Dataset Viewer
Auto-converted to Parquet
question_ID
stringlengths
32
32
module_name
stringclasses
12 values
chapter_name
stringclasses
106 values
question
stringlengths
0
17.9k
type
stringclasses
5 values
level
float64
1
3
solution
stringlengths
0
29.4k
options
stringlengths
2
29.2k
correct_options
stringclasses
16 values
correct_value
float64
-13.84
5.04k
tags
stringclasses
2 values
a741e607fcc048f338a4b68123607e86
WBJEE_PHY
Alternating Current
Voltage $V$ and current $i$ in $A C$ circuit are given by $\mathrm{V}=50 \sin (50 \mathrm{t})$ volt, $\mathrm{i}=50 \sin \left(50 \mathrm{t}+\frac{\pi}{3}\right) \mathrm{mA}$<br />The power dissipated in the circuit is
singleCorrect
2
Given $V=50 \sin (50$ t) $V$ Maximum voltage, $\mathrm{V}_{0}=50 \mathrm{~V}$<br />$i=\left(50 t+\frac{\pi}{3}\right) \mathrm{mA}$<br />Maximum current, $i_{0}=50 \mathrm{~mA}=50 \times 10^{-3} \mathrm{~A}$<br />Power dissipated, $\mathrm{P}=\frac{\mathrm{i}_{0}}{\sqrt{2}} \times \frac{\mathrm{V}_{0}}{\sqrt{2}}$<br />$=\frac{50 \times 50 \times 10^{-3}}{2}=\frac{2500 \times 10^{-3}}{2}=1.25 \mathrm{~W}$
["$5.0 \\mathrm{~W}$", "$2.5 \\mathrm{~W}$", "$1.25 \\mathrm{~W}$", "zero"]
[2]
null
PYQ
f198f76e8eae7e808148aa6c7329f641
WBJEE_PHY
Alternating Current
A direct current of $5 \mathrm{~A}$ is superposed on an alternating current $I=10 \sin \omega t$ flowing through the wire. The effective value of the resulting current will be
singleCorrect
2
Total carrent, $1=(5+10 \sin \omega \mathrm{t})$<br />$\begin{aligned}<br />\Rightarrow I_{\text {eff }} &=\left[\frac{\int_{0}^{\mathrm{T}} \mathrm{I}^{2} \mathrm{dt}}{\int_{0}^{\mathrm{T}} \mathrm{dt}}\right]^{1 / 2} \\<br />&=\left[\frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}}(5+10 \sin \omega \mathrm{t})^{2} \mathrm{dt}\right]^{1 / 2} \\<br />&=\left[\frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}}\left(25+100 \sin \omega \mathrm{t}+100 \sin ^{2} \omega \mathrm{t}\right)\right]^{1 / 2} \\<br />\text { But, } \quad \frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}} \sin \omega \mathrm{t} \mathrm{dt}=0<br />\end{aligned}$<br />and<br />$\begin{array}{l}<br />\frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}} \sin ^{2} \omega \mathrm{t} \mathrm{dt}=\frac{1}{2} \\<br />\text { So, } \mathrm{I}_{\mathrm{eff}}=\left[25+\frac{1}{2} \times 100\right]^{1 / 2}=5 \sqrt{3} \mathrm{~A}<br />\end{array}$
["$(15 / 2) \\mathrm{A}$", "$5 \\sqrt{3} \\mathrm{~A}$", "$5 \\sqrt{5} \\mathrm{~A}$", "$15 \\mathrm{~A}$"]
[1]
null
PYQ
4bcbb2090367607886b0745c8a02b697
WBJEE_PHY
Alternating Current
A resistor <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi></math>, an inductor <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math>, a capacitor <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math> and voltmeters <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>V</mi><mn>1</mn></msub><mo>,</mo><msub><mi>V</mi><mn>2</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>V</mi><mn>3</mn></msub></math> are connected to an oscillator in the circuit as shown in the adjoining diagram. When the frequency of the&nbsp;oscillation is increased, then at the resonant frequency, the voltmeter reading is zero in the case of<br /><img src="https://cdn.quizrr.in/question-assets/bitsat/py_sjn4d5v/1676fe19-0483-4851-ac28-556e31160568-image.png" style="width: 280px; height: 201px;" />
singleCorrect
1
<p>At resonance, <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>X</mi><mi>L</mi></msub><mo>=</mo><msub><mi>X</mi><mi>C</mi></msub></math>&nbsp;or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&#969;</mi><mi>L</mi><mo>=</mo><mfrac><mn>1</mn><mrow><mi>&#969;</mi><mi>C</mi></mrow></mfrac></math></p><p>Voltage across the series <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi><mo>-</mo><mi>C</mi></math> combination,</p><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>V</mi><mn>2</mn></msub><mo>=</mo><mi>i</mi><mfenced><mrow><msub><mi>X</mi><mi>L</mi></msub><mo>-</mo><msub><mi>X</mi><mi>C</mi></msub></mrow></mfenced><mo>=</mo><mn>0</mn></math></p>
["voltmeter <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>V</mi><mn>1</mn></msub></math> only", "voltmeter <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>V</mi><mn>2</mn></msub></math> only", "voltmeter <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>V</mi><mn>3</mn></msub></math> only", "All the three voltmeters"]
[1]
null
PYQ
178d2a0f58247d1c4e9142a87ed9982e
WBJEE_PHY
Alternating Current
A transformer with efficiency <math><mn>80</mn><mi>%</mi></math> works at <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mi mathvariant="normal">&nbsp;</mi><mi>kW</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn><mi mathvariant="normal">&nbsp;</mi><mi mathvariant="normal">V</mi></math>. If the secondary voltage is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>200</mn><mi mathvariant="normal">&nbsp;</mi><mi mathvariant="normal">V</mi><mo>,</mo></math> then the primary and secondary currents are respectively
singleCorrect
2
Here, <math><mi>&#951;</mi><mo>=</mo><mn>80</mn><mi>%</mi></math><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mi>i</mi></msub><mo>=</mo><mn>4</mn><mo>&#160;</mo><mi>kW</mi><mo>=</mo><mn>4000</mn><mi mathvariant="normal">&#160;</mi><mi mathvariant="normal">W</mi></math><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>V</mi><mi>p</mi></msub><mo>=</mo><mn>100</mn><mi mathvariant="normal">&#160;</mi><mi mathvariant="normal">V</mi><mo>,</mo><mi>&#160;</mi><msub><mi>V</mi><mi>s</mi></msub><mo>=</mo><mn>200</mn><mi mathvariant="normal">&#160;</mi><mi mathvariant="normal">V</mi></math><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>I</mi><mi>p</mi></msub><mo>=</mo><mfrac><msub><mi>P</mi><mi>i</mi></msub><msub><mi>V</mi><mi>p</mi></msub></mfrac><mo>=</mo><mfrac><mn>4000</mn><mn>100</mn></mfrac><mo>=</mo><mn>40</mn><mi mathvariant="normal">&#160;</mi><mi mathvariant="normal">A</mi></math><br /><math><mi>&#951;</mi><mo>=</mo><mfrac><mrow><msub><mrow><mi>V</mi></mrow><mrow><mi>s</mi></mrow></msub><msub><mrow><mi>I</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow><mrow><msub><mrow><mi>V</mi></mrow><mrow><mi>p</mi></mrow></msub><msub><mrow><mi>I</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow></mfrac><mo>;</mo><mfrac><mrow><mn>80</mn></mrow><mrow><mn>100</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>200</mn><msub><mrow><mi>I</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow><mrow><mn>4000</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><msub><mrow><mi>I</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow><mrow><mn>20</mn></mrow></mfrac></math><br />or <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>I</mi><mi>s</mi></msub><mo>=</mo><mfrac><mrow><mn>20</mn><mo>&#215;</mo><mn>80</mn></mrow><mn>100</mn></mfrac><mo>=</mo><mn>16</mn><mi mathvariant="normal">&#160;</mi><mi mathvariant="normal">A</mi></math>
["<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>40</mn><mi mathvariant=\"normal\">&#160;</mi><mi mathvariant=\"normal\">A</mi></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>16</mn><mi mathvariant=\"normal\">&#160;</mi><mi mathvariant=\"normal\">A</mi></math>", "<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>16</mn><mi mathvariant=\"normal\">&#160;</mi><mi mathvariant=\"normal\">A</mi></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>40</mn><mi mathvariant=\"normal\">&#160;</mi><mi mathvariant=\"normal\">A</mi></math>", "<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>20</mn><mi mathvariant=\"normal\">&#160;</mi><mi mathvariant=\"normal\">A</mi></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>90</mn><mi mathvariant=\"normal\">&#160;</mi><mi mathvariant=\"normal\">A</mi></math>", "<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>40</mn><mi mathvariant=\"normal\">&#160;</mi><mi mathvariant=\"normal\">A</mi></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>20</mn><mi mathvariant=\"normal\">&#160;</mi><mi mathvariant=\"normal\">A</mi></math>"]
[0]
null
PYQ
dd4b31381610186dc9bee169d1330903
WBJEE_PHY
Alternating Current
An alternating voltage $\mathrm{V}=\mathrm{V}_{0} \sin \omega \mathrm{t}$ is applied across a circuit. As a result, a current $\mathrm{I}=\mathrm{I}_{0} \sin \left(\omega \mathrm{t}-\frac{\pi}{2}\right)$ flows in it. The power consumed per cycle is
singleCorrect
2
The phase angle between voltage $V$ and current $I$ is $\frac{\pi}{2}$.<br />Therefore, power factor $\cos \phi=\cos \left(\frac{\pi}{2}\right)=0$.<br />Hence the power consumed is zero.
["zero", "$0.5 \\mathrm{~V}_{0} \\mathrm{I}_{0}$", "$0.707 \\mathrm{~V}_{0} \\mathrm{I}_{0}$", "$1.414 \\mathrm{~V}_{0} \\mathrm{I}_{0}$"]
[0]
null
PYQ
f59551d3765ca92d62b9e08d4879e757
WBJEE_PHY
Alternating Current
A direct current of $6 \mathrm{~A}$ is superimposed on an alternating current $I=10 \sin \omega t$ flowing through a wire. The effective value of the resulting current will be
singleCorrect
2
Given, $I=6+10 \sin \omega t$<br />$\begin{aligned}<br />I_{\mathrm{eft}} & =\left[\frac{\left.\int_0^T I^2 d t\right]^{1 / 2}}{\int_0^T d t}=\left[\frac{1}{T} \int_0^T(6+10 \sin \omega t)^2 d t\right]^{1 / 2}\right. \\<br />& =\left[\frac{1}{T} \int_0^T\left(36+120 \sin \omega t+100 \sin ^2 \omega t\right) d t\right]^{1 / 2}<br />\end{aligned}$<br />But as, $\frac{1}{T} \int_0^T \sin \omega t d t=0$ and $\frac{1}{T} \int_0^T \sin ^2 \omega t=\frac{1}{2}$<br />$\Rightarrow \quad I_{\mathrm{eff}}=\left[36+\frac{1}{2} \times 100\right]^{1 / 2}=9.27$<br />Thus, $\quad I_{\text {eff }}=9.27 \mathrm{~A}$.
["$5 \\sqrt{2}$<br />", "$5 \\sqrt{3}$<br />", "$9.27$<br />", "$8.37$"]
[2]
null
PYQ
4b18691d99c8e1ee04f4828e6a94a23c
WBJEE_PHY
Alternating Current
In the circuit shown in the figure, the $\mathrm{AC}$ source gives a voltage $V=20 \cos (2000 t)$ neglecting source resistance, the voltmeter and ammeter reading will be<br /><img src="https://cdn.quizrr.in/question-assets/bitsat/py_sjn4d5v/v5y3bhAJ29Rq6lxNBnA5ho52xioZBvUCYER9Mb7lpWI.original.fullsize.png"><br>
singleCorrect
2
Given, $R_1=8 \Omega$<br />$\begin{aligned} R_2 & =2 \Omega \\ L & =5 \mathrm{mH} \\ C & =50 \mu \mathrm{F}\end{aligned}$<br />and $\quad V_0=20 \cos (2000 t)$<br />Impedance, $Z=\sqrt{R^2+\left(X_L-X_C\right)^2}$<br />As, here, $X_L=\omega L=2000 \times 5 \times 10^{-3}=10 \Omega$<br />Similarly, $X_L=\frac{1}{\omega C}=\frac{1}{2000 \times 50 \times 10^{-6}}=10 \Omega$ $\because \quad X_L=X_C$, Hence, $i_{\max }=\frac{V_0}{Z}=\frac{20}{(8+2)}=2 \mathrm{~A}$<br />Hence, $\quad i_{\operatorname{rms}}=\frac{i_{\max }}{\sqrt{2}}=\frac{2}{\sqrt{2}}=1.41 \mathrm{~A}$ and<br />$\begin{aligned}<br />V & =R_2 i_{\mathrm{rms}}=1.41 \times 2 \\<br />& =282 \mathrm{~V}<br />\end{aligned}$
["$0 \\mathrm{~V}, 0.47 \\mathrm{~A}$<br />", "$282 \\mathrm{~V}, 1.41 \\mathrm{~A}$<br />", "$1.41 \\mathrm{~V}, 0.47 \\mathrm{~A}$<br />", "$15 \\mathrm{~V}, 837 \\mathrm{~A}$"]
[1]
null
PYQ
750c9cad9325178d34c34d8954ebe310
WBJEE_PHY
Alternating Current
An alternating voltage $V(t)=220 \sin 100 \pi t$ volt is applied to a purely resistive load of $50 \Omega$. The time taken for the current to rise from half of the peak value to the peak value is:
singleCorrect
2
Rising half to peak $t=T / 6$ $\mathrm{t}=\frac{2 \pi}{6 \omega}=\frac{\pi}{3 \omega}=\frac{\pi}{300 \pi}=\frac{1}{300}=3.3 \mathrm{~ms}$ Here $\omega=100 \pi \mathrm{rad} / \mathrm{s}$
["5 ms", "3.3 ms", "7.2 ms", "2.2 ms"]
[1]
null
PYQ
e9df3dca048674df62033f68e6fe9f8b
WBJEE_PHY
Alternating Current
The instantaneous voltage of a $50 \mathrm{~Hz}$ generator giving peak voltage as $300 \mathrm{~V}$, The generator equation for this voltage is
singleCorrect
1
Given, frequency of $\mathrm{AC}, \mathrm{v}=50 \mathrm{~Hz}$ Peak voltage, $V_{0}=300 \mathrm{~V}$ Generator equation for the voltage is given as $\begin{aligned} & V=V_{0} \sin \omega t \\ =& V_{0} \sin 2 \pi v t \\ =& 300 \sin (2 \pi \times 50 \times t) \\ =& 300 \sin 100 \pi t \end{aligned}$
["$V=50 \\sin 300 \\pi i$", "$V=300 \\sin 100 \\pi t$", "$V=6 \\sin 100 \\pi t$", "$V=50 \\sin 100 \\pi t$"]
[1]
null
PYQ
e896511054761a3ee9b6ccc27d6bcb98
WBJEE_PHY
Alternating Current
Quality factor of a series $L-C-R$ circuit decreases from 3 to 2 . Resonant frequency is $600 \mathrm{~Hz}$. Change in bandwidth is
singleCorrect
3
Given, $f_{0}=600 \mathrm{~Hz}, Q_{1}=3, Q_{2}=2$ The bandwidth in $L-C-R$ circuit, $\beta=\frac{f_{0}}{Q}$ As, quality factor decreases, bandwidth increases. This increase in bandwidth is given by $\Delta \beta=\beta_{2}-\beta_{1}=\frac{f_{0}}{Q_{2}}-\frac{f_{0}}{Q_{1}}=f_{0}\left(\frac{1}{Q_{2}}-\frac{1}{Q_{1}}\right)$ $=600\left(\frac{1}{2}-\frac{1}{3}\right)=100 \mathrm{~Hz}$
["zero", "$100 \\mathrm{~Hz}$ increase", "$100 \\mathrm{~Hz}$ decrease", "$300 \\mathrm{~Hz}$ increase"]
[1]
null
PYQ
6738a4a1873b6d31b7acfc02322f1c36
WBJEE_PHY
Alternating Current
Quality factor of a series $L-C-R$ circuit decreases from 3 to 2 . Resonant frequency is $600 \mathrm{~Hz}$. Change in bandwidth is
singleCorrect
3
Given, $f_{0}=600 \mathrm{~Hz}, Q_{1}=3, Q_{2}=2$ The bandwidth in $L-C-R$ circuit, $\beta=\frac{f_{0}}{Q}$ As, quality factor decreases, bandwidth increases. This increase in bandwidth is given by $\Delta \beta=\beta_{2}-\beta_{1}=\frac{f_{0}}{Q_{2}}-\frac{f_{0}}{Q_{1}}=f_{0}\left(\frac{1}{Q_{2}}-\frac{1}{Q_{1}}\right)$ $=600\left(\frac{1}{2}-\frac{1}{3}\right)=100 \mathrm{~Hz}$
["zero", "$100 \\mathrm{~Hz}$ increase", "$100 \\mathrm{~Hz}$ decrease", "$300 \\mathrm{~Hz}$ increase"]
[1]
null
PYQ
20037d353bec400ae9b9dfb85e39e21f
WBJEE_PHY
Alternating Current
A current of $5 \mathrm{~A}$ is flowing at $220 \mathrm{~V}$ in the primary coil of a transformer. If the voltage produced in the secondary coil is $2200 \mathrm{~V}$ and $50 \%$ of power is lost, then the current in the secondary will be
singleCorrect
1
For a transformer,<br>$\begin{aligned} I_{P}=5 \mathrm{~A}, V_{P} &=220 \mathrm{~V} \\ V_{S}=2200 \mathrm{~V} \end{aligned}$<br>Since, $50 \%$ power is lost, hence power at secondary side,<br>$\begin{array}{cl} <br>& P_{0}=50 \% \text { of } P_{i}=\frac{50}{100} \times 1100 \\<br>\Rightarrow & P_{0}=550 \mathrm{~W} \\<br>\Rightarrow & V_{S} I_{S}=550 \\<br>\Rightarrow & 2200 \times I_{S}=550 \\<br>\Rightarrow & I_{S}=\frac{550}{2200}=\frac{1}{4}=0.25 \mathrm{~A}<br>\end{array}$
["$2.5 \\mathrm{~A}$", "$5 \\mathrm{~A}$", "$0.25 \\mathrm{~A}$", "$0.5 \\mathrm{~A}$"]
[2]
null
PYQ
645d2b051afcebb38d02047a2029e471
WBJEE_PHY
Alternating Current
For a series $L-C-R$ circuit at resonance, the statement which is not true ?
