Datasets:
text
stringclasses 10
values | videos
sequencelengths 1
1
| __dj__stats__
dict |
---|---|---|
<__dj__video> A group of children dressed in colorful costumes are participating in an outdoor event where they are decorating pumpkins with bubble wands. | [
"./videos/panda/1AiNG23hyUo_7.mp4"
] | {
"alnum_ratio": 0.8116883117,
"char_rep_ratio": 0,
"flagged_words_ratio": 0,
"lang": "en",
"lang_score": 0.9006049037,
"num_action": 3,
"num_dependency_edges": [
4,
1,
2,
4,
1,
2,
1,
2
],
"num_token": 32,
"num_words": 23,
"perplexity": 493.4,
"special_char_ratio": 0.1883116883,
"stopwords_ratio": 0.4347826087,
"text_len": 154,
"word_rep_ratio": 0,
"video_frames_aesthetics_score": [
0.4555848837
],
"video_aspect_ratios": [
1.7777777778
],
"video_duration": [
2
],
"video_height": [
720
],
"video_width": [
1280
],
"video_frames_text_similarity": [
0.3540362418
],
"video_motion_score": [
5.4380040169
],
"video_nsfw_score": [
0.0001698484
],
"video_ocr_area_ratio": [
0.0103081597
],
"video_watermark_prob": [
0.5288844109
]
} |
<__dj__video> a screenshot of an asian screenshot of a game | [
"./videos/internvid/RVZUInNpCFU_9_1.mp4"
] | {
"alnum_ratio": 0.7457627119,
"char_rep_ratio": 0.24,
"flagged_words_ratio": 0,
"lang": "en",
"lang_score": 0.5384221077,
"num_action": 0,
"num_dependency_edges": [
2,
4,
2
],
"num_token": 16,
"num_words": 10,
"perplexity": 1951.5,
"special_char_ratio": 0.2542372881,
"stopwords_ratio": 0.5,
"text_len": 59,
"word_rep_ratio": 0,
"video_frames_aesthetics_score": [
0.4426309466
],
"video_aspect_ratios": [
1.7777777778
],
"video_duration": [
2
],
"video_height": [
720
],
"video_width": [
1280
],
"video_frames_text_similarity": [
0.3099360466
],
"video_motion_score": [
3.9707188606
],
"video_nsfw_score": [
0.0001951887
],
"video_ocr_area_ratio": [
0.0479736328
],
"video_watermark_prob": [
0.9463900328
]
} |
<__dj__video> the word 'gynynyt' is in the middle of many different fruits and vegetables | [
"./videos/internvid/Ip9TjM5PY9I_1_1.mp4"
] | {
"alnum_ratio": 0.7640449438,
"char_rep_ratio": 0,
"flagged_words_ratio": 0,
"lang": "en",
"lang_score": 0.7287845016,
"num_action": 0,
"num_dependency_edges": [
2,
1,
3,
5,
1
],
"num_token": 24,
"num_words": 14,
"perplexity": 813.4,
"special_char_ratio": 0.2359550562,
"stopwords_ratio": 0.5,
"text_len": 89,
"word_rep_ratio": 0,
"video_frames_aesthetics_score": [
0.3954536319
],
"video_aspect_ratios": [
1.7777777778
],
"video_duration": [
2
],
"video_height": [
720
],
"video_width": [
1280
],
"video_frames_text_similarity": [
0.3075161576
],
"video_motion_score": [
2.2344789505
],
"video_nsfw_score": [
0.0001862614
],
"video_ocr_area_ratio": [
0.045139974
],
"video_watermark_prob": [
0.5961741209
]
} |
<__dj__video> a woman in a yellow shirt is on a tennis court | [
"./videos/internvid/Per2JwtVUwM_3_1.mp4"
] | {
"alnum_ratio": 0.7166666667,
"char_rep_ratio": 0,
"flagged_words_ratio": 0,
"lang": "en",
"lang_score": 0.5908017755,
"num_action": 0,
"num_dependency_edges": [
3,
3,
1,
3
],
"num_token": 17,
"num_words": 12,
"perplexity": 1720.9,
"special_char_ratio": 0.2833333333,
"stopwords_ratio": 0.5,
"text_len": 60,
"word_rep_ratio": 0,
"video_frames_aesthetics_score": [
0.4742202759
],
"video_aspect_ratios": [
1.7777777778
],
"video_duration": [
4
],
"video_height": [
720
],
"video_width": [
1280
],
"video_frames_text_similarity": [
0.319634378
],
"video_motion_score": [
10.1790513992
],
"video_nsfw_score": [
0.0001222684
],
"video_ocr_area_ratio": [
0.0214476612
],
"video_watermark_prob": [
0.8281876445
]
} |
