGriffiths/dipy
scratch/very_scratch/diffusion_sphere_stats.py
20
18082
import nibabel import os import numpy as np import dipy as dp #import dipy.core.generalized_q_sampling as dgqs import dipy.reconst.gqi as dgqs import dipy.reconst.dti as ddti import dipy.reconst.recspeed as rp import dipy.io.pickles as pkl import scipy as sp from matplotlib.mlab import find #import dipy.core.sphere_plots as splots import dipy.core.sphere_stats as sphats import dipy.core.geometry as geometry import get_vertices as gv #old SimData files ''' results_SNR030_1fibre results_SNR030_1fibre+iso results_SNR030_2fibres_15deg results_SNR030_2fibres_30deg results_SNR030_2fibres_60deg results_SNR030_2fibres_90deg results_SNR030_2fibres+iso_15deg results_SNR030_2fibres+iso_30deg results_SNR030_2fibres+iso_60deg results_SNR030_2fibres+iso_90deg results_SNR030_isotropic ''' #fname='/home/ian/Data/SimData/results_SNR030_1fibre' ''' file has one row for every voxel, every voxel is repeating 1000 times with the same noise level , then we have 100 different directions. 1000 * 100 is the number of all rows. The 100 conditions are given by 10 polar angles (in degrees) 0, 20, 40, 60, 80, 80, 60, 40, 20 and 0, and each of these with longitude angle 0, 40, 80, 120, 160, 200, 240, 280, 320, 360. ''' #new complete SimVoxels files simdata = ['fibres_2_SNR_80_angle_90_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_60_angle_60_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_40_angle_30_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_40_angle_60_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_20_angle_15_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_100_angle_90_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_20_angle_30_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_40_angle_15_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_60_angle_15_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_100_angle_90_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_1_SNR_60_angle_00_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_80_angle_30_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_100_angle_15_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_100_angle_60_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_80_angle_60_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_60_angle_30_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_40_angle_60_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_80_angle_30_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_20_angle_30_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_60_angle_60_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_1_SNR_100_angle_00_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_1_SNR_100_angle_00_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_20_angle_15_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_1_SNR_20_angle_00_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_40_angle_15_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_20_angle_60_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_80_angle_15_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_1_SNR_80_angle_00_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_20_angle_90_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_60_angle_90_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_100_angle_30_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_80_angle_90_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_60_angle_15_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_20_angle_60_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_100_angle_15_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_1_SNR_20_angle_00_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_80_angle_60_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_1_SNR_80_angle_00_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_100_angle_30_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_1_SNR_40_angle_00_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_1_SNR_60_angle_00_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_40_angle_30_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_60_angle_30_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_40_angle_90_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_60_angle_90_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_80_angle_15_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_1_SNR_40_angle_00_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_100_angle_60_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_40_angle_90_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_20_angle_90_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00'] simdir = '/home/ian/Data/SimVoxels/' def gq_tn_calc_save(): for simfile in simdata: dataname = simfile print dataname sim_data=np.loadtxt(simdir+dataname) marta_table_fname='/home/ian/Data/SimData/Dir_and_bvals_DSI_marta.txt' b_vals_dirs=np.loadtxt(marta_table_fname) bvals=b_vals_dirs[:,0]*1000 gradients=b_vals_dirs[:,1:] gq = dgqs.GeneralizedQSampling(sim_data,bvals,gradients) gqfile = simdir+'gq/'+dataname+'.pkl' pkl.save_pickle(gqfile,gq) ''' gq.IN gq.__doc__ gq.glob_norm_param gq.QA gq.__init__ gq.odf gq.__class__ gq.__module__ gq.q2odf_params ''' tn = ddti.Tensor(sim_data,bvals,gradients) tnfile = simdir+'tn/'+dataname+'.pkl' pkl.save_pickle(tnfile,tn) ''' tn.ADC tn.__init__ tn._getevals tn.B tn.__module__ tn._getevecs tn.D tn.__new__ tn._getndim tn.FA tn.__reduce__ tn._getshape tn.IN tn.__reduce_ex__ tn._setevals tn.MD tn.__repr__ tn._setevecs tn.__class__ tn.__setattr__ tn.adc tn.__delattr__ tn.__sizeof__ tn.evals tn.__dict__ tn.__str__ tn.evecs tn.__doc__ tn.__subclasshook__ tn.fa tn.__format__ tn.__weakref__ tn.md tn.__getattribute__ tn._evals tn.ndim tn.__getitem__ tn._evecs tn.shape tn.__hash__ tn._getD ''' ''' file has one row for every voxel, every voxel is repeating 1000 times with the same noise level , then we have 100 different directions. 100 * 1000 is the number of all rows. At the moment this module is hardwired to the use of the EDS362 spherical mesh. I am assumung (needs testing) that directions 181 to 361 are the antipodal partners of directions 0 to 180. So when counting the number of different vertices that occur as maximal directions we wll map the indices modulo 181. ''' def analyze_maxima(indices, max_dirs, subsets): '''This calculates the eigenstats for each of the replicated batches of the simulation data ''' results = [] for direction in subsets: batch = max_dirs[direction,:,:] index_variety = np.array([len(set(np.remainder(indices[direction,:],181)))]) #normed_centroid, polar_centroid, centre, b1 = sphats.eigenstats(batch) centre, b1 = sphats.eigenstats(batch) # make azimuth be in range (0,360) rather than (-180,180) centre[1] += 360*(centre[1] < 0) #results.append(np.concatenate((normed_centroid, polar_centroid, centre, b1, index_variety))) results.append(np.concatenate((centre, b1, index_variety))) return results #dt_first_directions = tn.evecs[:,:,0].reshape((100,1000,3)) # these are the principal directions for the full set of simulations #gq_tn_calc_save() #eds=np.load(os.path.join(os.path.dirname(dp.__file__),'core','matrices','evenly_distributed_sphere_362.npz')) from dipy.data import get_sphere odf_vertices,odf_faces=get_sphere('symmetric362') #odf_vertices=eds['vertices'] def run_comparisons(sample_data=35): for simfile in [simdata[sample_data]]: dataname = simfile print dataname sim_data=np.loadtxt(simdir+dataname) gqfile = simdir+'gq/'+dataname+'.pkl' gq = pkl.load_pickle(gqfile) tnfile = simdir+'tn/'+dataname+'.pkl' tn = pkl.load_pickle(tnfile) dt_first_directions_in=odf_vertices[tn.IN] dt_indices = tn.IN.reshape((100,1000)) dt_results = analyze_maxima(dt_indices, dt_first_directions_in.reshape((100,1000,3)),range(10,90)) gq_indices = np.array(gq.IN[:,0],dtype='int').reshape((100,1000)) gq_first_directions_in=odf_vertices[np.array(gq.IN[:,0],dtype='int')] #print gq_first_directions_in.shape gq_results = analyze_maxima(gq_indices, gq_first_directions_in.reshape((100,1000,3)),range(10,90)) #for gqi see example dicoms_2_tracks gq.IN[:,0] np.set_printoptions(precision=3, suppress=True, linewidth=200, threshold=5000) out = open('/home/ian/Data/SimVoxels/Out/'+'***_'+dataname,'w') #print np.vstack(dt_results).shape, np.vstack(gq_results).shape results = np.hstack((np.vstack(dt_results), np.vstack(gq_results))) #print results.shape #results = np.vstack(dt_results) print >> out, results[:,:] out.close() #up = dt_batch[:,2]>= 0 #splots.plot_sphere(dt_batch[up], 'batch '+str(direction)) #splots.plot_lambert(dt_batch[up],'batch '+str(direction), centre) #spread = gq.q2odf_params e,v = np.linalg.eigh(np.dot(spread,spread.transpose())) effective_dimension = len(find(np.cumsum(e) > 0.05*np.sum(e))) #95% #rotated = np.dot(dt_batch,evecs) #rot_evals, rot_evecs = np.linalg.eig(np.dot(rotated.T,rotated)/rotated.shape[0]) #eval_order = np.argsort(rot_evals) #rotated = rotated[:,eval_order] #up = rotated[:,2]>= 0 #splot.plot_sphere(rotated[up],'first1000') #splot.plot_lambert(rotated[up],'batch '+str(direction)) def run_gq_sims(sample_data=[35,23,46,39,40,10,37,27,21,20]): results = [] out = open('/home/ian/Data/SimVoxels/Out/'+'npa+fa','w') for j in range(len(sample_data)): sample = sample_data[j] simfile = simdata[sample] dataname = simfile print dataname sim_data=np.loadtxt(simdir+dataname) marta_table_fname='/home/ian/Data/SimData/Dir_and_bvals_DSI_marta.txt' b_vals_dirs=np.loadtxt(marta_table_fname) bvals=b_vals_dirs[:,0]*1000 gradients=b_vals_dirs[:,1:] for j in np.vstack((np.arange(100)*1000,np.arange(100)*1000+1)).T.ravel(): # 0,1,1000,1001,2000,2001,... s = sim_data[j,:] gqs = dp.GeneralizedQSampling(s.reshape((1,102)),bvals,gradients,Lambda=3.5) tn = dp.Tensor(s.reshape((1,102)),bvals,gradients,fit_method='LS') t0, t1, t2, npa = gqs.npa(s, width = 5) print >> out, dataname, j, npa, tn.fa()[0] ''' for (i,o) in enumerate(gqs.odf(s)): print i,o for (i,o) in enumerate(gqs.odf_vertices): print i,o ''' #o = gqs.odf(s) #v = gqs.odf_vertices #pole = v[t0[0]] #eqv = dgqs.equatorial_zone_vertices(v, pole, 5) #print 'Number of equatorial vertices: ', len(eqv) #print np.max(o[eqv]),np.min(o[eqv]) #cos_e_pole = [np.dot(pole.T, v[i]) for i in eqv] #print np.min(cos1), np.max(cos1) #print 'equatorial max in equatorial vertices:', t1[0] in eqv #x = np.cross(v[t0[0]],v[t1[0]]) #x = x/np.sqrt(np.sum(x**2)) #print x #ptchv = dgqs.patch_vertices(v, x, 5) #print len(ptchv) #eqp = eqv[np.argmin([np.abs(np.dot(v[t1[0]].T,v[p])) for p in eqv])] #print (eqp, o[eqp]) #print t2[0] in ptchv, t2[0] in eqv #print np.dot(pole.T, v[t1[0]]), np.dot(pole.T, v[t2[0]]) #print ptchv[np.argmin([o[v] for v in ptchv])] #gq_indices = np.array(gq.IN[:,0],dtype='int').reshape((100,1000)) #gq_first_directions_in=odf_vertices[np.array(gq.IN[:,0],dtype='int')] #print gq_first_directions_in.shape #gq_results = analyze_maxima(gq_indices, gq_first_directions_in.reshape((100,1000,3)),range(100)) #for gqi see example dicoms_2_tracks gq.IN[:,0] #np.set_printoptions(precision=6, suppress=True, linewidth=200, threshold=5000) #out = open('/home/ian/Data/SimVoxels/Out/'+'+++_'+dataname,'w') #results = np.hstack((np.vstack(dt_results), np.vstack(gq_results))) #results = np.vstack(dt_results) #print >> out, results[:,:] out.close() def run_small_data(): #smalldir = '/home/ian/Devel/dipy/dipy/data/' smalldir = '/home/eg309/Devel/dipy/dipy/data/' # from os.path import join as opj # bvals=np.load(opj(os.path.dirname(__file__), \ # 'data','small_64D.bvals.npy')) bvals=np.load(smalldir+'small_64D.bvals.npy') # gradients=np.load(opj(os.path.dirname(__file__), \ # 'data','small_64D.gradients.npy')) gradients=np.load(smalldir+'small_64D.gradients.npy') # img =ni.load(os.path.join(os.path.dirname(__file__),\ # 'data','small_64D.nii')) img=nibabel.load(smalldir+'small_64D.nii') small_data=img.get_data() print 'real_data', small_data.shape gqsmall = dgqs.GeneralizedQSampling(small_data,bvals,gradients) tnsmall = ddti.Tensor(small_data,bvals,gradients) x,y,z,a,b=tnsmall.evecs.shape evecs=tnsmall.evecs xyz=x*y*z evecs = evecs.reshape(xyz,3,3) #vs = np.sign(evecs[:,2,:]) #print vs.shape #print np.hstack((vs,vs,vs)).reshape(1000,3,3).shape #evecs = np.hstack((vs,vs,vs)).reshape(1000,3,3) #print evecs.shape evals=tnsmall.evals evals = evals.reshape(xyz,3) #print evals.shape #print('GQS in %d' %(t2-t1)) ''' eds=np.load(opj(os.path.dirname(__file__),\ '..','matrices',\ 'evenly_distributed_sphere_362.npz')) ''' from dipy.data import get_sphere odf_vertices,odf_faces=get_sphere('symmetric362') #odf_vertices=eds['vertices'] #odf_faces=eds['faces'] #Yeh et.al, IEEE TMI, 2010 #calculate the odf using GQI scaling=np.sqrt(bvals*0.01506) # 0.01506 = 6*D where D is the free #water diffusion coefficient #l_values sqrt(6 D tau) D free water #diffusion coefficiet and tau included in the b-value tmp=np.tile(scaling,(3,1)) b_vector=gradients.T*tmp Lambda = 1.2 # smoothing parameter - diffusion sampling length q2odf_params=np.sinc(np.dot(b_vector.T, odf_vertices.T) * Lambda/np.pi) #implements equation no. 9 from Yeh et.al. S=small_data.copy() x,y,z,g=S.shape S=S.reshape(x*y*z,g) QA = np.zeros((x*y*z,5)) IN = np.zeros((x*y*z,5)) FA = tnsmall.fa().reshape(x*y*z) fwd = 0 #Calculate Quantitative Anisotropy and find the peaks and the indices #for every voxel summary = {} summary['vertices'] = odf_vertices v = odf_vertices.shape[0] summary['faces'] = odf_faces f = odf_faces.shape[0] for (i,s) in enumerate(S): #print 'Volume %d' % i istr = str(i) summary[istr] = {} t0, t1, t2, npa = gqsmall.npa(s, width = 5) summary[istr]['triple']=(t0,t1,t2) summary[istr]['npa']=npa odf = Q2odf(s,q2odf_params) peaks,inds=rp.peak_finding(odf,odf_faces) fwd=max(np.max(odf),fwd) #peaks = peaks - np.min(odf) n_peaks=min(len(peaks),5) peak_heights = [odf[i] for i in inds[:n_peaks]] #QA[i][:l] = peaks[:n_peaks] IN[i][:n_peaks] = inds[:n_peaks] summary[istr]['odf'] = odf summary[istr]['peaks'] = peaks summary[istr]['inds'] = inds summary[istr]['evecs'] = evecs[i,:,:] summary[istr]['evals'] = evals[i,:] summary[istr]['n_peaks'] = n_peaks summary[istr]['peak_heights'] = peak_heights # summary[istr]['fa'] = tnsmall.fa()[0] summary[istr]['fa'] = FA[i] ''' QA/=fwd QA=QA.reshape(x,y,z,5) IN=IN.reshape(x,y,z,5) ''' peaks_1 = [i for i in range(1000) if summary[str(i)]['n_peaks']==1] peaks_2 = [i for i in range(1000) if summary[str(i)]['n_peaks']==2] peaks_3 = [i for i in range(1000) if summary[str(i)]['n_peaks']==3] #peaks_2 = [i for i in range(1000) if len(summary[str(i)]['inds'])==2] #peaks_3 = [i for i in range(1000) if len(summary[str(i)]['inds'])==3] print '#voxels with 1, 2, 3 peaks', len(peaks_1),len(peaks_2),len(peaks_3) return FA, summary def Q2odf(s,q2odf_params): ''' construct odf for a voxel ''' odf=np.dot(s,q2odf_params) return odf #run_comparisons() #run_gq_sims() FA, summary = run_small_data() peaks_1 = [i for i in range(1000) if summary[str(i)]['n_peaks']==1] peaks_2 = [i for i in range(1000) if summary[str(i)]['n_peaks']==2] peaks_3 = [i for i in range(1000) if summary[str(i)]['n_peaks']==3] fa_npa_1 = [[summary[str(i)]['fa'], summary[str(i)]['npa'], summary[str(i)]['peak_heights']] for i in peaks_1] fa_npa_2 = [[summary[str(i)]['fa'], summary[str(i)]['npa'], summary[str(i)]['peak_heights']] for i in peaks_2] fa_npa_3 = [[summary[str(i)]['fa'], summary[str(i)]['npa'], summary[str(i)]['peak_heights']] for i in peaks_3]
bsd-3-clause
bosszhou/ThinkStats2
code/chap12soln.py
68
4459
"""This file contains code for use with "Think Stats", by Allen B. Downey, available from greenteapress.com Copyright 2014 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ from __future__ import print_function import pandas import numpy as np import statsmodels.formula.api as smf import thinkplot import thinkstats2 import regression import timeseries def RunQuadraticModel(daily): """Runs a linear model of prices versus years. daily: DataFrame of daily prices returns: model, results """ daily['years2'] = daily.years**2 model = smf.ols('ppg ~ years + years2', data=daily) results = model.fit() return model, results def PlotQuadraticModel(daily, name): """ """ model, results = RunQuadraticModel(daily) regression.SummarizeResults(results) timeseries.PlotFittedValues(model, results, label=name) thinkplot.Save(root='timeseries11', title='fitted values', xlabel='years', xlim=[-0.1, 3.8], ylabel='price per gram ($)') timeseries.PlotResidualPercentiles(model, results) thinkplot.Save(root='timeseries12', title='residuals', xlabel='years', ylabel='price per gram ($)') years = np.linspace(0, 5, 101) thinkplot.Scatter(daily.years, daily.ppg, alpha=0.1, label=name) timeseries.PlotPredictions(daily, years, func=RunQuadraticModel) thinkplot.Save(root='timeseries13', title='predictions', xlabel='years', xlim=[years[0]-0.1, years[-1]+0.1], ylabel='price per gram ($)') def PlotEwmaPredictions(daily, name): """ """ # use EWMA to estimate slopes filled = timeseries.FillMissing(daily) filled['slope'] = pandas.ewma(filled.ppg.diff(), span=180) filled[-1:] # extract the last inter and slope start = filled.index[-1] inter = filled.ewma[-1] slope = filled.slope[-1] # reindex the DataFrame, adding a year to the end dates = pandas.date_range(filled.index.min(), filled.index.max() + np.timedelta64(365, 'D')) predicted = filled.reindex(dates) # generate predicted values and add them to the end predicted['date'] = predicted.index one_day = np.timedelta64(1, 'D') predicted['days'] = (predicted.date - start) / one_day predict = inter + slope * predicted.days predicted.ewma.fillna(predict, inplace=True) # plot the actual values and predictions thinkplot.Scatter(daily.ppg, alpha=0.1, label=name) thinkplot.Plot(predicted.ewma) thinkplot.Save() class SerialCorrelationTest(thinkstats2.HypothesisTest): """Tests serial correlations by permutation.""" def TestStatistic(self, data): """Computes the test statistic. data: tuple of xs and ys """ series, lag = data test_stat = abs(thinkstats2.SerialCorr(series, lag)) return test_stat def RunModel(self): """Run the model of the null hypothesis. returns: simulated data """ series, lag = self.data permutation = series.reindex(np.random.permutation(series.index)) return permutation, lag def TestSerialCorr(daily): """Tests serial correlations in daily prices and their residuals. daily: DataFrame of daily prices """ # test the correlation between consecutive prices series = daily.ppg test = SerialCorrelationTest((series, 1)) pvalue = test.PValue() print(test.actual, pvalue) # test for serial correlation in residuals of the linear model _, results = timeseries.RunLinearModel(daily) series = results.resid test = SerialCorrelationTest((series, 1)) pvalue = test.PValue() print(test.actual, pvalue) # test for serial correlation in residuals of the quadratic model _, results = RunQuadraticModel(daily) series = results.resid test = SerialCorrelationTest((series, 1)) pvalue = test.PValue() print(test.actual, pvalue) def main(name): transactions = timeseries.ReadData() dailies = timeseries.GroupByQualityAndDay(transactions) name = 'high' daily = dailies[name] PlotQuadraticModel(daily, name) TestSerialCorr(daily) PlotEwmaPredictions(daily, name) if __name__ == '__main__': import sys main(*sys.argv)
gpl-3.0
sunzhxjs/JobGIS
lib/python2.7/site-packages/pandas/util/clipboard.py
16
6355
# Pyperclip v1.3 # A cross-platform clipboard module for Python. (only handles plain text for now) # By Al Sweigart [email protected] # Usage: # import pyperclip # pyperclip.copy('The text to be copied to the clipboard.') # spam = pyperclip.paste() # On Mac, this module makes use of the pbcopy and pbpaste commands, which should come with the os. # On Linux, this module makes use of the xclip command, which should come with the os. Otherwise run "sudo apt-get install xclip" # Copyright (c) 2010, Albert Sweigart # All rights reserved. # # BSD-style license: # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the pyperclip nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY Albert Sweigart "AS IS" AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL Albert Sweigart BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # Change Log: # 1.2 Use the platform module to help determine OS. # 1.3 Changed ctypes.windll.user32.OpenClipboard(None) to ctypes.windll.user32.OpenClipboard(0), after some people ran into some TypeError import platform, os class NoClipboardProgramError(OSError): pass def winGetClipboard(): ctypes.windll.user32.OpenClipboard(0) pcontents = ctypes.windll.user32.GetClipboardData(1) # 1 is CF_TEXT data = ctypes.c_char_p(pcontents).value #ctypes.windll.kernel32.GlobalUnlock(pcontents) ctypes.windll.user32.CloseClipboard() return data def winSetClipboard(text): GMEM_DDESHARE = 0x2000 ctypes.windll.user32.OpenClipboard(0) ctypes.windll.user32.EmptyClipboard() try: # works on Python 2 (bytes() only takes one argument) hCd = ctypes.windll.kernel32.GlobalAlloc(GMEM_DDESHARE, len(bytes(text))+1) except TypeError: # works on Python 3 (bytes() requires an encoding) hCd = ctypes.windll.kernel32.GlobalAlloc(GMEM_DDESHARE, len(bytes(text, 'ascii'))+1) pchData = ctypes.windll.kernel32.GlobalLock(hCd) try: # works on Python 2 (bytes() only takes one argument) ctypes.cdll.msvcrt.strcpy(ctypes.c_char_p(pchData), bytes(text)) except TypeError: # works on Python 3 (bytes() requires an encoding) ctypes.cdll.msvcrt.strcpy(ctypes.c_char_p(pchData), bytes(text, 'ascii')) ctypes.windll.kernel32.GlobalUnlock(hCd) ctypes.windll.user32.SetClipboardData(1,hCd) ctypes.windll.user32.CloseClipboard() def macSetClipboard(text): outf = os.popen('pbcopy', 'w') outf.write(text) outf.close() def macGetClipboard(): outf = os.popen('pbpaste', 'r') content = outf.read() outf.close() return content def gtkGetClipboard(): return gtk.Clipboard().wait_for_text() def gtkSetClipboard(text): cb = gtk.Clipboard() cb.set_text(text) cb.store() def qtGetClipboard(): return str(cb.text()) def qtSetClipboard(text): cb.setText(text) def xclipSetClipboard(text): outf = os.popen('xclip -selection c', 'w') outf.write(text) outf.close() def xclipGetClipboard(): outf = os.popen('xclip -selection c -o', 'r') content = outf.read() outf.close() return content def xselSetClipboard(text): outf = os.popen('xsel -i', 'w') outf.write(text) outf.close() def xselGetClipboard(): outf = os.popen('xsel -o', 'r') content = outf.read() outf.close() return content if os.name == 'nt' or platform.system() == 'Windows': import ctypes getcb = winGetClipboard setcb = winSetClipboard elif os.name == 'mac' or platform.system() == 'Darwin': getcb = macGetClipboard setcb = macSetClipboard elif os.name == 'posix' or platform.system() == 'Linux': xclipExists = os.system('which xclip > /dev/null') == 0 if xclipExists: getcb = xclipGetClipboard setcb = xclipSetClipboard else: xselExists = os.system('which xsel > /dev/null') == 0 if xselExists: getcb = xselGetClipboard setcb = xselSetClipboard else: try: import gtk except ImportError: try: import PyQt4 as qt4 import PyQt4.QtCore import PyQt4.QtGui except ImportError: try: import PySide as qt4 import PySide.QtCore import PySide.QtGui except ImportError: raise NoClipboardProgramError('Pyperclip requires the' ' gtk, PyQt4, or PySide' ' module installed, or ' 'either the xclip or ' 'xsel command.') app = qt4.QtGui.QApplication([]) cb = qt4.QtGui.QApplication.clipboard() getcb = qtGetClipboard setcb = qtSetClipboard else: getcb = gtkGetClipboard setcb = gtkSetClipboard copy = setcb paste = getcb ## pandas aliases clipboard_get = paste clipboard_set = copy
mit
WangWenjun559/Weiss
summary/sumy/sklearn/linear_model/tests/test_perceptron.py
378
1815
import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_raises from sklearn.utils import check_random_state from sklearn.datasets import load_iris from sklearn.linear_model import Perceptron iris = load_iris() random_state = check_random_state(12) indices = np.arange(iris.data.shape[0]) random_state.shuffle(indices) X = iris.data[indices] y = iris.target[indices] X_csr = sp.csr_matrix(X) X_csr.sort_indices() class MyPerceptron(object): def __init__(self, n_iter=1): self.n_iter = n_iter def fit(self, X, y): n_samples, n_features = X.shape self.w = np.zeros(n_features, dtype=np.float64) self.b = 0.0 for t in range(self.n_iter): for i in range(n_samples): if self.predict(X[i])[0] != y[i]: self.w += y[i] * X[i] self.b += y[i] def project(self, X): return np.dot(X, self.w) + self.b def predict(self, X): X = np.atleast_2d(X) return np.sign(self.project(X)) def test_perceptron_accuracy(): for data in (X, X_csr): clf = Perceptron(n_iter=30, shuffle=False) clf.fit(data, y) score = clf.score(data, y) assert_true(score >= 0.7) def test_perceptron_correctness(): y_bin = y.copy() y_bin[y != 1] = -1 clf1 = MyPerceptron(n_iter=2) clf1.fit(X, y_bin) clf2 = Perceptron(n_iter=2, shuffle=False) clf2.fit(X, y_bin) assert_array_almost_equal(clf1.w, clf2.coef_.ravel()) def test_undefined_methods(): clf = Perceptron() for meth in ("predict_proba", "predict_log_proba"): assert_raises(AttributeError, lambda x: getattr(clf, x), meth)
apache-2.0
kjung/scikit-learn
sklearn/datasets/lfw.py
31
19544
"""Loader for the Labeled Faces in the Wild (LFW) dataset This dataset is a collection of JPEG pictures of famous people collected over the internet, all details are available on the official website: http://vis-www.cs.umass.edu/lfw/ Each picture is centered on a single face. The typical task is called Face Verification: given a pair of two pictures, a binary classifier must predict whether the two images are from the same person. An alternative task, Face Recognition or Face Identification is: given the picture of the face of an unknown person, identify the name of the person by referring to a gallery of previously seen pictures of identified persons. Both Face Verification and Face Recognition are tasks that are typically performed on the output of a model trained to perform Face Detection. The most popular model for Face Detection is called Viola-Johns and is implemented in the OpenCV library. The LFW faces were extracted by this face detector from various online websites. """ # Copyright (c) 2011 Olivier Grisel <[email protected]> # License: BSD 3 clause from os import listdir, makedirs, remove from os.path import join, exists, isdir from sklearn.utils import deprecated import logging import numpy as np try: import urllib.request as urllib # for backwards compatibility except ImportError: import urllib from .base import get_data_home, Bunch from ..externals.joblib import Memory from ..externals.six import b logger = logging.getLogger(__name__) BASE_URL = "http://vis-www.cs.umass.edu/lfw/" ARCHIVE_NAME = "lfw.tgz" FUNNELED_ARCHIVE_NAME = "lfw-funneled.tgz" TARGET_FILENAMES = [ 'pairsDevTrain.txt', 'pairsDevTest.txt', 'pairs.txt', ] def scale_face(face): """Scale back to 0-1 range in case of normalization for plotting""" scaled = face - face.min() scaled /= scaled.max() return scaled # # Common private utilities for data fetching from the original LFW website # local disk caching, and image decoding. # def check_fetch_lfw(data_home=None, funneled=True, download_if_missing=True): """Helper function to download any missing LFW data""" data_home = get_data_home(data_home=data_home) lfw_home = join(data_home, "lfw_home") if funneled: archive_path = join(lfw_home, FUNNELED_ARCHIVE_NAME) data_folder_path = join(lfw_home, "lfw_funneled") archive_url = BASE_URL + FUNNELED_ARCHIVE_NAME else: archive_path = join(lfw_home, ARCHIVE_NAME) data_folder_path = join(lfw_home, "lfw") archive_url = BASE_URL + ARCHIVE_NAME if not exists(lfw_home): makedirs(lfw_home) for target_filename in TARGET_FILENAMES: target_filepath = join(lfw_home, target_filename) if not exists(target_filepath): if download_if_missing: url = BASE_URL + target_filename logger.warning("Downloading LFW metadata: %s", url) urllib.urlretrieve(url, target_filepath) else: raise IOError("%s is missing" % target_filepath) if not exists(data_folder_path): if not exists(archive_path): if download_if_missing: logger.warning("Downloading LFW data (~200MB): %s", archive_url) urllib.urlretrieve(archive_url, archive_path) else: raise IOError("%s is missing" % target_filepath) import tarfile logger.info("Decompressing the data archive to %s", data_folder_path) tarfile.open(archive_path, "r:gz").extractall(path=lfw_home) remove(archive_path) return lfw_home, data_folder_path def _load_imgs(file_paths, slice_, color, resize): """Internally used to load images""" # Try to import imread and imresize from PIL. We do this here to prevent # the whole sklearn.datasets module from depending on PIL. try: try: from scipy.misc import imread except ImportError: from scipy.misc.pilutil import imread from scipy.misc import imresize except ImportError: raise ImportError("The Python Imaging Library (PIL)" " is required to load data from jpeg files") # compute the portion of the images to load to respect the slice_ parameter # given by the caller default_slice = (slice(0, 250), slice(0, 250)) if slice_ is None: slice_ = default_slice else: slice_ = tuple(s or ds for s, ds in zip(slice_, default_slice)) h_slice, w_slice = slice_ h = (h_slice.stop - h_slice.start) // (h_slice.step or 1) w = (w_slice.stop - w_slice.start) // (w_slice.step or 1) if resize is not None: resize = float(resize) h = int(resize * h) w = int(resize * w) # allocate some contiguous memory to host the decoded image slices n_faces = len(file_paths) if not color: faces = np.zeros((n_faces, h, w), dtype=np.float32) else: faces = np.zeros((n_faces, h, w, 3), dtype=np.float32) # iterate over the collected file path to load the jpeg files as numpy # arrays for i, file_path in enumerate(file_paths): if i % 1000 == 0: logger.info("Loading face #%05d / %05d", i + 1, n_faces) # Checks if jpeg reading worked. Refer to issue #3594 for more # details. img = imread(file_path) if img.ndim is 0: raise RuntimeError("Failed to read the image file %s, " "Please make sure that libjpeg is installed" % file_path) face = np.asarray(img[slice_], dtype=np.float32) face /= 255.0 # scale uint8 coded colors to the [0.0, 1.0] floats if resize is not None: face = imresize(face, resize) if not color: # average the color channels to compute a gray levels # representation face = face.mean(axis=2) faces[i, ...] = face return faces # # Task #1: Face Identification on picture with names # def _fetch_lfw_people(data_folder_path, slice_=None, color=False, resize=None, min_faces_per_person=0): """Perform the actual data loading for the lfw people dataset This operation is meant to be cached by a joblib wrapper. """ # scan the data folder content to retain people with more that # `min_faces_per_person` face pictures person_names, file_paths = [], [] for person_name in sorted(listdir(data_folder_path)): folder_path = join(data_folder_path, person_name) if not isdir(folder_path): continue paths = [join(folder_path, f) for f in listdir(folder_path)] n_pictures = len(paths) if n_pictures >= min_faces_per_person: person_name = person_name.replace('_', ' ') person_names.extend([person_name] * n_pictures) file_paths.extend(paths) n_faces = len(file_paths) if n_faces == 0: raise ValueError("min_faces_per_person=%d is too