singleCorrect
1
In series $L-C-R$ circuit,<br>$\begin{aligned}<br>X_{L} &=X_{C} \\<br>\therefore \quad & Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}<br>\end{aligned}$<br>$\begin{aligned}<br>&=\sqrt{R^{2}+0^{2}} \\<br>Z &=R \\<br>\therefore \text { Power factor } &=\cos \phi \\<br>&=\frac{R}{Z}=\frac{R}{R}=1<br>\end{aligned}$<br>Hence, power factor is not zero.<br>Therefore option (d) is not correct.<br>In $L-C-R$ series resonance circuit, peak energy stored by a capacitor is equal to peak energy stored by an inductor.<br>Average power, $P_{\mathrm{avg}}=V_{\mathrm{rms}} \times I_{\mathrm{rms}} \times \cos 0^{\circ}$<br>$\begin{aligned}<br>&=V_{\text {rms }} \times I_{\text {rms }} \\<br>&=\text { apparent power }<br>\end{aligned}$<br>$L-C-R$ series resonance circuit is purely resistive because $X_{L}=X_{C}$, hence no wattless current exists in this circuit therefore wattless current is zero.
["Peak energy stored by a capacitor = peak energy stored by an inductor", "Average power $=$ Apparent power", "Wattless current is zero.", "Power factor is zero."]
[3]
null
PYQ
edd8e81f7f6c72660e785f9f6f692816
WBJEE_PHY
Alternating Current
For a series $L-C-R$ circuit at resonance, which statement is not true?
singleCorrect
2
In $L-C \cdot R$ series resonance circuit,<br>$X_{L_{L}}=X_{C}$<br>$\therefore$ Impedance, $Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}-\sqrt{R^{2}+0^{2}}$<br>$\Rightarrow \quad Z=R$<br>$\therefore$ Power factor, cos $\phi=\frac{n}{Z}=\frac{R}{R}=1$<br>Which is not zero.<br>Since, circuit behaves like a resistive circuit. $\mathrm{So}$, power loss occurs always in this circuits.<br>i.e, wattless carrent is zero.
["Wattless current is zero.", "Power factor is zero.", "Peak energy stored by a capacitor = peak energy stored by an inductor.", "Average power = Apparent power."]
[1]
null
PYQ
38288258077efbe14c9b1f4890312494
WBJEE_PHY
Alternating Current
A DC ammeter and a hot wire ammeter are connected to a circuit in series. When a direct current is passed through circuit, the DC ammeter shows $6 \mathrm{~A}$. When $\mathrm{AC}$ current flows through circuit, what is the average readings in $\mathrm{DC}$ ammeter and the $\mathrm{AC}$ ammeter, if $\mathrm{DC}$ and AC currents flow simultaneously through the circuit?
singleCorrect
3
Resultant current is superposition of two currents, i.e. I (instantaneous total current)<br>$$<br>=6+I_0 \sin \omega t<br>$$<br>DC ammeter will read average value<br>$\begin{aligned}<br>& =\overline{6+I_0 \sin \omega t} \\<br>& =6 \mathrm{~A} \quad\left(\because \overline{I_0 \sin \omega t}=0\right)<br>\end{aligned}$<br>AC ammeter will read average value<br>$\begin{aligned}<br>& =\sqrt{\overline{\left(6+I_0 \sin ^2 \omega t\right)^2}} \\<br>& =\sqrt{36+12 I_0 \sin \omega t+I_0^2 \sin ^2 \omega t} \quad\left(\because \overline{I_0 \sin \omega t}=0\right)<br>\end{aligned}$<br>Since, $\overline{\sin ^2 \omega t}=\frac{1}{2}$ and $I_{\mathrm{rms}}=8=\frac{I_0}{\sqrt{2}}$<br>$$<br>\therefore \text { AC reading }=\sqrt{36+\frac{I_0^2}{2}}=\sqrt{36+64}<br>$$<br>$$<br>=10 \mathrm{~A}<br>$$
["$\\mathrm{DC}=6 \\mathrm{~A}, \\mathrm{AC}=10 \\mathrm{~A} \\quad$", "$\\mathrm{DC}=3 \\mathrm{~A}, \\mathrm{AC}=5 \\mathrm{~A}$", "$\\mathrm{DC}=5 \\mathrm{~A}, \\mathrm{AC}=8 \\mathrm{~A} \\quad$", "$\\mathrm{DC}=2 \\mathrm{~A}, \\mathrm{AC}=3 \\mathrm{~A}$"]
[0]
null
PYQ
5bda2d0f2b98fd6734ed4cb8528561a8
WBJEE_PHY
Alternating Current
The instantaneous values of alternating current and voltages in a circuit given as $\begin{aligned} & i=\frac{1}{\sqrt{2}} \sin (100 \pi t) \mathrm{amp}, \\ & e=\frac{1}{\sqrt{2}} \sin (100 \pi t+\pi / 3) \text { volt } \end{aligned}$ The average power (in watts) consumed in the circuit is
singleCorrect
1
Given, $i=\frac{1}{\sqrt{2}} \sin (100 \pi t) \mathrm{amp}$ and $e=\frac{1}{\sqrt{2}} \sin (100 \pi t+\pi / 3)$ volt $\Rightarrow \quad i_0=\frac{1}{\sqrt{2}}$ and $e_0=\frac{1}{\sqrt{2}}$ We know that, average power, $\begin{aligned} P_{\mathrm{av}}= & V_{\mathrm{rms}} \times i_{\mathrm{rms}} \cos \phi=\frac{1}{2} \times \frac{1}{2} \times \cos 60^{\circ} \\ & \left(\because i_{\mathrm{rms}}=i_0 / \sqrt{2} \text { and } V_{\mathrm{rms}}=V_0 / \sqrt{2}\right) \\ = & \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}=\frac{1}{8} \mathrm{~W} \end{aligned}$
["$\\frac{1}{4}$", "$\\frac{\\sqrt{3}}{4}$", "$\\frac{1}{2}$", "$\\frac{1}{8}$"]
[3]
null
PYQ
d6244b6bff485e50acf4972058664ac3
WBJEE_PHY
Alternating Current
In an electrical circuit $R, L, C$ and $A C$ voltage source are all connected in series. When $L$ is removed from the circuit, the phase difference between the voltage and the current in the circuit is $\pi / 3$. If instead $C$ is removed from the circuit, the phase difference is again $\pi / 3$. The power factor of the circuit is
singleCorrect
3
Here, phase difference $\tan \phi=\frac{X_L-X_C}{R} \Rightarrow \tan \frac{\pi}{3}=\frac{X_L-X_C}{R}$ When $L$ is removed, $\tan \frac{\pi}{3}=\frac{X_C}{R}=\sqrt{3}$ <img src="https://cdn.quizrr.in/question-assets/comedk/pysf5e2f/xc03FX16f8itL4YY8zpmxjSVELy6sL9BIZK57UpQ0v4.original.fullsize.png"><br>Similarly, when $C$ is removed $\begin{aligned} \tan \frac{\pi}{3} & =\frac{X_L}{R}=\sqrt{3} \\ \Rightarrow \quad X_L & =\sqrt{3} R \end{aligned}$<img src="https://cdn.quizrr.in/question-assets/comedk/pysf5e2f/1k5GgKX0wbFvS4wH3Ezx2l5kR1F-zP3L8hl1QR2XZrE.original.fullsize.png"><br>$\begin{array}{lc} \text { Now, } & \tan \phi=0 \\ \Rightarrow & \phi=0^{\circ} \end{array}$ $\therefore$ Power factor, $\cos \phi=\cos 0^{\circ}=1$
["$1 / 2$", "$1 \\sqrt{2}$", "1", "$\\frac{\\sqrt{3}}{2}$"]
[2]
null
PYQ
af16760cc1294e0eb203ee07c843bb90
WBJEE_PHY
Alternating Current
In an LCR circuit, at resonance
singleCorrect
1
In an LCR circuit, at resonance the inductive reactance and capacitive reactance are equal in magnitude but in opposite<br>direction therefore they cancel each other. Thus, at resonance the current and voltage are in phase.<br><img src="https://cdn.quizrr.in/question-assets/kcet/py54ggf1c/sol_136.png">
["the current and voltage are in phase", "the impedance is maximum", "the current is minimum", "the current leads the voltage by II / \\(2\\)"]
[0]
null
PYQ
97719a2eca98450eeb446339c7e3294c
WBJEE_PHY
Alternating Current
A capacitor of capacitance \(10 \mu \mathrm{F}\) is connected to an AC source and an AC Ammeter. If the<br>source voltage varies as \(V=50 \sqrt{2} \sin 100 t\), the reading of the ammeter is
singleCorrect
2
Given, capacitance $=10 \mu F=10 \times 10^{-6} F ;$ source voltage $=50 \sqrt{2} \sin 100 t$ and $\omega=100$ We know, $I_{\text {rms }}=\frac{V_{\text {rms }}}{X_{C}}$ and $V_{\text {rms }}=\frac{V_{\max }}{\sqrt{2}}$ Now, $V_{\max }=50 \sqrt{2} ; X_{C}=\frac{1}{\omega C}$ Therefore, $I_{\text {rms }}=\frac{V_{\max }}{\sqrt{2}} \times \omega C=\frac{50 \sqrt{2}}{\sqrt{2}} \times 100 \times 10 \times 10^{-6}$ $I_{\text {rms }}=5 \times 10^{4} \times 10^{-6}=50 \times 10^{-3}$ Therefore, average value of ac current over a cycle is $50 \mathrm{~mA}$
["\\(50 \\mathrm{~mA}\\)", "\\(70.7 \\mathrm{~mA}\\)", "\\(5.0 \\mathrm{~mA}\\)", "\\(7.07 \\mathrm{~mA}\\)"]
[0]
null
PYQ
ef65ba9fc465a5bd2c849b41b8fa08b8
WBJEE_PHY
Alternating Current
In a series L.C.R circuit, the potential drop across \(L, C\) and \(R\) respectively are \(40 \mathrm{~V}, 120 \mathrm{~V}\) and<br>\(60 \mathrm{~V}\). Then the source voltage is
singleCorrect
1
Given, voltage drop across \(\mathrm{L}, V_{L}=40 \mathrm{~V} ;\) voltage dropacross \(\mathrm{C}, V_{c}=120 \mathrm{~V} ;\) voltage drop across \(R, V_{R}=60 \mathrm{~V}\)<br><img src="https://cdn.quizrr.in/question-assets/kcet/py54ggf1c/sol_224.png"><br>Then source voltage \(=\sqrt{{V_{R}}^{2}+\left(V_{L}-V_{C}\right)^{2}}\)<br>\(=\sqrt{60^{2}+(120-40)^{2}}\)<br>\(=\sqrt{3600+6400}\)<br>\(=\sqrt{10000}\)<br>\(=100 \mathrm{~V}\)<br>Therefore, source voltage \(=100 \mathrm{~V}\)
["\\(220 \\mathrm{~V}\\)", "\\(160 \\mathrm{~V}\\)", "\\(180 \\mathrm{~V}\\)", "\\(100 \\mathrm{~V}\\)"]
[3]
null
PYQ
90423cb6fe45ce2dea39fe6bf9a1df62
WBJEE_PHY
Alternating Current
In a series L.C.R. circuit an alternating emf (v) and current (i) are given by the equation<br>\(v=v_{0} \sin \omega t, l=i_{0} \sin \left(\omega t+\frac{\Pi}{3}\right)\)<br>The average power discipated in the circuit over a cycle of \(A C\) is
singleCorrect
2
Given, emf<br>\(v=v_{0} \sin \omega t ;\) current \(i=i_{0} \sin \left(\omega t+\frac{\Pi}{3}\right)\)<br>Then, average power dissipated in circuit over a cycle of ac is \(P_{\text {avg }}=v_{\mathrm{rms}} i_{\mathrm{ms}} \cos \phi\)<br>We know, \(v_{\mathrm{ms}}=\frac{v_{0}}{\sqrt{2}} ; i_{\mathrm{rms}}=\frac{i_{0}}{\sqrt{2}} ; \phi=\frac{\Pi}{3}\) \(\therefore P_{\mathrm{avg}}=\frac{v_{0}}{\sqrt{2}} \cdot \frac{i_{0}}{\sqrt{2}} \cos \left(\frac{\Pi}{3}\right)=\frac{v_{0} i_{0}}{2} \times \frac{1}{2}=\frac{v_{0} i_{0}}{4}\)<br>\(\therefore P_{\text {avg }}=\frac{v_{0}}{\sqrt{2}} \cdot \frac{i_{0}}{\sqrt{2}} \cos \left(\frac{\Pi}{3}\right)=\frac{v_{0} i_{0}}{2} \times \frac{1}{2}\) Thus, average power dissipated \(=\frac{v_{0} i_{0}}{4}\)
["\\(\\frac{v_{0} i_{0}}{2}\\)", "\\(\\frac{v_{0} i_{0}}{4}\\)", "\\(\\frac{\\sqrt{3}}{2} v_{0} i_{0}\\)", "Zero"]
[1]
null
PYQ
25aab46ce018b258cd81531fb0aa7347
WBJEE_PHY
Alternating Current
A coil of inductive reactance \(\frac{1}{\sqrt{3}} \Omega\) and resistance \(1 \Omega\) is connected to a \(200 \mathrm{~V}, 50 \mathrm{~Hz}\) ac.<br>supply. The time lag between maximum voltage and current is
singleCorrect
1
Given, inductive reactance, \(\omega L=\frac{1}{\sqrt{3}} \Omega\); resistance, \(R=1 \Omega\); ac voltage, \(V=200 \mathrm{~V}, 50 \mathrm{~Hz}\);<br>Now, \(\tan \phi=\frac{\omega L}{R}\)<br>\(\begin{array}{l} \Rightarrow \tan \phi=\frac{1}{\sqrt{3}} \\ \Rightarrow \phi=30^{\circ} \text { or } \phi=\frac{\Pi}{6} \\ \Rightarrow \omega t=\frac{\Pi}{6} \\ \Rightarrow t=\frac{\Pi}{6} \times \frac{1}{\omega} \end{array}\)<br>Since \(\omega=2 \Pi f=2 \Pi \times 50\)<br>\(t=\frac{\Pi}{6} \times \frac{1}{2 \Pi \times 50}=\frac{1}{600} s\)<br>Therefore, time lag between maximum voltage and current is \(1 / 600 \mathrm{~s}\).
["\\(\\frac{1}{300} s\\)", "\\(\\frac{1}{600} s\\)", "\\(\\frac{1}{500} \\mathrm{~s}\\)", "\\(\\frac{1}{200} s\\)"]
[1]
null
PYQ
341030f71432e5c177288c3c53eb2f31
WBJEE_PHY
Alternating Current
In Karnataka, the normal domestic power supply AC is \(220 \mathrm{~V}, 50 \mathrm{~Hz} .\) Here \(220 \mathrm{~V}\) and \(50 \mathrm{~Hz}\)<br>refer to
singleCorrect
1
In Karnataka, the normal domestic power supply ac is \(220 \mathrm{~V}, 50 \mathrm{~Hz}\). Here, \(220 \mathrm{~V}\) and \(50 \mathrm{~Hz}\) refer to rms value of voltage<br>and frequency.
