meg's picture
meg HF staff
Upload folder using huggingface_hub
860b549 verified
from torch.nn.modules.batchnorm import BatchNorm2d
from torchvision.ops.misc import FrozenBatchNorm2d
import timm
import pytest
from timm.utils.model import freeze, unfreeze
from timm.utils.model import ActivationStatsHook
from timm.utils.model import extract_spp_stats
from timm.utils.model import _freeze_unfreeze
from timm.utils.model import avg_sq_ch_mean, avg_ch_var, avg_ch_var_residual
from timm.utils.model import reparameterize_model
from timm.utils.model import get_state_dict
def test_freeze_unfreeze():
model = timm.create_model('resnet18')
# Freeze all
freeze(model)
# Check top level module
assert model.fc.weight.requires_grad == False
# Check submodule
assert model.layer1[0].conv1.weight.requires_grad == False
# Check BN
assert isinstance(model.layer1[0].bn1, FrozenBatchNorm2d)
# Unfreeze all
unfreeze(model)
# Check top level module
assert model.fc.weight.requires_grad == True
# Check submodule
assert model.layer1[0].conv1.weight.requires_grad == True
# Check BN
assert isinstance(model.layer1[0].bn1, BatchNorm2d)
# Freeze some
freeze(model, ['layer1', 'layer2.0'])
# Check frozen
assert model.layer1[0].conv1.weight.requires_grad == False
assert isinstance(model.layer1[0].bn1, FrozenBatchNorm2d)
assert model.layer2[0].conv1.weight.requires_grad == False
# Check not frozen
assert model.layer3[0].conv1.weight.requires_grad == True
assert isinstance(model.layer3[0].bn1, BatchNorm2d)
assert model.layer2[1].conv1.weight.requires_grad == True
# Unfreeze some
unfreeze(model, ['layer1', 'layer2.0'])
# Check not frozen
assert model.layer1[0].conv1.weight.requires_grad == True
assert isinstance(model.layer1[0].bn1, BatchNorm2d)
assert model.layer2[0].conv1.weight.requires_grad == True
# Freeze/unfreeze BN
# From root
freeze(model, ['layer1.0.bn1'])
assert isinstance(model.layer1[0].bn1, FrozenBatchNorm2d)
unfreeze(model, ['layer1.0.bn1'])
assert isinstance(model.layer1[0].bn1, BatchNorm2d)
# From direct parent
freeze(model.layer1[0], ['bn1'])
assert isinstance(model.layer1[0].bn1, FrozenBatchNorm2d)
unfreeze(model.layer1[0], ['bn1'])
assert isinstance(model.layer1[0].bn1, BatchNorm2d)
def test_activation_stats_hook_validation():
model = timm.create_model('resnet18')
def test_hook(model, input, output):
return output.mean().item()
# Test error case with mismatched lengths
with pytest.raises(ValueError, match="Please provide `hook_fns` for each `hook_fn_locs`"):
ActivationStatsHook(
model,
hook_fn_locs=['layer1.0.conv1', 'layer1.0.conv2'],
hook_fns=[test_hook]
)
def test_extract_spp_stats():
model = timm.create_model('resnet18')
def test_hook(model, input, output):
return output.mean().item()
stats = extract_spp_stats(
model,
hook_fn_locs=['layer1.0.conv1'],
hook_fns=[test_hook],
input_shape=[2, 3, 32, 32]
)
assert isinstance(stats, dict)
assert test_hook.__name__ in stats
assert isinstance(stats[test_hook.__name__], list)
assert len(stats[test_hook.__name__]) > 0
def test_freeze_unfreeze_bn_root():
import torch.nn as nn
from timm.layers import BatchNormAct2d
# Create batch norm layers
bn = nn.BatchNorm2d(10)
bn_act = BatchNormAct2d(10)
# Test with BatchNorm2d as root
with pytest.raises(AssertionError):
_freeze_unfreeze(bn, mode="freeze")
# Test with BatchNormAct2d as root
with pytest.raises(AssertionError):
_freeze_unfreeze(bn_act, mode="freeze")
def test_activation_stats_functions():
import torch
# Create sample input tensor [batch, channels, height, width]
x = torch.randn(2, 3, 4, 4)
# Test avg_sq_ch_mean
result1 = avg_sq_ch_mean(None, None, x)
assert isinstance(result1, float)
# Test avg_ch_var
result2 = avg_ch_var(None, None, x)
assert isinstance(result2, float)
# Test avg_ch_var_residual
result3 = avg_ch_var_residual(None, None, x)
assert isinstance(result3, float)
def test_reparameterize_model():
import torch.nn as nn
class FusableModule(nn.Module):
def __init__(self):
super().__init__()
self.conv = nn.Conv2d(3, 3, 1)
def fuse(self):
return nn.Identity()
class ModelWithFusable(nn.Module):
def __init__(self):
super().__init__()
self.fusable = FusableModule()
self.normal = nn.Linear(10, 10)
model = ModelWithFusable()
# Test with inplace=False (should create a copy)
new_model = reparameterize_model(model, inplace=False)
assert isinstance(new_model.fusable, nn.Identity)
assert isinstance(model.fusable, FusableModule) # Original unchanged
# Test with inplace=True
reparameterize_model(model, inplace=True)
assert isinstance(model.fusable, nn.Identity)
def test_get_state_dict_custom_unwrap():
import torch.nn as nn
class CustomModel(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(10, 10)
model = CustomModel()
def custom_unwrap(m):
return m
state_dict = get_state_dict(model, unwrap_fn=custom_unwrap)
assert 'linear.weight' in state_dict
assert 'linear.bias' in state_dict
def test_freeze_unfreeze_string_input():
model = timm.create_model('resnet18')
# Test with string input
_freeze_unfreeze(model, 'layer1', mode='freeze')
assert model.layer1[0].conv1.weight.requires_grad == False
# Test unfreezing with string input
_freeze_unfreeze(model, 'layer1', mode='unfreeze')
assert model.layer1[0].conv1.weight.requires_grad == True