restrictive" % min_faces_per_person) target_names = np.unique(person_names) target = np.searchsorted(target_names, person_names) faces = _load_imgs(file_paths, slice_, color, resize) # shuffle the faces with a deterministic RNG scheme to avoid having # all faces of the same person in a row, as it would break some # cross validation and learning algorithms such as SGD and online # k-means that make an IID assumption indices = np.arange(n_faces) np.random.RandomState(42).shuffle(indices) faces, target = faces[indices], target[indices] return faces, target, target_names def fetch_lfw_people(data_home=None, funneled=True, resize=0.5, min_faces_per_person=0, color=False, slice_=(slice(70, 195), slice(78, 172)), download_if_missing=True): """Loader for the Labeled Faces in the Wild (LFW) people dataset This dataset is a collection of JPEG pictures of famous people collected on the internet, all details are available on the official website: http://vis-www.cs.umass.edu/lfw/ Each picture is centered on a single face. Each pixel of each channel (color in RGB) is encoded by a float in range 0.0 - 1.0. The task is called Face Recognition (or Identification): given the picture of a face, find the name of the person given a training set (gallery). The original images are 250 x 250 pixels, but the default slice and resize arguments reduce them to 62 x 74. Parameters ---------- data_home : optional, default: None Specify another download and cache folder for the datasets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. funneled : boolean, optional, default: True Download and use the funneled variant of the dataset. resize : float, optional, default 0.5 Ratio used to resize the each face picture. min_faces_per_person : int, optional, default None The extracted dataset will only retain pictures of people that have at least `min_faces_per_person` different pictures. color : boolean, optional, default False Keep the 3 RGB channels instead of averaging them to a single gray level channel. If color is True the shape of the data has one more dimension than than the shape with color = False. slice_ : optional Provide a custom 2D slice (height, width) to extract the 'interesting' part of the jpeg files and avoid use statistical correlation from the background download_if_missing : optional, True by default If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. Returns ------- dataset : dict-like object with the following attributes: dataset.data : numpy array of shape (13233, 2914) Each row corresponds to a ravelled face image of original size 62 x 47 pixels. Changing the ``slice_`` or resize parameters will change the shape of the output. dataset.images : numpy array of shape (13233, 62, 47) Each row is a face image corresponding to one of the 5749 people in the dataset. Changing the ``slice_`` or resize parameters will change the shape of the output. dataset.target : numpy array of shape (13233,) Labels associated to each face image. Those labels range from 0-5748 and correspond to the person IDs. dataset.DESCR : string Description of the Labeled Faces in the Wild (LFW) dataset. """ lfw_home, data_folder_path = check_fetch_lfw( data_home=data_home, funneled=funneled, download_if_missing=download_if_missing) logger.info('Loading LFW people faces from %s', lfw_home) # wrap the loader in a memoizing function that will return memmaped data # arrays for optimal memory usage m = Memory(cachedir=lfw_home, compress=6, verbose=0) load_func = m.cache(_fetch_lfw_people) # load and memoize the pairs as np arrays faces, target, target_names = load_func( data_folder_path, resize=resize, min_faces_per_person=min_faces_per_person, color=color, slice_=slice_) # pack the results as a Bunch instance return Bunch(data=faces.reshape(len(faces), -1), images=faces, target=target, target_names=target_names, DESCR="LFW faces dataset") # # Task #2: Face Verification on pairs of face pictures # def _fetch_lfw_pairs(index_file_path, data_folder_path, slice_=None, color=False, resize=None): """Perform the actual data loading for the LFW pairs dataset This operation is meant to be cached by a joblib wrapper. """ # parse the index file to find the number of pairs to be able to allocate # the right amount of memory before starting to decode the jpeg files with open(index_file_path, 'rb') as index_file: split_lines = [ln.strip().split(b('\t')) for ln in index_file] pair_specs = [sl for sl in split_lines if len(sl) > 2] n_pairs = len(pair_specs) # iterating over the metadata lines for each pair to find the filename to # decode and load in memory target = np.zeros(n_pairs, dtype=np.int) file_paths = list() for i, components in enumerate(pair_specs): if len(components) == 3: target[i] = 1 pair = ( (components[0], int(components[1]) - 1), (components[0], int(components[2]) - 1), ) elif len(components) == 4: target[i] = 0 pair = ( (components[0], int(components[1]) - 1), (components[2], int(components[3]) - 1), ) else: raise ValueError("invalid line %d: %r" % (i + 1, components)) for j, (name, idx) in enumerate(pair): try: person_folder = join(data_folder_path, name) except TypeError: person_folder = join(data_folder_path, str(name, 'UTF-8')) filenames = list(sorted(listdir(person_folder))) file_path = join(person_folder, filenames[idx]) file_paths.append(file_path) pairs = _load_imgs(file_paths, slice_, color, resize) shape = list(pairs.shape) n_faces = shape.pop(0) shape.insert(0, 2) shape.insert(0, n_faces // 2) pairs.shape = shape return pairs, target, np.array(['Different persons', 'Same person']) @deprecated("Function 'load_lfw_people' has been deprecated in 0.17 and will " "be removed in 0.19." "Use fetch_lfw_people(download_if_missing=False) instead.") def load_lfw_people(download_if_missing=False, **kwargs): """Alias for fetch_lfw_people(download_if_missing=False) Check fetch_lfw_people.__doc__ for the documentation and parameter list. """ return fetch_lfw_people(download_if_missing=download_if_missing, **kwargs) def fetch_lfw_pairs(subset='train', data_home=None, funneled=True, resize=0.5, color=False, slice_=(slice(70, 195), slice(78, 172)), download_if_missing=True): """Loader for the Labeled Faces in the Wild (LFW) pairs dataset This dataset is a collection of JPEG pictures of famous people collected on the internet, all details are available on the official website: http://vis-www.cs.umass.edu/lfw/ Each picture is centered on a single face. Each pixel of each channel (color in RGB) is encoded by a float in range 0.0 - 1.0. The task is called Face Verification: given a pair of two pictures, a binary classifier must predict whether the two images are from the same person. In the official `README.txt`_ this task is described as the "Restricted" task. As I am not sure as to implement the "Unrestricted" variant correctly, I left it as unsupported for now. .. _`README.txt`: http://vis-www.cs.umass.edu/lfw/README.txt The original images are 250 x 250 pixels, but the default slice and resize arguments reduce them to 62 x 74. Read more in the :ref:`User Guide <labeled_faces_in_the_wild>`. Parameters ---------- subset : optional, default: 'train' Select the dataset to load: 'train' for the development training set, 'test' for the development test set, and '10_folds' for the official evaluation set that is meant to be used with a 10-folds cross validation. data_home : optional, default: None Specify another download and cache folder for the datasets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. funneled : boolean, optional, default: True Download and use the funneled variant of the dataset. resize : float, optional, default 0.5 Ratio used to resize the each face picture. color : boolean, optional, default False Keep the 3 RGB channels instead of averaging them to a single gray level channel. If color is True the shape of the data has one more dimension than than the shape with color = False. slice_ : optional Provide a custom 2D slice (height, width) to extract the 'interesting' part of the jpeg files and avoid use statistical correlation from the background download_if_missing : optional, True by default If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. Returns ------- The data is returned as a Bunch object with the following attributes: data : numpy array of shape (2200, 5828). Shape depends on ``subset``. Each row corresponds to 2 ravel'd face images of original size 62 x 47 pixels. Changing the ``slice_``, ``resize`` or ``subset`` parameters will change the shape of the output. pairs : numpy array of shape (2200, 2, 62, 47). Shape depends on ``subset``. Each row has 2 face images corresponding to same or different person from the dataset containing 5749 people. Changing the ``slice_``, ``resize`` or ``subset`` parameters will change the shape of the output. target : numpy array of shape (2200,). Shape depends on ``subset``. Labels associated to each pair of images. The two label values being different persons or the same person. DESCR : string Description of the Labeled Faces in the Wild (LFW) dataset. """ lfw_home, data_folder_path = check_fetch_lfw( data_home=data_home, funneled=funneled, download_if_missing=download_if_missing) logger.info('Loading %s LFW pairs from %s', subset, lfw_home) # wrap the loader in a memoizing function that will return memmaped data # arrays for optimal memory usage m = Memory(cachedir=lfw_home, compress=6, verbose=0) load_func = m.cache(_fetch_lfw_pairs) # select the right metadata file according to the requested subset label_filenames = { 'train': 'pairsDevTrain.txt', 'test': 'pairsDevTest.txt', '10_folds': 'pairs.txt', } if subset not in label_filenames: raise ValueError("subset='%s' is invalid: should be one of %r" % ( subset, list(sorted(label_filenames.keys())))) index_file_path = join(lfw_home, label_filenames[subset]) # load and memoize the pairs as np arrays pairs, target, target_names = load_func( index_file_path, data_folder_path, resize=resize, color=color, slice_=slice_) # pack the results as a Bunch instance return Bunch(data=pairs.reshape(len(pairs), -1), pairs=pairs, target=target, target_names=target_names, DESCR="'%s' segment of the LFW pairs dataset" % subset) @deprecated("Function 'load_lfw_pairs' has been deprecated in 0.17 and will " "be removed in 0.19." "Use fetch_lfw_pairs(download_if_missing=False) instead.") def load_lfw_pairs(download_if_missing=False, **kwargs): """Alias for fetch_lfw_pairs(download_if_missing=False) Check fetch_lfw_pairs.__doc__ for the documentation and parameter list. """ return fetch_lfw_pairs(download_if_missing=download_if_missing, **kwargs)
bsd-3-clause
speed-of-light/pyslider
lib/texer/nsf_roc_tab.py
1
1464
import pandas as pd class NsfRocTab(object): def __init__(self): pass def __extreme(self, data, key): di = data[key].argmax() return data.ix[di] def __bold_max(self, dseries, x): if dseries.max() - x < 0.000001: bs = "BL{:.3f}BR".format(x) tc = "STextcolorBLemphasisBR{}".format(bs) it = "STextitBL{}BR".format(tc) else: it = "{:.3f}".format(x) return it def __tex_post(self, txt): txt = txt.replace("ST", "\\t") txt = txt.replace("BL", "{") txt = txt.replace("BR", "}") return txt def __tex_roc_table(self, data): res = ["name", "key", "sensitivity", "precision", "accuracy"] fmts = dict( header=lambda x: x[:3], accuracy=lambda x: self.__bold_max(data["accuracy"], x), precision=lambda x: self.__bold_max(data["precision"], x), sensitivity=lambda x: self.__bold_max(data["sensitivity"], x)) ffmt = "{:3,.3f}".format st = data.to_latex(columns=res, index=0, formatters=fmts, float_format=ffmt) return self.__tex_post(st) def tabular(self, data): df = pd.DataFrame() df = df.append(self.__extreme(data, "sensitivity")) df = df.append(self.__extreme(data, "precision")) df = df.append(self.__extreme(data, "accuracy")) return self.__tex_roc_table(df)
agpl-3.0
mdegis/machine-learning
001 - Naive Bayes Classifier/exercise/main.py
1
1570
#!/usr/bin/python """ The objective of this exercise is to recreate the decision boundary found in the lesson video, and make a plot that visually shows the decision boundary """ import sys sys.path.append("../../tools") from prep_terrain_data import makeTerrainData from sklearn.metrics import accuracy_score from class_vis import prettyPicture, output_image from classify_NB import classify, NB_accuracy import numpy as np import pylab as pl from PIL import Image features_train, labels_train, features_test, labels_test = makeTerrainData() # the training data (features_train, labels_train) have both "fast" and "slow" points mixed # in together--separate them so we can give them different colors in the scatterplot, # and visually identify them grade_fast = [features_train[ii][0] for ii in range(0, len(features_train)) if labels_train[ii]==0] bumpy_fast = [features_train[ii][1] for ii in range(0, len(features_train)) if labels_train[ii]==0] grade_slow = [features_train[ii][0] for ii in range(0, len(features_train)) if labels_train[ii]==1] bumpy_slow = [features_train[ii][1] for ii in range(0, len(features_train)) if labels_train[ii]==1] clf = classify(features_train, labels_train) # draw the decision boundary with the text points overlaid prettyPicture(clf, features_test, labels_test, f_name="bayes.png") Image.open('bayes.png').show() # JSON object to read data: # output_image("test.png", "png", open("test.png", "rb").read()) pred = clf.predict(features_test) print "Naive Bayes accuracy: %r" % accuracy_score(labels_test, pred)
gpl-3.0
beyondvalence/biof509_wtl
Wk02/genetic_algorithm.py
1
4420
"""Module to find shortest path connecting series of points genetic_algorithm_optimizer accepts a set of coordinates, cost function, new path function, population size, and number of generations to return the optimized path, optimized distance, and the other paths and distances. 20160218 Wayne Liu """ import itertools import math import matplotlib.pyplot as plt import numpy as np import random %matplotlib inline print("Numpy:", np.__version__) random.seed(0) def distance(coords): distance = 0 for p1, p2 in zip(coords[:-1], coords[1:]): distance += ((p2[0] - p1[0]) ** 2 + (p2[1] - p1[1]) ** 2) ** 0.5 return distance def select_best(population, cost_func, num_to_keep): """Selects best specified population based on the cost function Arguments: population -- List of shuffled coordinates cost_func -- Function deriving optimized metric num_to_keep -- Number of best population to keep Returns: List of best optimized specified number of coordinates """ scored_population = [(i, cost_func(i)) for i in population] scored_population.sort(key=lambda x: x[1]) return [i[0] for i in scored_population[:num_to_keep]] def new_path(existing_path): """Reorders list of coordinates Arguments: existing_path -- List of coordinates, e.g. [(0,0), (1,1)] Returns: path -- List of reordered coordinates, e.g. [(0,0), (1,1)] """ path = existing_path[:] # switches three points instead of two, marginally better point = random.randint(0, len(path)-3) path[point+2], path[point+1], path[point] = path[point], path[point+2], path[point+1] # print(point) return path def recombine(population): """Recombines random two halves of two random sets of coordinates Argument: population -- List of coordinates, e.g. [(0,0), (1,1)] Returns: child -- A set of coordinates, recombined from two random sets of coordinates, e.g. [(9,9), (2,3)] """ # Randomly choose two parents options = list(range(len(population))) random.shuffle(options) partner1 = options[0] partner2 = options[1] # Choose a split point, take the first parents order to that split point, # then the second parents order for all remaining points split_point = random.randint(0, len(population[0])-1) child = population[partner1][:split_point] for point in population[partner2]: if point not in child: child.append(point) return child def genetic_algorithm_optimizer(starting_path, cost_func, new_path_func, pop_size, generations): """Selects best path from set of coordinates by randomly joining two sets of coordinates Arguments: starting_path -- List of coordinates, e.g. [(0,0), (1,1)] cost_func -- Optimization metric calculator, e.g. distance() new_path_func -- Returns reordered coordinates, e.g. new_path() pop_size -- Number of each set of coordinates in each generation, 500 generations -- Number of iterations, 100 Returns: population -- A list of optimized coordinates, e.g. [(2,3), (5,6)] cost_func -- The optimized least distance history -- Dictionary of generation and distance metrics """ # Create a starting population by randomly shuffling the points population = [] for i in range(pop_size): new_path = starting_path[:] random.shuffle(new_path) population.append(new_path) history = [] # Take the top 25% of routes and recombine to create new routes, repeating for generations for i in range(generations): pop_best = select_best(population, cost_func, int(pop_size / 4)) new_population = [] for i in range(pop_size): new_population.append(new_path_func(recombine(pop_best))) # use new path to scramble the order population = new_population record = {'generation':i, 'current_cost':cost_func(population[0]),} history.append(record) return (population[0], cost_func(population[0]), history) coords = [(0,0), (10,5), (10,10), (5,10), (3,3), (3,7), (12,3), (10,11)] best_path, best_cost, history = genetic_algorithm_optimizer(coords, distance, new_path, 500, 100) print(best_cost) plt.plot([i['current_cost'] for i in history]) plt.show() plt.plot([i[0] for i in best_path], [i[1] for i in best_path]) plt.show()
mit
bospetersen/h2o-3
h2o-py/tests/testdir_misc/pyunit_frame_as_list.py
1
1056
import sys sys.path.insert(1, "../../") import h2o, tests def frame_as_list(ip,port): iris = h2o.import_file(path=h2o.locate("smalldata/iris/iris_wheader.csv")) prostate = h2o.import_file(path=h2o.locate("smalldata/prostate/prostate.csv.zip")) airlines = h2o.import_file(path=h2o.locate("smalldata/airlines/allyears2k.zip")) res1 = h2o.as_list(iris, use_pandas=False) assert abs(float(res1[9][0]) - 4.4) < 1e-10 and abs(float(res1[9][1]) - 2.9) < 1e-10 and \ abs(float(res1[9][2]) - 1.4) < 1e-10, "incorrect values" res2 = h2o.as_list(prostate, use_pandas=False) assert abs(float(res2[7][0]) - 7) < 1e-10 and abs(float(res2[7][1]) - 0) < 1e-10 and \ abs(float(res2[7][2]) - 68) < 1e-10, "incorrect values" res3 = h2o.as_list(airlines, use_pandas=False) assert abs(float(res3[4][0]) - 1987) < 1e-10 and abs(float(res3[4][1]) - 10) < 1e-10 and \ abs(float(res3[4][2]) - 18) < 1e-10, "incorrect values" if __name__ == "__main__": tests.run_test(sys.argv, frame_as_list)
apache-2.0
kazemakase/scikit-learn
examples/linear_model/lasso_dense_vs_sparse_data.py
348
1862
""" ============================== Lasso on dense and sparse data ============================== We show that linear_model.Lasso provides the same results for dense and sparse data and that in the case of sparse data the speed is improved. """ print(__doc__) from time import time from scipy import sparse from scipy import linalg from sklearn.datasets.samples_generator import make_regression from sklearn.linear_model import Lasso ############################################################################### # The two Lasso implementations on Dense data print("--- Dense matrices") X, y = make_regression(n_samples=200, n_features=5000, random_state=0) X_sp = sparse.coo_matrix(X) alpha = 1 sparse_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=1000) dense_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=1000) t0 = time() sparse_lasso.fit(X_sp, y) print("Sparse Lasso done in %fs" % (time() - t0)) t0 = time() dense_lasso.fit(X, y) print("Dense Lasso done in %fs" % (time() - t0)) print("Distance between coefficients : %s" % linalg.norm(sparse_lasso.coef_ - dense_lasso.coef_)) ############################################################################### # The two Lasso implementations on Sparse data print("--- Sparse matrices") Xs = X.copy() Xs[Xs < 2.5] = 0.0 Xs = sparse.coo_matrix(Xs) Xs = Xs.tocsc() print("Matrix density : %s %%" % (Xs.nnz / float(X.size) * 100)) alpha = 0.1 sparse_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=10000) dense_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=10000) t0 = time() sparse_lasso.fit(Xs, y) print("Sparse Lasso done in %fs" % (time() - t0)) t0 = time() dense_lasso.fit(Xs.toarray(), y) print("Dense Lasso done in %fs" % (time() - t0)) print("Distance between coefficients : %s" % linalg.norm(sparse_lasso.coef_ - dense_lasso.coef_))
bsd-3-clause
dingocuster/scikit-learn
examples/feature_stacker.py
246
1906
""" ================================================= Concatenating multiple feature extraction methods ================================================= In many real-world examples, there are many ways to extract features from a dataset. Often it is beneficial to combine several methods to obtain good performance. This example shows how to use ``FeatureUnion`` to combine features obtained by PCA and univariate selection. Combining features using this transformer has the benefit that it allows cross validation and grid searches over the whole process. The combination used in this example is not particularly helpful on this dataset and is only used to illustrate the usage of FeatureUnion. """ # Author: Andreas Mueller <[email protected]> # # License: BSD 3 clause from sklearn.pipeline import Pipeline, FeatureUnion from sklearn.grid_search import GridSearchCV from sklearn.svm import SVC from sklearn.datasets import load_iris from sklearn.decomposition import PCA from sklearn.feature_selection import SelectKBest iris = load_iris() X, y = iris.data, iris.target # This dataset is way to high-dimensional. Better do PCA: pca = PCA(n_components=2) # Maybe some original features where good, too? selection = SelectKBest(k=1) # Build estimator from PCA and Univariate selection: combined_features = FeatureUnion([("pca", pca), ("univ_select", selection)]) # Use combined features to transform dataset: X_features = combined_features.fit(X, y).transform(X) svm = SVC(kernel="linear") # Do grid search over k, n_components and C: pipeline = Pipeline([("features", combined_features), ("svm", svm)]) param_grid = dict(features__pca__n_components=[1, 2, 3], features__univ_select__k=[1, 2], svm__C=[0.1, 1, 10]) grid_search = GridSearchCV(pipeline, param_grid=param_grid, verbose=10) grid_search.fit(X, y) print(grid_search.best_estimator_)
bsd-3-clause
smartscheduling/scikit-learn-categorical-tree
examples/applications/svm_gui.py
287
11161
""" ========== Libsvm GUI ========== A simple graphical frontend for Libsvm mainly intended for didactic purposes. You can create data points by point and click and visualize the decision region induced by different kernels and parameter settings. To create positive examples click the left mouse button; to create negative examples click the right button. If all examples are from the same class, it uses a one-class SVM. """ from __future__ import division, print_function print(__doc__) # Author: Peter Prettenhoer <[email protected]> # # License: BSD 3 clause import matplotlib matplotlib.use('TkAgg') from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg from matplotlib.backends.backend_tkagg import NavigationToolbar2TkAgg from matplotlib.figure import Figure from matplotlib.contour import ContourSet import Tkinter as Tk import sys import numpy as np from sklearn import svm from sklearn.datasets import dump_svmlight_file from sklearn.externals.six.moves import xrange y_min, y_max = -50, 50 x_min, x_max = -50, 50 class Model(object): """The Model which hold the data. It implements the observable in the observer pattern and notifies the registered observers on change event. """ def __init__(self): self.observers = [] self.surface = None self.data = [] self.cls = None self.surface_type = 0 def changed(self, event): """Notify the observers. """ for observer in self.observers: observer.update(event, self) def add_observer(self, observer): """Register an observer. """ self.observers.append(observer) def set_surface(self, surface): self.surface = surface def dump_svmlight_file(self, file): data = np.array(self.data) X = data[:, 0:2] y = data[:, 2] dump_svmlight_file(X, y, file) class Controller(object): def __init__(self, model): self.model = model self.kernel = Tk.IntVar() self.surface_type = Tk.IntVar() # Whether or not a model has been fitted self.fitted = False def fit(self): print("fit the model") train = np.array(self.model.data) X = train[:, 0:2] y = train[:, 2] C = float(self.complexity.get()) gamma = float(self.gamma.get()) coef0 = float(self.coef0.get()) degree = int(self.degree.get()) kernel_map = {0: "linear", 1: "rbf", 2: "poly"} if len(np.unique(y)) == 1: clf = svm.OneClassSVM(kernel=kernel_map[self.kernel.get()], gamma=gamma, coef0=coef0, degree=degree) clf.fit(X) else: clf = svm.SVC(kernel=kernel_map[self.kernel.get()], C=C, gamma=gamma, coef0=coef0, degree=degree) clf.fit(X, y) if hasattr(clf, 'score'): print("Accuracy:", clf.score(X, y) * 100) X1, X2, Z = self.decision_surface(clf) self.model.clf = clf self.model.set_surface((X1, X2, Z)) self.model.surface_type = self.surface_type.get() self.fitted = True self.model.changed("surface") def decision_surface(self, cls): delta = 1 x = np.arange(x_min, x_max + delta, delta) y = np.arange(y_min, y_max + delta, delta) X1, X2 = np.meshgrid(x, y) Z = cls.decision_function(np.c_[X1.ravel(), X2.ravel()]) Z = Z.reshape(X1.shape) return X1, X2, Z def clear_data(self): self.model.data = [] self.fitted = False self.model.changed("clear") def add_example(self, x, y, label): self.model.data.append((x, y, label)) self.model.changed("example_added") # update decision surface if already fitted. self.refit() def refit(self): """Refit the model if already fitted. """ if self.fitted: self.fit() class View(object): """Test docstring. """ def __init__(self, root, controller): f = Figure() ax = f.add_subplot(111) ax.set_xticks([]) ax.set_yticks([]) ax.set_xlim((x_min, x_max)) ax.set_ylim((y_min, y_max)) canvas = FigureCanvasTkAgg(f, master=root) canvas.show() canvas.get_tk_widget().pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) canvas._tkcanvas.pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) canvas.mpl_connect('button_press_event', self.onclick) toolbar = NavigationToolbar2TkAgg(canvas, root) toolbar.update() self.controllbar = ControllBar(root, controller) self.f = f self.ax = ax self.canvas = canvas self.controller = controller self.contours = [] self.c_labels = None self.plot_kernels() def plot_kernels(self): self.ax.text(-50, -60, "Linear: $u^T v$") self.ax.text(-20, -60, "RBF: $\exp (-\gamma \| u-v \|^2)$") self.ax.text(10, -60, "Poly: $(\gamma \, u^T v + r)^d$") def onclick(self, event): if event.xdata and event.ydata: if event.button == 1: self.controller.add_example(event.xdata, event.ydata, 1) elif event.button == 3: self.controller.add_example(event.xdata, event.ydata, -1) def update_example(self, model, idx): x, y, l = model.data[idx] if l == 1: color = 'w' elif l == -1: color = 'k' self.ax.plot([x], [y], "%so" % color, scalex=0.0, scaley=0.0) def update(self, event, model): if event == "examples_loaded": for i in xrange(len(model.data)): self.update_example(model, i) if event == "example_added": self.update_example(model, -1) if event == "clear": self.ax.clear() self.ax.set_xticks([]) self.ax.set_yticks([]) self.contours = [] self.c_labels = None self.plot_kernels() if event == "surface": self.remove_surface() self.plot_support_vectors(model.clf.support_vectors_) self.plot_decision_surface(model.surface, model.surface_type) self.canvas.draw() def remove_surface(self): """Remove old decision surface.""" if len(self.contours) > 0: for contour in self.contours: if isinstance(contour, ContourSet): for lineset in contour.collections: lineset.remove() else: contour.remove() self.contours = [] def plot_support_vectors(self, support_vectors): """Plot the support vectors by placing circles over the corresponding data points and adds the circle collection to the contours list.""" cs = self.ax.scatter(support_vectors[:, 0], support_vectors[:, 1], s=80, edgecolors="k", facecolors="none") self.contours.append(cs) def plot_decision_surface(self, surface, type): X1, X2, Z = surface if type == 0: levels = [-1.0, 0.0, 1.0] linestyles = ['dashed', 'solid', 'dashed'] colors = 'k' self.contours.append(self.ax.contour(X1, X2, Z, levels, colors=colors, linestyles=linestyles)) elif type == 1: self.contours.append(self.ax.contourf(X1, X2, Z, 10, cmap=matplotlib.cm.bone, origin='lower', alpha=0.85)) self.contours.append(self.ax.contour(X1, X2, Z, [0.0], colors='k', linestyles=['solid'])) else: raise ValueError("surface type unknown") class ControllBar(object): def __init__(self, root, controller): fm = Tk.Frame(root) kernel_group = Tk.Frame(fm) Tk.Radiobutton(kernel_group, text="Linear", variable=controller.kernel, value=0, command=controller.refit).pack(anchor=Tk.W) Tk.Radiobutton(kernel_group, text="RBF", variable=controller.kernel, value=1, command=controller.refit).pack(anchor=Tk.W) Tk.Radiobutton(kernel_group, text="Poly", variable=controller.kernel, value=2, command=controller.refit).pack(anchor=Tk.W) kernel_group.pack(side=Tk.LEFT) valbox = Tk.Frame(fm) controller.complexity = Tk.StringVar() controller.complexity.set("1.0") c = Tk.Frame(valbox) Tk.Label(c, text="C:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(c, width=6, textvariable=controller.complexity).pack( side=Tk.LEFT) c.pack() controller.gamma = Tk.StringVar() controller.gamma.set("0.01") g = Tk.Frame(valbox) Tk.Label(g, text="gamma:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(g, width=6, textvariable=controller.gamma).pack(side=Tk.LEFT) g.pack() controller.degree = Tk.StringVar() controller.degree.set("3") d = Tk.Frame(valbox) Tk.Label(d, text="degree:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(d, width=6, textvariable=controller.degree).pack(side=Tk.LEFT) d.pack() controller.coef0 = Tk.StringVar() controller.coef0.set("0") r = Tk.Frame(valbox) Tk.Label(r, text="coef0:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(r, width=6, textvariable=controller.coef0).pack(side=Tk.LEFT) r.pack() valbox.pack(side=Tk.LEFT) cmap_group = Tk.Frame(fm) Tk.Radiobutton(cmap_group, text="Hyperplanes", variable=controller.surface_type, value=0, command=controller.refit).pack(anchor=Tk.W) Tk.Radiobutton(cmap_group, text="Surface", variable=controller.surface_type, value=1, command=controller.refit).pack(anchor=Tk.W) cmap_group.pack(side=Tk.LEFT) train_button = Tk.Button(fm, text='Fit', width=5, command=controller.fit) train_button.pack() fm.pack(side=Tk.LEFT) Tk.Button(fm, text='Clear', width=5, command=controller.clear_data).pack(side=Tk.LEFT) def get_parser(): from optparse import OptionParser op = OptionParser() op.add_option("--output", action="store", type="str", dest="output", help="Path where to dump data.") return op def main(argv): op = get_parser() opts, args = op.parse_args(argv[1:]) root = Tk.Tk() model = Model() controller = Controller(model) root.wm_title("Scikit-learn Libsvm GUI") view = View(root, controller) model.add_observer(view) Tk.mainloop() if opts.output: model.dump_svmlight_file(opts.output) if __name__ == "__main__": main(sys.argv)
bsd-3-clause
drewlinsley/draw_classify
draw/datasets/package_sketch_images.py