["Peak value of voltage and frequency", "Rms value of voltage and frequency", "Mean value of voltage and frequency", "Peak value of voltage and angular frequency"]
[1]
null
PYQ
72dc497e5c41d0f603203fedccbb1dfe
WBJEE_PHY
Alternating Current
The frequency of an alternating current is \(50 \mathrm{~Hz}\). What is the minimum time taken by current to<br>reach its peak value from rms value?
singleCorrect
1
(D)<br><img src="https://cdn.quizrr.in/question-assets/kcet/py54ggf1c/sol_478.png"><br>We know that \(v_{r m s}=v_{0} \sin \omega t\)<br>\(\frac{v_{0}}{\sqrt{2}}=v_{0} \sin \omega t\)<br>\(\therefore \sin \omega t=\left(\frac{1}{\sqrt{2}}\right)\)<br>i.e., \(\omega t=\frac{\Pi}{4} \Rightarrow \frac{2 \Pi}{T} \cdot t=\frac{\Pi}{4}\)<br>\(\therefore t=\frac{T}{8}\)<br>Time for current to reach from rms value to peak value is i.e., \(I_{r m s} \rightarrow I_{0}\)<br>\(\frac{T}{4}-\frac{T}{8}=\frac{T}{8}\left(\frac{I_{0}}{\sqrt{2}} \rightarrow I_{0}\right)\)<br>\(f=50 \therefore t=\frac{I}{8}\)<br>\(=\frac{1}{50 \times 8}=\frac{1}{400}=0.25 \times 10^{-2}\)<br>\(=2.5 \times 10^{-3} \mathrm{~s}\)<br>\(\therefore[\mathrm{D}]\) is correct.
["\\(0.02 \\mathrm{~s}\\)", "\\(5 \\times 10^{-3} s\\)", "\\(10 \\times 10^{-3}\\)", "\\(2.5 \\times 10^{-3} \\mathrm{~s}\\)"]
[3]
null
PYQ
20b51ccbce36efd64373c167bb1b286b
WBJEE_PHY
Alternating Current
In the given circuit the peak voltage across $C$, $L$ and $R$ are $30 \mathrm{~V}, 110 \mathrm{~V}$ and $60 \mathrm{~V}$, respectively. The rms value of the applied voltage is<br><img src="https://cdn.quizrr.in/question-assets/kcet/py54ggf1c/vcqTERtpY1SVz-vL6PkNqHcARkpYgWS_Oe21Bn19qTM.original.fullsize.png"><br>
singleCorrect
1
Given, $V_{C}=30 \mathrm{~V}, V_{L}=110 \mathrm{~V}$ and $V_{R}=60 \mathrm{~V}$ The peak voltage across series $L-C-R$ circuit is given by<br>$\begin{aligned} V_{O} &=\sqrt{V_{R}^{2}+\left(V_{L}-V_{C}\right)^{2}} \\ &=\sqrt{(60)^{2}+(110-30)^{2}} \\ &=\sqrt{(60)^{2}+(80)^{2}}=100 \mathrm{~V} \end{aligned}$<br>$\therefore$ Rms value of voltage, $V_{\text {rms }}=\frac{100}{\sqrt{2}} V=70.7 \mathrm{~V}$
["$100 \\mathrm{~V}$", "$200 \\mathrm{~V}$", "$70.7 \\mathrm{~V}$", "$141 \\mathrm{~V}$"]
[2]
null
PYQ
3f9137786853608e716e5aeace916f70
WBJEE_PHY
Alternating Current
In the given circuit, the resonant frequency is<br><img src="https://cdn.quizrr.in/question-assets/kcet/py54ggf1c/D_Sb0flnpDSjeZkTDl4RMLVsy-wSIsf6KgviguE41YU.original.fullsize.png"><br>
singleCorrect
2
Given, $L=0.5 \mathrm{mH}=0.5 \times 10^{-3} \mathrm{H}$ and $C=20 \mu \mathrm{F}=20 \times 10^{-6} \mathrm{~F}$<br>The resonant frequency of $L-C$ circuit is<br>$\begin{aligned}<br>f &=\frac{1}{2 \pi \sqrt{L C}}=\frac{1}{2 \pi \sqrt{0.5 \times 10^{-3} \times 20 \times 10^{-6}}} \\<br>&=\frac{1}{2 \pi \times \sqrt{10 \times 10^{-9}}}=\frac{10^{4}}{2 \pi}=1592.3 \simeq 1592 \mathrm{~Hz}<br>\end{aligned}$
["$15.92 \\mathrm{~Hz}$", "$159.2 \\mathrm{~Hz}$", "$1592 \\mathrm{~Hz}$", "$15910 \\mathrm{~Hz}$"]
[2]
null
PYQ
4d979b156e449bf153632eba0c616354
WBJEE_PHY
Alternating Current
In a series $L C R$ circuit, $R=300 \Omega, L=0.9 \mathrm{H}$, $C=2.0 \mu \mathrm{F}$ and $\omega=1000 \mathrm{rad} / \mathrm{s}$, then impedance of the circuit is
singleCorrect
1
Given, $R=300 \Omega, L=0.9 \mathrm{H}, \omega=1000 \mathrm{rad} / \mathrm{s}$ $C=2.0 \mu \mathrm{F}=2 \times 10^{-6} \mathrm{~F}$<br>Impedance of given $R-L-C$ circuit,<br>$\begin{aligned}<br>Z & =\sqrt{R^2+\left(X_L-X_C\right)^2} \\<br>& =\sqrt{R^2+\left(\omega L-\frac{1}{\omega C}\right)^2}\left[\therefore X_L=\omega L \text { and } X_C=\frac{1}{\omega C}\right] \\<br>& =\sqrt{(300)^2+\left(1000 \times 0.9-\frac{1}{1000 \times 2 \times 10^{-6}}\right)^2} \\<br>& =\sqrt{90000+(900-500)^2} \\<br>& =\sqrt{90000+160000}=\sqrt{250000}=500 \Omega<br>\end{aligned}$
["$900 \\Omega$", "$500 \\Omega$", "$400 \\Omega$", "$1300 \\Omega$"]
[1]
null
PYQ
074369def583a58fef694bed7ad51c7e
WBJEE_PHY
Alternating Current
In an $L-C-R$ series circuit, the values of $R, X_L$ and $X_C$ are $120 \Omega, 180 \Omega$ and $130 \Omega$, what is the impedance of the circuit?
singleCorrect
1
Given, $R=120 \Omega$ $X_L=180 \Omega, X_C=130 \Omega$ The impedance of $L-C-R$ circuit $Z=\sqrt{R^2+\left(X_L-X_C\right)^2}$ $\begin{aligned} Z & =\sqrt{(120)^2+(180-130)^2} \\ & =130 \Omega\end{aligned}$
["$120 \\Omega$", "$130 \\Omega$", "$180 \\Omega$", "$330 \\Omega$"]
[1]
null
PYQ
947ebdcb23c4bfc3f998ebb7ed034f07
WBJEE_PHY
Alternating Current
A sinusoidal voltage of peak value 300 V and an angular frequency $\omega=400 \mathrm{rad} / \mathrm{s}$ is applied to a series $L-C-R$ circuit, in which $R=3 \Omega$, $L=20 \mathrm{mH}$ and $C=625 \mu \mathrm{~F}$. The peak current in the circuit is
singleCorrect
1
The impedance of the circuit is $\begin{aligned} Z & =\sqrt{R^2+\left(X_L-X_C\right)^2} \\ X_L & =\omega L=400 \times 20 \times 10^{-3}=8 \mathrm{H} \\ X_C & =\frac{1}{\omega C}=\frac{1}{400 \times 625 \times 10^{-6}}=4 \mathrm{C} \\ Z & =\sqrt{(3)^2+(8-4)^2}=5 \\ i & =\frac{E}{Z}=\frac{300}{5}=60 \mathrm{~A} \end{aligned}$
["$30 \\sqrt{2} \\mathrm{~A}$", "60 A", "100 A", "$60 \\sqrt{2} \\mathrm{~A}$"]
[1]
null
PYQ
4fac025b6e98ab62fa1504517304d40f
WBJEE_PHY
Alternating Current
A transformer of $100 \%$ efficiency has 200 turns in the primary and 40000 turns in secondary. It is connected to a 220 V main supply and secondary feeds to a $100 \mathrm{k} \Omega$ resistance. The potential difference per turn is
singleCorrect
1
From transformer ratio $\begin{aligned} \frac{V_s}{V_p} & =\frac{N_s}{N_p} \\ \Rightarrow \quad V_s & =\frac{V_p \times N_s}{N_p} \\ & =\frac{220 \times 40000}{200} \\ & =44000 \mathrm{~V} \end{aligned}$<br/>Potential difference per turn is $\frac{V_s}{N_s}=\frac{44000}{40000}=1.1 \mathrm{~V}$
["1.1 V", "25 V", "18 V", "11 V"]
[0]
null
PYQ
b01a6a9540ab1b71a472507d749d7595
WBJEE_PHY
Alternating Current
An alternating e.m.f. is given by e $=e_{0}$ sin wt. In what time the e.m.f. will have half its maximum value, if 'e' starts from zero? (T = Time period) $\left(\sin 30^{\circ}=\cos 60^{\circ}=0 \cdot 5, \quad \cos 30^{\circ}=\sin 60^{\circ}=\frac{\sqrt{3}}{2}\right)$
singleCorrect
3
\(\frac{E_{0}}{2}=E_{0} \sin \left(\frac{2 \pi t}{T}\right) \therefore \frac{1}{2}=\frac{\sin (\pi)}{6}=\frac{\sin (2 \pi t)}{T}\) \(\therefore \frac{2 \pi t}{T}=\frac{\pi}{6} \therefore t=\frac{T}{12}\)
["$\\frac{T}{12}$", "$\\frac{T}{16}$", "$\\frac{T}{8}$", "$\\frac{T}{4}$"]
[0]
null
PYQ
1900f03aab896eaaafccda6185064757
WBJEE_PHY
Alternating Current
The resonant frequency of a series LCR circuit is ' $\mathrm{f}$ '. The circuit is now connected to the sinusoidally alternating e.m.f. of frequency ' $2 \mathrm{f}^{\prime}$. The new reactance $\mathrm{X}_{\mathrm{L}}^{\prime}$ and $\mathrm{X}_{\mathrm{C}}^{\prime}$ are related as
singleCorrect
2
In a series LCR circuit, the resonant frequency is given by: $f_0=\frac{1}{2 \pi \sqrt{L C}}$ When the circuit is connected to a sinusoidally alternating e.m.f. with a frequency $f$, the reactance of the circuit (composed of inductive reactance $X_L$ and capacitive reactance $X_C$ ) will change with frequency. At resonance, $X_L=X_C$, but off-resonance, the total reactance changes depending on the frequency of the applied e.m.f. Answer: (1) is correct, as it shows the relationship between reactance and frequency in a series LCR circuit.
["$\\mathrm{X}_{\\mathrm{C}}^{\\prime}=\\frac{1}{4} \\mathrm{X}_{\\mathrm{L}}^{\\prime}$", "$\\mathrm{X}_{\\mathrm{C}}^{\\prime}=2 \\mathrm{X}_{\\mathrm{L}}^{\\prime}$", "$\\mathrm{X}_{\\mathrm{C}}^{\\prime}=\\mathrm{X}_{\\mathrm{L}}^{\\prime}$", "$\\mathrm{X}_{\\mathrm{C}}^{\\prime}=\\frac{1}{2} \\mathrm{X}_{\\mathrm{L}}^{\\prime}$"]
[0]
null
PYQ
54650187e6d508a1e1d148eae7b79d9e
WBJEE_PHY
Alternating Current
In a capactive circuit, the reactance of capacitor at frequency 'f' is ' $\mathrm{X}_{\mathrm{c}}{ }^{\prime}$. What will be its reactance at frequency $4 \mathrm{f} ?$
singleCorrect
1
Capacitive reactance $\mathrm{X}_{\mathrm{c}}=\frac{1}{2 \pi \mathrm{fC}}$ $\begin{array}{l} \therefore \frac{\mathrm{X}_{\mathrm{C}}^{\prime}}{\mathrm{X}_{\mathrm{c}}}=\frac{\mathrm{f}}{\mathrm{f}^{\prime}}=\frac{1}{4} \\ \therefore \mathrm{X}_{\mathrm{c}}^{\prime}=\frac{\mathrm{X}_{\mathrm{c}}}{4} \end{array}$
["$\\frac{\\mathrm{X}_{\\mathrm{C}}}{2}$", "$\\frac{X_{C}}{4}$", "$\\frac{\\mathrm{X}_{\\mathrm{C}}}{8}$", "$X_{C}$"]
[1]
null
PYQ
83b87292a646963a92040d5783e2a63c
WBJEE_PHY
Alternating Current
In series LCR circuit, resistance is $18 \Omega$ and impedance is $33 \Omega$. An r.m.s. voltage of $220 \mathrm{~V}$ is applied across the circuit. The true power consumed in a.c. circuit is
singleCorrect
2
$I=\frac{V}{Z}=\frac{220}{33}=\frac{20}{3} A$ $P=I^{2} R=\left(\frac{20}{3}\right)^{2} \times 18=800 \mathrm{~W}$
["$400 \\mathrm{~W}$", "$600 \\mathrm{~W}$", "$800 \\mathrm{~W}$", "$200 \\mathrm{~W}$"]
[2]
null
PYQ
5fa60e73c8bc79fa7043e21e3b1b4e69
WBJEE_PHY
Alternating Current
In LCR circuit the inductance is changed from L to $9 \mathrm{~L}$. For same resonant frequency the capacitance should be changed from $\mathrm{C}$ to
singleCorrect
1
$\omega=\frac{1}{\sqrt{\mathrm{L}_{1} \mathrm{C}_{1}}}=\frac{1}{\sqrt{\mathrm{L}_{2} \mathrm{C}_{2}}}$ $\therefore \quad \mathrm{L}_{1} \mathrm{C}_{1}=\mathrm{L}_{2} \mathrm{C}_{2}$ $\quad \mathrm{C}_{2}=\frac{\mathrm{L}_{1} \mathrm{C}_{1}}{\mathrm{~L}_{2}}=\frac{\mathrm{L}}{9 \mathrm{~L}} \times \mathrm{C}=\frac{\mathrm{C}}{9}$
["$9 \\mathrm{C}$", "$3 \\mathrm{C}$", "$\\frac{C}{9}$", "$\\frac{C}{3}$"]
[2]
null
PYQ
387d68167c0888401d1ba599e4924080
WBJEE_PHY
Alternating Current
Alternating current of peak value $\left(\frac{2}{\pi}\right)$ A flows through the primary coil of transformer. The coefficient of mutual inductance between primary and secondary coil is $1 \mathrm{H}$. The peak e.m.f. induced in secondary coil is (Frequency of a.c. $=50 \mathrm{~Hz}$ )
singleCorrect
3
Given \(: \mathrm{I}_{0}=\frac{2}{\pi}\) ampere \(v=50 \mathrm{~Hz} \mathrm{~L}=1 \mathrm{H}\) Thus \(w=2 \pi v=2 \pi(50)=100 \pi\) Alternating current flowing through the coil is given by \(I=I_{0} \sin w t\) Differentiating it wr.t. time we get \(\frac{\mathrm{dI}}{\mathrm{dt}}=\mathrm{I}_{0} \mathrm{w} \cos w \mathrm{t}\) \(\left.\therefore \frac{\mathrm{dI}}{\mathrm{dt}}\right|_{\max }=\mathrm{I}_{0} \mathrm{~W}=\frac{2}{\pi} \times 100 \pi=200\) ampere per second Peak e.m.f induced \(\mathcal{E}=\mathrm{L} \frac{\mathrm{dI}}{\mathrm{dt}}\) \(\Longrightarrow \mathcal{E}=1 \times 200=200 \mathrm{~V}\)
["$400 \\mathrm{~V}$", "$200 \\mathrm{~V}$", "$300 \\mathrm{~V}$", "$100 \\mathrm{~V}$"]
[1]
null
PYQ
fc579b18dd4c8c11a1641b0f65fdddea
WBJEE_PHY
Alternating Current
A step-up transformer has 300 turns of primary winding and 450 turns of secondary winding. A primary is connected to 150 volt and the current flowing through it is $9 \mathrm{~A}$. The current and voltage in the secondary are
singleCorrect
2
$6.0 A, 225 V$ Given that, number of turns in primary winding, $N_{p}=300$ Number of turns in secondary winding, $N_{S}=450$ Primary voltage, $\mathrm{V}_{\mathrm{p}}=150 \mathrm{~V}$ Primary current, $I_{p}=9 \mathrm{~A}$ For step-up transformer, $\begin{array}{l} \frac{V_{S}}{V_{P}}=\frac{N_{S}}{N_{P}} \\ \frac{V_{S}}{150}=\frac{450}{300} \\ \Rightarrow V_{S}=\frac{450}{300} \times 150 \\ \Rightarrow V_{S}=225 \mathrm{~V} \end{array}$ $\begin{array}{l} \text { Again, } \mathrm{V}_{\mathrm{p}} \mathrm{I}_{\mathrm{p}}=\mathrm{V}_{\mathrm{s}} \mathrm{I}_{\mathrm{S}} \\ 150 \times 9=225 \times \mathrm{I}_{\mathrm{S}} \\ \mathrm{I}_{\mathrm{s}}=\frac{1350}{225}=6.0 \mathrm{~A} \end{array}$
["$13.5 \\mathrm{~A}, 225 \\mathrm{~V}$", "$13.5 \\mathrm{~A}, \\quad 100 \\mathrm{~V}$", "$4.5 \\mathrm{~A}, \\quad 100 \\mathrm{~V}$", "$6.0 \\mathrm{~A}, \\quad 225 \\mathrm{~V}$"]
[3]
null
PYQ
5218ef4641195dd7388d657230f9378b
WBJEE_PHY
Alternating Current
Two 220 volt, 100 watt bulbs are connected first in series and then in parallel. Each time combination is connected to a 220 volt a.c. supply line. The power drawn by the combination in each case respectively will be:
singleCorrect
2
<img src="https://cdn.quizrr.in/question-assets/neet/2025/pyqsd64af1fs5/Asqere.png"/><br> \(\begin{aligned} &amp; \mathrm{R}_1=\frac{\mathrm{V}^2}{\mathrm{P}_1}=\frac{(220)^2}{100}=484 \Omega \\ &amp; \mathrm{R}_2=\frac{\mathrm{V}^2}{\mathrm{P}_2}=\frac{(220)^2}{100}=484 \Omega \\ &amp; \mathrm{I}=\frac{220}{484 \times 2}=\frac{5}{22} \\ &amp; \mathrm{P}=\mathrm{I}^2\left(\mathrm{R}_1+\mathrm{R}_2\right)=\frac{25}{22 \times 22} \times(484 \times 2) \\ &amp; =50 \mathrm{~W}\end{aligned}\)<br> <img src="https://cdn.quizrr.in/question-assets/neet/2025/pyqsd64af1fs5/pBZ4NFTGgghe.png"/><br> \(\begin{aligned} &amp; P=\frac{V^2}{R_1}+\frac{V^2}{R_2} \\ &amp; =\frac{2 \times(220)^2}{484}=200 \mathrm{~W}\end{aligned}\)
["50 watt, 10 watt", "100 watt, 50 watt", "200 watt, 150 watt", "50 watt, 200 watt"]
[3]
null
PYQ
53bd277c3d36c4abe18ee59c46158c45
WBJEE_PHY
Alternating Current
An electric kettle has two heating coils. When one of the coils is connected to a.c. source, the water in the kettle boils in 10 minute. When the other coil is used the water boils in 40 minute. If both the coils are connected in parallel, the time taken by the same quantity of water to boil will be:
singleCorrect
3
<img src="https://cdn.quizrr.in/question-assets/neet/2025/pyqsd64af1fs5/_bSMx4npJAnec0qlD3o9a9-F4b7QnjU1uR_uxVgq1PQ.original.fullsize.png"/> Here $Q=\frac{V^2}{R_1} \times t_1=\frac{V^2}{R_2} \times t_2$ $\begin{aligned} &amp; =\frac{V^2}{R} \times t \\ &amp; \therefore \quad \frac{1}{R}=\frac{1}{R_1}+\frac{1}{R_2} \\ &amp; \Rightarrow \quad \frac{Q}{V^2 t}=\frac{Q}{V^2 t_1}+\frac{Q}{V^2 t_2} \\ &amp; \Rightarrow \quad \frac{1}{t}=\frac{1}{t_1}+\frac{1}{t_4} \\ &amp; \Rightarrow \quad t=\frac{t_1 t_2}{t_1+t_2} \\ &amp; =\frac{10 \times 40}{10+40}=8 \mathrm{~min} \\ &amp; \end{aligned}$
["8 minute", "4 minute", "25 minute", "15 minute"]
[0]
null
PYQ
077f5050b664a91c3d77d6aafe9b1ae0
WBJEE_PHY
Alternating Current
The primary and secondary coils of a transformer have 50 and 1500 turns respectively. If the magnetic flux $\phi$ linked with the primary coil is given by $\phi=\phi_v+4 t$, where $\phi$ is in webers, $t$ is time in seconds and $\phi_v$ is a constant, the output voltage across the output voltage across the secondary coil is:
singleCorrect
2
The magnetic flux linked with the primary coil is given by<br> \(\phi=\phi_0+4 t\)<br> So, voltage across primary<br> \(\begin{aligned}<br> &amp; V_p=\frac{d \phi}{d t}=\frac{d}{d t}\left(\phi_0+4 t\right) \\<br> &amp; \left.=4 \text { volt (as } \phi_0=\text { constant }\right)<br> \end{aligned}\)<br> Also, we have<br> \(N_p=50 \text { and } N_s=1500\)<br> From relation,<br> \(\begin{aligned}<br> &amp; \frac{V_s}{V_p}=\frac{N_s}{N_p} \\<br> &amp; \text {or } V_s=V_p \frac{N_s}{N_p} \\<br> &amp; =4\left(\frac{1500}{50}\right) \\<br> &amp; =120 \mathrm{~V}<br> \end{aligned}\)
["120 volts", "220 volts", "30 volts", "90 volts."]
