|
from pathlib import Path |
|
from typing import Set |
|
|
|
from datasets import DatasetBuilder, GeneratorBasedBuilder, DatasetInfo, Features, Image, ClassLabel, Array3D, DownloadManager, SplitGenerator, BuilderConfig, Version |
|
import numpy as np |
|
import datasets |
|
|
|
VERSION = "v1_240507" |
|
HF_VERSION = "1.0.0" |
|
|
|
|
|
full_dataset_name = "full-dataset" |
|
semantic_segmentation_name = "semantic-segmentation" |
|
instance_segmentation_name = "instance-segmentation" |
|
animal_category_anomoalies_name = "animal-category-anomalies" |
|
re_id_best_name = "chicken-re-id-best-visibility" |
|
|
|
|
|
re_id_full_name = "chicken-re-id-all-visibility" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ontologies = { |
|
"v1_240507": |
|
{'tools': [{'classifications': [{'instructions': 'coop', |
|
'options': [{'label': '1'}, |
|
{'label': '2'}, |
|
{'label': '3'}, |
|
{'label': '4'}, |
|
{'label': '5'}, |
|
{'label': '6'}, |
|
{'label': '7'}, |
|
{'label': '8'}, |
|
{'label': '9'}, |
|
{'label': '10'}, |
|
{'label': '11'},], |
|
'required': True, |
|
'type': 'radio'}, |
|
{'instructions': 'identity', |
|
'options': [{'label': 'Beate'}, |
|
{'label': 'Borghild'}, |
|
{'label': 'Eleonore'}, |
|
{'label': 'Mona'}, |
|
{'label': 'Henriette'}, |
|
{'label': 'Margit'}, |
|
{'label': 'Millie'}, |
|
{'label': 'Sigrun'}, |
|
{'label': 'Kristina'}, |
|
{'label': 'Unknown'}, |
|
{'label': 'Tina'}, |
|
{'label': 'Gretel'}, |
|
{'label': 'Lena'}, |
|
{'label': 'Yolkoono'}, |
|
{'label': 'Skimmy'}, |
|
{'label': 'Mavi'}, |
|
{'label': 'Mirmir'}, |
|
{'label': 'Nugget'}, |
|
{'label': 'Fernanda'}, |
|
{'label': 'Isolde'}, |
|
{'label': 'Mechthild'}, |
|
{'label': 'Brunhilde'}, |
|
{'label': 'Spiderman'}, |
|
{'label': 'Brownie'}, |
|
{'label': 'Camy'}, |
|
{'label': 'Samy'}, |
|
{'label': 'Yin'}, |
|
{'label': 'Yuriko'}, |
|
{'label': 'Renate'}, |
|
{'label': 'Regina'}, |
|
{'label': 'Monika'}, |
|
{'label': 'Heidi'}, |
|
{'label': 'Erna'}, |
|
{'label': 'Marina'}, |
|
{'label': 'Kathrin'}, |
|
{'label': 'Isabella'}, |
|
{'label': 'Amalia'}, |
|
{'label': 'Edeltraut'}, |
|
{'label': 'Erdmute'}, |
|
{'label': 'Oktavia'}, |
|
{'label': 'Siglinde'}, |
|
{'label': 'Ulrike'}, |
|
{'label': 'Hermine'}, |
|
{'label': 'Matilda'}, |
|
{'label': 'Chantal'}, |
|
{'label': 'Chayenne'}, |
|
{'label': 'Jaqueline'}, |
|
{'label': 'Mandy'}, |
|
{'label': 'Henny'}, |
|
{'label': 'Shady'}, |
|
{'label': 'Shorty'}], |
|
'required': True, |
|
'type': 'radio'}, |
|
{'instructions': 'visibility', |
|
'options': [{'label': 'best'}, |
|
{'label': 'good'}, |
|
{'label': 'bad'}], |
|
'required': True, |
|
'type': 'radio'}], |
|
'color': '#1e1cff', |
|
'name': 'chicken', |
|
'required': False, |
|
'tool': 'superpixel'}, |
|
{'color': '#FF34FF', |
|
'name': 'background', |
|
'required': False, |
|
'tool': 'superpixel'}, |
|
{'classifications': [{'instructions': 'coop', |
|
'options': [{'label': '1'}, |
|
{'label': '2'}, |
|
{'label': '3'}, |
|
{'label': '4'}, |
|
{'label': '5'}, |
|
{'label': '6'}, |
|
{'label': '7'}, |
|
{'label': '8'}, |
|
{'label': '9'}, |
|
{'label': '10'}, |
|
{'label': '11'}], |
|
'required': True, |
|
'type': 'radio'}, |
|
{'instructions': 'identity', |
|
'options': [{'label': 'Evelyn'}, |
|
{'label': 'Marley'}], |
|
'required': True, |
|
'type': 'radio'}, |
|
{'instructions': 'visibility', |
|
'options': [{'label': 'best'}, |
|
{'label': 'good'}, |
|
{'label': 'bad'}], |
|
'required': True, |
|