1
5086
#Import libraries for doing image analysis from skimage.io import imread from skimage.transform import resize from sklearn.ensemble import RandomForestClassifier as RF import glob import os from sklearn import cross_validation from sklearn.cross_validation import StratifiedKFold as KFold from sklearn.metrics import classification_report from matplotlib import pyplot as plt from matplotlib import colors from pylab import cm from skimage import segmentation from skimage.morphology import watershed from skimage import measure from skimage import morphology import numpy as np import pandas as pd from scipy import ndimage from skimage.feature import peak_local_max import multiprocessing as mp import theano from fuel.datasets import IterableDataset, IndexableDataset import commands import re def process(fname): image = imread(fname, as_grey=True) imagethr = np.where(image > np.mean(image),0.,1.0) return imagethr.ravel().astype(np.int64) def assign_datastream(X,y): n_labels = np.unique(y).shape[0] y = np.eye(n_labels)[y] # Reassign dataset dataset = IndexableDataset({'features': X.astype(np.float64),'targets': y.astype(np.uint8)},sources=('features','targets')) #may ask to cast X as float32 #dataset = IndexableDataset({'features': X.astype(np.float32),'targets': y.astype(np.int32)},sources=('features','targets')) #may ask to cast X as float32 return dataset def import_sketch(data_dir): # make graphics inline #get_ipython().magic(u'matplotlib inline') find_string = u'find ' + data_dir + ' -name "*.jpg"' file_string = commands.getoutput(find_string) files = re.split('\n',file_string) #files = get_ipython().getoutput(u'find ' + data_dir + ' -name "*.jpg"') #len(files) #outpath = '/Users/drewlinsley/Documents/draw/draw/datasets' #datasource = 'sketch_uint8_shuffle' #plt.figure(figsize=(12,3)) #image = imread(files[0], as_grey=True) #imagethr = np.where(image > np.mean(image),0.,1.0) #plt.subplot(1,3,1) #plt.imshow(imagethr, cmap=cm.gray); #imdilated = morphology.dilation(imagethr, np.ones((16,16))) #plt.subplot(1,3,2) #plt.imshow(imdilated, cmap=cm.gray); #im1 = resize(imdilated,[56,56]) #plt.subplot(1,3,3) #plt.imshow(im1, cmap=cm.gray); #plt.show() NUM_PROCESSES = 8 pool = mp.Pool(NUM_PROCESSES) results = pool.map(process, files, chunksize=100) pool.close() pool.join() y = np.array(map(lambda f: f.split('_')[-2], files)) y = y.reshape(-1,1) y = y.astype(np.int64) #y.reshape(-1,1) X = np.array(results) N, image_size = X.shape D = int(np.sqrt(image_size)) N, image_size, D num_els = y.shape[0] test_size = int(num_els * (.1/2)) #/2 because +/- types pos_test_id = np.asarray(range(0,test_size)) neg_test_id = np.asarray(range(num_els - test_size,num_els)) train_id = np.asarray(range(test_size, num_els - test_size)) test_y = y[np.hstack((pos_test_id,neg_test_id))] test_X = X[np.hstack((pos_test_id,neg_test_id))] N_test = test_y.shape[0] np.sum(test_y) train_y = y[train_id] train_X = X[train_id] N_train = train_y.shape[0] np.sum(train_y) import random test_s = random.sample(xrange(test_y.shape[0]),test_y.shape[0]) train_s = random.sample(xrange(train_y.shape[0]),train_y.shape[0]) test_X=test_X[test_s] train_X=train_X[train_s] test_y=test_y[test_s] train_y=train_y[train_s] train_y.dtype return test_X, train_X, test_y, train_y #import fuel #datasource_dir = os.path.join(outpath, datasource) #get_ipython().system(u'mkdir -p {datasource_dir}') #datasource_fname = os.path.join(datasource_dir , datasource+'.hdf5') #datasource_fname # In[132]: #import h5py #fp = h5py.File(datasource_fname, mode='w') #image_features = fp.create_dataset('features', (N, image_size), dtype='uint8') # In[133]: # image_features[...] = np.vstack((train_X,test_X)) # # In[134]: # targets = fp.create_dataset('targets', (N, 1), dtype='uint8') # # In[135]: # targets[...] = np.vstack((train_y,test_y)).reshape(-1,1) # # In[136]: # from fuel.datasets.hdf5 import H5PYDataset # split_dict = { # 'train': {'features': (0, N_train), 'targets': (0, N_train)}, # 'test': {'features': (N_train, N), 'targets': (N_train, N)} # } # fp.attrs['split'] = H5PYDataset.create_split_array(split_dict) # # In[137]: # fp.flush() # fp.close() # # In[138]: # get_ipython().system(u'ls -l {datasource_fname}') # # In[139]: # #!aws s3 cp {datasource_fname} s3://udidraw/ --grants read=uri=http://acs.amazonaws.com/groups/global/AllUsers # # #Look at training # # In[140]: # train_set = H5PYDataset(datasource_fname, which_sets=('train',)) # # In[141]: # train_set.num_examples # # In[142]: # train_set.provides_sources # # In[143]: # handle = train_set.open() # data = train_set.get_data(handle, slice(0, 16)) # data[0].shape,data[1].shape # # In[144]: # data[1] # # In[145]: # plt.figure(figsize=(12,12)) # for i in range(16): # plt.subplot(4,4,i+1) # plt.imshow(data[0][i].reshape(D,D), cmap=cm.gray) # plt.title(data[1][i][0]); # # In[146]: # train_set.close(handle)
mit
mcdeaton13/dynamic
Data/Calibration/Firm Calibration Python/parameters/depreciation/depreciation_calibration.py
2
2016
""" Depreciation Rate Calibration (depreciation_calibration.py): ------------------------------------------------------------------------------- Last updated: 6/26/2015. This module calibrates the firm economic and tax depreciation parameters. """ # Packages: import os.path import sys import numpy as np import pandas as pd # Directories: _CUR_DIR = os.path.dirname(__file__) _DATA_DIR = os.path.join(_CUR_DIR, "data") _PROC_DIR = os.path.join(_CUR_DIR, "processing") _OUT_DIR = os.path.join(_CUR_DIR, "output") # Importing custom modules: import naics_processing as naics import constants as cst # Importing depreciation helper custom modules: sys.path.append(_PROC_DIR) import calc_rates as calc_rates import read_bea as read_bea import read_inventories as read_inv import read_land as read_land # Dataframe names: _CODE_DF_NM = cst.CODE_DF_NM # Dataframe column names: _CORP_TAX_SECTORS_NMS_DICT = cst.CORP_TAX_SECTORS_NMS_DICT _CORP_NMS = _CORP_TAX_SECTORS_NMS_DICT.values() _NON_CORP_TAX_SECTORS_NMS_DICT = cst.NON_CORP_TAX_SECTORS_NMS_DICT _NCORP_NMS = _NON_CORP_TAX_SECTORS_NMS_DICT.values() def init_depr_rates(asset_tree=naics.generate_tree(), get_econ=False, get_tax_est=False, get_tax_150=False, get_tax_200=False, get_tax_sl=False, get_tax_ads=False, soi_from_out=False, output_data=False): """ This fun """ # Calculating the fixed asset data: fixed_asset_tree = read_bea.read_bea(asset_tree) # Calculating the inventory data: inv_tree = read_inv.read_inventories(asset_tree) # Calculating the land data: land_tree = read_land.read_land(asset_tree) # Calculating the depreciation rates: econ_depr_tree = calc_rates.calc_depr_rates(fixed_asset_tree, inv_tree, land_tree) tax_depr_tree = calc_rates.calc_tax_depr_rates(fixed_asset_tree, inv_tree, land_tree) #naics.pop_rates(tax_depr_tree) return {"Econ": econ_depr_tree, "Tax": tax_depr_tree}
mit
crisojog/vqa_research
preprocess.py
1
21353
import argparse import cPickle as pickle import os from operator import itemgetter import matplotlib.pyplot as plt import numpy as np import spacy import json from keras.applications.inception_v3 import InceptionV3 from keras.applications.xception import Xception from keras.applications.resnet50 import ResNet50 from resnet_152 import ResNet152 from keras.applications.vgg19 import VGG19 from keras.models import Model from keras.preprocessing import image from keras.applications import imagenet_utils from keras.applications.inception_v3 import preprocess_input from tqdm import tqdm from VQA.PythonHelperTools.vqaTools.vqa import VQA def get_img_model(img_model_type): if img_model_type == "vgg19": print ("Loading VGG19 model") base_model = VGG19(weights='imagenet', include_top=True) return Model(inputs=base_model.input, outputs=base_model.get_layer('fc2').output) elif img_model_type == "vgg19_multi": print ("Loading VGG19-early-cut model") return VGG19(weights='imagenet', include_top=False) elif img_model_type == "resnet50": print ("Loading ResNet50 model") return ResNet50(weights='imagenet', include_top=False) elif img_model_type == "resnet50_multi": print ("Loading ResNet50-early-cut model") base_model = ResNet50(weights='imagenet', include_top=False) return Model(inputs=base_model.input, outputs=base_model.layers[-2].output) elif img_model_type == "resnet152": print ("Loading ResNet152 model") return ResNet152(224, 224, 3, include_top=True) elif img_model_type == "resnet152_multi": print ("Loading ResNet152-early-cut model") return ResNet152(224, 224, 3, include_top=False) elif img_model_type == "inception": print ("Loading InceptionV3 model") base_model = InceptionV3(weights='imagenet', include_top=True) return Model(inputs=base_model.input, outputs=base_model.layers[-2].output) elif img_model_type == "inception_multi": print ("Loading InceptionV3-early-cut model") return InceptionV3(weights='imagenet', include_top=False) def get_preprocess_function(img_model_type): if img_model_type in ["inception", "xception"]: return preprocess_input return imagenet_utils.preprocess_input def get_most_common_answers(vqa_train, vqa_val, num_answers, ans_types, show_top_ans=False, use_test=False): ans_dict = {} annIds_train = vqa_train.getQuesIds(ansTypes=ans_types) anns = vqa_train.loadQA(annIds_train) if use_test: annIds_val = vqa_val.getQuesIds(ansTypes=ans_types) anns += vqa_val.loadQA(annIds_val) for ann in anns: # answer = ann['multiple_choice_answer'].lower() for ans in ann['answers']: answer = ans['answer'].lower() if answer in ans_dict: ans_dict[answer] += 1 else: ans_dict[answer] = 1 sorted_ans_dict = sorted(ans_dict.items(), key=itemgetter(1), reverse=True) if show_top_ans: # Some bar plots num_ans_plot = 20 total_ans = 0 for (x, y) in sorted_ans_dict: total_ans += y plt.bar(range(1, num_ans_plot + 1), [float(y) / total_ans * 100 for (x, y) in sorted_ans_dict[0:num_ans_plot]], 0.9, color='b') plt.xticks(range(1, num_ans_plot + 1), [x for (x, y) in sorted_ans_dict[0:num_ans_plot]]) plt.title("Most Common Answer Frequencies") plt.show() sorted_ans_dict = [x for (x, y) in sorted_ans_dict] sorted_ans_dict = sorted_ans_dict[0:num_answers] ans_to_id = dict((a, i) for i, a in enumerate(sorted_ans_dict)) id_to_ans = dict((i, a) for i, a in enumerate(sorted_ans_dict)) return ans_to_id, id_to_ans def process_question(vqa, ann, nlp, question_word_vec_map, tokens_dict, question_tokens_map): quesId = ann['question_id'] if quesId in question_word_vec_map: return question_word_vec_map[quesId], question_tokens_map[quesId] question = nlp(vqa.qqa[quesId]['question']) question_word_vec = [w.vector for w in question] question_len = len(question) question_tokens = [0] * question_len for i in range(question_len): token = question[i] token_l = token.lower_ if token.has_vector and token_l in tokens_dict: question_tokens[i] = tokens_dict[token_l] return np.array(question_word_vec), np.array(question_tokens) def process_answer(ann, data, ans_map, ans_to_id, id_to_ans): quesId = ann['question_id'] if quesId in ans_map: return ans_map[quesId] answer = ann['multiple_choice_answer'].lower() if answer in ans_to_id: return ans_to_id[answer] elif data == "val": return -1 else: return None def process_img(img_model, preprocess, imgId, dataSubType, imgDir, input_shape=(224, 224), output_shape=(4096,)): imgFilename = 'COCO_' + dataSubType + '_' + str(imgId).zfill(12) + '.jpg' if os.path.isfile(imgDir + imgFilename): img = image.load_img(imgDir + imgFilename, target_size=input_shape) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess(x) features = img_model.predict(x) features = np.reshape(features[0], output_shape) return features else: return None def get_input_shape(img_model_name): if img_model_name in ['inception', 'xception']: return (299, 299) return (224, 224) def get_output_shape(img_model_name): if img_model_name == 'vgg19': return (4096,) elif img_model_name == 'vgg19_multi': return (49, 512) elif img_model_name in ['resnet50', 'inception', 'xception', 'resnet152']: return (2048,) elif img_model_name in ['resnet50_multi', 'resnet152_multi']: return (49, 2048) elif img_model_name == 'inception_multi': return (64, 2048) def process_questions(vqa, data, nlp, overwrite, tokens_dict, question_word_vec_map=None, question_tokens_map=None): if question_word_vec_map is None: question_word_vec_map = {} if question_tokens_map is None: question_tokens_map = {} filename = "data/%s_questions.pkl" % data filename_tokens = "data/%s_tokens_questions.pkl" % data if os.path.exists(filename) and os.path.exists(filename_tokens) and not overwrite: return question_word_vec_map, question_tokens_map annIds = vqa.getQuesIds() anns = vqa.loadQA(annIds) for ann in tqdm(anns): quesId = int(ann['question_id']) if quesId in question_word_vec_map: continue question, question_tokens = process_question(vqa, ann, nlp, question_word_vec_map, tokens_dict, question_tokens_map) if question is None: continue question_word_vec_map[quesId] = question question_tokens_map[quesId] = question_tokens f = open(filename, "w") pickle.dump(question_word_vec_map, f, pickle.HIGHEST_PROTOCOL) f.close() f = open(filename_tokens, "w") pickle.dump(question_tokens_map, f, pickle.HIGHEST_PROTOCOL) f.close() return question_word_vec_map, question_tokens_map def process_answers(vqa, data, ans_types, ans_to_id, id_to_ans, overwrite, ans_map=None): if ans_map is None: ans_map = {} if not ans_types: filename = "data/%s_answers.pkl" % data else: filename = "data/%s_answers_%s.pkl" % (data, ans_types.replace("/", "")) if not os.path.exists(filename) or overwrite: annIds = vqa.getQuesIds(ansTypes=ans_types) anns = vqa.loadQA(annIds) for ann in tqdm(anns): quesId = int(ann['question_id']) if quesId in ans_map: continue answer = process_answer(ann, data, ans_map, ans_to_id, id_to_ans) if answer is None: continue ans_map[quesId] = answer f = open(filename, "w") pickle.dump(ans_map, f, pickle.HIGHEST_PROTOCOL) f.close() return ans_map def process_images(img_model, preprocess, vqa, data, data_sub_type, img_dir, img_model_name, overwrite, img_map=None): if img_map is None: img_map = {} filename = "data/%s_images.pkl" % data if not os.path.exists(filename) or overwrite: annIds = vqa.getQuesIds() anns = vqa.loadQA(annIds) input_shape = get_input_shape(img_model_name) output_shape = get_output_shape(img_model_name) for ann in tqdm(anns): imgId = int(ann['image_id']) if imgId in img_map: continue img = process_img(img_model, preprocess, ann['image_id'], data_sub_type, img_dir, input_shape, output_shape) if img is None: continue img_map[imgId] = img print "Saving %d images in %s" % (len(img_map), filename) f = open(filename, "w") pickle.dump(img_map, f, pickle.HIGHEST_PROTOCOL) f.close() return img_map def process_ques_to_img(vqa, data, overwrite, ques_to_img=None): if ques_to_img is None: ques_to_img = {} filename = "data/%s_ques_to_img.pkl" % data if not os.path.exists(filename) or overwrite: annIds = vqa.getQuesIds() anns = vqa.loadQA(annIds) for ann in tqdm(anns): quesId = int(ann['question_id']) imgId = int(ann['image_id']) ques_to_img[quesId] = imgId f = open(filename, "w") pickle.dump(ques_to_img, f, pickle.HIGHEST_PROTOCOL) f.close() return ques_to_img def process_questions_test(dataFile, data, nlp, overwrite, tokens_dict, question_word_vec_map=None, question_tokens_map=None): if question_word_vec_map is None: question_word_vec_map = {} if question_tokens_map is None: question_tokens_map = {} filename = "data/%s_questions.pkl" % data filename_tokens = "data/%s_tokens_questions.pkl" % data if os.path.exists(filename) and os.path.exists(filename_tokens) and not overwrite: return dataset = json.load(open(dataFile, 'r')) for question in tqdm(dataset['questions']): quesId = question['question_id'] questext = question['question'] ques_nlp = nlp(questext) question_word_vec = [w.vector for w in ques_nlp] question_word_vec_map[quesId] = question_word_vec question_len = len(ques_nlp) question_tokens = [0] * question_len for i in range(question_len): token = ques_nlp[i] token_l = token.lower_ if token.has_vector and token_l in tokens_dict: question_tokens[i] = tokens_dict[token_l] question_tokens_map[quesId] = question_tokens f = open(filename, "w") pickle.dump(question_word_vec_map, f, pickle.HIGHEST_PROTOCOL) f.close() f = open(filename_tokens, "w") pickle.dump(question_tokens_map, f, pickle.HIGHEST_PROTOCOL) f.close() def process_images_test(img_model, preprocess, data, dataFile, dataSubType, imgDir, img_model_name, overwrite, img_map=None): if img_map is None: img_map = {} filename = "data/%s_images.pkl" % data if not os.path.exists(filename) or overwrite: dataset = json.load(open(dataFile, 'r')) input_shape = get_input_shape(img_model_name) output_shape = get_output_shape(img_model_name) for question in tqdm(dataset['questions']): imgId = question['image_id'] if imgId in img_map: continue img = process_img(img_model, preprocess, imgId, dataSubType, imgDir, input_shape, output_shape) if img is None: continue img_map[imgId] = img f = open(filename, "w") pickle.dump(img_map, f, pickle.HIGHEST_PROTOCOL) f.close() def process_ques_to_img_test(dataFile, data, overwrite, ques_to_img=None): if ques_to_img is None: ques_to_img = {} filename = "data/%s_ques_to_img.pkl" % data if not os.path.exists(filename) or overwrite: dataset = json.load(open(dataFile, 'r')) for question in tqdm(dataset['questions']): quesId = question['question_id'] imgId = question['image_id'] ques_to_img[quesId] = imgId f = open(filename, "w") pickle.dump(ques_to_img, f, pickle.HIGHEST_PROTOCOL) f.close() def get_most_common_tokens(vqa, nlp, tokens_dict, dataFile=None): if not dataFile: annIds = vqa.getQuesIds() anns = vqa.loadQA(annIds) for ann in tqdm(anns): quesId = int(ann['question_id']) question = nlp(vqa.qqa[quesId]['question']) question_tokens = [w.lower_ for w in question] for token in question_tokens: if token in tokens_dict: tokens_dict[token] += 1 else: tokens_dict[token] = 1 return # get tokens from the test set dataset = json.load(open(dataFile, 'r')) for question in tqdm(dataset['questions']): questext = question['question'] ques_nlp = nlp(questext) question_tokens = [w.lower_ for w in ques_nlp] for token in question_tokens: if token in tokens_dict: tokens_dict[token] += 1 else: tokens_dict[token] = 1 def get_tokens_dict(vqa_train, vqa_val, dataFile_test, nlp, word_embedding_dim): tokens_dict = {} get_most_common_tokens(vqa_train, nlp, tokens_dict) get_most_common_tokens(vqa_val, nlp, tokens_dict) get_most_common_tokens(None, nlp, tokens_dict, dataFile=dataFile_test) tokens_dict = sorted(tokens_dict.items(), key=lambda x: x[1]) tokens_with_embedding = [(key, value) for (key, value) in tokens_dict if (nlp(key)).has_vector] # index 0 will be for unknown tokens or for tokens without word vectors index = 1 tokens_dict = {} tokens_embedding = [np.array([0.] * word_embedding_dim)] for (key, _) in tokens_with_embedding: tokens_dict[key] = index tokens_embedding.append(nlp(key).vector) index += 1 f = open("data/tokens_embedding.pkl", "w") pickle.dump(np.array(tokens_embedding), f, pickle.HIGHEST_PROTOCOL) f.close() return tokens_dict def process_data(vqa_train, dataSubType_train, imgDir_train, vqa_val, dataSubType_val, imgDir_val, dataSubType_test, dataFile_test, imgDir_test, nlp, img_model, preprocess, ans_to_id, id_to_ans, params): ans_types = params['ans_types'] only = params['only'] img_model_name = params['img_model'] overwrite = params['overwrite'] use_tests = params['use_test'] word_embedding_dim = params['word_embedding_dim'] if only == 'all' or only == 'ques': print "Obtaining tokens from all datasets" tokens_dict = get_tokens_dict(vqa_train, vqa_val, dataFile_test, nlp, word_embedding_dim) print "Processing train questions" if not use_tests: process_questions(vqa_train, "train", nlp, overwrite, tokens_dict) else: ques_train_map, ques_tokens_train_map = process_questions(vqa_train, "train_val", nlp, overwrite, tokens_dict) process_questions(vqa_val, "train_val", nlp, overwrite, tokens_dict, ques_train_map, ques_tokens_train_map) if only == 'all' or only == 'ans': print "Processing train answers" if not use_tests: process_answers(vqa_train, "train", ans_types, ans_to_id, id_to_ans, overwrite) else: ans_map = process_answers(vqa_train, "train_val", ans_types, ans_to_id, id_to_ans, overwrite) process_answers(vqa_val, "train_val", ans_types, ans_to_id, id_to_ans, overwrite, ans_map) if only == 'all' or only == 'img': print "Processing train images" if not use_tests: process_images(img_model, preprocess, vqa_train, "train", dataSubType_train, imgDir_train, img_model_name, overwrite) else: img_map = process_images(img_model, preprocess, vqa_train, "train_val", dataSubType_train, imgDir_train, img_model_name, overwrite) process_images(img_model, preprocess, vqa_val, "train_val", dataSubType_val, imgDir_val, img_model_name, overwrite, img_map) if only == 'all' or only == 'ques_to_img': print "Processing train question id to image id mapping" if not use_tests: process_ques_to_img(vqa_train, "train", overwrite) else: ques_to_img = process_ques_to_img(vqa_train, "train_val", overwrite) process_ques_to_img(vqa_val, "train_val", overwrite, ques_to_img) print "Done" # ------------------------------------------------------------------------------------------------- if only == 'all' or only == 'ques': print "Processing validation questions" if not use_tests: process_questions(vqa_val, "val", nlp, overwrite, tokens_dict) else: process_questions_test(dataFile_test, "test", nlp, overwrite, tokens_dict) if only == 'all' or only == 'ans': print "Processing validation answers" if not use_tests: process_answers(vqa_val, "val", ans_types, ans_to_id, id_to_ans, overwrite) else: print "Skipping answers for test set" if only == 'all' or only == 'img': print "Processing validation images" if not use_tests: process_images(img_model, preprocess, vqa_val, "val", dataSubType_val, imgDir_val, img_model_name, overwrite) else: process_images_test(img_model, preprocess, "test", dataFile_test, "test2015", imgDir_test, img_model_name, overwrite) if only == 'all' or only == 'ques_to_img': print "Processing validation question id to image id mapping" if not use_tests: process_ques_to_img(vqa_val, "val", overwrite) else: process_ques_to_img_test(dataFile_test, "test", overwrite) print "Done" def main(params): dataDir = 'VQA' taskType = 'OpenEnded' dataType = 'mscoco' dataSubType_train = 'train2014' annFile_train = '%s/Annotations/%s_%s_annotations.json' % (dataDir, dataType, dataSubType_train) quesFile_train = '%s/Questions/%s_%s_%s_questions.json' % (dataDir, taskType, dataType, dataSubType_train) imgDir_train = '%s/Images/%s/%s/' % (dataDir, dataType, dataSubType_train) vqa_train = VQA(annFile_train, quesFile_train) dataSubType_val = 'val2014' annFile_val = '%s/Annotations/%s_%s_annotations.json' % (dataDir, dataType, dataSubType_val) quesFile_val = '%s/Questions/%s_%s_%s_questions.json' % (dataDir, taskType, dataType, dataSubType_val) imgDir_val = '%s/Images/%s/%s/' % (dataDir, dataType, dataSubType_val) vqa_val = VQA(annFile_val, quesFile_val) dataSubType_test = 'test-dev2015' # Hardcoded for test-dev quesFile_test = '%s/Questions/%s_%s_%s_questions.json' % (dataDir, taskType, dataType, dataSubType_test) imgDir_test = '%s/Images/%s/%s/' % (dataDir, dataType, 'test2015') nlp = spacy.load('en_vectors_glove_md') ans_to_id, id_to_ans = get_most_common_answers(vqa_train, vqa_val, int(params['num_answers']), params['ans_types'], params['show_top_ans'], params['use_test']) img_model = get_img_model(params['img_model']) preprocess = get_preprocess_function(params['img_model']) process_data(vqa_train, dataSubType_train, imgDir_train, vqa_val, dataSubType_val, imgDir_val, dataSubType_test, quesFile_test, imgDir_test, nlp, img_model, preprocess, ans_to_id, id_to_ans, params) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--ans_types', default=[], help='filter questions with specific answer types') parser.add_argument('--num_answers', default=1000, type=int, help='number of top answers to classify') parser.add_argument('--word_embedding_dim', default=300, type=int, help='word embedding dimension for one word') parser.add_argument('--img_model', default='resnet50', help='which image model to use for embeddings') parser.add_argument('--only', default='all', help='which data to preprocess (all, ques, ans, img, ques_to_img)') parser.add_argument('--use_test', dest='use_test', action='store_true', help='use test set (which also means training on train+val') parser.set_defaults(use_test=False) parser.add_argument('--show_top_ans', dest='show_top_ans', action='store_true', help='show plot with top answers') parser.set_defaults(show_top_ans=False) parser.add_argument('--overwrite', dest='overwrite', action='store_true', help='force overwrite') parser.set_defaults(overwrite=False) args = parser.parse_args() params = vars(args) main(params)
mit
HeraclesHX/scikit-learn
sklearn/metrics/pairwise.py
104
42995
# -*- coding: utf-8 -*- # Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Robert Layton <[email protected]> # Andreas Mueller <[email protected]> # Philippe Gervais <[email protected]> # Lars Buitinck <[email protected]> # Joel Nothman <[email protected]> # License: BSD 3 clause import itertools import numpy as np from scipy.spatial import distance from scipy.sparse import csr_matrix from scipy.sparse import issparse from ..utils import check_array from ..utils import gen_even_slices from ..utils import gen_batches from ..utils.fixes import partial from ..utils.extmath import row_norms, safe_sparse_dot from ..preprocessing import normalize from ..externals.joblib import Parallel from ..externals.joblib import delayed from ..externals.joblib.parallel import cpu_count from .pairwise_fast import _chi2_kernel_fast, _sparse_manhattan # Utility Functions def _return_float_dtype(X, Y): """ 1. If dtype of X and Y is float32, then dtype float32 is returned. 2. Else dtype float is returned. """ if not issparse(X) and not isinstance(X, np.ndarray): X = np.asarray(X) if Y is None: Y_dtype = X.dtype elif not issparse(Y) and not isinstance(Y, np.ndarray): Y = np.asarray(Y) Y_dtype = Y.dtype else: Y_dtype = Y.dtype if X.dtype == Y_dtype == np.float32: dtype = np.float32 else: dtype = np.float return X, Y, dtype def check_pairwise_arrays(X, Y): """ Set X and Y appropriately and checks inputs If Y is None, it is set as a pointer to X (i.e. not a copy). If Y is given, this does not happen. All distance metrics should use this function first to assert that the given parameters are correct and safe to use. Specifically, this function first ensures that both X and Y are arrays, then checks that they are at least two dimensional while ensuring that their elements are floats. Finally, the function checks that the size of the second dimension of the two arrays is equal. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples_a, n_features) Y : {array-like, sparse matrix}, shape (n_samples_b, n_features) Returns ------- safe_X : {array-like, sparse matrix}, shape (n_samples_a, n_features) An array equal to X, guaranteed to be a numpy array. safe_Y : {array-like, sparse matrix}, shape (n_samples_b, n_features) An array equal to Y if Y was not None, guaranteed to be a numpy array. If Y was None, safe_Y will be a pointer to X. """ X, Y, dtype = _return_float_dtype(X, Y) if Y is X or Y is None: X = Y = check_array(X, accept_sparse='csr', dtype=dtype) else: X = check_array(X, accept_sparse='csr', dtype=dtype) Y = check_array(Y, accept_sparse='csr', dtype=dtype) if X.shape[1] != Y.shape[1]: raise ValueError("Incompatible dimension for X and Y matrices: " "X.shape[1] == %d while Y.shape[1] == %d" % ( X.shape[1], Y.shape[1])) return X, Y def check_paired_arrays(X, Y): """ Set X and Y appropriately and checks inputs for paired distances All paired distance metrics should use this function first to assert that the given parameters are correct and safe to use. Specifically, this function first ensures that both X and Y are arrays, then checks that they are at least two dimensional while ensuring that their elements are floats. Finally, the function checks that the size of the dimensions of the two arrays are equal. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples_a, n_features) Y : {array-like, sparse matrix}, shape (n_samples_b, n_features) Returns ------- safe_X : {array-like, sparse matrix}, shape (n_samples_a, n_features) An array equal to X, guaranteed to be a numpy array. safe_Y : {array-like, sparse matrix}, shape (n_samples_b, n_features) An array equal to Y if Y was not None, guaranteed to be a numpy array. If Y was None, safe_Y will be a pointer to X. """ X, Y = check_pairwise_arrays(X, Y) if X.shape != Y.shape: raise ValueError("X and Y should be of same shape. They were " "respectively %r and %r long." % (X.shape, Y.shape)) return X, Y # Pairwise distances def euclidean_distances(X, Y=None, Y_norm_squared=None, squared=False): """ Considering the rows of X (and Y=X) as vectors, compute the distance matrix between each pair of vectors. For efficiency reasons, the euclidean distance between a pair of row vector x and y is computed as:: dist(x, y) = sqrt(dot(x, x) - 2 * dot(x, y) + dot(y, y)) This formulation has two advantages over other ways of computing distances. First, it is computationally efficient when dealing with sparse data. Second, if x varies but y remains unchanged, then the right-most dot product `dot(y, y)` can be pre-computed. However, this is not the most precise way of doing this computation, and the distance matrix returned by this function may not be exactly symmetric as required by, e.g., ``scipy.spatial.distance`` functions. Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples_1, n_features) Y : {array-like, sparse matrix}, shape (n_samples_2, n_features) Y_norm_squared : array-like, shape (n_samples_2, ), optional Pre-computed dot-products of vectors in Y (e.g., ``(Y**2).sum(axis=1)``) squared : boolean, optional Return squared Euclidean distances. Returns ------- distances : {array, sparse matrix}, shape (n_samples_1, n_samples_2) Examples -------- >>> from sklearn.metrics.pairwise import euclidean_distances >>> X = [[0, 1], [1, 1]] >>> # distance between rows of X >>> euclidean_distances(X, X) array([[ 0., 1.], [ 1., 0.]]) >>> # get distance to origin >>> euclidean_distances(X, [[0, 0]]) array([[ 1. ], [ 1.41421356]]) See also -------- paired_distances : distances betweens pairs of elements of X and Y. """ # should not need X_norm_squared because if you could precompute that as # well as Y, then you should just pre-compute the output and not even # call this function. X, Y = check_pairwise_arrays(X, Y) if Y_norm_squared is not None: YY = check_array(Y_norm_squared) if YY.shape != (1, Y.shape[0]): raise ValueError( "Incompatible dimensions for Y and Y_norm_squared") else: YY = row_norms(Y, squared=True)[np.newaxis, :] if X is Y: # shortcut in the common case euclidean_distances(X, X) XX = YY.T else: XX = row_norms(X, squared=True)[:, np.newaxis] distances = safe_sparse_dot(X, Y.T, dense_output=True) distances *= -2 distances += XX distances += YY np.maximum(distances, 0, out=distances) if X is Y: # Ensure that distances between vectors and themselves are set to 0.0. # This may not be the case due to floating point rounding errors. distances.flat[::distances.shape[0] + 1] = 0.0 return distances if squared else np.sqrt(distances, out=distances) def pairwise_distances_argmin_min(X, Y, axis=1, metric="euclidean", batch_size=500, metric_kwargs=None): """Compute minimum distances between one point and a set of points. This function computes for each row in X, the index of the row of Y which is closest (according to the specified distance). The minimal distances are also returned. This is mostly equivalent to calling: (pairwise_distances(X, Y=Y, metric=metric).argmin(axis=axis), pairwise_distances(X, Y=Y, metric=metric).min(axis=axis)) but uses much less memory, and is faster for large arrays. Parameters ---------- X, Y : {array-like, sparse matrix} Arrays containing points. Respective shapes (n_samples1, n_features) and (n_samples2, n_features) batch_size : integer To reduce memory consumption over the naive solution, data are processed in batches, comprising batch_size rows of X and batch_size rows of Y. The default value is quite conservative, but can be changed for fine-tuning. The larger the number, the larger the memory usage. metric : string or callable, default 'euclidean' metric to use for distance computation. Any metric from scikit-learn or scipy.spatial.distance can be used. If metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays as input and return one value indicating the distance between them. This works for Scipy's metrics, but is less efficient than passing the metric name as a string. Distance matrices are not supported. Valid values for metric are: - from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan'] - from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'] See the documentation for scipy.spatial.distance for details on these metrics. metric_kwargs : dict, optional Keyword arguments to pass to specified metric function. axis : int, optional, default 1 Axis along which the argmin and distances are to be computed. Returns ------- argmin : numpy.ndarray Y[argmin[i], :] is the row in Y that is closest to X[i, :]. distances : numpy.ndarray distances[i] is the distance between the i-th row in X and the argmin[i]-th row in Y. See also -------- sklearn.metrics.pairwise_distances sklearn.metrics.pairwise_distances_argmin """ dist_func = None if metric in PAIRWISE_DISTANCE_FUNCTIONS: dist_func = PAIRWISE_DISTANCE_FUNCTIONS[metric] elif not callable(metric) and not isinstance(metric, str): raise ValueError("'metric' must be a string or a callable") X, Y = check_pairwise_arrays(X, Y) if metric_kwargs is None: metric_kwargs = {} if axis == 0: X, Y = Y, X # Allocate output arrays indices = np.empty(X.shape[0], dtype=np.intp) values = np.empty(X.shape[0]) values.fill(np.infty) for chunk_x in gen_batches(X.shape[0], batch_size): X_chunk = X[chunk_x, :] for chunk_y in gen_batches(Y.shape[0], batch_size): Y_chunk = Y[chunk_y, :] if dist_func is not None: if metric == 'euclidean': # special case, for speed d_chunk = safe_sparse_dot(X_chunk, Y_chunk.T, dense_output=True) d_chunk *= -2 d_chunk += row_norms(X_chunk, squared=True)[:, np.newaxis] d_chunk += row_norms(Y_chunk, squared=True)[np.newaxis, :] np.maximum(d_chunk, 0, d_chunk) else: d_chunk = dist_func(X_chunk, Y_chunk, **metric_kwargs) else: d_chunk = pairwise_distances(X_chunk, Y_chunk, metric=metric, **metric_kwargs) # Update indices and minimum values using chunk min_indices = d_chunk.argmin(axis=1) min_values = d_chunk[np.arange(chunk_x.stop - chunk_x.start), min_indices] flags = values[chunk_x] > min_values indices[chunk_x][flags] = min_indices[flags] + chunk_y.start values[chunk_x][flags] = min_values[flags] if metric == "euclidean" and not metric_kwargs.get("squared", False): np.sqrt(values, values) return indices, values def pairwise_distances_argmin(X, Y, axis=1, metric="euclidean", batch_size=500, metric_kwargs=None): """Compute minimum distances between one point and a set of points. This function computes for each row in X, the index of the row of Y which is closest (according to the specified distance). This is mostly equivalent to calling: pairwise_distances(X, Y=Y, metric=metric).argmin(axis=axis) but uses much less memory, and is faster for large arrays. This function works with dense 2D arrays only. Parameters ---------- X : array-like Arrays containing points. Respective shapes (n_samples1, n_features) and (n_samples2, n_features) Y : array-like Arrays containing points. Respective shapes (n_samples1, n_features) and (n_samples2, n_features) batch_size : integer To reduce memory consumption over the naive solution, data are processed in batches, comprising batch_size rows of X and batch_size rows of Y. The default value is quite conservative, but can be changed for fine-tuning. The larger the number, the larger the memory usage. metric : string or callable metric to use for distance computation. Any metric from scikit-learn or scipy.spatial.distance can be used. If metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays as input and return one value indicating the distance between them. This works for Scipy's metrics, but is less efficient than passing the metric name as a string. Distance matrices are not supported. Valid values for metric are: - from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan'] - from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'] See the documentation for scipy.spatial.distance for details on these metrics. metric_kwargs : dict keyword arguments to pass to specified metric function. axis : int, optional, default 1 Axis along which the argmin and distances are to be computed. Returns ------- argmin : numpy.ndarray Y[argmin[i], :] is the row in Y that is closest to X[i, :]. See also -------- sklearn.metrics.pairwise_distances sklearn.metrics.pairwise_distances_argmin_min """ if metric_kwargs is None: metric_kwargs = {} return pairwise_distances_argmin_min(X, Y, axis, metric, batch_size, metric_kwargs)[0] def manhattan_distances(X, Y=None, sum_over_features=True, size_threshold=5e8): """ Compute the L1 distances between the vectors in X and Y. With sum_over_features equal to False it returns the componentwise distances. Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : array_like An array with shape (n_samples_X, n_features). Y : array_like, optional An array with shape (n_samples_Y, n_features). sum_over_features : bool, default=True If True the function returns the pairwise distance matrix else it returns the componentwise L1 pairwise-distances. Not supported for sparse matrix inputs. size_threshold : int, default=5e8 Unused parameter. Returns ------- D : array If sum_over_features is False shape is (n_samples_X * n_samples_Y, n_features) and D contains the componentwise L1 pairwise-distances (ie. absolute difference), else shape is (n_samples_X, n_samples_Y) and D contains the pairwise L1 distances. Examples -------- >>> from sklearn.metrics.pairwise import manhattan_distances >>> manhattan_distances(3, 3)#doctest:+ELLIPSIS array([[ 0.]]) >>> manhattan_distances(3, 2)#doctest:+ELLIPSIS array([[ 1.]]) >>> manhattan_distances(2, 3)#doctest:+ELLIPSIS array([[ 1.]]) >>> manhattan_distances([[1, 2], [3, 4]],\ [[1, 2], [0, 3]])#doctest:+ELLIPSIS array([[ 0., 2.], [ 4., 4.]]) >>> import numpy as np >>> X = np.ones((1, 2)) >>> y = 2 * np.ones((2, 2)) >>> manhattan_distances(X, y, sum_over_features=False)#doctest:+ELLIPSIS array([[ 1., 1.], [ 1., 1.]]...) """ X, Y = check_pairwise_arrays(X, Y) if issparse(X) or issparse(Y): if not sum_over_features: raise TypeError("sum_over_features=%r not supported" " for sparse matrices" % sum_over_features) X = csr_matrix(X, copy=False) Y = csr_matrix(Y, copy=False) D = np.zeros((X.shape[0], Y.shape[0])) _sparse_manhattan(X.data, X.indices, X.indptr, Y.data, Y.indices, Y.indptr, X.shape[1], D) return D if sum_over_features: return distance.cdist(X, Y, 'cityblock') D = X[:, np.newaxis, :] - Y[np.newaxis, :, :] D = np.abs(D, D) return D.reshape((-1, X.shape[1])) def cosine_distances(X, Y=None): """ Compute cosine distance between samples in X and Y. Cosine distance is defined as 1.0 minus the cosine similarity. Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : array_like, sparse matrix with shape (n_samples_X, n_features). Y : array_like, sparse matrix (optional) with shape (n_samples_Y, n_features). Returns ------- distance matrix : array An array with shape (n_samples_X, n_samples_Y). See also -------- sklearn.metrics.pairwise.cosine_similarity scipy.spatial.distance.cosine (dense matrices only) """ # 1.0 - cosine_similarity(X, Y) without copy S = cosine_similarity(X, Y) S *= -1 S += 1 return S # Paired distances def paired_euclidean_distances(X, Y): """ Computes the paired euclidean distances between X and Y Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : array-like, shape (n_samples, n_features) Y : array-like, shape (n_samples, n_features) Returns ------- distances : ndarray (n_samples, ) """ X, Y = check_paired_arrays(X, Y) return row_norms(X - Y) def paired_manhattan_distances(X, Y): """Compute the L1 distances between the vectors in X and Y. Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : array-like, shape (n_samples, n_features) Y : array-like, shape (n_samples, n_features) Returns ------- distances : ndarray (n_samples, ) """ X, Y = check_paired_arrays(X, Y) diff = X - Y if issparse(diff): diff.data = np.abs(diff.data) return np.squeeze(np.array(diff.sum(axis=1))) else: return np.abs(diff).sum(axis=-1) def paired_cosine_distances(X, Y): """ Computes the paired cosine distances between X and Y Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : array-like, shape (n_samples, n_features) Y : array-like, shape (n_samples, n_features) Returns ------- distances : ndarray, shape (n_samples, ) Notes ------ The cosine distance is equivalent to the half the squared euclidean distance if each sample is normalized to unit norm """ X, Y = check_paired_arrays(X, Y) return .5 * row_norms(normalize(X) - normalize(Y), squared=True) PAIRED_DISTANCES = { 'cosine': paired_cosine_distances, 'euclidean': paired_euclidean_distances, 'l2': paired_euclidean_distances, 'l1': paired_manhattan_distances, 'manhattan': paired_manhattan_distances, 'cityblock': paired_manhattan_distances} def paired_distances(X, Y, metric="euclidean", **kwds): """ Computes the paired distances between X and Y. Computes the distances between (X[0], Y[0]), (X[1], Y[1]), etc... Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : ndarray (n_samples, n_features) Array 1 for distance computation. Y : ndarray (n_samples, n_features) Array 2 for distance computation. metric : string or callable The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options specified in PAIRED_DISTANCES, including "euclidean", "manhattan", or "cosine". Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays from X as input and return a value indicating the distance between them. Returns ------- distances : ndarray (n_samples, ) Examples -------- >>> from sklearn.metrics.pairwise import paired_distances >>> X = [[0, 1], [1, 1]] >>> Y = [[0, 1], [2, 1]] >>> paired_distances(X, Y) array([ 0., 1.]) See also -------- pairwise_distances : pairwise distances. """ if metric in PAIRED_DISTANCES: func = PAIRED_DISTANCES[metric] return func(X, Y) elif callable(metric): # Check the matrix first (it is usually done by the metric) X, Y = check_paired_arrays(X, Y) distances = np.zeros(len(X)) for i in range(len(X)): distances[i] = metric(X[i], Y[i]) return distances else: raise ValueError('Unknown distance %s' % metric) # Kernels def linear_kernel(X, Y=None): """ Compute the linear kernel between X and Y. Read more in the :ref:`User Guide <linear_kernel>`. Parameters ---------- X : array of shape (n_samples_1, n_features) Y : array of shape (n_samples_2, n_features) Returns ------- Gram matrix : array of shape (n_samples_1, n_samples_2) """ X, Y = check_pairwise_arrays(X, Y) return safe_sparse_dot(X, Y.T, dense_output=True) def polynomial_kernel(X, Y=None, degree=3, gamma=None, coef0=1): """ Compute the polynomial kernel between X and Y:: K(X, Y) = (gamma <X, Y> + coef0)^degree Read more in the :ref:`User Guide <polynomial_kernel>`. Parameters ---------- X : ndarray of shape (n_samples_1, n_features) Y : ndarray of shape (n_samples_2, n_features) coef0 : int, default 1 degree : int, default 3 Returns ------- Gram matrix : array of shape (n_samples_1, n_samples_2) """ X, Y = check_pairwise_arrays(X, Y) if gamma is None: gamma = 1.0 / X.shape[1] K = safe_sparse_dot(X, Y.T, dense_output=True) K *= gamma K += coef0 K **= degree return K def sigmoid_kernel(X, Y=None, gamma=None, coef0=1): """ Compute the sigmoid kernel between X and Y:: K(X, Y) = tanh(gamma <X, Y> + coef0) Read more in the :ref:`User Guide <sigmoid_kernel>`. Parameters ---------- X : ndarray of shape (n_samples_1, n_features) Y : ndarray of shape (n_samples_2, n_features) coef0 : int, default 1 Returns ------- Gram matrix: array of shape (n_samples_1, n_samples_2) """ X, Y = check_pairwise_arrays(X, Y) if gamma is None: gamma = 1.0 / X.shape[1] K = safe_sparse_dot(X, Y.T, dense_output=True) K *= gamma K += coef0 np.tanh(K, K) # compute tanh in-place return K def rbf_kernel(X, Y=None, gamma=None): """ Compute the rbf (gaussian) kernel between X and Y:: K(x, y) = exp(-gamma ||x-y||^2) for each pair of rows x in X and y in Y. Read more in the :ref:`User Guide <rbf_kernel>`. Parameters ---------- X : array of shape (n_samples_X, n_features) Y : array of shape (n_samples_Y, n_features) gamma : float Returns ------- kernel_matrix : array of shape (n_samples_X, n_samples_Y) """ X, Y = check_pairwise_arrays(X, Y) if gamma is None: gamma = 1.0 / X.shape[1] K = euclidean_distances(X, Y, squared=True) K *= -gamma np.exp(K, K) # exponentiate K in-place return K def cosine_similarity(X, Y=None, dense_output=True): """Compute cosine similarity between samples in X and Y. Cosine similarity, or the cosine kernel, computes similarity as the normalized dot product of X and Y: K(X, Y) = <X, Y> / (||X||*||Y||) On L2-normalized data, this function is equivalent to linear_kernel. Read more in the :ref:`User Guide <cosine_similarity>`. Parameters ---------- X : ndarray or sparse array, shape: (n_samples_X, n_features) Input data. Y : ndarray or sparse array, shape: (n_samples_Y, n_features) Input data. If ``None``, the output will be the pairwise similarities between all samples in ``X``. dense_output : boolean (optional), default True Whether to return dense output even when the input is sparse. If ``False``, the output is sparse if both input arrays are sparse. Returns ------- kernel matrix : array An array with shape (n_samples_X, n_samples_Y). """ # to avoid recursive import X, Y = check_pairwise_arrays(X, Y) X_normalized = normalize(X, copy=True) if X is Y: Y_normalized = X_normalized else: Y_normalized = normalize(Y, copy=True) K = safe_sparse_dot(X_normalized, Y_normalized.T, dense_output=dense_output) return K def additive_chi2_kernel(X, Y=None): """Computes the additive chi-squared kernel between observations in X and Y The chi-squared kernel is computed between each pair of rows in X and Y. X and Y have to be non-negative. This kernel is most commonly applied to histograms. The chi-squared kernel is given by:: k(x, y) = -Sum [(x - y)^2 / (x + y)] It can be interpreted as a weighted difference per entry. Read more in the :ref:`User Guide <chi2_kernel>`. Notes ----- As the negative of a distance, this kernel is only conditionally positive definite. Parameters ---------- X : array-like of shape (n_samples_X, n_features) Y : array of shape (n_samples_Y, n_features) Returns ------- kernel_matrix : array of shape (n_samples_X, n_samples_Y) References ---------- * Zhang, J. and Marszalek, M. and Lazebnik, S. and Schmid, C. Local features and kernels for classification of texture and object categories: A comprehensive study International Journal of Computer Vision 2007 http://eprints.pascal-network.org/archive/00002309/01/Zhang06-IJCV.pdf See also -------- chi2_kernel : The exponentiated version of the kernel, which is usually preferable. sklearn.kernel_approximation.AdditiveChi2Sampler : A Fourier approximation to this kernel. """ if issparse(X) or issparse(Y): raise ValueError("additive_chi2 does not support sparse matrices.") X, Y = check_pairwise_arrays(X, Y) if (X < 0).any(): raise ValueError("X contains negative values.") if Y is not X and (Y < 0).any(): raise ValueError("Y contains negative values.") result = np.zeros((X.shape[0], Y.shape[0]), dtype=X.dtype) _chi2_kernel_fast(X, Y, result) return result def chi2_kernel(X, Y=None, gamma=1.): """Computes the exponential chi-squared kernel X and Y. The chi-squared kernel is computed between each pair of rows in X and Y. X and Y have to be non-negative. This kernel is most commonly applied to histograms. The chi-squared kernel is given by:: k(x, y) = exp(-gamma Sum [(x - y)^2 / (x + y)]) It can be interpreted as a weighted difference per entry. Read more in the :ref:`User Guide <chi2_kernel>`. Parameters ---------- X : array-like of shape (n_samples_X, n_features) Y : array of shape (n_samples_Y, n_features) gamma : float, default=1. Scaling parameter of the chi2 kernel. Returns ------- kernel_matrix : array of shape (n_samples_X, n_samples_Y) References ---------- * Zhang, J. and Marszalek, M. and Lazebnik, S. and Schmid, C. Local features and kernels for classification of texture and object categories: A comprehensive study International Journal of Computer Vision 2007 http://eprints.pascal-network.org/archive/00002309/01/Zhang06-IJCV.pdf See also -------- additive_chi2_kernel : The additive version of this kernel sklearn.kernel_approximation.AdditiveChi2Sampler : A Fourier approximation to the additive version of this kernel. """ K = additive_chi2_kernel(X, Y) K *= gamma return np.exp(K, K) # Helper functions - distance PAIRWISE_DISTANCE_FUNCTIONS = { # If updating this dictionary, update the doc in both distance_metrics() # and also in pairwise_distances()! 'cityblock': manhattan_distances, 'cosine': cosine_distances, 'euclidean': euclidean_distances, 'l2': euclidean_distances, 'l1': manhattan_distances, 'manhattan': manhattan_distances, } def distance_metrics(): """Valid metrics for pairwise_distances. This function simply returns the valid pairwise distance metrics. It exists to allow for a description of the mapping for each of the valid strings. The valid distance metrics, and the function they map to, are: ============ ==================================== metric Function ============ ==================================== 'cityblock' metrics.pairwise.manhattan_distances 'cosine' metrics.pairwise.cosine_distances 'euclidean' metrics.pairwise.euclidean_distances 'l1' metrics.pairwise.manhattan_distances 'l2' metrics.pairwise.euclidean_distances 'manhattan' metrics.pairwise.manhattan_distances ============ ==================================== Read more in the :ref:`User Guide <metrics>`. """ return PAIRWISE_DISTANCE_FUNCTIONS def _parallel_pairwise(X, Y, func, n_jobs, **kwds): """Break the pairwise matrix in n_jobs even slices and compute them in parallel""" if n_jobs < 0: n_jobs = max(cpu_count() + 1 + n_jobs, 1) if Y is None: Y = X if n_jobs == 1: # Special case to avoid picklability checks in delayed return func(X, Y, **kwds) # TODO: in some cases, backend='threading' may be appropriate fd = delayed(func) ret = Parallel(n_jobs=n_jobs, verbose=0)( fd(X, Y[s], **kwds) for s in gen_even_slices(Y.shape[0], n_jobs)) return np.hstack(ret) def _pairwise_callable(X, Y, metric, **kwds): """Handle the callable case for pairwise_{distances,kernels} """ X, Y = check_pairwise_arrays(X, Y) if X is Y: # Only calculate metric for upper triangle out = np.zeros((X.shape[0], Y.shape[0]), dtype='float') iterator = itertools.combinations(range(X.shape[0]), 2) for i, j in iterator: out[i, j] = metric(X[i], Y[j], **kwds) # Make symmetric # NB: out += out.T will produce incorrect results out = out + out.T # Calculate diagonal # NB: nonzero diagonals are allowed for both metrics and kernels for i in range(X.shape[0]): x = X[i] out[i, i] = metric(x, x, **kwds) else: # Calculate all cells out = np.empty((X.shape[0], Y.shape[0]), dtype='float') iterator = itertools.product(range(X.shape[0]), range(Y.shape[0])) for i, j in iterator: out[i, j] = metric(X[i], Y[j], **kwds) return out _VALID_METRICS = ['euclidean', 'l2', 'l1', 'manhattan', 'cityblock', 'braycurtis', 'canberra', 'chebyshev', 'correlation', 'cosine', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule', "wminkowski"] def pairwise_distances(X, Y=None, metric="euclidean", n_jobs=1, **kwds): """ Compute the distance matrix from a vector array X and optional Y. This method takes either a vector array or a distance matrix, and returns a distance matrix. If the input is a vector array, the distances are computed. If the input is a distances matrix, it is returned instead. This method provides a safe way to take a distance matrix as input, while preserving compatibility with many other algorithms that take a vector array. If Y is given (default is None), then the returned matrix is the pairwise distance between the arrays from both X and Y. Valid values for metric are: - From scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan']. These metrics support sparse matrix inputs. - From scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'] See the documentation for scipy.spatial.distance for details on these metrics. These metrics do not support sparse matrix inputs. Note that in the case of 'cityblock', 'cosine' and 'euclidean' (which are valid scipy.spatial.distance metrics), the scikit-learn implementation will be used, which is faster and has support for sparse matrices (except for 'cityblock'). For a verbose description of the metrics from scikit-learn, see the __doc__ of the sklearn.pairwise.distance_metrics function. Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \ [n_samples_a, n_features] otherwise Array of pairwise distances between samples, or a feature array. Y : array [n_samples_b, n_features], optional An optional second feature array. Only allowed if metric != "precomputed". metric : string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by scipy.spatial.distance.pdist for its metric parameter, or a metric listed in pairwise.PAIRWISE_DISTANCE_FUNCTIONS. If metric is "precomputed", X is assumed to be a distance matrix. Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays from X as input and return a value indicating the distance between them. n_jobs : int The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. `**kwds` : optional keyword parameters Any further parameters are passed directly to the distance function. If using a scipy.spatial.distance metric, the parameters are still metric dependent. See the scipy docs for usage examples. Returns ------- D : array [n_samples_a, n_samples_a] or [n_samples_a, n_samples_b] A distance matrix D such that D_{i, j} is the distance between the ith and jth vectors of the given matrix X, if Y is None. If Y is not None, then D_{i, j} is the distance between the ith array from X and the jth array from Y. """ if (metric not in _VALID_METRICS and not callable(metric) and metric != "precomputed"): raise ValueError("Unknown metric %s. " "Valid metrics are %s, or 'precomputed', or a " "callable" % (metric, _VALID_METRICS)) if metric == "precomputed": return X elif metric in PAIRWISE_DISTANCE_FUNCTIONS: func = PAIRWISE_DISTANCE_FUNCTIONS[metric] elif callable(metric): func = partial(_pairwise_callable, metric=metric, **kwds) else: if issparse(X) or issparse(Y): raise TypeError("scipy distance metrics do not" " support sparse matrices.") X, Y = check_pairwise_arrays(X, Y) if n_jobs == 1 and X is Y: return distance.squareform(distance.pdist(X, metric=metric, **kwds)) func = partial(distance.cdist, metric=metric, **kwds) return _parallel_pairwise(X, Y, func, n_jobs, **kwds) # Helper functions - distance PAIRWISE_KERNEL_FUNCTIONS = { # If updating this dictionary, update the doc in both distance_metrics() # and also in pairwise_distances()! 'additive_chi2': additive_chi2_kernel, 'chi2': chi2_kernel, 'linear': linear_kernel, 'polynomial': polynomial_kernel, 'poly': polynomial_kernel, 'rbf': rbf_kernel, 'sigmoid': sigmoid_kernel, 'cosine': cosine_similarity, } def kernel_metrics(): """ Valid metrics for pairwise_kernels This function simply returns the valid pairwise distance metrics. It exists, however, to allow for a verbose description of the mapping for each of the valid strings. The valid distance metrics, and the function they map to, are: =============== ======================================== metric Function =============== ======================================== 'additive_chi2' sklearn.pairwise.additive_chi2_kernel 'chi2' sklearn.pairwise.chi2_kernel 'linear' sklearn.pairwise.linear_kernel 'poly' sklearn.pairwise.polynomial_kernel 'polynomial' sklearn.pairwise.polynomial_kernel 'rbf' sklearn.pairwise.rbf_kernel 'sigmoid' sklearn.pairwise.sigmoid_kernel 'cosine' sklearn.pairwise.cosine_similarity =============== ======================================== Read more in the :ref:`User Guide <metrics>`. """ return PAIRWISE_KERNEL_FUNCTIONS KERNEL_PARAMS = { "additive_chi2": (), "chi2": (), "cosine": (), "exp_chi2": frozenset(["gamma"]), "linear": (), "poly": frozenset(["gamma", "degree", "coef0"]), "polynomial": frozenset(["gamma", "degree", "coef0"]), "rbf": frozenset(["gamma"]), "sigmoid": frozenset(["gamma", "coef0"]), } def pairwise_kernels(X, Y=None, metric="linear", filter_params=False, n_jobs=1, **kwds): """Compute the kernel between arrays X and optional array Y. This method takes either a vector array or a kernel matrix, and returns a kernel matrix. If the input is a vector array, the kernels are computed. If the input is a kernel matrix, it is returned instead. This method provides a safe way to take a kernel matrix as input, while preserving compatibility with many other algorithms that take a vector array. If Y is given (default is None), then the returned matrix is the pairwise kernel between the arrays from both X and Y. Valid values for metric are:: ['rbf', 'sigmoid', 'polynomial', 'poly', 'linear', 'cosine'] Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \ [n_samples_a, n_features] otherwise Array of pairwise kernels between samples, or a feature array. Y : array [n_samples_b, n_features] A second feature array only if X has shape [n_samples_a, n_features]. metric : string, or callable The metric to use when calculating kernel between instances in a feature array. If metric is a string, it must be one of the metrics in pairwise.PAIRWISE_KERNEL_FUNCTIONS. If metric is "precomputed", X is assumed to be a kernel matrix. Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays from X as input and return a value indicating the distance between them. n_jobs : int The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. filter_params: boolean Whether to filter invalid parameters or not. `**kwds` : optional keyword parameters Any further parameters are passed directly to the kernel function. Returns ------- K : array [n_samples_a, n_samples_a] or [n_samples_a, n_samples_b] A kernel matrix K such that K_{i, j} is the kernel between the ith and jth vectors of the given matrix X, if Y is None. If Y is not None, then K_{i, j} is the kernel between the ith array from X and the jth array from Y. Notes ----- If metric is 'precomputed', Y is ignored and X is returned. """ if metric == "precomputed": return X elif metric in PAIRWISE_KERNEL_FUNCTIONS: if filter_params: kwds = dict((k, kwds[k]) for k in kwds if k in KERNEL_PARAMS[metric]) func = PAIRWISE_KERNEL_FUNCTIONS[metric] elif callable(metric): func = partial(_pairwise_callable, metric=metric, **kwds) else: raise ValueError("Unknown kernel %r" % metric) return _parallel_pairwise(X, Y, func, n_jobs, **kwds)
bsd-3-clause
hitlonewind/PR-experiment
Perceptron/perceptron.py
1
3153
#encoding=utf-8 import numpy as np import random from matplotlib import pyplot as plt class Perceptron(object): """docstring for Perceptron""" def __init__(self,study_step=0.0000001, study_total=10000): super(Perceptron, self).__init__() self.datadic = {} self.label = {} self.study_step = study_step # 学习步长 self.study_total = study_total self.loaddata() def loaddata(self, fname ='demo.csv', labelfile='demoLabel.csv'): self.data = np.loadtxt(fname, delimiter=",") label = open(labelfile) count = 0 for item in label: self.label[count] = item[0:-1] self.datadic[count] = self.data[count] count += 1 pass def train(self, trainlabel=str): train_size = len(self.label) datadim = len(self.data[0]) w = np.zeros((datadim, 1)) b = 0.0 study_count = 0 # 学习次数记录,只有当分类错误时才会增加 nochange_count = 0 # 统计连续分类正确数,当分类错误时归为0 nochange_upper_limit = 25000 count = 0 while True: nochange_count += 1 if nochange_count > nochange_upper_limit: print 'break0' break index = random.randint(0, train_size-1) #index = count count += 1 point = self.data[index] label = self.label[index] #yi = int(label) if label == trainlabel: yi = 1 else: yi = -1 result = yi *(np.dot(point, w) + b ) if result <= 0: item = np.reshape(self.data[index], (datadim, 1)) w += item*yi*self.study_step b += yi * self.study_step study_count += 1 if study_count > self.study_total: print 'break1' break nochange_count = 0 if count > 10000: count = 0 self.w = w self.b = b print type(w) return w, b def train_plot(self): fig = plt.figure() ax1 = fig.add_subplot(111) ax1.set_title("Perceptron") #help(ax1.annotate) plt.xlabel('x') plt.ylabel('y') color = ['r','b'] label = ['label1', 'label2'] marker = ['x', 'o'] count = 0 for index in self.data: if self.label[count] == '1': label = 'o' pcolor = 'g' else: label = '^' pcolor = 'b' plt.scatter(index[0], index[1], marker=label,color=pcolor,alpha=0.6) count += 1 x = range(0,3) numx = np.array(x) y = -((self.w[0])/(self.w[1]))*x - self.b/self.w[1] k = str(-((self.w[0])/(self.w[1]))) b = str(- self.b/self.w[1]) ax1.annotate('y={0}x +{1} '.format(k[1:-1],b[1:-1]), (x[0],y[0])) print 'k:{0}\n'.format(k) print 'b:{0}'.format(b) #print 'b:{0}\n' plt.plot(x,y,marker='x',color='r') plt.savefig('Perceptron.jpg') plt.show() pass def test(self): weigh = np.loadtxt('weight.csv', delimiter=',') #b = -11188293700.0 b = -80793100.0 testbench = np.loadtxt('TestSamples.csv', delimiter=',') re = np.dot(testbench, weigh) - b count = 0 count2 = 0 for i in range(0, len(re)): if self.label[i] == '9': count += 1 if re[i] > 0: count2 += 1 print count2 print count print float(count2)/float(count) P = Perceptron(100) P.train('1') P.train_plot()
mit
tbenthompson/tectosaur
tectosaur/continuity.py
1
9699
