File size: 21,650 Bytes
e4cef19
 
 
 
 
 
 
181f840
e4cef19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
181f840
e4cef19
 
 
 
 
 
 
 
181f840
 
e4cef19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bc2273
e4cef19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
from pathlib import Path
from typing import Set

from datasets import DatasetBuilder, GeneratorBasedBuilder, DatasetInfo, Features, Image, ClassLabel, Array3D, DownloadManager, SplitGenerator, BuilderConfig, Version
import numpy as np
import datasets

VERSION = "v1_240507"
HF_VERSION = "1.0.0"

# Available Dataset View Names
full_dataset_name =                 "full-dataset"
semantic_segmentation_name =        "semantic-segmentation"
instance_segmentation_name =        "instance-segmentation"
animal_category_anomoalies_name =   "animal-category-anomalies"
re_id_best_name =                   "chicken-re-id-best-visibility"
#re_id_good_name =                   "chicken-re-id-good-visibility"
#re_id_bad_name =                    "chicken-re-id-bad-visibility"
re_id_full_name =                   "chicken-re-id-all-visibility"


# Example usage
# from datasets import load_dataset
# dataset = datasets.load_dataset(
#    "dariakern/Chicks4FreeID", 
#    "chicken-re-id-best-visibility", 
#    as_supervised=True, 
#    trust_remote_code=True
# )

##### ONTOLOTGY ######


ontologies = {
    "v1_240507": 
    {'tools': [{'classifications': [{'instructions': 'coop',
                                 'options': [{'label': '1'},
                                             {'label': '2'},
                                             {'label': '3'},
                                             {'label': '4'},
                                             {'label': '5'},
                                             {'label': '6'},
                                             {'label': '7'},
                                             {'label': '8'},
                                             {'label': '9'},
                                             {'label': '10'},
                                             {'label': '11'},],
                                 'required': True,
                                 'type': 'radio'},
                                {'instructions': 'identity',
                                 'options': [{'label': 'Beate'},
                                             {'label': 'Borghild'},
                                             {'label': 'Eleonore'},
                                             {'label': 'Mona'},
                                             {'label': 'Henriette'},
                                             {'label': 'Margit'},
                                             {'label': 'Millie'},
                                             {'label': 'Sigrun'},
                                             {'label': 'Kristina'},
                                             {'label': 'Unknown'},
                                             {'label': 'Tina'},
                                             {'label': 'Gretel'},
                                             {'label': 'Lena'},
                                             {'label': 'Yolkoono'},
                                             {'label': 'Skimmy'},
                                             {'label': 'Mavi'},
                                             {'label': 'Mirmir'},
                                             {'label': 'Nugget'},
                                             {'label': 'Fernanda'},
                                             {'label': 'Isolde'},
                                             {'label': 'Mechthild'},
                                             {'label': 'Brunhilde'},
                                             {'label': 'Spiderman'},
                                             {'label': 'Brownie'},
                                             {'label': 'Camy'},
                                             {'label': 'Samy'},
                                             {'label': 'Yin'},
                                             {'label': 'Yuriko'},
                                             {'label': 'Renate'},
                                             {'label': 'Regina'},
                                             {'label': 'Monika'},
                                             {'label': 'Heidi'},
                                             {'label': 'Erna'},
                                             {'label': 'Marina'},
                                             {'label': 'Kathrin'},
                                             {'label': 'Isabella'},
                                             {'label': 'Amalia'},
                                             {'label': 'Edeltraut'},
                                             {'label': 'Erdmute'},
                                             {'label': 'Oktavia'},
                                             {'label': 'Siglinde'},
                                             {'label': 'Ulrike'},
                                             {'label': 'Hermine'},
                                             {'label': 'Matilda'},
                                             {'label': 'Chantal'},
                                             {'label': 'Chayenne'},
                                             {'label': 'Jaqueline'},
                                             {'label': 'Mandy'},
                                             {'label': 'Henny'},
                                             {'label': 'Shady'},
                                             {'label': 'Shorty'}],
                                 'required': True,
                                 'type': 'radio'},
                                {'instructions': 'visibility',
                                 'options': [{'label': 'best'},
                                             {'label': 'good'},
                                             {'label': 'bad'}],
                                 'required': True,
                                 'type': 'radio'}],
            'color': '#1e1cff',
            'name': 'chicken',
            'required': False,
            'tool': 'superpixel'},
           {'color': '#FF34FF',
            'name': 'background',
            'required': False,
            'tool': 'superpixel'},
           {'classifications': [{'instructions': 'coop',
                                 'options': [{'label': '1'},
                                             {'label': '2'},
                                             {'label': '3'},
                                             {'label': '4'},
                                             {'label': '5'},
                                             {'label': '6'},
                                             {'label': '7'},
                                             {'label': '8'},
                                             {'label': '9'},
                                             {'label': '10'},
                                             {'label': '11'}],
                                 'required': True,
                                 'type': 'radio'},
                                {'instructions': 'identity',
                                 'options': [{'label': 'Evelyn'},
                                             {'label': 'Marley'}],
                                 'required': True,
                                 'type': 'radio'},
                                {'instructions': 'visibility',
                                 'options': [{'label': 'best'},
                                             {'label': 'good'},
                                             {'label': 'bad'}],
                                 'required': True,
                                 'type': 'radio'}],
            'color': '#FF4A46',
            'name': 'duck',
            'required': False,
            'tool': 'superpixel'},
           {'classifications': [{'instructions': 'coop',
                                 'options': [{'label': '1'},
                                             {'label': '2'},
                                             {'label': '3'},
                                             {'label': '4'},
                                             {'label': '5'},
                                             {'label': '6'},
                                             {'label': '7'},
                                             {'label': '8'},
                                             {'label': '9'},
                                             {'label': '10'},
                                             {'label': '11'}],
                                 'required': True,
                                 'type': 'radio'},
                                {'instructions': 'identity',
                                 'options': [{'label': 'Elvis'},
                                             {'label': 'Jackson'}],
                                 'required': True,
                                 'type': 'radio'},
                                {'instructions': 'visibility',
                                 'options': [{'label': 'best'},
                                             {'label': 'good'},
                                             {'label': 'bad'}],
                                 'required': True,
                                 'type': 'radio'}],
            'color': '#ff0000',
            'name': 'rooster',
            'required': False,
            'tool': 'superpixel'}]}
}


