Chicks4FreeID / Chicks4FreeID.py
dariakern's picture
Update Chicks4FreeID.py
181f840 verified
raw
history blame
21.7 kB
from pathlib import Path
from typing import Set
from datasets import DatasetBuilder, GeneratorBasedBuilder, DatasetInfo, Features, Image, ClassLabel, Array3D, DownloadManager, SplitGenerator, BuilderConfig, Version
import numpy as np
import datasets
VERSION = "v1_240507"
HF_VERSION = "1.0.0"
# Available Dataset View Names
full_dataset_name = "full-dataset"
semantic_segmentation_name = "semantic-segmentation"
instance_segmentation_name = "instance-segmentation"
animal_category_anomoalies_name = "animal-category-anomalies"
re_id_best_name = "chicken-re-id-best-visibility"
#re_id_good_name = "chicken-re-id-good-visibility"
#re_id_bad_name = "chicken-re-id-bad-visibility"
re_id_full_name = "chicken-re-id-all-visibility"
# Example usage
# from datasets import load_dataset
# dataset = datasets.load_dataset(
# "dariakern/Chicks4FreeID",
# "chicken-re-id-best-visibility",
# as_supervised=True,
# trust_remote_code=True
# )
##### ONTOLOTGY ######
ontologies = {
"v1_240507":
{'tools': [{'classifications': [{'instructions': 'coop',
'options': [{'label': '1'},
{'label': '2'},
{'label': '3'},
{'label': '4'},
{'label': '5'},
{'label': '6'},
{'label': '7'},
{'label': '8'},
{'label': '9'},
{'label': '10'},
{'label': '11'},],
'required': True,
'type': 'radio'},
{'instructions': 'identity',
'options': [{'label': 'Beate'},
{'label': 'Borghild'},
{'label': 'Eleonore'},
{'label': 'Mona'},
{'label': 'Henriette'},
{'label': 'Margit'},
{'label': 'Millie'},
{'label': 'Sigrun'},
{'label': 'Kristina'},
{'label': 'Unknown'},
{'label': 'Tina'},
{'label': 'Gretel'},
{'label': 'Lena'},
{'label': 'Yolkoono'},
{'label': 'Skimmy'},
{'label': 'Mavi'},
{'label': 'Mirmir'},
{'label': 'Nugget'},
{'label': 'Fernanda'},
{'label': 'Isolde'},
{'label': 'Mechthild'},
{'label': 'Brunhilde'},
{'label': 'Spiderman'},
{'label': 'Brownie'},
{'label': 'Camy'},
{'label': 'Samy'},
{'label': 'Yin'},
{'label': 'Yuriko'},
{'label': 'Renate'},
{'label': 'Regina'},
{'label': 'Monika'},
{'label': 'Heidi'},
{'label': 'Erna'},
{'label': 'Marina'},
{'label': 'Kathrin'},
{'label': 'Isabella'},
{'label': 'Amalia'},
{'label': 'Edeltraut'},
{'label': 'Erdmute'},
{'label': 'Oktavia'},
{'label': 'Siglinde'},
{'label': 'Ulrike'},
{'label': 'Hermine'},
{'label': 'Matilda'},
{'label': 'Chantal'},
{'label': 'Chayenne'},
{'label': 'Jaqueline'},
{'label': 'Mandy'},
{'label': 'Henny'},
{'label': 'Shady'},
{'label': 'Shorty'}],
'required': True,
'type': 'radio'},
{'instructions': 'visibility',
'options': [{'label': 'best'},
{'label': 'good'},
{'label': 'bad'}],
'required': True,
'type': 'radio'}],
'color': '#1e1cff',
'name': 'chicken',
'required': False,
'tool': 'superpixel'},
{'color': '#FF34FF',
'name': 'background',
'required': False,
'tool': 'superpixel'},
{'classifications': [{'instructions': 'coop',
'options': [{'label': '1'},
{'label': '2'},
{'label': '3'},
{'label': '4'},
{'label': '5'},
{'label': '6'},
{'label': '7'},
{'label': '8'},
{'label': '9'},
{'label': '10'},
{'label': '11'}],
'required': True,
'type': 'radio'},
{'instructions': 'identity',
'options': [{'label': 'Evelyn'},
{'label': 'Marley'}],
'required': True,
'type': 'radio'},
{'instructions': 'visibility',
'options': [{'label': 'best'},
{'label': 'good'},
{'label': 'bad'}],
'required': True,
'type': 'radio'}],
'color': '#FF4A46',
'name': 'duck',
'required': False,
'tool': 'superpixel'},
{'classifications': [{'instructions': 'coop',
'options': [{'label': '1'},
{'label': '2'},
{'label': '3'},
{'label': '4'},
{'label': '5'},
{'label': '6'},
{'label': '7'},
{'label': '8'},
{'label': '9'},
{'label': '10'},
{'label': '11'}],
'required': True,
'type': 'radio'},
{'instructions': 'identity',
'options': [{'label': 'Elvis'},
{'label': 'Jackson'}],
'required': True,
'type': 'radio'},
{'instructions': 'visibility',
'options': [{'label': 'best'},
{'label': 'good'},
{'label': 'bad'}],
'required': True,
'type': 'radio'}],
'color': '#ff0000',
'name': 'rooster',
'required': False,
'tool': 'superpixel'}]}
}
ontologies["v1_240507_SMALL"] = ontologies["v1_240507"]
class Ontology:
ontology: dict = None
def __init__(self, version_name: str):
self.ontology: dict = ontologies[version_name]
def names(self, class_name, tool_name=None, drop_unkown=False):
"""
Returns a list of all possible names for a given category (accross all tools)
"""