import numpy as np import scipy.sparse.csgraph from tectosaur.util.geometry import tri_normal, unscaled_normals, normalize from tectosaur.constraints import ConstraintEQ, Term from tectosaur.stress_constraints import stress_constraints, stress_constraints2, \ equilibrium_constraint, constant_stress_constraint def find_touching_pts(tris): max_pt_idx = np.max(tris) out = [[] for i in range(max_pt_idx + 1)] for i, t in enumerate(tris): for d in range(3): out[t[d]].append((i, d)) return out def tri_connectivity_graph(tris): n_tris = tris.shape[0] touching = [[] for i in range(np.max(tris) + 1)] for i in range(n_tris): for d in range(3): touching[tris[i,d]].append(i) rows = [] cols = [] for i in range(len(touching)): for row in touching[i]: for col in touching[i]: rows.append(row) cols.append(col) rows = np.array(rows) cols = np.array(cols) connectivity = scipy.sparse.coo_matrix((np.ones(rows.shape[0]), (rows, cols)), shape = (n_tris, n_tris)) return connectivity def tri_side(tri1, tri2, threshold = 1e-12): tri1_normal = tri_normal(tri1, normalize = True) tri1_center = np.mean(tri1, axis = 0) tri2_center = np.mean(tri2, axis = 0) direction = tri2_center - tri1_center direction /= np.linalg.norm(direction) dot_val = direction.dot(tri1_normal) if dot_val > threshold: return 0 elif dot_val < -threshold: return 1 else: return 2 def get_side_of_fault(pts, tris, fault_start_idx): connectivity = tri_connectivity_graph(tris) fault_touching_pair = np.where(np.logical_and( connectivity.row < fault_start_idx, connectivity.col >= fault_start_idx ))[0] side = np.zeros(tris.shape[0]) shared_verts = np.zeros(tris.shape[0]) fault_surf_tris = pts[tris[connectivity.col[fault_touching_pair]]] for i in range(fault_touching_pair.shape[0]): surf_tri_idx = connectivity.row[fault_touching_pair[i]] surf_tri = tris[surf_tri_idx] fault_tri = tris[connectivity.col[fault_touching_pair[i]]] which_side = tri_side(pts[fault_tri], pts[surf_tri]) n_shared_verts = 0 for d in range(3): if surf_tri[d] in fault_tri: n_shared_verts += 1 if shared_verts[surf_tri_idx] < 2: side[surf_tri_idx] = int(which_side) + 1 shared_verts[surf_tri_idx] = n_shared_verts return side #TODO: this function needs to know the idxs of the surface_tris and fault_tris, so use # idx lists and pass the full tris array, currently using the (n_surf_tris * 9) hack! #TODO: refactor and merge this with the traction continuity constraints def continuity_constraints(pts, tris, fault_start_idx, tensor_dim = 3): surface_tris = tris[:fault_start_idx] fault_tris = tris[fault_start_idx:] touching_pt = find_touching_pts(surface_tris) side = get_side_of_fault(pts, tris, fault_start_idx) constraints = [] for i, tpt in enumerate(touching_pt): if len(tpt) == 0: continue for independent_idx in range(len(tpt)): independent = tpt[independent_idx] independent_tri_idx = independent[0] independent_corner_idx = independent[1] independent_tri = surface_tris[independent_tri_idx] for dependent_idx in range(independent_idx + 1, len(tpt)): dependent = tpt[dependent_idx] dependent_tri_idx = dependent[0] dependent_corner_idx = dependent[1] dependent_tri = surface_tris[dependent_tri_idx] # Check for anything that touches across the fault. side1 = side[independent_tri_idx] side2 = side[dependent_tri_idx] crosses = (side1 != side2) and (side1 != 0) and (side2 != 0) fault_tri_idx = None if crosses: fault_tri_idxs, fault_corner_idxs = np.where( fault_tris == dependent_tri[dependent_corner_idx] ) if fault_tri_idxs.shape[0] != 0: fault_tri_idx = fault_tri_idxs[0] fault_corner_idx = fault_corner_idxs[0] # plt_pts = np.vstack(( # pts[independent_tri], # pts[dependent_tri], # pts[fault_tris[fault_tri_idx]] # )) # import matplotlib.pyplot as plt # plt.tripcolor(pts[:,0], pts[:,1], tris[:surface_tris.shape[0]], side[:surface_tris.shape[0]]) # plt.triplot(plt_pts[:,0], plt_pts[:,1], np.array([[0,1,2]]), 'b-') # plt.triplot(plt_pts[:,0], plt_pts[:,1], np.array([[3,4,5]]), 'k-') # plt.triplot(pts[:,0], pts[:,1], tris[fault_start_idx:], 'r-') # plt.show() for d in range(tensor_dim): independent_dof = (independent_tri_idx * 3 + independent_corner_idx) * tensor_dim + d dependent_dof = (dependent_tri_idx * 3 + dependent_corner_idx) * tensor_dim + d if dependent_dof <= independent_dof: continue diff = 0.0 terms = [Term(1.0, dependent_dof), Term(-1.0, independent_dof)] if fault_tri_idx is not None: fault_dof = ( fault_start_idx * 9 + fault_tri_idx * 9 + fault_corner_idx * 3 + d ) if side1 < side2: terms.append(Term(-1.0, fault_dof)) else: terms.append(Term(1.0, fault_dof)) constraints.append(ConstraintEQ(terms, 0.0)) return constraints def traction_admissibility_constraints(pts, tris, fault_start_idx): # At each vertex, there should be three remaining degrees of freedom. # Initially, there are n_tris*3 degrees of freedom. # So, we need (n_tris-1)*3 constraints. touching_pt = find_touching_pts(tris) ns = normalize(unscaled_normals(pts[tris])) side = get_side_of_fault(pts, tris, fault_start_idx) continuity_cs = [] admissibility_cs = [] for tpt in touching_pt: if len(tpt) == 0: continue # Separate the triangles touching at the vertex into a groups # by the normal vectors for each triangle. normal_groups = [] for i in range(len(tpt)): tri_idx = tpt[i][0] n = ns[tri_idx] joined = False for j in range(len(normal_groups)): if np.allclose(normal_groups[j][0], n): tri_idx2 = tpt[normal_groups[j][1][0]][0] side1 = side[tri_idx] side2 = side[tri_idx2] crosses = (side1 != side2) and (side1 != 0) and (side2 != 0) fault_tri_idx = None # if crosses: # continue normal_groups[j][1].append(i) joined = True break if not joined: normal_groups.append((n, [i])) # Continuity within normal group for i in range(len(normal_groups)): group = normal_groups[i][1] independent_idx = group[0] independent = tpt[independent_idx] independent_tri_idx = independent[0] independent_corner_idx = independent[1] independent_dof_start = independent_tri_idx * 9 + independent_corner_idx * 3 for j in range(1, len(group)): dependent_idx = group[j] dependent = tpt[dependent_idx] dependent_tri_idx = dependent[0] dependent_corner_idx = dependent[1] dependent_dof_start = dependent_tri_idx * 9 + dependent_corner_idx * 3 for d in range(3): terms = [ Term(1.0, dependent_dof_start + d), Term(-1.0, independent_dof_start + d) ] continuity_cs.append(ConstraintEQ(terms, 0.0)) if len(normal_groups) == 1: # Only continuity needed! continue # assert(len(normal_groups) == 2) # Add constant stress constraints for i in range(len(normal_groups)): tpt_idx1 = normal_groups[i][1][0] tri_idx1 = tpt[tpt_idx1][0] corner_idx1 = tpt[tpt_idx1][1] tri1 = pts[tris[tri_idx1]] tri_data1 = (tri1, tri_idx1, corner_idx1) for j in range(i + 1, len(normal_groups)): tpt_idx2 = normal_groups[j][1][0] tri_idx2 = tpt[tpt_idx2][0] # print(tri_idx1, tri_idx2) corner_idx2 = tpt[tpt_idx2][1] tri2 = pts[tris[tri_idx2]] tri_data2 = (tri2, tri_idx2, corner_idx2) # for c in new_cs: # print(', '.join(['(' + str(t.val) + ',' + str(t.dof) + ')' for t in c.terms]) + ' rhs: ' + str(c.rhs)) admissibility_cs.append(constant_stress_constraint(tri_data1, tri_data2)) admissibility_cs.append(equilibrium_constraint(tri_data1)) admissibility_cs.append(equilibrium_constraint(tri_data2)) return continuity_cs, admissibility_cs
mit
Sklearn-HMM/scikit-learn-HMM
sklean-hmm/semi_supervised/label_propagation.py
8
14061
# coding=utf8 """ Label propagation in the context of this module refers to a set of semisupervised classification algorithms. In the high level, these algorithms work by forming a fully-connected graph between all points given and solving for the steady-state distribution of labels at each point. These algorithms perform very well in practice. The cost of running can be very expensive, at approximately O(N^3) where N is the number of (labeled and unlabeled) points. The theory (why they perform so well) is motivated by intuitions from random walk algorithms and geometric relationships in the data. For more information see the references below. Model Features -------------- Label clamping: The algorithm tries to learn distributions of labels over the dataset. In the "Hard Clamp" mode, the true ground labels are never allowed to change. They are clamped into position. In the "Soft Clamp" mode, they are allowed some wiggle room, but some alpha of their original value will always be retained. Hard clamp is the same as soft clamping with alpha set to 1. Kernel: A function which projects a vector into some higher dimensional space. This implementation supprots RBF and KNN kernels. Using the RBF kernel generates a dense matrix of size O(N^2). KNN kernel will generate a sparse matrix of size O(k*N) which will run much faster. See the documentation for SVMs for more info on kernels. Examples -------- >>> from sklearn import datasets >>> from sklearn.semi_supervised import LabelPropagation >>> label_prop_model = LabelPropagation() >>> iris = datasets.load_iris() >>> random_unlabeled_points = np.where(np.random.random_integers(0, 1, ... size=len(iris.target))) >>> labels = np.copy(iris.target) >>> labels[random_unlabeled_points] = -1 >>> label_prop_model.fit(iris.data, labels) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS LabelPropagation(...) Notes ----- References: [1] Yoshua Bengio, Olivier Delalleau, Nicolas Le Roux. In Semi-Supervised Learning (2006), pp. 193-216 [2] Olivier Delalleau, Yoshua Bengio, Nicolas Le Roux. Efficient Non-Parametric Function Induction in Semi-Supervised Learning. AISTAT 2005 """ # Authors: Clay Woolam <[email protected]> # Licence: BSD from abc import ABCMeta, abstractmethod from scipy import sparse import numpy as np from ..base import BaseEstimator, ClassifierMixin from ..metrics.pairwise import rbf_kernel from ..utils.graph import graph_laplacian from ..utils.extmath import safe_sparse_dot from ..externals import six from ..neighbors.unsupervised import NearestNeighbors ### Helper functions def _not_converged(y_truth, y_prediction, tol=1e-3): """basic convergence check""" return np.abs(y_truth - y_prediction).sum() > tol class BaseLabelPropagation(six.with_metaclass(ABCMeta, BaseEstimator, ClassifierMixin)): """Base class for label propagation module. Parameters ---------- kernel : {'knn', 'rbf'} String identifier for kernel function to use. Only 'rbf' and 'knn' kernels are currently supported.. gamma : float Parameter for rbf kernel alpha : float Clamping factor max_iter : float Change maximum number of iterations allowed tol : float Convergence tolerance: threshold to consider the system at steady state """ def __init__(self, kernel='rbf', gamma=20, n_neighbors=7, alpha=1, max_iter=30, tol=1e-3): self.max_iter = max_iter self.tol = tol # kernel parameters self.kernel = kernel self.gamma = gamma self.n_neighbors = n_neighbors # clamping factor self.alpha = alpha def _get_kernel(self, X, y=None): if self.kernel == "rbf": if y is None: return rbf_kernel(X, X, gamma=self.gamma) else: return rbf_kernel(X, y, gamma=self.gamma) elif self.kernel == "knn": if self.nn_fit is None: self.nn_fit = NearestNeighbors(self.n_neighbors).fit(X) if y is None: return self.nn_fit.kneighbors_graph(self.nn_fit._fit_X, self.n_neighbors, mode='connectivity') else: return self.nn_fit.kneighbors(y, return_distance=False) else: raise ValueError("%s is not a valid kernel. Only rbf and knn" " are supported at this time" % self.kernel) @abstractmethod def _build_graph(self): raise NotImplementedError("Graph construction must be implemented" " to fit a label propagation model.") def predict(self, X): """Performs inductive inference across the model. Parameters ---------- X : array_like, shape = [n_samples, n_features] Returns ------- y : array_like, shape = [n_samples] Predictions for input data """ probas = self.predict_proba(X) return self.classes_[np.argmax(probas, axis=1)].ravel() def predict_proba(self, X): """Predict probability for each possible outcome. Compute the probability estimates for each single sample in X and each possible outcome seen during training (categorical distribution). Parameters ---------- X : array_like, shape = [n_samples, n_features] Returns ------- probabilities : array, shape = [n_samples, n_classes] Normalized probability distributions across class labels """ if sparse.isspmatrix(X): X_2d = X else: X_2d = np.atleast_2d(X) weight_matrices = self._get_kernel(self.X_, X_2d) if self.kernel == 'knn': probabilities = [] for weight_matrix in weight_matrices: ine = np.sum(self.label_distributions_[weight_matrix], axis=0) probabilities.append(ine) probabilities = np.array(probabilities) else: weight_matrices = weight_matrices.T probabilities = np.dot(weight_matrices, self.label_distributions_) normalizer = np.atleast_2d(np.sum(probabilities, axis=1)).T probabilities /= normalizer return probabilities def fit(self, X, y): """Fit a semi-supervised label propagation model based All the input data is provided matrix X (labeled and unlabeled) and corresponding label matrix y with a dedicated marker value for unlabeled samples. Parameters ---------- X : array-like, shape = [n_samples, n_features] A {n_samples by n_samples} size matrix will be created from this y : array_like, shape = [n_samples] n_labeled_samples (unlabeled points are marked as -1) All unlabeled samples will be transductively assigned labels Returns ------- self : returns an instance of self. """ if sparse.isspmatrix(X): self.X_ = X else: self.X_ = np.asarray(X) # actual graph construction (implementations should override this) graph_matrix = self._build_graph() # label construction # construct a categorical distribution for classification only classes = np.unique(y) classes = (classes[classes != -1]) self.classes_ = classes n_samples, n_classes = len(y), len(classes) y = np.asarray(y) unlabeled = y == -1 clamp_weights = np.ones((n_samples, 1)) clamp_weights[unlabeled, 0] = self.alpha # initialize distributions self.label_distributions_ = np.zeros((n_samples, n_classes)) for label in classes: self.label_distributions_[y == label, classes == label] = 1 y_static = np.copy(self.label_distributions_) if self.alpha > 0.: y_static *= 1 - self.alpha y_static[unlabeled] = 0 l_previous = np.zeros((self.X_.shape[0], n_classes)) remaining_iter = self.max_iter if sparse.isspmatrix(graph_matrix): graph_matrix = graph_matrix.tocsr() while (_not_converged(self.label_distributions_, l_previous, self.tol) and remaining_iter > 1): l_previous = self.label_distributions_ self.label_distributions_ = safe_sparse_dot( graph_matrix, self.label_distributions_) # clamp self.label_distributions_ = np.multiply( clamp_weights, self.label_distributions_) + y_static remaining_iter -= 1 normalizer = np.sum(self.label_distributions_, axis=1)[:, np.newaxis] self.label_distributions_ /= normalizer # set the transduction item transduction = self.classes_[np.argmax(self.label_distributions_, axis=1)] self.transduction_ = transduction.ravel() return self class LabelPropagation(BaseLabelPropagation): """Label Propagation classifier Parameters ---------- kernel : {'knn', 'rbf'} String identifier for kernel function to use. Only 'rbf' and 'knn' kernels are currently supported.. gamma : float parameter for rbf kernel n_neighbors : integer > 0 parameter for knn kernel alpha : float clamping factor max_iter : float change maximum number of iterations allowed tol : float Convergence tolerance: threshold to consider the system at steady state Examples -------- >>> from sklearn import datasets >>> from sklearn.semi_supervised import LabelPropagation >>> label_prop_model = LabelPropagation() >>> iris = datasets.load_iris() >>> random_unlabeled_points = np.where(np.random.random_integers(0, 1, ... size=len(iris.target))) >>> labels = np.copy(iris.target) >>> labels[random_unlabeled_points] = -1 >>> label_prop_model.fit(iris.data, labels) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS LabelPropagation(...) References ---------- Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label propagation. Technical Report CMU-CALD-02-107, Carnegie Mellon University, 2002 http://pages.cs.wisc.edu/~jerryzhu/pub/CMU-CALD-02-107.pdf See Also -------- LabelSpreading : Alternate label propagation strategy more robust to noise """ def _build_graph(self): """Matrix representing a fully connected graph between each sample This basic implementation creates a non-stochastic affinity matrix, so class distributions will exceed 1 (normalization may be desired). """ if self.kernel == 'knn': self.nn_fit = None affinity_matrix = self._get_kernel(self.X_) normalizer = affinity_matrix.sum(axis=0) if sparse.isspmatrix(affinity_matrix): affinity_matrix.data /= np.diag(np.array(normalizer)) else: affinity_matrix /= normalizer[:, np.newaxis] return affinity_matrix class LabelSpreading(BaseLabelPropagation): """LabelSpreading model for semi-supervised learning This model is similar to the basic Label Propgation algorithm, but uses affinity matrix based on the normalized graph Laplacian and soft clamping across the labels. Parameters ---------- kernel : {'knn', 'rbf'} String identifier for kernel function to use. Only 'rbf' and 'knn' kernels are currently supported. gamma : float parameter for rbf kernel n_neighbors : integer > 0 parameter for knn kernel alpha : float clamping factor max_iter : float maximum number of iterations allowed tol : float Convergence tolerance: threshold to consider the system at steady state Examples -------- >>> from sklearn import datasets >>> from sklearn.semi_supervised import LabelSpreading >>> label_prop_model = LabelSpreading() >>> iris = datasets.load_iris() >>> random_unlabeled_points = np.where(np.random.random_integers(0, 1, ... size=len(iris.target))) >>> labels = np.copy(iris.target) >>> labels[random_unlabeled_points] = -1 >>> label_prop_model.fit(iris.data, labels) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS LabelSpreading(...) References ---------- Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, Bernhard Schoelkopf. Learning with local and global consistency (2004) http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.115.3219 See Also -------- LabelPropagation : Unregularized graph based semi-supervised learning """ def __init__(self, kernel='rbf', gamma=20, n_neighbors=7, alpha=0.2, max_iter=30, tol=1e-3): # this one has different base parameters super(LabelSpreading, self).__init__(kernel=kernel, gamma=gamma, n_neighbors=n_neighbors, alpha=alpha, max_iter=max_iter, tol=tol) def _build_graph(self): """Graph matrix for Label Spreading computes the graph laplacian""" # compute affinity matrix (or gram matrix) if self.kernel == 'knn': self.nn_fit = None n_samples = self.X_.shape[0] affinity_matrix = self._get_kernel(self.X_) laplacian = graph_laplacian(affinity_matrix, normed=True) laplacian = -laplacian if sparse.isspmatrix(laplacian): diag_mask = (laplacian.row == laplacian.col) laplacian.data[diag_mask] = 0.0 else: laplacian.flat[::n_samples + 1] = 0.0 # set diag to 0.0 return laplacian
bsd-3-clause
rseubert/scikit-learn
sklearn/cross_decomposition/tests/test_pls.py
15
10172
import numpy as np from sklearn.utils.testing import assert_array_almost_equal from sklearn.datasets import load_linnerud from sklearn.cross_decomposition import pls_ from nose.tools import assert_equal def test_pls(): d = load_linnerud() X = d.data Y = d.target # 1) Canonical (symmetric) PLS (PLS 2 blocks canonical mode A) # =========================================================== # Compare 2 algo.: nipals vs. svd # ------------------------------ pls_bynipals = pls_.PLSCanonical(n_components=X.shape[1]) pls_bynipals.fit(X, Y) pls_bysvd = pls_.PLSCanonical(algorithm="svd", n_components=X.shape[1]) pls_bysvd.fit(X, Y) # check equalities of loading (up to the sign of the second column) assert_array_almost_equal( pls_bynipals.x_loadings_, np.multiply(pls_bysvd.x_loadings_, np.array([1, -1, 1])), decimal=5, err_msg="nipals and svd implementation lead to different x loadings") assert_array_almost_equal( pls_bynipals.y_loadings_, np.multiply(pls_bysvd.y_loadings_, np.array([1, -1, 1])), decimal=5, err_msg="nipals and svd implementation lead to different y loadings") # Check PLS properties (with n_components=X.shape[1]) # --------------------------------------------------- plsca = pls_.PLSCanonical(n_components=X.shape[1]) plsca.fit(X, Y) T = plsca.x_scores_ P = plsca.x_loadings_ Wx = plsca.x_weights_ U = plsca.y_scores_ Q = plsca.y_loadings_ Wy = plsca.y_weights_ def check_ortho(M, err_msg): K = np.dot(M.T, M) assert_array_almost_equal(K, np.diag(np.diag(K)), err_msg=err_msg) # Orthogonality of weights # ~~~~~~~~~~~~~~~~~~~~~~~~ check_ortho(Wx, "x weights are not orthogonal") check_ortho(Wy, "y weights are not orthogonal") # Orthogonality of latent scores # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ check_ortho(T, "x scores are not orthogonal") check_ortho(U, "y scores are not orthogonal") # Check X = TP' and Y = UQ' (with (p == q) components) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # center scale X, Y Xc, Yc, x_mean, y_mean, x_std, y_std =\ pls_._center_scale_xy(X.copy(), Y.copy(), scale=True) assert_array_almost_equal(Xc, np.dot(T, P.T), err_msg="X != TP'") assert_array_almost_equal(Yc, np.dot(U, Q.T), err_msg="Y != UQ'") # Check that rotations on training data lead to scores # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Xr = plsca.transform(X) assert_array_almost_equal(Xr, plsca.x_scores_, err_msg="rotation on X failed") Xr, Yr = plsca.transform(X, Y) assert_array_almost_equal(Xr, plsca.x_scores_, err_msg="rotation on X failed") assert_array_almost_equal(Yr, plsca.y_scores_, err_msg="rotation on Y failed") # "Non regression test" on canonical PLS # -------------------------------------- # The results were checked against the R-package plspm pls_ca = pls_.PLSCanonical(n_components=X.shape[1]) pls_ca.fit(X, Y) x_weights = np.array( [[-0.61330704, 0.25616119, -0.74715187], [-0.74697144, 0.11930791, 0.65406368], [-0.25668686, -0.95924297, -0.11817271]]) assert_array_almost_equal(pls_ca.x_weights_, x_weights) x_rotations = np.array( [[-0.61330704, 0.41591889, -0.62297525], [-0.74697144, 0.31388326, 0.77368233], [-0.25668686, -0.89237972, -0.24121788]]) assert_array_almost_equal(pls_ca.x_rotations_, x_rotations) y_weights = np.array( [[+0.58989127, 0.7890047, 0.1717553], [+0.77134053, -0.61351791, 0.16920272], [-0.23887670, -0.03267062, 0.97050016]]) assert_array_almost_equal(pls_ca.y_weights_, y_weights) y_rotations = np.array( [[+0.58989127, 0.7168115, 0.30665872], [+0.77134053, -0.70791757, 0.19786539], [-0.23887670, -0.00343595, 0.94162826]]) assert_array_almost_equal(pls_ca.y_rotations_, y_rotations) # 2) Regression PLS (PLS2): "Non regression test" # =============================================== # The results were checked against the R-packages plspm, misOmics and pls pls_2 = pls_.PLSRegression(n_components=X.shape[1]) pls_2.fit(X, Y) x_weights = np.array( [[-0.61330704, -0.00443647, 0.78983213], [-0.74697144, -0.32172099, -0.58183269], [-0.25668686, 0.94682413, -0.19399983]]) assert_array_almost_equal(pls_2.x_weights_, x_weights) x_loadings = np.array( [[-0.61470416, -0.24574278, 0.78983213], [-0.65625755, -0.14396183, -0.58183269], [-0.51733059, 1.00609417, -0.19399983]]) assert_array_almost_equal(pls_2.x_loadings_, x_loadings) y_weights = np.array( [[+0.32456184, 0.29892183, 0.20316322], [+0.42439636, 0.61970543, 0.19320542], [-0.13143144, -0.26348971, -0.17092916]]) assert_array_almost_equal(pls_2.y_weights_, y_weights) y_loadings = np.array( [[+0.32456184, 0.29892183, 0.20316322], [+0.42439636, 0.61970543, 0.19320542], [-0.13143144, -0.26348971, -0.17092916]]) assert_array_almost_equal(pls_2.y_loadings_, y_loadings) # 3) Another non-regression test of Canonical PLS on random dataset # ================================================================= # The results were checked against the R-package plspm n = 500 p_noise = 10 q_noise = 5 # 2 latents vars: np.random.seed(11) l1 = np.random.normal(size=n) l2 = np.random.normal(size=n) latents = np.array([l1, l1, l2, l2]).T X = latents + np.random.normal(size=4 * n).reshape((n, 4)) Y = latents + np.random.normal(size=4 * n).reshape((n, 4)) X = np.concatenate( (X, np.random.normal(size=p_noise * n).reshape(n, p_noise)), axis=1) Y = np.concatenate( (Y, np.random.normal(size=q_noise * n).reshape(n, q_noise)), axis=1) np.random.seed(None) pls_ca = pls_.PLSCanonical(n_components=3) pls_ca.fit(X, Y) x_weights = np.array( [[0.65803719, 0.19197924, 0.21769083], [0.7009113, 0.13303969, -0.15376699], [0.13528197, -0.68636408, 0.13856546], [0.16854574, -0.66788088, -0.12485304], [-0.03232333, -0.04189855, 0.40690153], [0.1148816, -0.09643158, 0.1613305], [0.04792138, -0.02384992, 0.17175319], [-0.06781, -0.01666137, -0.18556747], [-0.00266945, -0.00160224, 0.11893098], [-0.00849528, -0.07706095, 0.1570547], [-0.00949471, -0.02964127, 0.34657036], [-0.03572177, 0.0945091, 0.3414855], [0.05584937, -0.02028961, -0.57682568], [0.05744254, -0.01482333, -0.17431274]]) assert_array_almost_equal(pls_ca.x_weights_, x_weights) x_loadings = np.array( [[0.65649254, 0.1847647, 0.15270699], [0.67554234, 0.15237508, -0.09182247], [0.19219925, -0.67750975, 0.08673128], [0.2133631, -0.67034809, -0.08835483], [-0.03178912, -0.06668336, 0.43395268], [0.15684588, -0.13350241, 0.20578984], [0.03337736, -0.03807306, 0.09871553], [-0.06199844, 0.01559854, -0.1881785], [0.00406146, -0.00587025, 0.16413253], [-0.00374239, -0.05848466, 0.19140336], [0.00139214, -0.01033161, 0.32239136], [-0.05292828, 0.0953533, 0.31916881], [0.04031924, -0.01961045, -0.65174036], [0.06172484, -0.06597366, -0.1244497]]) assert_array_almost_equal(pls_ca.x_loadings_, x_loadings) y_weights = np.array( [[0.66101097, 0.18672553, 0.22826092], [0.69347861, 0.18463471, -0.23995597], [0.14462724, -0.66504085, 0.17082434], [0.22247955, -0.6932605, -0.09832993], [0.07035859, 0.00714283, 0.67810124], [0.07765351, -0.0105204, -0.44108074], [-0.00917056, 0.04322147, 0.10062478], [-0.01909512, 0.06182718, 0.28830475], [0.01756709, 0.04797666, 0.32225745]]) assert_array_almost_equal(pls_ca.y_weights_, y_weights) y_loadings = np.array( [[0.68568625, 0.1674376, 0.0969508], [0.68782064, 0.20375837, -0.1164448], [0.11712173, -0.68046903, 0.12001505], [0.17860457, -0.6798319, -0.05089681], [0.06265739, -0.0277703, 0.74729584], [0.0914178, 0.00403751, -0.5135078], [-0.02196918, -0.01377169, 0.09564505], [-0.03288952, 0.09039729, 0.31858973], [0.04287624, 0.05254676, 0.27836841]]) assert_array_almost_equal(pls_ca.y_loadings_, y_loadings) # Orthogonality of weights # ~~~~~~~~~~~~~~~~~~~~~~~~ check_ortho(pls_ca.x_weights_, "x weights are not orthogonal") check_ortho(pls_ca.y_weights_, "y weights are not orthogonal") # Orthogonality of latent scores # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ check_ortho(pls_ca.x_scores_, "x scores are not orthogonal") check_ortho(pls_ca.y_scores_, "y scores are not orthogonal") def test_PLSSVD(): # Let's check the PLSSVD doesn't return all possible component but just # the specificied number d = load_linnerud() X = d.data Y = d.target n_components = 2 for clf in [pls_.PLSSVD, pls_.PLSRegression, pls_.PLSCanonical]: pls = clf(n_components=n_components) pls.fit(X, Y) assert_equal(n_components, pls.y_scores_.shape[1]) def test_univariate_pls_regression(): """Ensure 1d Y is correctly interpreted""" d = load_linnerud() X = d.data Y = d.target clf = pls_.PLSRegression() # Compare 1d to column vector model1 = clf.fit(X, Y[:, 0]).coef_ model2 = clf.fit(X, Y[:, :1]).coef_ assert_array_almost_equal(model1, model2) def test_scale(): d = load_linnerud() X = d.data Y = d.target # causes X[:, -1].std() to be zero X[:, -1] = 1.0 for clf in [pls_.PLSCanonical(), pls_.PLSRegression(), pls_.PLSSVD()]: clf.set_params(scale=True) clf.fit(X, Y)
bsd-3-clause
madjelan/scikit-learn
sklearn/covariance/tests/test_robust_covariance.py
213
3359
# Author: Alexandre Gramfort <[email protected]> # Gael Varoquaux <[email protected]> # Virgile Fritsch <[email protected]> # # License: BSD 3 clause import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.validation import NotFittedError from sklearn import datasets from sklearn.covariance import empirical_covariance, MinCovDet, \ EllipticEnvelope X = datasets.load_iris().data X_1d = X[:, 0] n_samples, n_features = X.shape def test_mcd(): # Tests the FastMCD algorithm implementation # Small data set # test without outliers (random independent normal data) launch_mcd_on_dataset(100, 5, 0, 0.01, 0.1, 80) # test with a contaminated data set (medium contamination) launch_mcd_on_dataset(100, 5, 20, 0.01, 0.01, 70) # test with a contaminated data set (strong contamination) launch_mcd_on_dataset(100, 5, 40, 0.1, 0.1, 50) # Medium data set launch_mcd_on_dataset(1000, 5, 450, 0.1, 0.1, 540) # Large data set launch_mcd_on_dataset(1700, 5, 800, 0.1, 0.1, 870) # 1D data set launch_mcd_on_dataset(500, 1, 100, 0.001, 0.001, 350) def launch_mcd_on_dataset(n_samples, n_features, n_outliers, tol_loc, tol_cov, tol_support): rand_gen = np.random.RandomState(0) data = rand_gen.randn(n_samples, n_features) # add some outliers outliers_index = rand_gen.permutation(n_samples)[:n_outliers] outliers_offset = 10. * \ (rand_gen.randint(2, size=(n_outliers, n_features)) - 0.5) data[outliers_index] += outliers_offset inliers_mask = np.ones(n_samples).astype(bool) inliers_mask[outliers_index] = False pure_data = data[inliers_mask] # compute MCD by fitting an object mcd_fit = MinCovDet(random_state=rand_gen).fit(data) T = mcd_fit.location_ S = mcd_fit.covariance_ H = mcd_fit.support_ # compare with the estimates learnt from the inliers error_location = np.mean((pure_data.mean(0) - T) ** 2) assert(error_location < tol_loc) error_cov = np.mean((empirical_covariance(pure_data) - S) ** 2) assert(error_cov < tol_cov) assert(np.sum(H) >= tol_support) assert_array_almost_equal(mcd_fit.mahalanobis(data), mcd_fit.dist_) def test_mcd_issue1127(): # Check that the code does not break with X.shape = (3, 1) # (i.e. n_support = n_samples) rnd = np.random.RandomState(0) X = rnd.normal(size=(3, 1)) mcd = MinCovDet() mcd.fit(X) def test_outlier_detection(): rnd = np.random.RandomState(0) X = rnd.randn(100, 10) clf = EllipticEnvelope(contamination=0.1) assert_raises(NotFittedError, clf.predict, X) assert_raises(NotFittedError, clf.decision_function, X) clf.fit(X) y_pred = clf.predict(X) decision = clf.decision_function(X, raw_values=True) decision_transformed = clf.decision_function(X, raw_values=False) assert_array_almost_equal( decision, clf.mahalanobis(X)) assert_array_almost_equal(clf.mahalanobis(X), clf.dist_) assert_almost_equal(clf.score(X, np.ones(100)), (100 - y_pred[y_pred == -1].size) / 100.) assert(sum(y_pred == -1) == sum(decision_transformed < 0))
bsd-3-clause
yavalvas/yav_com
build/matplotlib/doc/mpl_examples/user_interfaces/embedding_in_wx4.py
9
3640