<__dj__video> A man with glasses is sitting in a car and eating food. | [
"./videos/panda/0p8CO6j9U-M_3.mp4"
] | {
"alnum_ratio": 0.7246376812,
"char_rep_ratio": 0,
"flagged_words_ratio": 0,
"lang": "en",
"lang_score": 0.923728466,
"num_action": 2,
"num_dependency_edges": [
3,
1,
2,
1
],
"num_token": 19,
"num_words": 13,
"perplexity": 863.1,
"special_char_ratio": 0.2753623188,
"stopwords_ratio": 0.4615384615,
"text_len": 69,
"word_rep_ratio": 0,
"video_frames_aesthetics_score": [
0.4376985431
],
"video_aspect_ratios": [
1.7777777778
],
"video_duration": [
17
],
"video_height": [
720
],
"video_width": [
1280
],
"video_frames_text_similarity": [
0.3342003822
],
"video_motion_score": [
3.6470098495
],
"video_nsfw_score": [
0.000185161
],
"video_ocr_area_ratio": [
0
],
"video_watermark_prob": [
0.5817964077
]
} |
<__dj__video> an image of someone pouring soil into a wheelbarrow | [
"./videos/internvid/t692w4byVrw_7_2.mp4"
] | {
"alnum_ratio": 0.7692307692,
"char_rep_ratio": 0,
"flagged_words_ratio": 0,
"lang": "en",
"lang_score": 0.6552112699,
"num_action": 1,
"num_dependency_edges": [
2,
2,
1,
2
],
"num_token": 17,
"num_words": 10,
"perplexity": 1950,
"special_char_ratio": 0.2307692308,
"stopwords_ratio": 0.5,
"text_len": 65,
"word_rep_ratio": 0,
"video_frames_aesthetics_score": [
0.4468871057
],
"video_aspect_ratios": [
1.7777777778
],
"video_duration": [
11
],
"video_height": [
720
],
"video_width": [
1280
],
"video_frames_text_similarity": [
0.3253023028
],
"video_motion_score": [
3.5699613094
],
"video_nsfw_score": [
0.0001119684
],
"video_ocr_area_ratio": [
0
],
"video_watermark_prob": [
0.5961615443
]
} |
<__dj__video> a wedding car with a red ribbon and flowers | [
"./videos/internvid/froKkfIPaHA_1_1.mp4"
] | {
"alnum_ratio": 0.7368421053,
"char_rep_ratio": 0,
"flagged_words_ratio": 0,
"lang": "en",
"lang_score": 0.6550011635,
"num_action": 0,
"num_dependency_edges": [
1,
3,
5,
1
],
"num_token": 15,
"num_words": 10,
"perplexity": 2739.7,
"special_char_ratio": 0.2631578947,
"stopwords_ratio": 0.4,
"text_len": 57,
"word_rep_ratio": 0,
"video_frames_aesthetics_score": [
0.4366855621
],
"video_aspect_ratios": [
1.7777777778
],
"video_duration": [
1
],
"video_height": [
720
],
"video_width": [
1280
],
"video_frames_text_similarity": [
0.3092386127
],
"video_motion_score": [
11.0694389343
],
"video_nsfw_score": [
0.0001391819
],
"video_ocr_area_ratio": [
0.0036116536
],
"video_watermark_prob": [
0.3725105524
]
} |
<__dj__video> A man dancing with two young girls in a dance studio. | [
"./videos/panda/-vPbw02IbRc_3.mp4"
] | {
"alnum_ratio": 0.7313432836,
"char_rep_ratio": 0,
"flagged_words_ratio": 0,
"lang": "en",
"lang_score": 0.4970883131,
"num_action": 1,
"num_dependency_edges": [
2,
3,
1,
3
],
"num_token": 18,
"num_words": 12,
"perplexity": 967.6,
"special_char_ratio": 0.2686567164,
"stopwords_ratio": 0.3333333333,
"text_len": 67,
"word_rep_ratio": 0,
"video_frames_aesthetics_score": [
0.4885383844
],
"video_aspect_ratios": [
1.7777777778
],
"video_duration": [
4
],
"video_height": [
720
],
"video_width": [
1280
],
"video_frames_text_similarity": [
0.3328181803
],
"video_motion_score": [
6.7048120499
],
"video_nsfw_score": [
0.0001282161
],
"video_ocr_area_ratio": [
0.0047927517
],
"video_watermark_prob": [
0.5738118887
]
} |
<__dj__video> young people wearing face masks sit in the seats | [
"./videos/internvid/ivU8GO4Zyo0_7_1.mp4"
] | {
"alnum_ratio": 0.7580645161,
"char_rep_ratio": 0,
"flagged_words_ratio": 0,
"lang": "en",
"lang_score": 0.7919024229,
"num_action": 2,