ontologies["v1_240507_SMALL"] = ontologies["v1_240507"]


class Ontology:
    ontology: dict = None
    def __init__(self, version_name: str):
        self.ontology: dict = ontologies[version_name]


    def names(self, class_name, tool_name=None, drop_unkown=False):
        """
        Returns a list of all possible names for a given category (accross all tools)
        """
        if class_name == "animal_category":
            return sorted(list({tool["name"] for tool in self.ontology["tools"]} - {"background"}))

        result = []
        for tool in self.ontology["tools"]:
            if "classifications" in tool:
                for classification in tool["classifications"]:
                    if classification["instructions"] == class_name and (tool_name is None or tool_name == tool["name"]):
                        result.extend([option["label"] for option in classification["options"] if not (drop_unkown and option["label"] == "Unknown") and option["label"] not in result])
        return list(result)
    
    def get_color_map(self):
        """
        Returns a dictionary mapping class names to their respective colors
        """
        return {tool["name"]: tool["color"] for tool in self.ontology["tools"]}
    






ontology = Ontology(VERSION)

# Feature Names
IMAGE = "image"
image_feature = {IMAGE: Image()}

SEGMENTATION_MAKS = "segmentation_mask"
segmentation_mask_feature = {SEGMENTATION_MAKS: Image()}

INSTANCE_MASK = "instance_mask"
instance_mask_feature = {INSTANCE_MASK: Image()}

CROP = "crop"
crop_feature = {CROP: Image()}

ID = "identity"
identity_feature = {ID: ClassLabel(names=ontology.names(ID))}
chicken_only_identitiy_feature = {ID: ClassLabel(names=ontology.names(ID, "chicken", drop_unkown=True))}

VISIBILITY = "visibility"
visibility_feature = {VISIBILITY: ClassLabel(names=ontology.names(VISIBILITY))} 

COOP = "coop"
coop_feature = {COOP: ClassLabel(names=ontology.names(COOP))} 

CATEGORY = "animal_category"
animal_category_feature = {CATEGORY: ClassLabel(names=ontology.names(CATEGORY))} 