#!/usr/bin/env python """ An example of how to use wx or wxagg in an application with a custom toolbar """ # Used to guarantee to use at least Wx2.8 import wxversion wxversion.ensureMinimal('2.8') from numpy import arange, sin, pi import matplotlib matplotlib.use('WXAgg') from matplotlib.backends.backend_wxagg import FigureCanvasWxAgg as FigureCanvas from matplotlib.backends.backend_wxagg import NavigationToolbar2WxAgg from matplotlib.backends.backend_wx import _load_bitmap from matplotlib.figure import Figure from numpy.random import rand import wx class MyNavigationToolbar(NavigationToolbar2WxAgg): """ Extend the default wx toolbar with your own event handlers """ ON_CUSTOM = wx.NewId() def __init__(self, canvas, cankill): NavigationToolbar2WxAgg.__init__(self, canvas) # for simplicity I'm going to reuse a bitmap from wx, you'll # probably want to add your own. self.AddSimpleTool(self.ON_CUSTOM, _load_bitmap('stock_left.xpm'), 'Click me', 'Activate custom contol') wx.EVT_TOOL(self, self.ON_CUSTOM, self._on_custom) def _on_custom(self, evt): # add some text to the axes in a random location in axes (0,1) # coords) with a random color # get the axes ax = self.canvas.figure.axes[0] # generate a random location can color x,y = tuple(rand(2)) rgb = tuple(rand(3)) # add the text and draw ax.text(x, y, 'You clicked me', transform=ax.transAxes, color=rgb) self.canvas.draw() evt.Skip() class CanvasFrame(wx.Frame): def __init__(self): wx.Frame.__init__(self,None,-1, 'CanvasFrame',size=(550,350)) self.SetBackgroundColour(wx.NamedColour("WHITE")) self.figure = Figure(figsize=(5,4), dpi=100) self.axes = self.figure.add_subplot(111) t = arange(0.0,3.0,0.01) s = sin(2*pi*t) self.axes.plot(t,s) self.canvas = FigureCanvas(self, -1, self.figure) self.sizer = wx.BoxSizer(wx.VERTICAL) self.sizer.Add(self.canvas, 1, wx.TOP | wx.LEFT | wx.EXPAND) # Capture the paint message wx.EVT_PAINT(self, self.OnPaint) self.toolbar = MyNavigationToolbar(self.canvas, True) self.toolbar.Realize() if wx.Platform == '__WXMAC__': # Mac platform (OSX 10.3, MacPython) does not seem to cope with # having a toolbar in a sizer. This work-around gets the buttons # back, but at the expense of having the toolbar at the top self.SetToolBar(self.toolbar) else: # On Windows platform, default window size is incorrect, so set # toolbar width to figure width. tw, th = self.toolbar.GetSizeTuple() fw, fh = self.canvas.GetSizeTuple() # By adding toolbar in sizer, we are able to put it at the bottom # of the frame - so appearance is closer to GTK version. # As noted above, doesn't work for Mac. self.toolbar.SetSize(wx.Size(fw, th)) self.sizer.Add(self.toolbar, 0, wx.LEFT | wx.EXPAND) # update the axes menu on the toolbar self.toolbar.update() self.SetSizer(self.sizer) self.Fit() def OnPaint(self, event): self.canvas.draw() event.Skip() class App(wx.App): def OnInit(self): 'Create the main window and insert the custom frame' frame = CanvasFrame() frame.Show(True) return True app = App(0) app.MainLoop()
mit
ctools/ctools
examples/show_lightcurve.py
1
4489
#! /usr/bin/env python # ========================================================================== # Display lightcurve generated by cslightcrv # # Copyright (C) 2017-2020 Juergen Knoedlseder # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # # ========================================================================== import sys try: import matplotlib.pyplot as plt plt.figure() plt.close() except (ImportError, RuntimeError): print('This script needs the "matplotlib" module') sys.exit() import gammalib import cscripts # =============== # # Plot lightcurve # # =============== # def plot_lightcurve(filename, plotfile): """ Plot lightcurve Parameters ---------- filename : str Name of lightcurve FITS file plotfile : str Plot file name """ # Read spectrum file fits = gammalib.GFits(filename) table = fits.table(1) # Extract standard columns c_mjd = table['MJD'] c_emjd = table['e_MJD'] c_ts = table['TS'] # Extract columns dependent on flux type if table.contains('EnergyFlux'): c_flux = table['EnergyFlux'] c_eflux = table['e_EnergyFlux'] c_upper = table['EFluxUpperLimit'] ylabel = r'E $\times$ dN/dE (erg cm$^{-2}$ s$^{-1}$)' elif table.contains('PhotonFlux'): c_flux = table['PhotonFlux'] c_eflux = table['e_PhotonFlux'] c_upper = table['FluxUpperLimit'] ylabel = r'N(E) (ph cm$^{-2}$ s$^{-1}$)' else: c_flux = table['Prefactor'] c_eflux = table['e_Prefactor'] c_upper = table['DiffUpperLimit'] ylabel = r'dN/dE (cm$^{-2}$ s$^{-1}$ MeV$^{-1}$)' # Initialise arrays to be filled mjd = [] e_mjd = [] flux = [] e_flux = [] ul_mjd = [] ul_e_mjd = [] ul_flux = [] ul_e_flux = [] # Loop over rows of the file nrows = table.nrows() for row in range(nrows): # Get Test Statistic, flux and flux error ts = c_ts.real(row) flx = c_flux.real(row) e_flx = c_eflux.real(row) # If Test Statistic is larger than 9 and twice the flux error is # smaller than the flux, then append flux point ... if ts > 9.0 and 2.0*e_flx < flx: mjd.append(c_mjd.real(row)) e_mjd.append(c_emjd.real(row)) flux.append(c_flux.real(row)) e_flux.append(c_eflux.real(row)) # ... otherwise append upper limit else: ul_mjd.append(c_mjd.real(row)) ul_e_mjd.append(c_emjd.real(row)) ul_flux.append(c_upper.real(row)) ul_e_flux.append(0.5*c_upper.real(row)) # Plot the spectrum plt.figure() plt.semilogy() plt.grid() plt.errorbar(mjd, flux, yerr=e_flux, xerr=[e_mjd, e_mjd], fmt='ro') plt.errorbar(ul_mjd, ul_flux, xerr=[ul_e_mjd, ul_e_mjd], yerr=ul_e_flux, uplims=True, fmt='ro') plt.xlabel('MJD (days)') plt.ylabel(ylabel) # Show figure if len(plotfile) > 0: plt.savefig(plotfile) else: plt.show() # Return return # =============== # # Show lightcurve # # =============== # def show_lightcurve(): """ Show lightcurve """ # Set usage string usage = 'show_lightcurve.py [-p plotfile] [file]' # Set default options options = [{'option': '-p', 'value': ''}] # Get arguments and options from command line arguments args, options = cscripts.ioutils.get_args_options(options, usage) # Extract script parameters from options plotfile = options[0]['value'] # Plot lightcurve plot_lightcurve(args[0], plotfile) # Return return # ======================== # # Main routine entry point # # ======================== # if __name__ == '__main__': # Show lightcurve show_lightcurve()
gpl-3.0
NlGG/envelope
envelope.py
1
3825
#!/usr/bin/python #-*- encoding: utf-8 -*- # Quantitative Economics Web: http://quant-econ.net/py/index.html from __future__ import division import math import matplotlib.pyplot as plt import numpy as np import matplotlib.animation as animation def envelope(expression, with_animation=False, **kwargs): # 可変長キーワード引数(**kwargs)の初期化処理 x_list = kwargs.get('x_list', np.arange(0, 100, 0.5)) parameter_list = kwargs.get('parameter_list', np.arange(0, 10, 0.1)) title = kwargs.get('title', 'Show Envelope Curve') xlabel = kwargs.get('xlabel', False) ylabel = kwargs.get('ylabel', False) color = kwargs.get('color', 'c') legend = kwargs.get('legend', False) parameter_name = kwargs.get('parameter_name', 'Parameter') xlim = kwargs.get('xlim', [0, 100]) ylim = kwargs.get('ylim', [0, 30]) plot_size = kwargs.get('plot_size', 5) # アニメーション関数 def __run(parameter): y_list = expression(x_list, parameter) min_index = y_list.argmin() left_bound = max(min_index - plot_size, 0) right_bound = min(min_index + plot_size + 1, len(x_list) - 1) x_plot_list = x_list[left_bound : right_bound] y_plot_list = y_list[left_bound : right_bound] del plt.gca().texts[-1] ax.annotate(str(parameter_name)+"="+str(parameter), xy=(0.05, 0.9), xycoords='axes fraction', fontsize=16, horizontalalignment='left', verticalalignment='bottom' ) ax.plot(x_plot_list, y_plot_list, color=color, linewidth=1) # 図の初期化処理 fig, ax = plt.subplots() ax.set_xlim(xlim[0], xlim[1]) ax.set_ylim(ylim[0], ylim[1]) ax.annotate(str(parameter_name)+"="+str(parameter_list[0]), xy=(0, 0), xycoords='axes fraction', fontsize=16, horizontalalignment='right', verticalalignment='top' ) ax.plot(0, 0, color=color, linewidth=1 ,label=str(legend)) if with_animation: # __runの引数にparameter_listから1つずつ値を取りながら、figにグラフを描写する animation.FuncAnimation(fig, __run, parameter_list, interval=5, repeat=False) else: for parameter in parameter_list: __run(parameter) plt.title(title) if xlabel: plt.xlabel(xlabel) if ylabel: plt.ylabel(ylabel) if legend: plt.legend() plt.show() # 長期平均費用曲線を求める envelope(lambda y, k: 1/8 * (y - 10 * k) ** 2 + 1/3 * k ** 2 - 2 * k + 4, plot_size = 5, title = 'Show Average Long-Run Cost Curve', xlabel = 'Y: Production', ylabel = 'C: Cost', legend = 'Average Short-Run Cost Curves', parameter_name = 'K' ) """ # 長期平均費用曲線を求める(with animation) envelope(lambda y, k: 1/8 * (y - 10 * k) ** 2 + 1/3 * k ** 2 - 2 * k + 4, True, plot_size = 5, title = 'Show Average Long-Run Cost Curve', xlabel = 'Y: Production', ylabel = 'C: Cost', legend = 'Average Short-Run Cost Curves', parameter_name = 'K' ) """ """ # 長期総費用曲線を求める envelope(lambda y, k: 1/150*((1/2*y-2*k**3) ** 3+(2*k**3)**3) + 1/10*k*((1/2*y-(5*k**3-5*k**2+k))**2-(5*k**3-5*k**2+k) **2) + (1/(4*k) + 1/25*k**6)*y + 5*k**3-5*k**2+5*k+5, plot_size = 200, title = 'Show Total Long-Run Cost Curve', xlabel = 'Y: Production', ylabel = 'C: Cost', legend = 'Total Short-Run Cost Curves', parameter_name = 'K', xlim = [0, 100], ylim = [0, 300], xlist = np.arange(0, 200, 0.5), parameter_list = np.arange(0.05, 5.05, 0.05) ) """
bsd-3-clause
adiIspas/Machine-Learning_A-Z
Machine Learning A-Z/Part 4 - Clustering/Section 25 - Hierarchical Clustering/hc.py
7
1771
# Hierarchical Clustering # Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd # Importing the dataset dataset = pd.read_csv('Mall_Customers.csv') X = dataset.iloc[:, [3, 4]].values # y = dataset.iloc[:, 3].values # Splitting the dataset into the Training set and Test set """from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)""" # Feature Scaling """from sklearn.preprocessing import StandardScaler sc_X = StandardScaler() X_train = sc_X.fit_transform(X_train) X_test = sc_X.transform(X_test) sc_y = StandardScaler() y_train = sc_y.fit_transform(y_train)""" # Using the dendrogram to find the optimal number of clusters import scipy.cluster.hierarchy as sch dendrogram = sch.dendrogram(sch.linkage(X, method = 'ward')) plt.title('Dendrogram') plt.xlabel('Customers') plt.ylabel('Euclidean distances') plt.show() # Fitting Hierarchical Clustering to the dataset from sklearn.cluster import AgglomerativeClustering hc = AgglomerativeClustering(n_clusters = 5, affinity = 'euclidean', linkage = 'ward') y_hc = hc.fit_predict(X) # Visualising the clusters plt.scatter(X[y_hc == 0, 0], X[y_hc == 0, 1], s = 100, c = 'red', label = 'Cluster 1') plt.scatter(X[y_hc == 1, 0], X[y_hc == 1, 1], s = 100, c = 'blue', label = 'Cluster 2') plt.scatter(X[y_hc == 2, 0], X[y_hc == 2, 1], s = 100, c = 'green', label = 'Cluster 3') plt.scatter(X[y_hc == 3, 0], X[y_hc == 3, 1], s = 100, c = 'cyan', label = 'Cluster 4') plt.scatter(X[y_hc == 4, 0], X[y_hc == 4, 1], s = 100, c = 'magenta', label = 'Cluster 5') plt.title('Clusters of customers') plt.xlabel('Annual Income (k$)') plt.ylabel('Spending Score (1-100)') plt.legend() plt.show()
mit
jchodera/mdtraj
mdtraj/nmr/shift_wrappers.py
2
12126
############################################################################## # MDTraj: A Python Library for Loading, Saving, and Manipulating # Molecular Dynamics Trajectories. # Copyright 2012-2014 Stanford University and the Authors # # Authors: Kyle A. Beauchamp # Contributors: Robert McGibbon # # MDTraj is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as # published by the Free Software Foundation, either version 2.1 # of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with MDTraj. If not, see <http://www.gnu.org/licenses/>. ############################################################################# from __future__ import print_function, absolute_import import os import sys from distutils.version import LooseVersion from distutils.spawn import find_executable as _find_executable import numpy as np import pandas as pd import subprocess from mdtraj.utils import enter_temp_directory ############################################################################## # Globals ############################################################################## # Possible names for the external commands -- these are expected # to be found in the PATH. SHIFTX2 = ['shiftx2.py'] SPARTA_PLUS = ['sparta+', 'SPARTA+', 'SPARTA+.linux'] PPM = ['ppm_linux_64.exe'] __all__ = ['chemical_shifts_shiftx2', 'chemical_shifts_ppm', 'chemical_shifts_spartaplus', "reindex_dataframe_by_atoms"] def find_executable(names): for possible in names: result = _find_executable(possible) if result is not None: return result return None ############################################################################## # Code ############################################################################## def compute_chemical_shifts(trj, model="shiftx2", **kwargs): """Predict chemical shifts of a trajectory using ShiftX2. Parameters ---------- trj : Trajectory Trajectory to predict shifts for. model : str, optional, default="shiftx2" The program to use for calculating chemical shifts. Must be one of shiftx2, ppm, or sparta+ Returns ------- results : pandas DataFrame Dataframe containing results, with index consisting of (resSeq, atom_name) pairs and columns for each frame in trj. Notes ----- You must have the appropriate chemical soft programs installed and in your executable path. Chemical shift prediction is for PROTEIN atoms; trajectory objects with ligands, solvent, ions, or other non-protein components may give UNKNOWN RESULTS. Please cite the appropriate reference, see docstrings for chemical_shifts_* for the various possible models. """ if model == "shiftx2": return chemical_shifts_shiftx2(trj, **kwargs) elif model == "ppm": return chemical_shifts_ppm(trj, **kwargs) elif model == "sparta+": return chemical_shifts_spartaplus(trj, **kwargs) else: raise(ValueError("model must be one of shiftx2, ppm, or sparta+")) def chemical_shifts_shiftx2(trj, pH=5.0, temperature=298.00): """Predict chemical shifts of a trajectory using ShiftX2. Parameters ---------- trj : Trajectory Trajectory to predict shifts for. pH : float, optional, default=5.0 pH value which gets passed to the ShiftX2 predictor. temperature : float, optional, default=298.00 Temperature which gets passed to the ShiftX2 predictor. Returns ------- results : pandas DataFrame Dataframe containing results, with index consisting of (resSeq, atom_name) pairs and columns for each frame in trj. Notes ----- You must have ShiftX2 available on your path; see (http://www.shiftx2.ca/). Chemical shift prediction is for PROTEIN atoms; trajectory objects with ligands, solvent, ions, or other non-protein components may give UNKNOWN RESULTS. Please cite the appropriate reference below. References ---------- .. [1] Beomsoo Han, Yifeng Liu, Simon Ginzinger, and David Wishart. "SHIFTX2: significantly improved protein chemical shift prediction." J. Biomol. NMR, 50, 1 43-57 (2011) """ binary = find_executable(SHIFTX2) if binary is None: raise OSError('External command not found. Looked for {} in PATH. ' '`chemical_shifts_shiftx2` requires the external program SHIFTX2, ' 'available at http://www.shiftx2.ca/'.format(', '.join(SHIFTX2))) results = [] with enter_temp_directory(): for i in range(trj.n_frames): fn = './trj%d.pdb' % i trj[i].save(fn) subprocess.check_call([binary, '-b', fn, '-p', "{:.1f}".format(pH), '-t', "{:.2f}".format(temperature), ]) d = pd.read_csv("./trj%d.pdb.cs" % i) d.rename(columns={"NUM": "resSeq", "RES": "resName", "ATOMNAME": "name"}, inplace=True) d["frame"] = i results.append(d) results = pd.concat(results) if LooseVersion(pd.__version__) < LooseVersion('0.14.0'): results = results.pivot_table(rows=["resSeq", "name"], cols="frame", values="SHIFT") else: results = results.pivot_table(index=["resSeq", "name"], columns="frame", values="SHIFT") return results def chemical_shifts_ppm(trj): """Predict chemical shifts of a trajectory using ppm. Parameters ---------- trj : Trajectory Trajectory to predict shifts for. Returns ------- results : pandas.DataFrame Dataframe containing results, with index consisting of (resSeq, atom_name) pairs and columns for each frame in trj. Notes ----- You must have ppm available on your path; see (http://spin.ccic.ohio-state.edu/index.php/download/index). Chemical shift prediction is for PROTEIN atoms; trajectory objects with ligands, solvent, ions, or other non-protein components may give UNKNOWN RESULTS. Please cite the appropriate reference below. References ---------- .. [1] Li, DW, and Bruschweiler, R. "PPM: a side-chain and backbone chemical shift predictor for the assessment of protein conformational ensembles." J Biomol NMR. 2012 Nov;54(3):257-65. """ binary = find_executable(PPM) first_resSeq = trj.top.residue(0).resSeq if binary is None: raise OSError('External command not found. Looked for %s in PATH. `chemical_shifts_ppm` requires the external program PPM, available at http://spin.ccic.ohio-state.edu/index.php/download/index' % ', '.join(PPM)) with enter_temp_directory(): trj.save("./trj.pdb") cmd = "%s -pdb trj.pdb -mode detail" % binary return_flag = os.system(cmd) if return_flag != 0: raise(IOError("Could not successfully execute command '%s', check your PPM installation or your input trajectory." % cmd)) d = pd.read_table("./bb_details.dat", index_col=False, header=None, sep="\s+").drop([3], axis=1) d = d.rename(columns={0: "resSeq", 1: "resName", 2: "name"}) d["resSeq"] += first_resSeq - 1 # Fix bug in PPM that reindexes to 1 d = d.drop("resName", axis=1) d = d.set_index(["resSeq", "name"]) d.columns = np.arange(trj.n_frames) d.columns.name = "frame" return d def _get_lines_to_skip(filename): """Determine the number of comment lines in a SPARTA+ output file.""" format_string = """FORMAT %4d %4s %4s %9.3f %9.3f %9.3f %9.3f %9.3f %9.3f""" handle = open(filename) for i, line in enumerate(handle): if line.find(format_string) != -1: return i + 2 raise(Exception("No format string found in SPARTA+ file!")) def chemical_shifts_spartaplus(trj, rename_HN=True): """Predict chemical shifts of a trajectory using SPARTA+. Parameters ---------- trj : Trajectory Trajectory to predict shifts for. rename_HN : bool, optional, default=True SPARTA+ calls the amide proton "HN" instead of the standard "H". When True, this option renames the output as "H" to match the PDB and BMRB nomenclature. Returns ------- results : pandas.DataFrame Dataframe containing results, with index consisting of (resSeq, atom_name) pairs and columns for each frame in trj. Notes ----- You must have SPARTA+ available on your path; see (http://spin.niddk.nih.gov/bax/software/SPARTA+/). Also, the SPARTAP_DIR environment variable must be set so that SPARTA+ knows where to find its database files. Chemical shift prediction is for PROTEIN atoms; trajectory objects with ligands, solvent, ions, or other non-protein components may give UNKNOWN RESULTS. Please cite the appropriate reference below. References ---------- .. [1] Shen, Y., and Bax, Ad. "SPARTA+: a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network." J. Biomol. NMR, 48, 13-22 (2010) """ binary = find_executable(SPARTA_PLUS) if binary is None: raise OSError('External command not found. Looked for %s in PATH. `chemical_shifts_spartaplus` requires the external program SPARTA+, available at http://spin.niddk.nih.gov/bax/software/SPARTA+/' % ', '.join(SPARTA_PLUS)) names = ["resSeq", "resName", "name", "SS_SHIFT", "SHIFT", "RC_SHIFT", "HM_SHIFT", "EF_SHIFT", "SIGMA"] with enter_temp_directory(): for i in range(trj.n_frames): trj[i].save("./trj%d.pdb" % i) subprocess.check_call([binary, '-in'] + ["trj{}.pdb".format(i) for i in range(trj.n_frames)] + ['-out', 'trj0_pred.tab']) lines_to_skip = _get_lines_to_skip("trj0_pred.tab") results = [] for i in range(trj.n_frames): d = pd.read_table("./trj%d_pred.tab" % i, names=names, header=None, sep="\s+", skiprows=lines_to_skip) d["frame"] = i results.append(d) results = pd.concat(results) if rename_HN: results.name[results.name == "HN"] = "H" if LooseVersion(pd.__version__) < LooseVersion('0.14.0'): results = results.pivot_table(rows=["resSeq", "name"], cols="frame", values="SHIFT") else: results = results.pivot_table(index=["resSeq", "name"], columns="frame", values="SHIFT") return results def reindex_dataframe_by_atoms(trj, frame): """Reindex chemical shift output to use atom number (serial) indexing. Parameters ---------- trj : Trajectory Trajectory to predict shifts for. frame : pandas.DataFrame Dataframe containing results, with index consisting of (resSeq, atom_name) pairs and columns for each frame in trj. Returns ------- new_frame : pandas.DataFrame Dataframe containing results, with index consisting of atom indices (AKA the 'serial' entry in a PDB). Columns correspond to each frame in trj. Notes ----- Be aware that this function may DROP predictions if the atom naming is different between the input trajectory and the output of various chemical shift prediction tools. """ top, bonds = trj.top.to_dataframe() top["serial"] = top.index top = top.set_index(["resSeq", "name"]) new_frame = frame.copy() new_frame["serial"] = top.ix[new_frame.index].serial new_frame = new_frame.dropna().reset_index().set_index("serial").drop(["resSeq", "name"], axis=1) return new_frame
lgpl-2.1
mne-tools/mne-python
mne/cov.py
4
79191
# Authors: Alexandre Gramfort <[email protected]> # Matti Hämäläinen <[email protected]> # Denis A. Engemann <[email protected]> # # License: BSD (3-clause) from copy import deepcopy from distutils.version import LooseVersion import itertools as itt from math import log import os import numpy as np from .defaults import _EXTRAPOLATE_DEFAULT, _BORDER_DEFAULT, DEFAULTS from .io.write import start_file, end_file from .io.proj import (make_projector, _proj_equal, activate_proj, _check_projs, _needs_eeg_average_ref_proj, _has_eeg_average_ref_proj, _read_proj, _write_proj) from .io import fiff_open, RawArray from .io.pick import (pick_types, pick_channels_cov, pick_channels, pick_info, _picks_by_type, _pick_data_channels, _picks_to_idx, _DATA_CH_TYPES_SPLIT) from .io.constants import FIFF from .io.meas_info import _read_bad_channels, create_info from .io.tag import find_tag from .io.tree import dir_tree_find from .io.write import (start_block, end_block, write_int, write_name_list, write_double, write_float_matrix, write_string) from .defaults import _handle_default from .epochs import Epochs from .event import make_fixed_length_events from .evoked import EvokedArray from .rank import compute_rank from .utils import (check_fname, logger, verbose, check_version, _time_mask, warn, copy_function_doc_to_method_doc, _pl, _undo_scaling_cov, _scaled_array, _validate_type, _check_option, eigh, fill_doc, _on_missing, _check_on_missing) from . import viz from .fixes import (BaseEstimator, EmpiricalCovariance, _logdet, empirical_covariance, log_likelihood) def _check_covs_algebra(cov1, cov2): if cov1.ch_names != cov2.ch_names: raise ValueError('Both Covariance do not have the same list of ' 'channels.') projs1 = [str(c) for c in cov1['projs']] projs2 = [str(c) for c in cov1['projs']] if projs1 != projs2: raise ValueError('Both Covariance do not have the same list of ' 'SSP projections.') def _get_tslice(epochs, tmin, tmax): """Get the slice.""" mask = _time_mask(epochs.times, tmin, tmax, sfreq=epochs.info['sfreq']) tstart = np.where(mask)[0][0] if tmin is not None else None tend = np.where(mask)[0][-1] + 1 if tmax is not None else None tslice = slice(tstart, tend, None) return tslice @fill_doc class Covariance(dict): """Noise covariance matrix. .. warning:: This class should not be instantiated directly, but instead should be created using a covariance reading or computation function. Parameters ---------- data : array-like The data. names : list of str Channel names. bads : list of str Bad channels. projs : list Projection vectors. nfree : int Degrees of freedom. eig : array-like | None Eigenvalues. eigvec : array-like | None Eigenvectors. method : str | None The method used to compute the covariance. loglik : float The log likelihood. %(verbose_meth)s Attributes ---------- data : array of shape (n_channels, n_channels) The covariance. ch_names : list of str List of channels' names. nfree : int Number of degrees of freedom i.e. number of time points used. dim : int The number of channels ``n_channels``. See Also -------- compute_covariance compute_raw_covariance make_ad_hoc_cov read_cov """ def __init__(self, data, names, bads, projs, nfree, eig=None, eigvec=None, method=None, loglik=None, verbose=None): """Init of covariance.""" diag = (data.ndim == 1) projs = _check_projs(projs) self.update(data=data, dim=len(data), names=names, bads=bads, nfree=nfree, eig=eig, eigvec=eigvec, diag=diag, projs=projs, kind=FIFF.FIFFV_MNE_NOISE_COV) if method is not None: self['method'] = method if loglik is not None: self['loglik'] = loglik self.verbose = verbose @property def data(self): """Numpy array of Noise covariance matrix.""" return self['data'] @property def ch_names(self): """Channel names.""" return self['names'] @property def nfree(self): """Number of degrees of freedom.""" return self['nfree'] def save(self, fname): """Save covariance matrix in a FIF file. Parameters ---------- fname : str Output filename. """ check_fname(fname, 'covariance', ('-cov.fif', '-cov.fif.gz', '_cov.fif', '_cov.fif.gz')) fid = start_file(fname) try: _write_cov(fid, self) except Exception: fid.close() os.remove(fname) raise end_file(fid) def copy(self): """Copy the Covariance object. Returns ------- cov : instance of Covariance The copied object. """ return deepcopy(self) def as_diag(self): """Set covariance to be processed as being diagonal. Returns ------- cov : dict The covariance. Notes ----- This function allows creation of inverse operators equivalent to using the old "--diagnoise" mne option. This function operates in place. """ if self['diag']: return self self['diag'] = True self['data'] = np.diag(self['data']) self['eig'] = None self['eigvec'] = None return self def _as_square(self): # This is a hack but it works because np.diag() behaves nicely if self['diag']: self['diag'] = False self.as_diag() self['diag'] = False return self def _get_square(self): if self['diag'] != (self.data.ndim == 1): raise RuntimeError( 'Covariance attributes inconsistent, got data with ' 'dimensionality %d but diag=%s' % (self.data.ndim, self['diag'])) return np.diag(self.data) if self['diag'] else self.data.copy() def __repr__(self): # noqa: D105 if self.data.ndim == 2: s = 'size : %s x %s' % self.data.shape else: # ndim == 1 s = 'diagonal : %s' % self.data.size s += ", n_samples : %s" % self.nfree s += ", data : %s" % self.data return "<Covariance | %s>" % s def __add__(self, cov): """Add Covariance taking into account number of degrees of freedom.""" _check_covs_algebra(self, cov) this_cov = cov.copy() this_cov['data'] = (((this_cov['data'] * this_cov['nfree']) + (self['data'] * self['nfree'])) / (self['nfree'] + this_cov['nfree'])) this_cov['nfree'] += self['nfree'] this_cov['bads'] = list(set(this_cov['bads']).union(self['bads'])) return this_cov def __iadd__(self, cov): """Add Covariance taking into account number of degrees of freedom.""" _check_covs_algebra(self, cov) self['data'][:] = (((self['data'] * self['nfree']) + (cov['data'] * cov['nfree'])) / (self['nfree'] + cov['nfree'])) self['nfree'] += cov['nfree'] self['bads'] = list(set(self['bads']).union(cov['bads'])) return self @verbose @copy_function_doc_to_method_doc(viz.misc.plot_cov) def plot(self, info, exclude=[], colorbar=True, proj=False, show_svd=True, show=True, verbose=None): return viz.misc.plot_cov(self, info, exclude, colorbar, proj, show_svd, show, verbose) @verbose def plot_topomap(self, info, ch_type=None, vmin=None, vmax=None, cmap=None, sensors=True, colorbar=True, scalings=None, units=None, res=64, size=1, cbar_fmt="%3.1f", proj=False, show=True, show_names=False, title=None, mask=None, mask_params=None, outlines='head', contours=6, image_interp='bilinear', axes=None, extrapolate=_EXTRAPOLATE_DEFAULT, sphere=None, border=_BORDER_DEFAULT, noise_cov=None, verbose=None): """Plot a topomap of the covariance diagonal. Parameters ---------- info : instance of Info The measurement information. %(topomap_ch_type)s %(topomap_vmin_vmax)s %(topomap_cmap)s %(topomap_sensors)s %(topomap_colorbar)s %(topomap_scalings)s %(topomap_units)s %(topomap_res)s %(topomap_size)s %(topomap_cbar_fmt)s %(plot_proj)s %(show)s %(topomap_show_names)s %(title_None)s %(topomap_mask)s %(topomap_mask_params)s %(topomap_outlines)s %(topomap_contours)s %(topomap_image_interp)s %(topomap_axes)s %(topomap_extrapolate)s %(topomap_sphere_auto)s %(topomap_border)s noise_cov : instance of Covariance | None If not None, whiten the instance with ``noise_cov`` before plotting. %(verbose)s Returns ------- fig : instance of Figure The matplotlib figure. Notes ----- .. versionadded:: 0.21 """ from .viz.misc import _index_info_cov info, C, _, _ = _index_info_cov(info, self, exclude=()) evoked = EvokedArray(np.diag(C)[:, np.newaxis], info) if noise_cov is not None: # need to left and right multiply whitener, which for the diagonal # entries is the same as multiplying twice evoked = whiten_evoked(whiten_evoked(evoked, noise_cov), noise_cov) if units is None: units = 'AU' if scalings is None: scalings = 1. if units is None: units = {k: f'({v})²' for k, v in DEFAULTS['units'].items()} if scalings is None: scalings = {k: v * v for k, v in DEFAULTS['scalings'].items()} return evoked.plot_topomap( times=[0], ch_type=ch_type, vmin=vmin, vmax=vmax, cmap=cmap, sensors=sensors, colorbar=colorbar, scalings=scalings, units=units, res=res, size=size, cbar_fmt=cbar_fmt, proj=proj, show=show, show_names=show_names, title=title, mask=mask, mask_params=mask_params, outlines=outlines, contours=contours, image_interp=image_interp, axes=axes, extrapolate=extrapolate, sphere=sphere, border=border, time_format='') def pick_channels(self, ch_names, ordered=False): """Pick channels from this covariance matrix. Parameters ---------- ch_names : list of str List of channels to keep. All other channels are dropped. ordered : bool If True (default False), ensure that the order of the channels matches the order of ``ch_names``. Returns ------- cov : instance of Covariance. The modified covariance matrix. Notes ----- Operates in-place. .. versionadded:: 0.20.0 """ return pick_channels_cov(self, ch_names, exclude=[], ordered=ordered, copy=False) ############################################################################### # IO @verbose def read_cov(fname, verbose=None): """Read a noise covariance from a FIF file. Parameters ---------- fname : str The name of file containing the covariance matrix. It should end with -cov.fif or -cov.fif.gz. %(verbose)s Returns ------- cov : Covariance The noise covariance matrix. See Also -------- write_cov, compute_covariance, compute_raw_covariance """ check_fname(fname, 'covariance', ('-cov.fif', '-cov.fif.gz', '_cov.fif', '_cov.fif.gz')) f, tree = fiff_open(fname)[:2] with f as fid: return Covariance(**_read_cov(fid, tree, FIFF.FIFFV_MNE_NOISE_COV, limited=True)) ############################################################################### # Estimate from data @verbose def make_ad_hoc_cov(info, std=None, verbose=None): """Create an ad hoc noise covariance. Parameters ---------- info : instance of Info Measurement info. std : dict of float | None Standard_deviation of the diagonal elements. If dict, keys should be ``'grad'`` for gradiometers, ``'mag'`` for magnetometers and ``'eeg'`` for EEG channels. If None, default values will be used (see Notes). %(verbose)s Returns ------- cov : instance of Covariance The ad hoc diagonal noise covariance for the M/EEG data channels. Notes ----- The default noise values are 5 fT/cm, 20 fT, and 0.2 µV for gradiometers, magnetometers, and EEG channels respectively. .. versionadded:: 0.9.0 """ picks = pick_types(info, meg=True, eeg=True, exclude=()) std = _handle_default('noise_std', std) data = np.zeros(len(picks)) for meg, eeg, val in zip(('grad', 'mag', False), (False, False, True), (std['grad'], std['mag'], std['eeg'])): these_picks = pick_types(info, meg=meg, eeg=eeg) data[np.searchsorted(picks, these_picks)] = val * val ch_names = [info['ch_names'][pick] for pick in picks] return Covariance(data, ch_names, info['bads'], info['projs'], nfree=0) def _check_n_samples(n_samples, n_chan): """Check to see if there are enough samples for reliable cov calc.""" n_samples_min = 10 * (n_chan + 1) // 2 if n_samples <= 0: raise ValueError('No samples found to compute the covariance matrix') if n_samples < n_samples_min: warn('Too few samples (required : %d got : %d), covariance ' 'estimate may be unreliable' % (n_samples_min, n_samples)) @verbose def compute_raw_covariance(raw, tmin=0, tmax=None, tstep=0.2, reject=None, flat=None, picks=None, method='empirical', method_params=None, cv=3, scalings=None, n_jobs=1, return_estimators=False, reject_by_annotation=True, rank=None, verbose=None): """Estimate noise covariance matrix from a continuous segment of raw data. It is typically useful to estimate a noise covariance from empty room data or time intervals before starting the stimulation. .. note:: To estimate the noise covariance from epoched data, use :func:`mne.compute_covariance` instead. Parameters ---------- raw : instance of Raw Raw data. tmin : float Beginning of time interval in seconds. Defaults to 0. tmax : float | None (default None) End of time interval in seconds. If None (default), use the end of the recording. tstep : float (default 0.2) Length of data chunks for artifact rejection in seconds. Can also be None to use a single epoch of (tmax - tmin) duration. This can use a lot of memory for large ``Raw`` instances. reject : dict | None (default None) Rejection parameters based on peak-to-peak amplitude. Valid keys are 'grad' | 'mag' | 'eeg' | 'eog' | 'ecg'. If reject is None then no rejection is done. Example:: reject = dict(grad=4000e-13, # T / m (gradiometers) mag=4e-12, # T (magnetometers) eeg=40e-6, # V (EEG channels) eog=250e-6 # V (EOG channels) ) flat : dict | None (default None) Rejection parameters based on flatness of signal. Valid keys are 'grad' | 'mag' | 'eeg' | 'eog' | 'ecg', and values are floats that set the minimum acceptable peak-to-peak amplitude. If flat is None then no rejection is done. %(picks_good_data_noref)s method : str | list | None (default 'empirical') The method used for covariance estimation. See :func:`mne.compute_covariance`. .. versionadded:: 0.12 method_params : dict | None (default None) Additional parameters to the estimation procedure. See :func:`mne.compute_covariance`. .. versionadded:: 0.12 cv : int | sklearn.model_selection object (default 3) The cross validation method. Defaults to 3, which will internally trigger by default :class:`sklearn.model_selection.KFold` with 3 splits. .. versionadded:: 0.12 scalings : dict | None (default None) Defaults to ``dict(mag=1e15, grad=1e13, eeg=1e6)``. These defaults will scale magnetometers and gradiometers at the same unit. .. versionadded:: 0.12 %(n_jobs)s .. versionadded:: 0.12 return_estimators : bool (default False) Whether to return all estimators or the best. Only considered if method equals 'auto' or is a list of str. Defaults to False. .. versionadded:: 0.12 %(reject_by_annotation_epochs)s .. versionadded:: 0.14 %(rank_None)s .. versionadded:: 0.17 .. versionadded:: 0.18 Support for 'info' mode. %(verbose)s Returns ------- cov : instance of Covariance | list The computed covariance. If method equals 'auto' or is a list of str and return_estimators equals True, a list of covariance estimators is returned (sorted by log-likelihood, from high to low, i.e. from best to worst). See Also -------- compute_covariance : Estimate noise covariance matrix from epoched data. Notes ----- This function will: 1. Partition the data into evenly spaced, equal-length epochs. 