[0]
null
PYQ
1799776e0a25c9122a6bf4550352b725
WBJEE_PHY
Alternating Current
An alternating voltage (in volts) varies with time $t$ (in seconds) as $V=200 \sin (100 \pi t)$
multipleCorrect
1
Comparing the equation $V=200 \sin (100 \pi t)$ with $V=V_0 \sin \omega t$, we find that $V_0=200 \mathrm{~V}$ and $\omega=100 \pi \mathrm{rad} \mathrm{s}^{-1}$ or $2 \pi \nu=100 \pi$ or $v=50 \mathrm{~Hz}$. Also $V_{\mathrm{rms}}=\frac{V_0}{\sqrt{2}}=\frac{200}{\sqrt{2}}=100 \sqrt{2} \mathrm{~V}$. Hence the correct choices are (a), (c) and (d).
["The peak value of the voltage is 200 V .", "The rms value of the voltage is 220 V .", "The rms value of the voltage is $100 \\sqrt{2} \\mathrm{~V}$", "The frequency of the voltage is 50 Hz ."]
[0, 2, 3]
null
PYQ
d3fb82aeb56b8f56faf30b7e1dd7257a
WBJEE_PHY
Alternating Current
Figure 25.69 shows a series $L C R$ circuit connected to a variable frequency 200 V source. $L=5 \mathrm{H}$, $C=80 \mu \mathrm{~F}$ and $R=40 \Omega$. <img src="https://cdn-question-pool.getmarks.app/modules/ms/wbjee/5EWr2SCtOOPJwTf1mbK0OW2Eb7t5VRdW2PfUdipXyy0.original.fullsize.png"/><br/>
multipleCorrect
3
The resonant angular frequency is $\begin{aligned} \omega_r & =\frac{1}{\sqrt{L C}} \\ & =\frac{1}{\left(5.0 \times 80 \times 10^{-6}\right)^{1 / 2}}=50 \mathrm{rad} \mathrm{s}^{-1}\end{aligned}$ Therefore, the resonant frequency is $Z=\left[R^2+\left(\omega L-\frac{1}{\omega C}\right)^2\right]^{1 / 2}$ When $\omega=\omega_r=1 / \sqrt{L C}$ (i.e. at resonance), $\omega L=1 / \omega C$, and therefore $Z=R=40 \Omega$ Current amplitude at resonance is $\begin{aligned} I_0=\frac{V_0}{Z}=\frac{V_0}{R} & =\frac{\sqrt{2} V_{\mathrm{rms}}}{R} \\ & =\frac{\sqrt{2} \times 200}{40}=5 \sqrt{2} \mathrm{~A} . \end{aligned}$ The rms current in the circuit is $I_{\mathrm{rms}}=\frac{V_{\mathrm{rms}}}{R}=\frac{200}{40}=5 \mathrm{~A}$ $\therefore$ The rms potential drop across $L$ is $\begin{aligned} & =I_{\mathrm{rms}} \times \omega_r \times L=5 \times 50 \times 5 \\ & =1250 \mathrm{~V}=1.25 \mathrm{kV} \end{aligned}$ The rms potential drop across $C$ is $\begin{aligned} & =I_{\mathrm{rms}} \times \frac{1}{\omega_r C} \\ & =5 \times \frac{1}{50 \times 80 \times 10^{-6}}=1.25 \mathrm{kV} \end{aligned}$ The rms potential drop across $R$ is $=I_{\mathrm{rms}} \times R=5 \times 40=200 \mathrm{~V}$ Hence the correct choices are (a), (c) and (d).
["The impedance of the circuit at resonance is $40 \\Omega$.", "The current amplitude at resonance is 5 A .", "The rms potential drop across the inductor at resonance is 1250 V .", "The rms potential drop across the resistor at resonance is 200 V ."]
[0, 2, 3]
null
PYQ
f6c2758c45e6644530abb5ff3c8cd327
WBJEE_PHY
Alternating Current
$L, C$ and $R$ respectively represent inductance, capacitance and resistance. Which of the following combinations have the dimensions of frequency?
multipleCorrect
1
The correct choices are (a), (b) and (d). The dimensions of $\omega L$ and $\frac{1}{\omega C}$ are the same as those of resistance, where $\omega=2 \pi \nu$.
["$\\frac{R}{L}$", "$\\frac{1}{R C}$", "$\\frac{R}{\\sqrt{L C}}$", "$\\frac{1}{\\sqrt{L C}}$"]
[0, 1, 3]
null
PYQ
fbfb41520f420b09ab926f92de6498cd
WBJEE_PHY
Alternating Current
In a transformer, the number of turns in the primary and secondary are 400 and 200 respectively. The power input to the primary is 10 kW at 200 V . The efficiency of the transformer is $90 \%$.
multipleCorrect
2
$\begin{aligned} \text { Output voltage } e_s=\frac{N_s}{N_p} \times e_p & =\frac{2000}{400} \times 200 \\ & =1000 \mathrm{~V} \\ \text { Output power }=90 \% \text { of } 10 \mathrm{~kW} & =9 \mathrm{~kW}\end{aligned}$ Current in primary $I_p=\frac{\text { Input power }}{e_p}=\frac{10,000 \mathrm{~W}}{200 \mathrm{~V}}$ $=50 \mathrm{~A}$ $\begin{aligned} \text { Current in secondary } I_s & =\frac{\text { Output power }}{e_s} \\ & =\frac{9000 \mathrm{~W}}{1000 \mathrm{~V}}=9 \mathrm{~A} \end{aligned}$ Hence the correct choices are (a), (b) and (c).
["The output voltage is 100 V .", "The output power is 9 kW .", "The current in the primary is 50 A .", "The current in the secondary is 10 A ."]
[0, 1, 2]
null
PYQ
e0cd8855e81f9cf9c5cca1c0fad26c08
WBJEE_PHY
Alternating Current
A series $R-C$ circuit is connected to AC voltage source. Consider two cases; (A) when C is without a dielectric medium and $(\mathrm{B})$ when $C$ is filled with dielectric of constant 4 . The current $I_R$ through the resistor and voltage $V_C$ across the capacitor are compared in the two cases. Which of the following is/are true?
multipleCorrect
2
Case $A: I_{\mathrm{R}}^{\mathrm{A}}=\frac{V}{Z_A}=\frac{V}{\sqrt{R^2+\left(\frac{1}{\omega C}\right)^2}} \qquad\mathrm{(i)}$ $V_{\mathrm{C}}^{\mathrm{A}}=\frac{I_{\mathrm{R}}^{\mathrm{A}}}{\omega \mathrm{C}}=\frac{V}{\sqrt{(R \omega C)^2}+\mathrm{I}} \qquad\mathrm{(ii)}$ Case B: $C_B=K C=4 C$. Hence $\begin{aligned} I_{\mathrm{R}}^{\mathrm{B}} & =\frac{V}{\sqrt{R^2+\left(\frac{1}{4 \omega C}\right)^2}} \qquad\mathrm{(iii)} \\ V_{\mathrm{C}}^{\mathrm{B}} & =\frac{I_{\mathrm{R}}^{\mathrm{B}}}{4 \omega C}=\frac{V}{\sqrt{(4 R \omega C)^2}+1} \qquad\mathrm{(iv)} \end{aligned}$ From Eqs. (i) to (iv) it follows that $I_{\mathrm{R}}^{\mathrm{A}} \lt I_{\mathrm{R}}^{\mathrm{B}}$ and $V_{\mathrm{C}}^{\mathrm{A}}\gtV_{\mathrm{C}}^{\mathrm{B}}$
["$I_{\\mathrm{R}}^{\\mathrm{A}}\\gtI_{\\mathrm{R}}^{\\mathrm{B}}$", "$I_{\\mathrm{R}}^{\\mathrm{A}} \\lt I_{\\mathrm{R}}^{\\mathrm{B}}$", "$V_{\\mathrm{C}}^{\\mathrm{A}}\\gtV_{\\mathrm{C}}^{\\mathrm{B}}$", "$V_{\\mathrm{C}}^{\\mathrm{A}} \\lt V_{\\mathrm{C}}^{\\mathrm{B}}$"]
[1, 2]
null
PYQ
da307eaa2ee02b586913ea378c430731
WBJEE_PHY
Alternating Current
<img src="https://cdn-question-pool.getmarks.app/modules/ms/wbjee/LmlYfJdNHCg6zoTySI0IH37LxPXqTBZucUuKuRnzHMk.original.fullsize.png"/><br/> In the circuit shown in the figure, the A.C. source gives a voltage $V=20 \cos (2000 t)$ volt. Neglecting source resistance, the voltmeter and ammeter readings will be :-
multipleCorrect
1
$\begin{aligned} & \text { Here } \frac{1}{\sqrt{\mathrm{LC}}}=\frac{1}{\sqrt{5 \times 10^{-3} \times 50 \times 10^{-6}}}=2000 \mathrm{rad} / \mathrm{s} \\ & \Rightarrow \omega=\frac{1}{\sqrt{\mathrm{LC}}} \text { so resonance condition } \Rightarrow \mathrm{I}=\frac{\mathrm{V}}{\mathrm{R}}=\frac{20 / \sqrt{2}}{6+4}=\sqrt{2}=1.4 \mathrm{~A} \\ & \Rightarrow \text { Reading of ammeter }=1.4 \mathrm{~A} . \Rightarrow \text { Reading of voltmeter }=4 \sqrt{2} \mathrm{~V}=5.6 \mathrm{~V}\end{aligned}$
["$0 \\mathrm{~V}, 2 \\mathrm{~A}$", "$0 \\mathrm{~V}, 1.4 \\mathrm{~A}$", "$5.6 \\mathrm{~V}, 0.47 \\mathrm{~A}$", "$1.68 \\mathrm{~V}, 0.47 \\mathrm{~A}$"]
[1, 2]
null
PYQ
1265d61a0e9d017221e624680b7c9333
WBJEE_PHY
Alternating Current
In a certain series LCR A.C. circuit it is found that $X_L=2 X_C$ and phase difference between the current and voltage is $\pi / 4$. If now capacitance is made $1 / 4^{\text {th }} \&$ the inductance and resistance are doubled then which are not correct.
multipleCorrect
2
$\begin{aligned} & X_L=2 X_C \\ & X_C^{\prime}=4 X_C \\ & X_L^{\prime}=2 X_L \\ & \Rightarrow X_L^{\prime}-X_C^{\prime}=2 X_L-4 X_C=2\left[X_L-2 X_C\right]=0\end{aligned}$
["voltage will lead current by a phase of $\\tan ^{-1}(1 / 2)$.", "voltage will lag behind current by a phase of $\\tan ^{-1}(1 / 2)$.", "voltage will lag behind current by a phase of $\\pi / 4$.", "voltage and current will be in same phase."]