INSTANCES = "instances"
instance_features = {
    **crop_feature,
    **instance_mask_feature,
    **identity_feature,
    **visibility_feature,
    **animal_category_feature,
}

all_features = {
    **image_feature,
    **segmentation_mask_feature,
    **coop_feature,
    INSTANCES: [instance_features],
}





def name_to_dict(filename: str):
    """
    Converts a filename to a dictionary object by splitting the filename by underscores and using the even indices as keys and the odd indices as values.
    """
    return {filename.split('_')[i]: filename.split('_')[i + 1] for i in range(0, len(filename.split('_')) - 1, 2)}


class ChicksDataset(GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        BuilderConfig(name=full_dataset_name, version=Version(HF_VERSION), description="The complete dataset including all features and image types. Includes all coops, visibility ratings, identities, and animal categories, as well as segmentation masks and instance masks."),
        BuilderConfig(name=semantic_segmentation_name, version=Version(HF_VERSION), description="Includes images and color-coded segmentation masks."),
        BuilderConfig(name=instance_segmentation_name, version=Version(HF_VERSION), description="Includes images and a corresponding sequence of binary instance segmentation masks for each instance on the image."),
        BuilderConfig(name=animal_category_anomoalies_name, version=Version(HF_VERSION), description="Includes images of mostly chicken, but also some roosters and ducks, which make up the anomalies in the dataset."),
        BuilderConfig(name=re_id_best_name, version=Version(HF_VERSION), description="Includes crops of chickens which have the best visibility rating for re-identification."),
        #BuilderConfig(name=re_id_good_name, version=Version(HF_VERSION), description="Includes crops of chickens which have neither the best nor the worst visibility rating for re-identification."),
        #BuilderConfig(name=re_id_bad_name, version=Version(HF_VERSION), description="Includes crops of chickens which have the worst (bad) visibility rating for re-identification."),
        BuilderConfig(name=re_id_full_name, version=Version(HF_VERSION), description="Includes crops of chickens with all visibilities for re-identification without any filtering on visibility rating."),
    ]
    

    def _info(self, *args, **kwargs):
        
        if self.config.name == full_dataset_name:
            return DatasetInfo(
                features=Features(all_features),
            )
        
        elif self.config.name in [
            re_id_full_name, re_id_best_name, 
            # re_id_good_name, re_id_bad_name
        ]:
            return DatasetInfo(
                features=Features({
                    **crop_feature,
                    **chicken_only_identitiy_feature,
                }),
                supervised_keys=(
                    CROP,
                    ID,
                ),
            )

        
        elif self.config.name == semantic_segmentation_name:
            return DatasetInfo(
                features=Features({
                    **image_feature, 
                    **segmentation_mask_feature,
                }),
                supervised_keys=(
                    IMAGE,
                    SEGMENTATION_MAKS,
                )
            )
        
        elif self.config.name == instance_segmentation_name:
            return DatasetInfo(
                features=Features({
                    **image_feature, 
                    INSTANCES: [instance_mask_feature],
                }),
                supervised_keys=(
                    IMAGE,
                    INSTANCES, # TODO use nested reference to instance_mask_feature
                )
            )
        
        elif self.config.name == animal_category_anomoalies_name:
            return DatasetInfo(
                features=Features({
                    **crop_feature,
                    **animal_category_feature,
                }),
                supervised_keys=(
                    CROP,
                    CATEGORY
                )
            )

    def _split_generators(self, dl_manager: DownloadManager):
        URL = f"https://huggingface.co/datasets/dariakern/Chicks4FreeID/resolve/main/{VERSION}.zip?download=true"
        base_path = Path(dl_manager.download_and_extract(URL))

        # Only offer train test split for chicken-re-id task
        if self.config.name in [
            re_id_full_name, 
            re_id_best_name
        ]:
            from sklearn.model_selection import train_test_split