2. Load them into memory. 3. Subtract the mean across all time points and epochs for each channel. 4. Process the :class:`Epochs` by :func:`compute_covariance`. This will produce a slightly different result compared to using :func:`make_fixed_length_events`, :class:`Epochs`, and :func:`compute_covariance` directly, since that would (with the recommended baseline correction) subtract the mean across time *for each epoch* (instead of across epochs) for each channel. """ tmin = 0. if tmin is None else float(tmin) dt = 1. / raw.info['sfreq'] tmax = raw.times[-1] + dt if tmax is None else float(tmax) tstep = tmax - tmin if tstep is None else float(tstep) tstep_m1 = tstep - dt # inclusive! events = make_fixed_length_events(raw, 1, tmin, tmax, tstep) logger.info('Using up to %s segment%s' % (len(events), _pl(events))) # don't exclude any bad channels, inverses expect all channels present if picks is None: # Need to include all channels e.g. if eog rejection is to be used picks = np.arange(raw.info['nchan']) pick_mask = np.in1d( picks, _pick_data_channels(raw.info, with_ref_meg=False)) else: pick_mask = slice(None) picks = _picks_to_idx(raw.info, picks) epochs = Epochs(raw, events, 1, 0, tstep_m1, baseline=None, picks=picks, reject=reject, flat=flat, verbose=False, preload=False, proj=False, reject_by_annotation=reject_by_annotation) if method is None: method = 'empirical' if isinstance(method, str) and method == 'empirical': # potentially *much* more memory efficient to do it the iterative way picks = picks[pick_mask] data = 0 n_samples = 0 mu = 0 # Read data in chunks for raw_segment in epochs: raw_segment = raw_segment[pick_mask] mu += raw_segment.sum(axis=1) data += np.dot(raw_segment, raw_segment.T) n_samples += raw_segment.shape[1] _check_n_samples(n_samples, len(picks)) data -= mu[:, None] * (mu[None, :] / n_samples) data /= (n_samples - 1.0) logger.info("Number of samples used : %d" % n_samples) logger.info('[done]') ch_names = [raw.info['ch_names'][k] for k in picks] bads = [b for b in raw.info['bads'] if b in ch_names] return Covariance(data, ch_names, bads, raw.info['projs'], nfree=n_samples - 1) del picks, pick_mask # This makes it equivalent to what we used to do (and do above for # empirical mode), treating all epochs as if they were a single long one epochs.load_data() ch_means = epochs._data.mean(axis=0).mean(axis=1) epochs._data -= ch_means[np.newaxis, :, np.newaxis] # fake this value so there are no complaints from compute_covariance epochs.baseline = (None, None) return compute_covariance(epochs, keep_sample_mean=True, method=method, method_params=method_params, cv=cv, scalings=scalings, n_jobs=n_jobs, return_estimators=return_estimators, rank=rank) def _check_method_params(method, method_params, keep_sample_mean=True, name='method', allow_auto=True, rank=None): """Check that method and method_params are usable.""" accepted_methods = ('auto', 'empirical', 'diagonal_fixed', 'ledoit_wolf', 'oas', 'shrunk', 'pca', 'factor_analysis', 'shrinkage') _method_params = { 'empirical': {'store_precision': False, 'assume_centered': True}, 'diagonal_fixed': {'store_precision': False, 'assume_centered': True}, 'ledoit_wolf': {'store_precision': False, 'assume_centered': True}, 'oas': {'store_precision': False, 'assume_centered': True}, 'shrinkage': {'shrinkage': 0.1, 'store_precision': False, 'assume_centered': True}, 'shrunk': {'shrinkage': np.logspace(-4, 0, 30), 'store_precision': False, 'assume_centered': True}, 'pca': {'iter_n_components': None}, 'factor_analysis': {'iter_n_components': None} } for ch_type in _DATA_CH_TYPES_SPLIT: _method_params['diagonal_fixed'][ch_type] = 0.1 if isinstance(method_params, dict): for key, values in method_params.items(): if key not in _method_params: raise ValueError('key (%s) must be "%s"' % (key, '" or "'.join(_method_params))) _method_params[key].update(method_params[key]) shrinkage = method_params.get('shrinkage', {}).get('shrinkage', 0.1) if not 0 <= shrinkage <= 1: raise ValueError('shrinkage must be between 0 and 1, got %s' % (shrinkage,)) was_auto = False if method is None: method = ['empirical'] elif method == 'auto' and allow_auto: was_auto = True method = ['shrunk', 'diagonal_fixed', 'empirical', 'factor_analysis'] if not isinstance(method, (list, tuple)): method = [method] if not all(k in accepted_methods for k in method): raise ValueError( 'Invalid {name} ({method}). Accepted values (individually or ' 'in a list) are any of "{accepted_methods}" or None.'.format( name=name, method=method, accepted_methods=accepted_methods)) if not (isinstance(rank, str) and rank == 'full'): if was_auto: method.pop(method.index('factor_analysis')) for method_ in method: if method_ in ('pca', 'factor_analysis'): raise ValueError('%s can so far only be used with rank="full",' ' got rank=%r' % (method_, rank)) if not keep_sample_mean: if len(method) != 1 or 'empirical' not in method: raise ValueError('`keep_sample_mean=False` is only supported' 'with %s="empirical"' % (name,)) for p, v in _method_params.items(): if v.get('assume_centered', None) is False: raise ValueError('`assume_centered` must be True' ' if `keep_sample_mean` is False') return method, _method_params @verbose def compute_covariance(epochs, keep_sample_mean=True, tmin=None, tmax=None, projs=None, method='empirical', method_params=None, cv=3, scalings=None, n_jobs=1, return_estimators=False, on_mismatch='raise', rank=None, verbose=None): """Estimate noise covariance matrix from epochs. The noise covariance is typically estimated on pre-stimulus periods when the stimulus onset is defined from events. If the covariance is computed for multiple event types (events with different IDs), the following two options can be used and combined: 1. either an Epochs object for each event type is created and a list of Epochs is passed to this function. 2. an Epochs object is created for multiple events and passed to this function. .. note:: To estimate the noise covariance from non-epoched raw data, such as an empty-room recording, use :func:`mne.compute_raw_covariance` instead. Parameters ---------- epochs : instance of Epochs, or list of Epochs The epochs. keep_sample_mean : bool (default True) If False, the average response over epochs is computed for each event type and subtracted during the covariance computation. This is useful if the evoked response from a previous stimulus extends into the baseline period of the next. Note. This option is only implemented for method='empirical'. tmin : float | None (default None) Start time for baseline. If None start at first sample. tmax : float | None (default None) End time for baseline. If None end at last sample. projs : list of Projection | None (default None) List of projectors to use in covariance calculation, or None to indicate that the projectors from the epochs should be inherited. If None, then projectors from all epochs must match. method : str | list | None (default 'empirical') The method used for covariance estimation. If 'empirical' (default), the sample covariance will be computed. A list can be passed to perform estimates using multiple methods. If 'auto' or a list of methods, the best estimator will be determined based on log-likelihood and cross-validation on unseen data as described in :footcite:`EngemannGramfort2015`. Valid methods are 'empirical', 'diagonal_fixed', 'shrunk', 'oas', 'ledoit_wolf', 'factor_analysis', 'shrinkage', and 'pca' (see Notes). If ``'auto'``, it expands to:: ['shrunk', 'diagonal_fixed', 'empirical', 'factor_analysis'] ``'factor_analysis'`` is removed when ``rank`` is not 'full'. The ``'auto'`` mode is not recommended if there are many segments of data, since computation can take a long time. .. versionadded:: 0.9.0 method_params : dict | None (default None) Additional parameters to the estimation procedure. Only considered if method is not None. Keys must correspond to the value(s) of ``method``. If None (default), expands to the following (with the addition of ``{'store_precision': False, 'assume_centered': True} for all methods except ``'factor_analysis'`` and ``'pca'``):: {'diagonal_fixed': {'grad': 0.1, 'mag': 0.1, 'eeg': 0.1, ...}, 'shrinkage': {'shrikage': 0.1}, 'shrunk': {'shrinkage': np.logspace(-4, 0, 30)}, 'pca': {'iter_n_components': None}, 'factor_analysis': {'iter_n_components': None}} cv : int | sklearn.model_selection object (default 3) The cross validation method. Defaults to 3, which will internally trigger by default :class:`sklearn.model_selection.KFold` with 3 splits. scalings : dict | None (default None) Defaults to ``dict(mag=1e15, grad=1e13, eeg=1e6)``. These defaults will scale data to roughly the same order of magnitude. %(n_jobs)s return_estimators : bool (default False) Whether to return all estimators or the best. Only considered if method equals 'auto' or is a list of str. Defaults to False. on_mismatch : str What to do when the MEG<->Head transformations do not match between epochs. If "raise" (default) an error is raised, if "warn" then a warning is emitted, if "ignore" then nothing is printed. Having mismatched transforms can in some cases lead to unexpected or unstable results in covariance calculation, e.g. when data have been processed with Maxwell filtering but not transformed to the same head position. %(rank_None)s .. versionadded:: 0.17 .. versionadded:: 0.18 Support for 'info' mode. %(verbose)s Returns ------- cov : instance of Covariance | list The computed covariance. If method equals 'auto' or is a list of str and return_estimators equals True, a list of covariance estimators is returned (sorted by log-likelihood, from high to low, i.e. from best to worst). See Also -------- compute_raw_covariance : Estimate noise covariance from raw data, such as empty-room recordings. Notes ----- Baseline correction or sufficient high-passing should be used when creating the :class:`Epochs` to ensure that the data are zero mean, otherwise the computed covariance matrix will be inaccurate. Valid ``method`` strings are: * ``'empirical'`` The empirical or sample covariance (default) * ``'diagonal_fixed'`` A diagonal regularization based on channel types as in :func:`mne.cov.regularize`. * ``'shrinkage'`` Fixed shrinkage. .. versionadded:: 0.16 * ``'ledoit_wolf'`` The Ledoit-Wolf estimator, which uses an empirical formula for the optimal shrinkage value :footcite:`LedoitWolf2004`. * ``'oas'`` The OAS estimator :footcite:`ChenEtAl2010`, which uses a different empricial formula for the optimal shrinkage value. .. versionadded:: 0.16 * ``'shrunk'`` Like 'ledoit_wolf', but with cross-validation for optimal alpha. * ``'pca'`` Probabilistic PCA with low rank :footcite:`TippingBishop1999`. * ``'factor_analysis'`` Factor analysis with low rank :footcite:`Barber2012`. ``'ledoit_wolf'`` and ``'pca'`` are similar to ``'shrunk'`` and ``'factor_analysis'``, respectively, except that they use cross validation (which is useful when samples are correlated, which is often the case for M/EEG data). The former two are not included in the ``'auto'`` mode to avoid redundancy. For multiple event types, it is also possible to create a single :class:`Epochs` object with events obtained using :func:`mne.merge_events`. However, the resulting covariance matrix will only be correct if ``keep_sample_mean is True``. The covariance can be unstable if the number of samples is small. In that case it is common to regularize the covariance estimate. The ``method`` parameter allows to regularize the covariance in an automated way. It also allows to select between different alternative estimation algorithms which themselves achieve regularization. Details are described in :footcite:`EngemannGramfort2015`. For more information on the advanced estimation methods, see :ref:`the sklearn manual <sklearn:covariance>`. References ---------- .. footbibliography:: """ # scale to natural unit for best stability with MEG/EEG scalings = _check_scalings_user(scalings) method, _method_params = _check_method_params( method, method_params, keep_sample_mean, rank=rank) del method_params # for multi condition support epochs is required to refer to a list of # epochs objects def _unpack_epochs(epochs): if len(epochs.event_id) > 1: epochs = [epochs[k] for k in epochs.event_id] else: epochs = [epochs] return epochs if not isinstance(epochs, list): epochs = _unpack_epochs(epochs) else: epochs = sum([_unpack_epochs(epoch) for epoch in epochs], []) # check for baseline correction if any(epochs_t.baseline is None and epochs_t.info['highpass'] < 0.5 and keep_sample_mean for epochs_t in epochs): warn('Epochs are not baseline corrected, covariance ' 'matrix may be inaccurate') orig = epochs[0].info['dev_head_t'] _check_on_missing(on_mismatch, 'on_mismatch') for ei, epoch in enumerate(epochs): epoch.info._check_consistency() if (orig is None) != (epoch.info['dev_head_t'] is None) or \ (orig is not None and not np.allclose(orig['trans'], epoch.info['dev_head_t']['trans'])): msg = ('MEG<->Head transform mismatch between epochs[0]:\n%s\n\n' 'and epochs[%s]:\n%s' % (orig, ei, epoch.info['dev_head_t'])) _on_missing(on_mismatch, msg, 'on_mismatch') bads = epochs[0].info['bads'] if projs is None: projs = epochs[0].info['projs'] # make sure Epochs are compatible for epochs_t in epochs[1:]: if epochs_t.proj != epochs[0].proj: raise ValueError('Epochs must agree on the use of projections') for proj_a, proj_b in zip(epochs_t.info['projs'], projs): if not _proj_equal(proj_a, proj_b): raise ValueError('Epochs must have same projectors') projs = _check_projs(projs) ch_names = epochs[0].ch_names # make sure Epochs are compatible for epochs_t in epochs[1:]: if epochs_t.info['bads'] != bads: raise ValueError('Epochs must have same bad channels') if epochs_t.ch_names != ch_names: raise ValueError('Epochs must have same channel names') picks_list = _picks_by_type(epochs[0].info) picks_meeg = np.concatenate([b for _, b in picks_list]) picks_meeg = np.sort(picks_meeg) ch_names = [epochs[0].ch_names[k] for k in picks_meeg] info = epochs[0].info # we will overwrite 'epochs' if not keep_sample_mean: # prepare mean covs n_epoch_types = len(epochs) data_mean = [0] * n_epoch_types n_samples = np.zeros(n_epoch_types, dtype=np.int64) n_epochs = np.zeros(n_epoch_types, dtype=np.int64) for ii, epochs_t in enumerate(epochs): tslice = _get_tslice(epochs_t, tmin, tmax) for e in epochs_t: e = e[picks_meeg, tslice] if not keep_sample_mean: data_mean[ii] += e n_samples[ii] += e.shape[1] n_epochs[ii] += 1 n_samples_epoch = n_samples // n_epochs norm_const = np.sum(n_samples_epoch * (n_epochs - 1)) data_mean = [1.0 / n_epoch * np.dot(mean, mean.T) for n_epoch, mean in zip(n_epochs, data_mean)] info = pick_info(info, picks_meeg) tslice = _get_tslice(epochs[0], tmin, tmax) epochs = [ee.get_data(picks=picks_meeg)[..., tslice] for ee in epochs] picks_meeg = np.arange(len(picks_meeg)) picks_list = _picks_by_type(info) if len(epochs) > 1: epochs = np.concatenate(epochs, 0) else: epochs = epochs[0] epochs = np.hstack(epochs) n_samples_tot = epochs.shape[-1] _check_n_samples(n_samples_tot, len(picks_meeg)) epochs = epochs.T # sklearn | C-order cov_data = _compute_covariance_auto( epochs, method=method, method_params=_method_params, info=info, cv=cv, n_jobs=n_jobs, stop_early=True, picks_list=picks_list, scalings=scalings, rank=rank) if keep_sample_mean is False: cov = cov_data['empirical']['data'] # undo scaling cov *= (n_samples_tot - 1) # ... apply pre-computed class-wise normalization for mean_cov in data_mean: cov -= mean_cov cov /= norm_const covs = list() for this_method, data in cov_data.items(): cov = Covariance(data.pop('data'), ch_names, info['bads'], projs, nfree=n_samples_tot - 1) # add extra info cov.update(method=this_method, **data) covs.append(cov) logger.info('Number of samples used : %d' % n_samples_tot) covs.sort(key=lambda c: c['loglik'], reverse=True) if len(covs) > 1: msg = ['log-likelihood on unseen data (descending order):'] for c in covs: msg.append('%s: %0.3f' % (c['method'], c['loglik'])) logger.info('\n '.join(msg)) if return_estimators: out = covs else: out = covs[0] logger.info('selecting best estimator: {}'.format(out['method'])) else: out = covs[0] logger.info('[done]') return out def _check_scalings_user(scalings): if isinstance(scalings, dict): for k, v in scalings.items(): _check_option('the keys in `scalings`', k, ['mag', 'grad', 'eeg']) elif scalings is not None and not isinstance(scalings, np.ndarray): raise TypeError('scalings must be a dict, ndarray, or None, got %s' % type(scalings)) scalings = _handle_default('scalings', scalings) return scalings def _eigvec_subspace(eig, eigvec, mask): """Compute the subspace from a subset of eigenvectors.""" # We do the same thing we do with projectors: P = np.eye(len(eigvec)) - np.dot(eigvec[~mask].conj().T, eigvec[~mask]) eig, eigvec = eigh(P) eigvec = eigvec.conj().T return eig, eigvec def _get_iid_kwargs(): import sklearn kwargs = dict() if LooseVersion(sklearn.__version__) < LooseVersion('0.22'): kwargs['iid'] = False return kwargs def _compute_covariance_auto(data, method, info, method_params, cv, scalings, n_jobs, stop_early, picks_list, rank): """Compute covariance auto mode.""" # rescale to improve numerical stability orig_rank = rank rank = compute_rank(RawArray(data.T, info, copy=None, verbose=False), rank, scalings, info) with _scaled_array(data.T, picks_list, scalings): C = np.dot(data.T, data) _, eigvec, mask = _smart_eigh(C, info, rank, proj_subspace=True, do_compute_rank=False) eigvec = eigvec[mask] data = np.dot(data, eigvec.T) used = np.where(mask)[0] sub_picks_list = [(key, np.searchsorted(used, picks)) for key, picks in picks_list] sub_info = pick_info(info, used) if len(used) != len(mask) else info logger.info('Reducing data rank from %s -> %s' % (len(mask), eigvec.shape[0])) estimator_cov_info = list() msg = 'Estimating covariance using %s' ok_sklearn = check_version('sklearn') if not ok_sklearn and (len(method) != 1 or method[0] != 'empirical'): raise ValueError('scikit-learn is not installed, `method` must be ' '`empirical`, got %s' % (method,)) for method_ in method: data_ = data.copy() name = method_.__name__ if callable(method_) else method_ logger.info(msg % name.upper()) mp = method_params[method_] _info = {} if method_ == 'empirical': est = EmpiricalCovariance(**mp) est.fit(data_) estimator_cov_info.append((est, est.covariance_, _info)) del est elif method_ == 'diagonal_fixed': est = _RegCovariance(info=sub_info, **mp) est.fit(data_) estimator_cov_info.append((est, est.covariance_, _info)) del est elif method_ == 'ledoit_wolf': from sklearn.covariance import LedoitWolf shrinkages = [] lw = LedoitWolf(**mp) for ch_type, picks in sub_picks_list: lw.fit(data_[:, picks]) shrinkages.append((ch_type, lw.shrinkage_, picks)) sc = _ShrunkCovariance(shrinkage=shrinkages, **mp) sc.fit(data_) estimator_cov_info.append((sc, sc.covariance_, _info)) del lw, sc elif method_ == 'oas': from sklearn.covariance import OAS shrinkages = [] oas = OAS(**mp) for ch_type, picks in sub_picks_list: oas.fit(data_[:, picks]) shrinkages.append((ch_type, oas.shrinkage_, picks)) sc = _ShrunkCovariance(shrinkage=shrinkages, **mp) sc.fit(data_) estimator_cov_info.append((sc, sc.covariance_, _info)) del oas, sc elif method_ == 'shrinkage': sc = _ShrunkCovariance(**mp) sc.fit(data_) estimator_cov_info.append((sc, sc.covariance_, _info)) del sc elif method_ == 'shrunk': from sklearn.model_selection import GridSearchCV from sklearn.covariance import ShrunkCovariance shrinkage = mp.pop('shrinkage') tuned_parameters = [{'shrinkage': shrinkage}] shrinkages = [] gs = GridSearchCV(ShrunkCovariance(**mp), tuned_parameters, cv=cv, **_get_iid_kwargs()) for ch_type, picks in sub_picks_list: gs.fit(data_[:, picks]) shrinkages.append((ch_type, gs.best_estimator_.shrinkage, picks)) shrinkages = [c[0] for c in zip(shrinkages)] sc = _ShrunkCovariance(shrinkage=shrinkages, **mp) sc.fit(data_) estimator_cov_info.append((sc, sc.covariance_, _info)) del shrinkage, sc elif method_ == 'pca': assert orig_rank == 'full' pca, _info = _auto_low_rank_model( data_, method_, n_jobs=n_jobs, method_params=mp, cv=cv, stop_early=stop_early) pca.fit(data_) estimator_cov_info.append((pca, pca.get_covariance(), _info)) del pca elif method_ == 'factor_analysis': assert orig_rank == 'full' fa, _info = _auto_low_rank_model( data_, method_, n_jobs=n_jobs, method_params=mp, cv=cv, stop_early=stop_early) fa.fit(data_) estimator_cov_info.append((fa, fa.get_covariance(), _info)) del fa else: raise ValueError('Oh no! Your estimator does not have' ' a .fit method') logger.info('Done.') if len(method) > 1: logger.info('Using cross-validation to select the best estimator.') out = dict() for ei, (estimator, cov, runtime_info) in \ enumerate(estimator_cov_info): if len(method) > 1: loglik = _cross_val(data, estimator, cv, n_jobs) else: loglik = None # project back cov = np.dot(eigvec.T, np.dot(cov, eigvec)) # undo bias cov *= data.shape[0] / (data.shape[0] - 1) # undo scaling _undo_scaling_cov(cov, picks_list, scalings) method_ = method[ei] name = method_.__name__ if callable(method_) else method_ out[name] = dict(loglik=loglik, data=cov, estimator=estimator) out[name].update(runtime_info) return out def _gaussian_loglik_scorer(est, X, y=None): """Compute the Gaussian log likelihood of X under the model in est.""" # compute empirical covariance of the test set precision = est.get_precision() n_samples, n_features = X.shape log_like = -.5 * (X * (np.dot(X, precision))).sum(axis=1) log_like -= .5 * (n_features * log(2. * np.pi) - _logdet(precision)) out = np.mean(log_like) return out def _cross_val(data, est, cv, n_jobs): """Compute cross validation.""" from sklearn.model_selection import cross_val_score return np.mean(cross_val_score(est, data, cv=cv, n_jobs=n_jobs, scoring=_gaussian_loglik_scorer)) def _auto_low_rank_model(data, mode, n_jobs, method_params, cv, stop_early=True, verbose=None): """Compute latent variable models.""" method_params = deepcopy(method_params) iter_n_components = method_params.pop('iter_n_components') if iter_n_components is None: iter_n_components = np.arange(5, data.shape[1], 5) from sklearn.decomposition import PCA, FactorAnalysis if mode == 'factor_analysis': est = FactorAnalysis else: assert mode == 'pca' est = PCA est = est(**method_params) est.n_components = 1 scores = np.empty_like(iter_n_components, dtype=np.float64) scores.fill(np.nan) # make sure we don't empty the thing if it's a generator max_n = max(list(deepcopy(iter_n_components))) if max_n > data.shape[1]: warn('You are trying to estimate %i components on matrix ' 'with %i features.' % (max_n, data.shape[1])) for ii, n in enumerate(iter_n_components): est.n_components = n try: # this may fail depending on rank and split score = _cross_val(data=data, est=est, cv=cv, n_jobs=n_jobs) except ValueError: score = np.inf if np.isinf(score) or score > 0: logger.info('... infinite values encountered. stopping estimation') break logger.info('... rank: %i - loglik: %0.3f' % (n, score)) if score != -np.inf: scores[ii] = score if (ii >= 3 and np.all(np.diff(scores[ii - 3:ii]) < 0) and stop_early): # early stop search when loglik has been going down 3 times logger.info('early stopping parameter search.') break # happens if rank is too low right form the beginning if np.isnan(scores).all(): raise RuntimeError('Oh no! Could not estimate covariance because all ' 'scores were NaN. Please contact the MNE-Python ' 'developers.') i_score = np.nanargmax(scores) best = est.n_components = iter_n_components[i_score] logger.info('... best model at rank = %i' % best) runtime_info = {'ranks': np.array(iter_n_components), 'scores': scores, 'best': best, 'cv': cv} return est, runtime_info ############################################################################### # Sklearn Estimators class _RegCovariance(BaseEstimator): """Aux class.""" def __init__(self, info, grad=0.1, mag=0.1, eeg=0.1, seeg=0.1, ecog=0.1, hbo=0.1, hbr=0.1, fnirs_cw_amplitude=0.1, fnirs_fd_ac_amplitude=0.1, fnirs_fd_phase=0.1, fnirs_od=0.1, csd=0.1, dbs=0.1, store_precision=False, assume_centered=False): self.info = info # For sklearn compat, these cannot (easily?) be combined into # a single dictionary self.grad = grad self.mag = mag self.eeg = eeg self.seeg = seeg self.dbs = dbs self.ecog = ecog self.hbo = hbo self.hbr = hbr self.fnirs_cw_amplitude = fnirs_cw_amplitude self.fnirs_fd_ac_amplitude = fnirs_fd_ac_amplitude self.fnirs_fd_phase = fnirs_fd_phase self.fnirs_od = fnirs_od self.csd = csd self.store_precision = store_precision self.assume_centered = assume_centered def fit(self, X): """Fit covariance model with classical diagonal regularization.""" self.estimator_ = EmpiricalCovariance( store_precision=self.store_precision, assume_centered=self.assume_centered) self.covariance_ = self.estimator_.fit(X).covariance_ self.covariance_ = 0.5 * (self.covariance_ + self.covariance_.T) cov_ = Covariance( data=self.covariance_, names=self.info['ch_names'], bads=self.info['bads'], projs=self.info['projs'], nfree=len(self.covariance_)) cov_ = regularize( cov_, self.info, proj=False, exclude='bads', grad=self.grad, mag=self.mag, eeg=self.eeg, ecog=self.ecog, seeg=self.seeg, dbs=self.dbs, hbo=self.hbo, hbr=self.hbr, rank='full') self.estimator_.covariance_ = self.covariance_ = cov_.data return self def score(self, X_test, y=None): """Delegate call to modified EmpiricalCovariance instance.""" return self.estimator_.score(X_test, y=y) def get_precision(self): """Delegate call to modified EmpiricalCovariance instance.""" return self.estimator_.get_precision() class _ShrunkCovariance(BaseEstimator): """Aux class.""" def __init__(self, store_precision, assume_centered, shrinkage=0.1): self.store_precision = store_precision self.assume_centered = assume_centered self.shrinkage = shrinkage def fit(self, X): """Fit covariance model with oracle shrinkage regularization.""" from sklearn.covariance import shrunk_covariance self.estimator_ = EmpiricalCovariance( store_precision=self.store_precision, assume_centered=self.assume_centered) cov = self.estimator_.fit(X).covariance_ if not isinstance(self.shrinkage, (list, tuple)): shrinkage = [('all', self.shrinkage, np.arange(len(cov)))] else: shrinkage = self.shrinkage zero_cross_cov = np.zeros_like(cov, dtype=bool) for a, b in itt.combinations(shrinkage, 2): picks_i, picks_j = a[2], b[2] ch_ = a[0], b[0] if 'eeg' in ch_: zero_cross_cov[np.ix_(picks_i, picks_j)] = True zero_cross_cov[np.ix_(picks_j, picks_i)] = True self.zero_cross_cov_ = zero_cross_cov # Apply shrinkage to blocks for ch_type, c, picks in shrinkage: sub_cov = cov[np.ix_(picks, picks)] cov[np.ix_(picks, picks)] = shrunk_covariance(sub_cov, shrinkage=c) # Apply shrinkage to cross-cov for a, b in itt.combinations(shrinkage, 2): shrinkage_i, shrinkage_j = a[1], b[1] picks_i, picks_j = a[2], b[2] c_ij = np.sqrt((1. - shrinkage_i) * (1. - shrinkage_j)) cov[np.ix_(picks_i, picks_j)] *= c_ij cov[np.ix_(picks_j, picks_i)] *= c_ij # Set to zero the necessary cross-cov if np.any(zero_cross_cov): cov[zero_cross_cov] = 0.0 self.estimator_.covariance_ = self.covariance_ = cov return self def score(self, X_test, y=None): """Delegate to modified EmpiricalCovariance instance.""" # compute empirical covariance of the test set test_cov = empirical_covariance(X_test - self.estimator_.location_, assume_centered=True) if np.any(self.zero_cross_cov_): test_cov[self.zero_cross_cov_] = 0. res = log_likelihood(test_cov, self.estimator_.get_precision()) return res def get_precision(self): """Delegate to modified EmpiricalCovariance