'type': 'radio'}], |
|
'color': '#FF4A46', |
|
'name': 'duck', |
|
'required': False, |
|
'tool': 'superpixel'}, |
|
{'classifications': [{'instructions': 'coop', |
|
'options': [{'label': '1'}, |
|
{'label': '2'}, |
|
{'label': '3'}, |
|
{'label': '4'}, |
|
{'label': '5'}, |
|
{'label': '6'}, |
|
{'label': '7'}, |
|
{'label': '8'}, |
|
{'label': '9'}, |
|
{'label': '10'}, |
|
{'label': '11'}], |
|
'required': True, |
|
'type': 'radio'}, |
|
{'instructions': 'identity', |
|
'options': [{'label': 'Elvis'}, |
|
{'label': 'Jackson'}], |
|
'required': True, |
|
'type': 'radio'}, |
|
{'instructions': 'visibility', |
|
'options': [{'label': 'best'}, |
|
{'label': 'good'}, |
|
{'label': 'bad'}], |
|
'required': True, |
|
'type': 'radio'}], |
|
'color': '#ff0000', |
|
'name': 'rooster', |
|
'required': False, |
|
'tool': 'superpixel'}]} |
|
} |
|
|
|
|
|
ontologies["v1_240507_SMALL"] = ontologies["v1_240507"] |
|
|
|
|
|
class Ontology: |
|
ontology: dict = None |
|
def __init__(self, version_name: str): |
|
self.ontology: dict = ontologies[version_name] |
|
|
|
|
|
def names(self, class_name, tool_name=None, drop_unkown=False): |
|
""" |
|
Returns a list of all possible names for a given category (accross all tools) |
|
""" |
|
if class_name == "animal_category": |
|
return sorted(list({tool["name"] for tool in self.ontology["tools"]} - {"background"})) |
|
|
|
result = [] |
|
for tool in self.ontology["tools"]: |
|
if "classifications" in tool: |
|
for classification in tool["classifications"]: |
|
if classification["instructions"] == class_name and (tool_name is None or tool_name == tool["name"]): |
|
result.extend([option["label"] for option in classification["options"] if not (drop_unkown and option["label"] == "Unknown") and option["label"] not in result]) |
|
return list(result) |
|
|
|
def get_color_map(self): |
|
""" |
|
Returns a dictionary mapping class names to their respective colors |
|
""" |
|
return {tool["name"]: tool["color"] for tool in self.ontology["tools"]} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ontology = Ontology(VERSION) |
|
|
|
|
|
IMAGE = "image" |
|
image_feature = {IMAGE: Image()} |
|
|
|
SEGMENTATION_MAKS = "segmentation_mask" |
|
segmentation_mask_feature = {SEGMENTATION_MAKS: Image()} |
|
|
|
INSTANCE_MASK = "instance_mask" |
|
instance_mask_feature = {INSTANCE_MASK: Image()} |
|
|
|
CROP = "crop" |
|
crop_feature = {CROP: Image()} |
|
|
|
ID = "identity" |
|
identity_feature = {ID: ClassLabel(names=ontology.names(ID))} |
|
chicken_only_identitiy_feature = {ID: ClassLabel(names=ontology.names(ID, "chicken", drop_unkown=True))} |
|
|
|
VISIBILITY = "visibility" |
|
visibility_feature = {VISIBILITY: ClassLabel(names=ontology.names(VISIBILITY))} |
|
|
|
COOP = "coop" |
|
coop_feature = {COOP: ClassLabel(names=ontology.names(COOP))} |
|
|
|
CATEGORY = "animal_category" |
|
animal_category_feature = {CATEGORY: ClassLabel(names=ontology.names(CATEGORY))} |
|
|
|
INSTANCES = "instances" |
|
instance_features = { |
|
**crop_feature, |
|
**instance_mask_feature, |
|
**identity_feature, |
|
**visibility_feature, |
|
**animal_category_feature, |
|
} |
|
|
|
all_features = { |
|
**image_feature, |
|
**segmentation_mask_feature, |
|
**coop_feature, |
|
INSTANCES: [instance_features], |
|
} |
|
|
|
|
|
|
|
|
|
|
|
def name_to_dict(filename: str): |
|
""" |
|
Converts a filename to a dictionary object by splitting the filename by underscores and using the even indices as keys and the odd indices as values. |
