import os import gradio as gr import wandb from huggingface_hub import HfApi TOKEN = os.environ.get("DATACOMP_TOKEN") API = HfApi(token=TOKEN) wandb_api_key = os.environ.get('wandb_api_key') wandb.login(key=wandb_api_key) random_num = f"50.0" subset = f"frac-1over8" experiment_name = f"ImageNetTraining50.0-frac-1over8" experiment_repo = f"datacomp/ImageNetTraining50.0-frac-1over8" def start_train(): os.system("echo '#### pwd'") os.system("pwd") os.system("echo '#### ls'") os.system("ls") # Create a place to put the output. os.system("echo 'Creating results output repository in case it does not exist yet...'") try: API.create_repo(repo_id=f"datacomp/ImageNetTraining50.0-frac-1over8", repo_type="dataset",) os.system(f"echo 'Created results output repository datacomp/ImageNetTraining50.0-frac-1over8'") except: os.system("echo 'Already there; skipping.'") pass os.system("echo 'Beginning processing.'") # Handles CUDA OOM errors. os.system(f"export PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True") os.system("echo 'Okay, trying training.'") os.system(f"cd pytorch-image-models; ./train.sh 4 --dataset hfds/datacomp/imagenet-1k-random-50.0-frac-1over8 --log-wandb --wandb-project ImageNetTraining50.0-frac-1over8 --experiment ImageNetTraining50.0-frac-1over8 --model seresnet34 --sched cosine --epochs 150 --warmup-epochs 5 --lr 0.4 --reprob 0.5 --remode pixel --batch-size 256 --amp -j 4") os.system("echo 'Done'.") os.system("ls") # Upload output to repository os.system("echo 'trying to upload...'") API.upload_folder(folder_path="/app", repo_id=f"datacomp/ImageNetTraining50.0-frac-1over8", repo_type="dataset",) API.pause_space(experiment_repo) def run(): with gr.Blocks() as app: gr.Markdown(f"Randomization: 50.0") gr.Markdown(f"Subset: frac-1over8") start = gr.Button("Start") start.click(start_train) app.launch(server_name="0.0.0.0", server_port=7860) if __name__ == '__main__': run()