File size: 5,944 Bytes
860b549
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
from torch.nn.modules.batchnorm import BatchNorm2d
from torchvision.ops.misc import FrozenBatchNorm2d

import timm
import pytest
from timm.utils.model import freeze, unfreeze
from timm.utils.model import ActivationStatsHook
from timm.utils.model import extract_spp_stats

from timm.utils.model import _freeze_unfreeze
from timm.utils.model import avg_sq_ch_mean, avg_ch_var, avg_ch_var_residual
from timm.utils.model import reparameterize_model
from timm.utils.model import get_state_dict

def test_freeze_unfreeze():
    model = timm.create_model('resnet18')

    # Freeze all
    freeze(model)
    # Check top level module
    assert model.fc.weight.requires_grad == False
    # Check submodule
    assert model.layer1[0].conv1.weight.requires_grad == False
    # Check BN
    assert isinstance(model.layer1[0].bn1, FrozenBatchNorm2d)

    # Unfreeze all
    unfreeze(model)
    # Check top level module
    assert model.fc.weight.requires_grad == True
    # Check submodule
    assert model.layer1[0].conv1.weight.requires_grad == True
    # Check BN
    assert isinstance(model.layer1[0].bn1, BatchNorm2d)

    # Freeze some
    freeze(model, ['layer1', 'layer2.0'])
    # Check frozen
    assert model.layer1[0].conv1.weight.requires_grad == False
    assert isinstance(model.layer1[0].bn1, FrozenBatchNorm2d)
    assert model.layer2[0].conv1.weight.requires_grad == False
    # Check not frozen
    assert model.layer3[0].conv1.weight.requires_grad == True
    assert isinstance(model.layer3[0].bn1, BatchNorm2d)
    assert model.layer2[1].conv1.weight.requires_grad == True

    # Unfreeze some
    unfreeze(model, ['layer1', 'layer2.0'])
    # Check not frozen
    assert model.layer1[0].conv1.weight.requires_grad == True
    assert isinstance(model.layer1[0].bn1, BatchNorm2d)
    assert model.layer2[0].conv1.weight.requires_grad == True

    # Freeze/unfreeze BN
    # From root
    freeze(model, ['layer1.0.bn1'])
    assert isinstance(model.layer1[0].bn1, FrozenBatchNorm2d)
    unfreeze(model, ['layer1.0.bn1'])
    assert isinstance(model.layer1[0].bn1, BatchNorm2d)
    # From direct parent
    freeze(model.layer1[0], ['bn1'])
    assert isinstance(model.layer1[0].bn1, FrozenBatchNorm2d)    
    unfreeze(model.layer1[0], ['bn1'])
    assert isinstance(model.layer1[0].bn1, BatchNorm2d)

def test_activation_stats_hook_validation():
    model = timm.create_model('resnet18')
    
    def test_hook(model, input, output):
        return output.mean().item()
    
    # Test error case with mismatched lengths
    with pytest.raises(ValueError, match="Please provide `hook_fns` for each `hook_fn_locs`"):
        ActivationStatsHook(
            model,
            hook_fn_locs=['layer1.0.conv1', 'layer1.0.conv2'],
            hook_fns=[test_hook]
        )


def test_extract_spp_stats():
    model = timm.create_model('resnet18')
    
    def test_hook(model, input, output):
        return output.mean().item()
    
    stats = extract_spp_stats(
        model,
        hook_fn_locs=['layer1.0.conv1'],
        hook_fns=[test_hook],
        input_shape=[2, 3, 32, 32]
    )
    
    assert isinstance(stats, dict)
    assert test_hook.__name__ in stats
    assert isinstance(stats[test_hook.__name__], list)
    assert len(stats[test_hook.__name__]) > 0

def test_freeze_unfreeze_bn_root():
    import torch.nn as nn
    from timm.layers import BatchNormAct2d
    
    # Create batch norm layers
    bn = nn.BatchNorm2d(10)
    bn_act = BatchNormAct2d(10)
    
    # Test with BatchNorm2d as root
    with pytest.raises(AssertionError):
        _freeze_unfreeze(bn, mode="freeze")
    
    # Test with BatchNormAct2d as root
    with pytest.raises(AssertionError):
        _freeze_unfreeze(bn_act, mode="freeze")


def test_activation_stats_functions():
    import torch
    
    # Create sample input tensor [batch, channels, height, width]
    x = torch.randn(2, 3, 4, 4)
    
    # Test avg_sq_ch_mean
    result1 = avg_sq_ch_mean(None, None, x)
    assert isinstance(result1, float)
    
    # Test avg_ch_var
    result2 = avg_ch_var(None, None, x)
    assert isinstance(result2, float)
    
    # Test avg_ch_var_residual
    result3 = avg_ch_var_residual(None, None, x)
    assert isinstance(result3, float)


def test_reparameterize_model():
    import torch.nn as nn
    
    class FusableModule(nn.Module):
        def __init__(self):
            super().__init__()
            self.conv = nn.Conv2d(3, 3, 1)
        
        def fuse(self):
            return nn.Identity()
    
    class ModelWithFusable(nn.Module):
        def __init__(self):
            super().__init__()
            self.fusable = FusableModule()
            self.normal = nn.Linear(10, 10)
    
    model = ModelWithFusable()
    
    # Test with inplace=False (should create a copy)
    new_model = reparameterize_model(model, inplace=False)
    assert isinstance(new_model.fusable, nn.Identity)
    assert isinstance(model.fusable, FusableModule)  # Original unchanged
    
    # Test with inplace=True
    reparameterize_model(model, inplace=True)
    assert isinstance(model.fusable, nn.Identity)


def test_get_state_dict_custom_unwrap():
    import torch.nn as nn
    
    class CustomModel(nn.Module):
        def __init__(self):
            super().__init__()
            self.linear = nn.Linear(10, 10)
    
    model = CustomModel()
    
    def custom_unwrap(m):
        return m
    
    state_dict = get_state_dict(model, unwrap_fn=custom_unwrap)
    assert 'linear.weight' in state_dict
    assert 'linear.bias' in state_dict


def test_freeze_unfreeze_string_input():
    model = timm.create_model('resnet18')
    
    # Test with string input
    _freeze_unfreeze(model, 'layer1', mode='freeze')
    assert model.layer1[0].conv1.weight.requires_grad == False
    
    # Test unfreezing with string input
    _freeze_unfreeze(model, 'layer1', mode='unfreeze')
    assert model.layer1[0].conv1.weight.requires_grad == True