instance.""" return self.estimator_.get_precision() ############################################################################### # Writing def write_cov(fname, cov): """Write a noise covariance matrix. Parameters ---------- fname : str The name of the file. It should end with -cov.fif or -cov.fif.gz. cov : Covariance The noise covariance matrix. See Also -------- read_cov """ cov.save(fname) ############################################################################### # Prepare for inverse modeling def _unpack_epochs(epochs): """Aux Function.""" if len(epochs.event_id) > 1: epochs = [epochs[k] for k in epochs.event_id] else: epochs = [epochs] return epochs def _get_ch_whitener(A, pca, ch_type, rank): """Get whitener params for a set of channels.""" # whitening operator eig, eigvec = eigh(A, overwrite_a=True) eigvec = eigvec.conj().T mask = np.ones(len(eig), bool) eig[:-rank] = 0.0 mask[:-rank] = False logger.info(' Setting small %s eigenvalues to zero (%s)' % (ch_type, 'using PCA' if pca else 'without PCA')) if pca: # No PCA case. # This line will reduce the actual number of variables in data # and leadfield to the true rank. eigvec = eigvec[:-rank].copy() return eig, eigvec, mask @verbose def prepare_noise_cov(noise_cov, info, ch_names=None, rank=None, scalings=None, on_rank_mismatch='ignore', verbose=None): """Prepare noise covariance matrix. Parameters ---------- noise_cov : instance of Covariance The noise covariance to process. info : dict The measurement info (used to get channel types and bad channels). ch_names : list | None The channel names to be considered. Can be None to use ``info['ch_names']``. %(rank_None)s .. versionadded:: 0.18 Support for 'info' mode. scalings : dict | None Data will be rescaled before rank estimation to improve accuracy. If dict, it will override the following dict (default if None):: dict(mag=1e12, grad=1e11, eeg=1e5) %(on_rank_mismatch)s %(verbose)s Returns ------- cov : instance of Covariance A copy of the covariance with the good channels subselected and parameters updated. """ # reorder C and info to match ch_names order noise_cov_idx = list() missing = list() ch_names = info['ch_names'] if ch_names is None else ch_names for c in ch_names: # this could be try/except ValueError, but it is not the preferred way if c in noise_cov.ch_names: noise_cov_idx.append(noise_cov.ch_names.index(c)) else: missing.append(c) if len(missing): raise RuntimeError('Not all channels present in noise covariance:\n%s' % missing) C = noise_cov._get_square()[np.ix_(noise_cov_idx, noise_cov_idx)] info = pick_info(info, pick_channels(info['ch_names'], ch_names)) projs = info['projs'] + noise_cov['projs'] noise_cov = Covariance( data=C, names=ch_names, bads=list(noise_cov['bads']), projs=deepcopy(noise_cov['projs']), nfree=noise_cov['nfree'], method=noise_cov.get('method', None), loglik=noise_cov.get('loglik', None)) eig, eigvec, _ = _smart_eigh(noise_cov, info, rank, scalings, projs, ch_names, on_rank_mismatch=on_rank_mismatch) noise_cov.update(eig=eig, eigvec=eigvec) return noise_cov @verbose def _smart_eigh(C, info, rank, scalings=None, projs=None, ch_names=None, proj_subspace=False, do_compute_rank=True, on_rank_mismatch='ignore', verbose=None): """Compute eigh of C taking into account rank and ch_type scalings.""" scalings = _handle_default('scalings_cov_rank', scalings) projs = info['projs'] if projs is None else projs ch_names = info['ch_names'] if ch_names is None else ch_names if info['ch_names'] != ch_names: info = pick_info(info, [info['ch_names'].index(c) for c in ch_names]) assert info['ch_names'] == ch_names n_chan = len(ch_names) # Create the projection operator proj, ncomp, _ = make_projector(projs, ch_names) if isinstance(C, Covariance): C = C['data'] if ncomp > 0: logger.info(' Created an SSP operator (subspace dimension = %d)' % ncomp) C = np.dot(proj, np.dot(C, proj.T)) noise_cov = Covariance(C, ch_names, [], projs, 0) if do_compute_rank: # if necessary rank = compute_rank( noise_cov, rank, scalings, info, on_rank_mismatch=on_rank_mismatch) assert C.ndim == 2 and C.shape[0] == C.shape[1] # time saving short-circuit if proj_subspace and sum(rank.values()) == C.shape[0]: return np.ones(n_chan), np.eye(n_chan), np.ones(n_chan, bool) dtype = complex if C.dtype == np.complex_ else float eig = np.zeros(n_chan, dtype) eigvec = np.zeros((n_chan, n_chan), dtype) mask = np.zeros(n_chan, bool) for ch_type, picks in _picks_by_type(info, meg_combined=True, ref_meg=False, exclude='bads'): if len(picks) == 0: continue this_C = C[np.ix_(picks, picks)] if ch_type not in rank and ch_type in ('mag', 'grad'): this_rank = rank['meg'] # if there is only one or the other else: this_rank = rank[ch_type] e, ev, m = _get_ch_whitener(this_C, False, ch_type.upper(), this_rank) if proj_subspace: # Choose the subspace the same way we do for projections e, ev = _eigvec_subspace(e, ev, m) eig[picks], eigvec[np.ix_(picks, picks)], mask[picks] = e, ev, m # XXX : also handle ref for sEEG and ECoG if ch_type == 'eeg' and _needs_eeg_average_ref_proj(info) and not \ _has_eeg_average_ref_proj(projs): warn('No average EEG reference present in info["projs"], ' 'covariance may be adversely affected. Consider recomputing ' 'covariance using with an average eeg reference projector ' 'added.') return eig, eigvec, mask @verbose def regularize(cov, info, mag=0.1, grad=0.1, eeg=0.1, exclude='bads', proj=True, seeg=0.1, ecog=0.1, hbo=0.1, hbr=0.1, fnirs_cw_amplitude=0.1, fnirs_fd_ac_amplitude=0.1, fnirs_fd_phase=0.1, fnirs_od=0.1, csd=0.1, dbs=0.1, rank=None, scalings=None, verbose=None): """Regularize noise covariance matrix. This method works by adding a constant to the diagonal for each channel type separately. Special care is taken to keep the rank of the data constant. .. note:: This function is kept for reasons of backward-compatibility. Please consider explicitly using the ``method`` parameter in :func:`mne.compute_covariance` to directly combine estimation with regularization in a data-driven fashion. See the `faq <http://mne.tools/dev/overview/faq.html#how-should-i-regularize-the-covariance-matrix>`_ for more information. Parameters ---------- cov : Covariance The noise covariance matrix. info : dict The measurement info (used to get channel types and bad channels). mag : float (default 0.1) Regularization factor for MEG magnetometers. grad : float (default 0.1) Regularization factor for MEG gradiometers. Must be the same as ``mag`` if data have been processed with SSS. eeg : float (default 0.1) Regularization factor for EEG. exclude : list | 'bads' (default 'bads') List of channels to mark as bad. If 'bads', bads channels are extracted from both info['bads'] and cov['bads']. proj : bool (default True) Apply projections to keep rank of data. seeg : float (default 0.1) Regularization factor for sEEG signals. ecog : float (default 0.1) Regularization factor for ECoG signals. hbo : float (default 0.1) Regularization factor for HBO signals. hbr : float (default 0.1) Regularization factor for HBR signals. fnirs_cw_amplitude : float (default 0.1) Regularization factor for fNIRS CW raw signals. fnirs_fd_ac_amplitude : float (default 0.1) Regularization factor for fNIRS FD AC raw signals. fnirs_fd_phase : float (default 0.1) Regularization factor for fNIRS raw phase signals. fnirs_od : float (default 0.1) Regularization factor for fNIRS optical density signals. csd : float (default 0.1) Regularization factor for EEG-CSD signals. dbs : float (default 0.1) Regularization factor for DBS signals. %(rank_None)s .. versionadded:: 0.17 .. versionadded:: 0.18 Support for 'info' mode. scalings : dict | None Data will be rescaled before rank estimation to improve accuracy. See :func:`mne.compute_covariance`. .. versionadded:: 0.17 %(verbose)s Returns ------- reg_cov : Covariance The regularized covariance matrix. See Also -------- mne.compute_covariance """ # noqa: E501 from scipy import linalg cov = cov.copy() info._check_consistency() scalings = _handle_default('scalings_cov_rank', scalings) regs = dict(eeg=eeg, seeg=seeg, dbs=dbs, ecog=ecog, hbo=hbo, hbr=hbr, fnirs_cw_amplitude=fnirs_cw_amplitude, fnirs_fd_ac_amplitude=fnirs_fd_ac_amplitude, fnirs_fd_phase=fnirs_fd_phase, fnirs_od=fnirs_od, csd=csd) if exclude is None: raise ValueError('exclude must be a list of strings or "bads"') if exclude == 'bads': exclude = info['bads'] + cov['bads'] picks_dict = {ch_type: [] for ch_type in _DATA_CH_TYPES_SPLIT} meg_combined = 'auto' if rank != 'full' else False picks_dict.update(dict(_picks_by_type( info, meg_combined=meg_combined, exclude=exclude, ref_meg=False))) if len(picks_dict.get('meg', [])) > 0 and rank != 'full': # combined if mag != grad: raise ValueError('On data where magnetometers and gradiometers ' 'are dependent (e.g., SSSed data), mag (%s) must ' 'equal grad (%s)' % (mag, grad)) logger.info('Regularizing MEG channels jointly') regs['meg'] = mag else: regs.update(mag=mag, grad=grad) if rank != 'full': rank = compute_rank(cov, rank, scalings, info) info_ch_names = info['ch_names'] ch_names_by_type = dict() for ch_type, picks_type in picks_dict.items(): ch_names_by_type[ch_type] = [info_ch_names[i] for i in picks_type] # This actually removes bad channels from the cov, which is not backward # compatible, so let's leave all channels in cov_good = pick_channels_cov(cov, include=info_ch_names, exclude=exclude) ch_names = cov_good.ch_names # Now get the indices for each channel type in the cov idx_cov = {ch_type: [] for ch_type in ch_names_by_type} for i, ch in enumerate(ch_names): for ch_type in ch_names_by_type: if ch in ch_names_by_type[ch_type]: idx_cov[ch_type].append(i) break else: raise Exception('channel %s is unknown type' % ch) C = cov_good['data'] assert len(C) == sum(map(len, idx_cov.values())) if proj: projs = info['projs'] + cov_good['projs'] projs = activate_proj(projs) for ch_type in idx_cov: desc = ch_type.upper() idx = idx_cov[ch_type] if len(idx) == 0: continue reg = regs[ch_type] if reg == 0.0: logger.info(" %s regularization : None" % desc) continue logger.info(" %s regularization : %s" % (desc, reg)) this_C = C[np.ix_(idx, idx)] U = np.eye(this_C.shape[0]) this_ch_names = [ch_names[k] for k in idx] if rank == 'full': if proj: P, ncomp, _ = make_projector(projs, this_ch_names) if ncomp > 0: # This adjustment ends up being redundant if rank is None: U = linalg.svd(P)[0][:, :-ncomp] logger.info(' Created an SSP operator for %s ' '(dimension = %d)' % (desc, ncomp)) else: this_picks = pick_channels(info['ch_names'], this_ch_names) this_info = pick_info(info, this_picks) # Here we could use proj_subspace=True, but this should not matter # since this is already in a loop over channel types _, eigvec, mask = _smart_eigh(this_C, this_info, rank) U = eigvec[mask].T this_C = np.dot(U.T, np.dot(this_C, U)) sigma = np.mean(np.diag(this_C)) this_C.flat[::len(this_C) + 1] += reg * sigma # modify diag inplace this_C = np.dot(U, np.dot(this_C, U.T)) C[np.ix_(idx, idx)] = this_C # Put data back in correct locations idx = pick_channels(cov.ch_names, info_ch_names, exclude=exclude) cov['data'][np.ix_(idx, idx)] = C return cov def _regularized_covariance(data, reg=None, method_params=None, info=None, rank=None): """Compute a regularized covariance from data using sklearn. This is a convenience wrapper for mne.decoding functions, which adopted a slightly different covariance API. Returns ------- cov : ndarray, shape (n_channels, n_channels) The covariance matrix. """ _validate_type(reg, (str, 'numeric', None)) if reg is None: reg = 'empirical' elif not isinstance(reg, str): reg = float(reg) if method_params is not None: raise ValueError('If reg is a float, method_params must be None ' '(got %s)' % (type(method_params),)) method_params = dict(shrinkage=dict( shrinkage=reg, assume_centered=True, store_precision=False)) reg = 'shrinkage' method, method_params = _check_method_params( reg, method_params, name='reg', allow_auto=False, rank=rank) # use mag instead of eeg here to avoid the cov EEG projection warning info = create_info(data.shape[-2], 1000., 'mag') if info is None else info picks_list = _picks_by_type(info) scalings = _handle_default('scalings_cov_rank', None) cov = _compute_covariance_auto( data.T, method=method, method_params=method_params, info=info, cv=None, n_jobs=1, stop_early=True, picks_list=picks_list, scalings=scalings, rank=rank)[reg]['data'] return cov @verbose def compute_whitener(noise_cov, info=None, picks=None, rank=None, scalings=None, return_rank=False, pca=False, return_colorer=False, on_rank_mismatch='warn', verbose=None): """Compute whitening matrix. Parameters ---------- noise_cov : Covariance The noise covariance. info : dict | None The measurement info. Can be None if ``noise_cov`` has already been prepared with :func:`prepare_noise_cov`. %(picks_good_data_noref)s %(rank_None)s .. versionadded:: 0.18 Support for 'info' mode. scalings : dict | None The rescaling method to be applied. See documentation of ``prepare_noise_cov`` for details. return_rank : bool If True, return the rank used to compute the whitener. .. versionadded:: 0.15 pca : bool | str Space to project the data into. Options: :data:`python:True` Whitener will be shape (n_nonzero, n_channels). ``'white'`` Whitener will be shape (n_channels, n_channels), potentially rank deficient, and have the first ``n_channels - n_nonzero`` rows and columns set to zero. :data:`python:False` (default) Whitener will be shape (n_channels, n_channels), potentially rank deficient, and rotated back to the space of the original data. .. versionadded:: 0.18 return_colorer : bool If True, return the colorer as well. %(on_rank_mismatch)s %(verbose)s Returns ------- W : ndarray, shape (n_channels, n_channels) or (n_nonzero, n_channels) The whitening matrix. ch_names : list The channel names. rank : int Rank reduction of the whitener. Returned only if return_rank is True. colorer : ndarray, shape (n_channels, n_channels) or (n_channels, n_nonzero) The coloring matrix. """ # noqa: E501 _validate_type(pca, (str, bool), 'space') _valid_pcas = (True, 'white', False) if pca not in _valid_pcas: raise ValueError('space must be one of %s, got %s' % (_valid_pcas, pca)) if info is None: if 'eig' not in noise_cov: raise ValueError('info can only be None if the noise cov has ' 'already been prepared with prepare_noise_cov') ch_names = deepcopy(noise_cov['names']) else: picks = _picks_to_idx(info, picks, with_ref_meg=False) ch_names = [info['ch_names'][k] for k in picks] del picks noise_cov = prepare_noise_cov( noise_cov, info, ch_names, rank, scalings, on_rank_mismatch=on_rank_mismatch) n_chan = len(ch_names) assert n_chan == len(noise_cov['eig']) # Omit the zeroes due to projection eig = noise_cov['eig'].copy() nzero = (eig > 0) eig[~nzero] = 0. # get rid of numerical noise (negative) ones if noise_cov['eigvec'].dtype.kind == 'c': dtype = np.complex128 else: dtype = np.float64 W = np.zeros((n_chan, 1), dtype) W[nzero, 0] = 1.0 / np.sqrt(eig[nzero]) # Rows of eigvec are the eigenvectors W = W * noise_cov['eigvec'] # C ** -0.5 C = np.sqrt(eig) * noise_cov['eigvec'].conj().T # C ** 0.5 n_nzero = nzero.sum() logger.info(' Created the whitener using a noise covariance matrix ' 'with rank %d (%d small eigenvalues omitted)' % (n_nzero, noise_cov['dim'] - n_nzero)) # Do the requested projection if pca is True: W = W[nzero] C = C[:, nzero] elif pca is False: W = np.dot(noise_cov['eigvec'].conj().T, W) C = np.dot(C, noise_cov['eigvec']) # Triage return out = W, ch_names if return_rank: out += (n_nzero,) if return_colorer: out += (C,) return out @verbose def whiten_evoked(evoked, noise_cov, picks=None, diag=None, rank=None, scalings=None, verbose=None): """Whiten evoked data using given noise covariance. Parameters ---------- evoked : instance of Evoked The evoked data. noise_cov : instance of Covariance The noise covariance. %(picks_good_data)s diag : bool (default False) If True, whiten using only the diagonal of the covariance. %(rank_None)s .. versionadded:: 0.18 Support for 'info' mode. scalings : dict | None (default None) To achieve reliable rank estimation on multiple sensors, sensors have to be rescaled. This parameter controls the rescaling. If dict, it will override the following default dict (default if None): dict(mag=1e12, grad=1e11, eeg=1e5) %(verbose)s Returns ------- evoked_white : instance of Evoked The whitened evoked data. """ evoked = evoked.copy() picks = _picks_to_idx(evoked.info, picks) if diag: noise_cov = noise_cov.as_diag() W, _ = compute_whitener(noise_cov, evoked.info, picks=picks, rank=rank, scalings=scalings) evoked.data[picks] = np.sqrt(evoked.nave) * np.dot(W, evoked.data[picks]) return evoked @verbose def _read_cov(fid, node, cov_kind, limited=False, verbose=None): """Read a noise covariance matrix.""" # Find all covariance matrices from scipy import sparse covs = dir_tree_find(node, FIFF.FIFFB_MNE_COV) if len(covs) == 0: raise ValueError('No covariance matrices found') # Is any of the covariance matrices a noise covariance for p in range(len(covs)): tag = find_tag(fid, covs[p], FIFF.FIFF_MNE_COV_KIND) if tag is not None and int(tag.data) == cov_kind: this = covs[p] # Find all the necessary data tag = find_tag(fid, this, FIFF.FIFF_MNE_COV_DIM) if tag is None: raise ValueError('Covariance matrix dimension not found') dim = int(tag.data) tag = find_tag(fid, this, FIFF.FIFF_MNE_COV_NFREE) if tag is None: nfree = -1 else: nfree = int(tag.data) tag = find_tag(fid, this, FIFF.FIFF_MNE_COV_METHOD) if tag is None: method = None else: method = tag.data tag = find_tag(fid, this, FIFF.FIFF_MNE_COV_SCORE) if tag is None: score = None else: score = tag.data[0] tag = find_tag(fid, this, FIFF.FIFF_MNE_ROW_NAMES) if tag is None: names = [] else: names = tag.data.split(':') if len(names) != dim: raise ValueError('Number of names does not match ' 'covariance matrix dimension') tag = find_tag(fid, this, FIFF.FIFF_MNE_COV) if tag is None: tag = find_tag(fid, this, FIFF.FIFF_MNE_COV_DIAG) if tag is None: raise ValueError('No covariance matrix data found') else: # Diagonal is stored data = tag.data diag = True logger.info(' %d x %d diagonal covariance (kind = ' '%d) found.' % (dim, dim, cov_kind)) else: if not sparse.issparse(tag.data): # Lower diagonal is stored vals = tag.data data = np.zeros((dim, dim)) data[np.tril(np.ones((dim, dim))) > 0] = vals data = data + data.T data.flat[::dim + 1] /= 2.0 diag = False logger.info(' %d x %d full covariance (kind = %d) ' 'found.' % (dim, dim, cov_kind)) else: diag = False data = tag.data logger.info(' %d x %d sparse covariance (kind = %d)' ' found.' % (dim, dim, cov_kind)) # Read the possibly precomputed decomposition tag1 = find_tag(fid, this, FIFF.FIFF_MNE_COV_EIGENVALUES) tag2 = find_tag(fid, this, FIFF.FIFF_MNE_COV_EIGENVECTORS) if tag1 is not None and tag2 is not None: eig = tag1.data eigvec = tag2.data else: eig = None eigvec = None # Read the projection operator projs = _read_proj(fid, this) # Read the bad channel list bads = _read_bad_channels(fid, this, None) # Put it together assert dim == len(data) assert data.ndim == (1 if diag else 2) cov = dict(kind=cov_kind, diag=diag, dim=dim, names=names, data=data, projs=projs, bads=bads, nfree=nfree, eig=eig, eigvec=eigvec) if score is not None: cov['loglik'] = score if method is not None: cov['method'] = method if limited: del cov['kind'], cov['dim'], cov['diag'] return cov logger.info(' Did not find the desired covariance matrix (kind = %d)' % cov_kind) return None def _write_cov(fid, cov): """Write a noise covariance matrix.""" start_block(fid, FIFF.FIFFB_MNE_COV) # Dimensions etc. write_int(fid, FIFF.FIFF_MNE_COV_KIND, cov['kind']) write_int(fid, FIFF.FIFF_MNE_COV_DIM, cov['dim']) if cov['nfree'] > 0: write_int(fid, FIFF.FIFF_MNE_COV_NFREE, cov['nfree']) # Channel names if cov['names'] is not None and len(cov['names']) > 0: write_name_list(fid, FIFF.FIFF_MNE_ROW_NAMES, cov['names']) # Data if cov['diag']: write_double(fid, FIFF.FIFF_MNE_COV_DIAG, cov['data']) else: # Store only lower part of covariance matrix dim = cov['dim'] mask = np.tril(np.ones((dim, dim), dtype=bool)) > 0 vals = cov['data'][mask].ravel() write_double(fid, FIFF.FIFF_MNE_COV, vals) # Eigenvalues and vectors if present if cov['eig'] is not None and cov['eigvec'] is not None: write_float_matrix(fid, FIFF.FIFF_MNE_COV_EIGENVECTORS, cov['eigvec']) write_double(fid, FIFF.FIFF_MNE_COV_EIGENVALUES, cov['eig']) # Projection operator if cov['projs'] is not None and len(cov['projs']) > 0: _write_proj(fid, cov['projs']) # Bad channels if cov['bads'] is not None and len(cov['bads']) > 0: start_block(fid, FIFF.FIFFB_MNE_BAD_CHANNELS) write_name_list(fid, FIFF.FIFF_MNE_CH_NAME_LIST, cov['bads']) end_block(fid, FIFF.FIFFB_MNE_BAD_CHANNELS) # estimator method if 'method' in cov: write_string(fid, FIFF.FIFF_MNE_COV_METHOD, cov['method']) # negative log-likelihood score if 'loglik' in cov: write_double( fid, FIFF.FIFF_MNE_COV_SCORE, np.array(cov['loglik'])) # Done! end_block(fid, FIFF.FIFFB_MNE_COV)
bsd-3-clause
vigilv/scikit-learn
sklearn/__init__.py
59
3038
""" Machine learning module for Python ================================== sklearn is a Python module integrating classical machine learning algorithms in the tightly-knit world of scientific Python packages (numpy, scipy, matplotlib). It aims to provide simple and efficient solutions to learning problems that are accessible to everybody and reusable in various contexts: machine-learning as a versatile tool for science and engineering. See http://scikit-learn.org for complete documentation. """ import sys import re import warnings # Make sure that DeprecationWarning within this package always gets printed warnings.filterwarnings('always', category=DeprecationWarning, module='^{0}\.'.format(re.escape(__name__))) # PEP0440 compatible formatted version, see: # https://www.python.org/dev/peps/pep-0440/ # # Generic release markers: # X.Y # X.Y.Z # For bugfix releases # # Admissible pre-release markers: # X.YaN # Alpha release # X.YbN # Beta release # X.YrcN # Release Candidate # X.Y # Final release # # Dev branch marker is: 'X.Y.dev' or 'X.Y.devN' where N is an integer. # 'X.Y.dev0' is the canonical version of 'X.Y.dev' # __version__ = '0.17.dev0' try: # This variable is injected in the __builtins__ by the build # process. It used to enable importing subpackages of sklearn when # the binaries are not built __SKLEARN_SETUP__ except NameError: __SKLEARN_SETUP__ = False if __SKLEARN_SETUP__: sys.stderr.write('Partial import of sklearn during the build process.\n') # We are not importing the rest of the scikit during the build # process, as it may not be compiled yet else: from . import __check_build from .base import clone __check_build # avoid flakes unused variable error __all__ = ['calibration', 'cluster', 'covariance', 'cross_decomposition', 'cross_validation', 'datasets', 'decomposition', 'dummy', 'ensemble', 'externals', 'feature_extraction', 'feature_selection', 'gaussian_process', 'grid_search', 'isotonic', 'kernel_approximation', 'kernel_ridge', 'lda', 'learning_curve', 'linear_model', 'manifold', 'metrics', 'mixture', 'multiclass', 'naive_bayes', 'neighbors', 'neural_network', 'pipeline', 'preprocessing', 'qda', 'random_projection', 'semi_supervised', 'svm', 'tree', 'discriminant_analysis', # Non-modules: 'clone'] def setup_module(module): """Fixture for the tests to assure globally controllable seeding of RNGs""" import os import numpy as np import random # It could have been provided in the environment _random_seed = os.environ.get('SKLEARN_SEED', None) if _random_seed is None: _random_seed = np.random.uniform() * (2 ** 31 - 1) _random_seed = int(_random_seed) print("I: Seeding RNGs with %r" % _random_seed) np.random.seed(_random_seed) random.seed(_random_seed)
bsd-3-clause
MaterialsDiscovery/PyChemia
setup.py
1
6127
import os import json import subprocess from setuptools import setup, find_packages, Extension from distutils.command.sdist import sdist as _sdist import pathlib try: from Cython.Build import cythonize from Cython.Distutils import build_ext except ImportError: USE_CYTHON = False else: USE_CYTHON = True # Return the git revision as a string # Copied from scipy's setup.py def git_version(): def _minimal_ext_cmd(cmd): # construct minimal environment env = {} for k in ['SYSTEMROOT', 'PATH']: v = os.environ.get(k) if v is not None: env[k] = v # LANGUAGE is used on win32 env['LANGUAGE'] = 'C' env['LANG'] = 'C' env['LC_ALL'] = 'C' out = subprocess.Popen(cmd, stdout=subprocess.PIPE, env=env).communicate()[0] return out try: out = _minimal_ext_cmd(['git', 'rev-parse', 'HEAD']) GIT_REVISION = out.strip().decode('ascii') except OSError: GIT_REVISION = "Unknown" return GIT_REVISION def get_version_info(): # Adding the git rev number needs to be done inside # write_version_py(), otherwise the import of scipy.version messes # up the build under Python 3. basepath=pathlib.Path(__file__).parent.absolute() print(basepath) rf = open(str(basepath)+os.sep+'setup.json') release_data = json.load(rf) rf.close() FULLVERSION = release_data['version'] if os.path.exists('.git'): GIT_REVISION = git_version() elif os.path.exists('scipy/version.py'): # must be a source distribution, use existing version file # load it as a separate module to not load scipy/__init__.py import runpy ns = runpy.run_path('pychemia/version.py') GIT_REVISION = ns['git_revision'] else: GIT_REVISION = "Unknown" if not ISRELEASED: FULLVERSION += '.dev0+' + GIT_REVISION[:7] return release_data, FULLVERSION, GIT_REVISION def write_version_py(filename='pychemia/version.py'): cnt = """ # THIS FILE IS GENERATED FROM PYCHEMIA SETUP.PY short_version = '%(version)s' version = '%(version)s' full_version = '%(full_version)s' git_revision = '%(git_revision)s' name = '%(name)s' description = '%(description)s' url = '%(url)s' author = '%(author)s' email = '%(email)s' status = '%(status)s' copyright = '%(copyright)s' date = '%(date)s' release = %(isrelease)s if not release: version = full_version """ release_data, FULLVERSION, GIT_REVISION = get_version_info() a = open(filename, 'w') try: a.write(cnt % {'version': release_data['version'], 'full_version': FULLVERSION, 'git_revision': GIT_REVISION, 'name': release_data['name'], 'description': release_data['description'], 'url': release_data['url'], 'author': release_data['author'], 'email': release_data['email'], 'status': release_data['status'], 'copyright': release_data['copyright'], 'date': release_data['date'], 'isrelease': str(ISRELEASED)}) finally: a.close() return release_data def get_scripts(): return ['scripts' + os.sep + x for x in os.listdir('scripts') if x[-3:] == '.py'] ################################################################### ISRELEASED = False KEYWORDS = ["electronic", "structure", "analysis", "materials", "discovery", "metaheuristics"] CLASSIFIERS = [ "Development Status :: 4 - Beta", "Intended Audience :: Science/Research", "License :: OSI Approved :: MIT License", "Natural Language :: English", "Operating System :: POSIX", "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Topic :: Scientific/Engineering :: Chemistry", "Topic :: Scientific/Engineering :: Physics", ] INSTALL_REQUIRES = ['numpy >= 1.19', 'scipy >= 1.5', 'spglib >= 1.9', 'pymongo >= 3.11', 'matplotlib >= 3.3', 'psutil >= 5.8'] ################################################################### print('Using Cython: %s' % USE_CYTHON) data = write_version_py() cmdclass = {} ext = '.pyx' if USE_CYTHON else '.c' class sdist(_sdist): def run(self): # Make sure the compiled Cython files in the distribution are # up-to-date from Cython.Build import cythonize cythonize(ext_modules, annotate=True, compiler_directives={'embedsignature': True}) _sdist.run(self) cmdclass['sdist'] = sdist ext_modules = [Extension("pychemia.code.lennardjones.lj_utils", ['pychemia/code/lennardjones/lj_utils' + ext])] if USE_CYTHON: cmdclass.update({'build_ext': build_ext}) from Cython.Build import cythonize ext_modules = cythonize([Extension("pychemia.code.lennardjones.lj_utils", ['pychemia/code/lennardjones/lj_utils' + ext])]) setup( name=data['name'], version=data['version'], author=data['author'], author_email=data['email'], packages=find_packages(exclude=['scripts', 'docs', 'tests']), url=data['url'], license='LICENSE.txt', description=data['description'], long_description=open('README').read(), install_requires=INSTALL_REQUIRES, keywords=KEYWORDS, classifiers=CLASSIFIERS, python_requires='>=3.6, <4', package_data={'': ['setup.json']}, scripts=get_scripts(), cmdclass=cmdclass, ext_modules=ext_modules # ext_modules=cythonize(ext_modules, annotate=True, compiler_directives={'embedsignature': True}) ) # ext_modules=cythonize(Extension('pychemia.code.lennardjones.hello', # ['pychemia/code/lennardjones/lj_utils.pyx'], # language='c', # extra_compile_args='-march=native'))
mit
Karel-van-de-Plassche/QLKNN-develop
qlknn/plots/comparison/topology.py
1
2645
from IPython import embed import numpy as np import scipy.stats as stats import pandas as pd import os import sys networks_path = os.path.abspath(os.path.join((os.path.abspath(__file__)), '../../networks')) NNDB_path = os.path.abspath(os.path.join((os.path.abspath(__file__)), '../../NNDB')) training_path = os.path.abspath(os.path.join((os.path.abspath(__file__)), '../../training')) sys.path.append(networks_path) sys.path.append(NNDB_path) sys.path.append(training_path) from model import Network, NetworkJSON, Hyperparameters from run_model import QuaLiKizNDNN from train_NDNN import shuffle_panda from peewee import Param, Passthrough import matplotlib.pyplot as plt from matplotlib import gridspec from load_data import load_data, load_nn def find_similar_topology(network_id): #query = Network.find_similar_topology_by_id(network_id) query = Network.find_similar_networkpar_by_id(network_id) query &= Network.find_similar_trainingpar_by_id(network_id) train_dim, hidden_neurons, hidden_activation, output_activation, filter_id = ( Network .select(Network.target_names, Hyperparameters.hidden_neurons, Hyperparameters.hidden_activation, Hyperparameters.output_activation, Network.filter_id) .where(Network.id == network_id) .join(Hyperparameters) ).tuples().get() query &= (Network.select() .where(Network.target_names == Param(train_dim)) #.where(Hyperparameters.hidden_neurons == hidden_neurons) #.where(Hyperparameters.hidden_activation == Param(hidden_activation)) #.where(Hyperparameters.output_activation == output_activation) .join(Hyperparameters) ) df = [] for res in query: df.append((res.id, res.hyperparameters.get().hidden_neurons, res.network_metadata.get().rms_test)) df = pd.DataFrame(df, columns=['id', 'topo', 'rms_test']) df['topo'] = df['topo'].apply(tuple) df.sort_values(['topo', 'rms_test'], inplace = True) df_trim = pd.DataFrame(columns=['id', 'topo', 'rms_test']) for index, row in df.iterrows(): df_best = df.iloc[df.loc[(df['topo'] == row['topo'])].index[0]] df_best = df.loc[df.loc[(df['topo'] == row['topo'])].index[0]] if ~(df_best['topo'] == df_trim['topo']).any(): df_trim = df_trim.append(df_best) labels = [(line[0], '$topo = ' + str(line[1]) + '$') for line in df_trim[['id', 'topo']].values] print('nn_list = OrderedDict([', end='') print(*labels, sep=',\n', end='') print('])') embed() find_similar_topology(37)
mit