[0, 1, 2]
null
PYQ
c69f02cbda3b2b4773642f5e85cbbf91
WBJEE_PHY
Alternating Current
<img src="https://cdn-question-pool.getmarks.app/modules/ms/wbjee/FBjrS5CtPIal5yIc8wANTkGQi7VRVjaMIuMKf3R3vEs.original.fullsize.png"/><br/> In a RLC series circuit shown, the readings of voltmeters $V_1$ and $V_2$ are 100 V and 120 V , respectively. The source voltage is 130 V . For this situtation mark out the correct statement (s)
multipleCorrect
2
$\begin{aligned} & V_1^2=V_R^2+V_L^2 \\ & V_2=V_C-V_L \\ & V^2=V_R^2+\left(V_C-V_L\right)^2 \\ & P F=\frac{V_R}{V_C-V_L}\end{aligned}$
["Voltage across resistor, inductor and capacitor are $50 \\mathrm{~V}, 86.6 \\mathrm{~V}$ and 206.6 V , respectively", "Voltage across resistor, inductor and capacitor are $10 \\mathrm{~V}, 90 \\mathrm{~V}$ and 30 V , respectively", "Power factor of the circuit is $\\frac{5}{13}$", "Circuit is capactivite in nature"]
[2, 3]
null
PYQ
7d4c516f16cccd4268661a86bc03c659
WBJEE_PHY
Alternating Current
An $L R$ series circuit consists of inductance $L=\frac{100}{\pi} \mathrm{mH}$ and a resistance $R=10 \Omega$. A sinusoidal voltage $V=V_0 \sin (2 \pi v t)$ is applied. It is given that $V_{\mathrm{rms}}=200 \mathrm{~V}$ and $v=50 \mathrm{~Hz}$.
multipleCorrect
3
Inductive reactance $X_L=\omega L=2 \pi v L$ $=2 \pi \times 50 \times \frac{100}{\pi} \times 10^{-3}=10 \Omega$. Therefore, impedance is $Z=\left(X_L^2+R^2\right)^{1 / 2}=\left(10^2+10^2\right)^{1 / 2}=10 \sqrt{2} \Omega$ The amplitude of the current in the steady state is $I_0=\frac{V_0}{Z}=\frac{V_{\mathrm{rms}} \times \sqrt{2}}{Z}=\frac{200 \times \sqrt{2}}{10 \sqrt{2}}=20 \mathrm{~A}$ The phase difference between the current and the voltage is $\phi=\tan ^{-1}\left(\frac{X_L}{R}\right)=\tan ^{-1}\left(\frac{10}{10}\right)=\tan ^{-1}$ $\quad$(1) which gives $\phi=\frac{\pi}{4}$. In an $L R$ circuit, the current lags behind the voltage by a phase angle $\phi$. In the given circuit $V=V_0 \sin (2 \pi v t), I_0=20 \mathrm{~A}$ and $\phi=\pi / 4$. Hence the current $I$ varies with time $t$ as $I=I_0 \sin \left(2 \pi v t-\frac{\pi}{4}\right)$ or $\quad I=20 \sin \left(\frac{2 \pi t}{T}-\frac{\pi}{4}\right)$ ampere $\quad$(1) where $\quad T=\frac{1}{v}=\frac{1}{50}=0.02 \mathrm{~s}$. At $t=0, I=20 \sin \left(-\frac{\pi}{4}\right)=-10 \sqrt{2}$ A. From Eq. (1) it follows that $I=0$ at $t=\frac{T}{8}, \frac{5 T}{8}, \cdots$
["The peak value of the current in the steady state is 20 A .", "The phase difference between the current and the voltage is $\\pi / 2$", "At time $t=0$, the current in the circuit is $-10 \\sqrt{2} \\mathrm{~A}$", "The current in the circuit is zero at $t=\\frac{T}{8}$, $\\frac{5 T}{8}, \\ldots$, where $T=0.02 \\mathrm{~s}$."]
[0, 2, 3]
null
PYQ
bd80c62e3838dedfe78f608915daa245
WBJEE_PHY
Alternating Current
Which of the following statements are correct?
multipleCorrect
2
Statement (a) is incorrect. Since the capacitor offers infinite resistance to direct current, the bulb will not glow at all. Statement (b) is also incorrect. The capacitor will offer finite reactance to alternating current. Hence a current will flow in the circuit and the bulb will glow. Statement (c) is correct. The reactance of a capacitor is $1 / \omega C$. Hence if $C$ is decreases, the reactance will increase and as a result the current is decreased. Hence the brightness of the bulb is reduced. Statement (d) is also correct, because the voltages across the different elements are not in phase. Therefore, they cannot be added algebraically; they are added vectorially.
["A capacitor is connected in series with a bulb and this combination is connected to a variable voltage dc source. The brightness of the bulb will increase with increase in the voltage.", "A capacitor is connected in series with a bulb. When this combination is connected to an ac source, the bulb does not glow.", "a variable capacitor is connected in series with a bulb and this combination is connected to an ac source. The brightness of the bulb is reduced if the capacitance of the variable capacitor is decreased.", "In a series ac circuit, the applied voltage is not equal to the algebraic sum of voltages across the different elements of the circuit."]
[2, 3]
null
PYQ
76210f3e68cbf78d3b286462af6a112d
WBJEE_PHY
Atomic Physics
If hydrogen atom, an electron jumps from bigger orbit to smaller orbit so that radius of smaller orbit is one-fourth of radius of bigger orbit. If speed of electron in bigger orbit was $\mathrm{v}$, then speed in smaller orbit is
singleCorrect
2
Radius of the orbit, $\mathrm{r}_{\mathrm{n}} \propto \mathrm{n}^{2}$<br />$\begin{aligned}<br />& \frac{\mathrm{r}_{\mathrm{nbig}}}{\mathrm{r}_{\mathrm{n} \text { small }}}=\frac{\mathrm{n}_{\text {big }}^{2}}{\mathrm{n}_{\text {small }}^{2}}=\frac{4}{1} \\<br />\Rightarrow & \frac{\mathrm{n}_{\text {big }}}{\mathrm{n}_{\text {small }}}=2 \\<br />\Rightarrow & \frac{\mathrm{n}_{\text {small }}}{\mathrm{n}_{\text {big }}}=\frac{1}{2}<br />\end{aligned}$<br />Velocity of electron in $\mathrm{n}^{\text {th }}$ orbit<br />$\begin{array}{c}<br />\quad \mathrm{v}_{\mathrm{n}} \propto \frac{1}{\mathrm{n}} \\<br />\frac{\mathrm{v}_{\mathrm{n} \mathrm{big}}}{\mathrm{v}_{\mathrm{n} \text { small }}}=\frac{\mathrm{n}_{\text {small }}}{\mathrm{n}_{\text {big }}}=\frac{1}{2} \\<br />\Rightarrow \mathrm{v}_{\mathrm{n} \text { small }}=2\left(\mathrm{v}_{\mathrm{n} \mathrm{big}}\right)=2 \mathrm{v}<br />\end{array}$
["$\\frac{v}{4}$", "$\\frac{v}{2}$", "$v$", "$2 v$"]
[3]
null
PYQ
adf798ef6ed05e9ef68fe4e2b998a4a5
WBJEE_PHY
Atomic Physics
One of the lines in the emission spectrum of $\mathrm{Li}^{2+}$ has the same wavelength as that of the $2^{\text {nd }}$ line of Balmer series in hydrogen spectrum. The electronic transition corresponding to this line is $\mathrm{n}=12 \rightarrow \mathrm{n}=\mathrm{x} .$ Find the value of $\mathrm{x}$
singleCorrect
1
For $2^{\text {nd line of Balmer series in hydrogen }}$ spectrum<br />$\frac{1}{\lambda}=\mathrm{R}(1)\left(\frac{1}{2^{2}}-\frac{1}{4^{2}}\right)=\frac{3}{16} \mathrm{R}$<br />$\text {For } \mathrm{Li}^{2+}\left[\frac{1}{\lambda}=\mathrm{R} \times 9\left(\frac{1}{\mathrm{x}^{2}}-\frac{1}{12^{2}}\right)=\frac{3 \mathrm{R}}{16}\right]$<br />which is satisfied by $n=12 \rightarrow n=6$
["8", "6", "7", "5"]
[1]
null
PYQ
f7127083d3d860aedb8432b31decf2be
WBJEE_PHY
Atomic Physics
If the series limit wavelength of Lyman series for the hydrogen atom is $912 Å,$ then the series limit wavelength for Balmer series of hydrogen atoms is
singleCorrect
1
$\frac{1}{\lambda}=R\left[\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right]$<br />For limiting wavelength of Lyman series<br />$n_{1}=1, n_{2}=\infty \quad \frac{1}{\lambda_{L}}=R$<br />For limiting wavelength of Balmer series $n_{1}=2, n_{2}=\infty$<br />$\begin{array}{l}<br />\frac{1}{\lambda_{B}}=R\left(\frac{1}{4}\right) \Rightarrow \lambda_{B}=\frac{4}{R} \\<br />\therefore \lambda_{B}=4 \lambda_{L}=4 \times 912 Å<br />\end{array}$
["$912 \u00c5$", "$912 \\times 2 \u00c5$", "$912 \\times 4 \u00c5$", "$\\frac{912}{2} \u00c5$"]
[2]
null
PYQ
ca18d214ce435596318d123bba07f806
WBJEE_PHY
Atomic Physics
Monochromatic radiation of wavelength <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&#955;</mi></math> is incident on a hydrogen sample in ground state. Hydrogen atom absorbs a fraction of light and subsequently emits radiations of six different wavelengths. The wavelength <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&#955;</mi></math> is
singleCorrect
1
<p>As <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">H</mi></math>-atom emits <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn></math> spectral lines <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>n</mi><mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></mfenced></mrow><mn>2</mn></mfrac><mo>=</mo><mn>6</mn></math></p><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8756;</mo><mo>&#160;</mo><mi>n</mi><mo>=</mo><mn>4</mn></math></p><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">&#916;</mi><mi>E</mi><mo>=</mo><msub><mi>E</mi><mn>4</mn></msub><mo>-</mo><msub><mi>E</mi><mn>1</mn></msub><mo>=</mo><mn>13</mn><mo>.</mo><mn>6</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>85</mn></math></p><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>12</mn><mo>.</mo><mn>75</mn><mo>&#160;</mo><mi>eV</mi></math></p><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&#955;</mi><mo>=</mo><mfrac><mrow><mi>h</mi><mi>c</mi></mrow><mrow><mo>&#8710;</mo><mi>E</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>1242</mn><mo>&#160;</mo><mi>nm</mi></mrow><mrow><mn>12</mn><mo>.</mo><mn>75</mn></mrow></mfrac></math></p><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8756;</mo><mi>&#955;</mi><mo>=</mo><mn>97</mn><mo>.</mo><mn>5</mn><mo>&#160;</mo><mi>nm</mi></math></p>
["<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>97</mn><mo>.</mo><mn>5</mn><mo>&#160;</mo><mi>nm</mi></math>", "<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>121</mn><mo>.</mo><mn>6</mn><mo>&#160;</mo><mi>nm</mi></math>", "<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>110</mn><mo>.</mo><mn>3</mn><mo>&#160;</mo><mi>nm</mi></math>", "<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>45</mn><mo>.</mo><mn>2</mn><mo>&#160;</mo><mi>nm</mi></math>"]
[0]
null
PYQ
65d80a40d73020f6481aa760ff7d5afd
WBJEE_PHY
Atomic Physics
The energy of electron in the nth orbit of hydrogen atom is expressed as $\mathrm{E}_{\mathrm{n}}=\frac{-13.6}{\mathrm{n}^{2}} \mathrm{eV}$.<br />The shortest and longest wavelength of Lyman series will be
singleCorrect
1
$\frac{1}{\lambda_{\max }}=\mathrm{R}\left[\frac{1}{(\mathrm{l})^{2}}-\frac{1}{(2)^{2}}\right]$<br />$\Rightarrow \lambda_{\mathrm{max}}=\frac{4}{3 \mathrm{R}} \approx 1213 Ã…$<br />and<br />$\frac{1}{\lambda_{\min }}=\mathrm{R}\left[\frac{1}{(1)^{2}}-\frac{1}{\infty}\right] \Rightarrow \lambda_{\min }=\frac{1}{\mathrm{R}} \approx 910 Ã…$
["$910 \u00c3, 1213 \u00c3$", "$5463 \u00c3, 7858 \u00c3$", "$1315 \u00c3, 1530 \u00c3$", "None of these"]
[0]
null
PYQ
3f7be8e0f4f8d35984836e5d7fdd0785
WBJEE_PHY
Atomic Physics
The frequency for a series limit of Balmer and Paschen series respectively are <math><msubsup><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msubsup></math>&nbsp;and <math><msubsup><mrow><mi>f</mi></mrow><mrow><mn>3</mn></mrow></msubsup></math>. If the frequency of the first line of Balmer series is <math><msubsup><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math>&nbsp;then the relation between<math><msup><mrow><mi>&#160;</mi></mrow></msup><msubsup><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>,</mo><mi>&#160;</mi><msubsup><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math>&nbsp;and <math><msubsup><mrow><mi>f</mi></mrow><mrow><mn>3</mn></mrow></msubsup></math>&nbsp;is
singleCorrect
1
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mi>f</mi><mi>&#955;</mi><mo>,</mo><mfrac><mn>1</mn><mi>&#955;</mi></mfrac><mo>=</mo><mfrac><mi>f</mi><mi>c</mi></mfrac></math><br /><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mi>&#955;</mi></mfrac><mo>=</mo><mi>R</mi><mfenced separators="|"><mrow><mfrac><mn>1</mn><msup><mi>P</mi><mn>2</mn></msup></mfrac><mo>-</mo><mfrac><mn>1</mn><msup><mi>n</mi><mn>2</mn></msup></mfrac></mrow></mfenced></math><br /><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8658;</mo><mi>f</mi><mo>=</mo><mi>R</mi><mi>c</mi><mfenced separators="|"><mrow><mfrac><mn>1</mn><msup><mi>P</mi><mn>2</mn></msup></mfrac><mo>-</mo><mfrac><mn>1</mn><msup><mi>n</mi><mn>2</mn></msup></mfrac></mrow></mfenced></math><br /><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8658;</mo><msub><mi>f</mi><mn>2</mn></msub><mo>=</mo><mi>R</mi><mi>c</mi><mfenced separators="|"><mrow><mfrac><mn>1</mn><msup><mn>2</mn><mn>2</mn></msup></mfrac><mo>-</mo><mfrac><mn>1</mn><msup><mn>3</mn><mn>2</mn></msup></mfrac></mrow></mfenced><mo>=</mo><mi>R</mi><mi>c</mi><mfenced separators="|"><mrow><mfrac><mn>1</mn><mn>4</mn></mfrac><mo>-</mo><mfrac><mn>1</mn><mn>9</mn></mfrac></mrow></mfenced><mo>=</mo><mfrac><mrow><mn>5</mn><mi>R</mi><mi>c</mi></mrow><mn>36</mn></mfrac></math><br /><br /><math><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mi>R</mi><mi>c</mi><mfenced separators="|"><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></mrow></mfenced><mo>=</mo><mfrac><mrow><mi>R</mi><mi>c</mi></mrow><mrow><mn>4</mn></mrow></mfrac></math><br /><br /><math><msub><mrow><mi>f</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>=</mo><mi>R</mi><mi>c</mi><mfenced separators="|"><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></mrow></mfenced><mo>=</mo><mfrac><mrow><mi>R</mi><mi>c</mi></mrow><mrow><mn>9</mn></mrow></mfrac></math><br /><br /><math><mo>&#8756;</mo><mi>&#160;</mi><mi>&#160;</mi><mi>&#160;</mi><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>-</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>=</mo><mi>R</mi><mi>c</mi><mfenced separators="|"><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>-</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>9</mn></mrow></mfrac></mrow></mfenced></math><br /><br /><math><mo>&#8756;</mo><mi>&#160;</mi><mi>&#160;</mi><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>-</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>=</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msub></math><br /><br /><math><mo>&#8756;</mo><mi>&#160;</mi><mi>&#160;</mi><mi>&#160;</mi><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>-</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>3</mn></mrow></msub></math>
["<math><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>-</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>3</mn></mrow></msub></math>", "<math><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>=</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msub></math>", "<math><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>3</mn></mrow></msub></math>", "<math><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>-</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>=</mo><mn>2</mn><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub></math>"]
[0]
null
PYQ
7e540863ec3391430da476259ae4cf21
WBJEE_PHY
Atomic Physics
Which of the following transitions of $\mathrm{He}^{+}$ion will give rise to spectral line which has same wavelength as the spectral line in hydrogen atom?
singleCorrect
3
Let the transition of electron in hydrogen atom $(Z=1)$ gives wavelength $\lambda_1$ for transition from $n_2$ to $n_1$, then $\frac{1}{\lambda}=R Z^2\left(\frac{1}{m^2}-\frac{1}{n^2}\right)$ Here, $\lambda=\lambda_1, Z=1, m=n_1, n=n_2$ $\frac{1}{\lambda_1}=R(1)^2\left(\frac{1}{n_1^2}-\frac{1}{n_2^2}\right)=R\left(\frac{1}{n_1^2}-\frac{1}{n_2^2}\right)$ Now, if electron makes transition in $\mathrm{He}^{+}$ion from $n_4$ to $n_3$ and gives wavelength $\lambda_2$, then $\begin{aligned} \frac{1}{\lambda_2} & =R(2)^2\left(\frac{1}{n_3^2}-\frac{1}{n_4^4}\right) \\ & =R\left[\frac{1}{\left(\frac{n_3}{2}\right)^2}-\frac{1}{\left(\frac{n_4}{2}\right)^2}\right] \end{aligned}$ Given that, $\quad \lambda_1=\lambda_2$ $\Rightarrow R\left(\frac{1}{n_1^2}-\frac{1}{n_2^2}\right)=R\left[\frac{1}{\left(\frac{n_3}{2}\right)^2}-\frac{1}{\left(\frac{n_4}{2}\right)^2}\right]$ On comparing beth sides, we get $n_1=\frac{n_3}{2} \text { and } n_2=\frac{n_4}{2}$ The value of $n_1, n_2, n_3$ and $n_4$ must be an integer, as they denote principal quantum number. If $n_3=2$ and $n_4=4$, then the given condition is satisfied.
["$n=4$ to $n=2$", "$n=6$ to $n=5$", "$n=6$ to $n=3$", "None of these"]
[0]
null
PYQ
cd101eeaaae0da16aa8601c08a1d8f8e
WBJEE_PHY
Atomic Physics
Electrons are excited from $n=1$ to $n=4$ state. During downward transitions, possible number of spectral lines observed in Balmer series is
singleCorrect
1
In Balmer series, the electrons moves to $n=2$ state So, possible transitions are $4 \rightarrow 2,3 \rightarrow 2$. $\therefore$ Number of spectral lines are 2 .