if class_name == "animal_category":
return sorted(list({tool["name"] for tool in self.ontology["tools"]} - {"background"}))
result = []
for tool in self.ontology["tools"]:
if "classifications" in tool:
for classification in tool["classifications"]:
if classification["instructions"] == class_name and (tool_name is None or tool_name == tool["name"]):
result.extend([option["label"] for option in classification["options"] if not (drop_unkown and option["label"] == "Unknown") and option["label"] not in result])
return list(result)
def get_color_map(self):
"""
Returns a dictionary mapping class names to their respective colors
"""
return {tool["name"]: tool["color"] for tool in self.ontology["tools"]}
ontology = Ontology(VERSION)
# Feature Names
IMAGE = "image"
image_feature = {IMAGE: Image()}
SEGMENTATION_MAKS = "segmentation_mask"
segmentation_mask_feature = {SEGMENTATION_MAKS: Image()}
INSTANCE_MASK = "instance_mask"
instance_mask_feature = {INSTANCE_MASK: Image()}
CROP = "crop"
crop_feature = {CROP: Image()}
ID = "identity"
identity_feature = {ID: ClassLabel(names=ontology.names(ID))}
chicken_only_identitiy_feature = {ID: ClassLabel(names=ontology.names(ID, "chicken", drop_unkown=True))}
VISIBILITY = "visibility"
visibility_feature = {VISIBILITY: ClassLabel(names=ontology.names(VISIBILITY))}
COOP = "coop"
coop_feature = {COOP: ClassLabel(names=ontology.names(COOP))}
CATEGORY = "animal_category"
animal_category_feature = {CATEGORY: ClassLabel(names=ontology.names(CATEGORY))}
INSTANCES = "instances"
instance_features = {
**crop_feature,
**instance_mask_feature,
**identity_feature,
**visibility_feature,
**animal_category_feature,
}
all_features = {
**image_feature,
**segmentation_mask_feature,
**coop_feature,
INSTANCES: [instance_features],
}
def name_to_dict(filename: str):
"""
Converts a filename to a dictionary object by splitting the filename by underscores and using the even indices as keys and the odd indices as values.
"""
return {filename.split('_')[i]: filename.split('_')[i + 1] for i in range(0, len(filename.split('_')) - 1, 2)}
class ChicksDataset(GeneratorBasedBuilder):
BUILDER_CONFIGS = [
BuilderConfig(name=full_dataset_name, version=Version(HF_VERSION), description="The complete dataset including all features and image types. Includes all coops, visibility ratings, identities, and animal categories, as well as segmentation masks and instance masks."),
BuilderConfig(name=semantic_segmentation_name, version=Version(HF_VERSION), description="Includes images and color-coded segmentation masks."),
BuilderConfig(name=instance_segmentation_name, version=Version(HF_VERSION), description="Includes images and a corresponding sequence of binary instance segmentation masks for each instance on the image."),
BuilderConfig(name=animal_category_anomoalies_name, version=Version(HF_VERSION), description="Includes images of mostly chicken, but also some roosters and ducks, which make up the anomalies in the dataset."),
BuilderConfig(name=re_id_best_name, version=Version(HF_VERSION), description="Includes crops of chickens which have the best visibility rating for re-identification."),
#BuilderConfig(name=re_id_good_name, version=Version(HF_VERSION), description="Includes crops of chickens which have neither the best nor the worst visibility rating for re-identification."),
#BuilderConfig(name=re_id_bad_name, version=Version(HF_VERSION), description="Includes crops of chickens which have the worst (bad) visibility rating for re-identification."),
BuilderConfig(name=re_id_full_name, version=Version(HF_VERSION), description="Includes crops of chickens with all visibilities for re-identification without any filtering on visibility rating."),
]
def _info(self, *args, **kwargs):
if self.config.name == full_dataset_name:
return DatasetInfo(
features=Features(all_features),
)
elif self.config.name in [
re_id_full_name, re_id_best_name,
# re_id_good_name, re_id_bad_name
]:
return DatasetInfo(
features=Features({
**crop_feature,
**chicken_only_identitiy_feature,
}),
supervised_keys=(
CROP,
ID,
),
)
elif self.config.name == semantic_segmentation_name:
return DatasetInfo(
features=Features({
**image_feature,
**segmentation_mask_feature,
}),
supervised_keys=(
IMAGE,
SEGMENTATION_MAKS,
)
)
elif self.config.name == instance_segmentation_name:
return DatasetInfo(
features=Features({
**image_feature,
INSTANCES: [instance_mask_feature],
}),
supervised_keys=(