"num_dependency_edges": [
3,
1,
2,
2
],
"num_token": 15,
"num_words": 10,
"perplexity": 2879.6,
"special_char_ratio": 0.2419354839,
"stopwords_ratio": 0.2,
"text_len": 62,
"word_rep_ratio": 0,
"video_frames_aesthetics_score": [
0.4656786919
],
"video_aspect_ratios": [
1.7777777778
],
"video_duration": [
3
],
"video_height": [
720
],
"video_width": [
1280
],
"video_frames_text_similarity": [
0.3210753798
],
"video_motion_score": [
0.7968443036
],
"video_nsfw_score": [
0.0001760678
],
"video_ocr_area_ratio": [
0.0179399957
],
"video_watermark_prob": [
0.9622330666
]
} |
<__dj__video> A man in a blue shirt smiles at the camera while people stand in the background. | [
"./videos/panda/-mdIuelE99E_17.mp4"
] | {
"alnum_ratio": 0.7553191489,
"char_rep_ratio": 0,
"flagged_words_ratio": 0,
"lang": "en",
"lang_score": 0.6364951134,
"num_action": 2,
"num_dependency_edges": [
3,
3,
2,
1,
2
],
"num_token": 23,
"num_words": 17,
"perplexity": 622.2,
"special_char_ratio": 0.2446808511,
"stopwords_ratio": 0.4705882353,
"text_len": 94,
"word_rep_ratio": 0,
"video_frames_aesthetics_score": [
0.4479264021
],
"video_aspect_ratios": [
1.7777777778
],
"video_duration": [
13
],
"video_height": [
720
],
"video_width": [
1280
],
"video_frames_text_similarity": [
0.3299186826
],
"video_motion_score": [
10.0738592148
],
"video_nsfw_score": [
0.0001195985
],
"video_ocr_area_ratio": [
0.0164872685
],
"video_watermark_prob": [
0.9694447517
]
} |
Data-Juicer Sandbox: A Comprehensive Suite for Multimodal Data-Model Co-development
Project description
The emergence of large-scale multi-modal generative models has drastically advanced artificial intelligence, introducing unprecedented levels of performance and functionality. However, optimizing these models remains challenging due to historically isolated paths of model-centric and data-centric developments, leading to suboptimal outcomes and inefficient resource utilization. In response, we present a novel sandbox suite tailored for integrated data-model co-development. This sandbox provides a comprehensive experimental platform, enabling rapid iteration and insight-driven refinement of both data and models. Our proposed "Probe-Analyze-Refine" workflow, validated through applications on T2V-Turbo and achieve a new state-of-the-art on VBench leaderboard with 1.09% improvement from T2V-Turbo. Our experiment code and model are released at Data-Juicer Sandbox.
Dataset Information
- The whole dataset is available here (About 227.5GB).
- Number of samples: 147,176 (Include videos and keep ~12.09% from the original dataset)
- The original dataset totals 1,217k instances from InternVid (606k), Panda-70M (605k), and MSR-VTT (6k).
Refining Recipe
# global parameters
# global parameters
project_name: 'Data-Juicer-recipes-T2V-optimal'
dataset_path: '/path/to/your/dataset' # path to your dataset directory or file
export_path: '/path/to/your/dataset.jsonl'
np: 4 # number of subprocess to process your dataset
# process schedule
# a list of several process operators with their arguments
process:
- video_nsfw_filter:
hf_nsfw_model: Falconsai/nsfw_image_detection
score_threshold: 0.000195383
frame_sampling_method: uniform
frame_num: 3
reduce_mode: avg
any_or_all: any
mem_required: '1GB'
- video_frames_text_similarity_filter:
hf_clip: openai/clip-vit-base-patch32
min_score: 0.306337
max_score: 1.0
frame_sampling_method: uniform
frame_num: 3
horizontal_flip: false
vertical_flip: false
reduce_mode: avg
any_or_all: any
mem_required: '10GB'
- Downloads last month
- 37