["4", "3", "2", "1"]
[2]
null
PYQ
0e418c2de18449a256127fcb92fd7d55
WBJEE_PHY
Atomic Physics
The electron in a hydrogen atom makes a transition from $n=n_{1}$ to $n=n_{2}$ state. The time period of the electron in the initial state $n_{1}$ is eight times that in the final state $n_{2}$. The possible values of $n_{1}$ and $n_{2}$ are
singleCorrect
1
Here, for hydrogen atom, $Z=1$ We know that, time period of electron in $n$th orbit is given as $\begin{aligned} T_{n} & \propto n^{3} \\ \therefore \quad & \frac{T_{n_{1}}}{T_{n_{2}}}=\frac{n_{1}^{3}}{n_{2}^{3}} \end{aligned}$ Since, $\quad T_{n_{1}}=8 T_{n_{2}}$ $\therefore \quad \frac{8 T_{n_{2}}}{T_{n_{2}}}=\frac{n_{1}^{3}}{n_{2}^{3}} \Rightarrow 2^{3}=\left(\frac{n_{1}}{n_{2}}\right)^{3}$ $\Rightarrow \quad n_{1}=2 n_{2}$ Hence, this condition satisfies only in option (b). i.e., $\quad n_{1}=4$ and $n_{2}=2$
["$n_{1}=8, n_{2}=1$", "$n_{1}=4, n_{2}=2$", "$n_{1}=2, n_{2}=4$", "$n_{1}=1, n_{2}=8$"]
[1]
null
PYQ
1707a4c2ce4e0fd46a3e22398a477cc0
WBJEE_PHY
Atomic Physics
The ratio of minimum wavelength of Lyman and Balmer series will be
singleCorrect
2
We know that, wavelength of hydrogen spectrum is given by<br>$$<br>\frac{1}{\lambda}=R\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)<br>$$<br>For minimum wavelength of Lyman series,<br>$\begin{aligned}<br>& n_{1}=1 \text { and } n_{2}=\infty \\<br>\therefore \quad & \frac{1}{\left(\lambda_{L}\right)_{\min }}=R\left(\frac{1}{(1)^{2}}-\frac{1}{\infty}\right)=R \\<br>\Rightarrow \quad\left(\lambda_{2}\right)_{\min }=\frac{1}{R}<br>\end{aligned}$<br>For minimum wavelength of Balmer series,<br>$n_{1}=2$ and $n_{2}=\infty$<br>$\therefore \quad \frac{1}{\left(\lambda_{B}\right)_{\min }}=R\left(\frac{1}{2^{2}}-\frac{1}{\infty}\right)$<br>$=R\left(\frac{1}{4}-0\right)=\frac{R}{4}$<br>$\Rightarrow \quad\left(\lambda_{B}\right)_{\min }=\frac{4}{R}$<br>$\therefore \quad \frac{\left(\lambda_{L}\right)_{\min }}{\left(\lambda_{B}\right)_{\min }}=\frac{\frac{1}{R}}{\frac{4}{R}}=\frac{1}{4}=0.25$
["$1.25$", "$0.25$", "5", "10"]
[1]
null
PYQ
049f59c57722c1865ed72b6ab8a9a386
WBJEE_PHY
Atomic Physics
Which state of triply ionised Beryllium $\left(\mathrm{Be}^{+++}\right)$ has the same orbital radius as that of the ground state of hydrogen?
singleCorrect
2
Radius of $n$ th-orbit in hydrogen like atom is given by $r=\frac{n^{2} h^{2}}{4 \pi^{2} m k Z e^{2}}$<br>i.e., $\quad r \propto \frac{n^{2}}{Z}$<br>For hydrogen, $Z=1, n=1$ in ground state $\Rightarrow \quad \frac{n^{2}}{Z}=\frac{1^{2}}{1}=1$<br>For Beryllium $\left(\mathrm{Be}^{+++}\right), Z=4$ orbital is same<br>$\therefore \quad \frac{n^{2}}{Z}=1$<br>$\Rightarrow \quad n^{2}=1 \times Z \Rightarrow n^{2}=4$<br>$\Rightarrow \quad n=2$<br>Thus, the second level of triply ionised $\mathrm{Be}^{+++}$has same radius as the ground state of hydrogen.
["$n=1$", "$n=2$", "$n=3$", "$n=4$"]
[1]
null
PYQ
8495b29ba8d67a23a8119e5a8ef4bf76
WBJEE_PHY
Atomic Physics
Excitation energy of a hydrogen like ion in its first excitation state is $40.8 \mathrm{eV}$. Energy needed to remove the electron from the ion in ground state is
singleCorrect
2
Excitation energy of hydrogen like ion in its first excitation state, $\Delta E=40.8 \mathrm{eV}$<br>For the hydrogen like ion, energy in the ground state $(n=1)$,<br>$$<br>E=\frac{-13.6 Z^{2}}{n^{2}} \mathrm{eV}=-13.6 Z^{2} \mathrm{eV}<br>$$<br>Energy in the first excited state, $E_{2}=\frac{-13.6 Z^{2}}{n^{2}}$<br>$$<br>=\frac{-13.6 Z^{2}}{4}<br>$$<br>Excitation energy, $\Delta E=E_{2}-E_{1}$<br>$\begin{aligned}<br>&=\left(\frac{-13.6 Z^{2}}{4}+13.6 Z^{2}\right) \mathrm{eV} \\<br>&=(-3.4+13.6) Z^{2} \mathrm{eV} \\<br>\Rightarrow \quad 40.8 \mathrm{eV} &=10.2 Z^{2} \mathrm{eV} \\<br>\Rightarrow \quad \quad Z^{2} &=\frac{40.8}{10.2} \\<br>\Rightarrow \quad \quad Z^{2} &=4 \\<br>\Rightarrow \quad \quad Z &=2<br>\end{aligned}$<br>Thus, energy of the electron in the ground state is given as<br>$\begin{array}{ll}<br>\Rightarrow & E_{1}=-13.6(2)^{2} \mathrm{eV} \\<br>\Rightarrow & E_{1}=-54.4 \mathrm{eV}<br>\end{array}$<br>Hence, the energy needed to remove the electron from the ion in ground state (ionisation energy)<br>$$<br>=-(-54.4) \mathrm{eV}=54.4 \mathrm{eV}<br>$$
["$54.4 \\mathrm{eV}$", "$13.6 \\mathrm{eV}$", "$40.8 \\mathrm{eV}$", "$27.2 \\mathrm{eV}$"]
[0]
null
PYQ
07cb5babb9db1e8742421a3f659ce497
WBJEE_PHY
Atomic Physics
If an electron in hydrogen atom jumps from an orbit of level $n=3$ to an orbit at level $n=2$, emitted radiation has a frequency of ( $R=$ Rydberg's constant and $c=$ velocity of light)
singleCorrect
1
When an electron jumps from orbit $n_{i}$ to $n_{f}$, then the frequency of emitted photon is<br>$$<br>v=c R\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right)<br>$$<br>Here, $n_{i}=3, n_{f}=2$<br>$$<br>\Rightarrow \quad v=c R\left[\frac{1}{(2)^{2}}-\frac{1}{(3)^{2}}\right]=\frac{5 R c}{36}<br>$$
["$\\frac{3 R c}{27}$", "$\\frac{R c}{25}$", "$\\frac{8 R c}{9}$", "$\\frac{5 R c}{36}$"]
[3]
null
PYQ
631a7e82d0dedc6d0c48df30e3c8e5b2
WBJEE_PHY
Atomic Physics
Calculate the radius of the second Bohr's orbit of electron of hydrogen atom.
singleCorrect
1
Radius of the $n$th Bohr's orbit of the hydrogen atom is given by<br/>$\begin{aligned}<br/>r_n & =\frac{4 \pi \varepsilon_0 n^2 h^2}{4 \pi^2 m e^2} \\<br/>r_2 & =\frac{4 \pi \times 8.85 \times 10^{-12} \times(2)^2 \times\left(6.625 \times 10^{-34}\right)^2}{4 \pi^2 \times 9.1 \times 10^{-31} \times\left(1.6 \times 10^{-19}\right)^2} \\<br/>& =\frac{8.85 \times 10^{-12} \times 4 \times\left(6.625 \times 10^{-34}\right)^2}{\pi \times 9.1 \times 10^{-31} \times\left(1.6 \times 10^{-19}\right)^2} \\<br/>& =2.12 \times 10^{-10} \mathrm{~m} \\<br/>& =2.12 <br/>\end{aligned}$
["$3.68 \u00c3\u2026$", "$2.12 \u00c3\u2026$", "$4.77 \u00c3\u2026$", "$2.68 \u00c3\u2026$"]
[1]
null
PYQ
8838dc471bff1084a9d61bdcbaeb7369
WBJEE_PHY
Atomic Physics
In a helium ion, if potential energy of electron in ground state is assumed to be zero, then its energy in first excited state is equal to
singleCorrect
3
Potential energy of a $\mathrm{He}^{+}$ion in ground state is<br/>$\begin{aligned}<br/>& U_1=2 E_1=2\left(-13.6 \frac{Z^2}{n^2}\right) \\<br/>& \because \quad n=1 \text { and } Z=2 \\<br/>& \Rightarrow \quad U_1=-108.8 \mathrm{eV}<br/>\end{aligned}$<br/>But PE in ground state is given zero. So, we have to increase PE (and total energy) by 108.8 eV .<br/>Hence, for given $\mathrm{He}^{+}$ion, energy of first excited state $(n=2)$ will be<br/>$\begin{aligned}<br/>E(n=2) & =-13.6 \frac{Z^2}{n^2}+108.8 \\<br/>& =-13.6 \times \frac{4}{4}+108.8 \\<br/>& =95.2 \mathrm{eV}<br/>\end{aligned}$
["13.6 eV", "27.2 eV", "54.4 eV", "95.2 eV"]
[3]
null
PYQ
2aa134668792345a7c5ff8df32f13c36
WBJEE_PHY
Atomic Physics
If an electron in hydrogen atom jumps from an orbit of level \(n=3\) to an orbit of level \(n=2\). the<br>emitted radiation has a frequency ( \(R=\) Rydberg constant, \(C=\) velocity of light)
singleCorrect
1
We know that<br>\(\begin{array}{l} \frac{1}{\lambda}=R\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right) \\ \text { Using } \lambda f=c \Rightarrow \frac{1}{\lambda}=\frac{f}{c} \\ \frac{f}{c}=R\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right) \Rightarrow f=R c\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right) \\ \text { Given } n_{1}=2 ; n_{2}=3 \\ \Rightarrow f=R c\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)=R c\left(\frac{1}{4}-\frac{1}{9}\right)=R c \frac{(9-4)}{4 \times 9}=\frac{5 R C}{36} \end{array}\)<br>Therefore, frequency of emitted radiation is \(\frac{5}{36} \mathrm{Rc}\)
["\\(\\frac{3 R C}{27}\\)", "\\(\\frac{R C}{25}\\)", "\\(\\frac{8 R C}{9}\\)", "\\(\\frac{5 R C}{36}\\)"]
[3]
null
PYQ
483d46df3f0dbb09b5781eab131dc3d1
WBJEE_PHY
Atomic Physics
The total energy of an electron revolving in the second orbit of hydrogen atom is
singleCorrect
1
Total energy of an electron revolving in nth orbit of hydrogen atom is given as<br>\(E_{n}=\frac{-13.6}{n^{2}} \mathrm{eV}\)<br>For second orbit, \(n=2\), energy is<br>\(E_{2}=\frac{-13.6}{2^{2}}=-3.4 e V\)
["\\(-13.6 \\mathrm{ev}\\)", "\\(-1.51 \\mathrm{ev}\\)", "\\(-3.4 \\mathrm{ev}\\)", "Zero"]
[2]
null
PYQ
27e1d901c41036fa5e2083328827d111
WBJEE_PHY
Atomic Physics
A hydrogen atom in ground state absorbs \(10.2 \mathrm{eV}\) of energy. The orbital angular momentum of<br>the electron is increased by
singleCorrect
2
(B)<br>By absorbing \(10.2 \mathrm{ev}\), electron goes to \(2\) nd orbit as<br>\(\begin{array}{l}<br>E_{1}=-13.6 \mathrm{eV} \\<br>E_{2}=-3.4 \mathrm{eV} \\<br>E_{2}-E_{1}=10.2 \mathrm{eV} \\<br>L_{2}-L_{1}=\frac{n_{2} h}{2 \pi}-\frac{n_{1} h}{2 \pi}=\frac{2 h}{2 \Pi}-\frac{h}{2 \pi}=\frac{6.62 \times 10^{-34}}{2 \times 3.14} \\<br>=1.05 \times 10^{-34} \mathrm{Js}<br>\end{array}\)
["\\(3.16 \\times 10^{-34} \\mathrm{Js}\\)", "\\(1.05 \\times 10^{-34} \\mathrm{Js}\\)", "\\(4.22 \\times 10^{-34} \\mathrm{Js}\\)", "\\(2.11 \\times 10^{-34} \\mathrm{~J}_{S}\\)"]
[1]
null
PYQ
320fa59b453007aaffb1c4b77e91d2da
WBJEE_PHY
Atomic Physics
A beam of fast moving alpha particles were directed towards a thin film of gold. The parts $A, B$ and $C$ of the transmitted and reflected beams corresponding to the incident parts $A, B$ and $C$ of the beam are shown in the adjoining diagram. The number of alpha particles in<br><img src="https://cdn.quizrr.in/question-assets/kcet/py54ggf1c/En-5ZPueGGR-HvWceJwTi8SxWmjPDeeJymdbys5T3eg.original.fullsize.png"><br>
singleCorrect
2
According to Rutherford's $\alpha$-particles scattering experiment, following observations are made<br>(i) Most of the $\alpha$-particles passed through the gold foil undeflected.<br>(ii) Only about $0.14 \%$ of the incident $\alpha$-particles scattered by an angle greater than $1^{\circ}$.<br>(iii) About one $\alpha$-particle in every $8000 \alpha$-particles deflects by angle more than $90^{\circ}$.<br>So, from above observation, we can conclude about the number of $\alpha$-particle in given figure as,<br>$n_{A^{\prime}}>n_{C^{\prime}}>n_{B^{\prime}}$<br>i.e., number of $\alpha$-particle will be maximum in $A^{\prime}$ and minimum in $B^{\prime}$.
["$B^{\\prime}$ will be minimum and in $C^{\\prime}$ maximum", "$A^{\\prime}$ will be maximum and in $B^{\\prime}$ minimum", "$A^{\\prime}$ will be minimum and in $B^{\\prime}$ maximum", "$C^{\\prime}$ will be minimum and in $B^{\\prime}$ maximum"]
[1]
null
PYQ
05a4a5dfc0fa1cfbfbf073bbd3c92d1f
WBJEE_PHY
Atomic Physics
An electron in an excited state of $\mathrm{Li}^{2+}$ ion has angular momentum $\frac{3 h}{2 \pi}$. The de-Broglie wavelength of electron in this state is $p \pi a_{0}$ (where, $a_{0}=$ Bohr radius ). The value of $p$ is
singleCorrect
2
According to de-Broglie hypothesis,<br>$=\frac{n h}{2 \pi}=\frac{3 h}{2 \pi}=m v r$<br>$\Rightarrow \quad n=3$ <br>As, wavelength, $\lambda=\frac{h}{p}=\frac{h}{m v}=\frac{h r}{m v r}$ <br>$=\frac{h r}{3 h}=\frac{2}{3} \pi r$ <br>For Li ${ }^{2+}$ atom, radius of orbit, <br>$r=r_{0} \frac{n^{2}}{Z}=a_{0} \frac{3^{2}}{3}=3 a_{0}$ <br>$\lambda=\frac{2}{3} \pi \times a_{0} \times 3=2 \pi a_{0}=p \pi a_{0} \text { (given) }$ <br>$\quad p=2$
["3", "2", "1", "4"]
[1]
null
PYQ
34a7f1b62d9bdcc9e2b8bbbcd6854a57
WBJEE_PHY
Atomic Physics
In accordance with the Bohr's model, the quantum number that characterises the Earth's revolution around the Sun in an orbit of radius $1.5 \times 10^{11} \mathrm{~m}$ with orbital speed $3 \times 10^4 \mathrm{~ms}^{-1}$ is<br>[given, mass of Earth $=6 \times 10^{24} \mathrm{~kg}$ ]
singleCorrect
3
Given, $v=3 \times 10^4 \mathrm{~m} / \mathrm{s}$<br>$\begin{aligned}<br>r & =1.5 \times 10^{11} \mathrm{~m} \\<br>m_e & =6 \times 10^{24} \mathrm{~kg}<br>\end{aligned}$<br>According Bohr's atomic model,<br>Angular momentum $=m v r=\frac{n h}{2 \pi}$<br>where, $h=$ Planck's constant $=6.62 \times 10^{-34} \mathrm{~J}-\mathrm{s}$<br>and $n=$ quantum number<br>$\begin{aligned}<br>\therefore \quad n & =\frac{2 \pi\left(m_e v r\right)}{h} \\<br>& =\frac{2 \times 314 \times 6 \times 10^{24} \times 3 \times 10^4 \times 1.5 \times 10^{11}}{6.62 \times 10^{-34}} \\<br>& =2.57 \times 10^{74}<br>\end{aligned}$<br>Hence, the quantam number that characterises the Earth's revolution is $2.57 \times 10^{74}$.