IMAGE,
INSTANCES, # TODO use nested reference to instance_mask_feature
)
)
elif self.config.name == animal_category_anomoalies_name:
return DatasetInfo(
features=Features({
**crop_feature,
**animal_category_feature,
}),
supervised_keys=(
CROP,
CATEGORY
)
)
def _split_generators(self, dl_manager: DownloadManager):
URL = f"https://huggingface.co/datasets/dariakern/Chicks4FreeID/resolve/main/{VERSION}.zip?download=true"
base_path = Path(dl_manager.download_and_extract(URL))
# Only offer train test split for chicken-re-id task
if self.config.name in [
re_id_full_name,
re_id_best_name
]:
from sklearn.model_selection import train_test_split
# all crop files (only chicken, remove unknowns)
all_crops = sorted([
crop_file
for crop_file
in base_path.rglob(f"**/{VERSION}/reId/chicken/**/*crop_*.png")
if "Unknown" not in crop_file.parts
])
# all identity targets (labels)
identities = [name_to_dict(crop.stem)[ID] for crop in all_crops]
if VERSION == "v1_240507_SMALL":
train_crops, test_crops = all_crops, all_crops
else:
# Splitting the dataset into train and test using stratified train_test_split
train_crops, test_crops, _, _ = train_test_split(
all_crops, identities, test_size=0.2, stratify=identities, shuffle=True, random_state=42
)
return [
SplitGenerator(
gen_kwargs={"base_path": base_path, "split": set(train_crops)},
name=datasets.Split.TRAIN,
),
SplitGenerator(
gen_kwargs={"base_path": base_path, "split": set(test_crops)},
name=datasets.Split.TEST,
)
]
else:
return [
SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"base_path": base_path, "split": None})
]
def _generate_all(self, base_path: Path, split: Set[Path]=None):
"""
Generates all examples for the dataset, including all features.
Args:
base_path (Path): The base path to the dataset
split (Set[Path]): The paths to all instance crops to include in the current dataset
"""
img_dir = base_path / f"{VERSION}/images"
mask_dir = base_path / f"{VERSION}/masks"
reid_dir = base_path / f"{VERSION}/reId"
# Collecting images, segmentation masks, and instance masks
for img_file in img_dir.iterdir():
image_id = img_file.stem
image_path = img_file
segmentation_mask_path = mask_dir / f"{image_id}_segmentationMask.png"
instance_masks = list(mask_dir.rglob(f"{image_id}_instanceMask_*.png"))
instance_crops = list(reid_dir.rglob(f"**/{image_id}_crop_*.png"))
# Check if all crops have a corresponding instance mask
assert len(instance_masks) == len(instance_crops) and len(instance_masks) > 0
# Remove any instance_crops that are not in crops_split
if split is not None:
instance_crops = [crop for crop in instance_crops if crop in split]
instance_data = []
infos = {}
for instance_mask_path, crop_path in zip(instance_masks, instance_crops):
infos = name_to_dict(crop_path.stem)
instance_data.append({
INSTANCE_MASK: str(instance_mask_path),
CROP: str(crop_path),
VISIBILITY: infos[VISIBILITY],
ID: infos[ID],
CATEGORY: crop_path.relative_to(reid_dir).parts[0],
})
if instance_data:
yield image_id, {
IMAGE: str(image_path),
SEGMENTATION_MAKS: str(segmentation_mask_path),
COOP: infos[COOP],
INSTANCES: instance_data,
}
def _generate_examples(self, **kwargs):
if self.config.name in [full_dataset_name]:
yield from self._generate_all(**kwargs)
elif self.config.name == semantic_segmentation_name:
for image_id, example in self._generate_all(**kwargs):
yield image_id, {
IMAGE: example[IMAGE],
SEGMENTATION_MAKS: example[SEGMENTATION_MAKS],
}
elif self.config.name == instance_segmentation_name:
for image_id, example in self._generate_all(**kwargs):
yield image_id, {
IMAGE: example[IMAGE],
INSTANCES: [
{
INSTANCE_MASK: instance[INSTANCE_MASK]
}
for instance in example[INSTANCES]
]
}
elif self.config.name == animal_category_anomoalies_name:
for image_id, example in self._generate_all(**kwargs):
for instance in example[INSTANCES]:
instance_id = Path(instance[CROP]).stem
yield instance_id, {
CROP: instance[CROP],
CATEGORY: instance[CATEGORY],
}
elif self.config.name in [
re_id_best_name, re_id_full_name,
# re_id_good_name, re_id_bad_name
]:
for image_id, example in self._generate_all(**kwargs):
for instance in example[INSTANCES]:
# Conditions for filtering
use_all = self.config.name == re_id_full_name
selected_visibility = instance[VISIBILITY] == self.config.name.split("-")[-2]
if use_all or selected_visibility:
instance_id = Path(instance[CROP]).stem
yield instance_id, {
CROP: instance[CROP],
ID: instance[ID],
}