meg's picture
meg HF staff
Upload folder using huggingface_hub
5f72933 verified
import os
import gradio as gr
import wandb
from huggingface_hub import HfApi
TOKEN = os.environ.get("DATACOMP_TOKEN")
API = HfApi(token=TOKEN)
wandb_api_key = os.environ.get('wandb_api_key')
wandb.login(key=wandb_api_key)
random_num = f"50.0"
subset = f"frac-1over8"
experiment_name = f"ImageNetTraining50.0-frac-1over8"
experiment_repo = f"datacomp/ImageNetTraining50.0-frac-1over8"
def start_train():
os.system("echo '#### pwd'")
os.system("pwd")
os.system("echo '#### ls'")
os.system("ls")
# Create a place to put the output.
os.system("echo 'Creating results output repository in case it does not exist yet...'")
try:
API.create_repo(repo_id=f"datacomp/ImageNetTraining50.0-frac-1over8", repo_type="dataset",)
os.system(f"echo 'Created results output repository datacomp/ImageNetTraining50.0-frac-1over8'")
except:
os.system("echo 'Already there; skipping.'")
pass
os.system("echo 'Beginning processing.'")
# Handles CUDA OOM errors.
os.system(f"export PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True")
os.system("echo 'Okay, trying training.'")
os.system(f"cd pytorch-image-models; ./train.sh 4 --dataset hfds/datacomp/imagenet-1k-random-50.0-frac-1over8 --log-wandb --wandb-project ImageNetTraining50.0-frac-1over8 --experiment ImageNetTraining50.0-frac-1over8 --model seresnet34 --sched cosine --epochs 150 --warmup-epochs 5 --lr 0.4 --reprob 0.5 --remode pixel --batch-size 256 --amp -j 4")
os.system("echo 'Done'.")
os.system("ls")
# Upload output to repository
os.system("echo 'trying to upload...'")
API.upload_folder(folder_path="/app", repo_id=f"datacomp/ImageNetTraining50.0-frac-1over8", repo_type="dataset",)
API.pause_space(experiment_repo)
def run():
with gr.Blocks() as app:
gr.Markdown(f"Randomization: 50.0")
gr.Markdown(f"Subset: frac-1over8")
start = gr.Button("Start")
start.click(start_train)
app.launch(server_name="0.0.0.0", server_port=7860)
if __name__ == '__main__':
run()