["$2.57 \\times 10^{38}$", "$8.57 \\times 10^{64}$", "$2.57 \\times 10^{74}$", "$5.98 \\times 10^{86}$"]
[2]
null
PYQ
de15b10a9000fdd0171e9ce1a809d157
WBJEE_PHY
Atomic Physics
Three energy levels of hydrogen atom and the corresponding wavelength of the emitted radiation due to different electron transition are as shown. Then, <img src="https://cdn.quizrr.in/question-assets/kcet/py54ggf1c/LXhBjHvrz39_eAxo8oEFEWN3gVkQ9cWUgBKjZlkDUqU.original.fullsize.png">
singleCorrect
2
<img src="https://cdn.quizrr.in/question-assets/kcet/py54ggf1c/SEnCiQiNHHn8WdKXyIFobMfBFkWtEpbzPi6h73jIidI.original.fullsize.png"><br>From the given diagram, $\begin{gathered}E_2-E_1=\frac{h c}{\lambda_1} \\ E_3-E_2=\frac{h c}{\lambda_3} \\ E_3-E_1=\frac{h c}{\lambda_2}\end{gathered}$ Adding Eq. (i) and Eq. (ii), we get $\begin{aligned} E_3-E_1 & =\frac{h c}{\lambda_1}+\frac{h c}{\lambda_3} \\ \Rightarrow \quad \frac{h c}{\lambda_2} & =\frac{h c}{\lambda_1}+\frac{h c}{\lambda_3}\end{aligned}$ [From Eq. (iii)] $\begin{aligned} & \Rightarrow \quad \frac{1}{\lambda_2}=\frac{1}{\lambda_1}+\frac{1}{\lambda_3} \\ & \Rightarrow \quad \lambda_2=\frac{\lambda_1 \lambda_3}{\lambda_1+\lambda_3}\end{aligned}$
["$\\lambda_3=\\frac{\\lambda_1 \\lambda_2}{\\lambda_1+\\lambda_2}$", "$\\lambda_1=\\frac{\\lambda_2 \\lambda_3}{\\lambda_2+\\lambda_3}$", "$\\lambda_2=\\lambda_1+\\lambda_3$", "$\\lambda_2=\\frac{\\lambda_1 \\lambda_3}{\\lambda_1+\\lambda_3}$"]
[3]
null
PYQ
3b07a103027f48d988c7b7c039fb049c
WBJEE_PHY
Atomic Physics
In alpha particle scattering experiment, if $v$ is the initial velocity of the particle, then the distance of closest approach is $d$. If the velocity is doubled, then the distance of closest approach changes to:
singleCorrect
2
If $r_0$ be the distance of closest approach, then $(\mathrm{KE})_\alpha=\frac{(Z e)(2 e)}{4 \pi \varepsilon_0 \cdot\left(r_0\right)_\alpha} \Rightarrow \frac{1}{2} m v_\alpha^2=\frac{(Z e)(2 e)}{4 \pi \varepsilon_0 \cdot\left(r_0\right)_\alpha}$ $\Rightarrow \quad v_\alpha^2 \propto \frac{1}{\left(r_0\right)_\alpha} \Rightarrow\left(r_0\right)_\alpha \propto \frac{1}{v_\alpha^2}$ $\Rightarrow \quad \frac{\left(r_0\right)_{\alpha_i}}{\left(r_0\right)_{\alpha_f}}=\frac{v_{\alpha_f}^2}{v_{\alpha i}^2}=\frac{\left(2 v_{\alpha_i}\right)^2}{v_{\alpha_i}^2}=4$ $\therefore \quad\left(r_0\right)_{\alpha_f}=\frac{\left(r_0\right) \alpha_i}{4}=\frac{d}{4} \quad\left[\because\left(r_0\right)_{\alpha_i}=d\right]$
["$4 d$", "$2 d$", "$\\frac{d}{2}$", "$\\frac{d}{4}$"]
[3]
null
PYQ
9c6106bc1bd53b09dec632656c5844e0
WBJEE_PHY
Atomic Physics
The ratio of volume of $\mathrm{Al}^{27}$ nucleus to its surfactarea is (Given, $R_0=1.2 \times 10^{-15} \mathrm{~m}$ )
singleCorrect
1
$\frac{\text { Volume of } \mathrm{Al}^{27} \text { nucleus }}{\text { Surface area }}=\frac{\frac{4}{3} \pi R^3}{4 \pi R^2}=\frac{R}{3}$ $=\frac{1}{3}\left(R_0 A^{\frac{1}{3}}\right) \quad\left[\because R=R_0 A^{\frac{1}{3}}\right]$ $=\frac{1}{3} \times 1.2 \times 10^{-15}(27)^{\frac{1}{3}}$ $=1.2 \times 10^{-15} \mathrm{~m}$
["$2.1 \\times 10^{-15} \\mathrm{~m}$", "$1.3 \\times 10^{-15} \\mathrm{~m}$", "$0.22 \\times 10^{-15} \\mathrm{~m}$", "$1.2 \\times 10^{-15} \\mathrm{~m}$"]
[3]
null
PYQ
2ce083c0af41c25c6f03b1d2ae70bfd5
WBJEE_PHY
Atomic Physics
If levels 1 and 2 are separated by an energy $E_2-E_1$, such that the corresponding transition frequency falls in the middle of the visible range, calculate the ratio of the populations of two levels in the thermal equilibrium at room temperature.
singleCorrect
2
At thermal equilibrium, the ratio $\frac{N_2}{N_1}$ is given as $\frac{N_2}{N_1}=\exp \left(-\frac{E_2-E_1}{k T}\right)$<br/>The middle of the visible range is taken at $\begin{array}{ll} \lambda=550 \mathrm{~nm} \\ \Rightarrow & E_2-E_1=\frac{h c}{\lambda}=3.16 \times 10^{-19} \mathrm{~J} \\ \Rightarrow & \frac{N_2}{N_1}=\exp \left(\frac{-3.16 \times 10^{-19} \mathrm{~J}}{\left(1.38 \times 10^{-23} 1 / \mathrm{k}\right) \cdot(300 \mathrm{k})}\right) \\ \Rightarrow & \frac{N_2}{N_1}=1.1577 \times 10^{-38} \end{array}$
["$1.1577 \\times 10^{-38}$", "$2.9 \\times 10^{-35}$", "$2.168 \\times 10^{-36}$", "$1.96 \\times 10^{-20}$"]
[0]
null
PYQ
06080bc88bb700230a9dfb4d785ee50f
WBJEE_PHY
Atomic Physics
The ionisation potential of hydrogen atom is 13.6 eV . How much energy need to be supplied to ionise the hydrogen atom in the first excited state?
singleCorrect
1
Ionisation energy of nth state $=-E_n$ For the first excited state, $n=2$ and energy in that state is, $\frac{13.6}{2^2} \mathrm{eV}=\frac{13.6}{4} \mathrm{eV}$ $=3.4 \mathrm{eV}$
["13.6 eV", "27.2 eV", "3.4 eV", "6.8 eV"]
[2]
null
PYQ
109c904085ce93ad9a0fdb09b6dd27e0
WBJEE_PHY
Atomic Physics
Ionisation potential of hydrogen atom is 13.6 V . Hydrogen atoms in the ground state are excited by monochromatic radiation of photon energy 12.1 eV . The spectral lines emitted by hydrogen atoms according to Bohr's theory will be
singleCorrect
1
Final energy of electron $=-13.6+12.1=-1.51 \mathrm{eV}$ This energy corresponds to third level i.e., $n=3$ Hence, number of spectral lines emitted $=\frac{n(n-1)}{2}=\frac{3(3-1)}{2}=3$
["one", "two", "three", "four"]
[2]
null
PYQ
bd3067a543f5bfee374471ba654d98ed
WBJEE_PHY
Atomic Physics
If an electron in $n=4$ orbit of hydrogen atom jumps down to $n=3$ orbit, the amount of energy released and the wavelength of radiation emitted are
singleCorrect
1
$\begin{aligned} E & =\frac{-13.6}{n^2} \mathrm{eV} \\ E_4-E_3 & =13.6\left[\frac{1}{(3)^2}-\frac{1}{(4)^2}\right]\end{aligned}$ $\begin{aligned} & =13.6\left[\frac{7}{144}\right] \mathrm{eV}=0.66 \mathrm{eV} \\ \lambda & =\frac{1}{R\left[\frac{1}{(3)^2}-\frac{1}{(4)^2}\right]}=\frac{144}{1.09 \times 10^7 \times 7} \mathrm{~m} \\ & =1.88 \times 10^{-6} \mathrm{~m}\end{aligned}$
["$0.66 \\mathrm{eV}, 1.88 \\times 10^{-6} \\mathrm{~m}$", "$1.89 \\mathrm{eV}, 1.98 \\times 10^{-7} \\mathrm{~m}$", "$0.29 \\mathrm{eV}, 1.78 \\times 10^{-5} \\mathrm{~m}$", "$0.98 \\mathrm{eV}, 0.93 \\times 10^{-6} \\mathrm{~m}$"]
[0]
null
PYQ
0b203bc12c1d973a849a44e5593eb398
WBJEE_PHY
Atomic Physics
If $^{\prime} \lambda_{1}$ ' and ' $\lambda_{2}$ ' are the wavelengths of de-Broglie waves for electrons in first and second Bohr orbits in hydrogen atom, then $\left(\frac{\lambda_{1}}{\lambda_{2}}\right)$ is equal to (Energy in $1^{\text {st }}$ Bohr orbit $=-13.6 \mathrm{eV}$ )
singleCorrect
2
The de-Broglie wavelength of an electron in the $n$-th orbit is inversely proportional to the radius of the orbit. Since the radius for the first orbit is $R$ and for the second orbit is $4 R$, the de-Broglie wavelength in the second orbit is 4 times that in the first orbit. Thus, the wavelength ratio is: $\frac{\lambda_1}{\lambda_2}=4$ The energy in the $n$-th Bohr orbit is given by: $E_n=-\frac{13.6 \mathrm{eV}}{n^2}$
["$\\frac{1}{5}$", "$\\frac{1}{2}$", "$\\frac{1}{4}$", "$\\frac{1}{3}$"]
[2]
null
PYQ
d7843c926976d81bac9453117f2c3247
WBJEE_PHY
Atomic Physics
When an electron in a hydrogen atom jumps from the third orbit to the second orbit, it emits a photon of wavelength ${\lambda} \lambda^{\prime}$. When it jumps from the fourth orbit to third orbit, the wavelength emitted by the photon will be
singleCorrect
2
$\begin{aligned} \frac{1}{\lambda} &=R\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)=R\left(\frac{1}{4}-\frac{1}{9}\right)=\frac{R \times 5}{36} \\ \frac{1}{\lambda^{\prime}} &=R\left(\frac{1}{3^{2}}-\frac{1}{4^{2}}\right)=R\left(\frac{1}{9}-\frac{1}{16}\right)=R \times \frac{7}{144} \\ \frac{\lambda^{\prime}}{\lambda} &=\frac{5}{36} \times \frac{144}{7}=\frac{20}{7} \\ \therefore \lambda^{\prime} &=\frac{20}{7} \lambda \end{aligned}$
["$\\frac{20}{13} \\lambda$", "$\\frac{16}{25} \\lambda$", "$\\frac{9}{16} \\lambda$", "$\\frac{20}{7} \\lambda$"]
[3]
null
PYQ
7b7cb2249f5db1b0f9c225f837bea7ee
WBJEE_PHY
Atomic Physics
An electron of mass 'm' is revolving around the nucleus in a circular orbit of radius 'r' has angular momentum 'L'. The magnetic field produced by the electron at the centre of the orbit is (e $=$ electric charge, $\mu_{0}=$ permeability of free space)
singleCorrect
2
$\frac{B}{L}=\frac{\mu_{0}}{4 \pi} \frac{\frac{e V}{r^{2}}}{m V r} L=m V r$ $\frac{B}{L}=\frac{\mu_{0}}{4 \pi} \frac{e V}{e^{2}} \times \frac{1}{m V r}$ $\Rightarrow B=\frac{\mu_{0} e L}{4 \pi m r^{3}}$
["$\\frac{\\mu_{0} \\mathrm{eL}}{4 \\pi m r^{2}}$", "$\\frac{\\mu_{0} \\mathrm{eL}}{4 \\pi m r^{3}}$", "$\\frac{\\mu_{0} \\mathrm{eL}}{2 \\pi \\mathrm{mr}^{2}}$", "$\\frac{\\mu_{0} \\mathrm{eL}}{2 \\pi m r^{3}}$"]
[1]
null
PYQ
351f97b1a4f2b5c15eb15bf10dee85c3
WBJEE_PHY
Atomic Physics
The electron in hydrogen atom is moving in an orbit of radius $0.53 Å$. It takes $1.571 \times 10^{-16} \mathrm{~s}$ to complete one revolution. The velocity of electron will be $[\pi=3 \cdot 142]$
singleCorrect
1
$r=0.53 Å, t=1.571 \times 10^{-16} \mathrm{sec}$ $v=\frac{2 \pi r}{t}=2 \times \frac{22}{7} \times \frac{53}{100} \times 10^{-10} \times \frac{10^{11}}{1.57}$ $=\frac{2 \times 22 \times 53}{700 \times 1.571 \times 10^{6}}$ $=2.12 \times 10^{6} \mathrm{~m} / \mathrm{s}$
["$5.3 \\times 10^{6} \\frac{\\mathrm{m}}{\\mathrm{s}}$", "$4 \\times 10^{6} \\frac{\\mathrm{m}}{\\mathrm{s}}$", "$3 \\times 10^{8} \\frac{\\mathrm{m}}{\\mathrm{s}}$", "$2 \\cdot 12 \\times 10^{6} \\frac{\\mathrm{m}}{\\mathrm{s}}$"]
[3]
null
PYQ
5a7560ff6ce60fc060aa7f74798ab2d2
WBJEE_PHY
Atomic Physics
Let the series limit for Balmer series be ${ }^{\prime} \lambda_{1}^{\prime}$ and the longest wavelength for Brackett series be ${ }^{\prime} \lambda_{2}{ }^{\prime} .$ Then $\lambda_{1}$ and $\lambda_{2}$ are related as
singleCorrect
2
We know, \(\frac{1}{\lambda}=\mathrm{R}\left(\frac{1}{2^{2}}-\frac{1}{\mathrm{n}^{2}}\right)\) for Balmer series \(\frac{1}{\lambda}=\mathrm{R}\left(\frac{1}{4^{2}}-\frac{1}{\mathrm{n}^{2}}\right)\) for Brackett series Now,\(\frac{1}{\lambda_{1}}=\frac{R}{4}\) \(\frac{1}{\lambda_{2}}=\mathrm{R}\left[\frac{1}{16}-\frac{1}{25}\right]=\mathrm{R}\left[\frac{25-16}{16 \times 25}\right]=\frac{9 \mathrm{R}}{16 \times 25}\) \(\therefore \frac{\lambda_{1}}{\lambda_{2}}=\frac{\mathrm{R}}{4} \times \frac{16 \times 25}{9 \mathrm{R}}=\frac{100}{9}\) \(\therefore \frac{9}{100} \times \lambda_{1}=\lambda_{2}\) \(\therefore \lambda_{2}=0.09 \times \lambda_{1}\)
["$\\lambda_{2}=0 \\cdot 09 \\lambda_{1}$", "$\\lambda_{1}=0 \\cdot 09 \\lambda_{2}$", "$\\lambda_{1}=1 \\cdot 11 \\lambda_{2}$", "$\\lambda_{2}=1 \\cdot 11 \\lambda_{1}$"]
[1]
null
PYQ
80cd602d06ebe12cc0fdb08d821e8049
WBJEE_PHY
Atomic Physics
The force acting on the electrons in hydrogen atom (Bohr's theory) is related to the principle quantum number 'n' as
singleCorrect
1
Now $\begin{aligned} & F=\frac{m v^{2}}{r} \\ & v \propto \frac{1}{n} \text { and } r \propto n^{2} \\ & F \propto \frac{1}{n^{2}} \times \frac{1}{n^{2}} \\ F & \propto n^{-4} \end{aligned}$ $\therefore \quad \mathrm{F} \propto \frac{1}{\mathrm{n}^{2}} \times \frac{1}{\mathrm{n}^{2}}$ $\therefore \quad \mathrm{F} \propto \mathrm{n}^{-4}$
["$n^{-2}$", "$n^{4}$", "$n^{-4}$", "$n^{2}$"]
[2]
null
PYQ
850e7842b7c8222949e8f9133068a122
WBJEE_PHY
Atomic Physics
The ratio of energies of photons produced due to transition of electron of hydrogen atom from its (i) second to first energy level and (ii) highest energy level to $2^{\text {nd }}$ level is respectively
singleCorrect
1
The energy of photons is given by $E=\operatorname{Rhc}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)$ where, $\mathrm{R}$ is Rydberg constant, $\mathrm{h}$ is Planck's constant and $\mathrm{c}$ is the speed of light. (i) Energy of photon produced from second to first energy level, $\mathrm{E}_{1}=\operatorname{Rhc}\left(\frac{1}{1^{2}}-\frac{1}{2^{2}}\right)$ $\mathrm{E}_{1}=\frac{3}{4} \mathrm{Rhc}$ (ii) Energy of photon produced from highest energy level (i.e., \infty) to second level, $\begin{array}{l} \mathrm{E}_{2}=\operatorname{Rhc}\left(\frac{1}{2^{2}}-\frac{1}{\infty}\right)=\frac{1}{4} \mathrm{Rhc} \\ \therefore \frac{\mathrm{E}_{1}}{\mathrm{E}_{2}}=\frac{\frac{3}{4} \mathrm{Rhc}}{\frac{1}{4} \mathrm{Rhc}}=\frac{3}{1} \text { or } 3: 1 \end{array}$
["$4: 1$", "$2: 1$", "$5: 1$", "$3: 1$"]
[3]
null
PYQ
e30155a2319c41eeb40b6d5961ce626b
WBJEE_PHY
Atomic Physics
The ground state energy of hydrogen atom is $-13 \cdot 6 \mathrm{eV}$. The kinetic and potential energy of the electron in the second excited state is respectively
singleCorrect
1
For second excited state $n=3$ Total energy in the third orbit $E_{3}=\frac{-13.6}{9} \mathrm{eV}=-1.51 \mathrm{eV}$ K.E. $=-$ T.E. $\quad=1.51 \mathrm{eV}$ P.E. $=2$.T.E. $=-3.02 \mathrm{eV}$
["$+3 \\cdot 02 \\mathrm{eV},-1 \\cdot 51 \\mathrm{eV}$", "$1 \\cdot 51 \\mathrm{eV},-3 \\cdot 02 \\mathrm{eV}$", "$-1 \\cdot 51 \\mathrm{eV},+3 \\cdot 02 \\mathrm{eV}$", "$+3 \\cdot 02 \\mathrm{eV},+1 \\cdot 51 \\mathrm{eV}$"]
[1]
null
PYQ
4c0fda78a678c85569c422b1cd11c5e5
WBJEE_PHY
Atomic Physics
The energy levels with transitions for the atom are shown. The transitions corresponding to emission of radiation of maximum and minimum wavelength are respectively <img src="https://cdn.quizrr.in/question-assets/mhtcet/py35bdsq/tZcAD141WnBfaxHzPl-28NaKHL40OwOSa1CsUqAoPig.original.fullsize.png">
singleCorrect
1
Energy $\quad \mathrm{E}=\frac{\mathrm{hc}}{\lambda} \quad \therefore \mathrm{E} \propto \frac{1}{\lambda}$ In transition A, change in energy is minimum, hence wavelength is maximum. In transition D, Change in energy is maximum, hence wavelength is minimum.