|
""" |
|
return {filename.split('_')[i]: filename.split('_')[i + 1] for i in range(0, len(filename.split('_')) - 1, 2)} |
|
|
|
|
|
class ChicksDataset(GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = [ |
|
BuilderConfig(name=full_dataset_name, version=Version(HF_VERSION), description="The complete dataset including all features and image types. Includes all coops, visibility ratings, identities, and animal categories, as well as segmentation masks and instance masks."), |
|
BuilderConfig(name=semantic_segmentation_name, version=Version(HF_VERSION), description="Includes images and color-coded segmentation masks."), |
|
BuilderConfig(name=instance_segmentation_name, version=Version(HF_VERSION), description="Includes images and a corresponding sequence of binary instance segmentation masks for each instance on the image."), |
|
BuilderConfig(name=animal_category_anomoalies_name, version=Version(HF_VERSION), description="Includes images of mostly chicken, but also some roosters and ducks, which make up the anomalies in the dataset."), |
|
BuilderConfig(name=re_id_best_name, version=Version(HF_VERSION), description="Includes crops of chickens which have the best visibility rating for re-identification."), |
|
|
|
|
|
BuilderConfig(name=re_id_full_name, version=Version(HF_VERSION), description="Includes crops of chickens with all visibilities for re-identification without any filtering on visibility rating."), |
|
] |
|
|
|
|
|
def _info(self, *args, **kwargs): |
|
|
|
if self.config.name == full_dataset_name: |
|
return DatasetInfo( |
|
features=Features(all_features), |
|
) |
|
|
|
elif self.config.name in [ |
|
re_id_full_name, re_id_best_name, |
|
|
|
]: |
|
return DatasetInfo( |
|
features=Features({ |
|
**crop_feature, |
|
**chicken_only_identitiy_feature, |
|
}), |
|
supervised_keys=( |
|
CROP, |
|
ID, |
|
), |
|
) |
|
|
|
|
|
elif self.config.name == semantic_segmentation_name: |
|
return DatasetInfo( |
|
features=Features({ |
|
**image_feature, |
|
**segmentation_mask_feature, |
|
}), |
|
supervised_keys=( |
|
IMAGE, |
|
SEGMENTATION_MAKS, |
|
) |
|
) |
|
|
|
elif self.config.name == instance_segmentation_name: |
|
return DatasetInfo( |
|
features=Features({ |
|
**image_feature, |
|
INSTANCES: [instance_mask_feature], |
|
}), |
|
supervised_keys=( |
|
IMAGE, |
|
INSTANCES, |
|
) |
|
) |
|
|
|
elif self.config.name == animal_category_anomoalies_name: |
|
return DatasetInfo( |
|
features=Features({ |
|
**crop_feature, |
|
**animal_category_feature, |
|
}), |
|
supervised_keys=( |
|
CROP, |
|
CATEGORY |
|
) |
|
) |
|
|
|
def _split_generators(self, dl_manager: DownloadManager): |
|
URL = f"https://huggingface.co/datasets/dariakern/Chicks4FreeID/resolve/main/{VERSION}.zip?download=true" |
|
base_path = Path(dl_manager.download_and_extract(URL)) |
|
|
|
|
|
if self.config.name in [ |
|
re_id_full_name, |
|
re_id_best_name |
|
]: |
|
from sklearn.model_selection import train_test_split |
|
|
|
|
|
all_crops = sorted([ |
|
crop_file |
|
for crop_file |
|
in base_path.rglob(f"**/{VERSION}/reId/chicken/**/*crop_*.png") |
|
if "Unknown" not in crop_file.parts |
|
]) |
|
|
|
identities = [name_to_dict(crop.stem)[ID] for crop in all_crops] |
|
|
|
if VERSION == "v1_240507_SMALL": |
|
train_crops, test_crops = all_crops, all_crops |
|
else: |
|
|
|
train_crops, test_crops, _, _ = train_test_split( |
|