            # all crop files (only chicken, remove unknowns)
            all_crops = sorted([
                crop_file 
                for crop_file 
                in base_path.rglob(f"**/{VERSION}/reId/chicken/**/*crop_*.png") 
                if "Unknown" not in crop_file.parts
            ])
            # all identity targets (labels)
            identities = [name_to_dict(crop.stem)[ID] for crop in all_crops]

            if VERSION == "v1_240507_SMALL":
                train_crops, test_crops = all_crops, all_crops
            else:
                # Splitting the dataset into train and test using stratified train_test_split
                train_crops, test_crops, _, _ = train_test_split(
                    all_crops, identities, test_size=0.2, stratify=identities, shuffle=True, random_state=42
                )
    
            return [
                SplitGenerator(
                    gen_kwargs={"base_path": base_path, "split": set(train_crops)},
                    name=datasets.Split.TRAIN,
                ),
                SplitGenerator(
                    gen_kwargs={"base_path": base_path, "split": set(test_crops)},
                    name=datasets.Split.TEST,
                )
            ]
        else:
            return [
                SplitGenerator(
                    name=datasets.Split.TRAIN, 
                    gen_kwargs={"base_path": base_path, "split": None})
            ]

    
    def _generate_all(self, base_path: Path, split: Set[Path]=None):
        """
        Generates all examples for the dataset, including all features. 

        Args:
            base_path (Path): The base path to the dataset
            split (Set[Path]): The paths to all instance crops to include in the current dataset
        """
        img_dir = base_path / f"{VERSION}/images"
        mask_dir = base_path / f"{VERSION}/masks"
        reid_dir = base_path / f"{VERSION}/reId"
        
        # Collecting images, segmentation masks, and instance masks
        for img_file in img_dir.iterdir():
            image_id = img_file.stem
            image_path = img_file
            segmentation_mask_path = mask_dir / f"{image_id}_segmentationMask.png"
            instance_masks = list(mask_dir.rglob(f"{image_id}_instanceMask_*.png"))
            instance_crops = list(reid_dir.rglob(f"**/{image_id}_crop_*.png"))
            
            # Check if all crops have a corresponding instance mask
            assert len(instance_masks) == len(instance_crops) and len(instance_masks) > 0

            # Remove any instance_crops that are not in crops_split
            if split is not None:
                instance_crops = [crop for crop in instance_crops if crop in split]

            instance_data = []
            infos = {}
            for instance_mask_path, crop_path in zip(instance_masks, instance_crops):
                infos = name_to_dict(crop_path.stem)
                instance_data.append({
                    INSTANCE_MASK: str(instance_mask_path),
                    CROP: str(crop_path),
                    VISIBILITY: infos[VISIBILITY],
                    ID: infos[ID],
                    CATEGORY: crop_path.relative_to(reid_dir).parts[0],
                })
            

            if instance_data:
                yield image_id, {
                    IMAGE: str(image_path),
                    SEGMENTATION_MAKS: str(segmentation_mask_path),
                    COOP: infos[COOP],
                    INSTANCES: instance_data,
                }


    def _generate_examples(self, **kwargs):
        if self.config.name in [full_dataset_name]:
            yield from self._generate_all(**kwargs)
        
        elif self.config.name == semantic_segmentation_name:
            for image_id, example in self._generate_all(**kwargs):
                yield image_id, {
                    IMAGE: example[IMAGE],
                    SEGMENTATION_MAKS: example[SEGMENTATION_MAKS],
                }

        elif self.config.name == instance_segmentation_name:
            for image_id, example in self._generate_all(**kwargs):
                yield image_id, {
                    IMAGE: example[IMAGE],
                    INSTANCES: [
                        {
                            INSTANCE_MASK: instance[INSTANCE_MASK]
                        }
                        for instance in example[INSTANCES]
                    ]
                }

        elif self.config.name == animal_category_anomoalies_name:
            for image_id, example in self._generate_all(**kwargs):
                for instance in example[INSTANCES]:
                    instance_id = Path(instance[CROP]).stem
                    yield instance_id, {
                        CROP: instance[CROP],
                        CATEGORY: instance[CATEGORY],
                    }

        elif self.config.name in [
            re_id_best_name, re_id_full_name, 
            # re_id_good_name, re_id_bad_name
        ]:
            for image_id, example in self._generate_all(**kwargs):
                for instance in example[INSTANCES]:
                    
                    # Conditions for filtering
                    use_all = self.config.name == re_id_full_name
                    selected_visibility = instance[VISIBILITY] == self.config.name.split("-")[-2]

                    if use_all or selected_visibility:
                        instance_id = Path(instance[CROP]).stem
                        yield instance_id, {
                            CROP: instance[CROP],
                            ID: instance[ID],
                        }