["A, D", "B, C", "C, D", "A, C"]
[0]
null
PYQ
2d3fe4d1fb95ccf77c7656a36103e2bb
WBJEE_PHY
Atomic Physics
The shortest wavelength for Lyman series is $912 Å$. The longest wavelength in Paschen series is
singleCorrect
3
Shortest wavelength in Lyman series is given by $\begin{aligned} & \frac{1}{\lambda_{\mathrm{I}}}=\mathrm{R}\left[\frac{1}{1^2}-\frac{1}{\infty}\right]=\mathrm{R} \\ & \therefore \lambda_{\mathrm{I}}=\frac{1}{\mathrm{R}} \end{aligned}$ The longest wavelength in Paschen series is given by $\begin{aligned} & \frac{1}{\lambda_{\mathrm{p}}}=\mathrm{R}\left[\frac{1}{(3)^2}-\frac{1}{(4)^2}\right] \\ & =\mathrm{R}\left[\frac{1}{9}-\frac{1}{16}\right]=\mathrm{R} \cdot \frac{7}{144} \\ & \lambda_{\mathrm{p}}=\frac{144}{7 \mathrm{R}} \\ & \therefore \frac{\lambda_{\mathrm{p}}}{\lambda_{\mathrm{L}}}=\frac{144}{7} \mathrm{R}=\frac{144}{7} \\ & \therefore \lambda_{\mathrm{p}}=\frac{144}{7 \mathrm{R}} \cdot \lambda_{\mathrm{L}}=\frac{144}{7} \times 912=18760 Å \end{aligned}$
["$1216 \u00c5$", "$3646 \u00c5$", "$18760 \u00c5$", "$8208 \u00c5$"]
[2]
null
PYQ
7a2785d0fa693500a4fa5a147850f5cc
WBJEE_PHY
Atomic Physics
For wavelength of visible radiation of hydrogen spectrum Balmer gave an equation as $\lambda=\frac{\left(\mathrm{km}^2\right)}{\left(\mathrm{m}^2-4\right)}$, where $m$ is the integer value. The value of $k$ in terms of Rydberg's constant $R$ is
singleCorrect
1
Wavelength of visible radiation in Balmer series is given by, $\begin{aligned} & \frac{1}{\lambda}=R\left(\frac{1}{4}-\frac{1}{m^2}\right) \text { for } m \geq 2 \\ & \Rightarrow \lambda=\frac{4}{R} \cdot \frac{m^2}{m^2-4}=\frac{k m^2}{m^2-4}\end{aligned}$ $\therefore k=\frac{4}{R}$
["$\\frac{R}{4}$", "$\\frac{4}{R}$", "$R$", "$4 R$"]
[1]
null
PYQ
200e67810b1e8678b0bf03693fc26252
WBJEE_PHY
Atomic Physics
The potential energy of the orbital electron in the ground state of hydrogen atoms is $-\mathrm{E}$. What is the kinetic energy?
singleCorrect
2
The potential energy of $\mathrm{U}(\mathrm{n}=1)=-\mathrm{E}$ Ground state: total energy is given by $\mathrm{TE}=\mathrm{U}+\mathrm{K}$ $\mathrm{U}=-\frac{\left(\mathrm{ze}^2\right)}{4 \pi \varepsilon_0}$ For orbit consider force balance <img src="https://cdn.quizrr.in/question-assets/mhtcet/py35bdsq/O-qQwYhu0UVeIwxr3b_DzKINjEn2rEBbQzxAUHGPjlQ.original.fullsize.png"> $\frac{\mathrm{ze}^2}{4 \pi \varepsilon_0 \mathrm{r}^2}=\frac{\mathrm{mv}^2}{\mathrm{r}}$ $\therefore \mathrm{K}=\frac{\mathrm{mv}^2}{2}=\frac{1}{2}\left(\frac{\mathrm{ze}^2}{4 \pi \varepsilon_0 \mathrm{r}^2}\right)$ Thus, $\mathrm{K}=\frac{\mathrm{E}}{2}=\frac{\mathrm{U}}{2}$
["$4 \\mathrm{E}$", "$\\frac{E}{4}$", "$\\frac{E}{2}$", "$2 E$"]
[2]
null
PYQ
aa33b256b1b9250f9b3df37ae3030d9a
WBJEE_PHY
Atomic Physics
The threshold frequency for photoelectric emission from a material is $4.5 \times 10^{14} \mathrm{~Hz}$. Photoelectrons will be emitted when this material is illuminated with monochromatic light from a
multipleCorrect
2
1. Electrons will be emitted if the frequency of incident light is greater than $4.5 \times 10^{14} \mathrm{~Hz}$. Wavelength of infrared light $\simeq 10,000 Å$, its frequency is $v($ infrared $)=\frac{3 \times 10^8}{10,000 \times 10^{-10}}$ $=3 \times 10^{14} \mathrm{~Hz}$. Wavelength of red light is about $7800 Å$, its frequency is about $3.8 \times 10^{14} \mathrm{~Hz}$. Frequency of sodium light is about $5 \times 10^{14} \mathrm{~Hz}$ and the frequency of ultraviolet light is about $15 \times 10^{14} \mathrm{~Hz}$. Hence the correct choices are (c) and (d).
["50 watt infrared lamp", "100 watt red neon lamp", "60 watt sodium lamp", "5 watt ultraviolet lamp"]
[2, 3]
null
PYQ
11b0ed5abd1366aee5767a4e97641462
WBJEE_PHY
Atomic Physics
When monochromatic light from a bulb falls on a photosensitive surface, the number of photoelectrons emitted per second is $n$ and their maximum kinetic energy is $K_{\max }$. If the distance of the lamp from the surface is halved, then
multipleCorrect
2
The value of $n$ is proportional to the intensity of incident light. If the distance of the lamp is halved, intensity becomes four times. But $K_{\max }$ is independent of the intensity of light. Hence the correct choices are (b) and (d).
["$n$ is doubled", "$n$ becomes 4 times", "$K_{\\max }$ is doubled", "$K_{\\max }$ remains unchanged"]
[1, 3]
null
PYQ
bbce49b9f2ec64b867e14e311f19d75b
WBJEE_PHY
Atomic Physics
The maximum kinetic energy of photoelectrons in a photocell depends upon
multipleCorrect
1
The correct choices are (a) and (b)
["the frequency of the incident radiation", "the work function of the photosensitive material used in the cell", "the intensity of the incident radiation", "all the above parameters."]
[0, 1]
null
PYQ
b568e6c60fa599d852eb14fa9831f176
WBJEE_PHY
Atomic Physics
When ultraviolet light is incident on a photocell, its stopping potential is $V_0$ and the maximum kinetic energy of the photoelectrons is $K_{\max }$. When X-rays are incident on the same cell, then
multipleCorrect
2
The frequency of X-rays is higher than that of ultraviolet light. Now $K_{\max }=h\left(v-v_0\right)$. Hence $K_{\text {max }}$ increases as $v$ is increased. Also $K_{\text {max }}=e V_0$, where $V_0$ is the stopping potential. Hence $V_0$ also increases with frequency. Hence the correct choices are (a) and (b).
["$V_0$ will increase", "$K_{\\max }$ will increase", "$V_0$ will decrease", "$K_{\\max }$ will decrease"]
[0, 1]
null
PYQ
2a7b8f60edb12867e8f695ed49d11ae9
WBJEE_PHY
Atomic Physics
The work function of metal $A$ is greater than that for metal $B$. The two metals are illuminated with appropriate radiation of frequency $v$ so as to cause photoelectric emission in both metals. If $v_0$ is the threshold frequency and $K_{\max }$, the maximum kinetic energy of photoelectrons, then
multipleCorrect
1
Work function $W_0=h v_0$ and $K_{\max }=h\left(v-v_0\right)$. So the correct choices are (a) and (d).
["$v_0$ for metal $A$ is greater than that for metal $B$.", "$v_0$ for metal $A$ is less than that for metal $B$.", "$K_{\\max }$ for metal $A$ is greater than that for metal $B$.", "$K_{\\max }$ for metal $A$ is less than that for metal $B$."]
[0, 3]
null
PYQ
4a2875416ad2a3c249c447c88178bf12
WBJEE_PHY
Atomic Physics
X-rays are used to cause photoelectric emission from sodium and copper. Then
multipleCorrect
3
The work function of sodium is smaller than that of copper. Since $W_0=h v_0$, the threshold frequency for sodium is less than that for copper. So choice (c) is correct and choice (d) is incorrect. Since the work function of sodium is lower than that of copper, it is easier to extract electrons from sodium than from copper. Therefore, the electrons ejected from sodium will have a greater kinetic energy and will hence need a greater stopping potential. So choice (a) is incorrect and choice (b) is correct.
["the stopping potential is more for copper than for sodium.", "the stopping potential is less for copper than for sodium.", "the threshold frequency is more for copper than for sodium.", "the threshold frequency is less for copper than for sodium."]
[1, 2]
null
PYQ
30b1913bcbed61c988fcd691806b9ccc
WBJEE_PHY
Atomic Physics
When a point light source, of power $W$ emitting monochromatic light of wavelength $\lambda$ is kept at a distance $a$ from a photosensitive surface of work function $\phi$, and area $S$, we will have
multipleCorrect
3
The energy of each photon is $\frac{h c}{\lambda}$ so that the number of photons released per unit time is $W \div\left(\frac{h c}{\lambda}\right)$. These photons are spread out in all directions over an area $4 \pi a^2$ so that the 'share' of an area $S$ is a fraction $S / 4 \pi a^2$ of the total number of photons emitted. The maximum energy of the emitted photoelectrons is $E_{\max }=h v-\phi=\frac{h c}{\lambda}-\phi=\frac{1}{\lambda}(h c-\lambda \phi)$ The stopping potential is given by $e V_S=E_{\max }$. Hence $V_S=\frac{1}{e} E_{\max }=\frac{1}{e \lambda}(h c-\lambda \phi)$. Hence choice (c) is incorrect. For photoemission to be possible, we must have $h \nu \geq \phi$. Hence $\frac{h c}{\lambda} \geq \phi$ or $\lambda \leq h c / \phi$ Thus the permitted range of values of $\lambda$ is $0 \leq \lambda \leq h c / \phi$. Hence the correct choices are (a), (b) and (d).
["number of photons striking the surface per unit time as $\\frac{W \\lambda S}{4 \\pi h c a^2}$", "the maximum energy of the emitted photoelectrons as $\\frac{1}{\\lambda}(h c-\\lambda \\phi)$", "the stopping potential needed to stop the most energetic emitted photoelectrons as $\\frac{e}{\\lambda}(h c-\\lambda \\phi)$.", "photoemission occurs only if $\\lambda$ lies in the range $0 \\leq \\lambda \\leq h c / \\phi$"]
[0, 1, 3]
null
PYQ
0ff943db5e6dd30c07888034efb70178
WBJEE_PHY
Atomic Physics
Which of the following statements are correct about photons?
multipleCorrect
2
The correct statements are (a), (b) and (c).
["The rest mass of a photon is zero", "The energy of a photon of frequency $v$ is $h v$", "The momentum of a photon of frequency $v$ is $\\frac{h v}{c}$", "Photons do not exert any pressure on surface on which they are incident."]
[0, 1, 2]
null
PYQ
9b8fcf18f506972d91f499a5cfec4a5c
WBJEE_PHY
Atomic Physics
The intensity of X-rays from a Coolidge tube is plotted against wavelength as shown in Fig. 28.15. The minimum wavelength found is $\lambda_C$ and the wavelength of $K_\alpha$ line is $\lambda_k$. If the accelerating voltage is increased <img src="https://cdn-question-pool.getmarks.app/modules/ms/wbjee/EB0N-AyWzwrueInFuwOpCBIdcWsKDNxxfWHqHnFeo2k.original.fullsize.png"/><br/>
multipleCorrect
2
The minimum wavelength is given by $\lambda_C=\frac{h c}{e V}$ As $V$ increases, $\lambda_C$ decreases. Since the wavelength of $K_\alpha$ line is due to transition $n=2$ to $n=1$ in the element of the target in the tube, wavelength $\lambda_K$ remains unchanged as $V$ is increased. Hence the difference ( $\lambda_K-\lambda_C$ ) increases with increase in the accelerating voltage. Thus the correct choices are (A) and (C).
["$\\lambda_C$ decreases", "$\\lambda_K$ increases", "$\\left(\\lambda_K-\\lambda_C\\right)$ increases", "$\\lambda_C$ and $\\lambda_K$ both decrease but $\\left(\\lambda_K-\\lambda_C\\right)$ remains unchanged"]
[0, 2]
null
PYQ
6cc423847ae64ada7f10968856b5a5fa
WBJEE_PHY
Atomic Physics
A hydrogen atom and a $\mathrm{Li}^{2+}$ ion are both in the second excited state. If $l_{\mathrm{H}}$ and $l_{\mathrm{Li}}$ are their respective electronic angular momenta, and $E_{\mathrm{H}}$ and $E_{\mathrm{Li}}$ their respective energies, then
multipleCorrect
3
For a hydrogen-like atom, the energy in the $n$th excited state is $\therefore E \propto\left(-\frac{Z^2}{n^2}\right)$ Since Z for $\mathrm{Li}^{2+}$ is greater than Z for $\mathrm{H}^{+}$, $\left|E_{\mathrm{Li}}\right|\gt\left|E_{\mathrm{H}}\right|$. Also $l=\sqrt{n(n+1)}\left(\frac{h}{2 \pi}\right)$. Hence $l_{\mathrm{Li}}=l_{\mathrm{H}}$. Thus, the correct choices are (a) and (c).
["$l_{\\mathrm{H}}=l_{\\mathrm{Li}}$", "$l_{\\mathrm{H}}\\gtl_{\\mathrm{Li}}$", "$E_{\\mathrm{H}} \\lt E_{\\mathrm{Li}}$", "$E_{\\mathrm{H}}\\gtE_{\\mathrm{Li}}$"]
[0, 2]
null
PYQ
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
32