all_crops, identities, test_size=0.2, stratify=identities, shuffle=True, random_state=42 |
|
) |
|
|
|
return [ |
|
SplitGenerator( |
|
gen_kwargs={"base_path": base_path, "split": set(train_crops)}, |
|
name=datasets.Split.TRAIN, |
|
), |
|
SplitGenerator( |
|
gen_kwargs={"base_path": base_path, "split": set(test_crops)}, |
|
name=datasets.Split.TEST, |
|
) |
|
] |
|
else: |
|
return [ |
|
SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"base_path": base_path, "split": None}) |
|
] |
|
|
|
|
|
def _generate_all(self, base_path: Path, split: Set[Path]=None): |
|
""" |
|
Generates all examples for the dataset, including all features. |
|
|
|
Args: |
|
base_path (Path): The base path to the dataset |
|
split (Set[Path]): The paths to all instance crops to include in the current dataset |
|
""" |
|
img_dir = base_path / f"{VERSION}/images" |
|
mask_dir = base_path / f"{VERSION}/masks" |
|
reid_dir = base_path / f"{VERSION}/reId" |
|
|
|
|
|
for img_file in img_dir.iterdir(): |
|
image_id = img_file.stem |
|
image_path = img_file |
|
segmentation_mask_path = mask_dir / f"{image_id}_segmentationMask.png" |
|
instance_masks = list(mask_dir.rglob(f"{image_id}_instanceMask_*.png")) |
|
instance_crops = list(reid_dir.rglob(f"**/{image_id}_crop_*.png")) |
|
|
|
|
|
assert len(instance_masks) == len(instance_crops) and len(instance_masks) > 0 |
|
|
|
|
|
if split is not None: |
|
instance_crops = [crop for crop in instance_crops if crop in split] |
|
|
|
instance_data = [] |
|
infos = {} |
|
for instance_mask_path, crop_path in zip(instance_masks, instance_crops): |
|
infos = name_to_dict(crop_path.stem) |
|
instance_data.append({ |
|
INSTANCE_MASK: str(instance_mask_path), |
|
CROP: str(crop_path), |
|
VISIBILITY: infos[VISIBILITY], |
|
ID: infos[ID], |
|
CATEGORY: crop_path.relative_to(reid_dir).parts[0], |
|
}) |
|
|
|
|
|
if instance_data: |
|
yield image_id, { |
|
IMAGE: str(image_path), |
|
SEGMENTATION_MAKS: str(segmentation_mask_path), |
|
COOP: infos[COOP], |
|
INSTANCES: instance_data, |
|
} |
|
|
|
|
|
def _generate_examples(self, **kwargs): |
|
if self.config.name in [full_dataset_name]: |
|
yield from self._generate_all(**kwargs) |
|
|
|
elif self.config.name == semantic_segmentation_name: |
|
for image_id, example in self._generate_all(**kwargs): |
|
yield image_id, { |
|
IMAGE: example[IMAGE], |
|
SEGMENTATION_MAKS: example[SEGMENTATION_MAKS], |
|
} |
|
|
|
elif self.config.name == instance_segmentation_name: |
|
for image_id, example in self._generate_all(**kwargs): |
|
yield image_id, { |
|
IMAGE: example[IMAGE], |
|
INSTANCES: [ |
|
{ |
|
INSTANCE_MASK: instance[INSTANCE_MASK] |
|
} |
|
for instance in example[INSTANCES] |
|
] |
|
} |
|
|
|
elif self.config.name == animal_category_anomoalies_name: |
|
for image_id, example in self._generate_all(**kwargs): |
|
for instance in example[INSTANCES]: |
|
instance_id = Path(instance[CROP]).stem |
|
yield instance_id, { |
|
CROP: instance[CROP], |
|
CATEGORY: instance[CATEGORY], |
|
} |
|
|
|
elif self.config.name in [ |
|
re_id_best_name, re_id_full_name, |
|
|
|
]: |
|
for image_id, example in self._generate_all(**kwargs): |
|
for instance in example[INSTANCES]: |
|
|
|
|
|
use_all = self.config.name == re_id_full_name |
|
selected_visibility = instance[VISIBILITY] == self.config.name.split("-")[-2] |
|
|
|
if use_all or selected_visibility: |
|
instance_id = Path(instance[CROP]).stem |
|
yield instance_id, { |
|
CROP: instance[CROP], |
|
ID: instance[ID], |
|
} |
|
|